
SIGRAD 2015
L. Kjelldahl and C. Peters (Editors)

Teaching OpenGL and Computer Graphics with
Programmable Shaders

J. Nysjö1 and A. Hast1

1Centre for Image Analysis, Dept. of Information Technology, Uppsala University, Sweden

Figure 1: Our course assignments are all implemented with modern shader-based OpenGL and range from manipulating the
vertices and fragments of a single triangle to implementing a 3D model viewer with per-fragment Blinn-Phong shading.

Abstract
This paper presents our approach and experiences of transferring an introductory computer graphics course from
the fixed-function OpenGL pipeline to modern shader-based OpenGL. We provide an overview of the selected
course structure and the C++-based programming environment that we use for assignments and projects, and
discuss some of the technical and pedagogical challenges, e.g., multiplatform support and shader debugging,
that we ran into. Based on course evaluations and the outcome of programming assignments, we conclude that
introducing shaders early and skipping the fixed-function pipeline completely is a sound and viable approach. It
requires more initial effort from teachers and students because of the added complexity of setting up and using
shaders and vertex buffers, but offers a more interactive and powerful programming environment, which we believe
helps promoting the creativity of students.

Categories and Subject Descriptors (according to ACM CCS): I.3.0 [Computer Graphics]: General—

1. Introduction

The transition from fixed-function OpenGL to pro-
grammable shaders has slowly reached academia and
prompted a change in how graphics programming is
taught [AS11]. One of the initial challenges in teaching
an introductory computer graphics course based on modern
shader-based OpenGL (which here means OpenGL version
3.x or higher) is to help the students overcome the hurdles of
compiling shaders and uploading vertex data to the GPU via
buffer objects. Another challenge is to set up a programming
environment that supports the learning process and works on

a variety of platforms and GPU configurations [PPGT14].
This paper presents our approach and experiences of adopt-
ing modern shader-based OpenGL in the introductory com-
puter graphics course offered at Uppsala University. The
course, which is supposed to represent 10 weeks of full-time
studies and usually have between 50 and 70 enrolled stu-
dents, is targeted to Bachelor’s and Master’s CS or engineer-
ing students who have taken basic courses in linear algebra
and computer programming. Typically, a few of the students
have prior experience of shader programming or the fixed-
function OpenGL pipeline, but most are complete novices.

Chris
Typewriter
32

J. Nysjö & A. Hast / Teaching Programmable Shaders

Figure 2: Two of the six available course projects students may choose from. Left: Volume rendering. Right: Toon shading
implemented as a post-processing effect. The AntTweakBar GUI library is used for interactive parameter tweaking.

2. Course structure

Whereas shader programming was introduced as an ad-
vanced topic towards the end of our former graphics course,
we now introduce it already in the second lecture, along with
a simplified overview of how the programmable graphics
pipeline works. We start by showing how to manipulate ver-
tices and fragments via shaders and how to upload vertex
data to the GPU memory via buffer objects, and then move
on to cover transformations, viewing, and shading. Subse-
quently, we introduce more advanced rendering topics such
as texture mapping, global illumination, and splines, along
with fundamental topics such as rasterization and clipping.
The fixed-function OpenGL pipeline is briefly mentioned
during the course but not covered in detail.

Our course includes three programming assignments
(Fig. 1) and one project. While the assignments specify ex-
actly what the students are supposed to do to assure that
they are familiar with the fundamental graphics program-
ming tools and concepts, the project is more loosely spec-
ified. The students can choose from six different projects,
which cover more advanced rendering techniques such as
volume rendering and post-processing effects (Fig. 2). The
projects have different degrees of specification so that the
students can choose a project according to their own interest
but also according to how much freedom they desire and how
much specification they need. We also encourage students to
suggest projects on their own. In addition to implementing a
working solution, each student or project group must submit
a 1-2 pages graphical abstract and a short (∼1 minute) video
demonstrating the solution. The compact format of the pre-
sentation enables quick assessment of the quality of the so-
lution, which is appealing from an instructors point of view.

At the end of the course, there is a conventional exam test-
ing the students’ teoretical knowledge about the various ren-
dering topics covered in the lectures. The final grade is de-

termined by the grade on the exam and by eventual bonus
points obtained in the assignments.

3. Programming environment

The assignments and project are programmed in C++ using
the widely supported OpenGL 3.2 core profile and GLSL
1.50. Although we would have preferred to use a compati-
bility profile, the 3.2 core profile is the only reasonable mod-
ern OpenGL profile that is supported under Windows, Linux,
and Mac OS X on up to five years old integrated or discrete
GPUs. The students can work either on their own computers
or on the lab computers, which are equipped with Windows
7, Visual Studio 2013, and Nvidia 6XX series GPUs. We use
the FreeGLUT library for creating and managing windows
(with GLFW as alternative for Mac OS X users), GLEW for
loading OpenGL extensions, and GLM [Cre15] for mathe-
matics. We also use the easy-to-integrate AntTweakBar GUI
library [Dec15] to set up a widget for interactive parame-
ter tweaking. Compilation on different platforms is enabled
via the CMake [Kit15] build tool, which can generate Vi-
sual Studio project files on Windows and Unix makefiles on
Linux or OS X.

Compared with the fixed-function OpenGL pipeline,
modern shader-based OpenGL has, as noted in [AS11], a
steeper learning curve and requires more initial program-
ming to display something on the screen. One of the ini-
tial barriers for newcomers to modern OpenGL is to perform
the somewhat complex and error-prone steps of loading and
compiling shader programs and setting up vertex buffer and
vertex array objects. In the first assignment, we provide util-
ity functions for performing these tasks. This allows students
to get started quickly and focus on the shader programming,
without abstracting away too much of the underlying graph-
ics API. In our experience, wrapping OpenGL calls into a
custom framework of C++ classes tend to confuse students

Chris
Typewriter

Chris
Typewriter
33

Chris
Typewriter

J. Nysjö & A. Hast / Teaching Programmable Shaders

with limited programming and C++ background. Thus, we
prefer to use plain OpenGL calls, for which the students
easily can find documentation and examples. The only addi-
tional utility code we provide for the assignments is a virtual
trackball implementation and a simple OBJ file reader.

4. Challenges

Many of our students find it difficult to debug OpenGL appli-
cations and shader code. Shader variables can not be easily
printed, and sometimes it is not obvious whether the problem
lies in the host application code or in the shader code. Com-
menting out code and rendering vector or scalar variables as
colors to the screen are the typical shader debugging tech-
niques that we suggest for the assignments. Adding a key-
board shortcut for reloading shader programs on-the-fly is
also highly useful since it allows the students to interactively
modify shaders without restarting the OpenGL host applica-
tion. The ARB_debug_output extension can be enabled
to facilitate debugging on the host side. Some students have
found graphical debuggers like APITrace useful later in the
course.

Live coding during the initial lectures is helpful to illus-
trate how shaders can affect the appearance of the rendering
and how the different types of shader variables are used. As
a supplement to the course material, we also encourage the
students to work through some of the many excellent mod-
ern OpenGL programming tutorials (e.g., [dV15]) that are
available online. To avoid that the students try to use legacy
OpenGL functions in the assignments, we provide a quick-
reference listing the most common fixed-function OpenGL
commands that are deprecated or removed in the OpenGL
3.x and 4.x core profiles.

The programming environment described in Section 3 can
be a bit complex to set up for the first time. CMake is less
ideal for the GUI-based workflow on Windows, and some of
the students who worked on Mac OS X ran into issues with
third-party libraries. A possible future direction of the course
could be to move away from desktop OpenGL and C++ to
WebGL and JavaScript, so that the students only would re-
quire a text editor and a WebGL-enabled browser to develop
and run their OpenGL applications. This approach has been
successfully adopted in, for example, massive open online
courses (MOOC) [Cou15].

5. Conclusion

According to Romeike [Rom08] there are three drivers for
creativity in computer science education: 1) the person with
his motivation and interest, 2) the IT environment, and 3)
the subject of software design itself. Allowing the students
to choose a project is promoting the first driver. We strongly
believe that using programmable shaders instead of the old
fixed-function OpenGL pipeline promotes the second driver.
Having control of powerful shaders is simply much more fun

as it allows the student to try out new ideas quickly and eas-
ily and implement more sophisticated rendering techniques.
The third driver is promoted by the fact that the response
is immediate and graphical. The student instantly sees the
result on the screen from changing the code and that itself
helps the student in the exploration of different parameters
and studying the result of code changes.

This is the second year we teach the revisited course, and
overall the transition from the old fixed-function OpenGL
pipeline to modern shader-based OpenGL has been a posi-
tive experience. Based on course evaluations, student feed-
back, and the outcome of programming assignments, we
conclude that introducing shaders early and skipping the
fixed-function pipeline completely is a sound and viable ap-
proach, particularly since the OpenGL 3.2 core profile is
now widely supported. Although the shader-based approach
requires more initial effort from both teachers and students,
it appears to provide the students a more fundamental under-
standing of how the graphics pipeline works, smoothens the
transition to advanced rendering topics, and pays off later in
the form of more spectacular course projects. Key issues to
address in the future are improved support for shader debug-
ging and simplification of the programming environment.

6. Acknowledgments

The 3D models are courtesy of the Stanford 3D Scanning
Repository and the AIM@SHAPE repository. The volume
dataset is courtesy of Philips Research.

References
[AS11] ANGEL E., SHREINER D.: Teaching a shader-based in-

troduction to computer graphics. Computer Graphics and Appli-
cations, IEEE 31, 2 (2011), 9–13. 1, 2

[Cou15] COURSERA: Interactive Computer Graphics with We-
bGL. https://www.coursera.org/course/webgl,
2015. Accessed on April 14, 2015. 3

[Cre15] CREATION G.-T.: OpenGL Mathematics (GLM).
http://glm.g-truc.net/, 2015. Accessed on April 14,
2015. 2

[Dec15] DECAUDIN P.: AntTweakBar. http:
//anttweakbar.sourceforge.net/doc/, 2015.
Accessed on April 14, 2015. 2

[dV15] DE VRIES J.: Learn OpenGL. http:
//learnopengl.com/, 2015. Accessed on April 14,
2015. 3

[Kit15] KITWARE: CMake. http://www.cmake.org/,
2015. Accessed on April 14, 2015. 2

[PPGT14] PAPAGIANNAKIS G., PAPANIKOLAOU P., GREASSI-
DOU E., TRAHANIAS P.: glGA: an OpenGL Geometric Appli-
cation framework for a modern, shader-based computer graphics
curriculum. Eurographics 2014, Education Papers (2014), 1–8.
1

[Rom08] ROMEIKE R.: Towards Students’ Motivation and Inter-
est: Teaching Tips for Applying Creativity. In Proceedings of the
8th International Conference on Computing Education Research
(New York, NY, USA, 2008), Koli ’08, ACM, pp. 113–114. 3

Chris
Typewriter
34

https://www.coursera.org/course/webgl
http://glm.g-truc.net/
http://anttweakbar.sourceforge.net/doc/
http://anttweakbar.sourceforge.net/doc/
http://learnopengl.com/
http://learnopengl.com/
http://www.cmake.org/

