
SIGRAD 2015
L. Kjelldahl and C. Peters (Editors)

Triangulation painting

Max Pihlström, Anders Hast, Anders Brun

Department of Information Technology, Uppsala University, Sweden

Abstract
In this paper a dynamic image representation is proposed by combining advantages of both raster and vector
graphics in the triangulation. In order for a dynamic mesh to remain a triangulation, a method which maintains
integrity of representation is devised. Together with techniques for synthesizing paint, the end result is a config-
urable scheme demonstrating potential as a viable alternative for digital painting and imaging in general.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

In image editing there are two main types of representa-
tion: raster graphics and vector graphics. In the field of dig-
ital imaging, what in recent years has commonly been re-
searched are sophisticated methods for simulating traditional
painting media [VLVR05, BWL04,DKI∗12]. In these cases,
crucially the representations are all built on top of a pixel
or a vector graphics framework. For example, in an algo-
rithm for watercolor developed at Adobe, the paint goes
from “watery” polygon shapes to “dried” texture buffers but
is still fundamentally a composite of raster and vector graph-
ics [DKI∗12]. In a different approach, Orzan et al. generate
graphics using heat diffusion and vector curves but the un-
derlying elements lack the appealing neighborhood charac-
teristic of the pixel raster [OBB∗13].

In this paper, a representation for image editing and paint
synthesis will be presented which combines appealing char-
acteristics of both raster and vector graphics in the tri-
angulation. While the analogous nature between the pixel
raster and the 2D triangulation has been recognized in ear-
lier work [SP07], the focus of this paper will be to extend
the triangulation as a representation for dynamic imaging.
This will be done by deploying a triangulation method for
maintaining integrity of representation during spatial trans-
formation. With emphasis on robustness, this method solves
the 2D analogue to the topological problem of handling
multi-material surface tracking recently treated by Da et
al. [DBG14]. Also, as part of paint synthesis, a method will
be presented which can be seen as a 2D analogue to Petters-
son’s continuous tessellation of 3D meshes [Pet14]. Finally,

techniques for contour blending and smoothing will be de-
scribed, enabling for unique modes of digital imaging.

2. Edge preserving triangulation

2.1. The triangulation

A 2D triangulation is a straight-line graph subdividing the
plane into triangles with no edge crossing another [dB-
vKOS00]. Importantly, the triangulation shares the basic ge-
ometric abstraction capabilities of vector graphics as well
as the neighborhood characteristics of raster graphics. Any
polygon can be triangulated [dBvKOS00, p. 46] and be-
come a subset of some larger triangulation; also, it is the
case that the triangulation subdivides the plane just like the
pixel raster except with arbitrary triangles instead of identi-
cal squares. This combination of properties is the motivation
for making the triangulation the representation structure of
this discourse, with color being an attribute of the triangle
faces. We define a contour edge as an edge where the two
triangle faces adjacent to the edge have sufficiently discern-
ing colors (such as precisely undetectable by the eye, deter-
mined by some distance measure). A contour is a path of
contour edges.

2.2. The problem of movement

Moving a vertex of a triangulation generally violates the
planar condition of no edge intersecting another. In order
to maintain a triangulation there need to be topological
changes [AWY04], primarily in the way of rearrangement of
edges. In general this problem can be solved in any number

Chris
Typewriter
49



M. Pihlström et al. / Triangulation painting

of ways, but for our purposes there are some specific require-
ments that need to be met: we maintain that the only impor-
tant element is contour and also that any composition of con-
tour should be a possible end state. These two aspects mo-
tivates the approach for a triangulation method taken here,
called edge preserving triangulation (EPT).

We will devise an algorithm which analytically deter-
mines the topological changes needed to rectify the dis-
rupted state caused by moving a vertex to a new position.
The approach can be explained by imagining the vertex trav-
eling along the line from the original position to the new
position. On this travel line there will be points of discrete
events [Meh04] where the planar condition is violated. Vi-
olations are resolved in the order they appear on the travel
line by “flipping” [dBvKOS00] edges (see Figure 1), where
at each flip, the color attributes are also reassigned so as to
preserve contour. By this process, a triangulation is progres-
sively ensured along the travel line until the new vertex po-
sition is reached. See Figure 1.

Figure 1: An example of the EPT algorithm. The flipped
edge is shown as a dashed line in the old color.

2.3. Terminology and assumptions

The algorithm assumes a double-connected edge list
(DCEL) data structure [dBvKOS00] where the sign of the
determinant of two edges of a triangle determines the ori-
entation and direction of traversal. A triangulation contains
only positive triangles. Depending on whether the determi-
nant is strictly positive or non-negative we will say that a
triangle is positive or non-negative respectively.

We will call the set of triangles incident to some vertex the
star [Rot88] of the vertex and a triangle belonging to the star
will be called a star triangle. The hull of a star of a vertex
is the union of those edges of the star triangles not incident
to the vertex; the hull edge of a star triangle is the edge of
the triangle which intersects the hull; the hull line is the line
which extends some hull edge infinitely in both directions.
In the context of two star triangles we will say that their hull
is convex, concave or flat referring to the angle between the
two hull edges of the triangles.

Let T be a triangulation of the point set P. Let the input
v be a vertex of T with the position p0, and let the input p1
be the position where v is to be moved. We assume that p1
is in the interior of the convex hull of P. For the time being
we will also assume that p1 /∈ P, that is, the vertex is never
moved so that it overlaps another.

Let us define the line segment

P : p(t) = p0 + t(p1− p0), t ∈ [0,1]

where we observe that p(0) = p0 and p(1) = p1. Let us also
associate the position of v with p(t) so that t decides the state
of the mesh where v is moving along P.

2.4. Finding critical points

Moving a vertex of T generally results in one or more planar
violations, which is to say, a star triangle being non-positive.
We assert without proof that moving a vertex always results
in at least one positive star triangle. Since all star triangles
of v are assumed to be positive at t = 0, we have that if some
star triangle A is non-positive at t = 1 there must exist some
te ∈ [0,1] when A is zero and the planar violation occurs.
Finding te can be reduced to the task of determining when P
intersects the hull line of A. This is expressed in the equation

te = 1−
x[hb−ha]y[p1−ha]− y[hb−ha]x[p1−ha]

x[hb−ha]y[p1−p0]− y[hb−ha]x[p1−p0]
(1)

where ha and hb are the incident vertices of the hull edge of
A and x and y is the scalar components of the vector denoted
in the index.

Let E be the set of tuples of all non-positive star triangles
of v with the corresponding value te. We will call E the set
of violation events. Let E′ be the subset of E containing the
violation events with the smallest value te, denoted by t′e.
E′ may contain several violation events since these may be
simultaneously occurring. We have that p(t′e) represents the
mesh state when all star triangles are either positive or zero.

2.5. Resolving planar violations

In the violation event of A there are three ways the hull
edge of A can be located in relation to the half-planes [dB-
vKOS00] defined by the travel line: the hull edge is on the
left half-plane, on the right half-plane, or both. We will call
violation events corresponding to these cases, respectively,
a left event, a right event, or a middle event. These are all
resolved by flipping.

2.5.1. The middle event

A planar violation of a middle event, occurring at t′e, is re-
solved by flipping the intersected hull edge, resulting in two
new star triangles. Any of the two triangles may be non-
positive at t = 1. We assert that the violation events asso-
ciated with such a triangle must occur at some te larger than
t′e.

2.5.2. The left and right events

Let A′ be a triangle of some left event in E′ – the right event
is (mostly) symmetrical. We know that the hull edge of A′

and the star triangle B′ left-adjacent to A′ is always non-
concave. If it was concave, the hull line of B′ would need to
have been intersected by P at some earlier t, which contra-
dicts the minimality of t′e. Given that the hull of A′ and B′

Chris
Typewriter
50



is convex, a flip between A and B

M. Pihlström et al. / Triangulation painting

resolves the planar vio-
lation of A; importantly, the resulting non-star triangle will
be positive. We assert without proof that if, as a result, the
new star triangle violates the planar condition at t = 1, the
violation occurs at some te greater than t′e.

A degenerate case occurs when the hull of A′ and B′ is
flat. Then B′ is also associated with a left event for which
the planar violation needs to be resolved before the viola-
tion of A′ can be resolved. B′ could in turn also have a left
adjacent star triangle C′ for which again the hull of B′ and
C′ is flat, and this could go on. See Figure 2. But as previ-
ously asserted we know that a star always has at least one
positive triangle, which means that in the chain of flat hulls
there must exist a triangle Ω

′ sharing a convex hull with an
adjacent left triangle, which means that the planar violation
of Ω

′ can be resolved by a flip, whereupon the entire chain
can be resolved.

Figure 2: Stages of a degenerate violation event.

2.5.3. Termination

Once all planar violations of E′ have been resolved, p(t′e)
represents a triangulated state. We can therefore imagine set-
ting p0 := p(t′e) and regarding the travel line distance as a
bound function. The algorithm terminates when E is empty.

2.6. Implementation considerations

In an implementation it cannot be assumed as we did ear-
lier that p1 /∈ P. The case when p1 ∈ P needs to be checked
for continuously and is resolved by removing and re-linking
pairs of triangles in the DCEL. Vertices moved outside of
the hull or on its boundary need also be taken into special
consideration. Finally, the color of the triangle faces need to
be reassigned as seen in Figure 1. It turns out that the reas-
signment logic only has to adapt for each type of violation
event for it to be consistent.

2.7. Properties

The following are noteworthy properties of the EPT algo-
rithm.

• By minimal disruption to topology, contour is well-
preserved. See Figure 4.
• Any triangulation is a possible end state of the algorithm.
• Any linear motion of a vertex can be collapsed into one

execution of the algorithm.
• The algorithm can be made robust, avoiding round-off er-

rors potentially leading to a corrupted state of the mesh.

3. Paint synthesis

3.1. Refraction

A method for introducing geometric detail in the triangula-
tion is the insertion of an extra vertex in the middle of con-
tour edges that are above a certain threshold length. We will
call this method refraction. Refraction (together with EPT)
produces smooth contours, particularly during simple spa-
tial transformations such as rotation or movements induced
by strokes with a pointing device. See Figure 4.

3.2. Contour blending

To achieve contour blending we consider color exchange be-
tween two triangles adjacent to a contour edge. To avoid col-
oring of long-spanning triangles when blending over a con-
tour edge a simple method is to split the triangle at one of the
other two edges at some maximum depth length. See Fig-
ure 3.

Figure 3: Contour blending produces a mesh of triangles.

3.3. Smoothing

It is possible to do smoothing on a region of the triangula-
tion with a simple rule: for each vertex, calculate the average
of the vectors of all contour edges and apply it as a trans-
lation vector for the vertex. When iteratively applying this
rule, curve geometry is accentuated. See Figure 4.

Figure 4: A graphic and a smoothed version of it.

4. Discussion

4.1. Performance

Proof of concept software was developed to produce the
results presented in this paper and was tested on a laptop

Chris
Typewriter
51



M. Pihlström et al. / Triangulation painting

computer with a 1.86GHz Intel Core2Duo and an Intel inte-
grated graphics card. Graphics rendering was performed on
the GPU using OpenGL while other methods such as EPT
were performed on the CPU in C++ code. With reasonable
brush sizes, real time speed was possible with operations
such as contour blending and smoothing with the smallest
triangles being roughly the size of the pixels of the screen
raster. Tests suggest that the EPT algorithm is the main per-
formance bottleneck, where the computation times are pro-
portional to the number of vertices processed and the length
of their movement vectors. Since the algorithm relies heavily
on vector calculations potentially a lot of performance gains
can be made with parallel processing on the GPU.

4.2. Characteristics

The markedly special property of the triangulation as struc-
ture for image representation is that of contours and their
spatial relationship being integral to the structure. This
should be contrasted to raster graphics where the geometry
is approximated by a grid, and vector graphics where the ge-
ometry is free but elements lack spatial relationship in terms
of neighborhood. The implications of this type of integral
representation is epitomized by the smoothing rule: struc-
tures can be accentuated because the total geometry is de-
fined immediately in the triangulation with minimal compro-
mise and redundancy. The possibilities of such rules reach
beyond what has been presented here.

4.3. Future work

Currently EPT is used in research on decimating triangula-
tion meshes in conjunction with edge-preserving filtering of
images of hand-written text. The resulting meshes capture
semantic content related to edge structure. See Figure 5.

Figure 5: EPT can be used in mesh decimation.

5. Conclusion

The triangulation proves viable as a structure for dynamic
representation by combining the idea of the neighborhood
of raster graphics and the idea of geometric abstraction of
vector graphics. In order to maintain a triangulation dur-
ing transformations, a triangulation method is needed. The
edge preserving triangulation (EPT) algorithm analytically

determines required topological changes that preserve con-
tour. On top of this, methods for producing geometric detail
and blending of contour can be applied along rules such as
smoothing for accentuating certain aspects of geometry.

The software performs in real time for image transfor-
mations of high detail and also shows potential for further
improvements in this regard. Integral representation of to-
tal geometry shows promise in providing new types of im-
age transformations. EPT has also recently shown potential
as a tool for image processing in decimating triangulation
meshes.

6. Acknowledgements

I acknowledge the financial support for preparing and
presenting this research from the project Searching and
datamining in Large Collections of Historical Handwritten
Documents (Vetenskapsrådet, Dnr 2012-5743), which is a
part of the From Quill to Bytes (q2b) effort at Uppsala Uni-
versity.

References
[AWY04] AGARWAL P. K., WANG Y., YU H.: A 2d kinetic trian-

gulation with near-quadratic topological changes. In Proceedings
of the twentieth annual symposium on Computational geometry
(2004), ACM, pp. 180–189. 1

[BWL04] BAXTER W., WENDT J., LIN M. C.: Impasto: a re-
alistic, interactive model for paint. In Proceedings of the 3rd in-
ternational symposium on Non-photorealistic animation and ren-
dering (2004), ACM, pp. 45–148. 1

[DBG14] DA, BATTY, GRINSPUN: Multimaterial mesh-based
surface tracking. ACM Trans. on Graphics (2014). 1

[dBvKOS00] DE BERG M., VAN KREVELD M., OVERMARS M.,
SCHWARZKOPF O.: Computational Geometry: Algorithms and
Applications, second ed. Springer-Verlag, 2000. 1, 2

[DKI∗12] DIVERDI S., KRISHNASWAMY A., ITO D., ET AL.:
Painting with polygons: A procedural watercolor engine. 1

[Meh04] MEHTA D. P.: Handbook of data structures and appli-
cations. CRC Press, 2004. 2

[OBB∗13] ORZAN A., BOUSSEAU A., BARLA P., WIN-
NEMÖLLER H., THOLLOT J., SALESIN D.: Diffusion curves:
a vector representation for smooth-shaded images. Communica-
tions of the ACM 56, 7 (2013), 101–108. 1

[Pet14] PETTERSSON T.: Sculptris. pixologic.com/sculptris
(2014). 1

[Rot88] ROTMAN J. J.: An introduction to algebraic topology,
vol. 119. Springer, 1988. 2

[SP07] SWAMINARAYAN S., PRASAD L.: Ravegrid: Raster to
vector graphics for image data. In SVG Open (2007). 1

[VLVR05] VAN LAERHOVEN T., VAN REETH F.: Real-time sim-
ulation of watery paint. Computer Animation and Virtual Worlds
16, 3-4 (2005), 429–439. 1

Chris
Typewriter
52




