
SIGRAD (2015)
L. Kjelldahl and C. Peters (Editors)

Real-Time Fluids – Optimizing Grid-Based Methods

Jaime Alvarez Losada†1, Eike Falk Anderson1 and Oleg Fryazinov1

1The National Centre for Computer Animation, Bournemouth University, United Kingdom

Figure 1: Several steps of a simulation, showing insignificant cells (black areas) being culled from the simulation.

Abstract

A fluid simulation suitable for use in real-time virtual environments running at interactive frame rates has the

potential to greatly improve the quality of the virtual environments it is used in. To this end we present a method

suitable for use in real-time grid-based fluid simulation that considerably reduces the amount of data being pro-

cessed at each simulation step by removing unused cells from the simulation grid.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Modeling]: Types of Simulation—Visual

1. Introduction

Fluid simulation is a major research area in modern com-
puter graphics. Most existing methods focus on offline sim-
ulations, where the quality is more important than the speed
of the simulation. However, growing demand from the video
games industry and interactive media has shifted attention to
real-time fluid simulation methods.

Traditionally the methods to simulate fluids for real-time
applications can be distinguished into two main categories:
Eulerian methods, which are based on the calculation over a
discretised simulation space and Lagrangian methods, which
are particle-based.

In this work we are focusing on Eulerian-based methods,

† first-author of this submission is a student

which are more traditionally researched and which simplify
the obtaining of effects such as compressibility of the flu-
ids and diffusion. At the core of Eulerian methods is a fixed
space subdivided by a regular grid where the parameters
of the fluid (density, velocity, etc.) are calculated per cell,
where one needs to find a balance between the quality of
the simulation and the resolution of the grid. To increase the
performance of fluid simulations based on a regular grid, we
are proposing to isolate the cells that contain dynamically
changing information and perform the simulation only on
these cells.

The main contributions of this work are:

1. A description of the steps to reduce the number of ac-
tive cells in the simulation that results in more efficient
calculations;

2. An explanation of simple queries preceding the simu-

Chris
Typewriter

Chris
Typewriter
53

J. Alvarez Losada et al. / Real-Time Fluids

lation step that update the additional cells’ information
throughout the grid as the simulation progresses (Fig-
ure 1).

2. Background

There exist a number of physically-based approaches for
fluid simulation. Compared to the popular Langrangian ap-
proaches to fluid simulation, an example of which is the re-
cent discussion of Smoothed Particle Hydrodynamics (SPH)
by Ihmsen et al. [IOS∗14], the body of work related to
grid-based approaches is relatively small, possibly because
the overall quality of results achieved using particle-based
approaches is higher. The grid-based Eulerian approach as
presented by Stam [Sta03], however, lends itself particu-
larly well to real-time simulation, as the fixed size of grid
cells greatly simplifies the simulation step. This also simpli-
fies the implementation of such simulations as GPU shaders
[CLT07].

In grid-based fluid simulations a regular grid of a fixed
size enclosing the simulation area is used. In this grid each
cell is used to store the fluid parameters (such as velocity,
density and temperature) for that particular point in space.
At setup of the simulation, the grid cells are initialized to
hold the initial values for the fluid parameters, and at each
simulation step, changes to the cells will be calculated using
the Navier-Stokes equations [Sta03].

For incompressible fluids, adaptive structures are used.
Thus, Irving et al. [IGLF06] combine the cells of the simula-
tion into tall slabs to increase efficiency and decrease mem-
ory consumption. A similar idea was used by Chentanez et
al. [CM11] for water simulation on a large scale. However,
the type of adaptive grid structure employed by these ap-
proaches may not be ideal for use in real-time fluid simula-
tion, as Kallin [Kal09] suggests that a dynamically changing
adaptive grid might be too computationally expensive.

For compressible fluids and smoke simulation, however,
these methods are not truly suitable because of the density
parameters that must be considered.

3. Method Description

Our method is based on the real-time grid-based approach
presented by Stam [Sta03]. For simplicity, we present this
in 2D rather than 3D, but the method itself can easily be
extended to 3D.

A fluid is modelled as a velocity vector field and density
scalar field which are described by Navier-Stokes equations:

∂u

∂t
=−(u×∇)u+ v∇2

u+ f

∂p

∂t
=−(u×∇)p+ k∇2

p+S

Figure 2: Cells with active surface/participation flag (black

dots) denoting the simulation area, and boundary cells (dark

blue outlines).

Within the data structure, grid cells contain the parameters
of the fluid, such as density, pressure, and so on. We extend
the data structure for grid cells by a single flag that states
whether the given cell should be simulated at the given mo-
ment or whether the parameters have to be propagated from
neighbouring cells. This is used as an area marker that is
set for meaningful cells, i.e. those cells of the grid that con-
tribute to the current time step, which allows the cells that
do not contribute at all to be removed from the simulation.
The grid size itself is not affected by this and by essentially
putting aside the non-required cells, allowing the currently
unused grid cells to be returned to the simulation at a later
time (Figure 1), we avoid the overhead that would be caused
by dynamically growing or shrinking the grid. Through an
inexpensive look-up this single flag allows us to quickly re-
trieve information regarding the areas where the simulation
actually takes place on the current frame. This in turn allows,
for example, an efficient calculation of the current bounding
box for the simulation.

To improve the simulation’s efficiency, we perform two
additional queries before each simulation step.

• On the first step we find which cells from the given reg-
ular grid participate in the simulation, for example those
that carry non-zero (within a given precision) density pa-
rameters of fluid. The boundary of the grid allows us to
find the bounding volume of the simulation and to process
only neighbouring cells of cells isolated on the boundary
during the next step of the simulation (Figure 1).

• On the second step we find the cells inside the simulation
area that have identical or similar (within the given preci-
sion) parameters. Formally for two cells with velocities u1

and u2 and densities p1 and p2 respectively this similarity

Chris
Typewriter
54

Chris
Typewriter

J. Alvarez Losada et al. / Real-Time Fluids

can be defined as:

|1−u1 ·u2|< εu

|p1 − p2|< εp

Here by εu and εp we denote tolerance parameters which
define similarity. Also we assume that velocity vectors are
stored as normalised.
This essentially allows us to restrict the areas for which
the full simulation is required only to the boundary cells
and to use the values from the boundary cells for the inte-
rior cells (Figure 2).

Finally we calculate the simulation step and update the sur-
face flag in cells that become relevant (gain fluid) or lose
relevance (no longer contain fluid) to the simulation. The
very same step allows us to identify the areas with similar
(within the given precision) parameters to set the participa-
tion flag for the next simulation step. Note that by varying
precision we can obtain larger areas with similar parameters
and therefore increase the efficiency of the simulation.

Initial results for two simulations using a 400x400 grid
and running on a 64bit Linux machine with 8GB Ram and an
Intel Xeon E5-1650 CPU – the first simulation implement-
ing a conventional grid-based fluid simulation, the second
adding our improvements to this simulation – showed that
in the worst case (all grid cells contributing to the simula-
tion) the performance of our method was no worse than the
conventional simulation, fluctuating between 5 and 7 frames
per second. In the best case (low velocity fluid, meaning that
many cells could be culled) our method allowed the sim-
ulation to run about 60 times faster (445 to 440 frames per
second), while on average running around 9 times faster than
the conventional case (fluctuating between 45 and 60 frames
per second). The same set of simulations running on a 64bit
Windows machine with 4GB RAM and an Intel Core i5-
2450M CPU achieved a similar performance, with the con-
ventional case as well as our method’s worst case achiev-
ing on average 4.5 frames per second. In the best case our
method achieved frame rates fluctuating between 248 and
288 frames per second, while on average framerates fluctu-
ated between 24 and 57 frames per second.

4. Discussion and Future Work

As the evaluation of the surface/participation flag for each
cell effectively culls cells that do not contribute to the simu-
lation, in simulations where the fluid does not fill all of the
simulation space there is a noticeable improvement that our
method achieves in terms of processing time, when com-
pared to existing methods. The worst case, i.e. when the
fluid extends to the complete simulation area and all grid
cells contribute to the simulation, meaning that the addi-
tional queries would have no effect and no longer need to
be performed, our method achieves a similar performance to
existing methods.

There are further improvements that we have not yet im-
plemented. These are mainly related to which grid cells can
be removed from the simulation while maintaining overall
fidelity of the simulation. One has to find the best balance
between speed and precision to determine setting of our sim-
ulation flag. Finding the proper balance for different cases is
an area for further research.

References

[CLT07] CRANE K., LLAMAS I., TARIQ S.: Real-Time Simula-
tion and Rendering of 3D Fluids. In GPU Gems 3, Nguyen H.,
(Ed.). Addison-Wesley Professional, 2007, ch. 30. 2

[CM11] CHENTANEZ N., MÜLLER M.: Real-time eulerian water
simulation using a restricted tall cell grid. In ACM SIGGRAPH

2011 Papers (2011), SIGGRAPH ’11, pp. 82:1–82:10. 2

[IGLF06] IRVING G., GUENDELMAN E., LOSASSO F., FEDKIW

R.: Efficient simulation of large bodies of water by coupling two
and three dimensional techniques. In ACM SIGGRAPH 2006

Papers (2006), SIGGRAPH ’06, pp. 805–811. 2

[IOS∗14] IHMSEN M., ORTHMANN J., SOLENTHALER B.,
KOLB A., TESCHNER M.: SPH Fluids in Computer Graphics.
In Eurographics 2014 - State of the Art Reports (STARs) (2014),
pp. 21–42. 2

[Kal09] KALLIN D.: Real-Time Large Scale Fluids for Games.
Master’s thesis, KTH, Stockholm, 2009. 2

[Sta03] STAM J.: Real-time fluid dynamics for games. In Game

Developer Conference 2003 (2003). 2

Chris
Typewriter
55

