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Abstract 

In this paper, model-based development of a control of 

torque vectoring differential (TVD) gear system is 

described. A new control logic was developed using 

model matching control to let the vehicle yaw rate and 

vehicle slip angle follow the desired dynamics. 

Simulation results using a single track model of vehicle 

dynamics are shown to prove the efficacy of the 

proposed control. Modelica was useful to express time-

varying state space system such as the single track 

model of vehicle dynamics. Also full vehicle model 

considering all of the vehicle dynamics and drive train 

motion using Modelica clarified the characteristics of 

this method in actual driving cases.  

Keywords: Model Based System Development, Vehicle 

Dynamics, Torque Vectoring, Model Matching Control 

1 Introduction 

To satisfy needs for future low-carbon mobility society, 

development of many new electric vehicles (EVs) is 

increasingly active in recent years. Additionally many 

new proposals about integrated electric power train 

which also has torque vectoring capability are 

presented. Authors had made an integrated model of 

the total vehicle system of such an EV using Modelica 

(Hirano, 2014) (Hirano, 2015).  

In the paper (Hirano, 2014), the authors showed the 

capability of new construction of the new EV using 

new type of tire based on ‘Large and Narrow concept’ 

and torque vectoring differential (TVD) gear. For the 

model based development of the new EV, various kind 

of running resistance, vehicle dynamic performance 

and proper design of electric regeneration system were 

studied. In another previous research (Hirano, 2015), a 

multi-physics full vehicle model of the new EV is 

expanded to consider the detailed loss of motors and 

inverters. Also front and rear suspension model which 

has same 3D mechanical design as the real 

experimental vehicle was made and verified. By 

technical investigations using this full vehicle model, 

structure, specifications and control of the new EV 

system were researched about vehicle dynamics and 

energy consumption. However, the control logic of the 

TVD gear was only simple PI feedback control in the 

previous papers. In this paper, model based control of 
TVD gear system is developed using model matching 

control technique. Single track model of vehicle 

dynamics is used to derive and verify the new control. 

At the same time, detailed design parameter of vehicle 

dynamics was obtained from the analysis of Modelica 

full vehicle model using detailed suspension model. 

Finally the developed controls were verified by using 

both the single track model and the full vehicle model. 

2 Specification of Experimental EV 

Table 1. Specifications of new experimental EV 

 New EV 
Conventional 

car 

Vehicle Weight 750 kg 1240 kg 

Yaw Moment Inertia 869 kgm
2
 2104 kgm

2
 

Wheelbase 2.6 m 2.6 m 

Front : Rear Weight 

Distribution 
0.48 : 0.52 0.62 : 0.38 

Height of CG 0.38 m 0.55 m 

Aerodynamic Drag 

×Frontal Area 
0.392 m

2
 0.644 m

2
 

Tire RRC 5×10
-3

 8.8×10
-3

 

Tire Normalized CP 16.1 20.4 

 

The proposed experimental EV has specifications as 

shown in Table 1 (Hirano, 2015). Compared with a 

conventional small-class passenger car, the new EV 

has characteristics of lighter vehicle weight, smaller 

yaw moment of inertia, lower height of the center of 

gravity (CG) and lower rolling resistance coefficients 

(RRC) of tires. Because of these characteristics, this 

new EV is expected to have better handling and lower 

energy consumption than conventional vehicles. On the 

other hand, because of lighter weight and lower value 

of tire normalized CP (Cornering Power), this new EV 

seems more sensitive against external disturbances 

such as crosswind and road irregularity than the 

conventional cars. To cope with this problem, direct 

yaw moment control (DYC) was applied by using a 

new integrated transaxle unit for rear axle which has a 

main electric motor and also TVD gear unit with a 

control motor. 
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3 Vehicle Model for Controller Design 

3.1 Single Track Vehicle Model 
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Figure 1. Expanded single track vehicle model 

 

Figure 1 shows an expanded single track vehicle 

dynamics model to derive the control logic. The 

simplified equations of motion by this model become 

as follows. 

)(cos)( rlrrfflfr XXXXF
dt

dV
M    (1) 

  rrrlfrfl YYYYVV
dt

d
M  1tan   (2) 

NYYlYYl
dt

d
I rrrlrffrflfz  )(cos)( 

  (3) 

)(cos)( rlrrrfflfrf XXdXXdN    (4) 

Here, 

β : Vehicle slip angle, 

γ : Vehicle yaw rate,  

M : Vehicle mass, 

V : Vehicle velocity, 

Iz : Vehicle yaw moment of inertia, 

lf (lr) : Distance from the CG to front (rear) axle, 

   (CG: Center of Gravity) 

df (dr) : Tread of front (rear) axle, 

X** : Longitudinal force of each tire, 

Y** : Lateral force of each tire, 

δf : Steering angle of front tire, 

F : Vehicle driving force, 

N : DYC moment by TVD. 

 

3.2 Equation of Motion for Vehicle Dynamics 

To derive the equations of motion for the target vehicle, 

equations (1) to (4) were further simplified. The lateral 

force at left and right tires were assumed to be equal 

and let 
ffrfl YYY  ，

rrrrl YYY  . Also we 

assume cos𝛿𝑓 ≈ 1 when front tire steering angle is not 

so big, and tan−1 𝛽 ≈ 𝛽  when 𝛽  is small. Also by 

considering the TVD power unit is equipped only in 

the rear axle, the equations of motion become as 

follows. 

)( rlrr XXF
dt
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M     (5) 
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dt

d
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Here, Kf and Kr are the equivalent cornering power of 

front and rear tire respectively. These values are 

calculated by using the full-vehicle model described in 

the section 5.1 to consider the effects of elasticity and 

friction of suspension and steering.  

If driving force F and DYC moment N can be 

calculated by some control logic, then the target 

longitudinal forces of left and right rear wheel to be 

realized by TVD power unit become as follows from 

equation (5) and equation (10). 
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3.3 Longitudinal Driving Force Controller 

Let us suppose the desired value of vehicle speed, 

vehicle yaw rate and vehicle slip angle as refV , ref  

and ref  respectively.  

The desired vehicle driving force F can be 

calculated as below by PI feedback control and 

equation (5). 

  dtVVKVVK
dt

dV
MF refIFrefPF

ref
)()(  

      (13) 

Here KPF is a proportional feedback gain and KIF is an 

integral feedback gain. 

 

3.4 Model Matching Controller of Lateral 

Dynamics 

3.4.1 Dynamic Model of Vehicle Lateral Dynamics 

For the lateral dynamics, the state space form of the 

vehicle dynamics with TVD control becomes as follow 

from equation (6) and (7). 
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Here, δ𝑓 = δ𝑠/G𝑠  (δs: steering wheel input angle, Gs: 

steering gear ratio). 

Now the matrix form of the state space system of 

equation (14) can be written as follows. 
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Please note that the elements of the matrix A of the 

equation (15) as shown in the equation (16) are 

dependent on the vehicle velocity V, namely time-

varying variables. 

 

3.4.2 Desired Dynamics Model for Lateral Motion 

The desired dynamics of vehicle yaw rate and 

vehicle slip angle are assumed as the first order lag 

function of steering wheel input as below. 
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Here, G and G are steady state gain of slip angle 

and yaw rate respectively from the steering input. k 

and k are gain of desired slip angle and desired yaw 

rate from the steady state gain of each state variables. 

 and  are time constant of desired slip angle and 

desired yaw rate as the first order lag function. Each 

state variables of slip angle and yaw rate at steady state 

can be calculated by solving the following equation 

sEAx  00      (20) 

and be obtained as follow. 
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Thus, G and G can be calculated as follows. 
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      (22) 

The state space form of the desired dynamics can be 

written as below from the equation (19). 

sdddd ExAx      (23) 
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3.4.3 Model Matching Control of TVD 

A state equation of the error between desired values 

and actual values of state variables can be obtained as 

below by subtracting equation (23) from equation (15). 

sddd EExAABuAee )()(   (24) 

e x xd   

Let’s assume the virtual control input U as below. 

sddd EExAABuBU )()(    (25) 

Then the equation (24) can be transformed as below. 

BUAee       (26) 

Now we can design the feedback control gain K as  

KeU       (27) 

by using various linear control theories for the equation 

(26). Though, as mentioned above, the matrix A is 
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time-varying and dependent on vehicle velocity. To 

cope with this problem, an analytical solution using 

pole placement technique was used. By combining 

equation (26) and equation (27), the following equation 

is obtained. 

eBKABKeAee )(     (28) 

If we specify the pole of the dynamic system of the 

error e of equation (28) as p1 and p2 (p1, p2 <0) and K = 

[k1, k2], following equation can be derived. 

))(()( 21 pspsBKAsI    (29) 

Here, s is the Laplace operator and I is the unit matrix. 

Above equation can be rewritten as follow. 

2121

2

211222112211

2

2221

1211

)(

)()()(

00

10

01

122

21

ppspps

aaaasaas

aa

aa
s

zzz

zz

I

k

I

k

I

k

I

k

I

k













































 

Thus, the following simultaneous equation can be 

obtained. 
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By solving the equation (30) analytically, we can 

obtain following solutions of k1 and k2. 
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Please note that the above solution of K = [k1, k2] is 

also dependent on vehicle velocity. (See equation 

(16).) 

Finally, from the equation (25), the following 

solution of u (= N) can be calculated. 

})()({ sddd EExAABKeBu    (32) 

Here, B
+
 is a quasi-inverse matrix of B, and 

consequently B
+ 

= [0  Iz]. (B
+
B = 1.) Finally we obtain 

the following solution of u. 

sddd EEBxAABKeu )()(    (33) 

It is understood from equation (33) that the control 

input of the model matching controller consists of a 

feedback term of the error between desired value and 

actual value of state variables and also feedforward 

terms evoked from desired state variables and also 

steering input. 

Figure 2 shows a plot of the feedback gain k1 and  

k2 by pole placement (p1 =-20, p2 =-21) according to 

the vehicle velocity. 

Though we used analytical solution using pole 

placement in this paper, it is also possible to design the 

feedback gain K by gain scheduling method using other 

linear control techniques according to the change of 

vehicle velocity. 

 
Figure 2 Plot of feedback gain by pole placement 

4 Simulation Results by Single Track 

Vehicle Model 

To confirm the validity of above mentioned model 

matching control, simulation test based on single track 

vehicle model was performed by using Modelica.  

First of all, we should handle time-varying linear 

state space system such as that of equation (15) to (18). 

To cope with this problem, a new class of time-varying 

linear state space system was defined. To achieve this, 

the standard class of the state space system of 

Modelica Standard Library (MSL) was modified to 

release the constraint of variability of variables (i.e. by 

eliminating ‘parameter’ qualifier). The definition of the 

new class becomes as follow. 

 
block StateSpace_Variable  
… 

extends Modelica.Blocks.Interfaces.MIMO(fi

nal nin=size(B, 2), final nout=size(C, 1)); 
  Real A[:, size(A, 1)]; 
  Real B[size(A, 1), :]; 
  Real C[:, size(A, 1)]; 
  Real D[size(C, 1), size(B, 2)]=zeros(siz

e(C, 1), size(B, 2)) ; 
  output Real x[size(A, 1)](start=x_start)

 "State vector"; 

equation  

  der(x) = A*x + B*u; 
  y = C*x + D*u; 
end StateSpace_Variable; 

 

 
model SingleTrackModel 
… 

  Real c0 = 2*(kf+kr); 
  Real c1 = 2*(lf*kf-lr*kr); 
  Real c2 = 2*(lf*lf*kf+lr*lr*kr); 
… 

 StateSpace_Variable Actual_x( 

    A=A, 

    B=B, 

    C=identity(2)); 

 StateSpace_Variable Desired_xd( 
    A=Ad, 
    B=Ed, 
    C=identity(2)); 
… 

equation  

  a11=-c0/m/v; 
  a12=-1-c1/m/v/v; 
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  a21=-c1/iz; 
  a22=-c2/iz/v; 
  A={{a11, a12}, 
     {a21, a22}}; 
  B={{cf/m/v, 0}, 
     {cf*lf/iz, 1/iz}}; 
  Gb0=-m*iz*v*v/(cf*cr*l*l-m*v*v*c1)*(-

cf*cr*lr*l/m/iz/v/v + lf*cf/iz); 
  Gr0=-m*iz*v*v/(cf*cr*l*l-m*v*v*c1)*(-

cf*cr*l/m/iz/v); 
  Ad={{-1/t_b, 0}, 
      {0, -1/t_r}}; 
  Ed={{k_b*Gb0/t_b}, 
      {k_r*Gr0/t_r}}; 
  … 
end SingleTrackModel; 

 

For comparison, the definition of the standard class of 

the state space system in MSL is as below. 
block StateSpace "Linear state space syste

m" 
… 

  parameter Real A[:, size(A, 1)]=[1, 0; 0

, 1]; 
  parameter Real B[size(A, 1), :]=[1; 1]; 
  parameter Real C[:, size(A, 1)]=[1, 1]; 
  parameter Real D[size(C, 1), size(B, 2)]

=zeros(size(C, 1), size(B, 2)) ; 
… 

equation  

  der(x) = A*x + B*u; 
  y = C*x + D*u; 
  … 
end StateSpace; 

 

Also a new class of time-varying matrix gain to 

express the feedback gain by the equation (31) can be 

made by similar way. 

Figure 3 shows a diagram of an example of a single 

track vehicle model combined with the desired vehicle 

dynamics model and the model matching controller.  

Figure 4 shows a plot of vehicle speed and steering 

angle input used in the simulation by single track 

model. The vehicle accelerates from 10km /h to 

100km/h between time 1 sec to 10sec. The steering 

angle moves as 1Hz sinusoidal curve. For comparison, 

simple PI feedback of desired yaw rate and that of 

desired slip angle were also tested. The control law of 

both PI controllers became as follows respectively. 

PI feedback of desired yaw rate: 

  dtKKN refIrefP )()(  
  (34) 

PI feedback of desired slip angle: 

  dtKKN refIrefP )()(  
  (35) 

Desired dynamics was settled as k = 0.3, k 

and  are settled as corresponding value of cut-off 

frequency of 1.3 Hz as shown in the equation (19). 

 

 
Figure 3. Modelica model of a single track model of 

vehicle and a controller 

 

 
Figure 4. Plot of vehicle velocity and steering angle input 

 
Figure 5 shows comparison of each control. The 

model matching control showed the best tracking 

performance of desired slip angle and desired yaw rate. 

Though, the control input N was bigger than other 

controls and also the tracking error of yaw rate was 

bigger especially at the low vehicle speed. Also, it was 

impossible to let both of the vehicle slip angle and the 

yaw rate to exactly track the desired value 

simultaneously. This is because that there are two 

independent state variables while there is only one 

control input.  

Robustness of the model matching control (MMC) 

was also checked. Figure 6 shows comparison of the 

simulation results of single track model when there are 

perturbation for the vehicle mass M and tire cornering 

power CP. For comparison, the result of yaw rate 

feedback control is also overlaid. MMC showed a good 

robustness against such parameter perturbations. 

It is of course necessary to check the robustness of 

the control when parameter error of the plant and also 

other additional effects such as non-linearity and losses 

exist in the actual world. To do this, simulation tests 

using full vehicle model was also done as mentioned in 

the following section. 
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Figure 5. Simulation results by single track model 

5 Simulation by Full Vehicle Model 

5.1 Construction of the Full-Vehicle Model 

The similar full vehicle model as previous research 

(Hirano, 2015) was used for full-vehicle simulation. 

The model was developed based on Vehicle Dynamics 

Library (Modelon, 2014) and was built as a full 3 

dimensional (3D) multi-body-dynamic system (MBS) 
model. Component models of control systems such as 

TVD gearbox, electric motor and inverter were added 

with the full vehicle model. Figure 7 shows the top 

level of the model hierarchy of the full vehicle test 

model and also the power train model with the 

controller. 

 

 

 
Figure 6. Robustness check by single track model 
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Figure 7. Structure of full vehicle test model 

 

  

Figure 8. Torque vectoring differential (TVD) driveline 

 

For the TVD gear train, a driveline structure 

referencing the MUTE project of the Technische 

Universität München (TUM) (Höhn et al., 2013) was 

selected. The TVD model was constructed using Power 

Train Library (DLR, 2013). Figure 8 shows the 

configuration of the gear trains. Torque from the main 

motor is distributed equally to the left wheel and the 

right wheel through the differential gear. The torque 

distribution between the left wheel and the right wheel 

can be controlled by changing the torque input of the 

control motor. 

3D MBS model of suspension, steering and body 

were installed to calculate vehicle dynamics 

characteristics. Suspension model was constructed as 

an assembled model of each suspension linkage, joints 

and force elements such as spring, damper and bushing. 

Non-linear tire model based on ‘Magic Formula’ 

model (Pacejka02) was used to calculate combined 

lateral force and longitudinal force of each tire.  

Steering model considered the characteristics of 

viscous friction of steering gear box and steering shaft 

as well as steering shaft stiffness. By these detailed 

models, it became possible to analyze the effects of 

steering angle change and camber angle change caused 

by vehicle roll, side force and tire aligning torque. 

  

Figure 9. Effect of suspension characteristics to cornering 

compliance coefficient. (Normalized by the effect of tire 

slip angle.) 

 
Figure 9 shows an analysis result about the effect of 

suspension characteristics to cornering compliance 

coefficient for an example of front double wish-born 

suspension. The coefficients are normalized by the 

effect of tire slip angle change. The equivalent 

cornering power coefficients were calculated by 

following equation. 
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Here, Cf and Cr are the cornering power of tire itself. 

The terms in the curly brace of the denominator of the 

above equation indicates each effect shown in Figure 9 

respectively. Those are the effects by side force steer, 

side force camber, aligning torque steer, roll steer and 

roll camber respectively. Finally, the equivalent 

cornering power coefficients of front tires and rear tires 

were calculated as εf and εr respectively. These values 

are used to calculate the equivalent cornering power of 

each wheel shown in the equation (8) and equation (9) 

as bellows.  

fff CK   

rrr CK   
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5.2 Results of Full Vehicle Simulation 

Figure 10 shows the results of a double lane change 

test by the full vehicle model. Steering angle was given 

as a series of sinusoidal curves at a constant vehicle 

velocity of 100[km/h]. The model matching control 

showed better performance of tracking desired slip 

angle than the yaw rate feedback control. On the other 

hand, the yaw rate feedback control showed better 

performance for tracking the desired yaw rate, though 

this result can be expected naturally. Additionally, it 

became clear that the result of the vehicle motion by 

the model matching control was smoother than that by 

the PI yaw rate feedback control of desired yaw rate. 

The reason of this is assumed that feedforward part of 

model matching control works to improve the response. 

On the other hand, PI feedback control of the desired 

slip angle became unstable. 

Figure 11 shows the result of full vehicle model 

simulation for the side wind test. Here, side wind of 

20[m/s] blows while Time=2 [s] to 3.5 [s]. The vehicle 

runs at 120[km/h] and the steering wheel angle is kept 

to zero. Here, the similar result as the side wind test 

was obtained. The model matching control was good at 

tracking performance of the desired slip angle, and the 

PI feedback control of the desired yaw rate was good at 

tracking performance of the desired yaw rate. Also it is 

indicated that the control ability against steady 

deviation for the model matching controller is not 

enough. This indicates the necessity of modifying the 

model matching controller to introduce first order 

servo control by considering the integral of the error. 

Anyway both controls showed good performance of 

vehicle stabilization against the side wind than when 

no control was applied. 

6 Conclusions 

Model matching control of TVD was researched by 

using both linear single track model of vehicle 

dynamics and multi-physics large-scale full vehicle 

model. The following conclusions were obtained.  

(i) Proposed model matching control showed a 

good performance especially for the tracking 

of the desired slip angle.  

(ii) On the other hand, simple PI feedback control 

of desired yaw rate was good at tracking the 

desired yaw rate than the model matching 

control.  

(iii) Improving the model matching controller to 

realize servo control of steady error deviation 

is necessary for future work. 

Also for future work, the effect of drive shaft 

stiffness for TVD control should be investigated. More 

sophisticated control of tire slip and drive train 

oscillation should be researched also satisfying the 
requirement for the vehicle dynamics performance. 
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Figure 10. Simulation result of double lane change test by 

full vehicle model 

 

 

 
Figure 11. Simulation result of side wind test by full 

vehicle model 

 

Proceedings of the 1st Japanese Modelica Conference 
May 23-24, 2016, Tokyo, Japan

DOI  
10.3384/ecp1612415

23
____________________________________________________________________________________________________________




