
Modelica-Association-Project “System Structure and

Parameterization” – Early Insights

Jochen Köhler
1
 Hans-Martin Heinkel

2
 Pierre Mai

3
 Jürgen Krasser

4
 Markus Deppe

5
 Mikio

Nagasawa
6

1
ZF Friedrichshafen AG, Germany, jochen.koehler@zf.com

2
Robert Bosch GmbH, Germany, Hans-Martin.Heinkel@de.bosch.com

3
PMSF IT Consulting, Germany, pmai@pmsf.eu

4
AVL List GmbH, Austria, juergen.krasser@avl.com

5
dSPACE, Germany, MDeppe@dspace.de

6
CYBERNET SYSTEMS Co., Ltd., Japan, mikio-n@cybernet.co.jp

Abstract

Starting with the motivation to invent the new standard

SSP (“System Structure and Parameterization”) within

the Modelica Association and the need to have one

more standard beyond the mature Modelica language

and the already well established Functional Mockup

Interface (FMI) proposed in Modelica Association

(Blochwitz et al, 2011), the main use-cases are

presented were SSP can help. As SSP relies on XML,

the schemas and in consequence the main features for

defining system structures and parameterization of

models are described. The need to be able to transport

complex networks of FMUs between different

simulation platforms like MIL, SIL and HIL is

emphasized as a motivator for SSP.

A variety of prototypes are shown that support the

early version of SSP. This gives a good impression

how the standard can be used for quite different tasks

and proofs, that system structures can be exchanged

between them seamlessly.

Finally the next steps for the ongoing development

of SSP are outlined.

Keywords: FMI, System Structure, Parameterization,
Collaboration, Standardization

1 Introduction

It’s still a very big challenge for different kinds of

industry areas to build up simulation models for

behavioral simulation of complex systems consisting of

multiple domains. In the engineering process we are

used to separate a system into its components and do

all the necessary simulations for one component in a

tool that fits best to the specific problem. Good results

can be achieved in this way if the dynamic behavior of

one component has no large impact on the other parts

of the system. But as the systems to be developed

become more complex and the interaction between all
components becomes more important or is even

essential for the product value the simulation of the

connected parts is inevitable. Figure 1 shows a typical

example from the automotive industry, where

component models have to be combined for overall

simulation in different environments.

Figure 1. System simulation in automotive industry

The attempt to model all physical domains within

one tool could be a potential solution, e.g. modeling

languages like Modelica can handle this quite well.

One large benefit here is the possibility that during

the translation process of the complete system a lot of

mathematical simplification mechanisms can be used

to optimize the mathematical problem and make it

easier to solve the DAE during simulation with one

single solver. However due to the complexity of the

language and the fact, that other simulation tools are

quite more established in certain domains it is very

hard to enforce this approach in a company, or for

collaborative development across companies.

The second best approach came with FMI. The

standardized Functional-Mockup-Interface gives the

possibility to export an FMU (Functional mockup unit)

of a component from the authoring tool that was used

to build it and integrate it in another environment to

simulate it. Of course in this integration environment

other component FMUs can be integrated as well to
connect them all into a complete virtual system. But

once again this can be done only in a proprietary way

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612435

35
__

for this single integration tool and the built-up system

structure cannot be transferred to another environment.

However, this is a common use case when the modeled

system has to be used in different targets like MIL, SIL

or HIL.

Another issue when simulating complex systems is

parameterization. FMUs can be parameterized in an

isolated way but there is no convenient way to handle

these parameters e.g. exchanging complete parameter

sets or handling any associated intellectual property

concerns. To parameterize complete systems a “global”

instance has to exist to handle all the parameters that

are not part of a component or have to be used in

several components at the same time. These features

are quite relevant when models of components are

interchanged between different departments in one

organization or - even more important – between

different companies.

These should not be considered as disadvantages of

the FMI approach because FMI does not have these

issues in its scope.

These thoughts were presented first at the Modelica

Design Meeting in 2014 in Lund by BMW, Bosch and

ZF and there was a commitment to instantiate a new

Modelica Association project called “System Structure

and Parameterization” to develop mechanisms and

standards to enhance the existent FMI standard. It is

important to emphasize that this new standard is

developed in close cooperation with the FMI project

group to secure a perfect fit of both standards.

In the last months there was quite good progress

starting with the definition of different use-cases to

describe various scenarios handling system structures

and parameters. Derived from that a number of XML

schemas have been developed to describe both system

structures and the parameterization of complete

systems in a standardized way that can be used

independently of specific tools.

First evaluation of this could be shown at the

Modelica Conference 2015 in France where three

different tools were presented that were able to read in

the same XML representation of a simulation model

and handle it in their specific ways.

The next sections give detailed insights into the use

cases, the actual status of the XML schemas and a

short presentation of the already existing tool

prototypes that make use of this upcoming standard.

2 Use Cases

In the following chapter the basic use cases and the

principal solutions by the SSP-project are described

2.1 Parameter Exchange

In future, updates and effective variant handling for

models will be done predominantly by parameter sets.

To do this effectively in a heterogeneous environment,

we need a tool independent standard. Figure 2 and

Figure 3 show the use cases and possible solution for a

single model and for a structure of models

Figure 2. Exchange of one FMU/model with multiple

different parameter sets

Figure 3. Describing parameter sets for system

architecture

2.2 Model Structure

As shown in Figure 1 the multiple use of (sub-)

structures of models in heterogeneous environments

get more important. For the seamless and tool

independent usage of networks of components, we

need a standardized format for the connection structure,

which also support basic mathematical manipulation of

signals (for manual unit conversion or mapping of

discrete signals). Figure 4 shows the approach of the

SSP project.

Figure 4. System architectures with signal modifications

2.3 Model Structure and Parametrization

Use case 2.3 is the combination of use case 2.1 and

2.2 (Figure 5). The structure and the according

parameter sets have to be handled in a tool independent

standard.

Figure 5. System architectures with signal adoption layer

and parameter sets

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

36 DOI
10.3384/ecp1612435

__

3 XML Schemas

The file formats defined for the MAP-SSP project are

intended to provide a minimal interchange format

between different tools, not as a replacement for tool-

specific formats, and are focused on the exchange of

information on systems needed for their execution or

integration into other systems. The interchange of

architectural information between architecture tools

(e.g. SysML-based tools, for which XMI already

provides an interchange format) is out of focus of the

current efforts,

The formats try to duplicate as little information as

possible from any referenced component formats, like

FMUs, and try to be agnostic as to the detailed

semantics of the connections being described,

submitting to the semantics definitions of the relevant

standards for e.g. FMUs for actual connection

semantics. In this way the format should be useful for

many different purposes and should potentially be

compatible with currently envisaged FMI standard

developments, like e.g. structured ports.

By defining both a basic system structure file format

(SSD) and a format for packaging the SSD and its

related resources, including referenced SSDs/SSPs and

FMUs into an easily transportable archive (SSP), the

proposal tries to offer flexibility in the way system

structure is being exchanged in different contexts, e.g.

within companies using PLM systems or between

companies in a customer/supplier context.

Currently XML schemas have been defined for the

description of the system structure itself (System

Structure Definition – SSD, file extension .ssd), of

parameter sets (System Structure Parameter Values –

SSV) and their mapping to system/component

parameters (System Structure Parameter Mapping –

SSM). Additionally the System Structure Package

format (SSP, file extension .ssp) is defined, which

constitutes a ZIP-archive that packages together a set

of system structure definitions and any referenced

parameter sets, mappings, components and sub-

systems into one easily handled and transferable unit.

A SSP must contain at least one SSD file, but can

contain multiple such files at top-level, which give the

ability to package multiple variants of a system into

one SSP, allowing the importing user/tool the selection

of which variant to process. This enables the efficient

exchange of systems/sub-systems with varying system

topology, e.g. for vehicle models with different

propulsion systems and architectures, while being able

to reuse commonly shared resources like sub-systems,

FMUs, or parameter sets.

The SSD file defines the structure of a system: Its

external interface (if any), i.e. the system input, output

and parameter connectors as exposed to the outside,

and the internal structure, including instantiated
components, like FMUs or referenced external

systems, subsystems, as well as connections between

components and between components and the external

interface.

For each component any referenced inputs, outputs

and parameters are specified as connectors as well.

Connections between connectors that are physical

quantities will perform unit conversions by default.

Connections can also apply linear transformations (for

continuous quantities) or mapping transformations (for

discrete quantities) in order to adjust values between

components as needed.

 The system description also assigns parameter sets

(SSV) to components or complete (sub-)systems, either

with a natural 1:1 mapping or by specifying explicit

parameter mappings in the SSM format. See Figure 6

for a simplified overview of the data model behind the

XML schema and Figure 11 for a simple example file.

Figure 6. Simplified Class Diagram for SSD Schema.

In order to support exchange of system structure

between tools that offer a graphic view of a system,

optional geometric information for systems,

components, connectors and connections is supported.

The SSV format defines a parameter set, consisting

of a set of parameter definitions, including parameter

values and related meta-information (like data type,

physical unit), as necessary to aid in the exchange of

parameter sets and their use in parametrizing systems

and components. A core set of meta-information is

likely to be included in the final standard with

extension mechanisms to support the exchange of user-

specific meta-information as needed. Parameter sets in

the SSV format can be contained directly in the

relevant parameter binding element of the SSD file or

referenced as an external .ssv file.

The SSM format, as illustrated in Figure 7, defines a

mapping between the parameters in a parameter set and

class SSD

«interface»
System

«interface»
Element

+ name :string

«interface»
Component

+ source :URI
+ type :string

«interface»
Connector

+ name :string
+ kind :enum

«interface»
Connection

+ suppressUnitConversion :boolean

«interface»
SystemStructureDefinition

«interface»
ParameterBinding

+ source :URI
+ type :string

«interface»
ParameterMapping

+ source :URI
+ type :string0..*

ParameterMappings

0..*

ParameterBindings

0..*

end

1

1

0..*

Connections

0..*

Connectors

0..*

Elements

0..*

start

1

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612435

37
__

the parameters of a component or system (potentially

including subsystems and components) by mapping the

names of parameters between the two namespaces and

optionally providing further transformations on

parameter values, like mapping of enumerations or

linear transformations of continuous values. Like the

SSV format this mapping can be contained within an

SSD file or referenced as an external .ssm file.

All formats offer easy extensibility for specific tool

or user needs through optional tool- or usage-specific

annotations on all modeling elements. This also allows

the simple addition of layered standards on top of the

current formats.

References between SSD files and related resources,

like components, parameter sets or parameter

mappings are implemented as (relative) URIs. This

allows the integration of these formats into larger

resource management systems like PLM systems, so

that e.g. SSD and/or referenced parameter sets or

component FMUs can be located via HTTPS or PLM-

specific URI schemes, in addition to the default file-

based access mechanisms.

Figure 7. Simplified Class Diagram for SSM Schema.

Currently design discussions are on-going on the

support of additional connection constructs, like signal

dictionaries or bus-like connections, which aid in the

maintenance of component and system

interconnections with many, frequently changing

signals, like those employed by bus communication

mechanisms between controller models. It is expected

that the initial release of the SSP standard will include

such mechanisms.
While the work in the SSP project was initially

focused on FMU-based systems, the SSD and

SSV/SSM formats are intentionally also suitable for

describing systems containing other component types,

like models or controller code, if relevant definitions

are implemented for these component types.

4 Hardware-in-the-Loop Simulation

In order to cope with the growing complexity of

modern electronic control units (ECUs), Model-Based

Design (MBD) is used throughout the embedded

software development process. The result is an

increasing number of models designed for various

purposes. During the MBD process different methods

are applied to test the software of an ECU. In early

stages PC-based model-in-the-loop (MIL) and

software-in-the-loop (SIL) simulations are commonly

used to validate the software. Additionally hardware-

in-the-loop (HIL) simulation based testing is applied as

the tried-and-tested method for function, component,

integration and network tests of an entire system. HIL

simulation is an integral part of the development

process of many OEMs and suppliers across different

industries. Due to the inclusion of real hardware in the

test setup, HIL test systems have special requirements

that do not allow the same free choice of simulation

methods as for MIL/SIL use cases. Usually specialized

HIL simulation systems with optimized hardware and

real-time operating systems (e.g., QNX, Linux-RT) are

necessary. These systems have to meet real-time

requirements and handle the system dynamics and

timing of the ECU computation timing loops. Common

HIL applications typically require hard real-time,

fixed-step solvers with sampling times of 1ms or less.

FMUs for co-simulation are a good basis for the

tool- and platform-independent exchange of simulation

models in HIL environments. The lean co-simulation

interface reduces possible compatibility issues in a tool

chain that includes various FMI supporting tools.

Moreover, it systematically separates the FMU

functions from the tool functions. This separation

enables efficient FMU internal implementations of e.g.

tunable parameter support and internal multi-rate

subsampling. These co-simulation FMUs can transport

verified combinations of solver and model code.

Additionally the communication point concept can

separate internal solver steps from external

communication steps. FMUs may include ANSI-C

source code, which is important for platform-

independent reuse, but often conflicts with modelers’

and tool vendors’ interest in protecting their IP.

Exported FMUs therefore often only contain

precompiled binaries and are consequently limited to

specific pre-selected target platforms.

class SSM

«interface»
ParameterMapping

«interface»
MappingEntry

+ source :string
+ target :string
+ suppressUnitConversion :boolean

«interface»
Transformation

«interface»
LinearTransformation

+ factor :double
+ offset :double

«interface»
IntegerMappingTransformation

«interface»
MapEntry

+ source :int
+ target :int

«interface»
EnumerationMappingTransformation

«interface»
MapEntry

+ source :string
+ target :string

0..*

0..1

1..* 1..*

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

38 DOI
10.3384/ecp1612435

__

Figure 8. Integration of FMUs for HIL Testing.

Today single FMUs are imported into HIL

configuration tools to integrate them with other FMUs,

Simulink-based models, Virtual-ECUs or real ECUs

(Figure 8). HIL simulation tests with real-time capable

FMUs can rely on the full functionality of a tool chain

including test automation and visualization.

Additionally newer Model-Based Design Test and Data

Management environments provide capabilities for

managing model compositions, handling variants of

models and systems-under-test and managing the

parameter and signal interfaces of the different model

systems. These functions are necessary in order to

optimize the usage of models and associated data assets

throughout the lifecycle of development and validation.

Especially for managing complex simulation scenarios

resulting from the use of models from various

modeling environments such capability is crucial.

Environment models are often developed and

specially designed for certain use cases. However,

there is an increasing desire to reuse these models to

provide proven, consistent solutions for the validation

of controller models in different projects and

development stages (e.g., for virtual validation and HIL

simulations). A reuse of models increases productivity

and saves time by eliminating the duplication of design

efforts. The environment models that are exchanged –

e.g., based on FMI – need to be suitable for all the

intended MIL/SIL/HIL simulation use cases. Modular

design of models and particularly clear identification of

interfaces pertaining to real or simulated components,

are necessary to allow an exchange of simulated

components by a real hardware component at various

points in the development and testing processes. In co-

simulation scenarios, a model structure should be

chosen that separates the overall model into weakly

coupled model parts that can be computed concurrently

and are insensitive to input delays due to co-simulation

effects.

Figure 9. Potential ways to exchange the System

Structure Description.

Once a reasonable model structure is designed there

is no standardized way so far to exchange it among

tools from different vendors especially if no overall

integration model exists. The SSP approach allows to

share a standardized system structure description

between data management, integration and

configuration tools for SIL, MIL and HIL scenarios

(Figure 9). Hence, the SSP interchange format helps to

improve the consistent simulation and interchange of

complex models in the MBD process.

5 Prototypes

The specifications of SSD are investigated with some

prototype tools assuming various co-simulation

environments.

5.1 Integration Tool

Model.CONNECT
TM

, a product of AVL List GmbH, is

a tool to set up and execute system simulation models

which are composed of subsystem and component

models from multiple model authoring environments.

Models can be integrated based on standardized

interfaces (FMI) as well as based on specific interfaces

to a wide range of well-known simulation software.

In order to validate the SSP specification, we

implemented a prototype plug-in for the tool that

supports the export and import of system

configurations.

During the prototype development we particularly

explored the capabilities of SSP to pack variants of

system configurations into one archive. We found that

the very basic variant support in SSP could be mapped

to/from the sophisticated variant management

capabilities in the tool, which is designed to describe

both different configurations of the system under

investigation as well as different testing scenarios and

testing environments. It is important to mention, that

the variant handling in SSP is deliberately and by

design not expressive enough to support loss-less

export-import roundtrips (e.g. Model.CONNECT
TM→

SSP → Model.CONNECT
TM

) with respect to variant

management. We plan to address this in future by

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612435

39
__

enriching the export/import plug-in based on tool-

specific annotations in the SSP.

This prototype SSP export/import plug-in was also

used to test the specifications of SSP with regards to

the graphical representation (as 2D block model) of

system configurations. Also here we did not encounter

any major issues mapping between SSP and the tool-

specific geometry handling. This is again a result of

SSP design principle to keep the specification as

simple as possible: SSP allows to transfer component

and connector positions as well as connection way-

points. Thus, SSP allows to re-construct the main

aspects of a layout, but it makes no attempt towards a

pixel-by-pixel identical rendering of systems in the

exporting and importing systems.

Figure 10 eDrive example in Model.CONNECT
TM

. The

subsystem “Drivetrain” is displayed in transparent mode

to see its internal structure.

Future work on the plug-in will be focusing on the

support of parameter values and mappings. Workflow-

wise, we will explore using SSP to transfer system

information from SysML-based MBSE tools to

Model.CONNECT
TM

.

5.2 Co-Simulation Browser

FMI has become a common model exchange and co-

simulation standard. However the master-level runtime

verification and validation of the virtual system made

of many slave models are still difficult for FMI users.

The integration of multi-domain expertise is required

to analyze the multi-FMU complexity and the large

scale virtual system simulation results. In order to

facilitate the system-level FMU user collaboration, a

light weight FMI/SSP Co-Simulation browser is

prototyped. This co-simulation browser includes the

simulation player and the parser of SSP defined System

Structure XML such as in Figure 11 .

Figure 11. Example of eDrive.ssd.

This light-weight co-simulation player is easy to

extend for the pursuit of ‘X-In-the-Loop’ methodology.

The ‘X’ stands for ‘model’', ‘software’', ‘hardware’,

and ‘human’. By connecting various abstract models

and devices, our FMI/SSP virtual system would be

widely expanded. With the flash-based integration of

co-simulation browser, users can easily access mobile

simulations and visualizations of FMI models in the

cloud environment. The FMI co-simulation slaves

would be executed on network distributed servers. The

control of co-simulation master can be included

through the brand-new smart devices with some

intuitive multi-touch operations.

The co-simulation browser was applied to check the

project example of eDrive.ssd test case. The XML

parser reads the FMU connections and interprets the

FMI-compliant simulation parameters. The layout of

FMU slaves is automatically adjusted in a circular

configuration to show the complex connections as

compact as possible (see r.h.s in Figure 12). Before

starting the system-level simulation, the co-simulation

browser can run the unit tests of each FMU with

manually added test I/O functions to fit into the FMI

input ports.

The system parameter dataset/database could also be

distributed on the network servers. There is a process

integration tool Optimus® that can export a parameter

database wrapped as a portable FMU. For example, the

parameters compiled as ResponseSurfaceModel.fmu is

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

40 DOI
10.3384/ecp1612435

__

easily imported to our co-simulation test bed, namely,

‘FMI/SSP Stage’.

Figure 12. Connection UI on FMI/SSP Stage.

The FMI/SSP stage master manages the simulation

context which contains time integration scheme,

simulation clock, event handling, and parameter

input/output functionalities. In a master-slave co-

simulation, the master algorithms can define the quality

and performance of the co-simulation. The clock

functions setup the master timestep sizes to optimize

the simulation efficiency. The way how to share such

simulation parameters would be discussed further in

the ongoing SSP project.

When we complete the definition of System

Structures and System Parameters on this SSP test bed,

we can extend the co-simulation environment, to that

of ‘Co-Optimization’. A FMI co-optimization case

with the sequential tool chain process is reported

(Batteh et al, 2015). The Co-Optimization stands for

the paradigm such that every model is gathering as

FMU modules on the virtual system stage of SSP. The

simulation result could be reflected onto the system

parameter set such as Response Surface Model to

refine the next co-simulation trial in the optimization or

calibration cycle. The SSP-based environment will

enhance the co-optimization paradigm and speed up

the parameter exploration in virtual systems.

5.3 FMI Bench

FMI Bench is a product of PMSF IT Consulting that

provides a workbench for manipulating and integrating

FMUs into assembled systems which can then be

exported as new complex FMUs for use in other

simulations or complete executable simulations for

stand-alone use.

As part of the work on SSP a prototypical

implementation of the SSP drafts has been undertaken,

allowing the importation and exportation of complete

SSP packages from FMI Bench.

Special consideration was placed on the ability of

SSP to describe systems with external interfaces that

would allow exportation as complex FMUs so that

systems packaged as SSPs could be re-exported as

complex FMUs for use as subsystems in other

simulation systems while still making use of the FMI

Bench features, such as automatic multi-threading of

complex FMUs or remote FMU execution.

The experiences with the SSP drafts showed that

this usage was indeed possible, as seen in Figure 13,

showing both the imported eDrive example SSP in the

upper window and the generated native FMI Bench

project, which allows direct code-generation, in the

lower window.

Future work is intended to track the progress of the

SSP project work in the areas of parameters and

complex communication primitives, while integrating

SSP/SSD support into the core product.

Figure 13. eDrive example in the FMI Bench SSP

prototype showing imported SSP and derived native FMI

Bench project.

6 Outlook

As shown SSP is a valid approach to make the work

with FMUs and their parameterization easier especially

when complex systems with several components have

to be simulated and interchanged. The way to define

system structures is derived from daily work in

industry so it can be easily adapted to existing working

processes. The close cooperation with the FMI project

group guarantees, that both standards work well

together, even if SSP is not solely restricted to working

with FMUs as components.

In the first stage the project group concentrated on

defining system structures. That work is currently

mature enough to enable first practical evaluations of

it. Parameterization is the second stage to go into in

more detail in 2016. The overall goal is to have a first

version of the standard rather early to be able to get

experience quickly by evaluating it with running

prototypes which are developed in parallel. Therefore it

is very appreciated if many tool vendors and key users

contribute to the project. If you are interested in more

information or if you want be get involded in our work,

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

DOI
10.3384/ecp1612435

41
__

feel free to contact us: map-ssp@modelica.org

[Maybe add contact information to SSP working group

for vendors/users to join].

References

Blochwitz T., Otter M., Arnold M., Bausch C., Elmqvist H.,

Junghanns A., Mauß J., Monteiro M., Neidhold T.,

Neumerkel D., Olßon H., Peetz J.-V., Wolf S., Clauß C.

The Functional Mockup Interface for Tool independent

Exchange of Simulation Models. Proceedings of the 8th

International Modelica Conference, pp.105-114, Dresden,

Germany, 2011 doi:10.3384/ecp11063105.

Batteh J., Gohl J., Pitchaikani A., Duggan A., Fateh N.

Automated Deployment of Modelica Models in Excel via

Functional Mockup Interface and Integration with

modeFRONTIER. Proceedings of the 11th International

Modelica Conference, pp.171-180, Versailles, France,

2015 doi:10.3384/ecp15118171.

Proceedings of the 1st Japanese Modelica Conference
May 23-24, 2016, Tokyo, Japan

42 DOI
10.3384/ecp1612435

__

