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Abstract 

Starting with the motivation to invent the new standard 

SSP (“System Structure and Parameterization”) within 

the Modelica Association and the need to have one 

more standard beyond the mature Modelica language 

and the already well established Functional Mockup 

Interface (FMI) proposed in Modelica Association 

(Blochwitz et al, 2011), the main use-cases are 

presented were SSP can help. As SSP relies on XML, 

the schemas and in consequence the main features for 

defining system structures and parameterization of 

models are described. The need to be able to transport 

complex networks of FMUs between different 

simulation platforms like MIL, SIL and HIL is 

emphasized as a motivator for SSP. 

A variety of prototypes are shown that support the 

early version of SSP. This gives a good impression 

how the standard can be used for quite different tasks 

and proofs, that system structures can be exchanged 

between them seamlessly. 

Finally the next steps for the ongoing development 

of SSP are outlined. 

Keywords: FMI, System Structure, Parameterization, 
Collaboration, Standardization 

1 Introduction 

It’s still a very big challenge for different kinds of 

industry areas to build up simulation models for 

behavioral simulation of complex systems consisting of 

multiple domains. In the engineering process we are 

used to separate a system into its components and do 

all the necessary simulations for one component in a 

tool that fits best to the specific problem. Good results 

can be achieved in this way if the dynamic behavior of 

one component has no large impact on the other parts 

of the system. But as the systems to be developed 

become more complex and the interaction between all 
components becomes more important or is even 

essential for the product value the simulation of the 

connected parts is inevitable. Figure 1 shows a typical 

example from the automotive industry, where 

component models have to be combined for overall 

simulation in different environments. 

 

 

Figure 1. System simulation in automotive industry 

The attempt to model all physical domains within 

one tool could be a potential solution, e.g. modeling 

languages like Modelica can handle this quite well. 

One large benefit here is the possibility that during 

the translation process of the complete system a lot of 

mathematical simplification mechanisms can be used 

to optimize the mathematical problem and make it 

easier to solve the DAE during simulation with one 

single solver. However due to the complexity of the 

language and the fact, that other simulation tools are 

quite more established in certain domains it is very 

hard to enforce this approach in a company, or for 

collaborative development across companies. 

The second best approach came with FMI. The 

standardized Functional-Mockup-Interface gives the 

possibility to export an FMU (Functional mockup unit) 

of a component from the authoring tool that was used 

to build it and integrate it in another environment to 

simulate it. Of course in this integration environment 

other component FMUs can be integrated as well to 
connect them all into a complete virtual system. But 

once again this can be done only in a proprietary way 
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for this single integration tool and the built-up system 

structure cannot be transferred to another environment. 

However, this is a common use case when the modeled 

system has to be used in different targets like MIL, SIL 

or HIL. 

Another issue when simulating complex systems is 

parameterization. FMUs can be parameterized in an 

isolated way but there is no convenient way to handle 

these parameters e.g. exchanging complete parameter 

sets or handling any associated intellectual property 

concerns. To parameterize complete systems a “global” 

instance has to exist to handle all the parameters that 

are not part of a component or have to be used in 

several components at the same time. These features 

are quite relevant when models of components are 

interchanged between different departments in one 

organization or - even more important – between 

different companies. 

These should not be considered as disadvantages of 

the FMI approach because FMI does not have these 

issues in its scope. 

These thoughts were presented first at the Modelica 

Design Meeting in 2014 in Lund by BMW, Bosch and 

ZF and there was a commitment to instantiate a new 

Modelica Association project called “System Structure 

and Parameterization” to develop mechanisms and 

standards to enhance the existent FMI standard. It is 

important to emphasize that this new standard is 

developed in close cooperation with the FMI project 

group to secure a perfect fit of both standards. 

In the last months there was quite good progress 

starting with the definition of different use-cases to 

describe various scenarios handling system structures 

and parameters. Derived from that a number of XML 

schemas have been developed to describe both system 

structures and the parameterization of complete 

systems in a standardized way that can be used 

independently of specific tools. 

First evaluation of this could be shown at the 

Modelica Conference 2015 in France where three 

different tools were presented that were able to read in 

the same XML representation of a simulation model 

and handle it in their specific ways. 

The next sections give detailed insights into the use 

cases, the actual status of the XML schemas and a 

short presentation of the already existing tool 

prototypes that make use of this upcoming standard. 

2 Use Cases 

In the following chapter the basic use cases and the 

principal solutions by the SSP-project are described 

2.1 Parameter Exchange 

In future, updates and effective variant handling for 

models will be done predominantly by parameter sets. 

To do this effectively in a heterogeneous environment, 

we need a tool independent standard. Figure 2 and 

Figure 3 show the use cases and possible solution for a 

single model and for a structure of models 

 

Figure 2. Exchange of one FMU/model with multiple 

different parameter sets 

 

Figure 3. Describing parameter sets for system 

architecture 

2.2 Model Structure 

As shown in Figure 1 the multiple use of (sub-) 

structures of models in heterogeneous environments 

get more important.  For the seamless and tool 

independent usage of networks of components, we 

need a standardized format for the connection structure, 

which also support basic mathematical manipulation of 

signals (for manual unit conversion or mapping of 

discrete signals ). Figure 4 shows the approach of the 

SSP project. 

  

 

Figure 4. System architectures with signal modifications 

2.3 Model Structure and Parametrization 

Use case 2.3 is the combination of use case 2.1 and 

2.2 (Figure 5). The structure and the according 

parameter sets have to be handled in a tool independent 

standard. 

 

 

Figure 5. System architectures with signal adoption layer 

and parameter sets 

Proceedings of the 1st Japanese Modelica Conference 
May 23-24, 2016, Tokyo, Japan

36 DOI 
10.3384/ecp1612435

____________________________________________________________________________________________________________



3 XML Schemas 

The file formats defined for the MAP-SSP project are 

intended to provide a minimal interchange format 

between different tools, not as a replacement for tool-

specific formats, and are focused on the exchange of 

information on systems needed for their execution or 

integration into other systems. The interchange of 

architectural information between architecture tools 

(e.g. SysML-based tools, for which XMI already 

provides an interchange format) is out of focus of the 

current efforts, 

The formats try to duplicate as little information as 

possible from any referenced component formats, like 

FMUs, and try to be agnostic as to the detailed 

semantics of the connections being described, 

submitting to the semantics definitions of the relevant 

standards for e.g. FMUs for actual connection 

semantics. In this way the format should be useful for 

many different purposes and should potentially be 

compatible with currently envisaged FMI standard 

developments, like e.g. structured ports. 

By defining both a basic system structure file format 

(SSD) and a format for packaging the SSD and its 

related resources, including referenced SSDs/SSPs and 

FMUs into an easily transportable archive (SSP), the 

proposal tries to offer flexibility in the way system 

structure is being exchanged in different contexts, e.g. 

within companies using PLM systems or between 

companies in a customer/supplier context. 

Currently XML schemas have been defined for the 

description of the system structure itself (System 

Structure Definition – SSD, file extension .ssd), of 

parameter sets (System Structure Parameter Values – 

SSV) and their mapping to system/component 

parameters (System Structure Parameter Mapping – 

SSM). Additionally the System Structure Package 

format (SSP, file extension .ssp) is defined, which 

constitutes a ZIP-archive that packages together a set 

of system structure definitions and any referenced 

parameter sets, mappings, components and sub-

systems into one easily handled and transferable unit. 

A SSP must contain at least one SSD file, but can 

contain multiple such files at top-level, which give the 

ability to package multiple variants of a system into 

one SSP, allowing the importing user/tool the selection 

of which variant to process. This enables the efficient 

exchange of systems/sub-systems with varying system 

topology, e.g. for vehicle models with different 

propulsion systems and architectures, while being able 

to reuse commonly shared resources like sub-systems, 

FMUs, or parameter sets. 

The SSD file defines the structure of a system: Its 

external interface (if any), i.e. the system input, output 

and parameter connectors as exposed to the outside, 

and the internal structure, including instantiated 
components, like FMUs or referenced external 

systems, subsystems, as well as connections between 

components and between components and the external 

interface. 

For each component any referenced inputs, outputs 

and parameters are specified as connectors as well. 

Connections between connectors that are physical 

quantities will perform unit conversions by default. 

Connections can also apply linear transformations (for 

continuous quantities) or mapping transformations (for 

discrete quantities) in order to adjust values between 

components as needed. 

 The system description also assigns parameter sets 

(SSV) to components or complete (sub-)systems, either 

with a natural 1:1 mapping or by specifying explicit 

parameter mappings in the SSM format. See Figure 6 

for a simplified overview of the data model behind the 

XML schema and Figure 11 for a simple example file. 

               

Figure 6. Simplified Class Diagram for SSD Schema. 

In order to support exchange of system structure 

between tools that offer a graphic view of a system, 

optional geometric information for systems, 

components, connectors and connections is supported. 

The SSV format defines a parameter set, consisting 

of a set of parameter definitions, including parameter 

values and related meta-information (like data type, 

physical unit), as necessary to aid in the exchange of 

parameter sets and their use in parametrizing systems 

and components. A core set of meta-information is 

likely to be included in the final standard with 

extension mechanisms to support the exchange of user-

specific meta-information as needed. Parameter sets in 

the SSV format can be contained directly in the 

relevant parameter binding element of the SSD file or 

referenced as an external .ssv file. 

The SSM format, as illustrated in Figure 7, defines a 

mapping between the parameters in a parameter set and 

class SSD

«interface»
System

«interface»
Element

+ name  :string

«interface»
Component

+ source  :URI
+ type  :string

«interface»
Connector

+ name  :string
+ kind  :enum

«interface»
Connection

+ suppressUnitConversion  :boolean

«interface»
SystemStructureDefinition

«interface»
ParameterBinding

+ source  :URI
+ type  :string

«interface»
ParameterMapping

+ source  :URI
+ type  :string0..*

ParameterMappings

0..*

ParameterBindings

0..*

end

1

1

0..*

Connections

0..*

Connectors

0..*

Elements

0..*

start

1
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the parameters of a component or system (potentially 

including subsystems and components) by mapping the 

names of parameters between the two namespaces and 

optionally providing further transformations on 

parameter values, like mapping of enumerations or 

linear transformations of continuous values. Like the 

SSV format this mapping can be contained within an 

SSD file or referenced as an external .ssm file. 

All formats offer easy extensibility for specific tool 

or user needs through optional tool- or usage-specific 

annotations on all modeling elements. This also allows 

the simple addition of layered standards on top of the 

current formats. 

References between SSD files and related resources, 

like components, parameter sets or parameter 

mappings are implemented as (relative) URIs. This 

allows the integration of these formats into larger 

resource management systems like PLM systems, so 

that e.g. SSD and/or referenced parameter sets or 

component FMUs can be located via HTTPS or PLM-

specific URI schemes, in addition to the default file-

based access mechanisms.  

               

Figure 7. Simplified Class Diagram for SSM Schema. 

Currently design discussions are on-going on the 

support of additional connection constructs, like signal 

dictionaries or bus-like connections, which aid in the 

maintenance of component and system 

interconnections with many, frequently changing 

signals, like those employed by bus communication 

mechanisms between controller models. It is expected 

that the initial release of the SSP standard will include 

such mechanisms. 
While the work in the SSP project was initially 

focused on FMU-based systems, the SSD and 

SSV/SSM formats are intentionally also suitable for 

describing systems containing other component types, 

like models or controller code, if relevant definitions 

are implemented for these component types. 

 

4 Hardware-in-the-Loop Simulation 

In order to cope with the growing complexity of 

modern electronic control units (ECUs), Model-Based 

Design (MBD) is used throughout the embedded 

software development process. The result is an 

increasing number of models designed for various 

purposes. During the MBD process different methods 

are applied to test the software of an ECU. In early 

stages PC-based model-in-the-loop (MIL) and 

software-in-the-loop (SIL) simulations are commonly 

used to validate the software. Additionally hardware-

in-the-loop (HIL) simulation based testing is applied as 

the tried-and-tested method for function, component, 

integration and network tests of an entire system. HIL 

simulation is an integral part of the development 

process of many OEMs and suppliers across different 

industries. Due to the inclusion of real hardware in the 

test setup, HIL test systems have special requirements 

that do not allow the same free choice of simulation 

methods as for MIL/SIL use cases. Usually specialized 

HIL simulation systems with optimized hardware and 

real-time operating systems (e.g., QNX, Linux-RT) are 

necessary. These systems have to meet real-time 

requirements and handle the system dynamics and 

timing of the ECU computation timing loops. Common 

HIL applications typically require hard real-time, 

fixed-step solvers with sampling times of 1ms or less. 

FMUs for co-simulation are a good basis for the 

tool- and platform-independent exchange of simulation 

models in HIL environments. The lean co-simulation 

interface reduces possible compatibility issues in a tool 

chain that includes various FMI supporting tools. 

Moreover, it systematically separates the FMU 

functions from the tool functions. This separation 

enables efficient FMU internal implementations of e.g. 

tunable parameter support and internal multi-rate 

subsampling. These co-simulation FMUs can transport 

verified combinations of solver and model code. 

Additionally the communication point concept can 

separate internal solver steps from external 

communication steps. FMUs may include ANSI-C 

source code, which is important for platform-

independent reuse, but often conflicts with modelers’ 

and tool vendors’ interest in protecting their IP. 

Exported FMUs therefore often only contain 

precompiled binaries and are consequently limited to 

specific pre-selected target platforms. 

class SSM

«interface»
ParameterMapping

«interface»
MappingEntry

+ source  :string
+ target  :string
+ suppressUnitConversion  :boolean

«interface»
Transformation

«interface»
LinearTransformation

+ factor  :double
+ offset  :double

«interface»
IntegerMappingTransformation

«interface»
MapEntry

+ source  :int
+ target  :int

«interface»
EnumerationMappingTransformation

«interface»
MapEntry

+ source  :string
+ target  :string

0..*

0..1

1..* 1..*
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Figure 8. Integration of FMUs for HIL Testing. 

Today single FMUs are imported into HIL 

configuration tools to integrate them with other FMUs, 

Simulink-based models, Virtual-ECUs or real ECUs 

(Figure 8). HIL simulation tests with real-time capable 

FMUs can rely on the full functionality of a tool chain 

including test automation and visualization. 

Additionally newer Model-Based Design Test and Data 

Management environments provide capabilities for 

managing model compositions, handling variants of 

models and systems-under-test and managing the 

parameter and signal interfaces of the different model 

systems. These functions are necessary in order to 

optimize the usage of models and associated data assets 

throughout the lifecycle of development and validation. 

Especially for managing complex simulation scenarios 

resulting from the use of models from various 

modeling environments such capability is crucial. 

Environment models are often developed and 

specially designed for certain use cases. However, 

there is an increasing desire to reuse these models to 

provide proven, consistent solutions for the validation 

of controller models in different projects and 

development stages (e.g., for virtual validation and HIL 

simulations). A reuse of models increases productivity 

and saves time by eliminating the duplication of design 

efforts. The environment models that are exchanged – 

e.g., based on FMI – need to be suitable for all the 

intended MIL/SIL/HIL simulation use cases. Modular 

design of models and particularly clear identification of 

interfaces pertaining to real or simulated components, 

are necessary to allow an exchange of simulated 

components by a real hardware component at various 

points in the development and testing processes. In co-

simulation scenarios, a model structure should be 

chosen that separates the overall model into weakly 

coupled model parts that can be computed concurrently 

and are insensitive to input delays due to co-simulation 

effects. 

 

Figure 9. Potential ways to exchange the System 

Structure Description. 

Once a reasonable model structure is designed there 

is no standardized way so far to exchange it among 

tools from different vendors especially if no overall 

integration model exists. The SSP approach allows to 

share a standardized system structure description 

between data management, integration and 

configuration tools for SIL, MIL and HIL scenarios 

(Figure 9). Hence, the SSP interchange format helps to 

improve the consistent simulation and interchange of 

complex models in the MBD process. 

 

5 Prototypes 

The specifications of SSD are investigated with some 

prototype tools assuming various co-simulation 

environments. 

5.1 Integration Tool 

Model.CONNECT
TM

, a product of AVL List GmbH, is 

a tool to set up and execute system simulation models 

which are composed of subsystem and component 

models from multiple model authoring environments. 

Models can be integrated based on standardized 

interfaces (FMI) as well as based on specific interfaces 

to a wide range of well-known simulation software. 

In order to validate the SSP specification, we 

implemented a prototype plug-in for the tool that 

supports the export and import of system 

configurations.  

During the prototype development we particularly 

explored the capabilities of SSP to pack variants of 

system configurations into one archive. We found that 

the very basic variant support in SSP could be mapped 

to/from the sophisticated variant management 

capabilities in the tool, which is designed to describe 

both different configurations of the system under 

investigation as well as different testing scenarios and 

testing environments. It is important to mention, that 

the variant handling in SSP is deliberately and by 

design not expressive enough to support loss-less 

export-import roundtrips (e.g. Model.CONNECT
TM→ 

SSP →  Model.CONNECT
TM

) with respect to variant 

management. We plan to address this in future by 
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enriching the export/import plug-in based on tool-

specific annotations in the SSP. 

This prototype SSP export/import plug-in was also 

used to test the specifications of SSP with regards to 

the graphical representation (as 2D block model) of 

system configurations. Also here we did not encounter 

any major issues mapping between SSP and the tool-

specific geometry handling. This is again a result of 

SSP design principle to keep the specification as 

simple as possible: SSP allows to transfer component 

and connector positions as well as connection way-

points. Thus, SSP allows to re-construct the main 

aspects of a layout, but it makes no attempt towards a 

pixel-by-pixel identical rendering of systems in the 

exporting and importing systems. 

 

Figure 10 eDrive example in Model.CONNECT
TM

. The 

subsystem “Drivetrain” is displayed in transparent mode 

to see its internal structure. 

Future work on the plug-in will be focusing on the 

support of parameter values and mappings. Workflow-

wise, we will explore using SSP to transfer system 

information from SysML-based MBSE tools to 

Model.CONNECT
TM

. 

 

5.2 Co-Simulation Browser 

FMI has become a common model exchange and co-

simulation standard. However the master-level runtime 

verification and validation of the virtual system made 

of many slave models are still difficult for FMI users. 

The integration of multi-domain expertise is required 

to analyze the multi-FMU complexity and the large 

scale virtual system simulation results. In order to 

facilitate the system-level FMU user collaboration, a 

light weight FMI/SSP Co-Simulation browser is 

prototyped. This co-simulation browser includes the 

simulation player and the parser of SSP defined System 

Structure XML such as in Figure 11 .  

   

Figure 11.  Example of  eDrive.ssd. 

This light-weight co-simulation player is easy to 

extend for the pursuit of ‘X-In-the-Loop’ methodology.  

The ‘X’ stands for ‘model’', ‘software’', ‘hardware’, 

and ‘human’. By connecting various abstract models 

and devices, our FMI/SSP virtual system would be 

widely expanded. With the flash-based integration of 

co-simulation browser, users can easily access mobile 

simulations and visualizations of FMI models in the 

cloud environment. The FMI co-simulation slaves 

would be executed on network distributed servers. The 

control of co-simulation master can be included 

through the brand-new smart devices with some 

intuitive multi-touch operations. 

The co-simulation browser was applied to check the 

project example of eDrive.ssd test case. The XML 

parser reads the FMU connections and interprets the 

FMI-compliant simulation parameters. The layout of   

FMU slaves is automatically adjusted in a circular 

configuration to show the complex connections as 

compact as possible (see r.h.s in Figure 12). Before 

starting the system-level simulation, the co-simulation 

browser can run the unit tests of each FMU with 

manually added test I/O functions to fit into the FMI 

input ports.  

The system parameter dataset/database could also be 

distributed on the network servers. There is a process 

integration tool Optimus® that can export a parameter 

database wrapped as a portable FMU. For example, the 

parameters compiled as ResponseSurfaceModel.fmu is 
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easily imported to our co-simulation test bed, namely, 

‘FMI/SSP Stage’. 

               

Figure 12.  Connection UI on FMI/SSP Stage. 

The FMI/SSP stage master manages the simulation 

context which contains time integration scheme, 

simulation clock, event handling, and parameter 

input/output functionalities. In a master-slave co-

simulation, the master algorithms can define the quality 

and performance of the co-simulation. The clock 

functions setup the master timestep sizes to optimize 

the simulation efficiency. The way how to share such 

simulation parameters would be discussed further in 

the ongoing SSP project. 

When we complete the definition of System 

Structures and System Parameters on this SSP test bed, 

we can extend the co-simulation environment, to that 

of ‘Co-Optimization’. A FMI co-optimization case 

with the sequential tool chain process is reported 

(Batteh et al, 2015). The Co-Optimization stands for 

the paradigm such that every model is gathering as 

FMU modules on the virtual system stage of SSP.  The 

simulation result could be reflected onto the system 

parameter set such as Response Surface Model to 

refine the next co-simulation trial in the optimization or 

calibration cycle.  The SSP-based environment will 

enhance the co-optimization paradigm and speed up 

the parameter exploration in virtual systems. 

 

5.3 FMI Bench 

FMI Bench is a product of PMSF IT Consulting that 

provides a workbench for manipulating and integrating 

FMUs into assembled systems which can then be 

exported as new complex FMUs for use in other 

simulations or complete executable simulations for 

stand-alone use. 

As part of the work on SSP a prototypical 

implementation of the SSP drafts has been undertaken, 

allowing the importation and exportation of complete 

SSP packages from FMI Bench. 

Special consideration was placed on the ability of 

SSP to describe systems with external interfaces that 

would allow exportation as complex FMUs so that 

systems packaged as SSPs could be re-exported as 

complex FMUs for use as subsystems in other 

simulation systems while still making use of the FMI 

Bench features, such as automatic multi-threading of 

complex FMUs or remote FMU execution. 

The experiences with the SSP drafts showed that 

this usage was indeed possible, as seen in Figure 13, 

showing both the imported eDrive example SSP in the 

upper window and the generated native FMI Bench 

project, which allows direct code-generation, in the 

lower window. 

Future work is intended to track the progress of the 

SSP project work in the areas of parameters and 

complex communication primitives, while integrating 

SSP/SSD support into the core product. 

               

Figure 13. eDrive example in the FMI Bench SSP 

prototype showing imported SSP and derived native FMI 

Bench project. 

6 Outlook 

As shown SSP is a valid approach to make the work 

with FMUs and their parameterization easier especially 

when complex systems with several components have 

to be simulated and interchanged. The way to define 

system structures is derived from daily work in 

industry so it can be easily adapted to existing working 

processes. The close cooperation with the FMI project 

group guarantees, that both standards work well 

together, even if SSP is not solely restricted to working 

with FMUs as components. 

In the first stage the project group concentrated on 

defining system structures. That work is currently 

mature enough to enable first practical evaluations of 

it. Parameterization is the second stage to go into in 

more detail in 2016. The overall goal is to have a first 

version of the standard rather early to be able to get 

experience quickly by evaluating it with running 

prototypes which are developed in parallel. Therefore it 

is very appreciated if many tool vendors and key users 

contribute to the project. If you are interested in more 

information or if you want be get involded in our work, 
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feel free to contact us: map-ssp@modelica.org 

[Maybe add contact information to SSP working group 

for vendors/users to join]. 
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