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Abstract

Approximation of scattered data is often a task in many engineering problems. The Radial Basis Function (RBF)
approximation is appropriate for large scattered datasets in d-dimensional space. It is non-separable approxima-
tion, as it is based on a distance between two points. This method leads to a solution of overdetermined linear

system of equations.

In this paper a new approach to the RBF approximation of large datasets is introduced and experimental results for
different real datasets and different RBFs are presented with respect to the accuracy of computation. The proposed
approach uses symmetry of matrix and partitioning matrix into blocks.

Categories and Subject Descriptors (according to ACM CCS): G.1.2 [Numerical Analysis]: Approximation—

Approximation of Surfaces and Contours

1. Introduction

Interpolation and approximation are the most frequent oper-
ations used in computational techniques. Several techniques
have been developed for data interpolation or approximation,
but they mostly expect an ordered dataset, e.g. rectangular
mesh, structured mesh, unstructured mesh etc. However, in
many engineering problems, data are not ordered and they
are scattered in d—dimensional space, in general. Usually,
in technical applications the conversion of a scattered dataset
to a semi-regular grid is performed using some tessellation
techniques. However, this approach is quite prohibitive for
the case of d—dimensional data due to the computational
cost.

Interesting techniques are based on the Radial Basis Func-
tion (RBF) method which was originally introduced by
[Har71]. They are widely used across of many fields solv-
ing technical and non-technical problems. The RBF appli-
cations can be found in neural networks, data visualiza-
tion [PRF14], surface reconstruction [CBC*01], [TO02],
[PS11], [SPN13], [SPN14], solving partial differential equa-
tions [LCC13], [HSfY15], etc. The RBF techniques are re-
ally meshless and are based on collocation in a set of scat-
tered nodes. These methods are independent with respect to
the dimension of the space. The computational cost of this
techniques increase nonlinearly with the number of points
in the given dataset and linearly with the dimensionality of
data.

There are two main groups of basis functions: global
RBFs and Compactly Supported RBFs (CS-RBFs) [Wen06].
Fitting scattered data with CS-RBFs leads to a simpler and
faster computation, but techniques using CS-RBFs are sen-
sitive to the density of scattered data. Global RBFs lead to
a linear system of equations with a dense matrix and their
usage is based on sophisticated techniques such as the fast
multipole method [Dar00]. Global RBFs are useful in re-
pairing incomplete datasets and they are insensitive to the
density of scattered data.

For the processing of scattered data we can use the RBF
interpolation or the RBF approximation. The RBF interpo-
lation, e.g. presented by [SkalS5], is based on a solution of a
linear system of equations:

Ac=h, ey

where A is a matrix of this system, ¢ is a column vector of
variables and h is a column vector containing the right sides
of equations. In this case, A is an N X N matrix, where N is
the number of points in the given scattered dataset, the vari-
ables are weights for basis functions and the right sides of
equations are values in the given points. The disadvantage
of RBF interpolation is the large and usually ill-conditioned
matrix of the linear system of equations. Moreover, in the
case of an oversampled dataset or intended reduction, we
want to reduce the given problem, i.e. reduce the number of
weights and used basis functions, and preserve good preci-
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sion of the approximated solution. The approach which in-
cludes the reduction is called the RBF approximation. In the
following section, the method recently introduced in [Skal3]
is described in detail. This approach requires less memory
and offer higher speed of computation than the method us-
ing Lagrange multipliers [FasO7]. Further, a new approach
to RBF approximation of large datasets is presented in the
Section 3. These approach uses symmetry of matrix and par-
titioning matrix into blocks.

2. RBF Approximation

For simplicity, we assume that we have an unordered dataset
{x,}]lv € E%. However, this approach is generally applica-
ble for d-dimensional space. Further, each point x; from the
dataset is associated with a vector h; € EP of the given val-
ues, where p is the dimension of the vector, or scalar value,
ie. h; € E'. For an explanation of the RBF approximation,
let us consider the case when each point x; is associated with
a scalar value h;, e.g. a 212D surface. Let us introduce a set
of new reference points {§ ]}1]” , see Figure 1.
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Figure 1: The RBF approximation and reduction of points.

These reference points may not necessarily be in a uni-
form grid. It is appropriate that their placement reflects the
given surface (e.g. the terrain profile, etc.) as well as possi-
ble. The number of reference points § ;18 M, where M < N.
Now, the RBF approximation is based on the distance com-
putation of the given point x; and the reference point § i

The approximated value is determined similarly as for in-
terpolation (see [Skal5]):

M M

Y cio(r) =Y cio(llx—&;l).

J=1 Jj=1

f(x)= )

where ¢(r;) is a used RBF centered at point §; and the ap-
proximating function f(x) is represented as a sum of these
RBFs, each associated with a different reference point & s
and weighted by a coefficient ¢; which has to be determined.

It can be seen that we get an overdetermined linear system
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of equations for the given dataset:

M

hi = f(xi) =Y c;0(xi — &)

j=1

3

The linear system of equations (3) can be represented in a
matrix form as:

Ac=h, 4
where the number of rows is N > M and M is the number of
unknown weights [cy, ... 7cM]T, i.e. the number of reference
points. Equation (4) represents system of linear equations:

011 O1.m hy
: : ‘1 :

di1 dim =1k )
: M :

On.1 o.M hn

The presented system is overdetermined, i.e. the number of
equations N is higher than the number of variables M. This
linear system of equations can be solved by the least squares
method as ATAc = ATh or singular value decomposition,
etc.

3. RBF Approximation for Large Data

In practice, the real datasets contain a large number of points
which results into high memory requirements for storing the
matrix A of the overdetermined linear system of equations
(5). For example when we have dataset contains 3,000,000
points, number of reference points is 10,000 and double pre-
cision floating point is used then we need 223.5 GB memory
for storing the matrix A of the overdetermined linear system
of equations (5). Unfortunately, we do not have an unlim-
ited capacity of RAM memory and therefore calculation of
unknown weights c¢; for RBF approximation would be pro-
hibitively computationally expensive due to memory swap-
ping, etc. In this section, a proposed solution to this problem
is described.

In Section 2, it was introduced that overdetermined sys-
tem of equations can be solved by the least squares method.
For this method the M x M square matrix:

B=ATA (6)

is to be determined. Advantages of matrix B are that it is a
symmetric matrix and moreover only two vectors of length
N are needed te determine of one entry, i.e.:

N
bij="Y OOk @)
k=1
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where b;; is the entry of the matrix B in the i—th row and
Jj—th column.

To save memory requirements and data bus (PCI) load
block operations with matrices are used. Based on the above
properties of the matrix B, only the upper triangle of this
matrix is computed. Moreover the matrix is partitioned into
Mp x Mp blocks, see Figure 2, and the calculation is per-
formed sequentially for each block:

Bu = (A0 (As))
(3

where By; is sub-matrix in the k—th row and /—th column
and A,  is defined as:

01 (k—1)-Mp+1 O1,k-My
Ak = | Oik—1)-Mz+1 Oi k-Mp ©)
O (k—1)-Mp+1 ON k-My

Figure 2: M X M square matrix which is partitioned into
Mp X Mp blocks. Main diagonal of matrix is represented
by red color and illustrates the symmetry of matrix. Blocks,
which must be computed, are represented by green color.

The size of block Mp is chosen so that Mp is multiple of
M and there is no swapping, i.e.:

Mp-(Mp+2-N)- prec < size of RAM [B], (10)

where prec is size of data type in bytes.

4. Experimental results

The presented modification of the RBF approximation
method has been tested on synthetic and real data. Let us
introduce results for two real datasets.

The first dataset was obtained from LiDAR data of the
Serpent Mound in Adams Country, Ohiof. The second
dataset is LiIDAR data of the Mount Saint Helens in Ska-
mania Country, WashingtonT. Each point of these datasets is
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associated with its elevation. Summary of the dimensions of
terrain for the given datasets is in Table 1.

Table 1: Summary of the dimensions of terrain for tested
datasets. Note that one feet [ft] corresponds to 0.3048 meter
[m].

Dimensions Serpent Mound St. Helens
number of points 3,265,110 6,743,176
lowest point [ft] 166.7800 3,191.5269
highest point [ft] 215.4800 8,330.2219
width [ft] 1,085.1199 | 26,232.3696
length [ft] 2,698.9601 | 35,992.6861

For experiments, two different radial basis functions have
been used, see Table 2. Shape parameters o for used RBFs
were determined experimentally with regard to the quality of
approximation and they are presented in Table 3. Note that
value of shape parameter o is inversely proportional to range
of datasets.

Table 2: Used RBFs

RBF type o(r)
Gaussian RBF | global o (an)?
Wendland’s ¢31 | local | (1—ar)}(dor+1)

Table 3: Experimentally determined shape parameters o,
for used RBF's

RBF shape parameter
Serpent Mound | St. Helens
Gaussian RBF o =0.05 a = 0.0004
Wendland’s ¢3 | a=0.01 o = 0.0001

The set of reference points equals the subset of the given
dataset for which we determine the RBF approximation.
Moreover, the distribution of reference points is uniform and
the set of reference points has a cardinality 10,000 in both
experiments.

Approximation of Mount Saint Helens for both BRFs and
its original are shown in Figure 3a-3c. In Figure 3b can be
seen that the RBF approximation with the global Gaussian
RBFs cannot preserve the sharp rim of a crater. Further, vi-
sualization of magnitude of error at each point of the original
points cloud is presented in Figure 4 and Figure 5. It can be
seen that the RBF approximation with the global Gaussian

T http://www.liblas.org/samples/
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(f) Wendland’s RBF ¢3 1, o = 0.01

Figure 3: Serpent Mound in Adams Country, Ohio (top) and Mount Saint Helens is Skamania Country, Washington (bottom)

RBFs returns worse result than RBF approximation with lo-
cal Wendland’s ¢3 1 basis functions in terms of the error. In
Table 4 can be seen the value of mean absolute error, its de-
viation and mean relative error for both approximations.

Scalar field[Log scale]
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Figure 4: Approximation of Mount Saint Helens with
10,000 global Gaussian basis functions with shape parame-
ter a0 = 0.0004 false-colored by magnitude of error.

Results of the RBF approximation for Serpent Mound and
its original are shown in Figure 3d-3f. It can be seen that
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Figure 5: Approximation of Mount Saint Helens with
10,000 local Wendland’s ¢3 1 basis functions with shape pa-
rameter 0. = 0.0001 false-colored by magnitude of error.

the approximation using local Wendland’s ¢3 1 basis func-
tion (Figure 3f) returns again better result than approxima-
tion using the global Gaussian RBF (Figure 3e) in terms of
the error. It is also seen in Figure 6 and Figure 7 where mag-
nitude of error at each point of original points cloud is vi-
sualized. Moreover, we can see that the highest errors occur
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Figure 6: Approximation of the Serpent Mound with
10,000 global Gaussian basis functions with shape parame-
ter o = 0.05 false-colored by magnitude of error.

on the boundary of terrain, which is a general problem of
RBF methods. Value of mean absolute error, its deviation
and mean relative error due to elevation for both used RBFs
are again mentioned in Table 4.

Mutual comparison both datasets in terms of the mean rel-
ative error (Table 4) indicates that mean relative error for
Serpent Mount is smaller than for Mount Saint Helens. It
is caused by the presence of vegetation, namely forest, in
LiDAR data of the Mount Saint Helens. This vegetation op-
erates in our RBF approximation as noise and therefore the
resulting mean relative error is higher.

The implementation of the RBF approximation has been
performed in Matlab and tested on PC with the following
configuration:

e CPU: Intel® Core™ i7-4770 (4x 3.40GHz + hyper-
threading),

e memory: 32 GB RAM,

e operating system Microsoft Windows 7 64bits.

For the approximation of the Serpent Mound with 10,000
local Wendland’s ¢3 1 basis function with shape parameter
o = 0.01 the running times for different sizes of blocks were
measured. These times were converted relative to the time
for 100 x 100 blocks and are presented in Figure 8. We can
see that for the approximation matrix which is partitioned
into small blocks (i.e. smaller than 25 x 25 blocks) the time
performance is large. This is caused by overhead costs. On
the other hand, for the approximation matrix which is par-
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Figure 7: Approximation of the Serpent Mound with 10,000
local Wendland’s ¢3,1 basis functions with shape parameter
o = 0.01 false-colored by magnitude of error.

titioned into large blocks (i.e. larger than 125 x 125 blocks)
the running time begins to grow above the permissible limit
due to memory swapping.

Time relative to 100x100
blocks
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Figure 8: Time performance for approximation of the Ser-
pent Mound depending on the block size. The times are pre-
sented relative to the time for 100 x 100 blocks.



Table 4: The RBF approximation error for testing datasets and different radial basis functions. Note that one feet [ft] corre-

sponds to 0.3048 meter [m].
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5. Conclusions

Error Serpent Mound St. Helens
Gaussian RBF | Wendland’s ¢3; | Gaussian RBF | Wendland’s ¢3 |
mean absolute error [ft] 0.4477 0.2289 44.4956 12.1834
deviation of error [ft] 1.4670 0.1943 680.3659 169.2800
mean relative error [ %] 0.0024 0.0012 0.0087 0.0023
[Har71] HARDY R. L.: Multiquadratic Equations of Topography

This paper presents a new approach to the RBF approxima-
tion of large datasets. The proposed approach uses symmetry
of matrix and partitioning matrix into blocks, thus prevent-
ing memory swapping. The experiments made proved that
the proposed approach is able to determine the RBF approx-
imation for large dataset. Moreover, from the experimental
results we can see that use of a local RBFs is better than
global RBFs, if data are sufficiently sampled. Futher, it is
obvious that approximation using the global Gaussian RBFs
has problems with the preservation of sharp edges. The ex-
periments made also proved that RBF methods have prob-
lems with the accuracy of calculation on the boundary of an
object, which is a well known property, and the magnitude of
the RBF approximation error is influenced by the presence
of a noise.

For the future work, the RBF approximation method can
be explored in terms of lower sensitivity to noise, more ac-
curate calculation on the boundary or better approximation
of sharp edges and improvements of the computational cost
without loss of approximation accuracy.
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