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Abstract

In crisis situations on board ships, it is of utmost
importance to have the passengers safely evacuate
to the lifeboats in an efficient manner. Existing
methods such as marked escape routes and maps
are not optimal as pre-planned escape routes may
become heavily congested by passengers. Further,
the closest lifeboat is not always feasible as lifeboat
capacity can be exceeded. Also considering that
some evacuees are strongly affiliated, such as fami-
lies, and that they prefer to evacuate together as a
group, it becomes a difficult problem to solve.

This paper models the area to be evacuated as
a time-expanded graph with hazard severities as
probabilities of survivability for each node. The
presented approach applies a multi-objective ge-
netic algorithm with multiple fitness functions to
maximize the over all survivability. Finally, the
proposed method picks the best evacuation plan
from a pool of potential solutions returned by the
genetic algorithm.

The solution generates better routing plans than
comparable methods, specially in situations where
grouping and congestions are considered. In
essence this is an essential step towards automatic
planning of evacuations which in turn contributes
to smoother evacuations of crises situations and
saving lives.

1 Introduction
In an ongoing crisis situation, on ships and else-

where, many challenges have to be faced during
evacuation. In the case of fire, as it spreads over

time, it produces an ever-increasing amount of
lethal heat and smoke, rendering rooms and cor-
ridors hazardous or unusable for evacuation. Fur-
ther, emergency response teams can be late and
may not have the capacity to assist everyone ef-
ficiently. A direct consequence is that people are
often initially left to themselves in evacuation sit-
uations. The closest emergency exits may become
heavily congested as masses of people converge on
them, while the nearest lifeboats quickly reach their
maximum capacity, forcing other evacuees to make
detours to search for alternatives. It is also possi-
ble that escape routes are rendered too dangerous
or unusable, and alternate, perhaps non-obvious,
routes have to be used. On top of it all, the infor-
mation required to make the best course of action,
such as the locations of people and hazards, may
not be available, or be erroneous, during the crisis.
All this may lead to valuable time and resources
being wasted.

While traditional static signs are meant to guide
evacuees safely towards exits, they have shortcom-
ings. They do not change if the evacuation routes
become blocked or hazardous. In addition, if too
many evacuees decide to take the same escape
route, it leads to congestion and overcrowding.

To mitigate the problems that arise during crisis
evacuation, research is being conducted on how per-
sonal electronic devices—such as smart phones—
equipped with sensors can be applied for manage-
ment of such situations [1, 12, 5]. Their built-in
sensors and communication technologies can both
gather information and share it among devices [§],
and the aggregate of this information can con-
tribute to clarify the current situation.

By leveraging this kind of real-time information,
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an automatic evacuation planning system can help
resolve some of the challenges faced during a crisis
situation, namely how to avoid casualties, conges-
tion, and confusion. It can automatically determine
escape routes for everyone present, taking care to
lead evacuees away from hazardous situations, and
avoid congestion by taking into account all passen-
gers and their respective escape routes.

1.1 Problem Formulation

Fast, efficient and safe evacuation is important dur-
ing crisis situations. Whereas current approaches
to evacuation planning include pre-planned routes,
a benefit could be had from providing real-time
evacuation planning. Pre-evacuation planning is
limited in that it cannot take into account the par-
ticularities of crisis situations as they happen; con-
sequently, evacuation operation can be inefficient
and unnecessarily dangerous.

Furthermore, it is of interest to take more of hu-
man behavior into account than has been done in
related work. Specifically, group affiliation is an
important aspect of human life, and it affects the
evacuation process.

In line with common practice [6] we treat the
escape as a time expanded directed graph of nodes
and edges: G(N, E). For this, any node n; € N

e is either a room (source), lifeboat (sink), super
source or super sink,

e holds zero, one or more evacuees without ex-
ceeding its capacity c¢(n), and

e has a survivability o(n) so that o(n) € [0,1]
indicating the probability of survival for one
time step.

Any potential flow from node n; to node n; is rep-
resented with an edge e; ; € E. A search space s
represents a solution, i.e. paths consisting of edges
and nodes, for every evacuee.

Additionally, an edge e; ; has capacity c(e; ;) and
flow value f(e; ;). Further this paper extends the
common terminology with node congestion con(n;).
While the capacity c(e; ;) reduces the flow of which
a quantity moves from node n; to n;, con(n;) limits
the number of people that can fit inside a room n;.
This is a realistic extension as there are practical
limitations to how many people can be in a room
at the same time.

The problem relies upon two main functions,
namely the overall survivability of a search space,

s:
fls) =" (o(ni) (1)
n;Es
and the overall grouping of a search space, s:

> 7(eiyos)

€;,;ES

g(s) = (2)

where

1 if e;j occours at least twice in s for the same group

T(ei’j75) - {0 otherwise
(3)

The latter can be informally written as counting
the number of edges overlapping within each group.
An overlap occurs whenever at least two people use
the same path at the same time.

Consequently, this paper has two objectives in
prioritized order:

1. Maximizing the survivability: This is for-
malised, in line with common practice [5] as
finding a search space s* € S so that f(s*) >
f(s)Vs € S. le. maximizing the probabil-
ity that persons survive in the path chosen for
them.

2. Maximizing the grouping: Finding a search
space s* € S so that g(s*) > g(s)Vs € S. Le.
maximizing the probability that groups stay
together.

Note that we assume information such as phys-
ical layout of the ship, locations of people and
lifeboats, affiliations and survivability in each
room, is known. The authors realize that this may
appear as an unrealistic assumption, but note sig-
nificant effort is being made to collect and aggre-
gate hazard information in similar scenarios from
both stationary and smart phone sensors [12, 14].

1.2 Outline

Section 2 describes the related evacuation and evac-
uation planning. Section 3 continues with genetic
algorithms specifically how it was used to solve the
evacuation problem. Empirical results in a simu-
lated ship environment are presented in section 4.
Finally, conclusion and further work are presented
in section 5.
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2 Evacuation

Much work exists in the literature on evacuation
modelling [11]. Common for evacuations is a five
stage process [15]: (1) An alert is raised. (2) The
persons present react to the alert. (3) A decision is
made to evacuate. (4) The actual evacuation. (5)
Verify that everyone has made it to safety.

Most existing work on evacuation planning fo-
cuses on off-line solutions aiding step (3) and (4).
One of the main lines of research focus on math-
ematical modelling and solutions based on finding
maximal flow in networks [4]. Other work has been
based themselves on shortest path in a graph [9],
while some recent research has been carried out for
stochastic methods for planning safe escape routes

[5]-

2.1 Group Behavior in Crisis Situa-
tions

Groupwise evacuation is grounded in recent so-
cial theory. According to the “social attachment”
model of human behavior during crisis situations
[10], in threatening situations people tend to seek
affiliation with familiar persons or attachment fig-
ures. This behavior delays the evacuation process;
in fact, it has been shown to cause the loss of hu-
man lives because people linger together with their
group or search for attachment figures instead of
promptly evacuating. FEvacuation planning with-
out taking into account the strong force of group
affiliation would be nigh on pointless, as it is un-
likely that evacuees would follow a plan that re-
quired group members to go separate ways.

Furthermore, the social attachment model goes
against earlier mass panic theories, which claim
that chaotic human behavior is the norm when dis-
aster strikes [3]. In contrast those earlier theories,
the social attachment model describes evacuation
as orderly in most cases. This certainly indicates
a higher probability of evacuees displaying an abil-
ity to follow the dynamically planned routes than
if they were panicking and behaving irrationally.

2.2 Evacuation Planning  With
Multi-objective Genetic Algo-
rithms

Genetic algorithms (GA) have been used within the
field of evacuation previously. In [13], the evacua-
tion planning process is described as a three-part
process which is performed as a preparatory mea-
sure for the case where actual evacuation is needed:
Selecting safe areas, finding optimal paths from
buildings to safe areas, and selecting the best safe
area for each building is included in planning. The
first step, selecting safe areas, was done manually.
Next, the optimal paths from buildings to safe ar-
eas were determined according to safety and traffic.
The last step, selecting the best evacuation routes
for each building, was then solved with a genetic
algorithm.

Kongsomsaksakul et al. [7] also consider pre-
disaster evacuation planning. In their model, the
problem is formulated as a Stackelberg game, where
the leader is the evacuation planning authority des-
ignating shelter locations. The follower is the col-
lection of evacuees, who according to the given shel-
ter locations determine which shelter to move to
and by which path.

The GA is employed by the planning authority to
place shelters. Given a potential solution from the
leader, the evacuees decisions are calculated. The
result is fed into the GA’s fitness function, which
is a weighted sum of constraints on egress time,
congestion, and shelter capacity.

3 Genetic Algorithm (GA)

The solution bases itself on an initial population
of solutions that is further improved by iterations.
Solutions within a population are encoded as chro-
mosomes.

The GA implementation uses NSGA-II [2], and
was chosen based on promising performance char-
acteristics documented in [16]. It depends on im-
plementation specific components used in every it-
eration, namely: Selectors selecting pairwise solu-
tions. Crossover combining pairs of solutions. Mu-
tators randomly modifying each solution. Fitness
functions used for distinguishing good from bad so-
lutions.

The termination criterion is set to a fixed number
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Figure 1: A example chromosome containing an
evacuation routing plan.

of iterations. After termination, the best solution
must be selected from the population. The popu-
lation contains solutions that are optimized for one
or more of the objectives. The final solution is se-
lected by the super selector.

3.1 Encoding of Chromosomes

A chromosome contains path assignments for
each evacuee as shown in Figure 1. Note that this
is directly related to a selected search path s.

In this example the network includes nodes A-
E, sink F and super sink T . The elements of each
path, e.g. (A, B), are edges. Each column is a
path assignment to either a person or a group which
is initially located in the first node in the path.
Edges are used in the path to support cases where
multiple edges connect two nodes, such as if two
oblong, parallel rooms are connected with two or
more doors.

3.2 Genetic Operation

The GA starts by selecting a pair of parent chro-
mosomes using binary tournament selection [2] and
then performing a crossover using these.

3.2.1 Crossover

A multi-point crossover operator for recombining
a pair of two-dimensional chromosomes has been
implemented, by using one-point crossover once for
each group represented in the chromosome. The
crossover point in each parent is randomly selected
among potential, valid crossover points. For a
crossover point at node n; to be considered valid, an
edge with a target node n; must exist within the
corresponding path in both parent chromosomes.
However, the common node does not need to be
traversed at the same time.

If the crossover operation creates an invalid child,
one of the parents is passed as child instead. Be-
cause different children for different lengths are
created, the path may extend beyond the time-
expansion. By ensuring that the initial population
is valid and only passing valid solutions as children,
this problem will not occur. It is important to note
that this crossover operator can take two identical
parents and still produce distinct children. Usu-
ally, a chromosome which is recombined with it-
self will produce children that are perfect copies
of itself, and hence with no possible improvement.
However, due to the way chromosomes are encoded
and crossover is implemented, in this case a par-
ent mating with itself has the possibility of produc-
ing offspring which are different and may be better
than its parent. This effect arises because edges,
which are reusable at different time steps, can oc-
cur several times in the same chromosome, which
can lead to a single chromosome having multiple
time-shifted crossover points with itself. Neverthe-
less, offspring that are identical to their single par-
ent will still occur if the exact same crossover point
is used for both of the parents. Reuse of edges al-
lows for two things. Firstly, it allows waiting in a
node by following the holdover edge two or more
times in sequence. Secondly, it also occurs when
paths are circular. Regardless, such solution paths
will be evaluated by fitness functions and handled
accordingly.

Note that in a time-expanded network, crossover
breaks the sequential timing of the path. To fix the
timing of a path, a repair function is applied after
the crossover. This adjusts the time of an edge so
that the sequential timing is kept.

4 The 29th Annual Workshop of the Swedish Atrtificial Intelligence Society (SAIS). 2-3 June 2016, Malm, Sweden.



3.2.2 Mutation

The one-dimensional mutation changes each path
of each chromosome in the population by a prede-
fined probability. The mutation generates a new
random path starting from the same origin and
ending at the super sink.

3.3 Fitness Functions

This section presents two fitness functions moti-
vated by the evacuation criteria (see section 2) :sur-
vivability and grouping. As a direct consequence,
the fitness functions are used from the problem for-
mulation, namely: Survivability, f(s) (see equation
1) and Grouping, g(s) (see equation 2).

3.4 Super Selector

Unlike traditional GA, NSGA-IT does not yield a
single solution which can be considered the best
one. This is an intended effect of using Pareto
ranking. Instead, the solutions present in the first
Pareto front are the set of the best solutions which
the algorithm could find. Because the solutions
with the same rank are mutually non-dominant
NSGA-II makes no assumptions as to which, if any,
of the objective functions are more important.

Therefore, a single solution must be extracted
from the set of solutions yielded by NSGA-II. This
can be done manually, which can be suitable in a
decision-support system. However, automating the
process is often preferable, which can be accom-
plished by adding a final processing step for the set
of solutions NSGA-II yields. This can be realized
by using a selection mechanism which is able to
rank the solutions, for instance by combining the
fitness values in some way. Here we use a prioritized
fitness ranking approach.

Prioritizing works as follows. Starting with the
highest ranked fitness measure, all solutions’ value
for it is compared. If one solution has a strictly
lower value than all others, then that solution is
selected. Otherwise, the set of solutions with the
lowest value are compared again, this time on the
next-highest ranking fitness measure. This contin-
ues until a solution has been found. If all objective
functions have been processed in this way and more
than one solution are still candidates, the tie is bro-
ken arbitrarily.

The objective functions we use are ranked in the
following order:

e Endpoint capacity
e Survivability

e Passage congestion
e Room congestion
e Length

The ordering has been determined through infor-
mal reasoning. First, we definitely want every evac-
uee to be assigned to a lifeboat which has room for
him or her. This is the highest ranked objective,
seeing as failing to accomplish this is considered
a hard failure (certain fatality). Second, we want
to minimize the time spent in dangerous spaces,
measured by survivability. Next comes congestion,
which can influence actual survivability and cause
evacuees to fail at following their assigned routes.
Path length is selected last, because even thought
it is desirable to have the shortest paths possible,
it is less important than the other objectives.

4 Experimental results

This section provides results from running the al-
gorithms NSGA-II, Djikstra and Random in a net-
work based on the layout of a deck on a real
ship, the MS Xpedition owned by Celebrity Cruises.
This has in total 40 rooms and 4 lifeboats. For
all experiments evacuees are randomly divided into
groups and randomly spread out in the network.
Survivability is distributed randomly between 0.8
and 1.0.

All results are aggregated averages of 50 itera-
tions with the confidence of 95%.

Figure 2(a) and 2(b) show results from surviv-
ability for 20 evacuees in a situation with life boat
capacity of 5, and random probability of surviving
varying from 0.8 to 1.0. The evacuees were divided
into random groups of 1-5.

The results from Figure 2(a) indicates that
NSGA-II finds the optimal solution (100% surviv-
ability), when there is no grouping, after 118 iter-
ations. Djikstra is only able to survive 94% of the
evacuees, while random is able to evacuate 90%.

The same experiment is present at Figure 2(b)
and shows the grouping of each algorithm. It is
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Figure 2: Experiment results in a realistic ship net-
work

noteworthy that the grouping continues to improve
throughout the experiment.

A conclusion to be drawn from this is that the
approach finds an optimal solution with respect to
survivability. Further, without have any impact on
the survivability, the approach continues to opti-
mize on the grouping. This is in line with the intent
(see section 1.1) that primarily optimises on surviv-
ability than continues optimisation on grouping.

4.0.1 Effects of Congestion Heuristic

In Figure 3(a) and , 3(b) the algorithms have
been applied with the same parameters. However,
in 3(a) NSGA-IT was run without the congestion
heuristics, while it was present in the experiment
presented in 3(b). The effect this has can be seen
clearly: When not optimizing for congestion, the
criterion is neglected and increases as the genetic
algorithm progresses. Congestion even approaches
the value of the Random algorithm. Conversely,
when congestion is optimized for, the genetic algo-
rithm continually improves the congestion perfor-
mance, albeit slowly. The results also show that the
survivability improves correspondingly. However,
for reasons of brevity, this graph is not presented
here.

4.0.2 Extensive Experiments

Additional work has been done in both simple test
networks and larger randomly generated graphs.
The results from these graphs are similar to those
presented in this chapter, with mostly negligible
differences. The only difference worth mentioning
is that randomly generated graphs yields a more
difficult optimisation problem which decreases the
performance of NSGA-II compared to Djikstra.
Hence, NSGA-II result in a lower survivability than
Djikstra

5 Conclusion

The problem of efficient evacuation can be viewed
as an optimization problem, for which many tech-
niques have been developed, including genetic al-
gorithms.

NSGA-II is an adaption of the genetic algorithm
framework which supports the preservation of di-
versity among candidate solutions by taking into
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Figure 3: Experiment results with and without con-
gestion heuristics.

account Pareto indifference, meaning that no solu-
tion is strictly better than others. The technique
presented in this paper bases itself on a

The technique we developed to select a solution
from the multiple solutions returned by NSGA-II
is a prioritized objective approach.

The results clearly show the potential genetic al-
gorithms can have in evacuation planning. In fact,
we found that in some simpler scenarios was able
to find a solution for most of scenarios that outper-
formRandom and Djikstra’s.

Our results also show that when the fitness func-
tions becomes more complicated, such as consider-
ing congestion, the efficiency of the algorithm suf-
fers. Hence, when the complexity increases more
generations are needed.

5.1 Future Work

Future work includes making more specifically
adapted genetic operators such as mutation op-
erators which take into account the grouping as-
pect. The inherent complexity of the chromosome
is likely a hurdle which needs to be overcome. Due
to the way the chromosome is defined, very spe-
cific constraints are applied to it which limits the
effectiveness of the genetic operators, compared to
traditional genetic algorithms. The limitations are
related to the way each part of the chromosome
must be a valid path specification.
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