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Abstract 
To achieve future low carbon mobility society, many 

new-type electric vehicles (EVs) are developed 

actively in recent period. Those EVs have integrated 

power unit which take place of conventional engine, 

transmission and differential gear components. 

Additionally it is rather easy to integrate torque 

vectoring function to those power units using gear sets 

to control torque distribution between left wheel and 

right wheel. In this paper, model-based development of 

an integrated control of the front steering angle and 

torque vectoring differential (TVD) gear system is 

described. New integrated control logic was developed 

using model matching control to let the vehicle yaw 

rate and vehicle slip angle follow the desired dynamics. 

Simulation results using an extended single track 

model of vehicle dynamics are shown to prove the 

efficacy of the proposed control. Though, full vehicle 

model considering all of vehicle dynamics and drive 

train motion using Modelica clarified the problem of 

this method in actual cases. Difference between the 

extended single track model and full vehicle model was 

compared to estimate the reason of the problem. 

Keywords:     Model Based Development, Vehicle 
Dynamics, Torque Vectoring, Model Matching Control 

1 Introduction 

To satisfy needs for future low-carbon mobility society, 

development of many new EVs is increasingly active 

in recent years. Additionally many new proposals 

about integrated electric power train which also has 

torque vectoring capability are presented (Höhn et al., 
2013). (Burgess, 2009) showed a model-based control 

design of TVD using an inverse model for feed-

forward control. (Efstathios et al. 2015) introduced a 

model predictive control of TVD considering non-

linear tire characteristics. On the other hand, authors 

have researched a new control of TVD by using 

traditional PI feedback control (Hirano et al., 

2013)(Hirano et al., 2014). The author also utilized a 

model matching control theory to develop a new 

control of TVD (Hirano, 2016a). Additionally the 

author expand the control to the integrated control of 

TVD and active front steering (AFS) by model 

matching control (Hirano, 2016b). The purpose of 

using both TVD and AFS is to control both vehicle 

yaw rate and slip angle independently. In the last paper, 

the derived control was based on simple LQR (Linear 

Quadratic Regulator) and there was no measure to cope 

with steady state deviation. In this paper, the LQR 

design was modified by augmenting the plant model to 

include integral of the state variables. As same as the 

last research, an extended single track model of vehicle 

dynamics was used to derive and verify the new 

control. Finally the developed control was verified by 

using the full vehicle model using Modelica. Some 

measures about solving problems when applying 

Modelica to this kind of problem are also mentioned. 

2 Experimental EV 

Table 1 Specifications of new experimental EV 

 New EV 
Conventional 

car 

Vehicle Mass 750 kg 1240 kg 

Yaw Moment 

Inertia 
869 kgm

2
 2104 kgm

2
 

Wheelbase 2.6 m 2.6 m 

Front : Rear Weight 

Distribution 
0.48 : 0.52 0.62 : 0.38 

Height of CG 0.38 m 0.55 m 

Tire RRC 5×10
-3

 8.8×10
-3

 

Tire Normalized CP 16.1 20.4 

 

The proposed experimental EV has specifications as 

shown in Table 1. Compared with a conventional 

small-class passenger car, the new EV has better 

characteristics of lighter vehicle weight, smaller yaw 

moment of inertia, lower height of the center of gravity 

(CG) and lower rolling resistance coefficients (RRC) 

value of tires. Because of these characteristics, this new 

EV is expected to have better handling and lower 

energy consumption than conventional vehicles. On the 

other hand, because of lighter weight and lower value 

of tire normalized CP (Cornering Power), this new EV 

seems more sensitive against external disturbances 

such as crosswind and road irregularity than the 

conventional cars. To cope with this problem, direct 

yaw moment control (DYC) was applied by using a 
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new integrated transaxle unit for rear axle which has a 

main electric motor and also TVD gear unit with a 

control motor. Additionally, to control both yaw rate 

and slip angle of the vehicle independently, another 

control input of active front steering (AFS) was 

introduced. 
 

3 Vehicle Model 
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Figure 1. Extended single track vehicle model 

 

Figure 1 shows an extended single track vehicle model 

to derive the control logic. Usually the single track 

model calculates front and rear tire side forces by 

adding both tire forces of right tire and left tire 

respectively. But in this paper, the model was extended 

to separate the tire longitudinal forces of right tire and 

left tire to consider direct yaw moment generated by 

the difference of the longitudinal forces of right tire 

and left tire. The coordinate system of this model 

follows FLU (x: forward, y: leftward, z; upward) 

convention. The simplified equations of motion by this 

extended single track model become as follows.  
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Here, 

β : Vehicle slip angle, 

γ : Vehicle yaw rate,  

M : Vehicle mass, 

V : Vehicle velocity, 

Iz : Vehicle yaw moment of inertia, 

lf (lr) : Distance from the CG to front (rear) axle, 

   (CG: Center of Gravity) 

df (dr) : Tread of front (rear) axle, 

X** : Longitudinal force of each tire, 

Yf (Yr) : Lateral force of front (rear) tires, 

δf : Steering angle of front tire, 

F : Vehicle driving force, 

N : Direct yaw control moment by TVD. 

Kf and Kr are the equivalent cornering power of front 

and rear tire respectively. 

If driving force F and DYC moment N can be 

calculated by some control logic, then the target 

longitudinal forces of left and right rear wheels to be 

realized by TVD power unit become as follows from 

Equation (1) and (6). 
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4 Control Design 

4.1 Longitudinal Driving Force Control 

Let us suppose that the desired value of vehicle speed, 

vehicle yaw rate and vehicle slip angle are defined as 

refV , 
ref  and 

ref  respectively.  

The desired vehicle driving force F can be 

calculated as below by PI feedback control and 

Equation (1).. 

  dtVVKVVK
dt

dV
MF refIFrefPF

ref
)()(  (9) 

Here KPF is a proportional feedback gain and KIF is an 

integral feedback gain. 

4.2 Model Matching Control of Lateral 

Dynamics 

For the lateral dynamics, the state space form of the 

vehicle dynamics with TVD and AFS control becomes 

as follow from Equations (2) and (3). 
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Please note that the elements of the matrix A of the 

Equation (10) are dependent on the vehicle velocity V  

as shown in the Equation (13). So the vehicle dynamics 

system described by the Equation (10) is a time-variant 

system. 

It is well known that the response of both yaw rate 

and slip angle become to the second order lag function 

of the steering input when no control is applied. This 

fact results in that the ordinary drivers tend to respond 

to steer with time lag against the vehicle motion and 

tend to result in vehicle spin when the vehicle motion 

becomes unstable such as on the slippery road. On the 

other hand, it becomes easier for drivers to stabilize the 

vehicle if the response of the vehicle motion will 

become to the first order lag function, i.e. there is no 

resonance characteristics about the vehicle dynamics. 

Thus, the desired dynamics of vehicle yaw rate and 

vehicle slip angle are assumed as the first order lag 

function of the driver’s steering wheel input, as shown 

by the Equation (15).  
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(15) 

Here, s is Laplace operator. k and k are gain of 

desired slip angle and desired yaw rate from the steady 

state gain of each state variables, while G and G are 

steady state gain of the slip angle and the yaw rate 

respectively from the steering wheel input angle δs. 

Also  and  are time constant of the desired slip 

angle and the desired yaw rate as the first order lag 

function.  

G and G are calculated as follows. Considering 

the case of steady state as x = x0 and without any active 

control, the Equation (10) becomes as bellow. 
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Here, Gs: steering gear ratio. From the Equation (16), 

x0 is obtained as follow. 
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Thus, G and G can be calculated as the following 

equation. 
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The model matching control can be derived as 

below. The state space form of the desired dynamics 

can be written as below from the Equation (15).  

sdddd ExAx      (20) 

Here, 
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Assume the error between actual state variables and 

desired state variables as e x xd  . A dynamic state 

equation of this error variable can be obtained as below 

by subtracting Equation (20) from Equation (10). 

sddd ExAABuAee  )(  (21) 

In the previous research (Hirano, 2016b), the 

simulation results of full vehicle model showed that 

there were some steady state deviation remained after 

stabilizing the vehicle motion. Thus, it is suggested 

that augmenting the state space equation of the 

Equation (21) to include the integral of the state 

variables is necessary. By assuming a new state vector 

of the error vector as  
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𝑒̂ =
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the Equation (21) is augmented as below. 

𝑒̇̂ = [
𝐴 0 0

0 0
1 0
0 1

0 0
0 0

] 𝑒̂ + [
𝐵

0 0
0 0

] 𝑢

+ [
(𝐴 − 𝐴𝑑)

0 0
0 0

] 𝑥𝑑 − [
𝐸𝑑

0 0
0 0

] 𝛿𝑠 

 

≝ 𝐴̂𝑒̂ + 𝐵̂𝑢 + 𝐴𝑑𝑒̂𝑥𝑑 − 𝐸𝑑𝑒̂𝛿𝑠 

(23) 

Here, 
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𝐴
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1 0
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𝐼2 𝑂2
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] 

𝐴𝑑𝑒̂ ≝ [
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] 
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𝐸𝑑

𝑂2
] 

 

where O2 is the zero matrix of order 2 and I2 is the unit 

matrix of order 2. 

Let’s assume a virtual control input of the 

augmented state space equation of the error vector as 

follow. 

𝑈̂ ≝ 𝐵̂𝑢 + 𝐴𝑑𝑒̂𝑥𝑑 − 𝐸𝑑𝑒̂𝛿𝑠 (24) 

Then the Equation (23) becomes as follow. 

𝑒̇̂ = 𝐴̂𝑒̂ + 𝐼4𝑈̂ (25) 

Here I4 is the unit matrix of order 4. For the linear 

system of the Equation (25), we can design a feedback 

control 

𝑈̂ = 𝐾̂𝑒̂ (26) 

by linear control theory. In this paper, the feedback 

gain K̂  is calculated by using LQR (Linear Quadratic 

Regulator) so that the following criteria function is 

minimized. 

dtURUeQeJ TT )ˆˆˆˆ(
0


   

Here, Q and R are weight matrixes of order 4. Please 

note that K̂  is dependent on vehicle velocity because 

the matrix A included in Â is velocity dependent as 

shown in Equation (13). Figure 2 shows some 

elements of feedback gain K̂  as a function of the 

vehicle velocity V.  

 
Figure 2. Plot of LQR gain according to vehicle speed 

 

Finally the actual control input u is calculated by the 

Equations (24) and (26) as below. At first the Equation 

(24) is rewritten as below. 

[
𝐾1̂

𝐾2̂

] 𝑒̂ = [
ddd ExAABu  )(

𝑆
] (27) 

Here, 𝐾1̂ is the upper part of size (2×4) of the gain 

matrix 𝐾̂ and  𝐾2̂ is the lower part of size (2×4) of the 

gain matrix 𝐾̂. S is an unknown variable. 

From the upper part of the Equation (27) the actual 

control input u can be calculated as below. 

})(ˆˆ{ 1

1

sddd ExAAeKBu    (28) 

Here, 1B  is the inverse matrix of B. (
2

1 IBB 
.) 

From the Equation (28) it is understood that the control 

input consists of a feedback term of the augmented 

state error and two feedforward terms of desired state 

variables and also of driver’s steering input. 

5 Simulation Models and Results 

5.1 Single Track Vehicle Model 

To confirm the validity of above mentioned model 

matching control, simulation test based on the single 

track vehicle model was performed by using Modelica. 

First of all, we should handle time-varying linear state 

space system expressed by Equations (10) and (13). It 

was easy to describe time-varying state space system as 

Equations (10) and (13) by Modelica as mentioned 

below. 

A new class of time-varying linear state space 

system was defined by using Modelica. For this 

purpose, the existing class of the linear state space 

system of Modelica Standard Library (MSL) was 

modified to release the constraint of variability of 

variables (i.e. by eliminating ‘parameter’ qualifier). 

The definition of the new class becomes as follow. 
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block StateSpace_Variable  
… 

extends Modelica.Blocks.Interfaces.MIMO(fi

nal nin=size(B, 2), final nout=size(C, 1)); 
  Real A[:, size(A, 1)]; 
  Real B[size(A, 1), :]; 
  Real C[:, size(A, 1)]; 
  Real D[size(C, 1), size(B, 2)]=zeros(siz

e(C, 1), size(B, 2)) ; 
  output Real x[size(A, 1)](start=x_start)

 "State vector"; 

equation  

  der(x) = A*x + B*u; 
  y = C*x + D*u; 
end StateSpace_Variable; 

 

model SingleTrackModel 
… 

 StateSpace_Variable Actual_x( 

    A=A, 

    B=B, 

    C=identity(2)); 

 StateSpace_Variable Desired_xd( 
    A=Ad, 
    B=Ed, 
    C=identity(2)); 
… 

end SingleTrackModel; 
 

For comparison, the definition of the existing class of 

the linear state space system in MSL is as below. 

 
block StateSpace "Linear state space syste

m" 
… 

  parameter Real A[:, size(A, 1)]=[1, 0; 0

, 1]; 
  parameter Real B[size(A, 1), :]=[1; 1]; 
  parameter Real C[:, size(A, 1)]=[1, 1]; 
  parameter Real D[size(C, 1), size(B, 2)]

=zeros(size(C, 1), size(B, 2)) ; 
… 

equation  

  der(x) = A*x + B*u; 
  y = C*x + D*u; 
  … 
end StateSpace; 

 

Figure 3. Modelica model of the controller 

Figure 3 shows a diagram of the Modelica model of 

the model matching controller as defined by Equation 

(28). The time varying linear state systems of both 

plant model and desired dynamics model as mentioned 

above are used in this model. Also 1D table elements 

are used to define the matrix gains which are 

dependent on the vehicle speed. Please note that it was 

impossible to write the model by connecting elements 

by normal Modelica ‘connection’ as shown by dashed 

lines in Figure 3. There occurred Modelica translator 

error by this way. If we connect the dashed lines as 

normal Modelica ‘connection’, then this model 

becomes under-constrained because the variable S in 

the Equation (27) is not defined. To solve this problem, 

‘algorithm’ section to calculate final value of u was 

used in this model. (Dashed lines in Figure 3 indicate 

that there is additional summation of the signals just 

graphically. It is a little shortcoming of Modelica that 

all of the equations including ‘algorithm’ section 

cannot be seen directly in the graphical window.) 

Figure 4 shows simulation results using the single 

track model. Vehicle accelerates from 10km /h to 

100km/h between time 1 sec to 10sec. The steering 

input angle moves as 1Hz sinusoidal curve. Desired 

dynamics was settled as k = 0.3 and k and  
are settled as corresponding value of cut-off frequency 

of 1.3 Hz.  

The results of vehicle slip angle and yaw rate are 

shown not only in the nominal plant but also there 

were some perturbation of vehicle mass (M) and tire 

cornering power (CP). In the nominal case, the results 

of slip angle and yaw rate were exactly matched with 

the desired values. It is shown that the model matching 

control has rather good robustness against the 

perturbation of the parameter M. But it is not so robust 

against the change of the plant parameter CP. The 

improvement of the robustness of the control should be 

a future research. 
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Figure 4. Plot of vehicle velocity and steering input angle 

 

5.2 Full vehicle model 

The full vehicle model as previous research (Hirano et 

al., 2013)(Hirano et al., 2014) was used for full-vehicle 

simulation. The model was developed based on 

Vehicle Dynamics Library of Modelica (Modelon, 

2014) and was built as a full 3-dimentional (3D) multi-

body-dynamic system (MBS) model. Component 

models of control systems such as TVD gearbox, 

electric motor and inverter were added with the full 

vehicle model.  

 
Figure 5.  Structure of full vehicle test model 

 

Figure 5 shows the top level of the model hierarchy 

of the full vehicle test model and also the power train 

model with the controller. 

For the TVD gear train, a driveline structure 

referencing the MUTE project of the Technische 

Universität München (Höhn et al., 2013) was selected 

and the TVD model was constructed using Modelica 

Power Train Library (DLR, 2013). Figure 6 shows the 

configuration of the gear trains. Torque from the main 

motor is distributed equally to the left wheel and the 

right wheel through the differential gear. The torque 

distribution between the left wheel and the right wheel 

can be controlled by changing the torque input of the 

control motor. 

 
Figure 6. Torque vectoring differential (TVD) driveline 
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Figure 7. Modelica model of TVD gear train 

 

Figure 7 shows a diagram of Modelica model of the 

torque vectoring gear train. The model is provided with 

elements that define the relational expression between 

the torque and speed of each gear engagement portion.  

3D MBS model of suspension, steering and body 

were installed to calculate vehicle dynamics 

characteristics. Suspension model was constructed as 

an assembled model of each suspension linkage, joints 

and force elements such as spring, damper and bushing. 

Non-linear tire model based on ‘Magic Formula’ 

model (Pacejka02) was used to calculate combined 

lateral force and longitudinal force of each tire.  

Steering model considered the characteristics of 

viscous friction of steering gear box and steering shaft 

as well as steering shaft stiffness. 

 

5.3 Results of full vehicle simulation 

 

 

 

Figure 8. Comparison between full vehicle model and 

single track model 

 

At first, the result of the full vehicle model and the 

single track model was compared in a case that no 

control was applied. Steering input angle was given as 

a sinusoidal sweep signal from 0.1 Hz to 5Hz at 

constant vehicle speed V=80[km/h]. Figure 8 shows the 

results of vehicle slip angle and yaw rate response. It is 

shown that some difference exists between the single 
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track model and the full vehicle model especially in the 

low frequency response. The reason of this result is 

assumed that the approximation when used to derive 

the equation of the single track model was too big. 

Actually the Equation (2) and (3) about the Figure 1 

should be  

  rff YYuu
dt

d
M 2cos2tan 1    (29) 

NYlYl
dt

d
I rrfffz  2cos2 

  
(30) 

in precise. Also the non-linearity of the tire 

characteristics and effects of many losses and stiffness 

of mechanical parts are not considered in the single 

track model. This result indicates that we should be 

careful when designing controllers based on the single 

track model. 

Next, a simulation emulating double lane change 

maneuver was performed. Though, in this case, a 

problem that the vehicle motion of the full vehicle 

model became unstable when applying the control law 

shown in Eq. (28). The reason was that by the default 

gain of the feed forward control parts, the controlled 

steering angle exceeded the actual physical limit and 

turned more than 6[rad], that is, about 360[deg]. So the 

compensation for the feed forward parts was applied so 

that the controlled front steering angle will not be so 

different from the steering input angle. (Actually the 

feed forward parts were gained by 0.1.) After this 

modification, the vehicle response became stable in the 

actual case using the full vehicle model. Also for the 

feedback part, we should be careful to select the value 

of weight matrix element when designing LQR 

controller. Also the weight for the steering angle 

control was lowered than that for the DYC torque 

because of the physical limit of the steering angle. 

These problems may be solved by modifying the 

controller design from LQR to MPC (Model Predictive 

Control) which can consider the limitation of the 

actuators, but there would be a conflict of calculation 

time of the controller in such a case. 

Figure 9 shows the results of the full vehicle 

simulation imitating the double lane change test by 

open-loop driver model. Though there seems necessity 

of further gain tuning, the modified model matching 

control seems to work to let the actual state variables 

trace the desired variables.  

Also side wind test was simulated using the full 

vehicle model. Figure 10 shows the results. There is a 

side wind of 20[m/s] while time = 2 sec to 3.5 sec 

when the vehicle is running at 120[km/h] with fixed 

steering input angle of 0[rad]. The effect of the 

proposed control to stabilize both slip angle and yaw 

rate response against the side wind was shown. 

For comparison, the result of the previous research 

in which design of the model matching control was 

done without considering the integral of the error 

(Hirano, 2016b) is shown in Figure 11. The new 

control (Figure 10) showed less steady state deviation 

and also better regulation of the state variables against 

the external disturbance as the side wind, though it is 

not perfect yet. 

 

 

 

 

 

Figure 9. Full veheicle simulation result for double rane 

change test 
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Figure 10. Full vehicle simulation result of side wind test 

 

 

 

Figure 11. Side wind test result by previous control 

 

6 Conclusion 

A new integrated control of DYC and front steering 

angle was proposed using model matching control also 

considering the integral of the error. By simulations 

using both single track model and full vehicle model 

based on Modelica, the effect of the control was 

investigated. Also the limitation of control design 

based on the single track model was clarified by 

comparing the results of the simulation by both single 

track model and full vehicle model. Some know-how 

about controller design was also obtained from the full 

vehicle model simulation considering various 

limitations of the actual vehicle. Because of the 

limitation of the actual actuators and also neglected 

modeling errors, the results of the proposed control 

was not satisfactory. 

On the other hand, Modelica was always powerful 

to express any kind of controllers as well as multi-

physics full vehicle model. A new technique to expand 

Modelica model to write time-variant models was also 

introduced. 
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