
Template based code generation of

Modelica building energy simulation models

Christoph Nytsch-Geusen1 Alexander Inderfurth1 Werner Kaul1

Katharina Mucha1 Jörg Rädler1 Matthis Thorade1 Carles Ribas Tugores1
1Institut für Architektur und Städtebau, Berlin University of the Arts, Germany, nytsch@udk-berlin.de

Abstract
This contribution describes an approach for a template

based code generation for different detailed Modelica

models for building energy simulation (BES).

The information from several data sources, which

describe the building geometry, the building

construction, the building location and the building

itself, is used to fill a building data model. This

intermediate data structure is still independent of a

certain building simulation tool.

A new developed tool for template based code

generation (CoTeTo) uses the building data model and

combines it with a set of different code generators,

which are able to generate Modelica building models

with a different level of detail: Strong simplified low-

order building models for district energy simulation

with a large population of buildings, more advanced

multi-zone building models for building energy

simulation and 3D space resolved room models for a

detailed indoor climate analysis.

Three case studies for the mentioned building model

types demonstrate the code generation approach.

Keywords: building energy simulation, adapted model
level of detail, Modelica code generation

1 Introduction

The generation of machine-readable code usually

combines static and dynamic data sources. The static

part describes the keywords and syntactical

requirements of a computer language and builds a static

framework while the dynamic part injects real values

and structures from the runtime environment of the

code-generating application or from an external data

source. In the simplest case the application uses some

(potentially nested) print()-like statements. This

approach has some limitations because even the smallest

change in the output format requires access to the source

code of the application, programming skills and

potentially large compile cycles.

With the rise of dynamic web-sites a more flexible
technology was widely used and much improved: the

template engines. Such an engine is a program library

linked into an application, but the process of the code

generation is controlled by external text files. These

template files embed simple control structures and

placeholders in normal text and can be easily edited. The

concept is similar to the serial letter function in word

processing applications.

The idea of code generation for Modelica BES

libraries was first applied within the EnEff BIM project.

In this project the structured data of an IFC files were

used for the automatic generation of Modelica system

models, consisting of a HVAC sub-model and a strong

simplified building model (for more details see Thorade

et al., 2015).

This contribution is focused on code generation for

Modelica building energy models with different levels

of detail. Important information for the code generation

are the building geometries, the building topologies, the

building constructions, the building locations and the

behavior of the building occupants.

2 Template based code generation

A general approach for code generation of BES models

has to consider the heterogeneous data formats (data

sources) in the building industry sector and should be

able to generate models with a different level of detail,

which fits to the question of the simulation analysis.

Figure 1. Template based code generation of BES models

with a different level of detail

A set of data mappers transform the input data into a

common building data model. Dependent on the present
information within this data model one or more template

based code generators can produce Modelica BES

Generator 3 D

Generator 1 D

Generator 0 D

Building data modelData sources Data mapper Template based
code generator

IFC

JSON

MySQL
Database

Generated models

Building model

Room model

District model

Geometry

Topology

Construction

Ambient data

Building use

Type A

Type B

Type D

CityGML

Type C

CoTeTo

DOI
10.3384/ecp17132199

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

199

models for room simulation, building simulation or

district simulation (compare with Figure 1).

2.1 Data sources

In the building industry sector, there are different data

sources and data formats available, which can satisfy the

needs of the building energy simulation domain. On the

scale of single buildings, the IFC-Format in the version

IFC2x3 (IFC2x3, 2017) can be used and in near future

also the version IFC4 (IFC4, 2017). This format

represents the digital building model in a well-structured

form (the entire building, several spaces, walls,

windows etc.) in combination with a precise description

of the building geometry. Most of the architecture CAD

programs can export the IFC data format. It fits perfect

to the structure of a multi-zone-building model (building

model, thermal zones, building components) and the

precise geometrical data also allows the

parameterization of spatial resolved room models.

On the scale of city districts the CityGML format

(CityGML, 2017) and the GeoJSON format (GeoJSON,

2017) can deliver the necessary building parameter for

district energy models. Normally, GIS programs are

able to export one or both of these data formats with

simplified building geometries, which fits to the reduced

parameter sets of the low-order building models on the

district model scale. In this case, the challenge consists

in the data acquisition of huge populations of buildings

and not for a single building (Kaul et al., 2014).

In special cases, building parameter sets are also

available in data base formats, e.g. MySQL (Inderfurth

et al., 2017).

2.2 Data mapper

A data mapper is a specialized software module, which

is able to map a certain data source file format to the

format independent building data model (see paragraph

2.3). Two different data mappers were realized based on

Python up to now: the first data mapper can be used for

1-dim. multi-zone-building simulation and 3-dim. room

simulation and uses the IFC format as the data input.

The Python bindings of the IfcOpenShell-library

(IfcOpenShell, 2017) are used to read the IFC-files and

Python bindings of the OpenCascade-library

(pythonOCC, 2017) are used to transform in a second

step the geometrical and the topology data in a manner,

that they can be stored in the building data model. The

second data mapper was implemented for district energy

simulation and can read the GeoJSON-format. A third

data mapper for information input from SQL data bases

is under development.

2.3 Building data model

The building data model holds all the information,

which is necessary for the Modelica code generation.

This includes the data for the building geometry (full

geometrical description or simplified geometry), the

building topology (substructure of a building in thermal

zones), the used construction types (multi-layer

definitions), the definition of the building ambient data

(location, weather data) and the type of building use

(e.g. air change rates, set temperatures for heating and

cooling etc.). The building data model itself is

independent of the type of the data sources (but it has

functions for setting building parameters from data

sources) and also on the type of the code generator

(different code generators use the same function to get

building parameters from the building data model).

2.4 CoTeTo

To automate some of the required steps for the

generation and parametrization of Modelica code a

software tool (Code Templating Tool) was developed in

the context of the EnEff-BIM project (Thorade et al,

2015). CoTeTo (CoTeTo, 2017) comes with an open

source license and can be download from GitHub

(https://github.com/UdK-VPT/CoTeTo). It includes

pluggable input, filter and output components that cover

the process of data acquisition, preprocessing and output

using a template system. CoTeTo is implemented in

Python and can be used standalone or as a library

imported in Python applications. A command line

interface is provided for interactive usage or inclusion

in shell scripts. A GUI based on PyQt4 (PyQt4, 2017)

can be started as an application (see Figure 2Figure 1) or

included in PyQ4-based applications as a widget.

Figure 2. CoTeTo GUI for template based code generation

CoTeTo uses the Mako template engine (Mako,

2017) for the code generation step, but an experimental

interface to the Jinja2 engine (Jinja2, 2017) is

implemented as well.

2.5 Generators

CoTeTo documents (called generators) can be easily

edited and shared without deep programming

knowledge. A generator is stored in a folder structure or

a zip file containing plain text files. The idea of a

generator is to include all parts necessary to generate the

code for a defined target (like a certain Modelica

buildings library) form a defined source (like a special

file format or database structure).

Template based code generation of Modelica building energy simulation models

200 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132199

A generator depends on a so-called input API, which

is defined in a Python module. Some standard input

APIs are included in CoTeTo (CSV, JSON, XML, …),

but generators can define own input modules. Between

the data input and the output templates filter functions

can be called to preprocess the data structure. These

Python functions are defined in the generator.

The CoTeTo framework handles this conversion

process completely data-agnostic, the structure and

format of the data objects is defined by the input APIs,

generators and filter functions only.

2.6 Adaption to the BuildingSystems library

Based on the CoTeTo framework three code generators

for the Modelica BuildingSystems library

(http://www.modelica-buildingsystems.de) were imple-

mented. This library is being developed for the dynamic

simulation of the energetic behavior of single rooms,

multi-zone buildings or entire city districts (Nytsch-

Geusen et al., 2016). The simulation models of the

library describe the dynamic energy balance of the

building envelope under consideration of the building

geometry, the thermal properties of the building

construction, the ambient climate and the user behavior.

As the Modelica library IDEAS, AIX Lib and Buildings,

the BuildingSystems library uses as a core the same

Annex 60 Library, which was developed as a common

project from the authors of the four mentioned libraries

in the Annex 60 project (Wetter et al., 2015).

The predefined components of the BuildingSystems

library such as air volumes models, building

construction models, wall and window models, zone

models, low-order building models or ambient models

(compare Figure 3, Figure 6 and Figure 10) are the base

for the generated Modelica code. These model classes

include the physical description (energy and mass

balances, empirical equations etc.) and are instantiated

and parameterized by the code generator using the

information, which is stored in the building data model.

The following code shows as an example the Mako

code, which generates the Modelica records for the

definition of all multi-layered opaque constructions of a

building model:

% for con in constructions:

record ${con.name}

 extends OpaqueThermalConstruction(

 nLayers=${con.nLayers},

 thickness={

% for value in con.thickness:

 ${value}${',' if not loop.last else ''}

% endfor

 },

 material={

 % for value in con.material:

 ${value}()${',' if not loop.last else ''}

 % endfor

 });

end ${con.name};

% endfor

Based on the stored information in the building data

model the code generator generates for example the

code for three different building constructions:

record ConstructionFacade

 extends OpaqueThermalConstruction(

 nLayers=4,

 thickness={0.015,0.2,0.15,0.02},

 material={

 HighGradePlaster(),

 Concrete(),

 ExpandedPolystyrene(),

 HighGradePlaster()});

end ConstructionFacade;

record ConstructionInnerWall

 extends OpaqueThermalConstruction(

 nLayers=3,

 thickness={0.015,0.12,0.015},

 material={

 HighGradePlaster(),

 Kalksandstein1800(),

 HighGradePlaster()});

end ConstructionInnerWall;

record ConstructionBottom

 extends OpaqueThermalConstruction(

 nLayers=3,

 thickness={0.02,0.06,0.2},

 material={

 Wood(),

 WoodFibreInsulation(),

 Concrete()});

end ConstructionBottom;

3 Case studies

The case studies shall demonstrate the general

approach for template based Modelica code generation

for building energy simulation. The examples address

three different scales of building simulation: District

modelling, multi-zone modelling and single room

modelling.

3.1 City district

The first case study considers a city district in Berlin-

Kreuzberg, which was designated by the Berlin city

government as a redevelopment area (SenStadtWohn,

2016). In this context an analysis about the present

energy efficiency of the building stock within this areal

will be of interest. Because the whole district includes

144 buildings, the challenge for a district energy model,

which could describe the present energy demand,

consists in the data gathering of a huge parameter set

(geometries, U-values etc.) for all buildings.

Data source: In the former research project Open

eQuarter, a new layer-oriented geographic information

system (GIS) based method was developed to obtain

building sharp parameter data sets (Kaul et al., 2014).

For this purpose, different city maps with information

such as the building outlines, the number of stories, the

building age in combination with a data base with U-

values of the building elements were used, dependent on

the building age (Loga et al., 2015). The open source

GIS tool QGIS (QGOS, 2017) in combination with the

Session 5B: Buildings II

DOI
10.3384/ecp17132199

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

201

Open eQuarter plugin is able to export a GeoJSON file,

which includes all the necessary building parameters

(location, simplified building geometries, U-values)

gained and calculated by the mentioned data sources.

This GeoJSON file serves as the data input for the

building data model in Figure 1.

Data mapper: In a first step the building data model

takes the information through a data mapper from a

GeoJSON file, which contains beside the mentioned

building parameters also the building outlines for each

building as polygon points. A python filter function

calculates the centroids of these polygons to obtain the

local placements of the building models within the

district model. After this intermediate step all needed

building data are stored in the building data model and

can be used afterwards by the Modelica code generator.

Components: Two components of the

BuidingSystems library are used for the code generation

(see Figure 3). First, an ambient model, which describes

the climate boundary condition of the city district, in

particular the outside air temperature and the solar

radiation on the building surfaces. Second, a low order

building model (described in Nytsch-Geusen and Kaul,

2015), which is able to calculate the dynamic heating

and cooling demand for an individual building with a

small set of input parameters.

Figure 3. Components for district modelling.

Code generator: During the code generation the

building centroids are used for component related

annotations, which defines the graphical appearance of

the individual building models on a realistic position.

This is possible, because the positions of each individual

building were gained from geo-referenced maps

(compare with Figure 4). The excerpt of the generated

code shows the instantiation and parameterization of the

first two building models of the district, the ambient

models and the connections between the ambient model

and the two building models:

model DistrictModel

 extends Modelica.Icons.Example;

 Building1Zone0DDistrict building1(

 UValFac = 0.371,

 UValRoo = 0.269,

 UValGro = 0.4,

 UValWin = fill(1.575,4),

 fWin = 0.21,

 length = 8.127566,

 width = 5.318865,

 heightSto = 3.0,

 nSto = 4)

 annotation(Placement(transformation(

 extent={{0.0,0.0},{10.0,10.0}})));

 Building1Zone0DDistrict building2(

 UValFac = 1.83,

 UValRoo = 1.23,

 UValGro = 1.2,

 UValWin = fill(3.1,4),

 fWin = 0.294,

 length = 48.020794,

 width = 7.903955,

 heightSto = 3.0,

 nSto = 4)

 annotation(Placement(transformation(

 extent={{29.574,1.040},{19.574,11.040}})));

...

Ambient ambient(

 nSurfaces = 720,

 weatherDataFile = WeatherDataFile_Berlin());

equation

connect(ambient.toSurfacePorts[1:5],

 building1.toAmbientSurfacesPorts[1:5]);

connect(ambient.toAirPorts[1:5],

 building1.toAmbientAirPorts[1:5]);

connect(ambient.TAirRef, building1.TAirAmb);

connect(ambient.xAir, building1.xAirAmb);

connect(building1.airchange[1],airchange.y);

connect(building1.T_setHeating[1],TSetHeating.y

);

connect(building1.T_setCooling[1],TSetCooling.y

);

...

connect(ambient.toSurfacePorts[6:10],

 building2.toAmbientSurfacesPorts[6:10]);

connect(ambient.toAirPorts[6:10],

 building2.toAmbientAirPorts[6:10]);

 ...

end DistrictModel;

Figure 4. Generated Modelica district model with 144

low-order building models (the City map is taken from

OpenStreetMap, https://www.openstreetmap.org)

Template based code generation of Modelica building energy simulation models

202 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132199

3.2 Multi-zone building

The second case study demonstrates the code

generation of a multi-zone building model (a storey of

an office building) with thirteen thermals zones. It

includes eight single office rooms, each of them with the

same floor space, oriented to the North. Second, it has

a bullpen with a large south oriented window and a

smaller west oriented window. Beside the bullpen a

conference room is attached, which has also a south

oriented window. Further the story includes two sanitary

rooms without windows and a corridor, which divides

the north oriented by the south oriented rooms as a

thermal buffer zone.

Data source: The building was constructed in

Archicad 19 (see Figure 5) and afterwards exported as

an IFC2x3 file. This model includes a precise

description of the building geometry, topology and also

the information about the layered construction of the

building (used materials and the thicknesses of each

layer).

Figure 5. Building model, constructed in Archicad 19.

Data mapper: The data mapper reads the IFC file

and analyses the building geometry and modifies if

necessary the topology. For example, the south façade

of the building is constructed in the CAD tool as one

continuous element, but it has to be divided into two

individual thermal wall models, because these models

will have different thermal boundary conditions in a

multi-zone building model. After this analysis the

building data is stored in the building data model.

Components: Different models of the

BuildingSystems library (opaque and transparent

building element models, zone models, building

template models etc. and again an ambient model) are

used as the base for the code generation (see Figure 6).

Figure 6. Components for multi-zone modelling.

Code generator: In this case study the stored

information in the building data model is used twice:

First for the generation of the Modelica code of the

thermal multi-zone building model (see Figure 7) and

second for a corresponding C# script, which is able to

visualize the simulation results within a 3-dimensional

building model (see Figure 8), based on Unity 5

(Nytsch-Geusen et al., 2017).

Figure 7. Generated Modelica multi-zone building model

with 13 thermal zones.

The excerpt of the generated code shows the

instantiation of the individual opaque and transparent

building elements, thermal zones and their connections

to a multi-zone building model (model Building). In

the next step this “container class” is instantiated and

connected on a higher level together with the ambient

model to the Modelica system model (model

MultiZoneBuilding):

model MultiZoneBuilding

 extends Modelica.Icons.Example;

 record ConstructionFacade

 extends OpaqueThermalConstruction(

 nLayers=4,

 thickness={0.015,0.2,0.15,0.02},

 ...

 model Building

 extends BuildingTemplate(

 nZones = 13,

 surfacesToAmbient(nSurfaces = 43),

 nSurfacesSolid = 13, ...);

 // building zones

 ZoneTemplateAirvolumeMixed office1(

 V=36.0,height=3.0,

 nConstructions1=8,...);

 ...

 ZoneTemplateAirvolumeMixed bullpen(

 V=450.0,height=3.0,

 nConstructions1=11,...);

 // constructions elements

 WallThermal1DNodes wall11(

 redeclare ConstructionFacade

 constructionData,

 angleDegAzi = 180.0,angleDegTil = 90.0,

 nInnSur = 1, AInnSur = {window2.A},

 height = 3.0,width = 3.0);

 ...

 Window window2(

 angleDegAzi = 180.0,angleDegTil = 90.0,

 height = 1.5,width = 2.5, UVal = ...);

Session 5B: Buildings II

DOI
10.3384/ecp17132199

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

203

 equation

 // construction elements <-> zones

 connect(wall11.toSurfacePort_1,

 office2.toConstructionPorts1[1]);

 connect(window2.toSurfacePort_1,

 office2.toConstructionPorts1[5]);

 ...

 // construction elements <-> ambient

 connect(window2.toSurfacePort_2,

 surfacesToAmbient.toConstructionPorts[5]);

 connect(wall11.toSurfacePort_2,

 surfacesToAmbient.toConstructionPorts[6]);

 ...

 // construction elements <-> ground

 connect(bottom1.toSurfacePort_2,

 surfacesToSolids.toConstructionPorts[1]);

 ...

 end Building;

 Building building(

 show_TSur = true,nSurfaces = 182,nZones = 13);

 Ambient ambient(

 nSurfaces = building.nSurfacesAmbient,

 weatherDataFile = WeatherDataFile_Berlin());

equation

 connect(ambient.toSurfacePorts,

 building.toAmbientSurfacesPorts);

 connect(ambient.toAirPorts,

 building.toAmbientAirPorts);

 connect(ambient.TAirRef, building.TAirAmb);

 connect(ambient.xAir, building.xAirAmb);

...

end MultiZoneBuilding;

Figure 8. Generated multi-zone Unity building model for

visualization of simulation results.

Figure 8 shows the visualization of the simulated surface

temperatures of the multi-zone building model. The

following code is an excerpt of the automatically

generated C# script, which instantiates in Unity 5 this

3D visualization model:

using UnityEngine;

using System.Collections;

public class Surfaces : MonoBehaviour{

 public GameObject[] surfaces;

 private int nSur = 182;

 private Vector3 dirY = new Vector3(0,1,0);

 private Vector3 dy = new Vector3(0,0,0);

 private float[] rgb = new float[3];

 private float time = 0.0F;

 void Start(){

 sur = new GameObject[nSur];

 sur[0] = GameObject.CreatePrimitive(

 PrimitiveType.Cube);

 sur[0].name = "wall1_sur1";

 sur[0].transform.localScale =

 new Vector3(4.0F,0.01F,3.0F);

 sur[0].GetComponent<Renderer>().material=

 new Material(Shader.Find("Transparent/Diffuse"));

 sur[0].GetComponent<Renderer>().material.

 color = new Color(1, 0, 0, 0.3F);

 sur[0].transform.rotation =

 Quaternion.Euler(90.0F,90.0F,0.0F);

 sur[0].transform.position =

 new Vector3(0.0F,1.5F,-2.0F);

 sur[0].GetComponent<Collider>().enabled = false;

 dy = sur[0].transform.TransformDirection(dirY);

 sur[1] = GameObject.CreatePrimitive(

 PrimitiveType.Cube);

 sur[1].name = "wall1_sur2";

 ...

}

void Update(){

 time += 0.01F;

 float[] T_Surface = new float[]{

 // C# code for reading the simulation results

 // from the Modelica simulation

 ...

 }

 for (int i = 0; i < nSurfaces; i++){

 rgb = RGBMapper (T_Surface[i],10.0F,30.0F);

 sur[i].GetComponent<Renderer>().

 material.color=

 new Color(rgb[0],rgb[1],rgb[2],0.3F);}

 }

}

3.3 Single room

The third case study for template based code

generation was taken from the DFG Forschergruppe

1736 UCaHS (UCaHS, 2017). Within this project, the

indoor climate of a patient room in a Berlin hospital (see

Figure 9) was analyzed in detailed regarding the heat

stress risk during hot summer weeks.

Figure 9. Floorplan and 3D model of the patient room.

For this purpose, a discretized room model in

Modelica, a so called “zonal model”, which is based on

a finite-volume-method and a simplified imple-

mentation of the Navier-Stokes equations was

developed by Mucha (2017). A typical configuration of

this room model includes between 300 to 500 air volume

models, which are interconnected to each other by

coupling models, which consider the friction between

the air layers and the momentum transport. Caused by

the high number of air volume elements and their

necessary interconnections a manually failure free

configuration of a room model, especially for non-box-

shaped rooms would be nearly impossible.

Data source: At the moment the geometrical

description of the 3-dim. room geometry inclusive its

space discretization and also the physical parameter of

Template based code generation of Modelica building energy simulation models

204 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132199

the building construction are stored in a structuresd

JSON file.

DataMapper: The data mapper reads the building

parameter from the JSON file and stores it in the

building data model.

Components: Figure 10 shows the components of

the BuildungSystems library, which are used for the

configuration of the space-discretized room model: an

air volume model (energy and mass balance), a flow

element model (friction calculation within the air), a

heat conduction model (heat conduction within the air)

and an interface model for the boundary condition of the

room model (surface, wall and window models).

Figure 10. Components for room modelling.

Code generator: The code generator takes the

information from the building data model and generates

the Modelica code for the space discretized room model.

This case study clearly demonstrates the advantage of

the template based code generation approach. More than

500 air volume models have to be connected in three

room coordinates with flow element models. In

addition, different special cases have to be considered

during the code generation process, for example the

presence of furniture or the changing boundary

condition models at the borders of the air space (e.g. a

connection of a border air volume model with an

adjacent wall or opening model).

Figure 11. Generated discretized Modelica room model

with 532 air volume models.

Figure 11 shows a variation of a generated room model

of the patient room: one with a large cooling ceiling and

one with a small cooling ceiling, which covers only the

area of one of the patient beds. The correspondent

adaptions in the building data model, before the code

generation is repeated for the varied model are relative

simple in comparison to manually changes in the

generated code of the originally model.

The excerpt of the generated code exemplary shows the

instantiation of two of the air volume elements, the flow
and the heat conduction elements and the

interconnections of the components to the 3-

dimensional air flow model:

model Room

 ...

 FlowConnectionY floConY5710;

 ZoneHeatConductionY heaConY5710;

 AirElementThermal airEle6710(

 posX= vecX[10], posY= vecY[6], posZ= vecZ[7],

 T_start = T_inside,

 scalF = {scalX[10],scalY[6],scalZ[7]},

 enabled = false, BCwall_west = false,

 BCwall_east = true, BCwall_floor = false,

 BCwall_roof = false, BCwall_south = false,

 BCwall_north = true);

 ...

 FlowConnectionY floConY6710;

 ZoneHeatConductionY heaConY6710;

 AirElementThermal airEle7710(

 posX= vecX[10], posY= vecY[7], posZ= vecZ[7],

 T_start = T_inside,

 scalF = {scalX[10],scalY[7],scalZ[7]},

 enabled = false,BCwall_west = false,

 BCwall_east = true, BCwall_floor = false,

 BCwall_roof = true, BCwall_south = false,

 BCwall_north = true);

 ...

equation

 ...

 connect(floConX679.Port2, airEle6710.PortX1);

 connect(airEle679.PortHeatIntern,

 heaConX679.Port1);

 connect(heaConX679.Port2,

 airEle6710.PortHeatIntern);

 connect(airEle679.PortY2, heaConY679.Port1);

 connect(floConY679.Port2, airEle779.PortY1);

 connect(airEle679.PortHeatIntern,

 heaConY679.Port1);

 connect(heaConY679.Port2,

 airEle779.PortHeatIntern);

 connect(airEle779.PortX2, airEle779.Port1);

 ...

end Room;

3.4 Analysis and discussion

The three case studies are compared to each other with

the help of benchmark values, e.g. the line of codes, the

number of components or the number of connections

within the generated system model (see Table 1).

Table 1. Comparison of the three case studies.

 District Building Room

Lines of code 2,904 1,544 15,985

Number of

components
150 173 3713

Number of

connections
1,008 544 10,982

Number of

equations
435,765 40,434 132,712

Continuous

time states
1,872 305 2,481

Time-varying

variables
34,285 3,139 30,194

Session 5B: Buildings II

DOI
10.3384/ecp17132199

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

205

It can be stated, that building energy simulation analysis

in Modelica usually leads to large system models.

System models with 3,000 up to 16,000 lines of

Modelica code cannot be manually configured failure

free. The number of the components reaches from 150

to 3,713 and the number of connections from 544 to

10,982.

The generated models of Table 1 can be compiled and

simulated without any problems by Dymola 2017 FD01.

A test width a generated district model with more than

500 buildings illustrated the present limitations of the

Modelica simulation tools: Dymola 2017 FD01 was not

able to compile this large model, neither with a 64 bit

compiler.

In the case of the district model, information from the

GIS system can be used to generate a Modelica model

which is able to display the real location of the

individual buildings in the city map.

In the case of the multi-zone building model the input

data can be used to generate consistent program code for

two different purposes (Modelica and Unity code).

In the case of the room model, the code generator

enables configuration of 3 dimensional models, which

cannot be really modeled within a 2-dimensional

graphical editor of a Modelica simulation tool.

4 Summary and Outlook

The described new approach for a template based code

generation for Modelica building models was

successfully applied to three different case studies on

different room scales: district simulation, multi-zone

building simulation and room simulation. A building

data model, which stores the information in a structured

and compact manner in combination with a template

based code generator (CoTeTo), can avoid failures of

manually written large Modelica system models.

In the next development step, the described Modelica

code generators will be extended for special modelling

cases. For this purposes, Mako code for conditional code

generation will be introduced, which allows variations

of generated components and connections within the

Modelica system model.

The import of complex building or district data based

on IFC or CityGML can be potentially incomplete or

error prone. For this purpose, a graphical viewer incl. a

consistency check shall be developed in future to obtain

a more reliable base for the following code generation

process.

Modelica simulator developers should improve their

tools regarding the compiler technologies and also their

numerical efficiency and flexibility. Especially large

city district models, which can be easily generated from

the GIS data with the described method, can address a

lot of computer memory and potentially need a huge

amount of numerical resources. In this context, the

application of parallel computing technologies could

improve the situation.

Acknowledgements

The research described in this paper is conducted within

research project “EnEff BIM: Planung, Auslegung und

Betriebsoptimierung von energieeffizienten Neu- und

Bestandsbauten durch Modellierung und Simulation auf

Basis von Bauwerkinformationsmodellen” funded by

the Federal Ministry for Economic Affairs and Energy

in Germany (reference: 03ET1177D).

References

CityGML. Exchange and storage of virtual 3D city models -

http://www.citygml.org (last access on 2017 Jan 20).

CoTeTo - Code Templating Tool - https://github.com/UdK-

VPT/CoTeTo (last access on 2017 Jan 20).

Alexander Inderfurth, Arda Karasu, Christoph Nytsch-

Geusen, Claus Steffan. Architectural-Geometrical

Simplification for Multi-Zone Building Models for Urban

Refurbishment Projects. Accepted for Building Simulation

2017, 15th International Conference of IBPSA. San

Francisco, August 2017.

GeoJSON. A format for encoding a variety of geographic data

structures - http://geojson.org (last access on 2017 Jan 20).

PyQt4. Python bindings for the Qt application framework -

https://riverbankcomputing.com/software/pyqt (last access

on 2017 Jan 20)

Werner Kaul, Christoph Nytsch-Geusen, Phillip Wehage, and

Michael Färber. Teilautomatisierte Akquise energetischer

Gebäudedaten für die Quartiersanalayse und - simulation

durch den Einsatz von Geo-Informations-Systemen (GIS).

BAUSIM 2014 IBPSA Germany. Conference Proceedings.

Aachen, September 2014.

Tobias Loga, Britta Stein, Nikolaus Diefenbach, and Rolf

Born. Deutsche Wohngebäudetypologie. Beispielhafte

Maßnahmen zur Verbesserung der Energieeffizienz von

typischen Wohngebäuden, Institut Wohnen und Umwelt,

Darmstadt / Germany, ISBN: 978-3-941140-47-9, 2015.

IFC2x3. IFC2x Edition 3 specification -

http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html

(last access on 2017 Jan 20)

IFC4. IFC4 specification - http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/ (last access on 2017 Jan 20)

IfcOpenShell. The open source IFC toolkit and geometry

engine - http://ifcopenshell.org/python.html (last access on

2017 Jan 20)

Mako. Mako templates for python -

http://www.makotemplates.org (last access on 2017 Jan 20)

Jinja2. Jinja2 (the python template engine) -

http://jinja.pocoo.org (last access on 2017 Jan 20)

Christoph Nytsch-Geusen, and Werner Kaul. Generation of

dynamic energetic district models from statistical

relationships. 14th IBPSA Building Simulation Conference,

Hyderabad, Conference Proceedings, December 2015.

Christoph Nytsch-Geusen, Christoph Banhardt, Alexander

Inderfurth., Katharina Mucha, Jens Möckel, Jörg Rädler,

Matthis Thorade, and Carles R. Tugores. BuildingSystems

– Eine modular hierarchische Modell-Bibliothek zur

energetischen Gebäude- und Anlagensimulation. BAUSIM

Template based code generation of Modelica building energy simulation models

206 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132199

2016 IBPSA Germany, Conference Proceedings. Dresden,

September 2016.

Christoph Nytsch-Geusen, Thaeba Ayubi, Jens Möckel, Jörg

Rädler, Matthis Thorade. BuildingSystems_VR – A new

approach for immersive and interactive building energy

simulation. Accepted for Building Simulation 2017, 15th

International Conference of IBPSA. San Francisco, August

2017.

Katharina Mucha. Ein Simulationsansatz zur Bewertung von

Hitzestressrisiken in Innenräumen. Weiterentwicklung

eines zonalen Modells in Modelica. Dissertation, Fakultät

Gestaltung, Universität der Künste Berlin, 2017.

pythonOCC. pythonOCC – 3D CAD for python -

http://www.pythonocc.org (last access on 2017 Jan 20).

QGIS. Ein freies Open-Source-Geographisches-

Informationssystem - http://www.qgis.org/de/site (last

access on 2017 Jan 20).

Senatsverwaltung für Stadtentwicklung und Wohnen:

Sanierungsgebiet Friedrichshain-Kreuzberg –

Rathausblockhttp://www.stadtentwicklung.berlin.de/staedt

ebau/foerderprogramme/stadterneuerung/de/rathausblock/i

ndex.shtml (last access on 2016 Dec 29).

Matthis Thorade, Jörg Rädler, Peter Remmen, Tobias Maile,

Reinhard Wimmer, Jun Cao, Moritz Lauster, Christoph

Nytsch-Geusen, Dirk Müller, and Christoph van Treeck. An

open toolchain for generating Modelica code from Building

Information Models. 11th International Modelica

Conference, p.383–391, Versailles, September 2015.

UCaHS. DFG Research Unit 1736 UCaHS - Urban Climate

and Heat Stress in mid-latitude cities in view of climate

change http://www.ucahs.org (last access on 2017 Jan 20).

Wetter Michael, Fuchs Marcus, Grozman Pavel, Helsen

Lieve, Jorissen Filip, Lauster Moritz, Müller Dirk, Nytsch-

Geusen Christoph, Picard Damien, Sahlin Per, and Thorade

Matthis. IEA EBC Annex 60 Modelica Library - An

international collaboration to develop a free open-source

model library for buildings and community energy systems.

14th IBPSA Building Simulation Conference, Hyderabad,

Conference Proceedings, December 2015.

Session 5B: Buildings II

DOI
10.3384/ecp17132199

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

207

