
Template based code generation of  

Modelica building energy simulation models 

Christoph Nytsch-Geusen1  Alexander Inderfurth1   Werner Kaul1  

Katharina Mucha1 Jörg Rädler1   Matthis Thorade1   Carles Ribas Tugores1 
1Institut für Architektur und Städtebau, Berlin University of the Arts, Germany, nytsch@udk-berlin.de 

 

 

 

 

 

Abstract 
This contribution describes an approach for a template 

based code generation for different detailed Modelica 

models for building energy simulation (BES).  

The information from several data sources, which 

describe the building geometry, the building 

construction, the building location and the building 

itself, is used to fill a building data model. This 

intermediate data structure is still independent of a 

certain building simulation tool.  

A new developed tool for template based code 

generation (CoTeTo) uses the building data model and 

combines it with a set of different code generators, 

which are able to generate Modelica building models 

with a different level of detail: Strong simplified low-

order building models for district energy simulation 

with a large population of buildings, more advanced 

multi-zone building models for building energy 

simulation and 3D space resolved room models for a 

detailed indoor climate analysis. 

Three case studies for the mentioned building model 

types demonstrate the code generation approach. 

Keywords: building energy simulation, adapted model 
level of detail, Modelica code generation  

1 Introduction 

The generation of machine-readable code usually 

combines static and dynamic data sources. The static 

part describes the keywords and syntactical 

requirements of a computer language and builds a static 

framework while the dynamic part injects real values 

and structures from the runtime environment of the 

code-generating application or from an external data 

source. In the simplest case the application uses some 

(potentially nested) print()-like statements. This 

approach has some limitations because even the smallest 

change in the output format requires access to the source 

code of the application, programming skills and 

potentially large compile cycles. 

With the rise of dynamic web-sites a more flexible 
technology was widely used and much improved: the 

template engines. Such an engine is a program library 

linked into an application, but the process of the code 

generation is controlled by external text files. These 

template files embed simple control structures and 

placeholders in normal text and can be easily edited. The 

concept is similar to the serial letter function in word 

processing applications. 

The idea of code generation for Modelica BES 

libraries was first applied within the EnEff BIM project. 

In this project the structured data of an IFC files were 

used for the automatic generation of Modelica system 

models, consisting of a HVAC sub-model and a strong 

simplified building model (for more details see Thorade 

et al., 2015). 

This contribution is focused on code generation for 

Modelica building energy models with different levels 

of detail. Important information for the code generation 

are the building geometries, the building topologies, the 

building constructions, the building locations and the 

behavior of the building occupants. 

2 Template based code generation 

A general approach for code generation of BES models 

has to consider the heterogeneous data formats (data 

sources) in the building industry sector and should be 

able to generate models with a different level of detail, 

which fits to the question of the simulation analysis.  

               

Figure 1. Template based code generation of BES models 

with a different level of detail 

A set of data mappers transform the input data into a 

common building data model. Dependent on the present 
information within this data model one or more template 

based code generators can produce Modelica BES 
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models for room simulation, building simulation or 

district simulation (compare with Figure 1). 

2.1 Data sources 

In the building industry sector, there are different data 

sources and data formats available, which can satisfy the 

needs of the building energy simulation domain. On the 

scale of single buildings, the IFC-Format in the version 

IFC2x3 (IFC2x3, 2017) can be used and in near future 

also the version IFC4 (IFC4, 2017). This format 

represents the digital building model in a well-structured 

form (the entire building, several spaces, walls, 

windows etc.) in combination with a precise description 

of the building geometry. Most of the architecture CAD 

programs can export the IFC data format. It fits perfect 

to the structure of a multi-zone-building model (building 

model, thermal zones, building components) and the 

precise geometrical data also allows the 

parameterization of spatial resolved room models.  

On the scale of city districts the CityGML format 

(CityGML, 2017) and the GeoJSON format (GeoJSON, 

2017) can deliver the necessary building parameter for 

district energy models. Normally, GIS programs are 

able to export one or both of these data formats with 

simplified building geometries, which fits to the reduced 

parameter sets of the low-order building models on the 

district model scale. In this case, the challenge consists 

in the data acquisition of huge populations of buildings 

and not for a single building (Kaul et al., 2014).  

In special cases, building parameter sets are also 

available in data base formats, e.g. MySQL (Inderfurth 

et al., 2017).  

2.2 Data mapper 

A data mapper is a specialized software module, which 

is able to map a certain data source file format to the 

format independent building data model (see paragraph 

2.3). Two different data mappers were realized based on 

Python up to now: the first data mapper can be used for 

1-dim. multi-zone-building simulation and 3-dim. room 

simulation and uses the IFC format as the data input. 

The Python bindings of the IfcOpenShell-library 

(IfcOpenShell, 2017) are used to read the IFC-files and 

Python bindings of the OpenCascade-library 

(pythonOCC, 2017) are used to transform in a second 

step the geometrical and the topology data in a manner, 

that they can be stored in the building data model. The 

second data mapper was implemented for district energy 

simulation and can read the GeoJSON-format. A third 

data mapper for information input from SQL data bases 

is under development.  

2.3 Building data model 

The building data model holds all the information, 

which is necessary for the Modelica code generation. 

This includes the data for the building geometry (full 

geometrical description or simplified geometry), the 

building topology (substructure of a building in thermal 

zones), the used construction types (multi-layer 

definitions), the definition of the building ambient data 

(location, weather data) and the type of building use 

(e.g. air change rates, set temperatures for heating and 

cooling etc.). The building data model itself is 

independent of the type of the data sources (but it has 

functions for setting building parameters from data 

sources) and also on the type of the code generator 

(different code generators use the same function to get 

building parameters from the building data model).  

2.4 CoTeTo 

To automate some of the required steps for the 

generation and parametrization of Modelica code a 

software tool (Code Templating Tool) was developed in 

the context of the EnEff-BIM project (Thorade et al, 

2015). CoTeTo (CoTeTo, 2017) comes with an open 

source license and can be download from GitHub 

(https://github.com/UdK-VPT/CoTeTo). It includes 

pluggable input, filter and output components that cover 

the process of data acquisition, preprocessing and output 

using a template system. CoTeTo is implemented in 

Python and can be used standalone or as a library 

imported in Python applications. A command line 

interface is provided for interactive usage or inclusion 

in shell scripts. A GUI based on PyQt4 (PyQt4, 2017) 

can be started as an application (see Figure 2Figure 1) or 

included in PyQ4-based applications as a widget. 
 

 

Figure 2. CoTeTo GUI for template based code generation 

CoTeTo uses the Mako template engine (Mako, 

2017) for the code generation step, but an experimental 

interface to the Jinja2 engine (Jinja2, 2017) is 

implemented as well. 

2.5 Generators 

CoTeTo documents (called generators) can be easily 

edited and shared without deep programming 

knowledge. A generator is stored in a folder structure or 

a zip file containing plain text files. The idea of a 

generator is to include all parts necessary to generate the 

code for a defined target (like a certain Modelica 

buildings library) form a defined source (like a special 

file format or database structure). 
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A generator depends on a so-called input API, which 

is defined in a Python module. Some standard input 

APIs are included in CoTeTo (CSV, JSON, XML, …), 

but generators can define own input modules. Between 

the data input and the output templates filter functions 

can be called to preprocess the data structure. These 

Python functions are defined in the generator.  

The CoTeTo framework handles this conversion 

process completely data-agnostic, the structure and 

format of the data objects is defined by the input APIs, 

generators and filter functions only. 

2.6 Adaption to the BuildingSystems library 

Based on the CoTeTo framework three code generators 

for the Modelica BuildingSystems library 

(http://www.modelica-buildingsystems.de) were imple-

mented. This library is being developed for the dynamic 

simulation of the energetic behavior of single rooms, 

multi-zone buildings or entire city districts (Nytsch-

Geusen et al., 2016). The simulation models of the 

library describe the dynamic energy balance of the 

building envelope under consideration of the building 

geometry, the thermal properties of the building 

construction, the ambient climate and the user behavior. 

As the Modelica library IDEAS, AIX Lib and Buildings, 

the BuildingSystems library uses as a core the same 

Annex 60 Library, which was developed as a common 

project from the authors of the four mentioned libraries 

in the Annex 60 project (Wetter et al., 2015). 

The predefined components of the BuildingSystems 

library such as air volumes models, building 

construction models, wall and window models, zone 

models, low-order building models or ambient models 

(compare Figure 3, Figure 6 and Figure 10) are the base 

for the generated Modelica code. These model classes 

include the physical description (energy and mass 

balances, empirical equations etc.) and are instantiated 

and parameterized by the code generator using the 

information, which is stored in the building data model. 

The following code shows as an example the Mako 

code, which generates the Modelica records for the 

definition of all multi-layered opaque constructions of a 

building model: 
 

% for con in constructions: 

record ${con.name} 

 extends OpaqueThermalConstruction( 

  nLayers=${con.nLayers}, 

  thickness={ 

% for value in con.thickness: 

  ${value}${',' if not loop.last else ''} 

% endfor 

  }, 

  material={ 

  % for value in con.material: 

  ${value}()${',' if not loop.last else ''} 

  % endfor 

 }); 

end ${con.name}; 

% endfor 

 

Based on the stored information in the building data 

model the code generator generates for example the 

code for three different building constructions: 
 

record ConstructionFacade 

 extends OpaqueThermalConstruction( 

 nLayers=4, 

 thickness={0.015,0.2,0.15,0.02}, 

 material={ 

  HighGradePlaster(), 

  Concrete(),               

  ExpandedPolystyrene(), 

  HighGradePlaster()}); 

end ConstructionFacade; 

 

record ConstructionInnerWall 

 extends OpaqueThermalConstruction( 

 nLayers=3, 

 thickness={0.015,0.12,0.015}, 

 material={ 

  HighGradePlaster(), 

  Kalksandstein1800(), 

  HighGradePlaster()}); 

end ConstructionInnerWall; 

 

record ConstructionBottom 

 extends OpaqueThermalConstruction( 

 nLayers=3, 

 thickness={0.02,0.06,0.2}, 

 material={ 

 Wood(), 

 WoodFibreInsulation(), 

 Concrete()}); 

end ConstructionBottom; 

3 Case studies 

The case studies shall demonstrate the general 

approach for template based Modelica code generation 

for building energy simulation. The examples address 

three different scales of building simulation: District 

modelling, multi-zone modelling and single room 

modelling. 

3.1 City district 

The first case study considers a city district in Berlin-

Kreuzberg, which was designated by the Berlin city 

government as a redevelopment area (SenStadtWohn, 

2016). In this context an analysis about the present 

energy efficiency of the building stock within this areal 

will be of interest. Because the whole district includes 

144 buildings, the challenge for a district energy model, 

which could describe the present energy demand, 

consists in the data gathering of a huge parameter set 

(geometries, U-values etc.) for all buildings. 

Data source: In the former research project Open 

eQuarter, a new layer-oriented geographic information 

system (GIS) based method was developed to obtain 

building sharp parameter data sets (Kaul et al., 2014). 

For this purpose, different city maps with information 

such as the building outlines, the number of stories, the 

building age in combination with a data base with U-

values of the building elements were used, dependent on 

the building age (Loga et al., 2015). The open source 

GIS tool QGIS (QGOS, 2017) in combination with the 

Session 5B: Buildings II

DOI
10.3384/ecp17132199

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

201



Open eQuarter plugin is able to export a GeoJSON file, 

which includes all the necessary building parameters 

(location, simplified building geometries, U-values) 

gained and calculated by the mentioned data sources. 

This GeoJSON file serves as the data input for the 

building data model in Figure 1. 

Data mapper: In a first step the building data model 

takes the information through a data mapper from a 

GeoJSON file, which contains beside the mentioned 

building parameters also the building outlines for each 

building as polygon points. A python filter function 

calculates the centroids of these polygons to obtain the 

local placements of the building models within the 

district model. After this intermediate step all needed 

building data are stored in the building data model and 

can be used afterwards by the Modelica code generator. 

Components: Two components of the 

BuidingSystems library are used for the code generation 

(see Figure 3). First, an ambient model, which describes 

the climate boundary condition of the city district, in 

particular the outside air temperature and the solar 

radiation on the building surfaces. Second, a low order 

building model (described in Nytsch-Geusen and Kaul, 

2015), which is able to calculate the dynamic heating 

and cooling demand for an individual building with a 

small set of input parameters. 

 

Figure 3. Components for district modelling. 

Code generator: During the code generation the 

building centroids are used for component related 

annotations, which defines the graphical appearance of 

the individual building models on a realistic position. 

This is possible, because the positions of each individual 

building were gained from geo-referenced maps 

(compare with Figure 4). The excerpt of the generated 

code shows the instantiation and parameterization of the 

first two building models of the district, the ambient 

models and the connections between the ambient model 

and the two building models: 
 

model DistrictModel 

 extends Modelica.Icons.Example; 

 Building1Zone0DDistrict building1( 

 UValFac = 0.371,  

 UValRoo = 0.269,  

 UValGro = 0.4,  

 UValWin = fill(1.575,4), 

 fWin = 0.21,  

 length = 8.127566,  

 width = 5.318865, 

 heightSto = 3.0,  

 nSto = 4)   

 annotation(Placement(transformation( 

  extent={{0.0,0.0},{10.0,10.0}}))); 

 Building1Zone0DDistrict building2( 

 UValFac = 1.83,  

 UValRoo = 1.23,  

 UValGro = 1.2,  

 UValWin = fill(3.1,4), 

 fWin = 0.294, 

 length = 48.020794,  

 width = 7.903955, 

 heightSto = 3.0,  

 nSto = 4)        

 annotation(Placement(transformation( 

 extent={{29.574,1.040},{19.574,11.040}}))); 

... 

Ambient ambient( 

 nSurfaces = 720, 

 weatherDataFile = WeatherDataFile_Berlin()); 

equation 

connect(ambient.toSurfacePorts[1:5],    

 building1.toAmbientSurfacesPorts[1:5]); 

connect(ambient.toAirPorts[1:5],   

 building1.toAmbientAirPorts[1:5]); 

connect(ambient.TAirRef, building1.TAirAmb); 

connect(ambient.xAir, building1.xAirAmb); 

connect(building1.airchange[1],airchange.y); 

connect(building1.T_setHeating[1],TSetHeating.y

); 

connect(building1.T_setCooling[1],TSetCooling.y

); 

... 

connect(ambient.toSurfacePorts[6:10],    

 building2.toAmbientSurfacesPorts[6:10]); 

connect(ambient.toAirPorts[6:10],   

 building2.toAmbientAirPorts[6:10]); 

 ...  

end DistrictModel; 

 

 

Figure 4. Generated Modelica district model with 144 

low-order building models (the City map is taken from 

OpenStreetMap, https://www.openstreetmap.org) 
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3.2 Multi-zone building 

The second case study demonstrates the code 

generation of a multi-zone building model (a storey of 

an office building) with thirteen thermals zones. It 

includes eight single office rooms, each of them with the 

same floor space, oriented to the North.  Second, it has 

a bullpen with a large south oriented window and a 

smaller west oriented window. Beside the bullpen a 

conference room is attached, which has also a south 

oriented window. Further the story includes two sanitary 

rooms without windows and a corridor, which divides 

the north oriented by the south oriented rooms as a 

thermal buffer zone.   

Data source: The building was constructed in 

Archicad 19 (see Figure 5) and afterwards exported as 

an IFC2x3 file. This model includes a precise 

description of the building geometry, topology and also 

the information about the layered construction of the 

building (used materials and the thicknesses of each 

layer). 

 

Figure 5. Building model, constructed in Archicad 19. 

Data mapper: The data mapper reads the IFC file 

and analyses the building geometry and modifies if 

necessary the topology. For example, the south façade 

of the building is constructed in the CAD tool as one 

continuous element, but it has to be divided into two 

individual thermal wall models, because these models 

will have different thermal boundary conditions in a 

multi-zone building model. After this analysis the 

building data is stored in the building data model. 

Components: Different models of the 

BuildingSystems library (opaque and transparent 

building element models, zone models, building 

template models etc. and again an ambient model) are 

used as the base for the code generation (see Figure 6). 

 

Figure 6. Components for multi-zone modelling. 

Code generator: In this case study the stored 

information in the building data model is used twice: 

First for the generation of the Modelica code of the 

thermal multi-zone building model (see Figure 7) and 

second for a corresponding C# script, which is able to 

visualize the simulation results within a 3-dimensional 

building model (see Figure 8), based on Unity 5 

(Nytsch-Geusen et al., 2017). 

 

Figure 7. Generated Modelica multi-zone building model 

with 13 thermal zones. 

The excerpt of the generated code shows the 

instantiation of the individual opaque and transparent 

building elements, thermal zones and their connections 

to a multi-zone building model (model Building). In 

the next step this “container class” is instantiated and 

connected on a higher level together with the ambient 

model to the Modelica system model (model 

MultiZoneBuilding): 

 
model MultiZoneBuilding 

 extends Modelica.Icons.Example; 

 

 record ConstructionFacade 

  extends OpaqueThermalConstruction( 

   nLayers=4, 

   thickness={0.015,0.2,0.15,0.02}, 

  ... 

 

 model Building 

  extends BuildingTemplate( 

   nZones = 13,  

   surfacesToAmbient(nSurfaces = 43), 

   nSurfacesSolid = 13, ...); 

 

  // building zones  

  ZoneTemplateAirvolumeMixed office1( 

   V=36.0,height=3.0, 

   nConstructions1=8,...); 

  ... 

  ZoneTemplateAirvolumeMixed bullpen( 

   V=450.0,height=3.0, 

   nConstructions1=11,...); 

 

  // constructions elements  

  WallThermal1DNodes wall11( 

   redeclare ConstructionFacade    

   constructionData, 

   angleDegAzi = 180.0,angleDegTil = 90.0, 

   nInnSur = 1, AInnSur = {window2.A}, 

   height = 3.0,width = 3.0); 

  ... 

  Window window2( 

   angleDegAzi = 180.0,angleDegTil = 90.0, 

   height = 1.5,width = 2.5, UVal = ...); 
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 equation 

  // construction elements <-> zones 

  connect(wall11.toSurfacePort_1,    

   office2.toConstructionPorts1[1]); 

  connect(window2.toSurfacePort_1, 

   office2.toConstructionPorts1[5]); 

  ... 

  // construction elements <-> ambient 

  connect(window2.toSurfacePort_2,  

   surfacesToAmbient.toConstructionPorts[5]);  

  connect(wall11.toSurfacePort_2, 

   surfacesToAmbient.toConstructionPorts[6]); 

  ... 

  // construction elements <-> ground 

  connect(bottom1.toSurfacePort_2,   

   surfacesToSolids.toConstructionPorts[1]); 

  ... 

 end Building; 

 

 Building building( 

  show_TSur = true,nSurfaces = 182,nZones = 13); 

 Ambient ambient( 

  nSurfaces = building.nSurfacesAmbient, 

  weatherDataFile = WeatherDataFile_Berlin()); 

equation    

 connect(ambient.toSurfacePorts, 

  building.toAmbientSurfacesPorts); 

 connect(ambient.toAirPorts, 

  building.toAmbientAirPorts); 

 connect(ambient.TAirRef, building.TAirAmb); 

 connect(ambient.xAir, building.xAirAmb); 

... 

end MultiZoneBuilding; 

 

Figure 8. Generated multi-zone Unity building model for 

visualization of simulation results. 

Figure 8 shows the visualization of the simulated surface 

temperatures of the multi-zone building model. The 

following code is an excerpt of the automatically 

generated C# script, which instantiates in Unity 5 this 

3D visualization model: 

using UnityEngine; 

using System.Collections; 

 

public class Surfaces : MonoBehaviour{ 

 public GameObject[] surfaces; 

 private int nSur = 182; 

 private Vector3 dirY = new Vector3(0,1,0); 

 private Vector3 dy = new Vector3(0,0,0); 

 private float[] rgb = new float[3]; 

 private float time = 0.0F; 

 

 void Start(){ 

  sur = new GameObject[nSur]; 

  sur[0] = GameObject.CreatePrimitive( 

   PrimitiveType.Cube); 

  sur[0].name = "wall1_sur1"; 

  sur[0].transform.localScale =  

   new Vector3(4.0F,0.01F,3.0F); 

  sur[0].GetComponent<Renderer>().material=  

   new Material(Shader.Find("Transparent/Diffuse")); 

  sur[0].GetComponent<Renderer>().material. 

   color = new Color(1, 0, 0, 0.3F); 

  sur[0].transform.rotation =  

   Quaternion.Euler(90.0F,90.0F,0.0F); 

  sur[0].transform.position =  

   new Vector3(0.0F,1.5F,-2.0F); 

  sur[0].GetComponent<Collider>().enabled = false; 

  dy = sur[0].transform.TransformDirection(dirY); 

  sur[1] = GameObject.CreatePrimitive( 

   PrimitiveType.Cube); 

  sur[1].name = "wall1_sur2"; 

  ... 

} 

void Update(){ 

 time += 0.01F; 

 float[] T_Surface = new float[]{ 

 // C# code for reading the simulation results  

 // from the Modelica simulation 

 ... 

 } 

 for (int i = 0; i < nSurfaces; i++){ 

  rgb = RGBMapper (T_Surface[i],10.0F,30.0F);                

  sur[i].GetComponent<Renderer>(). 

   material.color=  

  new Color(rgb[0],rgb[1],rgb[2],0.3F);} 

 } 

} 

3.3 Single room 

The third case study for template based code 

generation was taken from the DFG Forschergruppe 

1736 UCaHS (UCaHS, 2017). Within this project, the 

indoor climate of a patient room in a Berlin hospital (see 

Figure 9) was analyzed in detailed regarding the heat 

stress risk during hot summer weeks.  

 

 

Figure 9. Floorplan and 3D model of the patient room. 

For this purpose, a discretized room model in 

Modelica, a so called “zonal model”, which is based on 

a finite-volume-method and a simplified imple-

mentation of the Navier-Stokes equations was 

developed by Mucha (2017). A typical configuration of 

this room model includes between 300 to 500 air volume 

models, which are interconnected to each other by 

coupling models, which consider the friction between 

the air layers and the momentum transport. Caused by 

the high number of air volume elements and their 

necessary interconnections a manually failure free 

configuration of a room model, especially for non-box-

shaped rooms would be nearly impossible. 

Data source: At the moment the geometrical 

description of the 3-dim. room geometry inclusive its 

space discretization and also the physical parameter of 
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the building construction are stored in a structuresd 

JSON file. 

DataMapper: The data mapper reads the building 

parameter from the JSON file and stores it in the 

building data model. 

Components: Figure 10 shows the components of 

the BuildungSystems library, which are used for the 

configuration of the space-discretized room model: an 

air volume model (energy and mass balance), a flow 

element model (friction calculation within the air), a 

heat conduction model (heat conduction within the air) 

and an interface model for the boundary condition of the 

room model (surface, wall and window models). 

 

Figure 10. Components for room modelling. 

Code generator: The code generator takes the 

information from the building data model and generates 

the Modelica code for the space discretized room model. 

This case study clearly demonstrates the advantage of 

the template based code generation approach. More than 

500 air volume models have to be connected in three 

room coordinates with flow element models. In 

addition, different special cases have to be considered 

during the code generation process, for example the 

presence of furniture or the changing boundary 

condition models at the borders of the air space (e.g. a 

connection of a border air volume model with an 

adjacent wall or opening model).  

 

 

Figure 11. Generated discretized Modelica room model 

with 532 air volume models. 

Figure 11 shows a variation of a generated room model 

of the patient room: one with a large cooling ceiling and 

one with a small cooling ceiling, which covers only the 

area of one of the patient beds. The correspondent 

adaptions in the building data model, before the code 

generation is repeated for the varied model are relative 

simple in comparison to manually changes in the 

generated code of the originally model.  

The excerpt of the generated code exemplary shows the 

instantiation of two of the air volume elements, the flow 
and the heat conduction elements and the 

interconnections of the components to the 3-

dimensional air flow model: 

 
model Room 

 ... 

 FlowConnectionY floConY5710; 

 

 ZoneHeatConductionY heaConY5710; 

 

 AirElementThermal airEle6710( 

  posX= vecX[10], posY= vecY[6], posZ= vecZ[7], 

  T_start = T_inside,  

  scalF = {scalX[10],scalY[6],scalZ[7]}, 

  enabled = false, BCwall_west = false,  

  BCwall_east = true, BCwall_floor = false, 

  BCwall_roof = false, BCwall_south = false,   

  BCwall_north = true); 

 ... 

 FlowConnectionY floConY6710; 

 

 ZoneHeatConductionY heaConY6710; 

 

 AirElementThermal airEle7710( 

  posX= vecX[10], posY= vecY[7], posZ= vecZ[7], 

  T_start = T_inside,  

  scalF = {scalX[10],scalY[7],scalZ[7]}, 

  enabled = false,BCwall_west = false,  

  BCwall_east = true, BCwall_floor = false, 

  BCwall_roof = true, BCwall_south = false,    

  BCwall_north = true); 

  ... 

equation 

  ... 

  connect(floConX679.Port2, airEle6710.PortX1); 

  connect(airEle679.PortHeatIntern,  

   heaConX679.Port1); 

  connect(heaConX679.Port2, 

   airEle6710.PortHeatIntern); 

  connect(airEle679.PortY2, heaConY679.Port1); 

  connect(floConY679.Port2, airEle779.PortY1); 

  connect(airEle679.PortHeatIntern, 

   heaConY679.Port1); 

  connect(heaConY679.Port2,  

   airEle779.PortHeatIntern); 

  connect(airEle779.PortX2, airEle779.Port1); 

  ... 

end Room; 

3.4 Analysis and discussion 

The three case studies are compared to each other with 

the help of benchmark values, e.g. the line of codes, the 

number of components or the number of connections 

within the generated system model (see Table 1). 

Table 1. Comparison of the three case studies. 

 District Building Room 

Lines of code 2,904 1,544 15,985 

Number of 

components 
150 173 3713 

Number of 

connections 
1,008 544 10,982 

Number of 

equations 
435,765 40,434 132,712 

Continuous 

time states 
1,872 305 2,481 

Time-varying 

variables 
34,285 3,139 30,194 
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It can be stated, that building energy simulation analysis 

in Modelica usually leads to large system models. 

System models with 3,000 up to 16,000 lines of 

Modelica code cannot be manually configured failure 

free. The number of the components reaches from 150 

to 3,713 and the number of connections from 544 to 

10,982.  

The generated models of Table 1 can be compiled and 

simulated without any problems by Dymola 2017 FD01. 

A test width a generated district model with more than 

500 buildings illustrated the present limitations of the 

Modelica simulation tools: Dymola 2017 FD01 was not 

able to compile this large model, neither with a 64 bit 

compiler.  

In the case of the district model, information from the 

GIS system can be used to generate a Modelica model 

which is able to display the real location of the 

individual buildings in the city map.  

In the case of the multi-zone building model the input 

data can be used to generate consistent program code for 

two different purposes (Modelica and Unity code).  

In the case of the room model, the code generator 

enables configuration of 3 dimensional models, which 

cannot be really modeled within a 2-dimensional 

graphical editor of a Modelica simulation tool. 

4 Summary and Outlook 

The described new approach for a template based code 

generation for Modelica building models was 

successfully applied to three different case studies on 

different room scales: district simulation, multi-zone 

building simulation and room simulation. A building 

data model, which stores the information in a structured 

and compact manner in combination with a template 

based code generator (CoTeTo), can avoid failures of 

manually written large Modelica system models. 

In the next development step, the described Modelica 

code generators will be extended for special modelling 

cases. For this purposes, Mako code for conditional code 

generation will be introduced, which allows variations 

of generated components and connections within the 

Modelica system model. 

The import of complex building or district data based 

on IFC or CityGML can be potentially incomplete or 

error prone. For this purpose, a graphical viewer incl. a   

consistency check shall be developed in future to obtain 

a more reliable base for the following code generation 

process. 

Modelica simulator developers should improve their 

tools regarding the compiler technologies and also their 

numerical efficiency and flexibility. Especially large 

city district models, which can be easily generated from 

the GIS data with the described method, can address a 

lot of computer memory and potentially need a huge 

amount of numerical resources. In this context, the 

application of parallel computing technologies could 

improve the situation.  
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