
Parameter Estimation based on FMI

Rüdiger Kampfmann Danny Mösch Nils Menager

Bosch Rexroth AG, Lohr am Main, Germany
{ruediger.kampfmann, fixed-term.danny.moesch, nils.menager}@boschrexroth.de

Abstract
In order to stay competitive the requirements on machin-
ery in the producing industry have enormously increased.
Within the automation industry these demands, like higher
throughput or better energy efficiency, result in increasing
complexity of the installed plants. Additionally, Indus-
try 4.0 and the Internet of Things continuously increase
the amount of software. Using model-based development
methods is one approach to deal with this complexity. But
model-based methods can also be utilized during the op-
erational phase of a plant in order to generate additional
value for the plant operator. Introducing smart services
based on the usage of physical models enables new control
and diagnosis features, e.g. the utilization of inverse plant
models for feedforward control or comparing the output of
a model with measurements of the plant in order to prove
for correct behavior. For all these services the accuracy of
the considered models is crucial. With an inexact model
neither the future behavior can be foreseen nor the control
quality can be improved. The used models don’t have to
be built up from scratch, existing models already created
for sizing can be reused. However, these models cannot
be used directly. First a reparametrization is necessary,
because effects like friction or manufacturing tolerances
cannot be taken into account correctly during sizing. For
this special kind of problem dedicated optimization algo-
rithms are available for parameter estimation, which take
randomly distributed measurement errors and the special
structure of this problem class into account.
In this paper a work flow for parameter estimation based
on open source tools is presented, in which the considered
models are provided as Functional Mock-up Unit. After-
wards the performance of this work flow is demonstrated
on a real industrial problem: A three arm Delta Robot.
Keywords: Parameter Estimation, Levenberg-Marquardt
Algorithm, FMI, Least Squares Optimization, Log-
likelihood Method

1 Outline
The paper is structured as follows. First the considered
optimization problem is derived from an approach based
on probability theory. Afterwards suitable algorithms for
this problem class are discussed with a special focus on
the Levenberg-Marquardt algorithm, which is used in this
contribution. Then the used software tools are presented:
The Functional Mock-up Interface for the description of

the dynamic systems and the software library Ceres for
the solution of the underlying optimization problem. Af-
terwards the whole architecture of the used toolchain is
presented. Finally this toolchain is applied to a real prob-
lem.

2 Mathematical Background
In this contribution it is assumed that the simulation model
of a real plant is described in the following way:

ẋ(t) = f(t,x(t),u(t),p) (1)
y(t,p) = g(t,x(t),p) (2)

x(tstart) = x0 (3)

The dynamic system consists of a set of ordinary differ-
ential equations (1), a set of algebraic equations (2) and
an initial condition (3). The time interval T = [tstart, tend]
is considered. The functions x : T → Rnx , y : T ×Rnp →
Rny , u : T → Rnu denote the states, the outputs and the
inputs, respectively. The vector p ∈Rnp represents the pa-
rameters. Additionally,

f : T ×Rnx ×Rnu ×Rnp → Rnx ,

g : T ×Rnx ×Rnp → Rny ,

nx,nu,np,ny ∈ N.

The input u from the real plant is assumed to be known
exactly over the whole interval, whereas ηηη i denotes the
measured output vector of the real plant at time ti for
i = 1, . . . ,nt . The most obvious approach for parame-
ter estimation is just to minimize some norm ‖·‖q with
q ∈ [1,∞) or q = ∞ of the deviation between the measured
and the simulated outputs by varying the parameters p, i. e.

argmin
p∈Rnp

nt

∑
i=1
‖ηηη i−y(ti,p)‖q

q

or

argmin
p∈Rnp

nt

∑
i=1
‖ηηη i−y(ti,p)‖∞,

respectively. That q = 2 is a reasonable choice is going
to be the result of the following subsections. Therefore a
little bit of probability theory has to be consulted.
Ensuing from (Krengel, 1988) the maximum-likelihood
approach is introduced first. In the next subsection the idea
is used to formulate the underlying optimization problem
which is the foundation of the presented process of param-
eter estimation.
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2.1 Maximum Likelihood Approach
Let X∈Rn be a random vector with independent and iden-
tically distributed components and concrete realizations
x ∈ Rn of X. Each component Xi has the density func-
tion ν(·|p) = ν(xi|p), which depends on a parameter set
p. It describes the probability of xi given the parameters
p. Since they are independent, the joint density can be
written as

ν(x|p) =
n

∏
i=1

ν(xi|p).

To formulate the optimization problem the likelihood
function L(·|x) = L(p|x) is defined as

L(p|x) := ν(x|p),

which is now a function of the parameters p given the data
x. L(·|x) is not a proper probability density function, since
its integral over all parameters is not necessarily equal to
1. Therefore, it also should not be considered a conditional
probability density function, which might be supposed by
the vertical bar.
Thus, it is obvious to choose the optimization problem

argmax
p∈Rnp

L(p|x)

to get the maximum likelihood estimator pML which
makes the sample data x most likely. In some cases it will
simplify the optimization process if the Log-likelihood
function lnL(p|x) is chosen instead of L(p|x) as will be
seen later. In fact, it does not make a difference whether
choosing L(p|x) or lnL(p|x), since the logarithm is a
monotonic function that does not influence the maximum.

2.2 The Underlying Optimization Problem
Each measured data vector ηηη i at time ti can be expressed
as the real output y(ti,p∗) with the exact but naturally un-
known parameter set p∗ plus a measurement error εεε i, i. e.

ηηη i = y(ti,p∗)+ εεε i. (4)

It is assumed that the measurement errors εεε i are sta-
tistically independent and underly a certain distribution.
The most common assumption is to choose a normal dis-
tributed error vector εεε i with statistically independent com-
ponents, known (diagonal) covariance matrix ΣΣΣi and ex-
pectation E(εεε i) = 0, i. e.

εεε i ∼ N(0,ΣΣΣi) with ΣΣΣi = diag
(
σσσ

2
i,1, . . . ,σσσ

2
i,n
)
. (5)

In an applied sense that means that the measurements ηηη i
do not influence each other and the errors εεε i do not contain
a systematic error.
With these requirements the density function

ν(εεε i, j) =
1√

2πσσσ i, j
exp

(
−

εεε2
i, j

2σσσ2
i, j

)

for each measurement error εεε i, j is obtained. Since the εεε i, j
are statistically independent for all j and for all i, too, it
holds

ν(εεε) =
nt

∏
i=1

ν(εεε i)

=
nt

∏
i=1

ny

∏
j=1

ν(εεε i, j)

=
nt

∏
i=1

ny

∏
j=1

1√
2πσσσ i, j

exp

(
−

nt

∑
k=1

ny

∑
l=1

εεε2
k,l

2σσσ2
k,l

)
, (6)

where εεε =
(
εεε1 . . . εεεn

)
. Because of (4) we also get ηηη i∼

N(y(ti,p∗),ΣΣΣi) and thus

ν(ηηη i, j) =
1√

2πσσσ i, j
exp

(
−
(ηηη i, j−y j(ti,p∗))2

2σσσ2
i, j

)
.

For the same reason as in (6) and with ηηη =
(
ηηη1 . . . ηηηn

)
this leads to the conditional density function

ν(ηηη |p) =
nt

∏
i=1

ny

∏
j=1

1√
2πσσσ i, j

exp

(
−
(ηηη i, j−y j(ti,p))2

2σσσ2
i, j

)
.

The Log-likelihood function is then defined by

lnL(p|ηηη) =−
ntny

2
ln2π−

nt

∑
i=1

ny

∑
j=1

lnσσσ i, j

− 1
2

nt

∑
i=1

ny

∑
j=1

(ηηη i, j−y j(ti,p))2

σσσ2
i, j

.

Since the first and the second term are constant they can
be omitted from the optimization.
Finally, the whole constrained nonlinear optimization
problem can be formulated:

argmin
p∈Rnp

1
2

nt

∑
i=1
‖ΣΣΣ−1

i (ηηη i−y(ti,p))‖2
2 (7a)

subject to

ẋ(t) = f(t,x(t),u(t),p), (7b)
y(t,p) = g(t,x(t),p) (7c)

x(tstart) = x0 (7d)

observing the box constraints

plower ≤ p≤ pupper (7e)

given

u(ti) with ti ∈ [tstart, tend] for i = 1, . . . ,nt

and related measured outputs ηηη i. The result is the parame-
ter set pML which is the most likely for the given measured
output values. It should be noted again that it is impor-
tant for the chosen approach to have measurement errors
following (5). The method is not reasonable for different
distributions, although others can be established.
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3 Optimization Algorithms
Eliminating the ODE constraints (7b)-(7d) through nu-
merical integration from (7a) yields a common nonlinear
optimization problem. For this kind of problem a cou-
ple of different algorithms for the efficient solution exist.
Some algorithms exploit derivative information and some
do not. The derivative-free optimization algorithms have
the advantage that they obviously do not require deriva-
tives with respect to the varied optimization variables,
which may be costly to compute. Another advantage
is that under certain circumstances global convergence
is achieved, neglecting limited computational time and
rounding errors. In (Gedda et al., 2012) a tool chain for
parameter estimation with FMI and derivative-free meth-
ods already has been presented. Nevertheless, derivative-
free optimization algorithms show very poor convergence
speed.
However, optimization algorithms, which use derivatives
of the objective function, have also distinct advantages.
The main benefit is the fast convergence rate. These meth-
ods compute iteratively starting from an initial guess a de-
scent direction and thus reduce the objective function in
every step until a certain stop criterion is reached. The bet-
ter the initial guess the faster the convergence speed. The
disadvantages of these methods are on the one hand that
the problem has to be sufficiently smooth and that deriva-
tives have to be computed and on the other hand that these
methods may get stuck in a local minimum, if the initial
guess is too bad. The last disadvantage can be overcome
with multi start-ups, i.e. run several optimization from dif-
ferent initial guesses (see (Raue et al., 2013) for more in-
formation). For the purposes of this contribution, whereas
existing models from the sizing should be reused, good
initial guesses are known, because rough parameter sets
are already needed for correct dimensioning. Thus stuck-
ing in local minimum is not a problem at all. The consid-
ered models are also sufficiently smooth with respect to
the parameters. Also in (Raue et al., 2013) a benchmark of
different algorithms was conducted to an estimation prob-
lem from systems biology, demonstrating the slow con-
vergence speed of derivative-free optimization algorithms
compared to the ones which rely on derivatives. Since
good initial guesses are known and the fast convergence
speed the demonstrated toolchain is based on derivative
based optimization algorithms.

3.1 Levenberg-Marquardt Algorithm
The investigated optimization problem (7a) has a special
structure. It is a nonlinear least squares problem. This
kind of problem is widely spread in scientific and engi-
neering areas. Thus structure exploiting optimization al-
gorithms have been developed, which solve this problems
efficiently. The Levenberg-Marquardt algorithm is one of
these algorithms and is used within this contribution. It
can be seen as a conjunction of the Gauss-Newton method
together with the idea of Trust-Region approaches.

To give a short overview (Björck, 1996), some abbrevia-
tions are introduced first:

hi(p) := ΣΣΣ
−1
i (ηηη i−y(ti,p))

H(p) :=
nt

∑
i=1
‖ΣΣΣ−1

i (ηηη i−y(ti,p)‖2
2

y′i(p) :=
∂y(ti,p)

∂p

Therein denotes y′i the Jacobian matrix of y at time ti with
respect to p. The Gauss-Newton method solves the lin-
earized least squares problem

argmin
∆p∈Rnp

1
2

nt

∑
i=1
‖ΣΣΣ−1

i (hi(pk)−y′i(pk)∆pk)‖2
2

in each iteration step k to get a new approximation

pk+1 = pk +∆pk

of the exact parameter set p∗.
It is the idea of the Levenberg-Marquardt algorithm to add
a regularization term to the linearized objective function,

argmin
∆p∈Rnp

1
2

nt

∑
i=1
‖ΣΣΣ−1

i (hi(pk)−y′i(pk)∆pk)‖2
2 +

λk

2
‖∆pk‖2

2.

With the regularization the problem has always a solution
even with rank deficient Jacobians y′i. The parameter λk
also controls the step length ‖∆pk‖2 as well as the direc-
tion ∆pk. It can be observed (Marquardt, 1963) that for a
large λk the direction is almost a gradient step with only
small step size, whereas a small λk leads to a direction
close to a Gauss-Newton step. Therefore it is reasonable
to choose a small λk near the actual minimum where the
linearized problem is a rather good approximation. Hence,
choosing λk is a significant task in each iteration to reach a
preferably fast convergence rate. There are different ways
to update the parameter λk. A central role plays the ratio
between actual reduction and (by the linearized problem)
predicted reduction

ψk(∆pk) =
H(pk)−H(pk +∆pk)

H(pk)−∑
nt
i=1‖ΣΣΣ

−1
i (hi(pk)−y′i(pk)∆pk)‖2

2
,

whose value decides whether pk will be updated or not and
how λk will be changed.

4 Functional Mock-up Interface
The Functional Mock-up Interface (FMI) is a tool inde-
pendent standard to support model exchange between dif-
ferent simulation environments (Blochwitz et al., 2011). A
model which is shared via FMI is referred to as Functional
Mock-up Unit (FMU). An FMU consists of a XML-File,
describing the whole model variables and parameters, and
a compiled library containing the model equations and ad-
ditionally required functions, i.e. functions for initializa-
tion or data exchange. The models are described as hybrid
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ODEs supporting state and time events. The FMI stan-
dard supports two modes to share these models. On the
one hand there is Model Exchange, whose models are de-
scribed in a form similar to the equations 1 and 2, and on
the other hand the Co-Simulation mode, which delivers
the FMU additionally with its own integrated ODE solver.
In this contribution the Co-Simulation mode is used due
to the fact that no extra ODE solver is required for simu-
lating an FMU. The models considered in the estimation
procedure are built up in a simulation environment and
exported as FMU. In 7.2 an example is described. For the
optimization derivatives with respect to the parameters are
required. With the actual standard 2.0 of the FMI, only
derivatives with respect to inputs and states are supported
(Blochwitz et al., 2012). Hence finite differences are used.
As far as the authors know, parameter sensitivities are cur-
rently considered by the FMI steering committee.

5 Ceres Solver
For the solution of the nonlinear least squares problem
(7a), (7e) the Ceres Solver (Agarwal et al.) is utilized.
The Ceres Solver is an open source C++ library for solv-
ing large optimization problems. Beneath general uncon-
strained optimization problems it was developed to solve
nonlinear least squares problems with bound constraints.
There are several reasons why the Ceres Solver was cho-
sen. The solver is published under the New BSD license,
so there are almost no license restrictions for commercial
use. In addtion to the Levenberg-Marquardt Algorithm 3.1
this software library is equipped with other state of the art
algorithms and has reached a certain maturity since it is
used in commercial applications for more than four years
and still has an active community.
Furthermore the library is developed in C++ and has al-
ready been migrated to Android and iOS. Hence an mi-
gration to Bosch Rexroth embedded systems should be
possible with little effort. Ceres can compute the required
derivatives of the objective function by finite differences
or the user can provide them. Because the actual FMI
version is not supporting parameter derivatives, they are
computed by Ceres via finite differences. With upcom-
ing features of the next FMI version, this can be easily
adapted. Ceres is one of the few libraries which is also
capable to derive covariance estimations for the solution.
Hence, confidence intervals for the computed parameters
can be computed directly.
Within Ceres a problem class needs to be implemented
which corresponds to the desired residual function (7a).
The model to be investigated and the measured data have
to be provided therefor. An additional class method han-
dles possible solver options and is responsible for the ac-
tual optimization.

6 Structure of the Tool Chain
Figure 1 shows the structure of the parameter estimation
toolchain. The stimulation of the real plant and the real

Figure 1. Structure of parameter estimation toolchain

measured outputs have to be provided as CSV-file. The
whole estimating procedure is configured by a configura-
tion file. In this file the desired model, the parameters to
estimate and the paths of the CSV-files are denoted. Also
an initial guess and the variances for each measurement
noise have to be stated. Additionally, upper and lower
bounds for the parameters can be specified. Within Ceres
a problem class was defined which takes the configuration
file and manages the whole parameter estimation proce-
dure. This problem class directly interfaces the FMU. No
additional library for calling the FMU functions is used.
An evaluation of the residual function implies a simula-
tion of the FMU. In every step the inputs are written to
the FMU. Thereafter, the residual function is built up by
comparing the measured outputs with the outputs of the
FMU. Hence the whole simulation is triggered by Ceres.
The derivatives of the residual function with respect to the
parameters are computed directly by Ceres via finite dif-
ferences which corresponds to multiple simulation runs.
Ceres then conducts the chosen optimization algorithm by
varying the parameters. Subsequently, an a posteriori eval-
uation of the covariance matrix of the estimated parame-
ters can be conducted. Out of this matrix confidence inter-
vals for each parameters can be derived directly. For the
import of the FMU into Ceres an own light weight frame-
work was implemented.

7 Application of the Tool Chain
In this section the capability of the toolchain is demon-
strated on a Delta Robot. This type of robot was devel-
oped in the 1980s (Clavel, 1988) and is widely used for
pick and place applications. It is built up out of parallel
bars and has 3 degrees of freedom for translational manip-
ulation and one for manipulating the orientation. Hence it
has to be driven by 4 motors. Since the robot should move
as fast as possible, knowing the exact dynamic behavior is
advantageous, i. e. an accurate model can be exploited for
feedforward control in order to enhance the dynamic be-
havior. The dynamic of the robot is mainly influenced by
frictional effects and mass parameters. The mass parame-
ters underly a certain manufacturing tolerance and the fric-
tion is hard to be known beforehand. Therefore, estimat-
ing these parameters is a good use case for the toolchain.
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7.1 Real Set-up of the Robot

Figure 2. Real delta robot

Figure 2 shows the investigated robot. The kinematic
is manufactured by Autonox24 and is driven by 4 Rexroth
synchronous motors. Three MSK040B-0600 for the trans-
lational movement and one MS2N03-B0BYN for the ori-
entation axis are used. The movement of the robot is con-
trolled by a Rexroth IndraControl VPB 40.3 industrial PC.
No special trajectories were considered. The robot just ex-
ecutes a usual pick and place cycle and the motor torque is
measured via actual motor current. Through the recorded
motor torques the parameters of the robot should be iden-
tified. Since the dynamics of the orientation axis is well
known, no measurements for this axis have been taken into
account.

7.2 Delta Robot Model
The physical model of the robot was built up in the mod-
eling language Modelica using Dymola. The mechanical
model consists of Modelica Standard Library (MSL) com-
ponents. Mainly joints and body components from the
multi body library are used.

7.3 Real Set-up of the Robot
Figure 3 shows the animation of the MSL components
within Dymola. All parallel bars were considered. No
simplifications of the mechanical structure were made.
Additionally the drive train of each axis was modeled in
the way that motor and gear inertia, gear efficiency and
Coloumb and viscous friction are considered. Therefore
own Modelica components were added to standard rota-
tional mechanics components. As input of the model the
position, velocity and acceleration of each axis were used.
The resulting motor torques were declared as output. It
is assumed that the inertia and friction properties of all 3

Figure 3. Animation of the multi body model

considered axes are equal. Hence, the following parame-
ters should be identified:

• Mass of lower arm

• Mass of upper arm

• Mass of base plate

• Motor and gear inertia

• Gear efficiency

• Parameter for Coloumb friction

• Parameter for viscous friction

The model was exported as an FMU 2.0 for Co-Simulation
containing the CVODE solver (Hindmarsh et al., 2005).

7.4 Estimation of Parameters
For the measurement the robot moves the usual pick and
place cycle at four different speeds. 6250 time points were
considered. The complete cycle lasts 62.278 seconds. For
each of the three axes the position, velocity, acceleration
and torque were recorded. For the identification procedure
Ceres compares the measured motor torque with the one
resulting from the FMU.
Table 1 shows the results of the parameter estimation pro-
cedure. The residual of the objective function (7a) was
reduced significantly from 2.12×106 to 1.25×106. The
computed parameter sets especially the friction and gear
efficiency parameter seem reasonable. Also the computed
confidence intervals, i. e. the intervals in which the real
parameters are located with a probability of β = 0.95, im-
ply that the computed estimations are reliable. Unfortu-
nately it is not possible to validate the estimation results
by scaling the components, because the robot cannot be
disassambled.
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Parameter Unit Initial Value Estimated Value Confidence Interval β = 0.95

Mass of lower arm [kg] 0.1 0.08 ±0.00350
Mass of upper arm [kg] 1.5 1.74 ±0.0211
Mass of base plate [kg] 0.87 1.1 ±0.0212
Motor and gear inertia [kgm2] 0.000144 0.000155 ±2.65×10−6

Gear Efficiency [1] 1.0 0.907 ±0.0136
Coloumb Friction [Nm] 0.12 0.105 ±0.00158
Viscous Friction [Nmsrad−1] 0.001 0.00128 ±1.92×10−5

Table 1. Parameter estimation results

Figure 4. Results for arm 1

Figure 5. Results for arm 2

Figure 4 to 6 show a section of the results for each axes.
With the estimated parameters the accuracy of the model
has been improved significantly.

8 Summary and Outlook
A tool chain for parameter estimation with a state of the art
Open Source software library and the Functional Mock-
up has been presented. The capabilities of this tool chain
were demonstrated on a real industrial robot. The results
are very promising such that this approach should be pur-
sued. On the one hand a migration of the whole tool chain
to embedded systems seems meaningful. For example the
estimation procedure can be used for auto calibration of
feedforward controllers using inverse models.
On the other hand with Industry 4.0 and the Internet
of Things new use cases occur. The intelligent plants
equipped with sensors record all their data. With these

Figure 6. Results for arm 3

measurements and the presented tool chain parameter es-
timations could be conducted automatically. Upon these
well known parameters and accurate models new smart
services for diagnosis or control purposes can be enabled.
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