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Abstract
This paper presents an application case for the estimation
of forces using Modelica and the FMI. For that purpose
model-based virtual sensors are used. These techniques
are presented and the development of the virtual sensor for
Modelica and the FMI is discussed. The work has been
done in Python where the package pyFMI is used with
models exported with the FMI 2.0 for model exchange.
The technique is used for the estimation of forces and the
friction coefficient in a vertical transportation system. The
model of this test bench is explained and the results of the
estimation of forces and the friction coefficient are dis-
cussed. These estimations provide a valuable tool for the
condition monitoring of guiding systems.
Keywords: FMI, virtual sensors, pyFMI, Extended
Kalman Filter

1 Introduction
The condition of the guiding system influences signifi-
cantly the riding quality and performance of transporta-
tion systems such as railways or elevators. The proper
design and the correct maintenance of the guides is there-
fore of high importance. Both the design and monitoring
of the guiding system require an accurate assessment of
the loading condition. However the direct measurement
of forces is not feasible, as a dedicated sensor is too costly
and intrusive. Virtual sensors are an attractive option to
overcome these difficulties.

Virtual sensors process available measurements to esti-
mate other variables of interest that cannot be measured.
Mainly two virtual sensor approaches are suggested in the
literature: data-driven methods and model-based methods.
Data-driven methods use a machine learning perspective
to recognize patterns in the behavior of the system. These
methods require previous observations of the system in or-
der to learn the different states and conditions of the as-
set. A review of data driven virtual sensors can be found
in (Kadlec et al., 2011). Some common approaches in-
clude developing autoregressive models of the system as
in (Samara et al., 2013), using artificial neural networks
((Bizon et al., 2014),(Gonzaga et al., 2009)) or using mov-
ing window methods as in (Liu et al., 2009). The required
data training may be a handicap in systems where data
cannot be acquired continuously or in which faulty condi-
tions cannot be measured.

On the other hand model-based methods combine
physics-based models and measurements of the system
by means of estimation algorithms. The model provides
knowledge of the dynamics of the system, which in com-
bination with off-the-shelf sensors can be used to estimate
variables of interest otherwise difficult to measure. These
approaches are valuable tool in several applications such
as control techniques, condition monitoring or model up-
dating (Isermann, 2005).

The performance of these techniques depends on the
capability of the model to accurately represent the physics
of the system (Isermann, 2005). In addition a great mod-
eling flexibility and simplicity is required to avoid errors
and speed up the process. Using Modelica has thus a
great added value in the development of model-based vir-
tual sensors. The acausal nature of Modelica allows ef-
ficiently modeling heterogeneous systems reusing already
developed and tested models. However, it doesn’t allow
the user to manipulate the solution at each time step, as
required by estimation algorithms. In order to use Model-
ica for state estimation the models have to be exported and
manipulated at each time step (Brembeck et al., 2011).

Several modeling environments include model ex-
change capabilities. However, they are usually developed
ad-hoc to interface with one particular tool in a certain
context. Therefore they are commonly limited to certain
tools and are version dependent. The Functional Mock-
up Interface (FMI) is a tool independent standard that can
efficiently solve this. Furthermore the FMI 2.0 includes
some features that aid the development of state estimation
algorithms (e.g. directional derivatives).

The combination of Modelica with other programming
languages by means of the FMI provides thus a suitable
approach for the implementation of model-based virtual
sensors. The main focus of the FMI is simulation, but it
has already been applied for estimation. For instance in
(Brembeck et al., 2011) and (Brembeck et al., 2014) is
used to implement nonlinear state observers within Dy-
mola. In (Bonvini et al., 2014) an Unscented Kalman Fil-
ter (UKF) is implemented in Python using the FMI 1.0 for
model exchange and is used for Fault Detection and Di-
agnosis. In this paper the FMI 2.0 for model exchange
is used to develop an Extended Kalman Filter (EKF) for
state and parameter estimation in Python. The suitability
of Modelica and FMI for state estimation is tested with a
highly nonlinear model which includes events, rotations
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and friction.
The rest of the paper is organized as follows. Section 2

gives an overview of Model-based virtual sensors and ex-
plains the algorithms used in the current application. Sec-
tion 3 explains how these algorithms are implemented us-
ing pyFMI with the FMI 2.0 for Model exchange. Section
4 describes the proposed application case along with the
proposed model, a test bench of a vertical transportation
system where contact and friction forces are estimated.
The results of these estimations are shown in section 5.
The final conclusions and the future work are drawn in
section 6.

2 Model-based virtual sensor ap-
proaches

The core of model-based virtual sensors consists on the
use of state estimation algorithms. These algorithms use
the difference between the real measurements and the pre-
diction of a physics-based model to correct the output
of the model. The most common state estimation al-
gorithms are the Luenberger observer (LO), the sliding
mode observer (SMO) and the Bayesian estimators. LO
and SMO are simpler to implement than Bayesian estima-
tors but under noisy measurement conditions the Bayesian
algorithms are proved to perform better (Zhang et al.,
2009),(Esteban et al., 2016). Thus the presented work is
focused only on Bayesian estimators.

2.1 Kalman Filter
The Kalman Filter (KF) is the optimal linear estimation
filter (Simon, 2006). In the case of Gaussian noise, it pro-
vides the maximum a posteriori estimate with the smallest
achievable covariance. With non Gaussian noise, it is op-
timal in giving the minimal mean square error. It is the
most widely used Bayesian estimator and has been suc-
cessfully used in a number of applications (Simon, 2006).
The KF uses a linear model defined in state space form as
the one shown in equation 1. In the stochastic Bayesian
derivation of the KF, both the process and measurement
equations are assumed to be disturbed by zero mean white
Gaussian noise (w and v in equation 1) of covariance Q
and R respectively. The states are assumed to be Gaussian
variables with a covariance P and mean the state estima-
tion (x̂∼ N(x̂,P)).

ẋ = f (x,u, t)+w
y = h(x,u, t)+ v

(1)

The most common formulation of the KF requires the dy-
namic system of equation 1 to be described in a discrete
form of equation 2, where for a linear model the matri-
ces F,G and H are constant. Generally the discretization
of a state space model assumes a zero-order hold for the
input u and continuous integration for the noise v. As ex-
plained in (Simon, 2006) the discretization involves the
computation of the integral of a matrix exponential or any

equivalent discretization such as Euler or Runge-Kutta.

xk = Fk−1.xk−1 +Gk−1.uk−1 +wk−1

yk = Hk.xk + vk
(2)

The KF algorithm is shown in figure 1. In each k-time
step the system model is evaluated and compared against
measured data. This is done in two steps: prediction and
update. In the prediction step an a-priori estimation of
the states mean and covariance is obtained from the sys-
tem’s model. In the update step this a priori estimation is
corrected using the system’s output. This estimation pro-
cess is done recursively: all the prior information is sum-
marized in the initial mean and covariance of each step
(x̂+0 ,P

+
0 ). Therefore the computational effort in each time

step is the same regardless the number of measurements.

Figure 1. Kalman Filter algorithm

Despite being widely used, the KF is limited to linear
systems, which also makes the joint estimation of states
and parameters not applicable (Simon, 2006). Several
suitable extensions of the KF to non-linear systems, such
as the EKF or the UKF can be found in (Simon, 2006). As
the current system is highly nonlinear (events, rotations)
the well known Extended Kalman Filter is used instead.

2.2 Extended Kalman Filter (EKF)
The EKF is the most widely used extension of the KF for
nonlinear systems and for the joint estimation of states and
parameters. If the model of equation 1 is nonlinear the
Fk−1 and Hk−1 matrices of equation 2 are no longer con-
stant, but change at each K-step instead. Then the EKF
linearizes and discretizes the model around the KF esti-
mate, propagating a linear approximation of the covari-
ance (Simon, 2006). The standard KF shown in figure 1 is
then applied at this linearized point. As the estimation is
based on the linearization of the system a small step size
is required if the system is highly nonlinear. On the other
hand, the ease of implementation and the reduced compu-
tational cost of the EKF make it an attractive option for
the estimation of states in nonlinear systems.
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2.3 Parameter identification and Virtual Sen-
sors

State estimation algorithms can be augmented to estimate
not only the states of the system but unknown parame-
ters too. Based on the continuous state-space system rep-
resentation, an augmented version of the system can be
obtained if the unknown parameters are included in the
states vector (equation 3) and their directional derivatives
are included in the system matrices (equation 4). Then a
random walk model is used for the unknown parameters:
they are assumed to remain constant except for an additive
noise (Naets et al., 2015) (equation 5). The discretization
of these matrices can later be done in the same way as for
the non-augmented model.

xaug =

[
x
p

]
(3)

A∗ =
[

∂ f
∂x

∂ f
∂p

0 0

]
(4)

ṗ(t) = 0+wp(t) (5)

The joint estimation of parameters makes the system non-
linear. Once defined in the proper way, this augmented
vector can be estimated by means of the EKF or any other
nonlinear filter.

Once all the states and parameters of the model are
known, we can use the model to obtain some other vari-
ables of interest (i.e. a virtual sensor). This is a post-
processing step in which the model is evaluated in the es-
timated set of states, parameters and inputs and the vari-
ables of interest are treated as another model output. By
means of the estimated state covariance the degree of un-
certainty of the virtual sensors can be estimated as well
(equation 6).

PV S =
∂ f (x,u)

∂V S
.Px.

∂ f (x,u)
∂V S

(6)

3 State and parameter estimation
with Modelica and FMI 2.0 for
model exchange

This section explains the implementation of an Extended
Kalman Filter that uses physics-based models developed
in Modelica and exported by means of the FMI 2.0. The
model used for this work is developed in OpenModelica
as it provides a powerful model editor that facilitates the
development of models and has the advantage of being an
open-source tool. The posterior translation of the Model-
ica models to FMUs is done by means of JModelica.org.
This tool provides full functionality to export models for
model exchange with the FMI 2.0, including the possibil-
ity of requesting directional derivatives. The possibility of

requesting directional derivatives is particularly useful in
the development of the EKF as they are more reliable than
numerical derivatives.

There are several FMI libraries aimed at programming
languages suitable for the development of state estimation
algorithms. In this work pyFMI is used, which has the
advantage of being open-source. Thus the presented Ex-
tended Kalman Filter is written in Python. In addition to
pyFMI, which allows the simulation of FMUs, Python of-
fers several other scientific computing packages that aid
the development of custom made algorithms and applica-
tions (e.g. Numpy, Scipy, Matplotlib).

To make models compatible with the EKF, the inputs
of the filter also have to be defined as inputs in the model,
while the measurements of the system have to be defined
as model outputs. Estimated parameters are simply de-
fined as parameters, and the newly estimated value of the
parameter is set in the model at the beginning of each step.
In addition, care must be taken when modeling, so that the
states of the model agree with the expected ones during
the whole estimation.

As explained in section 2.1, the first step of the
Kalman Filter requires the prediction of the model x−k+1 =

f (x+k ,uk,k). To get this prediction the model is initialized
with the states and parameters estimated in the previous
step and is simulated from the current step to the next one.
In addition to setting the new states and parameters, in
models with events these have to be updated after setting
states and parameters. To reduce the computational time
the results are handled in memory.

For the second step of the filter the EKF requires the
matrices of the system in state space form, i.e. the system
has to be linearized before it can be used with the estima-
tion algorithm. To achieve this the FMI functionality of
obtaining the directional derivatives of the system is used.
This function is directly implemented in pyFMI and thus
obtaining the system matrices is straightforward:

A,B,C,D = model.get_state_space_representation()

The same is not true for the directional derivatives of
the parameters, required for the estimation of parame-
ters along with states (section 2.3). As the FMI does
not provide directional derivatives for model parameters,
these derivatives are computed numerically according to
the symmetric difference quotation shown in equation 7.

ḟ (x) =
f (x+h)− f (x−h)

2h

∣∣∣∣
h→0

(7)

4 Application for the estimation of
forces in guiding systems

The proposed application case is the guiding system of a
vertical transportation system. T-shaped guiding rails are
used to minimize horizontal motion ensuring travel in a
uniform vertical direction (Janovskỳ, 1999). Inappropriate
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installation of these guides and their surface roughness are
the main causes of vibration in the car frame (Janovskỳ,
1999). These guides are usually composed of several rail
segments aligned together. The proper alignment is, how-
ever, extremely difficult, and in general out of plane or
out of angle misalignment are common. Such deviations
increase the contact forces and induce abrupt forces in the
car frame at the rail segment joints, reducing the ride qual-
ity and efficiency of the system.

The interaction between the car frame and the guiding
system is given in four discrete contact points, by means of
so-called sliding shoes. These sliding shoes are U-shaped
polymeric pads that grab the guide rail’s web. The contact
forces of the guiding system are applied in these shoes
both in x and y axis. Forces in x axis may be in the pos-
itive or negative direction, whereas forces in y axis are
only directed towards the car-frame. A scaled test bench
of a vertical transportation system available at IK4-Ikerlan
is used to validate the methodology. This test bench is a
useful tool to study the behavior of such system’s using
sensors not available in real installations. Additionally
it allows us to study the effect of defects that we could
not put in a real installation. The test bench is a scaled
’rucksack’ type rigid car frame, traveling in vertical direc-
tion and constrained horizontally by two T-shaped guiding
rails (see figure 2). The system has 12 states correspond-
ing to the 6 degrees of freedom of this car frame (x, y, z,
roll, pitch and yaw). Without loss of generality, the driv-
ing force (T ) is assumed to be known and acts as a system
input. In the scaled test bench under study this force is
measured with a load cell attached to the driving cable
(see figure 2). The numbering followed in this paper for
the four contact points is shown in figure 2. The current
system has a maximum travel length of 1.8 meters, a nom-
inal velocity of 0.4 m

s , nominal acceleration of 0.3 m
s2 and a

nominal jerk of 1 m
s3

4.1 System’s model

Models available in the vertical transportation literature
are mainly focused on the assessment of the vertical dy-
namic of elevators (Isasa, 2010). However vertical dy-
namics are affected by the friction forces, which are di-
rectly related to the rail forces acting on the horizontal
plane. Horizontal and vertical dynamics are therefore cou-
pled and should be assessed as a whole. As a first step
this paper studies the possibility of using the horizontal
dynamics to assess the condition of the guiding system,
opening the way to studying the system as a whole. The
Modelica Standard Library is used to model the described
system. The inertial properties of the cabin given in table
1 are obtained from its CAD model. The contact stiffness
can be obtained from classical structural analysis, assum-
ing the guide as a flexible beam with flexible supports.
The actual stiffness will thus be a function of the vertical
position of the cabin. However, in order to simplify the
estimation we use a constant stiffness for the whole guide.

Figure 2. Described system and relevant parameters

Table 1. Model parameters, positions measured from car’s floor
coordinate system

PARAMETER DESCRIPTION UNITS VALUE

M car f rame′s mass [Kg] 14.287
I11, I22, I33 Car f rame′s inertias [Kg.m2] 0.28,0.38,0.20

Kx,Ky contact sti f f ness [N/m] 600000
Dx,Dy contact damping [N/(m/s)] 10

ClearanceY sliding shoe clearance [m] 0.0
r0

1 position o f shoe 1 [m] (−0.085,−0.124,0.297)
r0

2 position o f shoe 2 [m] (−0.085,−0.124,0.067)
r0

3 position o f shoe 3 [m] (−0.085,0.124,0.297)
r0

4 position o f shoe 4 [m] (−0.085,0.124,0.067)
r0

c.g car f rame′s C.G [m] (−0.0923,0.0043,0.08824)
r0

T position o f cable [m] (−0.085,0.0,0.435)

4.1.1 Car frame
Due to the low contact forces and the high stiffness of the
car frame, the latest can be modeled as a rigid body. The
movement of the body is represented in the coordinate sys-
tem (C.S) attached to the floor of the car frame, as it is the
location where the required sensors are installed. The ro-
tation is constraint far away from the Gimbal lock position
due to the guide rails and consequently Quaternion repre-
sentation is not required. Hence rotations of the car frame
are represented using Euler angles (α , β and γ).

4.1.2 Guiding rails: contact and friction model
The sliding shoes are the interface between the car frame
and the guiding rails. As such, the forces imposed by the
guide rail system on the car frame will be applied via the
sliding shoes. The sliding shoes grab the guiding rail’s
web, contacting it in three flanges. Contact in these three
flanges at the same time is highly unlikely and commonly
only one or two of the flanges of the sliding shoe are in
contact with the rail. From figure 3 it can be seen that
movement of the shoe in the x direction will always result
in a force opposite to the movement. Thus, for modeling
purposes, contact in x axis can be assumed to behave as
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a spring-damper system. Movement of the sliding shoe in
the y axis will depend on the direction of movement. Thus
contact in y direction is modeled with a modelica standard
ElastoGap model. The direction of the guides web is also
taken into account in the actuated prismatic in order to
make the model more general.

Figure 3. Model of the guiding rail

In this application high displacements between the slid-
ing shoes and the guiding rails are expected. The friction
behavior at small displacements is not relevant and the
use of dynamic friction models such as Bouc-wen, LuGre
or Dahl is not required. A coulomb friction model is used
instead. In order to simplify the mathematics of the state
estimation algorithm, instead of using an event driven
friction element from the Modelica Standard Library
the friction is added with a MSL Multibody World-
Force model. The value of this force the absolute value
of the contact forces times a user given friction coefficient.

Froz_sup.force =mu_eq *(abs(
contactx_sup.f)+abs(contacty_sup.f)
)*{0, 0, 1};

The advantage of this approach is its simplicity. Avoid-
ing events simplifies greatly the estimation, as the Jaco-
bians of the system change more smoothly. On the other
hand, this simplification requires that the direction of the
force has to be specified at each simulation, and the di-
rection of the force when the car is stopped is a-priori un-
known. Physically the value of the friction coefficient is
greater than zero, however we directly include the direc-
tion of the force in this parameter. Therefore, a negative
value of this parameter just indicates that the direction of
the friction force will be negative. With this approach we
can find out the direction of the force in the estimation
phase.

5 Estimation results
In this section the results of the application of model-based
virtual sensors for the evaluation of forces in guiding rails
is presented. The estimation approach from section 2.2 is
applied to the described system. The measurements used
for the EKF are the lateral and vertical accelerations and
the vertical position of the car. These measurements are
taken with a triaxial piezoelectric accelerometer (lateral
acceleration), with a DC response accelerometer (vertical
acceleration) and with a draw-wire encoder (cabin posi-
tion). The accelerometers are located in the coordinate
system at the center of the car as depicted in figure 2. Ta-
ble 2 shows the assumed measurement noise matrix R (de-
fined in section 2.1).

The measurement of the lateral acceleration provides
information of the dynamic change of the contact forces,
induced by the roughness and defects of the guiding rails.
In addition the model provides information regarding the
dynamic behavior of the car and the order of magnitude
of the forces. However, the misalignment of the guiding
rail results in a DC component of the contact forces which
cannot be estimated, as neither the lateral acceleration nor
the model have information on that regard. This misalign-
ment affects the vertical dynamics of the system, as fric-
tion increases with it. Therefore, we are able to account
for this effect within the friction coefficient µ . Addition-
ally, the friction coefficient of each sliding shoe has a sig-
nificant variability, as it depends on several factors such
as, frequency of use of the system, lubrication and tem-
perature. Consequently this parameter is estimated jointly
with the states of the system as explained in section 2.3.
This parameter contains thus information both on the ac-
tual coulomb coefficient and on the misalignment of the
guiding system. In contrast to what happens in the actual
system, where each sliding shoe has a different friction
coefficient, here only one equivalent friction coefficient is
assumed for all the contacts (µeq).

The parameters of the filter’s design are shown in table
2. The P and Q matrices shown in the table include the
covariance of the states and unknown parameter of the
system. The last term of these matrices is the covariance
of the unknown friction coefficient (µeq). Table 2 also
shows the initial value of the states of the system in the
following order: cabin.body1.phi[1], cabin.body1.phi[2],
cabin.body1.phi[3], cabin.body1.phi_d[1],
cabin.body1.phi_d[2], cabin.body1.phi_d[3],
cabin.body1.r_0[1], cabin.body1.r_0[2],
cabin.body1.r_0[3], cabin.body1.v_0[1],
cabin.body1.v_0[2], cabin.body1.v_0[3] and the ini-
tial expected value of the friction coefficient mueq.

In this application the estimated Virtual sensors and
comparison variables have a significant noise. For visu-
alization purposes a smoothing has been performed.

Figure 4 shows the parameter estimated along the po-
sition of the cabin. The gray area around the estimated
µeq is the 99.7% (3σ ) confidence interval of the value of
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Table 2. Design parameters of the filter

PARAMETER VALUE

States α [rad], β [rad] ,γ [rad], α̇ [rad/s], β̇ [rad/s] ,γ̇
[rad/s], x [m] , y [m] , z [m],ẋ [m/s] , ẏ [m/s], ż [m/s]

Measurements z [m], ẍ [m/s2], ÿ [m/s2],z̈ [m/s2]

P diag([ 1e-09 , 1e-09, 1e-09 , 2e-09, 2e-09 , 2e-09,
1e-09 , 1e-09, 1e-09, 1e-09 , 1e-09 , 1e-09, 1.5e-06])

Q diag([ 0e+00 , 0e+00 , 0e+00 , 1e-03, 1e-03 , 1e-03 ,
0e+00 , 0e+00, 0e+00 , 1e-05 , 1e-05 , 1e-05, 5.0])

R diag([ 1e-08 , 1e-16 , 1e-16 , 1e-16])

x_initial [ 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.12, 0.0, 0.0, 0.0 ]

Fs [Hz] 1652

µeq0 [−] 0.2

this parameter. This confidence interval comes from the
co-variance estimated for this parameter. As explained in
section 4, this parameter includes information regarding
the actual friction coefficient of coulomb and regarding
the misalignment of the guiding rails. The negative sign
of the estimated parameter is not related to the physical
meaning of the friction coefficient, but to the direction of
the friction force instead. In addition to the friction coeffi-

Figure 4. Estimated friction coefficient and the estimated 99.7%
confidence interval of the estimation

cient, the contact forces also provide information regard-
ing the condition of the guiding system. More exactly,
they provide information regarding sharp differences in
the position of the guide rails. Such dynamic changes will

be due to sharp changes of guiding rail segment or imper-
fections on the rail. These defects induce abrupt forces in
the sliding shoes that have a negative impact on the riding
quality. Figure 5 shows the estimated contact forces in X
and Y directions along with the 99.7% confidence interval
(light gray for X direction and light blue for Y direction.
As expected, the variance of the estimated forces is rel-
atively high. This is mainly because the model and the
measurements do not provide information regarding the
DC component of this forces.

Figure 5. Estimated contact forces. In black the forces in X
direction and 99.7% confidence interval, in blue forces in Y di-
rection and 99.7% confidence interval.

Finally figure 6 shows the comparison between the esti-
mated friction force and the measured one. The estimated
friction force is computed from the sum of the friction
forces in each sliding shoe as explained in section 4.1.2.
The measured one is the direct subtraction of the cable’s
tension and cabin acceleration.

Figure 6. Comparison of estimated and measured friction force

The guiding system is not the most common source of
failure but it is one of the most critical systems. Failure in
guiding rails leads to large down times of the whole sys-
tem and it is difficult to evaluate its condition. It is compli-
cated thus to assess both the alignment and the smoothness
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of the guides, as required to ensure comfort and energy ef-
ficiency. Different condition monitoring alternatives are
suggested in the literature for guiding rails. In general vi-
bration data processing is used to assess the condition of
the guides (Wan et al., 2015). However these methods re-
quire well trained data which in may be difficult to obtain.
Model-based virtual sensors, on the other hand, provide a
suitable approach to monitor the condition of system using
off-the-shelf sensors and without training data. The trade
off is that an accurate model of the system is required.
Nevertheless it was shown that Modelica and the FMI sim-
plify the development of model-based virtual sensors.

The presented estimations provide a useful indicator of
the condition of the guiding system. Changes in the fric-
tion coefficient indicate misalignment and abrupt changes
in the forces indicate local damages in the guides. For
instance the estimation from figure 4 shows a significant
deviation in the friction coefficient when the cabin is at
0.6m. This deviation indicates thus a misalignment of the
guides at that position. Additionally, the abrupt change of
the contact forces at 0.9m indicates a local defect in the
web of the rail. However, further work is required to de-
velop a methodology to set a threshold for the value of
these variables. Once the threshold is defined we can use
this to assess the condition of the system, aiding the align-
ment of the guides and finding early damage in the rails.

6 Conclusions
An EKF with parameter identification capabilities has
been developed in Python using the package pyFMI and
models exported with the FMI 2.0 for model exchange.
Modelica and FMI are very useful to cope with the com-
plexities arising from the use of Model-based virtual sen-
sor with complex systems. The combination of these tools
reduces modeling effort and simplifies the implementa-
tion of the virtual sensor. As an example of the efficiency
of this combination the estimation of forces in a vertical
transportation system scaled test bench is presented. The
EKF is used to simultaneously estimate states and param-
eters in a scaled vertical transportation system test bench.
Additionally the forces acting on the guiding system are
estimated. This estimations provide a mean to assess the
condition of the guiding system. This approach opens the
way to condition based maintenance strategies for guid-
ing systems. Such maintenance schemes can improve rid-
ing quality, safety and efficiency of vertical transportation
systems, fulfilling thus the requirements of modern smart
systems. Future steps in the investigation include:

• Assessment of the estimated variables and parame-
ters: a theoretical optimal value of the friction coef-
ficient and of the contact forces should be used to set
a threshold that aids assessing the condition of the
guides.

• In this work the tension in the cable has been used as
input of the system. Even though off-the-shelf sen-

sors exist for that purpose it would be better to use
just sensors available in the system or easier to use,
such as the input of the controller and the currents in
the machine. To achieve this the model of the sys-
tem has to be extended to include not only the cabin
of the test bench, but the controller, the electric ma-
chine, the pulley, the cable and the counterweight as
well. The model will be extended to include all the
parts of the system. The electric machine and control
systems will be included in the estimation.

• As the system grows in complexity, the use of other
state estimation algorithms such as the Unscented
Kalman Filter or the Moving Horizon Estimator will
be explored. Finally the estimation will be used to
monitor the condition of the system.
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