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Abstract
This paper presents a generalized Multirotor Aerial Ve-
hicle (MAV) modeling framework which includes rigid
body dynamics, gyroscopic effect and motor dynamics.
We illustrate how this model can be used to derive any
MAV platform constructed with an arbitrary number of ro-
tors by using the quadrotor case as an example. Based on
this result, we design the first Modelica-based MAV sim-
ulator. We validate the proposed design by using a simple
altitude and attitude stabilization control system through a
Modelica simulation setup.
Keywords: Multirotor Aerial Vehicle, Modeling, Modelica

1 Introduction
Technological advancements in recent years, including the
miniaturization in battery, sensor and actuation technolo-
gies, as well as the availability of low cost high perfor-
mance computing boards have enabled the genesis of in-
telligent autonomous flying machines. The most popular
class of this machines are the so-called Multirotor Aerial
Vehicles (MAVs) which represent motorized rotorcrafts
that have favourable dynamical properties and can achieve
small geometries. MAVs and especially the quadrotor
configuration are now the de facto standard research plat-
forms for aerial robotics with many potential applica-
tions including search and rescue in indoor and outdoor
environments (Tomic et al., 2012), precision agriculture
(Zhang and Kovacs, 2012), aerial construction (Lindsey
et al., 2011; Willmann et al., 2012), inspection and mainte-
nance (Mellinger et al., 2011; Jimenez-Cano et al., 2013),
environmental monitoring (Alexis et al., 2009), explo-
ration and mapping (Fraundorfer et al., 2012), aerial trans-
portation (Michael et al., 2011; Mellinger et al., 2013) and
swarming (Kushleyev et al., 2013).

Due to this growing interest, there have emerged mul-
tiple MAV simulation platforms mainly in MATLAB and
ROS with notable examples being (Bresciani, 2008) and
(Furrer et al., 2016), respectively. Both provide simula-
tion for MAV dynamics (with the former covering only
the quadrotor case) and sensors, and the latter having a
less user-friendly interface via pure code and configura-
tion. To the best of our knowledge, there are no existing
MAV simulation platforms within the Modelica commu-

nity.
Our paper gives a simple way of deriving a proper dy-

namical model for a MAV constructed with an arbitrary
number of rotors by using a generalized MAV model.
Based on this paradigm, we also present a Modelica simu-
lator that can be used for multirotor aerial vehicles. To the
best of the authors’ knowledge, this is the first Modelica-
based MAV simulator available within the Modelica com-
munity.

The remainder of the paper is organized as follows.
Section 2 describes how generalized MAV dynamics can
be derived and how an appropriate dynamical model can
be extracted for a quadrotor based MAV. In Section 3, we
describe necessary classes to design the Modelica-based
simulator for MAVs, while in Section 4, we validate the
results throughout a simple altitude and attitude stabiliza-
tion control system. Concluding remarks are presented in
Section 5.

2 MAV dynamics
A large number of papers address MAV modeling putting
the focus mostly on the quadrotor case. Noteworthy clas-
sical contributions include (Altug et al., 2002), (Hamel
et al., 2002), (Pounds et al., 2002) and (Bouabdallah et al.,
2004a). More recent examples of very detailed quadro-
tor and octorotor modeling are presented in (Bangura and
Mahony, 2012) and (Osmic et al., 2016), respectively. To
the best of our knowledge, one of the most complete work
regarding MAVs can be found in (Mahony et al., 2012),
where the authors have derived MAV dynamics, included
advanced state estimation, control and motion planning al-
gorithms and therefore provided full system autonomy.

In this section, we will describe the dynamical model
of the quadrotor, which is frequently considered to be
the standard research platform for MAVs due to its sim-
ple construction and purposeful functionality. We use the
results and nomenclature from (Osmic et al., 2016) and
show that only minor changes are necessary to apply the
final octocopter model presented in (Osmic et al., 2016) to
any MAV, including also the quadrotor case.

2.1 MAV rigid body dynamics
In order to model the dynamics of any mobile robot it is
common to define two frames of reference. A body fixed
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frame {o} is attached to the robots center of mass and all
sensory data is measured with respect to this frame, while
a ground fixed frame {g} is used to define workspace goals
in a intuitive and user-friendly manner. The body fixed
and ground fixed frame represent right-handed Cartesian
coordinate systems and are usually referred to as the local
and global coordinate system, respectively.

Workspace goals can be defined in terms of global po-
sition coordinates x, y and z and orientation coordinates φ ,
θ and ψ (see Fig. 1), where positive directions of φ , θ

and ψ are chosen according to the right-hand rule. There-
fore, the position vector x = [x y z]T and the orientation
vector Ψ = [φ θ ψ]T can completely determine the ve-
hicle’s location in the workspace. As shown in Fig. 2,
the local coordinates are described by the linear velocities
u, v and w and the angular velocities P, Q, R. The posi-
tive directions of the angular velocities P, Q and R are also
chosen according to the right-hand rule and therefore coin-
cide with the positive directions of φ , θ and ψ . Both linear
and angular velocity coordinates can also be expressed in
compact vector form as vvv = [u v w]T and PPP = [P Q R]T ,
respectively.

Forces and torques which act on a MAV are shown in
Fig. 3. The thrust T is a force that acts towards the positive
direction of the Z axis of the local coordinate system {o},
while the force G represents the gravitational force acting
towards the negative direction of the ZB axis of the global
coordinate system {g}. τx, τy and τz represent the torques
that move the vehicle around the X , Y and Z axes of the lo-
cal coordinate system, respectively, and can be compactly
denoted as τττ = [τx τy τz]

T . Their positive direction is also
chosen to coincide with the positive directions of the an-
gular velocities P, Q and R.

We can now describe the rigid body dynamics of any

 

Figure 1. Global coordinates

MAV in accordance to the results presented in (Osmic
et al., 2016). The kinematic model of the linear motion
is given as

ẋ̇ẋx =RRR(φ ,θ ,ψ)vvv, (1)

where RRR(φ ,θ ,ψ) is the total rotation matrix which for the
ZYX Euler convention has the form

RRR(φ ,θ ,ψ) = R(Z,ψ)R(Y,θ)R(X ,φ)
cψ cθ cψ sθ sφ − sψ cφ cψ sθ cφ + sψ sφ

sψ cθ sψ sθ sφ + cψ cφ sψ sθ cφ − cψ sφ

−sθ cθ sφ cθ cφ

 , (2)

and the elementary rotation matrices R(Z,ψ), R(Y,θ) and
R(X ,φ) are defined as

R(X ,φ) =


1 0 0

0 cφ −sφ

0 sφ cφ

 , (3)

R(Y,θ) =


cθ 0 sθ

0 1 0

−sθ 0 cθ

 , (4)

R(Z,ψ) =


cψ −sψ 0

sψ cψ 0

0 0 1

 . (5)

The kinematic model of the angulator motion can be de-
scribed by

Ψ̇̇Ψ̇Ψ =RRR−1
A (φ ,θ ,ψ)PPP, (6)

where the matrix RRR−1
A (φ ,θ ,ψ) for the ZYX Euler conven-

tion is

RRR−1
A (φ ,θ ,ψ) =


1 sφ tθ cφ tθ

0 cφ −sφ

0 sφ

cθ

cφ

cθ

 . (7)

 

Figure 2. Local coordinates
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The dynamic model of the linear motion can be repre-
sented by the following equation

v̇̇v̇v =


0

0
T

mo

+g


sθ

−sφ cθ

−cφ cθ

−SSSvvv, (8)

where mo is the total mass of the MAV and the matrix SSS is
formed as

SSS =


0 −R Q

R 0 −P

−Q P 0

 . (9)

Finally, the dynamic model of the angular motion can be
catched with

Ṗ̇ṖP = JJJ−1 (τττ−SSSJJJPPP) , (10)

where JJJ is a 3×3 matrix representing the inertia tensor of
the MAV.

2.2 Quadrotor modeling
To tailor the previously derived MAV model to the quadro-
tor case we need to derive the inertia tensor JJJ, and define
the thrust T and the torque vector τττ . Since all of these
quantities depend on the MAV’s geometry, we consider
a quadrotor case shown in Fig. 4 along with its simpli-
fied geometry illustrated in Fig. 5, where the length of
the four arms is l, a hardware support plate is modeled as
solid sphere of mass M having a radius r, and the four mo-
tors constructed with fixed pitch propellers are modelled
as particles with mass m.

The axes of the local coordinate system, as shown in
Fig. 4, represent principal axes of inertia, where the inertia

 

Figure 3. Forces and torques acting on the system

tensor matrix has the diagonal form

JJJ =


Ixx 0 0

0 Iyy 0

0 0 Izz

 , (11)

and Ixx, Iyy, Izz being the moments of inertia around the X ,
Y and Z axes of the local coordinate system, respectively.
These components can be derived via the Huygens-Steiner
theorem (Morin, 2008) as

Ixx = Iyy =
2Mr2

5
+2ml2 (12)

Figure 4. Quadrotor geometry

Figure 5. Quadrotor simplified geometry
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and

Izz =
2Mr2

5
+4ml2. (13)

In order to derive the thrust T and the τx and τy com-
ponents of the torque vector τττ , we will consider the rotor
forces acting on the quadrotor system as depicted in Fig.
6. Thus T , τx and τy are given as follows

T = F1 +F2 +F3 +F4, (14)

τx = l (F1−F3) , (15)

τy = l (F4−F2) . (16)

In accordance to the work presented in (Mahony et al.,
2012), the rotor forces Fi (i = 1..4) can be approximated
as

Fi = bΩ
2
i (i = 1..4), (17)

where b
[

Ns2

rad2

]
is the rotor thrust constant and Ωi

[ rad
s

]
is

the angular velocity of the i-th rotor. Combining eqs. (14),
(15), (16) and (17) yields

T = b
(
Ω

2
1 +Ω

2
2 +Ω

2
3 +Ω

2
4
)
, (18)

τx = bl
(
Ω

2
1−Ω

2
3
)

(19)

and
τx = bl

(
Ω

2
4−Ω

2
2
)
. (20)

The torque τz is a consequence of Newton’s third law and
can be formed as

τz =−M1 +M2−M3 +M4, (21)

where Mi (i = 1..4) is the counter induced torque of the
i-th rotor. According to (Mahony et al., 2012) the counter
torque can approximated as

Mi = dΩ
2
i (i = 1..4), (22)

where d
[

Nms2

rad2

]
is the rotor drag constant. Combining

equations (21) and (22) yields

τz = d
(
−Ω

2
1 +Ω

2
2−Ω

2
3 +Ω

2
4
)
. (23)

X
Y

Z

Figure 6. Rotor forces acting on the quadrotor system

Finally, we can represent the system actuation via matrix
equation T

τττ

=AAAΩsΩsΩs, (24)

where AAA is the actuation matrix

AAA =


b b b b

bl 0 −bl 0

0 −bl 0 bl

−d d −d d

 , (25)

and ΩsΩsΩs is the squared rotor velocity vector defined as

ΩsΩsΩs =
[
Ω2

1 Ω2
2 Ω2

3 Ω2
4

]T
. (26)

It is evident from this result that any MAV can be mod-
elled by choosing the appropriate inertia tensor JJJ and ac-
tuation matrix AAA as parameters, and picking the squared
rotor velocity vector ΩsΩsΩs of the right size as a system input.
For any MAV constructed with n≥ 4 rotors, the actuation
matrix has the dimension 4× n and the squared rotor ve-
locity vector ΩsΩsΩs has the length n.

Moreover, we can include the gyroscopic effect in the
dynamic model of the angular motion given by eq. (10) as

Ṗ̇ṖP = JJJ−1

τττ−SSSJJJPPP−SSS


0

0

IzzmWg


 , (27)

where Izzm is the rotor moment of inertia and Wg is the
gyroscopic term given as

Wg =−Ω1 +Ω2−Ω3 +Ω4 (28)

for the quadrotor case. In order to generalize the gyro-
scopic term for any MAV configuration, it is more appro-
priate to choose the rotor velocity vector ΩΩΩ

ΩΩΩ =
[
Ω1 Ω2 Ω3 Ω4

]T
(29)

as system input and express the gyroscopic term as

Wg = sign(AzAzAz)ΩΩΩ, (30)

where AzAzAz is the fourth row of the actuation matrix AAA, while
the squared rotor velocity vector ΩΩΩs can easily be com-
puted by calculating the element-wise square of the vector
ΩΩΩ.
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2.3 Motor dynamics
Each rotor of a quadrotor MAV is driven by a DC motor.
Therefore, in order to obtain a precise MAV model, it is in-
evitable to include the motor dynamics to address effects
like motor response time, saturation and power consump-
tion. In accordance to the work presented in (Osmic et al.,
2016), a simplified model can be used for this purpose
which is given by

IzzmΩ̇i +
KmKe

R
Ωi =

Km

R
vi− τli, i = 1..4, (31)

where Km
[Nm

A

]
is the mechanical motor constant, Ke

[ V s
rad

]
being the electrical motor constant, R denotes the arma-
ture resistance, vi is the armature voltage, with τli being
the load torque of the i-th motor. The load torque is the
aerodynamic drag which can be computed as

τli = dΩ
2
i , i = 1..4. (32)

The input voltage of each motor is saturated by the follow-
ing box constraint

0≤ vi ≤ vmax, i = 1..4 (33)

where vmax is the maximum armature voltage, and con-
sequently the angular velocity of each rotor is also box
constrained by

0≤Ωi ≤Ωmax, i = 1..4, (34)

where Ωmax is the maximum angular velocity which can
be easily computed from the stationary state of the motor
dynamic model given by (31).

Finally, the rotor moment of inertia Izzm can be approx-
imately calculated as

Izzm =
mpl2

p

12
, (35)

where mp is the mass and lp being the length of the rotor.

3 Modelica design
In order to provide a greater end-user utilization, we de-
signed the following Modelica blocks / classes:

• MavBase

• MavSimple

• MavFull

The MaveBase block, as shown in Fig. 7, is the simplest
and it models the rigid body dynamics including the gyro-
scopic effect covered with eqs. (1), (6), (8) and (27). Its
inputs are the generalized forces acting on the system and
the outputs are the global coordinates of the system and its
derivations.

The MavSimple block, as shown in Fig. 8, extends the
MavBase block with the actuation model given by eq. (24)

MavBaseT

τττ

Wg

ẋ̇ẋx

xxx

ΨΨΨ

Ψ̇̇Ψ̇Ψ

Figure 7. MavBase block

MavSimple

MavBaseActuation T

τττ

Wg

ẋ̇ẋx

xxx

ΨΨΨ

Ψ̇̇Ψ̇Ψ

ΩΩΩ

Figure 8. MavSimple block

MavFull

MavSimple
Motor

Dynamics
ΩΩΩ

ẋ̇ẋx

xxx

ΨΨΨ

Ψ̇̇Ψ̇Ψ

ΩΩΩ

vvv

Figure 9. MavFull block

with the input being the angular velocity vector ΩΩΩ and the
outputs being the global coordinates of the system and its
derivations.

Finally, the MavFull block, as shown in figure 9, pro-
vides the greatest level of detail. It extends the MavSimple
block and adds the motor dynamics (31) to the model. The
block input is the motor voltage vector vvv with the outputs
being the global coordinates of the system and its deriva-
tions, as well as the angular velocity vector ΩΩΩ. The angu-
lar velocity vector as system output is necessary to provide
motor level control possibilities.

The parameters of the blocks are given in Table 1, 2
and 3, and their default values match the AscTec Pelican
quadrotor (AscTec, 2016).

Table 1. MavFull block parameters

Parameter Value Unit Description

R 0.1107 Ω Resistance

Km 0.01 Nm
A Motor size constant

Ke 0.01 V s
rad Motor velocity constant

vmax 11.1 V Maximum voltage

Ω0 569.3572 rad
sec Initial angular velocity
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Table 2. MavBase block parameters

Parameter Value Unit Description

mo 1.32 kg MAV total mass

JJJ


0.0128 0 0

0 0.0128 0

0 0 0.0239

 kgm2 Inertia tensor

Izzm 4.3011 ·10−5 kgm2 Rotor moment of inertia

Table 3. MavSimple block parameters

Parameter Value Unit Description

n 4 Input size

b 9.9865 ·10−6 Ns2

rad2 Aerodynamic thrust constant

d 1.5978 ·10−7 Nms2

rad2 Aerodynamic drag constant

AAA


b b b b

0.211 ·b 0 −0.211 ·b 0

0 −0.211 ·b 0 0.211 ·b

−d d −d d

 Actuation matrix

0 1 2 3 4 5
0

0.5

1

1.5

t[s]

zref[m]

z[m]

0 1 2 3 4 5

0

0.1

0.2

0.3

t[s]

φref[rad]
φ [rad]

0 1 2 3 4 5

0

0.1

0.2

0.3

t[s]

θref[rad]
θ [rad]

0 1 2 3 4 5

0

0.1

0.2

0.3

t[s]

ψref[rad]
ψ[rad]

Figure 10. Altitude and attitude control simulation results
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4 Simulation results
A simple altitude and attitude control system was designed
in order to validate the designed classes. Altitude and
attitude control simulation results are presented in Fig.
10. We notice that the system states have been stabilized
within 1 second and that only very minor overshoots are
present in the altitude z and the pitch θ .

The simulation example shows that the control results
are very satisfactory, in particular the system suffers only
a minor loss in altitude during the challenging reference
orientation maneuver, which can be considered excellent
control behaviour. Additionally, the simulation results
are very similar to those obtained in (Bouabdallah et al.,
2004b) and (Osmic et al., 2016) which suggests that the
model derivation in this paper is correct.

5 Conclusion
This paper described how a generalized MAV modeling
framework can be used to obtain any MAV model. A
quadrotor based MAV was presented as an example, and
the final model was formed by using its rigid body dy-
namics, the gyroscopic effect that influences the vehicles
motion, and appropriate motor dynamics. To model the
dynamics of any given MAV platform, it was shown that is
only required to choose adequate parameter values, which
correspond to the vehicle of interest, and inject them into
the generalized MAV model.

Based on the presented generalized MAV model deriva-
tion, we have designed the following Modelica classes:
MavBase, MavSimple and MavFull. MavBase represents
the rigid body dynamics of the MAV including the gyro-
scopic effect. MavSimple extends the MavBase class and
adds system actuation, while MavFull extends MavSimple
with motor dynamics. These classes can be used to simu-
late the dynamic behaviour of any MAV within Modelica
to any required level of detail, and thus providing simi-
lar functionalities as the Gazebo simulator RotorS (Furrer
et al., 2016) which is frequently used for this purposes, but
with a more user friendly interface.

Finally, we have validated the designed Modelica sim-
ulator through a simple altitude and attitude stabilization
control system. Namely, we have obtained very similar
control results like those currently present in the state of
the art, which suggests that the generalized model derived
and the MAV simulator designed in this paper are correct.
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