
Development of an open source multi-platform software tool for
parameter estimation studies in FMI models

Javier Bonilla1,3 Jose A. Carballo1,3 Lidia Roca1,3 Manuel Berenguel2,3

1CIEMAT-PSA, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - Plataforma Solar de
Almería, Spain, {javier.bonilla,jose.carballo,lidia.roca}@psa.es

2Department of Informatics, University of Almería, Almería, Spain, beren@ual.es
3CIESOL, Solar Energy Research Center, Joint Institute University of Almería - CIEMAT, Almería, Spain

Abstract
This paper presents the current development of an open
source multi-platform software tool intended for estimat-
ing or optimizing parameters of Functional Mock-up In-
terface (FMI) compliant models. Parameter estimation
and optimization is a powerful tool in many engineer-
ing and science fields. Nevertheless, the effort and time
that must be devoted to coupling and integrating com-
plex modeling languages and tools together with analy-
sis and optimization methods and algorithms sometimes is
high. As a consequence of that, commonly the most con-
venient and easy-to-use optimization mechanisms are ap-
plied. Therefore, the focus on the development of this tool
is in facilitating such coupling while being customizable.
The main toolkit and libraries used in the development of
the tool are presented, all of them are open source. Two
application examples are also presented, one of them is
a parameter optimization study considering a steady state
model, while the other is a parameter estimation study of a
dynamic model against experimental data. Finally, current
tool limitations are presented, ongoing work and ideas for
future features are also commented.
Keywords: parameter estimation, parameter optimization,
model calibration, Functional Mock-up Interface (FMI),
open source software tool

1 Introduction
The application of optimization to complex dynamic mod-
els has become recently more usual in industry, as well as
in academia. Optimization can be online, such as optimal
control in the form of Model Predictive Control (MPC) or
offline, such as parameter estimation, state estimation or
parameter optimization.

In parameter optimization, also known as design opti-
mization, some parameters are optimized to improve the
system dynamics or response according to some crite-
ria. Parameter estimation, model calibration or parame-
ter identification, comprises estimating some unknown pa-
rameters in a particular model. To that end, several sim-
ulations are performed and results are compared against
experimental data. The unknown parameters are therefore
determined by numerical optimization algorithms. This

procedure is a powerful tool in many engineering and sci-
ence fields and has its origin in the least squares method
proposed by Gauss.

In order to apply optimization techniques to complex
dynamic models, a suitable modeling language, that can
deal with dynamic systems and the increasing complexity
of research and engineering needs, is advisable. Modelica
(Modelica Association, 2014b) is one of those modeling
languages, easing the model development, maintenance
and reuse thanks to the equation-based object-oriented
paradigm and other useful features. Nevertheless, there
are other commonly used modeling languages and sim-
ulation tools, being one of the most representative Mat-
lab/Simulink (The MathWorks Inc., 2016). For this rea-
son, the support of an independent standard devoted to
Model Exchange (ME) and co-simulation, such as FMI
(Modelica Association, 2014a), would be advisable when
considering the model interface for an optimization soft-
ware tool.

Even though there are modeling languages and tools
for developing complex dynamic models, as well as a
standard format to exchange those models, and advanced
methods for optimization, sometimes the time required to
couple all these tools is high. This task involves writing
scripts for bindings and using several programming lan-
guages and tools.

With the aim of facilitating the integration of these tools
and methods, an easy-to-use open source multi-platform
software tool which performs parameter estimation stud-
ies in Functional Mock-up Units (FMUs) is currently be-
ing developed. This software tool performs parameter
estimation studies using a global-search Multi-Objective
Genetic Algorithm (MOGA). The tool also supports lin-
ear and non-linear equality and inequality constraints.

This paper is organized as follows. Section 1.1 is a brief
summary of Modelica and FMI-based tools for parame-
ter estimation. Section 2 describes the still under devel-
opment software tool and its architecture. In Section 3,
two examples are presented. Section 3.1 shows a steady-
state parameter optimization study, whereas Section 3.2
presents a model calibration study against experimental
data from a Thermal Energy Storage (TES) tank. This
tank is used for research on solar thermal storage.

DOI
10.3384/ecp17132683

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

683

Graphical user interface
(GUI)

Dakota

Optimization library

FMI++

Simulation library

QuaZIP

A C++ / Qt ZIP library

FMU file

 Unzip file

Project info Project name

Model info FMU file

Simulation info
Numerical integrator,
experiment and outputs.

Optimization info Design variables, algorithm,
objectives and constraints.

Project info Project name

Model info FMU file

Simulation info
Numerical integrator,
experiment and outputs.

Optimization info
Design variables, algorithm,
objectives and constraints.

Inputs

R
eq

ue
st

si
m

ul
at

io
n

Si
m

ul
at

io
n

re
su

lts

Request

optim
ization

O
ptim

ization

results

Request simulation

Simulation results

Optimization
results

Design variables
(table, 2D and 3D graphs)

Optimization
results

Design variables
(table, 2D and 3D graphs)

Outputs

PRJ
Save project to file

Load project from file

Figure 1. Optifmus information exchange

1.1 State of the art
Most commercial Modelica tools have parameter esti-
mation and optimization libraries for Modelica models,
i.e. Model Design Tools (Elmqvist et al., 2005; Pfeiffer,
2012) in Dymola (Dassault Systemes, 2016) and corre-
sponding libraries in SimulationX (ESI ITI GmbH, 2016),
MapleSim (MapleSoft, 2016) and SystemModeler (Wol-
fram, 2016), among others. GenOpt (Wetter, 2001) is an
optimization program that can be coupled with Modelica
models compiled in Dymola. BuildingsPy (Berkeley Lab,
2016) is a Python package that can run Modelica simu-
lations using Dymola, additional Python packages for pa-
rameter estimation can be used by means of scripting, such
as those from SciPy.org (SciPy developers, 2017). The
OpenModelica tool (OSMC, 2016) includes the OMOp-
tim tool (Thieriot et al., 2011) for parameter estimation of
Modelica models in Windows platforms.

Modelica models can be also exported as FMUs and im-
ported in commercial and open source numerical compu-
tational tools such as Matlab/Simulink and Scilab (Scilab
Enterprises, 2015). Parameter estimation studies can be
performed by means of scripting in these tools. JModel-
ica.org (Åkesson et al., 2010) supports parameter estima-
tion of Modelica and FMI models also by scripting. The
RaPId Parameter Identification (RaPId) toolbox (Vanfretti
et al., 2016) is a modular and extensible toolbox for pa-
rameter estimation of FMI models in Matlab/Simulink.

2 Optifmus Software Tool
The under development software tool is called
Optifmus. Although it is at an early development
stage, it is functional with respect to FMU simulations
and parameter estimation studies using a MOGA. The
tool is composed of the following main elements.

• Graphical User Interface (GUI). The GUI allows
the user to provide all the required information:
model information (FMU file and parameters), sim-
ulation information (numerical solver and its config-
uration, inputs and simulation interval), optimization
information (algorithm and its configuration, param-
eters, objective functions and constraints). The GUI
also shows the obtained results. Results are pre-
sented in tables, 2D and 3D graphs.

• Optimization toolkit. This toolkit collects all the in-
formation introduced in the GUI and calls the FMU
simulator to perform the needed simulation runs and
carry the optimization out using the selected algo-
rithm. Optimization results are presented to the user
in the GUI.

• FMU simulator. The simulator performs the model
simulation according to the suplied data (model and
simulation information) and provides the results to
the GUI or to the optimization toolkit.

2.1 Software Architecture
Optifmus is being developed in C++ using open source
multi-platform libraries and tools. The following list
briefly describes the main libraries. Figure 1 shows the
information exchange between them.

• Qt toolkit (The Qt Company, 2016). It is a cross-
platform application framework used for developing
application software. The Qt Core and Qt Widgets
modules are used for the GUI. The Qt Charts module
is used for 2D graphs, whereas the Qt Data Visual-
ization module is used for 3D graphs.

• Breeze icons (KDE Community, 2016). The GUI
icons belong to this open source library.

Development of an open source multi-platform software tool for parameter estimation studies in FMI models

684 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132683

• FMI++ (Widl et al., 2013). The FMI++ library is
a high-level utility package for FMI-based software
development. It provides high-level features, which
ease the handling and manipulation of FMU mod-
els: an eXtensible Markup Language (XML) parser
and numerical integration capabilities. The FMI++
library relies on the Odeint library (Ahnert and Mu-
lansky, 2011), and optionally on SUite of Nonlinear
and DIfferential/ALgebraic Equation Solvers (SUN-
DIALS) (Hindmarsh et al., 2005), for the numerical
integration of FMUs.

• QuaZIP (Tachenov, 2016). It is a C++ wrapper for
accessing ZIP files. This wrapper uses the Qt toolkit
and therefore it is a multi-platform wrapper. It is used
in Optifmus to handle the extraction of FMU files.

• Dakota (Adams et al., 2016). The Dakota toolkit is
intended as a flexible, extensible interface between
simulation codes and a variety of iterative systems
analysis methods. Dakota is a powerful toolkit which
provides the following functionality: optimization,
uncertainty quantification, nonlinear least squares
methods, and sensitivity/variance analysis. Dakota
uses Sandia-developed libraries, as well as external
optimization and design of experiments libraries. For
further details consult Sandia Corporation (2016).
Dakota can be used as a standalone application or
as a C++ library.

Additionally, reading and writing operations of input
and result files in Comma-separated Values (CSV) or tra-
jectory mat format are performed by means of C functions
available in the source code of the OpenModelica tool.

3 Examples
In order to show the Optifmus capabilities and il-
lustrate how a parameter estimation study can be per-
formed, the following sections introduce two examples.
Section 3.1 shows a steady-state parameter optimization
study, whereas Section 3.2 shows a model calibration
study against experimental measurements from a real fa-
cility.

3.1 Parameter optimization
The general formulation for a optimization problem de-
scription is given by Equation 1. It can be formulated as
optimize (minimize or maximize) several objective func-
tions f (x) that depend on some parameters or design vari-
ables x subject to several constraints: upper and lower
bounds for design variables, xl and xu, equality con-
straints, g(x) and inequality constraints, h(x).

optimize f (x)

with respect to x ∈ R j

subject to xl ≤ x≤ xu,

g(x) = 0,
h(x)≤ 0,

(1)

where,
f (x) = { f1(x) · · · fi(x)},

x = {x1 · · ·x j},
xl = {xl,1 · · ·xl, j},
xu = {xu,1 · · ·xu, j},

g(x) = {g1(x) · · ·gk(x)},
h(x) = {h1(x) · · ·gn(x)}.

The example considered in this section, known as Srini-
vas’ problem, can be found in the Dakota User’s Manual
(Adams et al., 2016), section Additional examples→Mul-
tiobjective test problems→Multiobjective test problem 3.
The problem has two design variables, x1 and x2 with their
respective upper and lower bounds,

−20≤x1 ≤ 20,
−20≤x2 ≤ 20,

two objective functions, f1 and f2, which must be mini-
mized,

f1(x1,x2) = (x1−2)2 +(x2−1)2 +2,

f2(x1,x2) = 9x1− (x2−1)2,

and two inequality constraints h1 and h2,

h1(x1,x2) = x2
1 + x2

2−225≤ 0,
h2(x1,x2) = x1−3x2 +10≤ 0.

The first step is to generate a FMU file of this model,
most Modelica tools support exporting Modelica models
to FMUs. The Modelica code of this model is as follows.

model mogatest3
parameter Real x1 = 0 "Parameter x1";
parameter Real x2 = 0 "Parameter x2";
output Real f1 "Function f1";
output Real f2 "Function f2";
output Real h1 "Constraint h1";
output Real h2 "Constraint h2";

equation
f1 = (x1-2)^2 + (x2-1)^2 + 2;
f2 = 9*x1 - (x2-1)^2;
h1 = x1^2 + x2^2 - 225;
h2 = x1 - 3*x2 + 10;

end mogatest3;

The next step is to create a new project in Optifmus.
Currently, two kinds of projects can be created: simula-
tion and parameter estimation. Projects can be saved to
and loaded from files. Figure 2 shows the Optifmus
GUI for parameter estimation. The information that must
be completed is divided in groups in the GUI and it is de-
scribed as follows.

1. Project information. A descriptive name can be
given to easily identify the project.

2. Model information. A FMU file must be speci-
fied. Once the file is loaded, some information is

Session 10A: FMI II

DOI
10.3384/ecp17132683

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

685

Table 1. Numerical integrators

Numerical integrator Library Step size Order

Forward Euler Odeint Constant 1
4th order Runge-Kutta Odeint Constant 4
Adams-Bashforth-Moulton Odeint Constant Adjustable
5th order Runge-Kutta-Cash-Karp Odeint Controlled 5
5th order Runge-Kutta-Dormand-Prince Odeint Controlled 5
8th order Runge-Kutta-Fehlberg Odeint Controlled 8
Bulirsch-Stoer Odeint Controlled Controlled
4th Rosenbrock Odeint Controlled 4
Backwards Differentiation Formula (BDF) SUNDIALS Controlled Controlled
Adams-Bashforth-Moulton SUNDIALS Controlled Controlled

Figure 2. Optifmus GUI for parameter estimation.

displayed in the GUI. There are three buttons in this
group. The FMU info button shows some informa-
tion about the model, see Figure 3a. The structure
button shows the model structure, see Figure 3b. The
parameters button allows the user to give values to
the model parameters, see Figure 3c. Since in our
case, both parameters x1 and x2 are going to be cali-
brated, there is no need to give them values.

3. Simulation information. There are also three but-
tons in this group: numerical integrator, experiment
and outputs. The first one allows us to select the nu-
merical integrator, Figure 4a. The step size is only
needed if it is not controlled by the integrator. If it
is controlled, absolute and relative tolerance are used
instead. Some integrators allows the users to specify
the order whereas others have a fixed constant or a
controlled order. The FMI++ library can use the nu-
merical integrators given in Table 1 from the Odeint

and SUNDIALS libraries. The numerical integrator
(BDF) and tolerances (10−4) are left by default in
our example. The experiment window permits se-
lecting the simulation interval, start and stop times,
and matchs model inputs with data from files. Since
our model does not have inputs and it is a steady-
state model, this step can be omitted and thus leav-
ing the simulation interval by default, [0,1] seconds.
Section 3.2 shows how to use this window.

The outputs window, see Figure 4b, shows the model
outputs, furthermore allows us to specify the num-
ber of intervals, i.e. the number of points that will
be sampled for the output trajectory. The number of
points can be also set by a time step instead of by a
fixed number. Since our model is a steady-state one,
there is no need to sample more than one interval.
One interval means that values at the beginning and
end of the simulation are stored.

Development of an open source multi-platform software tool for parameter estimation studies in FMI models

686 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132683

(a) FMU information

(b) Model structure

(c) Model parameters

Figure 3. Model information

(a) Numerical integrator (b) Model outputs

Figure 4. Simulation information

4. Parameter estimation information. This GUI
group gathers all the information for the parameter
estimation study: parameters or design variables, op-
timization algorithm, objective functions and con-
straints.
• Parameters. The parameters to be calibrated can be

selected in the parameter window, see Figure 6. For
each parameter, it can be specified its initial value,
its lower and upper bounds, and if scaling is consid-
ered. If this is the case, the scaling type can be a
fixed value, logarithm scale or automatic. The two
first require a scale value. Consult Dakota documen-
tation for further information about scaling of design
variables (Adams et al., 2016).

• Algorithm. Currently, the only Dakota algorithm
considered in the tool is the MOGA from the Sandia-
developed JEGA library (Eddy and Lewis, 2001).
This is a multi-objective algorithm which supports
general constraints: bounded design variables, lin-
ear and nonlinear equality and inequality constraints.

The algorithm is highly configurable. Figure 5 shows
the window to configure the algorithm. The options
selected in our case are those indicated in Dakota
documentation for this example. The number of
model evaluations is set to 2000.

• Objectives. The objectives can be selected in the ob-
jectives window, see Figure 7. For each objective the
following options are available: criterion (maximize
or minimize), trajectory reduction, weight, scaling
type and value. The trajectory reduction option re-
duces the whole trajectory for each objective func-
tion to a single value in each simulation run. This
is required because the optimization algorithm needs
a single value per objective function and simulation
run. The following options are available: root mean
of squares, mean of absolute values, max, min or last
value. The weight value is used if the option to use
weights, and therefore transform the multi-objective
problem to a single-objective problem, is checked.

Session 10A: FMI II

DOI
10.3384/ecp17132683

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

687

Figure 5. Optimization algorithm configuration

Figure 6. Selected design variables

Figure 7. Objective functions

Figure 8. Linear inequality constraints

Figure 9. Nonlinear inequality constraints

Development of an open source multi-platform software tool for parameter estimation studies in FMI models

688 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132683

f1

f2

11.0 63.6 116.3 168.9 221.6
-217.6

-163.4

-109.1

-54.9

-0.7

Figure 10. Srinivas’ problem - 2D graph

Figure 11. Srinivas’ problem - 3D graph

The scaling option has the same meaning than for
design variables, but there are some limitations for
objective functions, consult Dakota documentation
for further details. In our example, for both objec-
tive functions the criterion is minimize. Since this is
a steady-state model, reductions are set to last simu-
lation values. Scaling is not used and weight are not
enabled because this is a multi-objective optimiza-
tion problem.

• Constraints. The tool supports linear and nonlinear
equality and inequality constraints. Scaling options
are also available. Linear constraints with respect to
design variables can be directly specified in the ap-
propriate tab in the constraint window. In our exam-
ple, the linear constraint h2 was defined in the Mod-
elica code, but this was not necessary since it can
be directly defined in the GUI, see Figure 8. On the
other hand, it can be also defined in the model as in
our example. Nonlinear constraint functions must be
defined in the model, in our example h1, then both or
only one limit per constraint must be set in the GUI,
see Figure 9.

Once all previous information is defined, the optimization
process can be performed hitting the calibration button,
see Figure 2. The stop button allows us to stop the cur-
rent optimization process. When the calibration process
is completed, the results button will be enabled to show

Figure 12. Srinivas’ problem - optimization results

information about the optimization results. Our optimiza-
tion example took less than 5 seconds for 2000 model
evaluations in a conventional laptop (4 x Intel Core i5 2.60
GHz, 8 Gbytes of RAM). During the process, messages
and log information are shown in the GUI.

Optimization results are shown in the results window,
see Figure 12. The MOGA algorithm provides all the solu-
tions found in or close to the Pareto front. In our case, the
MOGA algorithm found 421 solutions after 2000 model
evaluations. Design values, objective functions and con-
straints for each solution are shown in a table. In the result
window, any design variable, objective function or con-
straint can be selected to be plotted in 2D or 3D graphs.
Figure 10 shows a 2D graph of f2 with respect to f1, which
is the Pareto front of our problem. Figure 11 shows a 3D
graph of f1 with respect to x1 and x2.

3.2 Model calibration
This section presents the calibration of a TES tank dy-
namic model that it is under development. This kind of
tanks is used in solar thermal power plants in order to store
thermal energy and dispatch it at night or under unfavor-
able meteorological conditions. A complete description
of the model is out of the scope of this paper, but a brief
summary is given in the following lines. The storage fluid
is commonly molten salts, which can reach high tempera-
tures.

The dynamic model considers two control volumes and
dynamic mass and energy balances for molten salt and the
the inert gas in the facility, nitrogen. Tank geometry, slope
and dimensions are considered in the model. The pump
inside the tank is also modeled, assuming a simplified ge-
ometrical form. The position of the level meter and ther-
mocouples in the tank are also taken into account. The
model considers different kinds of heat transfer processes:
convection, conduction and radiation between molten salt,
gas, tank walls, roof, floor, pump, insulation and founda-
tion. The variables of interest are tank level, together with
molten salt and gas temperatures.

Session 10A: FMI II

DOI
10.3384/ecp17132683

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

689

Figure 13. Tank calibration experiment

Molten salt tank foundation designs are commonly out-
side of standards for foundations, since these standards
do not cover the temperature range were TES systems
operate. The modeled tank has several foundation lay-
ers made of concrete with steel fibers and a compacted
light expanded clay aggregate. The thermal insulation is
usually made of several layers from different materials.
The outer thermal insulation layer is frequently covered
with an aluminum jacket for weather protection. For all
these reasons, thermal conductivities in the insulation and
foundation are difficult values to estimate. In this model,
those thermal conductivities are assumed as mean constant
values and have been calibrated using the Optifmus
tool. Needed measurements are available from experi-
mental campaigns carried out in the facility. It is located at
CIEMAT - Plataforma Solar de Almería (PSA). Therefore,
our model calibration problem can be formulated as mini-
mizing the differences between molten salt and gas exper-
imental and simulated temperatures by tuning the mean
insulation and foundation thermal conductivities.

The steps to perform the calibration are similar to those
in Section 3.1, for example setting the project (step 1)
and model (step 2) information. The remaining steps are
briefly summarized in what follows.

3. Simulation information. The experiment window is
used to match model inputs with experimental data
stored in files, see Figure 13. The values in the in-
put file can be visualized thanks to a plotting tool in-
cluded in Optifmus. In case the input file is over-
sampled, a factor can be used to reduce the number of
samples. Model inputs can be also fixed to constant
values in this window if needed. Time values can be
read from the loaded file or a number of time inter-
vals between the start and stop times can be speci-
fied in the GUI. In our example, the simulation in-
terval is set to [41500,55000] seconds. The number
of samples is reduced by 1/7 in order to reduce the

calibration time, since samples were taken each five
seconds. Model inputs and time are matched to file
data. The numerical integrator is left by default. The
number of intervals is set to 500 in the output win-
dow in order to capture several points in the output
trajectories.

4. Parameter estimation information. There are no
constraints in our example, the remaining configura-
tion options are described as follows.

• Parameters. Insulation and foundation mean ther-
mal conductivities (kins,k f ou) are the design vari-
ables, guess initial values are 0.15 W/(mK) . They
are bounded in the [0,1] interval.

• Algorithm. The MOGA algorithm is used with its
default values, besides the number of model evalua-
tions (1000) and the seed (1) in order to obtain repro-
ducible results.

• Objectives. The differences between experimental
and simulated molten salt and gas temperatures are
the two objective functions (Tms,di f f ,Tgas,di f f), they
must be minimized. The trajectory reduction was set
to root mean square values, therefore both objective
functions provide the mean temperature difference in
the trajectory. There is no need to use scaling since
both objective functions represent temperature dif-
ferences. Weights are not used because we are con-
sidering a multi-objective minimization problem.

The calibration process took 21 minutes and found 157 so-
lutions in or close to the Pareto front for 1000 model eval-
uations. Figure 14 shows 10 of those solutions, where the
objective functions give the mean temperature difference
between experimental data and simulation results. Fig-
ure 15 shows the Pareto front.

The first solution in Figure 14, and pointed out by the
arrow in Figure 15, was used to compare the model results
against a different set of experimental data. All figures
shown in this section were created in the Optifmus plot-
ting tool. The system was exposed to several mass flow
rate steps in this experiment, see Figure 16. Figure 17
shows experimental and simulated tank levels. Horizon-
tal lines point out the position in height of the thermo-
couples. The gas experimental temperature corresponds
to that from the highest-placed thermocouple, whereas
the molten salt temperature is obtained from the highest-
placed thermocouple immersed in molten salts. Figure 18
shows the experimental and simulated molten salt temper-
atures. Notice that there is no experimental molten salt
temperature until the tank level reaches the first thermo-
couple position. This is why the experimental temperature
is set to a constant value at the beginning of the simulation.
Figure 19 shows the experimental and simulated gas tem-
peratures. Notice that the molten salt level reaches the last
thermocouple at the end of the simulation, therefore there
are no available measurements for gas temperature.

Development of an open source multi-platform software tool for parameter estimation studies in FMI models

690 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132683

Figure 14. Tank model calibration results

Tms_diff

Tg
as
_d
iff

1.458 1.534 1.610 1.686 1.762
1.934

2.012

2.089

2.166

2.244

Figure 15. Tank model calibration Pareto front

4 Optifmus limitations
The current main Optifmus limitations are listed here.

• The software tool has been tested only in Linux. It is
planned to be tested in Windows and Mac platforms.

• Only ME FMUs version 1.0 and 2.0 are supported.

• Only continuous real design parameters, objectives
functions and constraints are supported.

• All the MOGA options are configurable from the
GUI besides the niching type and the use of surro-
gate models which are not supported.

5 Ongoing work and future ideas
Ongoing work is summarized in the following list.

• Optimize the code to improve speed.

• Unit support when setting parameter values.

• Load FMI++ logs in the Optifmus GUI.

• More graphic configuration options.

• Include an option to simulate the model with the pa-
rameters of the selected row in the result table.

Figure 16. Tank simulation - mass flow rate

Figure 17. Tank simulation - levels

Figure 18. Tank simulation - molten salt temperatures

Figure 19. Tank simulation - gas temperatures

• Dakota offers many more algorithms for parameter
estimation and optimization. One of the ongoing
tasks is to implement several of those algorithms.

As future ideas to improve the software tool, the following
will be considered and studied.

• Dakota is a powerful toolkit, other features that could
be added to the tool are: parameter studies, sensi-
tivity analyses, design of experiments, uncertainty
quantification, and model simplification by means of
surrogate models.

• The development of an Application Programming In-
terface (API) independent of the GUI could be useful
for integrating FMI optimization capabilities in other

Session 10A: FMI II

DOI
10.3384/ecp17132683

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

691

tools. It could be applied to offline optimization, as
well as to online optimization, for example in MPC.

• Parallelization of the software tool could drastically
reduce the optimization time. Dakota offers capabili-
ties for parallelization. If we consider parallelization,
as well as an API, executable programs could be gen-
erated and executed in high-performance clusters to
further reduce the computational time.

Acknowledgments
This work has been funded by the National Plan Project
DPI2014-56364-C2-1/2-R (ENERPRO-EFFERDESAL)
of the Spanish Ministry of Economy, Industry and Com-
petitiveness and ERDF funds.

References
Brian M. Adams, Mohamed S. Ebeida, Michael S. Eldred, Gian-

luca Geraci, John D. Jakeman, Kathryn A. Maupin, Jason A.
Monschke, Laura P. Swiler, J. Adam Stephens, Dena M.
Vigil, and Timothy M.Wildey. Dakota, A Multilevel Paral-
lel Object-Oriented Framework for Design Optimization, Pa-
rameter Estimation, Uncertainty Quantification, and Sensitiv-
ity Analysis: Version 6.5 User’s Manual, 2016.

Karsten Ahnert and Mario Mulansky. Odeint - Solving or-
dinary differential equations in C++. In AIP Conference
Proceedings, volume 1389, pages 1586–1589, 2011. ISBN
9780735409569. doi:10.1063/1.3637934.

Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove
Bergdahl, and Hubertus Tummescheit. Modeling and Opti-
mization with Optimica and JModelica.org—Languages and
Tools for Solving Large-Scale Dynamic Optimization Prob-
lems. Computers and Chemical Engineering, 34(11):1737–
1749, 2010.

Berkeley Lab. BuildingsPy - Modelica Buildings Library,
2016. URL http://simulationresearch.lbl.
gov/modelica/buildingspy/.

Dassault Systemes. Dymola 2017 FD01, 2016. URL http:
//www.dymola.com.

John Eddy and Kemper Lewis. Effective Generation of Pareto
Sets Using Genetic Programming. In ASME 2001 Design
Engineering Technical Conferences and Computers and In-
formation in Engineering Conference, number 1, pages 1–9,
Pittsburgh, PA, 2001.

Hilding Elmqvist, Hans Olsson, Sven Erik Mattsson, Dag
Brück, Christian Schweiger, Dieter Joos, and Martin Otter.
Optimization for Design and Parameter Estimation. In Proc.
4th International Modelica Conference, 2005.

ESI ITI GmbH. SimulationX 3.8, 2016. URL http://www.
simulationx.com/.

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L.
Lee, Radu Serban, Dan E. Shumaker, and Carol S. Wood-
ward. SUNDIALS: Suite of Nonlinear and Differential/Al-
gebraic Equation Solvers. ACM Transactions on Mathe-
matical Software, 31(3):363–396, 2005. ISSN 0098-3500.
doi:10.1145/1089014.1089020.

KDE Community. Breeze icons, 2016. URL https://
github.com/KDE/breeze-icons.

MapleSoft. MapleSim 2016, 2016. URL https://www.
maplesoft.com/products/maplesim/.

Modelica Association. Functional Mock-up Interface for Model
Exchange and Co-Simulation, Version 2.0, 2014a. URL
https://www.fmi-standard.org/downloads.

Modelica Association. Modelica Specification, version 3.3 Re-
vision 1, 2014b. URL http://www.modelica.org/
documents.

OSMC. OpenModelica 1.9.7, 2016. URL http://www.
openmodelica.org/.

Andreas Pfeiffer. Optimization Library for Interactive Multi-
Criteria Optimization Tasks. In Proc. 9th International Mod-
elica Conference, pages 669–680, Munich, Germany, nov
2012.

Sandia Corporation. Dakota Packages, 2016. URL https:
//dakota.sandia.gov/content/packages.

Scilab Enterprises. Scilab: Open Source software for numerical
computation, 2015. URL http://www.scilab.org/.

SciPy developers. SciPy.org - Python-based ecosystem of open-
source software for mathematics, science, and engineering,
2017. URL http://scipy.org/.

Sergey A. Tachenov. QuaZIP - Qt/C++ wrapper for ZIP/UNZIP
package, 2016. URL http://quazip.sourceforge.
net/.

The MathWorks Inc. MATLAB R2016b, 2016. URL http:
//www.mathworks.es/products/matlab/.

The Qt Company. Qt - Cross-platform software development for
embedded & desktop, 2016. URL https://www.qt.io.

Hubert Thieriot, Maroun Nemer, Mohsen Torabzadeh-Tari, Pe-
ter Fritzson, Rajiv Singh, and John John Kocherry. Towards
Design Optimization with OpenModelica Emphasizing Pa-
rameter Optimization with Genetic Algorithms. In Proc. 8th

International Modelica Conference, pages 756–762, 2011.

Luigi Vanfretti, Maxime Baudette, Achour Amazouz, Tetiana
Bogodorova, Tin Rabuzin, Jan Lavenius, and Francisco José
Goméz-López. RaPId: A modular and extensible toolbox
for parameter estimation of Modelica and FMI compliant
models. SoftwareX, 5:144–149, 2016. ISSN 23527110.
doi:10.1016/j.softx.2016.07.004.

Michael Wetter. GenOpt - A Generic Optimization Program.
Seventh International IBPSA Conference, (1):601–608, 2001.

Edmund Widl, Wolfgang Muller, Atiyah Elsheikh, Matthias
Hortenhuber, and Peter Palensky. The FMI++ library:
A high-level utility package for FMI for model ex-
change. 2013 Workshop on Modeling and Simulation
of Cyber-Physical Energy Systems, MSCPES 2013, 2013.
doi:10.1109/MSCPES.2013.6623316.

Wolfram. SystemModeler 4.3, 2016. URL http://www.
wolfram.com/system-modeler/.

Development of an open source multi-platform software tool for parameter estimation studies in FMI models

692 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132683

