
Towards a Standard-Conform, Platform-Generic and Feature-Rich
Modelica Device Drivers Library

Bernhard Thiele1 Thomas Beutlich2 Volker Waurich3 Martin Sjölund1 Tobias Bellmann4

1PELAB, Linköping University, Sweden, {bernhard.thiele,martin.sjolund}@liu.se
2ESI ITI GmbH, Germany, thomas.beutlich@esi-group.com

3Chair of Construction Machinery, TU Dresden, Germany, volker.waurich@tu-dresden.de
4Institute of System Dynamics and Control, DLR, Germany, tobias.bellmann@dlr.de

Abstract
There are many cases where simulation applications need
to interact with their environment. Typical examples are
Human-in-the-Loop (HITL) simulators (including flight,
driving, and marine training simulators), Hardware-in-
the-Loop (HIL) simulators, but also offline process simu-
lators which cannot operate in a completely self-contained
manner and therefore need to be coupled to external ap-
plications. Embedded control applications are another re-
lated area requiring interaction between applications and
their environment. The Modelica_DeviceDrivers library,
which had its first release as open-source library in 2012,
tries to cater to such use cases. This paper describes the
library for the first time and reports about the numerous
challenges that the project experienced to meet its goal of
supporting several platforms and tools within a standard-
conform, platform-generic, feature-rich, and easy-to-use
Modelica library. Furthermore, the paper gives an in-
sight into the inner mechanics of the library’s communica-
tion and serialization functionalities, the various supported
hardware interfaces and the possibilities to generate code
for embedded systems.
Keywords: human-in-the-loop, hardware-in-the-loop,
real-time simulation, embedded control application, Mo-
delica external C

1 Introduction
The most common usage of Modelica models is for off-
line simulation experiments. However, in many cases si-
mulations need to interact with their environment or other
software components. Typical examples are Human-in-
the-Loop (HITL) simulators (including flight, driving, and
marine training simulators), Hardware-in-the-Loop (HIL)
simulators, but also offline process simulators which can-
not operate in a completely self-contained manner and the-
refore need to be coupled to external applications. Furt-
hermore, Modelica can be used for developing (model-
based) control applications that also require interaction
with their environment.

There are different approaches for enabling the above-
mentioned applications in the context of Modelica. Se-
veral development environments offer tool chains for real-

time simulation and/or model-based development of em-
bedded control applications. Some of these environments
can be coupled with Modelica tools, by wrapping code
that is generated from Modelica tools into respective third-
party tool-internal representations which can be connected
to hardware devices in the respective development en-
vironment. For example, such customized solutions are
available in Dymola1 via its DymolaBlock interface to the
MATLAB/Simulink2 tool chain, OpenModelica3 via cu-
stomized tool chains (Worschech and Mikelsons, 2012),
or SimulationX4 via Code Export for Simulink/Simulink
Coder2 or HIL environments like dSPACE DS10065, NI
VeriStand6 or ETAS LABCAR7 (Blochwitz and Beut-
lich, 2009). Furthermore, it may also be possible for
a Modelica tool to generate Functional Mock-up Units8

(FMUs) which can be imported into compatible simulator
environments (e.g., the dSPACE SCALEXIO5 HIL simu-
lator).

Instead of embedding the (FMI-) compiled Mo-
delica model into a simulator environment, the Mo-
delica_DeviceDrivers (MDD) library uses a different ap-
proach. The MDD library provides access to external de-
vices by utilizing Modelica’s external function interface
for interfacing to the C API of various device drivers di-
rectly from Modelica models (see Section 2).

Historically, the origins of the MDD library can be tra-
ced back to the ExternalDevices library (Bellmann, 2009),
an internal DLR9 Modelica library developed for the in-
teractive simulation and visualization of Modelica mo-
dels. The ExternalDevices library already supported UDP
and shared memory communication as well as several

1Dassault Systèmes, https://www.3ds.com
2The MathWorks, https://mathworks.com
3Open Source Modelica Consortium (OSMC), https://www.

openmodelica.org
4SimulationX by ESI, https://www.simulationx.com
5dSPACE, https://www.dspace.com
6National Instruments, http://www.ni.com
7ETAS, http://www.etas.com
8FMI development group, https://www.fmi-standard.

org
9Deutsches Zentrum für Luft- und Raumfahrt (DLR), German Ae-

rospace Center, http://dlr.de

DOI
10.3384/ecp17132713

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

713

input devices (keyboard, 3Dconnexion SpaceMouse10,
and game controller). Additionally, it featured a model-
integrated real-time visualization system, the foundation
of the later DLR Visualization library (Hellerer et al.,
2014).

However, the ExternalDevices library only suppor-
ted Microsoft Windows and was developed and tested
using only the Dymola tool, which caused unintentio-
nal incompatibilities with other Modelica tools. In the
further course of development, it was decided to split
the ExternalDevices library into the commercial DLR
Visualization library and an open-source cross-platform
hardware interface library, the Modelica_DeviceDrivers
library. The library is available from its GitHub
project site at https://github.com/modelica/
Modelica_DeviceDrivers/. This paper is based on
MDD v1.5.0.

2 Modelica_DeviceDrivers
The MDD library allows Modelica models to access har-
dware devices by using the Modelica external C interface
calling the appropriate C driver functions provided by the
underlying operating system (see Section 2.1).

The library is organized in several layers as indicated
in Figure 1. It provides two high-level drag & drop block
interfaces.

1. The Blocks components are compatible to Mo-
delica v3.2, using when sample() for periodically
calling Modelica functions from the Function Layer.

2. The ClockedBlocks components use the synchro-
nous language elements extension introduced in
Modelica v3.3 and are compatible with the Mo-
delica_Synchronous library (Otter et al., 2012). Due
to this support, the MDD library formally depends
on the Modelica_Synchronous library, but in practice
the Modelica_Synchronous library (and tool support
for the synchronous language elements extension) is
only required for this ClockedBlocks interface.

2.1 Cross-Platform Support
As of MDD v1.5.0, Windows and Linux are supported as
main platforms, but prototypical work also targets popular
embedded systems boards directly (see Section 4.2).

When accessing hardware devices, a Modelica model
or application calls Modelica functions from the Function
Layer (see Figure 1). These Modelica functions pro-
vide a generic interface to the underlying C Code Layer,
which is accessed by Modelica’s external function inter-
face. The platform differentiation is handled in the C
Code Layer which uses preprocessor directives for condi-
tional inclusion/exclusion of platform-specific code (#if,
#else, #endif, etc.) similar to the code fragment below.

103Dconnexion, https://3dconnexion.com

Modelica (external C) functions grouped into following packages:
- Packaging (packaging data for the communication devices)
- Communication (UDP, shared memory, etc.)
- HardwareIO (data acquisition)
- InputDevices (keyboard, joystick, etc.)
- OperatingSystem (real-time synchronization, etc)

Blocks
Drag & Drop blocks using
traditional when sample() then
style for calls to the Function
Layer.
- Blocks.Examples:
 Executable examples

Block Layer

ClockedBlocks
Drag & Drop blocks using the
Synchronous Language Elements
extension of Modelica 3.3 for calls
to the Function Layer.
- ClockedBlocks.Examples:
 Executable examples

Function Layer

C-Code Layer
The glue C-code interfaced by the External C-Function Layer.
Contains the operating system specific C-code. The C-code is
available within the Resource folder of this library.

Windows Linux Other

Figure 1. MDD layered architecture.

#if defined(_MSC_VER) || defined(__CYGWIN__
) || defined(__MINGW32__)

#include <windows.h>
/* Windows specific code goes here */
#elif defined(__linux__)
#include <unistd.h>
/* Linux specific code goes here */
#else
#error "Modelica_DeviceDrivers: Unsupported

compiler or platform"
#endif

2.2 Extended Tool Support
Back in 2009, the library was developed using the Dymola
tool. With MDD v1.4.0, considerable development efforts
have been spent on the Modelica compliance of the library
in order to better support SimulationX and OpenModelica.

Since OpenModelica v1.11.0 Beta 1 the MDD
SerialPackager blocks as well as the Communication

blocks are finally supported by OpenModelica. For achie-
ving this, it was necessary to change parts of the MDD
library (under the constraint of maintaining backwards
compatibility), and at the same time, to extend the abi-
lities of respective tools (partly by providing support for
non-standard Modelica constructs). This is discussed in
more detail in Section 3.2.3.

2.3 Library Structure
Figure 2 shows a screenshot of the package brow-
ser view with loaded MDD library. The first two
sub-packages Blocks and ClockedBlocks provide the
drag & drop blocks which correspond to the Block
Layer of Figure 1. The remaining sub-packages (ex-
cept Utilities and EmbeddedTargets) provide the
Function Layer. Both layers use sub-packages for sub-
dividing the provided functionality into different groups.
Package EmbeddedTargets contains highly target speci-

Towards a Standard-Conform, Platform-Generic and Feature-Rich Modelica Device Drivers Library

714 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132713

fic function and blocks for supporting restricted embedded
systems like the Arduino microcontroller (see Section 4).

Figure 2. MDD library structure.

Furthermore, Figure 2 gives an indication about the rela-
tion between the Block Layer and the Function Layer.
Typically, a device driver block will instantiate the corre-
sponding external object from the Function Layer. Mo-
delica’s external objects allow external functions to access
the internal memory (created by the constructor) be-
tween calls to external functions, i.e., the device hand-
lers are maintained in memory in order to access them
in subsequent simulation phases. Modelica also guaran-
tees that both the constructor and destructor functi-
ons of an external object are called exactly once, ena-
bling a reliable one-time initialization and termination of
hardware devices, usually during the initialization and ter-
mination phase of the Modelica simulation model, re-
spectively. For example, the JoystickInput block cre-
ates an instance of the external object GameController.
The package GameController_ collects functions that
can operate on external objects of type GameController.
This package provides the function getData, which takes
a GameController object as argument and returns the va-
lues of the axes and buttons of its associated hardware de-
vice.

A good way of learning how to use the Block Layer
interface of the library is by exploring the Examples

package. Care has been taken to provide self-explanatory
usage examples for the provided device driver blocks.

2.4 Interfaces
MDD library functionality can be accessed by drag &
drop of blocks from the Blocks and ClockedBlocks sub-
packages, or by direct calls to the underlying functions.

An example, which directly uses the Function Layer
for accessing a game controller, is given below:

model GameControllerExample
import

Modelica_DeviceDrivers.InputDevices.*;
parameter Integer id = 0 "0 = first

attached game controller";
GameController gc = GameController(id);
discrete Real axesRaw[6];
Integer buttons[32], pOV;

equation
when sample(0, 0.1) then

(axesRaw, buttons, pOV) =
GameController_.getData(gc);

end when;
end GameControllerExample;

The code above creates an external object named gc. The
constructor for this object takes the argument id. This ar-
gument allows specifying which controller to use if se-
veral game controllers are attached to the system. The
function getData is called periodically within a when-
clause. It takes the external object gc as argument and
returns vectors which contain the values read from the as-
sociated game controller. The vector is pre-dimensioned,
so that it can attune to controllers featuring as much as six
axes, 32 buttons and a POV (point of view) switch. The
actually available data depends on the connected game
controller hardware. Tests with the actual hardware are
needed for determining which vector entry corresponds to
which physical axis or button.

Figure 3 shows how game controllers can be acces-
sed by simply dragging & dropping a JoystickInput

block into the diagram view of a Modelica tool. While
Figure 3a uses the block found in the Blocks package,
Figure 3b uses the corresponding clocked variant from
ClockedBlocks. The additional blocks periodicClock
and assignClock are from the Modelica_Synchronous li-
brary. They associate a periodic clock to the variables and
equations within the JoystickInput block. As a result,
the underlying getData function will be called whenever
the associated clock ticks (i.e., every 0.1s in the presented
example).

(a) Using Blocks (b) Using ClockedBlocks

Figure 3. Accessing game controller devices by using
the JoystickInput block from the Blocks, or the
ClockedBlocks package.

The example models can be simulated, but real-time sy-
nchronization is required to slow the simulation speed

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132713

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

715

down, in order to synchronize the real-time inputs with
the simulation progress. The MDD library provides con-
venient support for (soft) real-time synchronization11. Ho-
wever, a user should consider that Modelica tools might
provide better (tool-specific) options for real-time syn-
chronization.

2.5 Features
The MDD library has grown to support a respectable
amount of hardware devices and associated features that
will be briefly presented in this section.

2.5.1 Input Devices

Standard input devices such as keyboard and game con-
trollers are ubiquitously available on the market, enabling
the user to build up interactive simulations quickly. MDD
provides blocks for using the generic keyboard and game
controller interface of Windows or Linux (see Figure 4).

Figure 4. Supported input devices from the Blocks package.

In addtion, more specialized hardware like the 3Dconnex-
ion SpaceMouse is supported for both platforms. Often,
these blocks will be used for interactive desktop simulati-
ons, but they can also become part of more involved (cost-
efficient) HITL simulation scenarios.

2.5.2 Communication

The most comprehensive and complex part of the library
is related to implementing support for communication de-
vices in Modelica and external C code.

Supported Devices Figure 5 gives an overview over the
supported devices.

Figure 5. Supported communication devices from the Blocks
package.

Cross-platform support for UDP and shared memory was
already available in the first released version of MDD.
Support for serial port communication is available since

11See documentation to block SynchronizeRealtime.

MDD v1.3 (Linux) and v1.4.0 (Windows). A client block
for TCP/IP socket communication was added in v1.4.0
(Windows) and v1.5.0 (Linux). Furthermore, support for
sending and receiving of Lightweight Communications
and Marshalling (LCM) datagrams12 was added in v1.5.0.
LCM is a set of libraries and tools for message passing and
data marshalling13, which is particularly targeted at low-
latency real-time applications for robotic systems (Huang
et al., 2010).

Basic support for the Controller Area Network bus
(CAN bus) is available by two different block sets. The
first is based on the CAN Layer2 API from Softing14 and
restricted to the Windows platform. The second uses the
SocketCAN interface provided by the Linux kernel.

Packaging Concept Communication devices like UDP
or shared memory use a common packaging concept in
order to send or receive data. Therefore, the same pack-
ager can be used with different communication devices.
Figure 6 shows an example in which a package consis-
ting of three variables of type Real followed by a vari-
able of type Integer is either transmitted using shared
memory or UDP blocks. Switching between the two com-
munication devices is achieved by simply replacing the
corresponding device block.

Figure 6. Simple switching of communication devices due to
common packaging concept in order to send or receive data.

The packages are constructed by using blocks from the
Packaging sub-package (see Figure 2). In the initial
design of MDD, it was expected that different packa-
ging concepts would be supported which share a com-
mon connector interface. However, as of MDD v1.5.0
the SerialPackager is the only available packager. It
allows periodically adding or retrieving fixed size vectors
to or from a package, respectively. Figure 7 shows the
available blocks for serializing Modelica variables of the

12LCM project, https://lcm-proj.github.io
13As of MDD v1.5.0, only the communications aspect of LCM is

considered.
14Softing, http://industrial.softing.com

Towards a Standard-Conform, Platform-Generic and Feature-Rich Modelica Device Drivers Library

716 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132713

predefined types Boolean, Integer, Real and String

into a “package”. The type Real can be packed either
as double-precision or (using a C static cast) as single-
precision floating-point number.

Figure 7. SerialPackager blocks for adding variables to a
package.

At the C side, a package is a C byte array in which C varia-
bles with respectively indicated types are simply successi-
vely appended in a data-flow prescribed order. For exam-
ple, in Figure 6 the resulting byte array starts with three
double values (3×8 bytes) followed by one int32 value
(4 bytes), resulting in a byte array of size 28. For the sake
of providing an illustrative example at the C language le-
vel the following C code snippet constructs a structurally
equal package named data (the example shall shed light
on the concept, it does not advocate a coding style using
magic numbers for array offsets):

double v1[3] = {1.1, 2.2, 3.3};
int v2 = 4;
unsigned char* data = (unsigned char*)

calloc(28, sizeof(unsigned char));
memcpy(&data[0], &v1[0], sizeof(v1));
memcpy(&data[24], &v2, sizeof(v2));

Figure 7 shows the blocks for adding variables to a
package, symmetrically, blocks are available for retrieving
variables from a package. Using these blocks is deemed
to be rather intuitive with the notable exception of the
packInt block. This block allows packing unsigned in-
teger values at the bit level. The number of bits used for
encoding is set by a parameter width, therefore the max-
imum value of the integer signal that can be encoded is
2width − 1. A parameter bitOffset allows to specify the
bit at which the encoding starts relative to the preceding
block. Since MDD v1.3 most blocks support specifying
the byte ordering (big-endian or little-endian format).

It is simple to use the SerialPackager blocks for de-
serializing data which has been serialized by it (see Fi-
gure 6). In practice, however, communication typically
needs to be established with a remote station that is un-
related to the Modelica model. As long as this remote
station periodically sends or receives structurally static,
fixed sized packages, it is usually quite convenient to es-
tablish a communication using the MDD blocks. If the
remote station uses a more dynamic protocol, it becomes
more difficult. In some cases using the Function Layer di-
rectly (instead of the Block Layer) can provide additional
flexibility for coping with more dynamic protocols. Ho-

wever, the main use-case for the SerialPackager con-
cept is periodically sent, structurally static data. These re-
strictions may be relieved in future versions of the MDD
library by providing alternative, well-established “Packa-
gers” that offer support for more flexible means of pack-
aging data, e.g., the data marshalling of the LCM library
or the efficient binary serialization format of the Message-
Pack library15.

Finally, it turned out that the SerialPackager blocks
were a major hurdle for extending the number of Modelica
tools which support MDD (see Section 3.2).

2.5.3 Hardware I/O
Package HardwareIO (see Figure 2) is intended for data
acquisition hardware like digital-analog converter (DAC),
analog-digital converter (ADC) and other interface hard-
ware. As of MDD v1.5.0, it contains only one sub-
package, which provides support for the Linux control and
measurement device interface “Comedi”. The Comedi
project develops open-source drivers, tools, and libraries
for data acquisition16. The project provides a common in-
terface for accessing supported data acquisition hardware
(see the website for supported hardware). The MDD li-
brary implements an interface to the Comedi user-space
library.

Figure 8 shows an example model, which uses the avai-
lable blocks. Configuration of the device is performed
in the Modelica record named comedi. The record con-
tains an external object dh of type ComediConfig which
contains the Comedi device handle and is passed through
a parameter to the other blocks (comedi.dh). Using
external objects in records is not standard-compliant to
Modelica v3.3 revision 1 (Modelica Association, 2014),
which is further discussed in Section 3.3.

Figure 8. Accessing data acquisition hardware via the Linux
control and measurement device interface “Comedi”.

Writing or reading raw integer values to DAC or from
ADC channels is provided by the blocks DataWrite

15MessagePack project, https://msgpack.org
16Comedi project, http://comedi.org

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132713

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

717

or DataRead, respectively. These blocks have each
a variant which works with physical values, instead
of the raw integer values (PhysicalDataWrite and
PhysicalDataRead). Blocks DIOWrite and DIORead

support digital input and output (DIO) channels.

2.5.4 Embedded Targets

MDD v1.5.0 introduced the new top-level package
EmbeddedTargets. The package is intended for platform-
specific targets, such as microcontrollers, that cannot so
easily share code with other devices due to memory or
hardware limitations. There exists first prototypical sup-
port for the Atmel17 AVR family of microcontrollers. A
prototype application is described in Section 4.2.

3 Modelica Standard-Compliance
Using a Modelica library-based approach for accessing
hardware devices from a simulation started as an expe-
riment, which relied on the Dymola tool and its support
for interfacing external C code. However, when trying to
extend the number of Modelica tools supporting the MDD
library, it became apparent that quite a few constructs that
were useful and appreciated by the initial authors of the
library were not supported by other tools and were partly
problematic in respect of compliance to the Modelica stan-
dard.

On one hand, this section reports on important develop-
ment efforts (starting with MDD v1.4.0) that have been
spent on the Modelica compliance of the library for better
supporting SimulationX and OpenModelica, and on the
other hand it addresses open issues which may be of in-
terest for future improvements to the Modelica standard,
or which may require possibly non-backwards compatible
revisions of the MDD library for achieving full Modelica
compliance.

3.1 Modelica’s External Function Interface
As the Modelica standard specification on the external
function interface improved over the years, standard-
conform libraries with external C code dependencies
could be created in a more satisfying way. For example,
Modelica v3.2 standardized the search directory structure
for the external C header files and libraries (Modelica As-
sociation, 2010, p. 153). Having a standardized directory
structure facilitated creating cross-platform libraries with
external C library dependencies. For example, the Mo-
delica code snippet below declares an include dependency
to the header file MDDKeyboard.h and linker dependen-
cies to the libraries X11 and User32:

function getKey
input Integer keyCode "Key code";
output Integer keyState "Key state";
external "C" MDD_keyboardGetKey(keyCode,

keyState) annotation(
Include = "#include \"MDDKeyboard.h\"",
Library = {"X11", "User32"});

17Atmel, http://atmel.com

annotation(__ModelicaAssociation_Impure=
true);

end getKey;

A Modelica tool will map this information to compiler-
and linker-dependent directives and thereby select the li-
braries that fit best for the respective platform.

3.1.1 Linking Platform-Dependent System Libraries

Having platform-specific system libraries like X11 (for Li-
nux only) and User32 (for Windows only) in one generic
Library annotation, proofed to be a significant develop-
ment difficulty. As a remedy, dummy libraries of the Li-
nux system libraries are provided in the Windows-specific
library directories win32 and win64, and vice versa. Furt-
hermore, the linking to system libraries on Windows was
simplified by the introduction of compiler-specific prag-
mas, e.g., in MDDKeyboard.h

#pragma comment(lib, "User32.lib")

understood by the Visual Studio compilers only. Howe-
ver, for GCC (including the MinGW and CygWin build
environments) the issue remains unresolved18.

3.1.2 Impure Functions

The above example function getKey features an ad-
ditional (vendor-neutral) annotation which declares the
function as “impure”. The intended meaning is that a
tool may not expect that the function returns the same
output for the same input, which is the typical case for
MDD functions that read values from external devices.
Indeed, Modelica v3.3 introduced the dedicated keyword
“impure” to cater for such cases. However, since not all
Modelica tools support this keyword, yet, the MDD li-
brary uses the Impure annotation which is understood by
Dymola, OpenModelica and SimulationX.

3.1.3 Modelica Standard Improvements

Future releases of MDD may benefit from improvements
on the external function interface, which are expected in
the (future) Modelica v3.4 standard:

• Compiler-specific sub-directories for the platform-
specific library directories, e.g., if Visual Studio 2015
is used as a Windows 64-bit compiler a Modelica tool
may first search directory win64/vs2015 for depen-
dent libraries19.

• The IncludeDirectory annotation accepts multiple
directories enabling a more convenient way to spe-
cify several external C header file dependencies dis-
tributed over different include directories20.

18Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/1668

19Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/1316

20Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/2103

Towards a Standard-Conform, Platform-Generic and Feature-Rich Modelica Device Drivers Library

718 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132713

However, a generalized build process18 of the external
code still misses the definition and (future) standardization
of build features such as compilation of several C source
modules, compiler flags (CFLAGS) or preprocessor defines
(CPPFLAGS)21.

3.2 The Serial Packager
The SerialPackager blocks are the core elements of
the block-based communication support provided by the
MDD library (see Section 2.5.2). They use a rather intri-
cate approach for propagating a “package” between con-
nected blocks.

3.2.1 Connector Definition

The definition of the SerialPackager input connector is
given below.

connector PackageIn "Packager input
connector"

input SerialPackager pkg;
input Boolean trigger;
input Real dummy;
output Boolean backwardTrigger;
output Integer userPkgBitSize;
output Integer autoPkgBitSize;

end PackageIn;

The definition of the output connector is similar, but with
reversed input and output causalities. Most notably con-
nector PackageIn contains an element pkg, which is an
external object of type SerialPackager. This external
object is passed between connected blocks (see Figure 6).
Within an “add” or “get” block the passed in external ob-
ject is used as an argument to external functions which
first add or retrieve data from the package and then pass it
on to the next block.

Due to the design of the SerialPackager connector
sharing both input and output variables it is impossible
to have more than one connect equation per connector.
However, Modelica offers no option to tell a user already
at modeling time about this maximal allowed connector
cardinality.

3.2.2 Basic Concept

The following simplified Modelica code snippet illustrates
the basic idea for adding the (Integer) value of an input
variable u to a package:

block AddInteger
PackageIn pkgIn "Input connector";
PackageOut pkgOut "Output connector";
IntegerInput u "Integer input connector";

equation
when initial() then

pkgIn.autoPkgBitSize =
pkgOut.autoPkgBitSize + 32 /* bit
size of int32 */;

end when;
when pkgIn.trigger then

21Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/2145

pkgOut.dummy = addInteger(pkgOut.pkg,
u, pkgIn.dummy);

end when;
pkgOut.pkg = pkgIn.pkg;
pkgOut.trigger = pkgIn.trigger;
pkgOut.backwardTrigger =

pkgIn.backwardTrigger;
pkgOut.userPkgBitSize =

pkgIn.userPkgBitSize;
end AddInteger;

The instantaneous equation invoking the addInteger

function is activated by the event trigger which is pro-
pagated through the connected packager blocks. The
dummy variables are used to establish data-flow depen-
dencies which ensure that the “addValue” functions of
connected blocks are invoked in the correct order. The
backwardTrigger event allows propagating a trigge-
ring event in the inverse connector direction. Its sup-
porting logic is omitted here for brevity. A Modelica
standard-conform alternative is provided by the variable
userPkgBitSize that allows propagating a user defined
package size, i.e., it is possible for a user to customize
the package size of the external data buffer of the commu-
nication device block (see Section 2.5.2). However, in the
default setting the necessary package size is deduced auto-
matically with the help of the autoPkgBitSize variable.
This approach is described in Section 3.2.4.

3.2.3 External Object Aliasing

A problem with the Block Layer of the SerialPackager
is that the pkg objects within the connectors are not ex-
plicitly created by calling an external object constructor
function as required in Modelica v3.3 (Modelica Associa-
tion, 2014, p. 165). Instead, they rely on aliasing through
(connect) equations to access an external object which has
been created at another place. In Figure 6 the pkg object
for the “add” blocks is created in the “Packager” block at
the top of the figure, while the pkg object for the “get”
blocks is created in the device block for reading from
shared memory (or UDP, respectively). While the concept
of external object aliases does not exist in Modelica v3.3,
equating two external objects may be interpreted as an as-
signment to an external object, which is forbidden. The
authors hope that future versions of the Modelica standard
will consider use-cases that the Modelica tools Dymola,
OpenModelica and SimulationX already support22.

A Modelica standard-conform implementation that
avoids the aliasing is to only rely on the Function Layer
provided by package SerialPackager_.

3.2.4 Automatic Buffer Size

The actual creation of the SerialPackager object is per-
formed in the “Packager” block, or, respectively, in the re-
ading device block (see above). The following simplified
code illustrates the basic concept.

22Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/1669

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132713

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

719

block Packager
PackageOut pkgOut(
pkg = SerialPackager(bufferSize),
dummy(start=0, fixed=true));

Integer bufferSize;
equation

when initial() then
bufferSize =
if pkgOut.userPkgBitSize > 0 then
pkgOut.userPkgBitSize else
pkgOut.autoPkgBitSize;

end when;
end Packager;

The difficulty here is that the bufferSize which is nee-
ded as an argument for the external object constructor
SerialPackager(bufferSize) needs to be computed
by solving the initial system of equations. This is not sup-
ported by all Modelica tools and its Modelica compliance
was discussed at the Modelica Issue Tracker with a ma-
jority opting to clarify the specification in order to forbid
it23, but on the other hand it was also discussed how the
Modelica standard could be extended to allow it24.

In the initial version of the MDD library the external
object was actually created within a when-clause, which
was clearly illegal in Modelica v3.3. As part of improving
the Modelica compliance of the library, the creation of the
object was moved into the component declaration.

3.3 External Objects in Records
The SocketCAN and the Comedi blocks use a Modelica
record as means for specifying general settings for a har-
dware device. The idea is that the settings are specified
once when creating an instance of the record and this in-
stance is passed as parameter to blocks using this device.
For example, the Comedi configuration record (stripped
from some elements for brevity) is defined as

record ComediConfig
parameter String deviceName =
"/dev/comedi0" "Name of Comedi device";

final parameter Comedi dh =
Comedi(deviceName) "Handle to comedi

device";
end record;

where dh is an external object. It is convenient to col-
lect configuration information in a record, since this al-
lows passing a complete set of related configuration set-
tings at once. The problem here is that passing an external
object as part of a record can be interpreted as the record
returning the object and assigning it to another external
object (which is forbidden in Modelica v3.3 but supported
by Dymola). However, similarly to the external object ali-
asing described in Section 3.2.3 it seems highly desirable
to consider use-cases as described above in some way, in
future versions of the Modelica standard.

23Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/1907

24Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/2037

3.4 Fixed Attribute of Strings
According to Modelica v3.3 the predefined type String

was designed without the fixed attribute (as opposed
to other predefined types Boolean or Integer). Howe-
ver, such a fixed attribute is particularly relevant for the
GetString block of the SerialPackager when retrie-
ving sampled String data from a package. This issue was
resolved by (future) Modelica v3.4 such that future Mo-
delica tools supporting Modelica v3.4 will no longer raise
a warning on the GetString block25.

4 Applications
This section describes several applications that were im-
plemented with the help of the MDD library.

4.1 Arduino

The Arduino26 is an open-source electronics platform that
features easy configurations to read the sensors, process
the data and send it to other devices via a serial connection.
Therefore, the Arduino can be utilized to provide sensor
data in a real-time Modelica model by means of the MDD
serial port implementation, as depicted in Figure 9. With
the help of potentiometers or other deflection sensors, cu-
stomized control devices can be built.

Figure 9. Setup to read potentiometer deflection during real-
time simulation with MDD serial port model27.

As an exemplary application, self-built pedals for a dri-
ving simulator can be equipped with a sensor in order to
measure the displacement. The pedal itself is a steel sheet,
mounted on a revolute joint and a shock spring. The mea-
sured deflection is transferred via a serial connection to a
Blocks.Communication.SerialPortReceive in order
to drive a virtual vehicle. Therefore, expensive or una-
vailable input devices can be substituted by custom con-
structions. By using a Bluetooth module with Serial Port
Profile (SPP) a wireless connection between Arduino is
handled in the same way as a serial port over USB con-
nection. No further modifications are necessary to imple-
ment a wireless control device.

4.2 Embedded Control
The EmbeddedTargets package (see Section 2.5.4) con-
tains blocks and functions to directly control I/O or clocks

25Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/1797

26Arduino, https://arduino.cc
27Autodesk screen shots reprinted courtesy of Autodesk, Inc.

Towards a Standard-Conform, Platform-Generic and Feature-Rich Modelica Device Drivers Library

720 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132713

in the AVR ATmega microcontroller family28. The advan-
tage of including this code into the MDD library is that it
makes it simple to write a model for a microcontroller that
works the same way in any Modelica tool since all the OS
support, real-time code, etc., is abstracted away. Provided
that the Modelica tool produces minimal C-code (uses mi-
nimal features outside of standard C: for example, no li-
near solver included if the system has no linear systems,
no OS or I/O functions, no threading models, etc.), and the
model itself does not use C-code that the embedded target
cannot support (such as file I/O), the code generator would
work on pretty much any embedded target supporting C.

The Modelica code itself tries to avoid the Integer con-
stants from the data sheets. Instead, enumerations such
as prescaler=1/128 or clock=2B are passed from Mo-
delica and the C code for the AVR target depends on
function inlining in order to remove dead code. For ex-
ample, the constructor for the clock takes an enumeration
that specifies the clock, which should be manipulated, and
after function inlining, the C code for other clocks is re-
moved. The blocks in the MDD library try to take user-
friendly constants such as frequency=100Hz or period
=0.1s for real-time synchronization; the Modelica code
then has logic to find good clock prescalers to create a ma-
tching frequency. The code does not use parameters since
they cannot be guaranteed to be evaluated in Modelica,
and the C-code depends on the C-compiler (AVR GCC)
being able to inline and eliminate dead code from C-code
such as the constructor. An example of this is the timer
external object in the microcontroller, which becomes one
or two bitset instructions when the function is called with
a constant input:

function constructor "Initialize timer"
input Types.TimerSelect timerSelect;
input Types.TimerPrescaler clockSelect;
input Boolean clearTimerOnMatch;
output Timer timer;
external "C" timer = MDD_avr_timer_init(

timerSelect, clockSelect,
clearTimerOnMatch)

annotation(Include = "#include \"
MDDAVRTimer.h\"");

end constructor;

static inline void* MDD_avr_timer_init(int
timerSelect, int clockSelect, int
clearTimerOnMatch)

{
static const uint8_t

clockSelectTable0[7] = {...},
clockSelectTable1[7] = {...},
clockSelectTable2[7] = {...};

switch (timerSelect) {
#if defined(TCCR0)

case 1: /* Timer 0 */
TCCR0 |= ...;
break;

28As of MDD v1.5.0, only ATmega16 and ATmega328P (=Arduino
Uno) are supported. The code can easily be extended, but requires
checking the data sheets in order to write to the correct bits.

#elif defined(TCCR0B)
case 1: /* Timer 0 */

TCCR0B |= clockSelectTable0[clockSelect
-1];

TCCR0A |= ...;
break;

#endif
case 2: /* Timer 1 */

...
case 3: /* Timer 2 */

...
default:

exit(1);
}
return (void*)timerSelect;

}

One of the AVR examples included in MDD is the single
board heating system (SBHS29), shown in Figure 10.

Figure 10. The single board heater system running a real-time
control algorithm using firmware based on MDD code. There is
a programmer attached to the board to upload new firmware, but
the code runs without any computer connected to the SBHS.

The SBHS consists of a heater assembly, fan, tempera-
ture sensor, AVR ATmega16 microcontroller and associa-
ted circuitry. It was developed by IIT Bombay and is used
for teaching and learning control systems (Arora et al.,
2010). The MDD SBHS example uses pulse width modu-
lation (PWM) blocks to control the heater and fan, and an
analog-to-digital converter (ADC) block to read the tem-
perature. It combines these elements with a PID controller
with the goal to control the fan such that the temperature
settles at a setpoint of 45°C while a constant voltage feeds
the heater assembly.

4.3 DLR Demonstrators
At the DLR Institute of System Dynamics and Control, se-
veral simulator systems utilize the MDD library for inter-
system communication and querying of input devices.

The DLR Robotic Motion Simulator (Bellmann et al.,
2011) is a 7-axis driving and flight simulator based on an
industrial robot arm (see Figure 11). The main use of this
motion simulator is the evaluation of input devices such
as side-sticks, steering wheels, pedals, etc., as well as the
test and validation of control algorithms in terms of sta-
bility and real-time capability. The control architecture of
the simulator uses blocks from the MDD library in several
ways:

29SBHS, http://sbhs.fossee.in/

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132713

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

721

Figure 11. The DLR Robotic Motion Simulator.

• Input devices such as force-feedback steering wheels
are connected via CAN bus and integrated in the soft-
ware framework via the CAN blocks; the same ap-
plies for a force-feedback side-stick.

• Other, consumer based input devices such as pedals
or Airbus styled flight controls are connected via the
JoystickInput block.

• The control architecture for the robot consists of two
Modelica simulations on two different computers:
First, the real-time path planning running on a real-
time Linux system controlling the movements of the
robot, and second, the control panel running on a
standard Windows system. The control panel is used
to change parameters such as washout filter modes
(the washout filter maps the movement of road vehi-
cles / airplanes to the workspace of the simulator)
and gives an overview on the actual robot’s posi-
tion and telemetry. All real-time critical communica-
tion (e.g., the simulated road vehicle / airplane forces
and angular velocities inputs for the real-time path-
planning, or the control panel I/O) are communicated
via the UDP blocks and the serial packaging system.

Figure 12 shows the inside of the simulator cabin. The
instrumentation package can be adapted for different si-
mulation types or for testing different input concepts. An
on-board computer is used to query input devices, to dis-
play information on control screens, and to project the pi-
lot’s outside view visualization on the embracing concave
dome shell. These tasks are performed using Modelica
models, where the SynchronizeRealtime block is used
for real-time synchronization. In addition, communication
with the other simulation components is performed partly
via the UDP blocks.

Figure 12. View into the simulator cabin of the DLR motion
simulator. The instrumentation package is replaceable, so that
the simulator cabin can be easily adapted for different simulation
types, e.g., for driving or flight simulation.

Figure 13. DLR ROBEX technology demonstrator.

Figure 13 shows the ROBEX demonstrator which was
developed as a technology demonstrator for a science
exhibition. This demonstrator allows the user to command
a rover on a scientific lunar mission. The mission’s goal
is to pick up a sensor package from a nearby lander and
to place it on a marked position on the lunar surface. The
user controls the rover via an Android App, which runs
on a tablet computer in front of the simulator screen. On
the screen, the visualization of the rover is displayed. The
underlying Modelica simulation performs the multi-body
simulation of the rover and utilizes the DLR Visualization
library to display the rover and the scenery. It uses the
UDP blocks to communicate with the tablet computer and
the SynchronizeRealtime block to adjust the simulation
speed.

In very similar ways, the library is also used in several
other simulator and demonstrator systems, e.g., a drilling
rig training simulator, several desktop flight simulators, or
a rover software-in-the-loop development environment.

Towards a Standard-Conform, Platform-Generic and Feature-Rich Modelica Device Drivers Library

722 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132713

5 Outlook
The Modelica_DeviceDrivers library is a tried and tested
library, which can support a wide range of application sce-
narios. During its development, valuable experience on
interfacing Modelica with external C code has been gai-
ned. Thus, the source code can also serve as an example
for anybody who is interested in applications, which re-
quire a more complex integration of Modelica code with
external C code.

Considerable development efforts have been spent on
improving the Modelica compliance of the library. Still,
there are open issues and one may see the library as a
testbed, which stresses Modelica’s external function inter-
face to the limit. On one hand, experiences gained thereby
can provide inputs for further enhancements to the Mo-
delica standard specification, on the other hand, further
efforts in the library development can improve the level
of standard-compliance. However, since backwards com-
patibility is a strong objective in the library development,
non-backwards compatible changes for the sake of better
standard-compliance will not be introduced lightly.

Naturally, there is a large pool of conceivable feature
extensions to the library, due to the myriad number of avai-
lable external devices and communication protocols. A
frequent request is to extend the communication abilities
beyond the capabilities of the available SerialPackager.
There exists a huge choice of data serialization formats
that could be utilized for this purpose (e.g., LCM or Mes-
sagePack). Particularly, with regard to the Internet of
Things (IoT) technology becoming more important, im-
proving communication capabilities is a worthy goal. Si-
milarly, supporting embedded systems beyond the pro-
totypical work is very attractive in that perspective.

Acknowledgements
This work has been supported by Vinnova in the ITEA3
OPENCPS projects, and in the RTISIM project. Support
from the Swedish Government has been received from the
ELLIIT project, as well as from the European Union in the
H2020 INTO-CPS project. The Open Source Modelica
Consortium supports the OpenModelica development.

Finally, the authors would like to thank everybody who
has contributed to the library, either by providing feedback
and suggestions, or by direct contributions to the imple-
mentation of the library, particularly, Miguel Neves, Do-
minik Sommer, Rangarajan Varadan, and Dietmar Wink-
ler.

References
Inderpreet Arora, Kannan M. Moudgalya, and Sachitanand

Malewar. A low cost, open source, single board he-
ater system. In 4th IEEE International Conference on
E-Learning in Industrial Electronics (ICELIE), November
2010. doi:10.1109/ICELIE.2010.5669868.

Tobias Bellmann. Interactive Simulations and advanced Visu-
alization with Modelica. In Francesco Casella, editor, 7th

Int. Modelica Conference, Como, Italy, September 2009.
doi:10.3384/ecp09430056.

Tobias Bellmann, Johann Heindl, Matthias Hellerer, Richard
Kuchar, Karan Sharma, and Gerd Hirzinger. The DLR
Robot Motion Simulator Part I: Design and Setup. In
2011 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4694–4701. IEEE, May 2011.
doi:10.1109/ICRA.2011.5979913.

Torsten Blochwitz and Thomas Beutlich. Real-Time Simula-
tion of Modelica-based Models. In Francesco Casella, editor,
7th Int. Modelica Conference, Como, Italy, September 2009.
doi:10.3384/ecp09430119.

Matthias Hellerer, Tobias Bellmann, and Florian Schlegel. The
DLR Visualization Library - Recent development and appli-
cations. In Hubertus Tummescheit and Karl-Erik Årzén, edi-
tors, 10th Int. Modelica Conference, Lund, Sweden, March
2014. doi:10.3384/ecp14096899.

Albert S. Huang, Edwin Olson, and David C. Moore. LCM:
Lightweight Communications and Marshalling. In 2010
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2010), pages 4057–4062, October 2010.
doi:10.1109/IROS.2010.5649358.

Modelica Association. Modelica—A Unified Object-
Oriented Language for Physical Systems Modeling
v3.2. Standard Specification, March 2010. available at
http://www.modelica.org/.

Modelica Association. Modelica—A Unified Object-
Oriented Language for Systems Modeling v3.3 Revi-
sion 1. Standard Specification, July 2014. Available at
http://www.modelica.org/.

Martin Otter, Bernhard Thiele, and Hilding Elmqvist. A
Library for Synchronous Control Systems in Modelica.
In Martin Otter and Dirk Zimmer, editors, 9th Int. Mo-
delica Conference, Munich, Germany, September 2012.
doi:10.3384/ecp1207627.

Niklas Worschech and Lars Mikelsons. A Toolchain for
Real-Time Simulation using the OpenModelica Compiler.
In Martin Otter and Dirk Zimmer, editors, 9th Int. Mo-
delica Conference, Munich, Germany, September 2012.
doi:10.3384/ecp12076839.

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132713

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

723

