
A New Object-Oriented Approach for Integrating Discrete
Element Method into Modelica

Christian Richter1 Jürgen Weber2 Florian Ohser3 Thomas Beutlich4

1Chair of Construction Machines, TU Dresden, Germany, christian.richter1@tu-dresden.de
2Chair of Fluid-Mechatronic Systems, TU Dresden, Germany, weber@ifd.tu-dresden.de

3ESI ITI GmbH, Germany, florian.ohser@esi-group.com
4ESI ITI GmbH, Germany, thomas.beutlich@esi-group.com

Abstract
In this paper a new library for co-simulation of discrete
element method and Modelica models is presented. For
this a component-based approach is used that allows clo-
sed modeling and visualization of discrete element sys-
tems in a modelica tool. Translation into a native DEM
description language and co-simulation is done by a sepa-
rate compiler and backend. Usage and functionality are
shown in a simple use case of a bucket excavator digging
a hole.
Keywords: discrete element method, co-simulation, con-
struction machines

1 Introduction
Working process of construction and conveying machines
is characterized by the interaction with granular materials.
In order to allow prospective analysis of machine beha-
vior under real operating conditions, coupled simulations
are increasingly used. In these cases, particle-mechanical
behavior is reproduced by using discrete element method
(DEM). Up to now the creation and calculation of coupled
simulations between system models and DEM is very ex-
pensive and time-consuming. This effort can be signifi-
cantly reduced by using the new library presented in this
work, which uses a new component-oriented modeling ap-
proach for discrete element systems.

1.1 Discrete Element Method
The discrete element method (DEM) is a numerical met-
hod for simulating the behavior and motion of large num-
bers of discrete, interacting objects (Cundall, 1971). In
most cases, as done here, these objects are referred as
particles. Basis of the method is the calculation of for-
ces acting between the particles or between a particle and
an adjacent surface. The basic calculation cycle should be
explained briefly below.

After insertion every particle has an initial position and
velocity. The simulation loop starts by determining all
particle-particle and particle-wall contacts. After that the
forces and torques acting on every particle have to be cal-
culated. These forces result on the one hand from field
forces like gravity and on the other hand from the particle

deformation as a consequence of collision. For that diffe-
rent contact-models and force-deformation laws are used.
Figure 1 shows an example of such a contact model. By
summing up all single forces and torques, the translatio-
nal and angular acceleration of each particle can be obtai-
ned. The last step is solving the equations of motion. For
that the new positions and velocities are resolved by inte-
grating translational and angular acceleration. The whole
loop is repeated for a predetermined number of iterations.

Application of the
force-deformation law

for every contact

Contact Detection
between all particles

and walls

Solving the equations
of motion

for every particle

interparticle contacts

particle-wall contacts

contact forces

new positions

and velocities

Figure 1. DEM Computation Loop.

1.2 LIGGGHTS R©

One of the most used non-proprietary software applica-
tions for discrete element simulations is LIGGGHTS R©

(LAMMPS improved for general granular and granular
heat transfer simulations) (Kloss and Goniva, 2011). Main
advantages of it are:

• Open source

• Large number of available contact models

• Extensive import and export capabilities for geome-
try and results

• Various implementations and methods for paralleli-
zation of computation (MPI, OpenMP, CUDA)

Besides these points it also has some disadvantages:

• Command-oriented modeling-paradigm

• Complicated syntax

• Elaborate parametrization

• No graphical user interfaces

DOI
10.3384/ecp17132895

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

895

• No integrated visualization and post-processing ca-
pabilities

All these disadvantages will be eliminated with the solu-
tion presented here.

1.3 Earlier Solutions and Classification
Coupled simulation of Modelica-based machine models
and discrete element method has been a big field of rese-
arch in recent years. Several solutions have been develo-
ped till now. For a better understanding of the differences
between them, classification shown in figure 2 (Geimer
et al., 2006) should be used.

Core idea and principle of Modelica is to use an
equation-based approach for behavioral description and
linkage of different models from different physical dom-
ains. This is called a classic simulation. While this works
fine for some domains, like hydraulics or mechanics, this
won’t work for discrete element systems. To ensure fast
contact detection or force computation the specialization
of another simulation tool is necessary.

For coupling two different simulation tools special in-
terfaces must be developed. In 2010 we started with the
software-framework SARTURIS providing a network ba-
sed coupling of both domains(Kunze et al., 2010). Anot-
her coupling technique using functional mock-up units
(FMU) was presented in 2012 (Kunze et al., 2012). Ba-
sed on the functional mock-up interface, a FMU describes
a non-proprietary data format containing encapsulated si-
mulation models (Blochwitz et al., 2012). FMU’s can be
exported and imported by many simulation tools and used
for simulation coupling. Referring to figure 2 both so-
lutions are co-simulations. The biggest drawback is that
distributed modeling, as well as coupling of different in-
put and output values, is very time-consuming and error-
prone.

The solution presented in this paper allows a closed mo-
deling and an automatic coupling of DEM and Modelica.
A similar approach was used in (Elmqvist et al., 2015).
Additionally, the new library uses a component-based mo-
deling paradigm for discrete element models.

Number of
Modeling-

Tools

Number of
Integrators

=1

=1

>1

>1

"Classic"
Simulation

Modelseparation
for Simulation

Co-Simulation

Merging systems
of equations of

separately modeled
subsystems

Closed
Simulation

Distributed
Simulation

Closed
Modeling

Distributed
Modeling

Figure 2. Classification of coupled simulations.

2 Object-oriented design for DEM

As already mentioned LIGGGHTS R© follows a command-
oriented modeling-paradigm. This is typical for all DEM
applications. Usually the user writes an input script con-
taining the whole simulation process. The software reads
in this script and executes all commands in sequential or-
der.

One of the core ideas of Modelica is to use an object-
oriented design (OOD) for models. For transforming
LIGGGHTS R© functions into an OOD first an object-
oriented analysis (OOA) must be done. According to
(Coad and Yourdon, 1991) an object is defined as a real
world entity related to the problem domain, with “crisply
defined boundaries”. Objects are encapsulated with attri-
butes and behaviour. For identifying all objects it’s helpful
to start writing down all functionalities that should be in-
cluded in future objects. After that object classes and their
design parameters have to be defined fulfilling all these
functionalities. One principle is that all objects should be
self-explaining and easy to understand for the user. The
following table shows a selection of defined classes and
some of their functions.

Table 1. Selection of DEM object-classes and related functio-
nalities.

Object Functionalities

SimulationBox set timestep size
set contact model
set boundaries of spatial domain
get total particle count/mass

SingleParticle generate a single particle
set diameter
define material settings

ParticleSet load saved particle configurations
ParticleSource generate a particle stream
ParticleSink remove particles

set particle rate / mass rate
define material settings

RigidBody set position and velocity
get forces on body

RegionSensor get particle count/mass in region

As you can see not all of these objects are real world enti-
ties, so it would be better to speak of a component-oriented
than of an object-oriented design. In order to keep the ter-
minology as simple as possible it was decided to continue
speaking of an object-oriented approach.

After classes, functions and parameters are defined they
can be implemented in Modelica. Figure 3 shows the
structure of the new library and design of the single ob-
ject models.

A New Object-Oriented Approach for Integrating Discrete Element Method into Modelica

896 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132895

Figure 3. DEM Library in SimulationX R©.

3 Simulation coupling
3.1 System architecture
Above library allows the closed modeling of machine and
process models. In order to perform a distributed simula-
tion, models have to be subsequently separated again. For
a better understanding on how this is done figure 4 shows
the system architecture of all simulation components. This
structure is divided into front- and back-end.

The front-end essentially consists of the library and a
material database, which will be explained more in detail
in section 4.2. Each library object contains an internal net-
work client, which is capable to connect and communicate
via TCP/IP to a server.

The server is the root node of back-end-structure. It re-
ceives the messages coming from the components and for-
wards them to a special DEM-Slave with an attached com-
piler. The compiler is collects information about all ele-
ments in the model and translates them into LIGGGHTS
command sequences.

LIGGGHTS itself is not used as an executable but as a
shared library with a custom API. Data exchange is much
more simplified this way. Furthermore we modified some
basic LIGGGHTS function, e.g. for moving meshes, par-
ticles sources and sinks during simulation runtime.

Client 1

<<component>>

Frontend

Client 2

<<component>>

Client N

<<component>>

Material

Database

Backend

liggghtslib.dll

<<library>>

Slave/Compiler

<<component>>

Server

<<component>>

Figure 4. System architecture

3.2 Communication
For communication and data exchange between front- and
back-end C-functions accessed by external objects are
used. Every object has a TcpClient, which is responsible
for connecting to the server as well as sending and recei-
ving data. All data is stored in DataPackages acting like a
send and receive buffer.

TcpClient client = TcpClient();
DataPackage outPkg = DataPackage();
DataPackage inPkg = DataPackage();

During initialization all clients are connecting to the ser-
ver. After connection has successful established initial
data is exchanged. This may be for example some posi-
tional or geometric information.

parameter Boolean isConnected = false;
parameter Boolean isInitialized = false;

parameter String address = "localhost";
parameter Integer port = 1234;

initial algorithm
if isInitialized == false then

isConnected := connectToHost(
client, address, port);

end if;

setData(outPkg, {/*integer values*/},
{/*real values*/},
{/*string values*/});

if isConnected then
sendPackage(client, outPkg);
recvPackage(client, inPkg);

end if;

isInitialized:=true;

After initialization the main loop starts. Communication
between front- and back-end occurs at discrete equidistant
time values. For this we use a sample-function. At every
communication event current model values are pushed to
the server. After sending all output data the model waits
for the data coming fom the server. At the end of the si-
mulation loop some final data is transferred to the server.

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132895

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

897

parameter Real tc(quantity="Basics.Time",
displayUnit="s") = 0.0001;

Boolean commTrigger(start=false,fixed=true)
= sample(0, tc);

algorithm
if isConnected then
when commTrigger then

// set current data to outPkg
// send and receive packages
// extract data from inPkg

elsewhen terminal() then
// send final information

end when;
end if;

4 Pre-processing
4.1 Basic simulation settings
All basic simulation and communication settings are de-
fined in the SimulationBox. Similar to the World com-
ponent in Modelica.Mechanics.MultiBody package every
DEM model must contain one SimulationBox. This is en-
sured by an outer construct in the code.

outer DEM.Basics.SimulationBox simBox;

This way all objects have access to basic parameters like
host address and port.

equation
address = simBox.address;
port = simBox.port;

In order to keep computation costs low it’s necessary to
define boundaries for the DEM space. These boundaries
can be fixed (particles will be removed if they leave the
spatial domain) or dynamic growing.

4.2 Material definitions
The parameterization of the material properties of DEM
models is very complicated and presents a problem that
has not been completely solved. In order to increase the
operating convenience of the library, a material database
has been created, which contains parameter sets for the
most realistic description of different granular materials.
The valid parameter sets were determined by comparing
laboratory measurements and simulation. Various calibra-
tion tests were used. Among other things, the shear force,
the angle of inclination as well as the transit time of diffe-
rent granular substances were investigated. The selection
of the materials to be examined followed the possible fu-
ture application areas of the total solution. Sand and gravel
(construction machinery), hard coal, brown coal, iron ore
and potash (mining and conveyor technology) as well as
corn and wheat (agricultural machinery and food techno-
logy) were investigated.

For the representation of large rocks or boulders a
function was implemented, which allows the use of Mul-
tisphere materials. In this case, a composite of several sp-
heres is formed, which are inseparably connected to each

other. This function was not provided in the original work
package. It has been implemented since it means a consi-
derable added value for the user and thus for the marketing
of the final product. The interpolation of a stone by a Mul-
tisphere object is shown in figure 5.

Figure 5. Multisphere approximation of a stone

5 Post-processing
5.1 Visualization
Besides representing time-dependent state values in dia-
grams, 3D visualization is an important part of modern
post processing. For this the ModelicaServices package
comes with some models for animation and visualization
of certain predefined shapes such as cylinders, boxes or
imported STL- and DXF-geometries. The implementa-
tion of this package can vary from one Modelica tool to
another.

These capabilities are very limited to basic shapes and
not sufficient for the visualization of large particle sys-
tems. Though there is an animation body for spheres, it’s
not very advising to use it, because for n particles it would
be necessary to create n animation submodels. This would
increase the number of internal equations and downgrade
performance.

In our implementation we created a new animation
body called DEMPoints. We propose to extend Modeli-
caServices with such a model.

For large-scale systems up to one million particles 3D
representation itself takes a lot of computation costs. For
that reason it’s possible to switch between the options
splats, diamonds or spheres, which supply different levels
of details and performance.

5.2 Sensors
In discrete element simulations it’s often necessary to me-
asure particle specific values. For that we enhanced regu-
lar LIGGGHTS capabilities by some special sensor functi-
ons. Different shaped RegionSensors can be used to eva-
luate the number and mass of particles in a specific volu-
metric region. Sensor position and size can change during
simulation runtime. It’s also possible to attach sensors to
rigid bodies. One use case would be the measurement of
bucket filling level during the digging process of an exca-
vator.

To check if a particle is inside a specific region we use
a very simple and efficient algorithm. Consider there’s a
cuboid region sensor with the position vector xS, orienta-
tion matrix RS and dimensions lx, ly and lz. Now we want

A New Object-Oriented Approach for Integrating Discrete Element Method into Modelica

898 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132895

to find out if a particle P is inside the sensor region. First
thing we have to do is calculating the absolute difference
vector of the particles global position xP and the position
of the sensor xS (eq. 1). After that we transform this ab-
solute difference vector into the relative coordinates of the
sensor (eq. 2).

xPSabs = xP−xS (1)
xPSrel = RS ·xPSabs (2)

To determine if the particle is inside or not we have to
check the following logic equation.

insidecuboid =|xPSrel ,x|< 0.5 · lx ∧
|xPSrel ,y|< 0.5 · ly ∧ (3)
|xPSrel ,z|< 0.5 · lz

For spherical region sensors equation 2 can be omitted.
Checking is done as shown in equation 4 where r is the
radius of the sphere.

insidesphere =|xPSabs,x|< r ∧
|xPSabs,y|< r ∧ (4)
|xPSabs,z|< r

Just mention that there’s a second sort of sensors called
FlowSensors. They are used for measuring the number
and mass of particles passing two dimensional surfaces.
Computation algorithm for these kind of sensors is basi-
cally the same like for contact detection und shouldn’t be
explained here.

6 Use cases
6.1 Bucket Excavator
As first use case a bucket excavator digging a hole should
be simulated. The excavator itself was modeled as multi-
body system, which can easily be extended by hydraulic
or electric components. For all parts which should interact
with the granular material – in this case just the bucket –
the new library component CADPart was used. As next
step as pit of size 6.0 x 2.0 x 1.0 meters was generated
by using the PitGenerator element. The new library has a
direct interface to a database containing predefined mate-
rials, as described in section 4.2. So, the material chosen
for the pit was gravel. Figure 6 shows the 3D view of a
running simulation. As you can see particles are visuali-
zed directly in SimulationX R©.

6.2 Loaded Truck
The in figure 7 shown model of the truck allows to deter-
mine the hydraulic forces in the main cylinder of the truck
during the loading and unloading of bulk material by ta-
king the elastic suspension into account. It is also possi-
ble to determine the influence of the moving bulk material
of the drivability during different maneuvers and demon-
strates additional features and the capabilities of the de-
veloped library. In the background is a ParticleSource,

Figure 6. Excavator simulation

which the truck was being loaded with during the simu-
lation. For the ParticleSource it is also possible to chose
a predefined material of the database. Additionally, the
feature is demonstrated that accelerated, rotating and au-
tomatically increasing simulation rooms are supported du-
ring co-simulation. With the RegionSensors the number of
particles and the mass of the load can be evaluated which
interacts with the CADParts. The ground is a Plane for
the DEM simulation without any feedback to the system
simulation.

Figure 7. Loaded truck simulation

7 Conclusion and Outlook
In this work, a new concept was presented allowing the
closed modelling of machine models and discrete element
systems in one simulation tool. For that the command-
oriented modeling technique many DEM applications
work with was transferred into an object-oriented design
approach. This approach allows to perform DEM simu-
lations for inexperienced users who are not familiar with
the DEM. But even for very experienced users, the new
library will make it much easier to build up DEM models,
run coupled simulations and analyze and document the re-
sults.

By supporting additional LIGGGHTS R© features and
additional wizards the modeling could be simplified, the
possibilities expanded and the usebility of DEM models
improved.

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132895

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

899

Additional LIGGGHTS R© features could be the brea-
king and bonding of material. This field of DEM si-
mulation and the determination of the appropriate mate-
rial parameters is currently the content of some research-
projects. But the results of that projects are far away to
be used in coupled simulation. Additional wizards could
be developed for example to allow the user to vary ma-
terial parameters, create their own materials, or generate
a multisphere body. Furthermore, the analysis possibili-
ties of the LIGGGHTS R© results in SimulationX could be
expanded further in order to increase the added value of
the coupled simulation. For this and for all other enhan-
cements, we are looking forward to the feedback of future
users and interested parties.

Acknowledgements
This work is part of the project DEM-4-X funded by
the BMWi (Federal Ministry for Economic Affairs and
Energy, Project No.: 2055606KM4). The authors are dee-
ply grateful for the financial support.

References
Torsten Blochwitz, Martin Otter, Johan Åkesson, Martin Ar-

nold, Christoph Clauß, Hilding Elmqvist, Markus Friedrich,
Andreas Junghanns, Jakob Mauß, Dietmar Neumerkel, Hans
Olsson, and Antoine Viel. Functional Mockup Interface 2.0:
The Standard for Tool independent Exchange of Simulation
Models. In Martin Otter and Dirk Zimmer, editors, Procee-
dings of the 9th International Modelica Conference, Munich,
Germany, September 2012. doi:10.3384/ecp12076173.

Peter Coad and Edward Yourdon. Object oriented analysis.
1991.

Peter A. Cundall. A computer model for simulating progres-
sive, large-scale movements in blocky rock systems. In Proc.
Symp. Int. Rock Mech., volume 2, Nancy, 1971.

Hilding Elmqvist, Axel Goteman, Vilhelm Roxling, and Toheed
Ghandriz. Generic Modelica Framework for MultiBody Con-
tacts and Discrete Element Method. In Peter Fritzson and
Hilding Elmqvist, editors, Proceedings of the 11th Interna-
tional Modelica Conference, Versailles, France, September
2015. doi:10.3384/ecp15118427.

Marcus Geimer, Thomas Krüger, and Peter Linsel. Co-
Simulation, gekoppelte Simulation oder Simulationskop-
plung? Ein Versuch der Begriffsvereinheitlichung. O+P
Zeitschrift für Fluidtechnik - Aktorik, Steuerelektronik und
Sensorik, 50(11-12):572–576, 2006.

Christoph Kloss and Christoph Goniva. Open Source Dis-
crete Element Simulations of Granular Materials Based on
Lammps, volume 2, pages 781–788. John Wiley & Sons,
Inc., Hoboken, NJ, USA, 2011. ISBN 9781118062142.
doi:10.1002/9781118062142.ch94.

Günther Kunze, Andre Katterfeld, and Tina Grüning. Simula-
tion maschineller Erdbauprozesse. In 15. Fachtagung Schütt-
gutfördertechnik, Munich, Germany, October 2010.

Günther Kunze, Andre Katterfeld, Christian Richter, Hendrik
Otto, and Christian Schubert. Plattform- und Sofwareunab-
hängige Simulation der Erdstoff-Maschine Interaktion. In 5.
Fachtagung Baumaschinentechnik, Dresden, Germany, Sep-
tember 2012.

A New Object-Oriented Approach for Integrating Discrete Element Method into Modelica

900 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132895

