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Abstract
Planetary exploration rovers have to accomplish various
missions on uneven and loose terrain. In recent years,
systems of rovers adopting terramechanics which deter-
mine the force and moment characteristics of the wheel
on loose soil is studied. In this study, using Modelica lan-
guage, we construct a wheel model based on terramechan-
ics, and we identify the wheel characteristics as a linear
for a control. We conduct a numerical simulation of the
rover using a controller including the identified longitudi-
nal force model. It is shown that when the rover follows a
straight line on a plane, the longitudinal force model iden-
tified using known soil parameters has sufficient accuracy
on the wheel response based on terramechanics and could
be used as a control model. Keywords: terramechanics,
modeling, identification, space robots, control system

1 Introduction
In recent years, research and development of planetary ex-
ploration rovers in various configurations have been car-
ried out to investigate the planets. Planetary exploration
rovers have to achieve a stable traveling on uncertain and
severe terrain. The planet surface is covered with fine de-
posits, called regolith, and uneven terrain such as craters
and rocks. Various planetary exploration rovers have been
developed which is equipped with, for example, wheel
mechanisms with suspensions to adapt to the planetary
surface, crawler mechanisms to enhance the drawbar pull
or leg mechanisms to climb over steps (Seeni et al., 2008).
Also, NASA is planning to operate a hybrid rover "ATH-
LETE" which is equipped with wheel and leg mecha-
nisms.

When rovers move on planetary surface, it is impor-
tant to take into account of terramechanics which gov-
erns a relation between soft soil and the driving system
of rovers. In order to analyze the effect of the soil, a semi-
empirical model proposed by Bekker using the experimen-
tal results and a model using Discrete Element Method
(DEM) without dependence on wheel parameters are stud-
ied (Nakashima et al., 2010). Combining DEM with Finite
Element Method (FEM), the simulation using Soil Contact
Model (SCM) of Multi-Body System (MBS) which ana-
lyzes the more detailed soil movement is proposed (Krenn
and Gibbesch, 2011). The deformation of soil and the op-

timal wheel shape are analyzed through these simulations
to consider efficient travel on loose soil. However, it is not
suitable for the motion analysis of the rover, since it takes
large calculation time with FEM and DEM which handle
huge complicated elements in order to ensure reasonable
accuracy (Taheri et al., 2015).

As for the studies about the control based on terrame-
chanics, designing path (Ding et al., 2014) and analysis
of traveling performance while ascending (Ishigami et al.,
2007) is conducted. A slip ratio control of the wheels on
loose soil using sliding mode control for the rover model
considering terramecahnics is proposed (Gu et al., 2007).
In addition, another slip ratio control of the wheels using
PID control to adapt the parameters of terrain surface is
studied (Iagnemma and Dubowsky, 2004).

While it is desirable to conduct experiments in space
environments to verify these models, computer simula-
tions are preferred considering huge cost. However, it
is difficult to compensate for the differences of planetary
environments like gravitational field and so on (Pulecchi
and Lovera, 2006). To conduct a simulation with mini-
mized the error between the simulation model and the ac-
tual equipment is minimized, it is extremely effective for
comprehensive analysis through the more detailed rover
model and contact model of loose soil. The simulations
using Modelica language and modeling tool of physical
domains attract a lot of attention. We do not need to care
about causality to create the wheel model based on ter-
ramechanics such as slip ratio, sideslip angle and velocity
of wheel, since Modelica is an equation based language.
These features enable us to combine the wheel and rover
model effectively.

In previous our study, we conduct simulations consid-
ering the space environment using the fundamental con-
trol system and the robot model designed by Modelica.
In this study, using Modelica language we design a rover
model equipped with the terramechanics model to con-
duct a simulation with more detail model. We identify
the identified model which expresses the relationship be-
tween input torque and longitudinal force based on the
simulation results of the terramechanics model. Beca-
sue the terramechanics model is too complex to use in
a controller, we design the motion controller using the
identified model. We evaluate the effectiveness of iden-
tified model through numerical simulations. Therefore,
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Figure 1. Leg-wheel mobile robot model with six joints of each
limb.

the identified model approximates the characteristics of
the terramechanics model.

2 Modeling controlled object
2.1 Leg-wheel mobile robot model
Figure 1 depicts a rover model of the controlled object
(Yoshikawa et al., 2016). We use a lunar exploration
rover "ATHLETE" developed by NASA/JPL as a refer-
ence model (Wilcox et al., 2007). This rover is equipped
with six limbs with six joints while wheels achieve a high
movement performance and accommodate a wide range of
tasks using the redundancy. We create this rover model by
using Modelica language to control the degree of freedom
of the leg-wheel mechanisms with similar movements of
ATHLETE. The coordinate system of the rover is attached
at the center of the body. The limb has a number to be
distinguished from the others in this coordinate system, as
depicted in Figure 1.

2.2 Wheel model based on terramechanics
2.2.1 Assumptions of the wheel model

We introduce terramechanics to the wheel model of the
controlled objects. We make reference to semi-empirical
model (Ishigami et al., 2007) (Wong, 2001) to the wheel
model based on terramechanics. Figure 2 depicts the rigid
wheel rolling on loose soil. The assumptions of the wheel
model are as follows:

• The contact surface between wheels and the ground
is flat.

• Radius r and width b of wheel have enough rigidity.

• Wheel rotation does not affect a frontal soil.

• The frontal soil is constricted and released at the rear
of the wheel.
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Figure 2. Normal stress and shear stress distribution concept of
terramechanics while rolling (Ishigami et al., 2007).

• Lateral and vertical dynamics of wheels are not con-
sidered.

Figure 2 depicts the geometry of the wheel model based
on these assumptions; the empirical equation is described
in the following section.

2.2.2 Entry and exit angle of wheel
The forces generated from the wheel are calculated by
integrating a stress distribution developed between the
wheel and terrain surface. Entry angle θf and exit angle
θr are introduced in order to decide the dynamic contact
area of the wheel. The entry angle and exit angle are de-
fined as follows:

θf = cos−1(1− h
r
), (1)

θr = cos−1(1− λh
r
), (2)

where h is the sinkage of wheel and λ is the volume ratio
of soil.

2.2.3 Specific wheel angle θm

The normal stress distribution σ (the blue curve in Fig-
ure 2) arises in the normal direction of the wheel while
rolling. This normal stress distribution is approximated
by the parabolic curve. The maximum stress angle θm is
an angle at which the value of normal stress is maximum
as follows:

θm = (a0 +a1κ)θf, (3)

where a0, a1 is a constant value and κ is slip ratio. Slip
ratio is represented by using a translational velocity of the
wheel vx and angular velocity of the wheel ω :

κ =


(

rω − vx

rω

)
(rω > vx)(

rω − vx

vx

)
(rω < vx).

(4)

Modeling and Simulation of Wheel Driving Systems based on Terramechanics for Planetary Explanation
Rover using Modelica

902 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132901



2.2.4 Normal stress distribution model based on
bekker’s equation

The normal stress distribution model σ(θ) based on soil
pressure equation proposed by Bekker is divided into two
areas: the front parts of the specific wheel angle σf(θ)
(θm ≤ θ < θf) and the rear parts σr(θ) (θr < θ ≤ θm). The
normal stress distribution model of the wheel is defined as
follows:

σf(θ) = rn
(

kc

b
+ kϕ

)
[(cosθ − cosθf)]

n , (5)

σr(θ) = rn
(

kc

b
+ kϕ

)
[

cos{θf −
θ −θr

θm −θr
(θf −θm)}− cosθf

]n

, (6)

where kc is pressure-sinkage module depending on the vis-
cosity, kϕ is pressure-sinkage module depending on the
friction and n is the sinkage exponent depending on sink-
age of soil.

2.2.5 Shear stress model of wheel
Shear stress model is defined as follows:

τ = τmax(1− e− j/k), (7)
τmax = c+σ tanϕ , (8)

where c is the cohesion stress of the soil, ϕ is the internal
friction angle of the soil, j is the soil deformation and k
is the shear deformation modules. The shear stress of x
direction τx is obtained by assigning σ to Eq. (8):

τx = (c+σ(θ) tanϕ)(1− e− jx(θ)/kx), (9)

where kx is the shear deformation modules of x direction
and jx is the soil deformation of x direction as follows:

jx(θ) = r[θf −θ − (1−κ)(sinθf − sinθ)]. (10)

2.2.6 Vertical and longitudinal force of wheel
The vertical force Fz which is equal to the load of the
wheel is calculated by the summation of the normal and
shear stress of z direction as follows:

Fz = rb
∫ θf

θr
{τx(θ)sinθ +σ(θ)cosθ}dθ . (11)

The normal and shear stress of the wheel can be calculated
using the each contact angle θf and θr determined by the
sinkage of the wheel h. Then, the longitudinal force is
calculated by the summation of normal and shear stress of
x direction as follows:

Fx = rb
∫ θf

θr
{τx(θ)cosθ −σ(θ)sinθ}dθ . (12)

The rolling resistance torque Tx is calculated using the
shear stress as follows:

Tx = r2b
∫ θf

θr
τx(θ)dθ . (13)
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Figure 3. Relationship between slipratio and longitudinal force
with respect to load of the wheel.

2.2.7 Longitudinal characteristics
Figure 3 shows longitudinal force Fx with respect to the
slip ratio of the wheel when the load of it increases every
force 100N within 100N ∼ 800N. As the slip ratio in-
creases, the longitudinal force is saturated as Figure 3 in-
dicates. In addition, as indicated in Figure 3, for the same
slip ratio, the longitudinal force generated by the wheel
depends on the load. It indicates that the increasing ratio
of Fx decreases as the load grows.

3 Identification of the wheel model
3.1 Identified model
In this section, to design a rover controller in which the
identified model is additionally used, we identify the lon-
gitudinal force of the terramechanics model. We approx-
imate the longitudinal force generated at the wheel by a
linear first-order system. A step wheel torque is imposed
on the wheel, then the wheel response data on the longi-
tudinal force and the slip ratio is sampled. The identified
longitudinal force model is depicted in Figure 4. The iden-
tified model is separated into two blocks: one for calculat-
ing the slip ratio by the wheel torque and the other for
calculating the longitudinal force by the slip ratio. This
separation helps to capture the feature of the physical re-
lationship.

In the wheel model based on terramechanics, the wheel
sinkage which depends on load is decided by the opti-
mization. In order to identify the longitudinal force cor-
responding to the load change, we represent the parame-
ters of the first order system using a look up table (LUT).
Using the LUT in the identified model, we can consider
the generated force due to influences of soil deformation
caused by load change. Firstly, the gain KLUT and the time
constant TLUT are decided using the LUT. The reference
values of the LUT are the wheel load W and wheel torque
Tw. Secondly, the relationship between slip ratio κ and
longitudinal force Fx with respect to load change is de-
picted in Figure 5. Each point in this Figure represents the
reference results of the terramechanics model. To express
these relationships in an equation, we approximate it as
follows:

Fx(W,κ) = a(W )κ +b(W ), (14)
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Figure 4. Identification model from wheel torque to longitudinal force of wheel.

Table 1. Precision of identified model to responce of wheel
baced on terramechanics in the load 275,575,875 N.

Load 275N 575N 875N

Precision 82.1% 96.8% 96.2%

where a(W ) and b(W ) are the coefficient derived from
the quadratic expressions with respect to load change, as
shown in Figure 6 and Figure 7, respectively.

3.2 Verification of identification model
It is noted that the idetified model using LUT is an ap-
proximation which essentially includes interpolation error.
Figure 8 indicates the longitudinal force obtained by the
wheel based on terramechanics and the identified model
of it in the load W = 575 N which is the interporated re-
gion. A precision of identified model is calculated using
the following equation:

Fit =

1−

√
∑N

k=1[ŷ(k)− y(k)]2√
∑N

k=1[y(k)− ȳ]2

×100, (15)

where ŷ(k) is the output of identified model, y(k) is the
output obtained by the controlled object, ȳ(k) is the av-
erage of it and N is the number of data. In the case that
the load is not the reference results of the teramechanics
model, for example W = 275,575,875 N, the precision for
the step response of the wheel torque is shown in Table 1.
As a result, all of the precision is over 82%. If you need
to increase the precision, the degree of the approximate
expression will be changed more high degree. Therefore,
the identified model sufficiently approximates the longitu-
dinal force of the wheel even when the LUT refers to the
interpolated load.

4 Simulation
In this section, to evaluate the accuracy of the identified
model for the rover, we design the controller system using
the identified model, and confirm the response through the
numerical simulation.

4.1 Controller design
To verify whether the rover model with terramechan-
ics wheel model could be controlled using the identified
model through the numerical simulation, we construct the
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Figure 5. Reference results of the terramechanics model of
slip ratio and longitudinal force obtained by step input of wheel
torque and linear approximation of them.
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controller system: the identified model in section 3 is used
as the control model to calculate a wheel torque from a
velocity controller. Then, the torques are imposed on the
rover model (plant model in section2). The system calcu-
lates the wheel torque by feedback control so that the rover
achieves the target velocity. In vehicle motion controller,
we regard the rover as a mass point model for calculat-
ing the rover force on the CoG. To achieve the designed
motion, it is assumed that each wheel generate the same
longitudinal force as follows:

Fx,all/6 = f̃w, i, (16)

where Fx,all is whole longitudinal force of the rover, f̃w, i
is longitudinal force of each wheel and subscript i = 1 ∼ 6
indicates the limbs number. Each wheel torque Tw, i is
calculated using the inverse identified longitudinal force
model. Then, to realize the inverse model which is the
linear first order system, we add the second order filter in
front of it so that the model become the strictly proper
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model. Using the inverse model, we verify the simple
characteristics of the identified model when the model is
applyed to the rover model. The filter is defined as fol-
lows:

ω2
n

s2 +2ωns+ωn2, (17)

where ωn is natural angular frequency and set to be
342rad/s. The calculated wheel torque is imposed on each
wheel of the rover model which indicates the right block
depicted in Figure 9.

4.2 Simulation conditions
To verify the response of the wheel model, we conduct
a simulation that the rover tracks the target velocity on a
plane while keeping the initial posture of the rover. The
reference path is the straight line including an accelerat-
tion areas. In this simulation, we assume that the lunar
surface is covered with regolith uniformly. The parame-
ter of rover mass, target value, soil and wheel shape are
indicated in Table 2 (Ishigami et al., 2007).

Table 2. Parameter of rover, wheel and soil.

Parameter Value Unit

Rover mass M 1570 kg
Target position xt,Body 1.0×time m
Target velocity vt,Body 1.0 m/s
Wheel radius r 0.355 m
Wheel tread b 0.175 m
Cohension stress c 0.80 kPa
a0 0.4 -
a1 0.15 -
Pressure-sinkage module kc 1.37×103 N/mn+1

Pressure-sinkage module kϕ 8.14 × 105 N/mn+2

Soil deformation module kx 0.036 m
Sinkage exponent n 1.0 -
Friction angle ϕ 37.2 deg
Wheel sinkage ratio λ 0.90 -

4.3 Results and discussions

The simulation results using the identified model are
shown in Figure 10. Since the rover moves on a straight
line and arranges a symmetric leg position in this simula-
tion condition, we plot the results of the Limb1 ∼ 3. Fig-
ure 10 (a) through (h) depict the wheel torque, the wheel
resistance torque, the vertical force of each wheel, each
wheel sinkage, the slip ratio of each wheel, the longitudi-
nal force of each wheel, the velocity of the rover and the
desired longitudinal force, respectively.

As shown in Figure 10 (a), the identified model calcu-
lates the wheel torque considering the influence of resis-
tance torque, so that the rover enable the wheel to drive
smoothly. It is because the controller implicitly considers
the effect of resistance which is depicted in Figure 10 (b).

The inertia force due to the acceleration influences that
the load distribution of the wheel biases backward of the
rover. As a result, Figure 10 (c) indicates that, during
the acceleration, the vertical force of the Limb 3 increases
while that of the Limb 1 decreases. The load change af-
fects the change of the wheel sinkage h as depicted in Fig-
ure 10 (d). The wheel sinkage h is adapted to the vertical
force, so that the physical adequacy of the wheel model
based on terramechanics can be confirmed. The wheel
torque is calculated using the identified model, so that
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Table 3. RMS error of longitudinal force.

Limb 1 Limb 2 Limb 3

RMS error 0.7 N 0.4 N 0.5 N

the wheel arises the different slip ratio, as shown in Fig-
ure 10 (e). Accordingly, the longitudinal force of the each
wheel is generated uniformly as depicted in Figure 10 (f)
even when the load of the each wheel is different. Fig-
ure 10 (g) indicates that the rover accelerates until the
translational velocity reaches 1.0 m/s. Figure 10 (h) de-
picts the actual and desired longitudinal force of limb 1
as a representative example. Table 3 shows the RMS er-
ror between the actual and desired longitudinal force in
limb 1 ∼ 3. This difference in the longitudinal force is
caused by the approximation error of the identified model.
The precision of the identified model tends to lower as the
load decreases, as shown in Table 1. Thus, since the load
of Limb 1 decreases during the acceleration, the RMS er-
ror becomes the largest. The maximum longitudinal force
reaches about 30N. Nevertheless, all RMS error is below
1.0N. Although the actual longitudinal force is not equal
to the desired, the influence is adequately suppressed by
the feedback control.

Each wheel can generate the desired longitudinal force
due to calculating the wheel torque corresponding to load
change. Moreover, through the use of the identified model,
the wheel torque considering the influence of loose soil
can be obtained without the optimal calculation for a de-
cision of the wheel sinkage. Therefore, it is shown that
the identified longitudinal force model based on the more
detailed model has the high accuracy when the model is
applied to the rover controller.

5 Conclusions

In this paper, we construct the wheel model based on ter-
ramechanics derived from semi-empirical model by using
Modelica language. In order to consider the longitudinal
force of the constructed wheel model, we approximate it
by the linear first order system. Designing the controller
using the identified model, we investigate the influence on
driving systems of the rover moving on loose soil. The
simulation results indicate that the identified model can
adapt the influence of load change and consider the soil
deformation, so that the identified model has a high ac-
curacy. With reference to the model used in the control,
it is important to simplify the structure and identify the
characteristic. Consequently, the use of the identified lon-
gitudinal force model contributes to a control design for
the rover.

As for the problems to be solved from now on, to en-
hance the mobility on loose soil, the lateral force of the
wheel should be identified to design a controller.
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(d) Sinkage of each wheel.
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(h) Actual and desired longitudinal force of limb 1.

Figure 10. Rover driving simulation using longitudinal force model considring terramechanics for driving force distribution.
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