
PROCEEDINGS OF THE

The conference is organized by The Czech Society for Cybernetics and Informatics (CSKI) and Politecnico di Milano in cooperation with the Modelica Association.

12 INTERNATIONAL

CONFERENCE
M DELICA
May 15–17, 2017
Clarion Congress Hotel Prague
Czech Republic
www.modelica.org

Proceedings of the 12th International Modelica Conference
Prague, Czech Republic, May 15-17, 2017

Editors:
Doc. MUDr. Jiří Kofránek, CSc. and Prof. Francesco Casella

Published by:
Modelica Association and Linköping University Electronic Press

ISBN: 978-91-7685-575-1
Series: Linköping Electronic Conference Proceedings, No 132
ISSN: 1650-3686
eISSN: 1650-3740
DOI: http://dx.doi.org/10.3384/ecp17132

Organized by:
ČSKI Politecnico di Milano
(Czech Society for Cybernetics and Informatics) Dipartimento di Elettronica, Informazione e Bioingegneria
Pod Vodárenskou věží 2 Piazza Leonardo da Vinci, 32
182 07 Praha 8 - Libeň 20133 Milano
Czech Republic Italy

in co-operation with:

Modelica Association
c/o PELAB, Linköpings Univ.
SE-581 83 Linköping
Sweden

Conference location:
Clarion Congress Hotel Prague
Freyova 33
190 00 Praha 9 - Vysočany
Czech Republic

Copyright © Modelica Association, 2017

2 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

http://dx.doi.org/10.3384/ecp17132
http://www.cski.cz/
http://www.polimi.it/
http://www.modelica.org/

WELCOME

Francesco Casella
Program Chair

Jiří Kofránek
Conference Chair
We would like to welcome you to Prague for
the 12th international Modelica Conference.
The conference was organized by the
Modelica Association in cooperation with
the Czech Society for Informatics and
Cybernetics and Politecnico di Milano.

Modelica is not only a unique modeling language, which is widely
used in numerous branches of industry and also in research
and science, but most of all it is an immensely effective tool for
complex simulations in the automotive industry, building energy
management, aerospace and many other fields of engineering.

The program of the conference is interesting not only for the
participants, who already use Modelica, but also for those who
would like to be introduced to the possibilities of this new modern
modeling language by our numerous tutorials. The usage of the
language is facilitated by Modelica libraries focused on diverse
fields. Consequently, an important part of the conference is the
traditional Library Award Announcement.

We welcome you to Prague, the city of many historic sites, culture
and also the music festival Prague Spring, taking place in Prague
this week.

The International Modelica Conference is
the most important place for the Modelica
and FMI communities to meet, exchange
ideas and advance the state of the art in
object-oriented modelling.

This year we received 129 paper submissions for the scientific
program. After a thorough peer review process by the
International Program Committee, 83 were accepted for full
oral presentation and 19 for poster presentation, with authors
coming from 18 different countries in Europe, Asia, America, and
Oceania. The scientific program is completed by two distinguished
keynote talks, one from industry and one from academia.

The conference also hosts nine tutorials, the FMI User Meeting,
as well as vendor presentations and a commercial exhibition.

I warmly welcome you to the 12th International Modelica
Conference and I wish you a successful, pleasant, and rewarding
stay in Prague!

DOI
10.3384/ecp17132

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

3

4 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

KEYNOTE SPEAKERS

Abstract: The family of Synchronous programming languages
was born in the 1980’s in three different French labs that gathered
researchers in Computer Science and Control Theory. The three
first languages were Esterel, dedicated to control-dominated
problems in embedded systems, telecom protocols and later
digital circuit design, Lustre, dedicated to continuous control, and
Signal, oriented towards signal processing. They share a common
perfect synchrony principle that expresses that the reaction to
an input should be viewed as conceptually instantaneous. This
simple principle is well-adapted to the targeted applications
and greatly simplifies programming by reconciling parallelism
and determinism. It also leads to well-defined mathematical
semantics that directly ground their formal compiling, simulation
and verification environments. Synchronous programming
rapidly became used in Industry for safety-critical production
systems in avionics (Dassault Aviation, Airbus, etc.), railways, etc.,
as well as in robotics and circuit design. In the 2000’s, Esterel
and Lustre have been unified in two new languages industrialized
by Esterel Technologies (now part of Ansys): SCADE 6 for safety
critical software and Esterel v7 for hardware design, both also
incorporating ideas from Harel’s reactive graphical formalism
Statecharts.
The talk will explain the practical and mathematical concepts
of synchronous programming and stress its advantages over
asynchronous concurrent programming for the considered
applications. It will also explore the links between synchronous
programming and modeling / simulation. In one direction,
synchronous languages are ideal targets to generate embedded
code from executable parts of simulation models. In the other
direction, embedding synchrony into conventional modelers
may be necessary to solve the current tricky issues due to the
coupling of discrete and continuous computations in modelers,
in particular for the currently mishandled case where external
or internal events provoke cascades of discrete reactions. Pouzet
and Bourkes’s new Zelus language is a step in this direction.

Bio: Former student of the Ecole polytechnique, Member of the
Academy of sciences, of the Academy of technology and the
Academia Europaea, CNRS Gold medal 2014, Gérard Berry was a
researcher at the Ecole des mines of Paris and INRIA from 1973
to 2000, Chief Scientist of the company Esterel Technologies from
2001 to 2009, then Research Director at INRIA and President of
the Evaluation Committee of this Institute from 2009 to 2012.
He holds the Chair Algorithms, Machines and Languages at the
Collège de France from 2012, after having held two annual chairs
in 2007-2008 and 2009-2010.
His scientific contribution concerns four main topics: the formal
treatment of programming languages and their relations with
mathematical logic, reactive and real-time programming for
embedded systems, integrated circuit computer-aided design,
and formal verification of programs and circuits. He is the creator
of the Esterel programming language.

Abstract: Robotics will change the world! It will unleash the
same if not an even more disruptive and transformational
power within the next 50 years as mainstream IT-technology
and the Internet have over the last half a century. Nurtured by
technological breakthroughs in industrial automation, robotics
will exhaustively permeate all domains of the human living
realm. Hence, our grandchildren will grow up in a society that
is enriched and enhanced by assistive technologies in every
imaginable way. Robotics and automation will be tailored into
many everyday objects, becoming an integral part of all kinds
of appliances. This Generation ‚R‘ will be without fear of these
technologies perceiving their beneficial nature - they will grow up
as Robotic Natives. This implies, that today‘s people are already
born to become the first society of Robotic Immigrants. Although
it is not possible to precisely predict the world of tomorrow,
the presented model of the 4 Robotic Revolutions provides a
compelling, holistic approach to describe the future phases
of robotic evolution, characterizing them according to their
technological enablers and underlying interaction paradigms.

Bio: Dr. Bernd Liepert is the Chief Innovation Officer of KUKA AG,
a world leading manufacturer of industrial robots. Dr. Liepert
earned his diploma in mathematics in 1990 from the University
of Augsburg and his honorary doctor degree from University
of Magdeburg in 2011. Since 1990 Dr. Liepert has worked in
changing positions for KUKA. From 1990 to 1996 he worked
as mathematician and developer at KUKA Schweissanlagen +
Roboter GmbH before he took charge as head of development
of the newly founded company KUKA Roboter GmbH until 1997.
From 1998-1999 he was a member of KUKA Roboter GmbH
Board of Management, responsible for development and design.
From 2000-2009 Dr. Liepert was the CEO of KUKA Roboter
GmbH. From 2010 to January 2015 he was the CTO of KUKA AG,
responsible for technology and development of the whole KUKA
group. As Chief Innovation Officer of KUKA AG, Dr. Liepert is
now responsible for expanding innovations at KUKA where he
can apply his vast robotics experience at the interface between
technology and the market. From 2008-2012 Dr. Liepert was
President of EUROP, the European Robotics Technology Platform,
and subsequently President of euRobotics AISBL – the European
Robotics Association. euRobotics was founded in September 2012
and has become the private side of SPARC, the European Public-
Private Partnership in Robotics in 2013. As president of these
associations Dr. Liepert has been leading the European robotics
community and representing it at high political levels.

Synchronous Programming and its fit with
Modeling

Presenter:
Gérard Berry
Paris, France

Challenges of Future Robotics

Presenter:
Bernd Liepert
President of the euRobotics AISB
Chief Innovation Officer at KUKA AG

DOI
10.3384/ecp17132

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

5

6 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Program Committee

Conference Chair
Doc. MUDr. Jiří Kofránek, CSc., Charles University in Prague, Czech Republic

Program Chair
Prof. Francesco Casella, Politecnico di Milano, Italy

Conference Board
Dr. Hilding Elmqvist, Mogram AB, Lund, Sweden
Prof. Peter Fritzson, Linköping University, Sweden
Prof. Martin Otter, DLR, Germany
Dr. Michael Tiller, Xogeny, Michigan, USA

Program Committee
Dr. Johan Åkesson, Modelon AB, Lund, Sweden
Prof. Bernhard Bachmann, Univ. Applied Sciences Bielefeld, Bielefeld, Germany
Prof. John Baras, University of Maryland, Maryland, USA
Dr. John Batteh, Modelon Inc., Ann Arbor, USA
Dr. Albert Benveniste, INRIA, Rennes, France
Christian Bertsch, Robert Bosch GmbH, Stuttgart, Germany
Volker Beuter, VI-grade GmbH, Marburg, Germany
Torsten Blochwitz, ITI GmbH, Dresden, Germany
Dr. Scott Bortoff, MERL Cambridge, USA
Dr. Timothy Bourke, INRIA, France
Dr. Marco Bonvini, Whisker Labs, USA
Daniel Bouskela, EDF R&D, Paris, France
Prof. David Broman, KTH Royal Institute of Technology, Stockholm, Sweden
Dr. Dan Burns, MERL, Cambridge, USA
Prof. Francesco Casella, Politecnico di Milano, Milano, Italy
Prof. Massimo Ceraolo, University of Pisa, Italy
Prof. François E. Cellier, ETH Zürich (retired), Zürich, Switzerland
Dr. Christoph Clauß, Fraunhofer IIS EAS (retired), Dresden, Germany
Dr. Johan de Kleer, PARC, Palo Alto, USA
Mike Dempsey, Claytex Services Ltd, UK
Dr. Hilding Elmqvist, Mogram AB, Lund, Sweden
Dr. Olaf Enge-Rosenblatt, Fraunhofer IIS Dresden, Dresden, Germany
Prof. Gianni Ferretti, Politecnico di Milano, Italy
Dr. Rüdiger Franke, ABB AG, Mannheim, Germany
Dr. Jens Frenkel, ESI ITI Gmbh, Dresden, Germany
Prof. Peter Fritzson, Linköping University, Sweden
Leo Gall, LTX Simulation GmbH, Munich, Germany
Peter Harman, CAE Tech Limited, UK
Prof. Anton Haumer, OTH Regensburg, Regensburg, Germany
Dr. Dan Henriksson, Dassault Systèmes, Lund, Sweden
Dr. Yutaka Hirano, Toyota, Japan
Christoph Höger, TU Berlin, Germany
Prof. Bengt Jacobson, Chalmers Technical Universiy, Gothenburg, Sweden
Prof. Tommi Karhela, VTT / Aalto University, Espoo, Finland
Åke Kinnander, Siemens Turbo, Sweden
Jochen Köhler, ZF AG, Friedrichshafen, Germay
Dr. Christian Kral, TGM, Vienna, Austria
Dr. Chris Laughman, MERL, Cambridge, USA
Prof. Alberto Leva, Politecnico di Milano, Italy
Kilian Link, Siemens AG, Erlangen, Germany
Prof. Edward Lee, UC Berkeley, USA
Prof. Marco Lovera, Politecnico di Milano, Italy
Kristin Majetta, Fraunhofer IIS, Dresden, Germany

DOI
10.3384/ecp17132

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

7

Dr. Jakob Mauss, QTronic GmbH, Berlin, Germany
Dr. Alexandra Mehlhase, Arizona State Univeristy, USA
Dr. Lars Mikelsons, Bosch-Rexroth GmbH, Lohr am Main, Germany
Ramine Nikoukhah, Altair Engineering, Paris, France
Prof. Henrik Nilsson, University of Nottingham, Nottingham, Great Britain
Prof. Mattias Nyberg, Scania AB, Södertälje, Sweden
Prof. Akira Ohata, Toyota Motor Corporation, Tokyo, Japan
Dr. Hans Olsson, Dassault Systèmes, Lund, Sweden
Prof. Martin Otter, DLR, Oberpfaffenhofen, Germany
Dr. Andreas Pillekeit, dSPACE , Germany
Dr. Adrian Pop, Linköping University, Sweden
Johan Rhodin, 84 Codes, Missouri, USA
Dr. Adrijan Ribaric, Sentient Science, Idaho Falls, USA
Dr. Clemens Schlegel, Schlegel Simulation, Munich, Germany
Prof. Gerhard Schmitz, Technical University Hamburg-Harburg, Germany
Dr. Peter Schneider, Fraunhofer IIS EAS, Dresden, Germany
Prof. Stefan-Alexander Schneider, Kempten University of Applied Sciences, Germany
Dr. Martin Sjölund, Linköping University, Sweden
Prof. Thierry Soriano, Supmeca, France
Dr. Rita Streblow, RWTH Aachen, Aachen, Germany
Dr. Ed Tate, Exa, Livonia, USA
Dr. Wilhelm Tegethoff, TLK-Thermo GmbH, Germany
Bernhard Thiele, Linköping University, Sweden
Dr. Michael Tiller, Xogeny, Michigan, USA
Dr. Jakub Tobolar, DLR Oberpfaffenhofen, Munich, Germany
Dr. Hubertus Tummescheit, Modelon Inc., West Hartford, USA
Prof. Alfonso Urquía, UNED, Madrid, Spain
Prof. Luigi Vanfretti, KTH Royal Institute of Technology, Stockholm, Sweden
Prof. Hans Vangheluwe, McGill University, Canada and University of Antwerp, Belgium
Dr. Subbarao Varigonda, Cummins, Columbus, USA
Dr. Stéphane Velut, Lund, Sweden
Dr. Michael Wetter, Lawrence Berkeley National Laboratory, Berkeley, USA
Prof. Dietmar Winkler, University College of Southeast Norway, Norway
Dr. Dirk Zimmer, DLR Oberpfaffenhofen, Germany

Conference Organization Team:
Prof. Francesco Casella, Politecnico di Milano, Italy
Filip Ježek, Czech Technical University in Prague, Czech Republic
Doc. MUDr. Jiří Kofránek, CSc., Charles University in Prague, Czech Republic
Dr. Marek Matejak, Charles University in Prague, Czech Republic
Veronika Sýkorová, Creative Connections s.r.o., Prague, Czech Republic
Milena Zeithamlová, Action M Agency, Prague, Czech Republic

8 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Contents
Session 1: Keynote 1 17

Session 4A: Automotive I 17
Development of an Integrated Control of Front Steering and Torque Vectoring Differential Gear System

Using Modelica . 17
Virtual Occupant Model for Riding Comfort Simulation . 27
A Simulation-Based Digital Twin for Model-Driven Health Monitoring and Predictive Maintenance of

an Automotive Braking System . 35
Improved Aerodynamic Prediction Through Coupled System and CFD Models 47

Session 4B: Buildings I 55
Coupled Simulation between CFD and Multizone Models Based on Modelica Buildings Library to

Study Indoor Environment Control . 55
Co-Simulation between detailed building energy performance simulation and Modelica HVAC compo-

nent models . 63
Aspects of FMI in Building Simulation . 73
Application of Richardson Extrapolation to the Co-Simulation of FMUs from Building Simulation . . 79

Session 4C: Process & Chemical Engineering 89
Development of a Thermodynamic Engine in OpenModelica . 89
Integrated Process and Molecular Design with Modelica Using Continuous-Molecular Targeting 101
Dynamic Simulations of the Post-combustion CO2 Capture System of a Combined Cycle Power Plant 111
Optimizing the start-up process of post-combustion capture plants by varying the solvent flow rate . . 121

Session 4D: Control Systems I 131
Framework for dynamic optimization of district heating systems using Optimica Compiler Toolkit . . 131
Optimal Control of District Heating Systems using Dynamic Simulation and Mixed Integer Linear

Programming . 141
Rapid development of an aircraft cabin temperature regulation concept 151
Investigation of the Influence of Controller Approaches on Room Thermal Behaviour A Simulation

Study . 161

Session 5A: Automotive II 171
Powertrain and Thermal System Simulation Models of a High Performance Electric Road Vehicle . . . 171
Investigating the Effect of a Sonic Restrictor in the Intake of an Engine 181
Engine thermal shock testing prediction through coolant and lubricant cycling in Dymola 189

Session 5B: Buildings II 199
Template based code generation of Modelica building energy simulation models 199
Modelling and Simulation of Standardised Control Functions from Building Automation 209
Modelling of Heat Pumps with Calibrated Parameters Based on Manufacturer Data 219

Session 5C: Electrical & Power Systems I 227
Simulation of Large Grids in OpenModelica: reflections and perspectives 227
A Modelica-based Tool for Power System Dynamic Simulations . 235
A Modelica VSC-HVDC Average Value Model Implementation and its Software-to-Software Validation

using an EMT Power System Domain Specific Simulator . 241

Session 5D: Control Systems II 249
From system model to optimal control - A tool chain for the efficient solution of optimal control problems249
Nonlinear Model Predictive Control of a Thermal Management System for Electrified Vehicles using

FMI . 255
Defining and Solving Hybrid Optimal Control Problems with Higher Index DAEs 265

DOI
10.3384/ecp17132

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

9

Session 6: Poster Session 275
Large Scale Training through Spoken Tutorials to Promote and use OpenModelica 275
EMOTH The EMobility Library of OTH Regensburg . 285
Simulating a Variable-structure Model of an Electric Vehicle for Battery Life Estimation Using Mod-

elica/Dymola and Python . 291
Model Reduction Techniques Applied to a Physical Vehicle Model for HiL Testing 299
Towards Virtual Validation of ECU Software using FMI . 307
Parameter Estimation based on FMI . 313
Generic FMI-compliant Simulation Tool Coupling . 321
FMI and IP protection of models: A survey of use cases and support in the standard 329
Model-based virtual sensors by means of Modelica and FMI . 337
Dymola-JADE Co-Simulation for Agent-Based Control in Office Spaces 345
Failure Modes of Tearing and a Novel Robust Approach . 353
Towards Adjoint and Directional Derivatives in FMI utilizing ADOL-C within OpenModelica 363
PDEModelica and Breathing in an Avalanche . 367
Multirotor Aerial Vehicle modeling in Modelica . 373
Rotating Machinery Library for Diagnosis . 381
Modelling and Simulation of the passive Structure of a 5-Axis-Milling Machine with rigid and flexible

bodies for evaluating the static and dynamic behaviour . 389
Modeling and Simulation on Environmental and Thermal Control System of Manned Spacecraft . . . 397
Modeling and simulation of complex ThermoSysPro model with OpenModelica - Dynamic Modeling

of a combined cycle power plant . 407
A Power-Based Model of a Heating Station for District Heating (DH) System Applications 415

Session 7A: Automotive III 425
Model Based Design of a Split Carrier Wheel Suspension for Light-weight Vehicles 425
Development of hierarchal commercial vehicle model for target cascading suspension design process . . 433
Model Based Analysis of Shimmy in a Racing Bicycle . 441

Session 7B: Thermodynamic Systems 449
Optimization-friendly thermodynamic properties of water and steam 449
Modeling of a Thermosiphon to Recharge Phase Change Material Based Thermal Battery for a Portable

Air Conditioning Device . 459
Extended Modelica Model for Heat Transfer of Two-Phase Flows in Pipes Considering Various Flow

Patterns . 467

Session 7C: Electrical & Power Systems II 477
Improved Model of Photovoltaic Systems . 477
Modelling of a Hydro Power Station in an Island Operation . 483
Periodic Steady State Identification of electrical circuits . 493

Session 7D: Control Systems III 507
Discrete-time models for control applications with FMI . 507
Model-based Embedded Control using Rosenbrock Integration Methods 517
Integration of complex Modelica-based physics models and discrete-time control systems: Approaches

and observations of numerical performance . 527

Session 8: Keynote 2 533

Session 9A: FMI I 533
Improving Interoperability of FMI-supporting Tools with Reference FMUs 533
The Embedded Simulation via FMI and its Application to the Simulation of Lifetime Tests Including

Wear . 541
Integration Modelica with Digital Mockup Tool using the FMI . 547

Session 9B: Numerical & Symbolic Methods 557
Solving large-scale Modelica models: new approaches and experimental results using OpenModelica . 557
Transformation of Differential Algebraic Array Equations to Index One Form 565
Smart Processing of Function Calls to Achieve Efficient Simulation Code 581

10 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Session 9C: Acoustic & Medical Systems 589
Integrative physiology in Modelica . 589
Sound Source Extension Library for Modelica . 605
Towards Medical Cyber-Physical Systems: Modelica and FMI based Online Parameter Identification

of the Cardiovascular System . 613

Session 9D: Wind & Naval Engineering 623
The DLR RailwayDynamics Library: the Crosswind Stability Problem 623
The OneWind Modelica Library for Floating Offshore Wind Turbine Simulations with Flexible Structures633
Modelica Based Naval Architecture Library for Small Autonomous Boat Design 643

Session 10A: FMI II 653
FMI Go! A simulation runtime environment with a client server architecture over multiple protocols . 653
Building Parallel FMUs (or Matryoshka Co-Simulations) . 663
Scaling FMI-CS Based Multi-Simulation Beyond Thousand FMUs on Infiniband Cluster 673
Development of an open source multi-platform software tool for parameter estimation studies in FMI

models . 683

Session 10B: Modelica Language & Tools 693
Innovations for Future Modelica . 693
Hierarchical Semantics of Modelica . 703
Towards a Standard-Conform, Platform-Generic and Feature-Rich Modelica Device Drivers Library . 713
modelica.university: A Platform for Interactive Modelica Content . 725

Session 10C: Mechanical Systems Modelling 735
Object-oriented modelling of a flexible beam including geometric nonlinearities 735
Musculoskeletal Modeling of the Hand and Contact Object in Modelica 745
Modelica Spur Gears with Hertzian Contact Forces . 755
Modeling of Roller Bearings . 765

Session 10D: HVAC Systems 771
Cabin Thermal Needs: Modeling and Assumption Analysis . 771
Simulative Comparison of Mobile Air-Conditioning Concepts for Mechanical and Electrical Driven

Systems . 783
Duty Cycle for Low Energy Operation of a Personal Conditioning Device 791
A Platform for the Agent-based Control of HVAC Systems . 799

Session 11A: Modelica Tools & GUIs 809
MoVE A Standalone Modelica Vector Graphics Editor . 809
Mo|E A Communication Service Between Modelica Compilers and Text Editors 815
Traceability Support in OpenModelica Using Open Services for Lifecycle Collaboration (OSLC) 823
A Simulation Environment for Efficiently Mixing Signal Blocks and Modelica Components 831

Session 11B: Power Plants & Energy Systems 839
Component Development for Nuclear Hybrid Energy Systems . 839
Modeling and simulation of fixed bed regenerators for a multi-tower decoupled advanced solar combined

cycle . 847
Annual Performance of a Solar-Thermochemical Hydrogen Production Plant Based on CeO2 Redox

Cycle . 857
Applying the Power Plant Library ClaRa for Control Optimisation . 867

Session 11C: Mechanical Systems, Robotics & VR 879
Interactive FMU-Based Visualization for an Early Design Experience 879
Using Modelica for advanced Multi-Body modelling in 3D graphical robotic simulators 887
A New Object-Oriented Approach for Integrating Discrete Element Method into Modelica 895
Modeling and Simulation of Wheel Driving Systems based on Terramechanics for Planetary Explana-

tion Rover using Modelica . 901

DOI
10.3384/ecp17132

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

11

Session 11D: Aerospace 909
The Jet Propulsion Library: Modeling and simulation of aircraft engines 909
Virtual flight testing of a controller for gust load alleviation using FMI for cosimulation 921
The DLR Environment Library for Multi-Disciplinary Aerospace Applications 929

12 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Author Index

Abel, Dirk 613
Åberg, Marcus 449
Adib Murad, Mohammed Ahsan 241
Albertelli, Paolo 735
Albin, Thivaharan 613
Altshuller, Dmitry 477
Andreasson, Johan 745
Aoyama, Kazuhiro 643
Asghar, Adeel 823
Aute, Vikrant 459, 791
Bachmann, Bernhard 363, 557, 581
Baharev, Ali 353
Banakar, Shivakumar 783
Bardaro, Gianluca 887
Bardow, André 101
Bartolini, Andrea 227
Bascetta, Luca 887
Batteh, John 35, 47, 171, 527
Bau, Uwe 101
Baumgartner, Daniel 425
Baviere, Roland 141
Bayon, Alicia 857
Beaude, Francois P. 235
Bellmann, Tobias 713
Bender, Daniel 151
Berenguel, Manuel 683
Bergianti, Luca 171
Bertsch, Christian 533
Beutlich, Thomas 713, 895
Blochwitz, Torsten 507
Bonilla, Javier 683
Bouskela, Daniel 407
Braun, Willi 363, 557
Brembeck, Jonathan 425
Breque, Florent 771
Briese, Lâle Evrim 929
Bünning, Felix 799
Bünte, Tilman 425
Bürger, Christoff 517
Carballo, Jose Antonio 683
Casella, Francesco 227, 557, 887
Caujolle, Mathieu 663, 673
Choi, Hyung Yun 27
Cimmino, Massimo 219
Clauss, Christoph 79, 161
Constantin, Ana 345
Corniglion, Remi 673
Corniglion, Rémi 663
Corves, Burkhard 765
Croes, Jan 337
Dad, Cherifa 673
Dahash, Abdulrahman 415
Dahl, Markus 755
Datta, Kaushik 275
Davoudabadi, Peyman 35
de La Calle, Alberto 857

Dempsey, Mike 181, 299
Desmet, Wim 337
Dhumane, Rohit 459, 791
Dominik, Andreas 809, 815
Duncan, Brad 47
Durling, Erik 329
El Hefni, Baligh 407
Elci, Mehmet 415
Elmqvist, Hilding 565, 693
Emhofer, Johann 605
Évora Gómez, José 663
Fanli, Zhou 397
Febres, Jesús 847
Ferretti, Gianni 441, 735
Fischer, Torben 255
Fleps-Dezasse, Michael 425
Franke, Rüdiger 363, 507
Fraulob, Sebastian 541
Fritzsche, Jörg 249
Fritzson, Peter 89, 275, 823
Fütterer, Johannes 799
Galindo, Eduardo 189
Gallagher, Stephen 299
Gallarotti, Maura 181
Galtier, Virginie 663
Gargoloff, Joaquin 47
Gauterin, Frank 255
Gertig, Christoph Udo 101
Gesenhues, Jonas 613
Gillot, Romain 299
Giraud, Loïc 141
Gonzalez Cocho, Mikel 337
Gottelt, Friedrich 467, 867
Gräber, Manuel 249
Greenwood, Scott 839
Greiner, Christopher 527
Grether, Gustav 623
Griffin, John 47
Grimm, Alexander 285
Gross, Joachim 101
Gundermann, Julia 541
Hagemann, Jan 581
Han, Bing 381
Han, Manyong 27
Härdin, Tomas 653
Haumer, Anton 285, 389
Heckmann, Andreas 623
Hein, Marc 613
Henningsson, Maria 329
Henningsson, Toivo 693
Henriksson, Dan 517
Heo, Seungjin 433
Hernández Cabrera, José Juan 663
Heyberger, Jean-Baptiste 235
Hirano, Yutaka 17, 425
Hirao, Akinari 27

DOI
10.3384/ecp17132

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

13

Höger, Christoph 703
Hoppe, Timm 467, 867
Huchtemann, Kristian 345
Hüsson, Peter 477
Hyun, Minsu 433
Ianotto, Michel 663
Inderfurth, Alexander 199
Invernizzi, Davide 735
Ishibashi, Tatsuro 381
Jain, Rahul 89, 275
Janczyk, Leonard 477
Ježek, Filip 367, 589
Jian, Jin 397
Jo, Jaehun 433
Johnson, Lee 35
Jones, Christopher 477
Junghanns, Andreas 533
Justus, Nicola 809, 815
Kampfmann, Rüdiger 313
Kang, Daeoh 433
Kaul, Werner 199
Kawai, Tadao 381
Kerling, Ines 151
Kesarkar, Omkar 35
Ketelhut, Maike 613
Kirches, Christian 255
Klöckner, Andreas 929
Ko, Kwangchan 433
Köckeis, Rupert 389
Kofránek, Jiří 367, 589
Kraus, Tom 255
Kremers, Enrique 663
Krishnaswamy, Sivasubramani 35
Kuhn, Martin 493
Kulhanek, Tomas 589
Kulshreshtha, Kshitij 363
Kuric, Muhamed 373
Lacoursière, Claude 653
Lanzerath, Franz 101
Larsson, Per-Ola 131
Lefeng, Sun 397
Leimeister, Mareike 633
Leon, Gladys E. 235
Letschert, Thomas 815
Leva, Alberto 227
Limperich, Dirk 783
Ling, Jiazhen 459, 791
Liping, Chen 397
López Pérez, Susana 847
Löwen, Artur 345
Magargle, Ryan 35
Magnani, Gianantonio 441
Magnúsdóttir, Arndís 483
Magnusson, Fredrik 131, 449
Majetta, Kristin 79, 161
Mandloi, Padmesh 35
Marx-Schubach, Thomas 121
Matejak, Marek 589

Matsuda, Shinji 547
Matsuoka, Hisayoshi 27
Matteucci, Matteo 887
Mattsson, Sven Erik 507, 517
Menager, Nils 313
Mengist, Alachew 823
Merabet, Massinissa 141
Mesonero, Iván 847
Meyer, Richard 79
Mikelsons, Lars 307
Mocholí Montañés, Rubén 111
Mösch, Danny 313
Moudgalya, Kannan 89, 275
Mucha, Katharina 199
Mukbil, Awad 533
Müller, Dirk 345, 799
Müller, Reiko 921
Müller, Wolfgang 321
Najafi, Masoud 831
Nassif, Fady 831
Nayak, Priyam 275
Nemer, Maroun 771
Nemmaru, Bhargava 275
Neumaier, Arnold 353
Nicolai, Andreas 63
Nielsen, Lasse 867
Nikoukhah, Ramin 831
Nonaka, Kenichiro 901
Nord, Lars Olof 111
Nytsch-Geusen, Christoph 161, 199
Ochel, Lennart 507, 581
Oda, Takatsugu 901
Ohser, Florian 895
Ohtomi, Koichi 547
Oizumi, Kazuya 643
Olsson, Hans 507, 517
Osmic, Nedim 373
Otter, Martin 507, 517, 565, 693
Paepcke, Anne 63
Palmkvist, Elias 329
Park, Jongchan 433
Peßler, Georg Ambrosius 209
Pfeiffer, Andreas 517
Picarelli, Alessandro 181, 189, 299
Pipiorke, Jörg 73
Pitchaikani, Anand 35, 909
Pluymers, Bert 337
Pollok, Alexander 151
Ponci, Ferdinanda 345
Pop, Adrian 89, 275, 823
Pytlak, Radoslaw 265
Qi, Liu 397
Radermacher, Reinhard 459, 791
Rädler, Jörg 199
Reichl, Christoph 605
Reinbold, Vincent 663, 673
Reiner, Matthias 929
Richter, Christian 895

14 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Ritter, Markus 921
Roca, Lidia 683
Runvik, Håkan 131, 449
Salgado, Oscar 337
Samlaus, Roland 307
Sammak, Majed 909
Sangi, Roozbeh 799
Scaglioni, Bruno 441, 735
Schichl, Hermann 353
Schilling, Johannes 101
Schmitz, Gerhard 121
Schnabel, Uwe 541
Schneider, Georg Ferdinand 209
Schneider, Michael 389
Schölzel, Christopher 809, 815
Schwan, Torsten 73
Schweiger, Gerald 131
Sekiguchi, Kazuma 901
Selvan, Nithish 909
Sevilla, Thomas 55
Sielemann, Michael 909
Šilar, Jan 367, 589
Sjölund, Martin 713
Sohn, Michael 55
Soler, Rodolfo 189
Steiger, Simone 209
Steingrube, Annette 415
Stellato, Massimo 171
Stüber, Moritz 291
Suski, Damian 265
Sutherland, Joshua 643
Suzuki, Hiromasa 547
Swaminathan, Shashank 745
Tahirovic, Adnan 373
Tarnawski, Tomasz 265
Tate, Ed 47
Täuber, Patrick 581
Tavella, Jean-Philippe 663, 673
Tegethoff, Wilhelm 249
Thiele, Bernhard 713
Thiele, Matthias 541
Thomas, Philipp 633
Thorade, Matthis 199
Tian, Wei 55
Tidefelt, Henrik 755
Tiller, Michael 725
Tillmanns, Dominik 101
Tobolar, Jakub 425
Todtermuschke, Karsten 541
Tomiati, Nicolò 441
Toriya, Hiroshi 547
Trentelman, Thom 643
Tugores, Carles Ribas 199
Tummescheit, Hubertus 47
Unger, René 73
Vallée, Mathieu 141
Vanfretti, Luigi 241
Velut, Stéphane 131

Vialle, Stephane 673
von Manstein, Arnim 783
Walther, Andrea 363
Walther, Susanne 541
Wang, Kai 527
Waurich, Volker 713, 879
Weber, Jürgen 879, 895
Wei, Liu 397
Weiser, Tobias 765
Wernersson, Karl 507
Wetter, Michael 219
Wettergren, Håkan 755
Widl, Edmund 321
Windahl, Johan 449
Winkler, Dietmar 483, 725
Wischhusen, Stefan 467
Yoshikawa, Hiroki 901
Zawadzki, Tomasz 265
Zimmer, Dirk 151
Zitzenbacher, Raimund 605
Zuo, Wangda 55

DOI
10.3384/ecp17132

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

15

16 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Development of an Integrated Control of Front Steering and

Torque Vectoring Differential Gear System Using Modelica

Yutaka Hirano
1

1
 Toyota Motor Corporation, Japan, yutaka_hirano@mail.toyota.co.jp

Abstract
To achieve future low carbon mobility society, many

new-type electric vehicles (EVs) are developed

actively in recent period. Those EVs have integrated

power unit which take place of conventional engine,

transmission and differential gear components.

Additionally it is rather easy to integrate torque

vectoring function to those power units using gear sets

to control torque distribution between left wheel and

right wheel. In this paper, model-based development of

an integrated control of the front steering angle and

torque vectoring differential (TVD) gear system is

described. New integrated control logic was developed

using model matching control to let the vehicle yaw

rate and vehicle slip angle follow the desired dynamics.

Simulation results using an extended single track

model of vehicle dynamics are shown to prove the

efficacy of the proposed control. Though, full vehicle

model considering all of vehicle dynamics and drive

train motion using Modelica clarified the problem of

this method in actual cases. Difference between the

extended single track model and full vehicle model was

compared to estimate the reason of the problem.

Keywords: Model Based Development, Vehicle
Dynamics, Torque Vectoring, Model Matching Control

1 Introduction

To satisfy needs for future low-carbon mobility society,

development of many new EVs is increasingly active

in recent years. Additionally many new proposals

about integrated electric power train which also has

torque vectoring capability are presented (Höhn et al.,
2013). (Burgess, 2009) showed a model-based control

design of TVD using an inverse model for feed-

forward control. (Efstathios et al. 2015) introduced a

model predictive control of TVD considering non-

linear tire characteristics. On the other hand, authors

have researched a new control of TVD by using

traditional PI feedback control (Hirano et al.,

2013)(Hirano et al., 2014). The author also utilized a

model matching control theory to develop a new

control of TVD (Hirano, 2016a). Additionally the

author expand the control to the integrated control of

TVD and active front steering (AFS) by model

matching control (Hirano, 2016b). The purpose of

using both TVD and AFS is to control both vehicle

yaw rate and slip angle independently. In the last paper,

the derived control was based on simple LQR (Linear

Quadratic Regulator) and there was no measure to cope

with steady state deviation. In this paper, the LQR

design was modified by augmenting the plant model to

include integral of the state variables. As same as the

last research, an extended single track model of vehicle

dynamics was used to derive and verify the new

control. Finally the developed control was verified by

using the full vehicle model using Modelica. Some

measures about solving problems when applying

Modelica to this kind of problem are also mentioned.

2 Experimental EV

Table 1 Specifications of new experimental EV

 New EV
Conventional

car

Vehicle Mass 750 kg 1240 kg

Yaw Moment

Inertia
869 kgm

2
 2104 kgm

2

Wheelbase 2.6 m 2.6 m

Front : Rear Weight

Distribution
0.48 : 0.52 0.62 : 0.38

Height of CG 0.38 m 0.55 m

Tire RRC 5×10
-3

 8.8×10
-3

Tire Normalized CP 16.1 20.4

The proposed experimental EV has specifications as

shown in Table 1. Compared with a conventional

small-class passenger car, the new EV has better

characteristics of lighter vehicle weight, smaller yaw

moment of inertia, lower height of the center of gravity

(CG) and lower rolling resistance coefficients (RRC)

value of tires. Because of these characteristics, this new

EV is expected to have better handling and lower

energy consumption than conventional vehicles. On the

other hand, because of lighter weight and lower value

of tire normalized CP (Cornering Power), this new EV

seems more sensitive against external disturbances

such as crosswind and road irregularity than the

conventional cars. To cope with this problem, direct

yaw moment control (DYC) was applied by using a

DOI
10.3384/ecp1713217

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

17

new integrated transaxle unit for rear axle which has a

main electric motor and also TVD gear unit with a

control motor. Additionally, to control both yaw rate

and slip angle of the vehicle independently, another

control input of active front steering (AFS) was

introduced.

3 Vehicle Model

N

df

W

u

v

V

lf

lr

Xfl

f f

r

Fx(fr)

Yfl

Xfr

Yfr

Yrl Yrr

dr

W

v

V

V

u

v

V

Xrl
Xrr

Figure 1. Extended single track vehicle model

Figure 1 shows an extended single track vehicle model

to derive the control logic. Usually the single track

model calculates front and rear tire side forces by

adding both tire forces of right tire and left tire

respectively. But in this paper, the model was extended

to separate the tire longitudinal forces of right tire and

left tire to consider direct yaw moment generated by

the difference of the longitudinal forces of right tire

and left tire. The coordinate system of this model

follows FLU (x: forward, y: leftward, z; upward)

convention. The simplified equations of motion by this

extended single track model become as follows.

)(rlrr XXF
dt

dV
M (1)

rf YY
dt

d
MV 22

 (2)

NYlYl
dt

d
I rrffz 22

 (3)

where

 f

f

ffff
V

l
KKY (4)

V

l
KKY r

rrrr
 (5)

)(rlrrr XXdN (6)

Here,

β : Vehicle slip angle,

γ : Vehicle yaw rate,

M : Vehicle mass,

V : Vehicle velocity,

Iz : Vehicle yaw moment of inertia,

lf (lr) : Distance from the CG to front (rear) axle,

 (CG: Center of Gravity)

df (dr) : Tread of front (rear) axle,

X** : Longitudinal force of each tire,

Yf (Yr) : Lateral force of front (rear) tires,

δf : Steering angle of front tire,

F : Vehicle driving force,

N : Direct yaw control moment by TVD.

Kf and Kr are the equivalent cornering power of front

and rear tire respectively.

If driving force F and DYC moment N can be

calculated by some control logic, then the target

longitudinal forces of left and right rear wheels to be

realized by TVD power unit become as follows from

Equation (1) and (6).

r

rr
d

N
FX

2

1 (7)

r

rl
d

N
FX

2

1 (8)

4 Control Design

4.1 Longitudinal Driving Force Control

Let us suppose that the desired value of vehicle speed,

vehicle yaw rate and vehicle slip angle are defined as

refV ,
ref and

ref respectively.

The desired vehicle driving force F can be

calculated as below by PI feedback control and

Equation (1)..

 dtVVKVVK
dt

dV
MF refIFrefPF

ref
)()((9)

Here KPF is a proportional feedback gain and KIF is an

integral feedback gain.

4.2 Model Matching Control of Lateral

Dynamics

For the lateral dynamics, the state space form of the

vehicle dynamics with TVD and AFS control becomes

as follow from Equations (2) and (3).

BuAxx (10)

Here,

x

: State variables

(11)

N
u

f
: Control inputs (12)

Development of an Integrated Control of Front Steering and Torque Vectoring Differential Gear System Using
Modelica

18 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713217

VI

KlKl

I

KlKl

MV

KlKl

MV

KK

A

z

rrff

z

rrff

rrffrf

)(2)(2

)(2
1

)(2

22

2

2221

1211

aa

aa (13)

2221

1211

12

0
2

bb

bb

II

Kl
MV

K

B

zz

ff

f

(14)

Please note that the elements of the matrix A of the

Equation (10) are dependent on the vehicle velocity V

as shown in the Equation (13). So the vehicle dynamics

system described by the Equation (10) is a time-variant

system.

It is well known that the response of both yaw rate

and slip angle become to the second order lag function

of the steering input when no control is applied. This

fact results in that the ordinary drivers tend to respond

to steer with time lag against the vehicle motion and

tend to result in vehicle spin when the vehicle motion

becomes unstable such as on the slippery road. On the

other hand, it becomes easier for drivers to stabilize the

vehicle if the response of the vehicle motion will

become to the first order lag function, i.e. there is no

resonance characteristics about the vehicle dynamics.

Thus, the desired dynamics of vehicle yaw rate and

vehicle slip angle are assumed as the first order lag

function of the driver’s steering wheel input, as shown

by the Equation (15).

s

ref

ref

d

G
s

k

G
s

k

x

0

0

1

1

(15)

Here, s is Laplace operator. k and k are gain of

desired slip angle and desired yaw rate from the steady

state gain of each state variables, while G and G are

steady state gain of the slip angle and the yaw rate

respectively from the steering wheel input angle δs.

Also and are time constant of the desired slip

angle and the desired yaw rate as the first order lag

function.

G and G are calculated as follows. Considering

the case of steady state as x = x0 and without any active

control, the Equation (10) becomes as bellow.

sEAxx 00 0 (16)

where

zs

ff

s

f

IG

Kl

MVG

K

E
2

2

 (17)

Here, Gs: steering gear ratio. From the Equation (16),

x0 is obtained as follow.

sEAx 1

0

s

s

z

rfrf

z

ff

z

rfrrf

rrffrfrf

z

G

VMI

llKK

I

Kl

VMI

lllKK

KlKlMVllKK

VMI

1

)(4

2)(4

)(2)(4

2

22

2

 (18)

Thus, G and G can be calculated as the following

equation.

s

z

rfrf

z

ff

z

rfrrf

rrffrfrf

z

G

VMI

llKK

I

Kl

VMI

lllKK

KlKlMVllKK

VMI

G

G

1

)(4

2)(4

)(2)(4

2

22

2

0

0

 (19)

The model matching control can be derived as

below. The state space form of the desired dynamics

can be written as below from the Equation (15).

sdddd ExAx (20)

Here,

Ad

1
0

0
1

 and

0

0

G
k

G
k

Ed

.

Assume the error between actual state variables and

desired state variables as e x xd . A dynamic state

equation of this error variable can be obtained as below

by subtracting Equation (20) from Equation (10).

sddd ExAABuAee)((21)

In the previous research (Hirano, 2016b), the

simulation results of full vehicle model showed that

there were some steady state deviation remained after

stabilizing the vehicle motion. Thus, it is suggested

that augmenting the state space equation of the

Equation (21) to include the integral of the state

variables is necessary. By assuming a new state vector

of the error vector as

Session 4A: Automotive I

DOI
10.3384/ecp1713217

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

19

�̂� =

[

𝛽 − 𝛽𝑟𝑒𝑓

𝛾 − 𝛾𝑟𝑒𝑓

∫(𝛽 − 𝛽𝑟𝑒𝑓)𝑑𝑡

∫(𝛾 − 𝛾𝑟𝑒𝑓)𝑑𝑡
]

 (22)

the Equation (21) is augmented as below.

�̇̂� = [
𝐴 0 0

0 0
1 0
0 1

0 0
0 0

] �̂� + [
𝐵

0 0
0 0

] 𝑢

+ [
(𝐴 − 𝐴𝑑)

0 0
0 0

] 𝑥𝑑 − [
𝐸𝑑

0 0
0 0

] 𝛿𝑠

≝ �̂��̂� + �̂�𝑢 + 𝐴𝑑�̂�𝑥𝑑 − 𝐸𝑑�̂�𝛿𝑠

(23)

Here,

�̂� ≝ [
𝐴

0 0
0 0

1 0
0 1

0 0
0 0

] = [
𝐴 𝑂2

𝐼2 𝑂2
]

�̂� ≝ [
𝐵

0 0
0 0

] = [
𝐵

𝑂2
]

𝐴𝑑�̂� ≝ [
(𝐴 − 𝐴𝑑)
0 0
0 0

] = [
(𝐴 − 𝐴𝑑)

𝑂2
]

𝐸𝑑�̂� ≝ [
𝐸𝑑

0 0
0 0

] = [
𝐸𝑑

𝑂2
]

where O2 is the zero matrix of order 2 and I2 is the unit

matrix of order 2.

Let’s assume a virtual control input of the

augmented state space equation of the error vector as

follow.

�̂� ≝ �̂�𝑢 + 𝐴𝑑�̂�𝑥𝑑 − 𝐸𝑑�̂�𝛿𝑠 (24)

Then the Equation (23) becomes as follow.

�̇̂� = �̂��̂� + 𝐼4�̂� (25)

Here I4 is the unit matrix of order 4. For the linear

system of the Equation (25), we can design a feedback

control

�̂� = �̂��̂� (26)

by linear control theory. In this paper, the feedback

gain K̂ is calculated by using LQR (Linear Quadratic

Regulator) so that the following criteria function is

minimized.

dtURUeQeJ TT)ˆˆˆˆ(
0

Here, Q and R are weight matrixes of order 4. Please

note that K̂ is dependent on vehicle velocity because

the matrix A included in Â is velocity dependent as

shown in Equation (13). Figure 2 shows some

elements of feedback gain K̂ as a function of the

vehicle velocity V.

Figure 2. Plot of LQR gain according to vehicle speed

Finally the actual control input u is calculated by the

Equations (24) and (26) as below. At first the Equation

(24) is rewritten as below.

[
𝐾1̂

𝐾2̂

] �̂� = [
ddd ExAABu)(

𝑆
] (27)

Here, 𝐾1̂ is the upper part of size (2×4) of the gain

matrix �̂� and 𝐾2̂ is the lower part of size (2×4) of the

gain matrix �̂�. S is an unknown variable.

From the upper part of the Equation (27) the actual

control input u can be calculated as below.

})(ˆˆ{ 1

1

sddd ExAAeKBu (28)

Here, 1B is the inverse matrix of B. (
2

1 IBB
.)

From the Equation (28) it is understood that the control

input consists of a feedback term of the augmented

state error and two feedforward terms of desired state

variables and also of driver’s steering input.

5 Simulation Models and Results

5.1 Single Track Vehicle Model

To confirm the validity of above mentioned model

matching control, simulation test based on the single

track vehicle model was performed by using Modelica.

First of all, we should handle time-varying linear state

space system expressed by Equations (10) and (13). It

was easy to describe time-varying state space system as

Equations (10) and (13) by Modelica as mentioned

below.

A new class of time-varying linear state space

system was defined by using Modelica. For this

purpose, the existing class of the linear state space

system of Modelica Standard Library (MSL) was

modified to release the constraint of variability of

variables (i.e. by eliminating ‘parameter’ qualifier).

The definition of the new class becomes as follow.

Development of an Integrated Control of Front Steering and Torque Vectoring Differential Gear System Using
Modelica

20 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713217

block StateSpace_Variable
…

extends Modelica.Blocks.Interfaces.MIMO(fi

nal nin=size(B, 2), final nout=size(C, 1));
 Real A[:, size(A, 1)];
 Real B[size(A, 1), :];
 Real C[:, size(A, 1)];
 Real D[size(C, 1), size(B, 2)]=zeros(siz

e(C, 1), size(B, 2)) ;
 output Real x[size(A, 1)](start=x_start)

 "State vector";

equation

 der(x) = A*x + B*u;
 y = C*x + D*u;
end StateSpace_Variable;

model SingleTrackModel
…

 StateSpace_Variable Actual_x(

 A=A,

 B=B,

 C=identity(2));

 StateSpace_Variable Desired_xd(
 A=Ad,
 B=Ed,
 C=identity(2));
…

end SingleTrackModel;

For comparison, the definition of the existing class of

the linear state space system in MSL is as below.

block StateSpace "Linear state space syste

m"
…

 parameter Real A[:, size(A, 1)]=[1, 0; 0

, 1];
 parameter Real B[size(A, 1), :]=[1; 1];
 parameter Real C[:, size(A, 1)]=[1, 1];
 parameter Real D[size(C, 1), size(B, 2)]

=zeros(size(C, 1), size(B, 2)) ;
…

equation

 der(x) = A*x + B*u;
 y = C*x + D*u;
 …
end StateSpace;

Figure 3. Modelica model of the controller

Figure 3 shows a diagram of the Modelica model of

the model matching controller as defined by Equation

(28). The time varying linear state systems of both

plant model and desired dynamics model as mentioned

above are used in this model. Also 1D table elements

are used to define the matrix gains which are

dependent on the vehicle speed. Please note that it was

impossible to write the model by connecting elements

by normal Modelica ‘connection’ as shown by dashed

lines in Figure 3. There occurred Modelica translator

error by this way. If we connect the dashed lines as

normal Modelica ‘connection’, then this model

becomes under-constrained because the variable S in

the Equation (27) is not defined. To solve this problem,

‘algorithm’ section to calculate final value of u was

used in this model. (Dashed lines in Figure 3 indicate

that there is additional summation of the signals just

graphically. It is a little shortcoming of Modelica that

all of the equations including ‘algorithm’ section

cannot be seen directly in the graphical window.)

Figure 4 shows simulation results using the single

track model. Vehicle accelerates from 10km /h to

100km/h between time 1 sec to 10sec. The steering

input angle moves as 1Hz sinusoidal curve. Desired

dynamics was settled as k = 0.3 and k and
are settled as corresponding value of cut-off frequency

of 1.3 Hz.

The results of vehicle slip angle and yaw rate are

shown not only in the nominal plant but also there

were some perturbation of vehicle mass (M) and tire

cornering power (CP). In the nominal case, the results

of slip angle and yaw rate were exactly matched with

the desired values. It is shown that the model matching

control has rather good robustness against the

perturbation of the parameter M. But it is not so robust

against the change of the plant parameter CP. The

improvement of the robustness of the control should be

a future research.

DYC Torque

Velocity

Steering input angle

Active Front Steer Angle

+
+

k=p

steering_ratio

vecAdd vecAdd

+
-1

+1

vecAdd3
+1
+1
+1

+

Desired_xd

A B

C D
Variable

Actual_x

A B

C D
Variable

Xd_output

*K

Xd_output

Variable

Kp_output

*K

Kp_output

Variable

Deltaf_output

*K

Deltaf_output

Variable

deMultiplex2

k11_Table

k12_Table

k21_Table

k22_Table

k=3.6

v2kmh

integrator

I
k=1

k13_Table

k14_Table

k23_Table

k24_Table

Ki_output

*K

Ki_output

Variable

delta

t_DYC

delta_f

Session 4A: Automotive I

DOI
10.3384/ecp1713217

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

21

Figure 4. Plot of vehicle velocity and steering input angle

5.2 Full vehicle model

The full vehicle model as previous research (Hirano et

al., 2013)(Hirano et al., 2014) was used for full-vehicle

simulation. The model was developed based on

Vehicle Dynamics Library of Modelica (Modelon,

2014) and was built as a full 3-dimentional (3D) multi-

body-dynamic system (MBS) model. Component

models of control systems such as TVD gearbox,

electric motor and inverter were added with the full

vehicle model.

Figure 5. Structure of full vehicle test model

Figure 5 shows the top level of the model hierarchy

of the full vehicle test model and also the power train

model with the controller.

For the TVD gear train, a driveline structure

referencing the MUTE project of the Technische

Universität München (Höhn et al., 2013) was selected

and the TVD model was constructed using Modelica

Power Train Library (DLR, 2013). Figure 6 shows the

configuration of the gear trains. Torque from the main

motor is distributed equally to the left wheel and the

right wheel through the differential gear. The torque

distribution between the left wheel and the right wheel

can be controlled by changing the torque input of the

control motor.

Figure 6. Torque vectoring differential (TVD) driveline

Development of an Integrated Control of Front Steering and Torque Vectoring Differential Gear System Using
Modelica

22 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713217

Figure 7. Modelica model of TVD gear train

Figure 7 shows a diagram of Modelica model of the

torque vectoring gear train. The model is provided with

elements that define the relational expression between

the torque and speed of each gear engagement portion.

3D MBS model of suspension, steering and body

were installed to calculate vehicle dynamics

characteristics. Suspension model was constructed as

an assembled model of each suspension linkage, joints

and force elements such as spring, damper and bushing.

Non-linear tire model based on ‘Magic Formula’

model (Pacejka02) was used to calculate combined

lateral force and longitudinal force of each tire.

Steering model considered the characteristics of

viscous friction of steering gear box and steering shaft

as well as steering shaft stiffness.

5.3 Results of full vehicle simulation

Figure 8. Comparison between full vehicle model and

single track model

At first, the result of the full vehicle model and the

single track model was compared in a case that no

control was applied. Steering input angle was given as

a sinusoidal sweep signal from 0.1 Hz to 5Hz at

constant vehicle speed V=80[km/h]. Figure 8 shows the

results of vehicle slip angle and yaw rate response. It is

shown that some difference exists between the single

support by PowerTrain Library
Torque Vectoring Gear Box

left

right

controlMotor

Brake

mountA

differential Part2 Part1

mountB6

mountB3

Rdif

w

S4

w

P4

w
C34

w
P3

w

S3

w
R2

w
C2

w
S2

w
R1

w
C1

w
S1

w

add1add1

+

+1

-1add2add2

+

+1

-1

Rdif_rpm

S4_rpm

S3_rpm

R2_rpm

C2_rpm

S2_rpm

R1_rpm

C1_rpm

S1_rpm

P4_rpm

P3_rpm

C34_rpm

C4_RightTyre

S4_LeftTyre

Session 4A: Automotive I

DOI
10.3384/ecp1713217

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

23

track model and the full vehicle model especially in the

low frequency response. The reason of this result is

assumed that the approximation when used to derive

the equation of the single track model was too big.

Actually the Equation (2) and (3) about the Figure 1

should be

 rff YYuu
dt

d
M 2cos2tan 1 (29)

NYlYl
dt

d
I rrfffz 2cos2

(30)

in precise. Also the non-linearity of the tire

characteristics and effects of many losses and stiffness

of mechanical parts are not considered in the single

track model. This result indicates that we should be

careful when designing controllers based on the single

track model.

Next, a simulation emulating double lane change

maneuver was performed. Though, in this case, a

problem that the vehicle motion of the full vehicle

model became unstable when applying the control law

shown in Eq. (28). The reason was that by the default

gain of the feed forward control parts, the controlled

steering angle exceeded the actual physical limit and

turned more than 6[rad], that is, about 360[deg]. So the

compensation for the feed forward parts was applied so

that the controlled front steering angle will not be so

different from the steering input angle. (Actually the

feed forward parts were gained by 0.1.) After this

modification, the vehicle response became stable in the

actual case using the full vehicle model. Also for the

feedback part, we should be careful to select the value

of weight matrix element when designing LQR

controller. Also the weight for the steering angle

control was lowered than that for the DYC torque

because of the physical limit of the steering angle.

These problems may be solved by modifying the

controller design from LQR to MPC (Model Predictive

Control) which can consider the limitation of the

actuators, but there would be a conflict of calculation

time of the controller in such a case.

Figure 9 shows the results of the full vehicle

simulation imitating the double lane change test by

open-loop driver model. Though there seems necessity

of further gain tuning, the modified model matching

control seems to work to let the actual state variables

trace the desired variables.

Also side wind test was simulated using the full

vehicle model. Figure 10 shows the results. There is a

side wind of 20[m/s] while time = 2 sec to 3.5 sec

when the vehicle is running at 120[km/h] with fixed

steering input angle of 0[rad]. The effect of the

proposed control to stabilize both slip angle and yaw

rate response against the side wind was shown.

For comparison, the result of the previous research

in which design of the model matching control was

done without considering the integral of the error

(Hirano, 2016b) is shown in Figure 11. The new

control (Figure 10) showed less steady state deviation

and also better regulation of the state variables against

the external disturbance as the side wind, though it is

not perfect yet.

Figure 9. Full veheicle simulation result for double rane

change test

Development of an Integrated Control of Front Steering and Torque Vectoring Differential Gear System Using
Modelica

24 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713217

Figure 10. Full vehicle simulation result of side wind test

Figure 11. Side wind test result by previous control

6 Conclusion

A new integrated control of DYC and front steering

angle was proposed using model matching control also

considering the integral of the error. By simulations

using both single track model and full vehicle model

based on Modelica, the effect of the control was

investigated. Also the limitation of control design

based on the single track model was clarified by

comparing the results of the simulation by both single

track model and full vehicle model. Some know-how

about controller design was also obtained from the full

vehicle model simulation considering various

limitations of the actual vehicle. Because of the

limitation of the actual actuators and also neglected

modeling errors, the results of the proposed control

was not satisfactory.

On the other hand, Modelica was always powerful

to express any kind of controllers as well as multi-

physics full vehicle model. A new technique to expand

Modelica model to write time-variant models was also

introduced.

Session 4A: Automotive I

DOI
10.3384/ecp1713217

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

25

References

M. Burgess, Torque vectoring. Lotus Engineering, 2009.

DLR(German Aerospace Center), Power Train Library Users

Guide (Version 2.1.0), 2013

S. Efstathios, E. Velenis, and S. Longo, Model predictive

torque vectoring control for electric vehicles near the limits

of handling. European .Control Conference (ECC) 2015

IEEE, 2015.

Y. Hirano, S. Inoue and J. Ota, Model-based Development of

Future Small EVs using Modelica, Proceedings of

Modelica Conference 2014, 2014.

Y. Hirano, S. Inoue and J. Ota, Model Based Performance

Development of a Future Small Electric Vehicle by

Modelica, Proceedings of Modelica Conference2015, 2015.

Y. Hirano, Research of Model Matching Control of Torque

Vectoring Differential Gear System, Proceedings of

Japanese Modelica Conference2016, 2016a

Y. Hirano, Model Based Development of an Integrated

Control of Front Steering and Torque Vectoring

Differential Gear System, Proceedings of SICE2016,

2016b

B. Höhn et al., Torque Vectoring Driveline for Electric

Vehicle, Proceedings of the FISITA 2012 World

Automotive Congress, Vol. 191, pp. 585-593, 2013.

Modelon, A.B., Vehicle Dynamics library Users Guide

(Version 1.8), 2014

Development of an Integrated Control of Front Steering and Torque Vectoring Differential Gear System Using
Modelica

26 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713217

Virtual Occupant Model for Riding Comfort Simulation

Hyung Yun Choi1 Manyong Han1 Akinari Hirao2 Hisayoshi Matsuoka2
1Hongik University, Korea, hychoi@hongik.ac.kr, myhan@mail.hongik.ac.kr

2Nissan Motor Co. Ltd, Japan, a-hirao, hisayoshi_m@mail.nissan.co.jp

Abstract
A digital human body model as a virtual occupant

surrogate for the riding comfort simulation is developed

for both 1D lumped network (Modelica) and 3D mesh

based (Finite Element) solutions. Since the composition

of 1D and 3D versions of the human body model has a

similar multibody system architecture, the kinematic

responses from both solutions are almost equivalent.

The models are therefore complementary, since the

economic 1D models can serve effectively in design

exploration and optimization, while their sophisticated

3D counterparts can serve in final design validation. The

detailed modeling process and validation results against

standard seat vibration excitation test are introduced in

this paper, preparing the models for use in seat design.

Keywords: digital human body model, riding comfort

simulation, 1D lumped network Modelica model, 3D
mesh based Finite Element model, vibration excitation

1 Introduction

A virtual human body model (VHBM) is developed for

quantitative and objective assessments of the riding

comfort design of vehicles. The VHBM has biofidelic

dynamic characteristics of human occupants during the

vehicle ride. The anthropometry of the finite element

human body model is based on a previous study [Kim

2007] and represents a standard North American

50th %tile male from the SizeUSA population survey

2000-03.

There have been many CAE studies to virtually

simulate static and dynamic interactions between the

human occupant and the vehicle seat. Montmayeur et al

[Montmayeur 2004] used a human body model to

predict the sitting pressure distribution and head-to-seat

vertical transmissibility. There was a good correlation

against the experiment but the position of the human

body model was limited to upright erect sitting without

a back support. Choi et al [Choi 2008] used a human

body model to evaluate lumbar support design. They

investigated postural changes of sitting occupants such

as seat back pressure distribution and lordotic curvatures

of the lumbar spine with the different configurations of

lumbar support, and the prominence and height of the

support. Yamada et al [Yamada 2016] used the THUMS

model (Total Human Model for Safety, version 5) to

investigate the influence of muscular strength and seat

reaction force on occupant kinematics in single lane

change maneuvers. It was found that some skeletal

muscles in the THUMS model were needed to activate,

e.g., 350N by abdominal oblique muscles to resist

against 1.0G lateral vehicle motion. Han et al [Han 2016]

presented an efficient way to model muscle forces of

vehicle occupants as they maintain the postural stability

during the ride. The active joint torque controlled by a

proportional integral derivative (PID) closed loop was

introduced at the elbow joint to simulate voluntary and

reflexive response of the human subjects.

The main focus of the VHBM in this paper is showing

its capability of not sophisticated but quite effective

representations of active skeletal muscle forces by

developing PID-controlled active torques at articulated

joints. It is hypothesized that vehicle occupants brace

their limbs and trunk to maintain the initial upright

(comfortable) sitting posture. Accordingly, the VHBM

model autonomously develops the skeletal muscle

forces, i.e. active torques, at articulated joints against the

external perturbations.

The VHBM was built for two kinds of solution, 1D

lumped network (Modelica) and 3D mesh based (Finite

Element) solutions. The 1D lumped network solution is

very effective for the multi physical system with many

controllers. It is also suitable for the calculation of large

numbers of variants. On the other hand, the 3D mesh

based solution with its fine geometry and material

properties can provide detailed interactions with the

neighboring structure, the vehicle seat in our case.

However the 3D solution requires a great deal of

computing power due to its high level of modeling

complexity. The topological composition of the 1D

version of the human body model is the same as that of

the 3D version since they are both based on a multibody

system with PID controllers. The outcomes of two

different solutions, e.g., dynamic response of human

body model to external loadings, are thus almost

identical. Therefore, the use of the 1D model to calibrate

intrinsic and extrinsic parameters of the human body

model, such as joint properties and weighting factors

(gains) in the PID controllers, is quite beneficial. An

optimization process is normally adopted for

determining those modeling parameters, which becomes

an extremely lengthy task when a 3D model is used. In

case with the Genetic Algorithm at the optimization

process, a number of around several hundred model runs

(15 generations X 50 populations) are often necessary

for the convergent result. However the 3D human body

model is also necessary at the practical application stage

DOI
10.3384/ecp1713227

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

27

because it produces many informative outcomes at the

riding comfort simulation, e.g., dynamic sitting pressure

distribution.

2 Human Body Modeling

2.1 Multibody Modeling

The whole human body are segmented into 15 body

regions (see Fig. 1), i.e., head, neck, upper/center/lower

trunks, left and right upper/lower arms, left and right

upper/lower legs, and left and right foot. And they are

articulated by 14 joints as listed in Table 1. The dynamic

properties of the 15 body segments modeled as rigid

bodies: mass, center of gravity, and 2nd mass moment

of inertia of each body region, are calculated by GEBOD

program [Cheng 1996]. The averaged values of 32 body

dimensions measured from 10 test subjects of this study

are used as input parameters at the GEBOD calculation.

Kinematic joint elements are used for the articulation of

the 15 body segments of which the main biomechanical

characteristics are defined by stiffness and damping

coefficients. The kinematic joint element describes the

passive characteristics of the human joint, together with,

the active torques. Assuming that a co-contraction of

agonist and antagonist muscles stiffens the joint

articulation, the damping coefficients of the passive

kinematic joint element are adjusted for the different

levels of pre-tensions, which is considered as a major

mechanism of voluntary muscle activation. Meanwhile,

the spring constant of the kinematic joint element

represents the inter-subject variation of the muscular

structure, e.g., male versus female, younger versus older.

Figure 1. Whole body model segmented by 15 rigid

bodies and 14 articulated joints (in 3D FE model view)\

Table 1. Fourteen articulated joints with their anatomical positions

Articulated joint DOF Anatomical position

1 Head-neck 3 OC joint

2 Neck-Upper trunk 3 sC7/T1

3 Upper-Center trunk 3 T12/L1

4 Center-Lower trunk 3 L5/S1

5, 6 Upper trunk-arm, R, L 3 Right, Left shoulders

7, 8 Upper-Lower arm, R, L 1 Right, Left elbows

9, 10 Lower trunk-leg, R, L 3 Right, Left hip joints

11, 12 Upper-Lower leg, R, L 1 Right, Left Knees

13, 14 Lower leg-foot, R, L 3 Right, Left ankle

2.2 Wobbling Masses

The internal organs in the ventral body cavity, such as

lungs, heart, stomach, intestines, liver, spleen, kidneys,

and bladder, are classified by their anatomical locations,

either above or below the diaphragm, i.e., in thoracic

and abdominal/pelvic cavities, respectively. The organs

in a same or adjacent cavity are grouped together as a

single lumped mass in the virtual occupant model, Fig.

2. The wobbling behavior of the internal organs at whole

body vibration is thus characterized by two lumped

masses, one for the thoracic cavity and the other one for

the abdominal and pelvic cavities. Each wobbling mass

was estimated respectively as 5kg and 10kg for the

thoracic and abdominal/pelvic masses.

All sides of the two wobbling masses are tied by

elastic spring elements to the inner surfaces of the

thoracic and abdominal cavities. There are also elastic

spring elements between two wobbling masses

connecting the bottom side of thoracic mass and the top

side of abdominal/pelvic mass. The mechanical

characteristics of spring elements such as stiffness and

damping coefficients were assigned to reproduce the

biofidelic dynamic behavior of the two wobbling masses.

Figure 2. Wobbling masses in the trunk (in 1D

SimulationX model view)

Virtual Occupant Model for Riding Comfort Simulation

28 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713227

2.3 Active Joint Torque with PID Close

Loop Control

Voluntary and reflexive muscle activation of a vehicle

occupant is modeled by active joint elements at each

anatomical joint position (e.g., shoulder, knee, spine,

etc.). There are two basic elements at each joint, i.e., the

passive kinematic joint element and the torque actuator.

Contrastively to voluntary activation of individual

muscles, i.e., the pre-tension and consequent stiffening

of the articulated joint represented by the passive

kinematic joint element, a vestibular reflexive muscle

activation for the posture stabilization is modeled by the

introduction of active torques with PID closed loop

control. As an example, the modeling of the head-neck

joint (C0-C1) is shown in Fig. 3. The active torque, the

control signal, is a sum of proportional, integral, and

derivative terms between the current and the reference

(initial) joint angles. The gain values at the PID control

determine the rates of torque generation. Faster torque

generation with larger gain values stands for the pre-

recognition of the upcoming external perturbation. Each

term at PID can be adjusted to calibrate the rate of

muscle recruitment for fine control of the reflexive

response of the human occupant. Authors of this paper

showed a successful application of the proposing active

joint modeling with the elbow reacting to the jerk

loading [Choi 2016, Han 2016].

Figure 3. Block diagram of head-neck joint (C0-C1) with active torque using PID close loop control (in 1D model view)

2.4 Finite element model vs. Modelica model

The composition of 1D lumped network (Modelica)

version and 3D mesh based (Finite Element) version of

the whole body model in Fig. 4 has similar multibody

system architecture. The same segmental dynamic

properties, joint characteristics, and PID control gains,

are assigned to both 1D and 3D models. Consequently,

the outcomes such as dynamic responses from both

models to external loadings are almost identical. So,

utilizing the computational efficiency of 1D Modelica

model and solution instead of 3D FE model, the

calibration process of the intrinsic and extrinsic

modeling parameters become much faster.

Figure 4. 1D lumped network (top) and 3D finite element

(bottom) whole body human models.

The one of lacking feature at the 1D lumped network

solution compared to the 3D mesh based solution is the

pragmatic sliding contact algorithm to handle the

nonlinear boundary conditions. In the context of riding

comfort simulation, the main application of the

occupant model, a dynamic interaction between the

occupant and the vehicle seat, is the most relevant case.

In general, a riding comfort design of the vehicle seat is

responsible for the quality of static support at a sitting

posture and the dynamic isolation against floor level

Session 4A: Automotive I

DOI
10.3384/ecp1713227

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

29

vibration. The measurement of the sitting body pressure

distribution and its pattern analysis provide the design

assessment of the static support, while the body regional

transmissibility characterizes the dynamic isolation of

the excitation vibration. There are model libraries

available at SimulationX to handle the sliding contact

between objects, such as polygon-polygon contact. The

polygon-polygon contact library computes the penalty

contact force based on the amount of overlapping depth

between two-dimensional cross sectional outline

polygons of objects. This is a suboptimal choice at 1D

solutions but an appropriate selection of cross section

and contact parameters is always required to reproduce

the same outcome from the sliding contact in 3D mesh

based solutions. Fig. 5 shows a polygon-polygon contact

definition between buttock and seat at the 1D model.

Figure 5. 2D polygon-polygon contact at 1D lumped

network models.

In addition, the 3D FE whole body model has

deformable flesh layers modeled by a visco-elastic

Ogden rubber material of solid element at those body

regions, i.e., dorsal back, buttock and thigh, which are

normally in touch with vehicle seat. (Fig. 6) This

deformable flesh layer can simulate the precise

distribution of dynamic sitting pressure, which is hardly
obtainable from the 1D lumped network solution.

Figure 6. Deformable flesh layer in 3D FE model

The comparison of computation times between three

models, two 3D finite element models with and without

flesh layer and 1D Modelica model is listed in Table 2.

Table 2. Simulation time of a loading case (X direction

excitation, 5Hz, 0.2g relaxed condition for 4sec)

Model
1 core CPU*

time (sec)

8 core CPU

time (sec)

3D FE with flesh
108,900 sec

(30.3 hours)

14,770 sec

(4.1 hours)

3D FE w/o flesh
13,880 sec

(3.9 hours)

1,980 sec

(0.6 hours)

1D Modelica
1,851 sec

(0.5 hours)
NA

* CPU processor: I7-4770K 3.5GHz,

3 Validation of Human Body Model

against Vibration Excitation Test

3.1 Excitation Vibration Test

A total of ten male subjects with standard North

American 50th %tile anatomies between 35 and 45 years

old were recruited. The same selection process of test

subjects is adopted from the previous study [Kim 2007].

From the statistical factor analysis of the study, six

primary dimensions listed in Table 3 were chosen to

represent the overall body shape and size of the target

population. Based on the SizeUSA survey (2000-03),

the specific ranges (average±/4) in Table 3 for

50th %tile male were assigned as the selection criteria of

test subjects. The mean and standard deviation for the

six primary dimensions of 10 test subjects in this study

are also listed in Table 3.

Table 3. Ranges for selection and mean of primary

dimensions for test subjects

Body dimension
Selection

range
Mean(SD) of

test subjects

Weight (kg) 81.5 - 89.9 85.9 (2.43)

Height (m) 1.759 - 1.799 1.780(0.013)

Hip Height (m) 0.870 - 0.925 0.898(0.018)

Virtual Occupant Model for Riding Comfort Simulation

30 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713227

Back Waist Length(m) 0.476 - 0.548 0.527(0.013)

Bust Girth (m) 1.052 - 1.170 1.067(0.015)

Hip Girth (m) 1.000 - 1.080 1.034(0.026)

Both standing and sitting postures of all subjects are

scanned in three dimensions, and 32 body dimensions of

each subject are digitally measured for the estimation of

dynamic properties of 15 body segments at the GEBOD

calculation [Cheng 97]. Approval to conduct testing in

this study with human subjects was granted by the Pusan

National University Institutional Review Board (IRB,

PNU IRB/2015_30_HR).

All test subjects hold a driving posture as sitting on

the wood seat engraved with the skin shape of HPM-II

machine (SAE J4002) which is designed to minimize the

slip on the seat during the excitation. The three

translational degree of freedom exciter machine (IMV i-

220) was used for the test. The typical sitting posture on

the exciter and the wood seat are shown in Fig. 7.

The test subjects were exposed to the discrete sinusoidal

vibrations in uncoupled three translational directions.

Three frequencies, 3Hz, 5Hz, and 10Hz, at two

amplitudes, 0.2g and 0.4g (c.f., 0.1g and 0.2g for 3Hz

excitation), were respectively applied to each of the

three directions, fore/aft(X), lateral(Y), and vertical(Z).

The test subjects were exposed to the excitations in two

Figure 7. Typical sitting posture of test subject (left)

and wood seat engraved with skin shape of HPM-II

machine (SAE J4002) (right)

conscious muscle conditions of being relaxed and tensed.

In the relaxed muscle condition, the test subjects were

requested to strain against the gravity and the excitation

just enough to sustain the initial sitting posture. In the

tensed muscle condition, the test subjects were instead

asked to fully brace their limbs to maximize the

resistance against the excitation. There were a total of

36 cases in this excitation test, 3 excitation directions X

3 frequencies X 2 amplitudes X 2 muscle condition. The

body segmental accelerations were measured in three

directions at the forehead, chest and two thighs,

specifically on the anterior side of the mid femur. The

vibration was monitored by the accelerometer (Kistler
8310B) placed on the seat buck platform for a feedback

control of the input signal by using NI-PXI8187

controller and Labview software to maintain the

frequency and amplitude of the target excitation. The

excitation of each vibration case was applied for 20

seconds with a random order. The data of 16 seconds

record were just used in the analysis by excluding the

first and the last transient 2 seconds.

The frequency analysis of measured body regional

acceleration signals was performed by taking Fast

Fourier Transformation (FFT) with 99% overlap and 2-

second unit time. The 1st peak head acceleration of 6

representative subset cases are listed in Table 4.

Table 4. 1st peak head acceleration of 6 representative

subset cases.

Excitation cases*
Head acc. (SD), (m/s2)

X Y Z

#1 X_5Hz_0.2g_R
0.985

(±24%)
0.270

(±59%)

2.100

(±48%)

#2 Y_5Hz_0.2g_R
0.090

(±73%)

0.254

(±63%)

0.153

(±81%)

#3 Z _Hz_0.2g_R
1.338

(±24%)
0.311

(±63%)
2.625

(±53%)

#4 Z_5Hz_0.4g_R
2.335

(±26%)
0.582

(±58%)
6.259

(±37%)

#5 Z_10Hz_0.2g_R
1.041

(±32%)

0.199

(±51%)

1.384

(±74%)

#6 X_5Hz_0.2g_T
0.934

(±44%)
0.379

(±74%)
3.761

(±39%)
*: excitation direction_frequency_amplitude_muscle condition

3.2 Exciting vibration simulation with virtual

human body model

Using the 3D FE version of the virtual human body

model described in Section 2, the vibration response to

excitation was simulated in the following two steps:

Step #1: Quasi-static sitting phase by gravity

loading;

Step #2: Dynamic excitation phase by discrete

sinusoidal loadings.

The gravity driven sitting phase at step #1 simulates

the equilibrium state of the virtual human whole body

model in a driving posture. The driver at tensed muscle

condition braces articulated joints at upper and lower

limbs [Choi 2005]. This bracing behavior at the tensed

muscle condition is reproduced by increasing the level

of active joint torques. The change of initial sitting

posture at tensed muscle condition from the relaxed,

especially the slightly more extended elbow joint and

tucked-in chin is noticeably shown in Fig. 8. The effect

of bracing in the sitting posture on pressure distribution

is shown in Fig, 9. The contact area to the seat back at
the tensed posture shifts to the upper dorsal back while

the contact area in buttock to seat cushion remains

Session 4A: Automotive I

DOI
10.3384/ecp1713227

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

31

similar to the relaxed muscle condition. The simulation

time for relaxed and tensed initial postures are

respectively 1,500 milliseconds and 2,000 millisecond.

Figure 8. Comparison of simulated initial sitting posture

between relaxed (left) and tensed (right) muscle

conditions (3D FE model).

Figure 9. Comparison of simulated sitting pressure

distribution between relaxed (left) and tensed (right)

muscle conditions (3D FE model).

In Step #2, a discrete sinusoidal excitation loading is

applied for additional 4,000 milliseconds to the

equilibrated sitting virtual driver model. The same 3D

FE model used for Step #1 is also utilized to calculate

6dof kinematic outcomes at the COG point of the lower

trunk, i.e., time profiles of 3 translational and 3

rotational displacements. This vibration response at the

lower trunk body segment is further used as an input

signal of the 1D lumped network model (and the 3D FE

model without deformable flesh layer) for the

calibration process of intrinsic and extrinsic modeling

parameters, which is to be described in detail at Section

3.3. Assuming the negligible effect of intrinsic and

extrinsic parameters on the kinematics of the lower

trunk body segment which is right top of the seat

cushion but more to the upper body and the head, the use

of the 1D model for the calibration process is far more

efficient than the equivalent 3D FE model in terms of

the computation time.

3.3 Calibration of modeling parameters

Two kinds of modeling parameters, intrinsic and

extrinsic variables which are, respectively, independent

and dependent on external loadings, are calibrated as in

the process shown in Fig. 10. The most important steps

in the calibration process are preliminary and decisive

optimizations. Both intrinsic and extrinsic parameters

are design variables in the preliminary optimization but

only extrinsic parameters in the decisive optimization.

At the decisive optimization process, the intrinsic

parameters adopted from case #4, the best matching case

at the preliminary optimization among 6 loading cases,

are used for all cases since they are supposedly

independent on external loadings, the excitation

direction, frequency, and amplitude. As described in

Section 2.2, the mechanical characteristics of tied

springs for wobbling masses belong to the intrinsic

parameters. The discrete damping values in the

kinematic joint element are separately assigned to

relaxed (cases #1-5 in Table 4) and tensed (case#6)

muscle conditions, which represent the level of bracing

(co-contraction). The three gain terms at PID controllers

for the active joint torque in Section 2.3 fall into the list

of extrinsic parameters.

Figure 10. Calibration process for model parameters.

3.4 Optimization process

The results from two optimizations in the calibration

process in Fig. 10 is listed in Tables 5 and 6. The Genetic

Algorithm (GA) at PAM-OPT (www.esi-group.com) is

adopted to optimize design variables, given by the

intrinsic and extrinsic modeling parameters. The

objective function is defined as the following equation;

Virtual Occupant Model for Riding Comfort Simulation

32 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713227

 Obj. function = ((𝑎𝑥𝑠𝑖𝑚
− 𝑎𝑥𝑡𝑒𝑠𝑡

) 𝑎𝑥𝑡𝑒𝑠𝑡
⁄)

2
 +

((𝑎𝑦𝑠𝑖𝑚
− 𝑎𝑦𝑡𝑒𝑠𝑡

) 𝑎𝑦𝑡𝑒𝑠𝑡
⁄)

2
 +

((𝑎𝑧𝑠𝑖𝑚
− 𝑎𝑧𝑡𝑒𝑠𝑡

) 𝑎𝑧𝑡𝑒𝑠𝑡
⁄)

2
+

0.1 ∗ (max (𝜃𝑐0−𝑐1 𝑡)/1.5)2

Where,

𝑎𝑖𝑠𝑖𝑚
: 1st peak FFT acceleration in i direction from

simulation.

𝑎𝑖𝑡𝑒𝑠𝑡
: 1st peak FFT acceleration in i direction from test

𝜃𝑐0−𝑐1 𝑡: Rotation angle of C0_C1 (head-neck) joint in

t-direction (yawing).

Each iteration (generation) in the GA optimization

has a number of 30 points (populations). As an

exception, case #2 Y_5Hz_0.2g_R has 90 populations,

three times more than other cases just for the decisive

optimization process. The termination criteria is

satisfying one the following two conditions;

#1 Objective function value becomes less than 0.1

#2 No change in objective function values for last 5

iterations

The objective function values in Table 5 for the

preliminary optimization result is smaller than those

from the decisive optimization result in Table 6 for all 6

loading cases. This becomes obvious that only extrinsic

parameters are optimized as design variables while the

uniform intrinsic parameters are assigned as fixed

modeling variables in the decisive process.

It is also noted that relatively high objective function

values associated with the lateral Y direction excitation

case (#2 in Table 5 and 6) is mainly due to the small

baseline effect, i.e., the measured head acceleration is

quite smaller than the other excitation directions (see

Table 4).

4. Conclusion

A virtual human body model is developed to predict the

riding comfort design of vehicles. The active response

of the human occupant to maintain the upright sitting

posture is virtually reproduced by using active joint

torques with PID closed loop control. Both 1D lumped

network (Modelica) and 3D mesh based (Finite Element)

solutions are adopted to model the multibody system

architecture of human body. The characteristics of

virtual human body model is verified and validated

against the excitation test with human subjects.

5. Future Study

The virtual human body model will be further validated

against the subject test of angular excitations such as

rolling and pitching which was performed with 6dof

exciter [Choi 2017(2, 3)]. Also a riding comfort index

based on ergonomic criteria is under development.

Assuming the occupant is trying to develop active joint

torques to maintain the upright sitting posture against

external perturbations, the total amount of skeletal

muscle energy together with body regional transfer

function could be a quantitative and objective tool for

the assessment of seat, suspension system, and chassis

designs in the dynamic performance of vehicle.

Session 4A: Automotive I

DOI
10.3384/ecp1713227

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

33

Table 5. Result from the preliminary optimization process in Fig. 10

Excitation cases*

Preliminary Optimization 1st Peak Head acceleration (g)
Obj.

func.

Value

Iter.

No.

Iter.

Term.

X Y Z

Sim
Test

(SD)
% err. Sim

Test

(SD)
% err. Sim

Test

(SD)
% err.

#1 X_5Hz_0.2g_R 0.101
0.100

1% 0.026
0.028

-6% 0.259
0.214

21% 0.099 12 #1
(±24%) (±59%) (±48%)

#2 Y_5Hz_0.2g_R 0.006
0.009

-29% 0.044
0.026

68% 0.008
0.016

-51% 0.896 15 #2
(±73%) (±63%) (±81%)

#3 Z_5Hz_0.2g_R 0.112
0.136

-18% 0.034
0.032

7% 0.272
0.268

2% 0.059 7 #1
(±24%) (±63%) (±53%)

#4 Z_5Hz_0.4g_R 0.225
0.238

-5% 0.063
0.059

6% 0.564
0.638

-12% 0.040 11 #1
(±26%) (±58%) (±37%)

#5 Z_10Hz_0.2g_R 0.119
0.106

12% 0.013
0.020

-36% 0.212
0.141

51% 0.414 25 #2
(±32%) (±51%) (±74%)

#6 X_5Hz_0.2g_T 0.115
0.095

21% 0.040
0.039

3% 0.233
0.383

-39% 0.201 20 #2
(±44%) (±74%) (±39%)

*: excitation direction_frequency_amplitude_muscle condition

Table 6. Result from the decisive optimization process in Fig. 10

Excitation cases*

Decisive Optimization 1st Peak Head acceleration (g)
Obj.

func.

Value

Iter.

No.

Iter.

stop

X Y Z

Sim
Test

(SD)
% err. Sim

Test

(SD)
% err. Sim

Test

(SD)
% err.

#1 X_5Hz_0.2g_R 0.199
0.100

99% 0.033
0.028

17% 0.049
0.214

-77% 1.610 15 #2
(±24%) (±59%) (±48%)

#2 Y_5Hz_0.2g_R 0.025
0.009

177% 0.118
0.026

354% 0.037
0.016

130% 17.58 29 #2
(±73%) (±63%) (±81%)

#3 Z_5Hz_0.2g_R 0.104
0.136

-24% 0.034
0.032

6% 0.258
0.268

-4% 0.126 12 #2
(±24%) (±63%) (±53%)

#4 Z_5Hz_0.4g_R 0.225
0.238

-5% 0.063
0.059

6% 0.564
0.638

-12% 0.040 7 #1
(±26%) (±58%) (±37%)

#5 Z_10Hz_0.2g_R 0.153
0.106

44% 0.025
0.020

25% 0.345
0.141

144% 2.349 18 #2
(±32%) (±51%) (±74%)

#6 X_5Hz_0.2g_T 0.104
0.095

9% 0.039
0.039

-1% 0.237
0.383

-38% 0.167 14 #2
(±44%) (±74%) (±39%)

*: excitation direction_frequency_amplitude_muscle condition

References

H. Cheng, L. Obergefell and A. Rizer, The development of the

GEBOD program, Biomedical Engineering Conference,

Proceedings of the 1996 Fifteenth Southern, 1996.

H. Y. Choi, S.J. Sah, B. Lee, H.S. Cho, S.J. Kang, M.S. Mun,

I. Lee, J, Lee, Experimental and numerical studies of muscular

activations of bracing occupant. Proc. of Enhanced Safety of

Vehicle, Washington D.C. USA, 2005

H.Y. Choi, K. Kim, C. Kim, S. Sah, S. Kim, S. Hwang, K. Lee,

J. Pyun, N. Montmayeur, I. Lee, Challenge of Lumbar

Support Design Using Human Body Models. SAE Int. J.

Passeng. Cars - Mech. Syst. 1(1), 1078-1084, 2009

H.Y. Choi, M. Han, W. Lee, Active Elbow Joint Model. The

First Japanese Modelica Conference, 2016

H.Y. Choi, M. Han, J. Park, K. Yang, Air ride seat for Heavy

Duty Vehicle. 12th International Modelica Conference,

submitted, 2017

H.Y. Choi, M. Han, A. Hirao, H. Matsuoka, Occupant

kinematics at vibration excitations: Part I Pure rolling and

pitching vibrations. In preparation, 2017

H.Y. Choi, M. Han, A. Hirao, H. Matsuoka, Occupant

kinematics at vibration excitations: Part II Real road

vibrations. In preparation, 2017

M. Han, H.Y. Choi, Elbow joint model with active muscle

force, Journal of Mechanical Science and Technology 30/12

5847~5853, 2016

S. Kim, S. Hwang, K. Lee, J. Pyun, H.Y. Choi, K. Kim, S. Sah,

N. Montmayeur, New Anthropometry of Human Body

Models for Riding Comfort Simulation. SAE Technical

Paper 2007-01-2457, 2007

N. Montmayeur, C. Marca, E. Haug, H.Y. Choi, S. Sah,

Experimental and Numerical Analyses of Seating Pressure

Distribution Patterns. SAE Technical Paper 2005-01-2703,

2005

K. Yamada, H. Motojima, Y. Kitagawa, T. Yasuki,

Investigation of relations between occupant kinematics and

supporting by the seat in lane change maneuvers. (In

Japanese) Proceedings of JSAE spring conference, No.38-

16, pp.941-946, 2016

Virtual Occupant Model for Riding Comfort Simulation

34 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713227

A Simulation-Based Digital Twin for Model-Driven Health
Monitoring and Predictive Maintenance of an Automotive Braking

System

Ryan Magargle1 Lee Johnson1 Padmesh Mandloi1 Peyman Davoudabadi1 Omkar Kesarkar1
Sivasubramani Krishnaswamy1 John Batteh2 Anand Pitchaikani2

1ANSYS Inc., USA, {ryan.magargle,lee.johnson,padmesh.mandloi, mohammad.davoudabadi,
omkar.kesarkar, sivasubramani.krishnaswamy}@ansys.com

2Modelon Inc., USA, {john.batteh,anand.pitchaikani}@modelon.com

Abstract
This paper describes a model-driven approach to

support heat monitoring and predictive maintenance of
an automotive braking system. This approach includes
the creation of a simulation-based digital twin, or
numerical model, that combines different modeling
formalisms into an integrated model of the braking
system that can be used for monitoring, diagnostics,
and prognostics. The paper provides an overview of
the basic models including Modelica models, reduced
order models for various key components of the system
model, and controls and sensor models. The Modelica
models are implemented in the ANSYS Simplorer
simulation to leverage existing modeling work and
connections with other ANSYS finite element software
to utilize reduced order models. The simulation results
include both baseline results for the system and the
results of injecting failures into the system for
monitoring and predictive maintenance.

Keywords: digital twin; electronics;
electromagnetics; hydraulics; pneumatics; braking
system; automotive; FEA;

1 Introduction
Beyond the challenges of developing complex
products, companies are increasingly seeking to
monitor and manage the performance of those products
in operation to improve safety, performance, and
customer satisfaction (GE, 2016; Siemens, 2016).
Model-based approaches and physics simulation are
powerful components of creating a digital twin of a
physical asset in operation-- a simulated replica of the
asset that is used to diagnose anomalies in the
performance of the asset and for predicting the state of
health and remaining useful life of that asset. These
insights can subsequently be used with machine
learning algorithms to optimize operational downtime,
trigger pre-emptive maintenance, and mitigate costly
failures (Prytz, 2014). The work shows multi-domain
system simulation modeling that can be used with a

variety of machine learning analytics engines, such as
PTC Thingworx (PTC, 2016), which are not discussed
in detail here.

The automotive industry produces millions of
vehicles operating in diverse conditions and require
periodic maintenance to replace worn components and
address faulty conditions. Current vehicle health
management practices rely heavily on data science,
which has become quite powerful (Holland, 2010);
however, the role of engineering and physics in these
practices is limited and are included only in the form of
simplified relations, material data, etc. This approach
therefore has limited the applicability of health
management systems to diagnostics and managed
maintenance for a few automotive components and
systems. The need for higher value capabilities like
prognostics for critical components and systems, e.g.
engine, exhaust aftertreatment, and safety, are driving
the evolution of vehicle health management.

Digital twins offer automotive manufacturers an
enhanced ability to diagnose anomalous conditions and
predict remaining useful life of degradable
components, thereby improving owner safety and
satisfaction.

An approach of combining physics-based modeling
techniques (0-D, 1-D, 3-D) at the system level is
applied to create a digital twin for predicting brake pad
wear in a conventional passenger vehicle. Versus
relying solely on physical measurements, a simulation-
based approach produces a high-fidelity model that can
be used to predict brake pad wear, given a set of
operating conditions. Further, the physics-based
models are subjected to failure modes that can produce
abnormal brake pad wear and unsafe conditions, and
simulated to observe the sensor signatures that will
subsequently aid in improving the diagnosis and
mitigation of unsafe or undesirable conditions in the
vehicle.

DOI
10.3384/ecp1713235

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

35

2 Modeling Overview
This section of the paper provides an overview of the
integrated braking system model and the individual
model components.

2.1 Integrated Model
The integrated braking system model in Simplorer
(ANSYS, 2016) with all subcomponents is shown in
Figure 1. Simplorer offers a system modeling and
integration platform that supports multiple modeling
formalisms, including Modelica based on the
OPTIMICA Compiler (Modelon AB, 2016) from
Modelon, system models using other formalisms like
VHDL-AMS, reduced order models, and controls. The
power converter is on the left, followed by the
electromagnetic solenoid actuator, pneumatic and
hydraulic braking system, and vehicle dynamics
(including the speed sensor), and brake wear model.
The controller is on the top, providing feedback from
the measured speed and slip output to the command
signal input to the power converter.

Figure 1. The full system schematic including electrical,
pneumatic, hydraulic, mechanical and control logic
components.

2.2 Reduced Order Modeling (ROM)
Several reduced order models generated from detailed
3-D simulations are used in this system simulation to
capture component effects that might be difficult to
describe with closed form solutions. The
electromagnetics models of the ABS valve solenoid
actuator, the magnetic wheel speed sensor, and the
mechanical brake wear are all based on finite element
numerical models to capture the relevant nonlinear
physics.

The basis of all three reduced order models is a
lookup table based on the numerical model outputs
versus specified input variables. The electromagnetic
solenoid actuator uses the lookup table to capture the
dependence of the magnetic flux linkage vs current and
magnetic force versus displacement (Woodson, 1968).
The magnetic wheel speed sensor has a lookup table
that represents the angular displacement of the
magnetic fields on the sensor surface, in degrees,
versus the position of the wheel sensor. The brake pad
wear model lookup table represents the wear rate, in

mm, of the pad surface vs pad normal pressure and
wheel speed.

The following sections will describe all of the major
sub-component models and reduced order modeling
implementation from each of the finite element
numerical models.

2.3 Model Components
This section of the paper details the physical, control
system, and sensor components that comprise the
braking system model.

2.3.1 Electronics

To drive the electromagnetic solenoid actuator, a
DC/DC buck converter, Figure 2, is used to drop the
12V DC supply to a level that will allow a current to
flow as determined by the controller.

Figure 2. Electrical circuit representation of buck
converter with setpoint hysteresis controller state-
diagram.

The buck converter has a hysteresis current
controller built-in using the state transition elements
that control the MOSFET switch. The current
controller opens the switch when the current exceeds
the set point of the ABS controller by a user-defined
threshold, 0.2A in this case, and closes the switch
when the current falls below the set point.

In the system schematic, the converter is placed in a
sub-circuit, as shown in Figure 3. The graph in Figure
3 shows the output of the buck converter alone driving
an inductive 5-ohm load with a 1A set point and 0.2A
threshold without any filtering capacitance.

Current Controller
PWM Control

Buck Converter

VA

VB

I_d

VP

VN

IGBT1

D1
L=1uH

L1

A

AM1

AM1.I<=I_set - D AM1.I>=I_set + D

SW_OFF

SET: S1:=0

SW_ON

SET: S1:=1

L=1uH

L2

A Simulation-Based Digital Twin for Model-Driven Health Monitoring and Predictive Maintenance of an
Automotive Braking System

36 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713235

Figure 3. Power converter subcircuit output current
results for 5 ohm, 0.1 mH load.

2.3.2 Electromagnetics

The DC/DC power converter is used to drive the
electromagnetic solenoid actuator that the ABS
controller uses to bypass brake actuator and vary
braking pressure. To calculate the force generated by
the current flowing through the solenoid coil, including
any nonlinear effects from the steel and airgap
displacement, not amenable to closed form solution, a
2-D axi-symmetric magnetostatic model is created in
Maxwell2D (ANSYS, 2016), as shown in Figure 4.
Maxwell2D uses the finite element method to calculate
the magnetic field (Chari, 1977), as seen in Figure 5,
and uses the virtual work method (Fu, 2004) to
calculate the force on the moving armature. The
winding is shown as a solid object, but it represents
400 turns of copper wire in this model.

Figure 4. 2-D model of electromagnetic solenoid actuator

Figure 5. Magnetic flux density and field lines within the
solenoid for a DC current excitation of 1.8 Amps through
400 turns.

The airgap and current are parametrically varied
and the force and inductance are calculated to create a
table of results, as seen in Figure 6.

Buck Converter12V Battery

Current Setpoint

+

V

VM1

DC

DC
VA

VB

VP

VN

I_set

Chopper

Buck_1A23XD9

E1

EMF=12

CONST

5ohm

0.1mH

Session 4A: Automotive I

DOI
10.3384/ecp1713235

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

37

Figure 6. Force vs airgap curves for different current
excitations.

The result of the parametric sweep creates a
multidimensional lookup table of current, flux linkage,
displacement, and force. Maxwell automatically
creates a circuit element that uses dependent sources
and a lookup table to relate the electrical input energy
and mechanical output energy, where losses can be
lumped and made external to the component, as in
Figure 7 (Woodson, 1968).

Figure 7. Equivalent circuit of electrical solenoid actuator
using the lookup table results from the finite element
simulation.

Together with the rest of the system circuit, the
electrical actuator is implemented with an icon,
containing all of the complexity of Figure 7. The
circuit model is connected with mechanical elements,
such as the restoration spring and mechanical damping,
as seen in Figure 8.

Figure 8. System model implementation of actuator with
mechanical elements such as spring and mechanical
damping loss connected externally.

2.3.3 Brake pad

A detailed 3-D model consisting of brake rotor, hub,
and pads was constructed to predict brake pad wear as
a function of rotor velocity and pressure applied to the
brake pads, shown in Figure 9 as a meshed geometry
simulated using nonlinear structural finite element
analysis (FEA) within ANSYS Mechanical (ANSYS,
2016).

Figure 9. Meshed 3-D geometry of the rotor discs, rotor
vents, hub, and pad assembly.

Brake pad wear is calculated as part of the FEA

solution using the Archard Wear Model (Archard,
1980), shown in generalized form in Figure 10.

Figure 10. Generalized Archard Wear Model used by
ANSYS Mechanical.

During the FEA simulation, constant pressure is
applied on the outer faces of the two brake pads to
interact with the rotor, spinning at a constant velocity.
Boundary conditions constrain brake pad movement in
the direction normal to the rotor, whereas in more
detailed studies the motion would be determined by the
brake calipers and guide pins. The simulation produces
a wear rate of the brake pads as a function of the
applied pressure and rotor velocity, shown in Figure
11.

+

− D
ECE Look-up

Table

Input: ia, pos

Output: λa, F

FA

posia

λa

F

ia
pos

S

Magnetic Valve (ECE)

0 0 0

VA

VB

F_valve

S_valve

S
+

F

S_TRB1

Current1_N1

Current1_N2

ArmForce_N1

ArmForce_N2

SPRING_TRB1

S
+
S_Airgap

LIMIT_TRB1

F_mag1

F
F_TRB1

A Simulation-Based Digital Twin for Model-Driven Health Monitoring and Predictive Maintenance of an
Automotive Braking System

38 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713235

Figure 11. Wear rate on the brake pad for a constant
applied pressure and rotor velocity.

Using distributed computing, the FEA simulation

was performed for a number of combinations of
pressure applied on the brake pads and rotor velocity to
produce a response surface of wear rate at a selected
location on the surface of the brake pad, illustrated in
Figure 12. This response surface model was then
encapsulated as a Functional Mock-up Unit (FMU) and
connected to the speed and force inputs produced by
the vehicle dynamics and ABS subsystems in the
Simplorer system model. The output of this model can
be integrated, using a standard integration block to
measure accumulated wear.

Figure 12. Response surface model of brake pad wear
versus brake pressure and rotor velocity.

2.3.4 Braking System

Leveraging the latest capability in Simplorer for
modeling with Modelica, the braking system is
modeled natively in Modelica as a pneumatic and
hydraulic system using the Pneumatics Library and
Hydraulics Library (Modelon AB, 2016). The model
shown in Figure 13 consists of a pneumatic system for
the brake booster (a) and the hydraulic system (b) for
the brake actuation.

a) Assembled braking system

b) Pneumatic brake booster

c) Hydraulic brake actuation

d) Modelica implementation in Simplorer

Figure 13. Pneumatic and hydraulic braking system
model

Session 4A: Automotive I

DOI
10.3384/ecp1713235

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

39

Based on the brake pedal input from the driver, the
models calculate the resulting caliper pressure that is
provided to the vehicle model for use in calculation of
the brake torque. The ABS valve that modulates the
brake pressure based on the electromagnetic force
actuation is shown in Figure 13b.

2.3.5 Vehicle Dynamics

The vehicle is modeled in Modelica with basic
longitudinal dynamics considering a lumped vehicle
mass and a simple single wheel approach. The
Modelica model in Simplorer is shown in Figure 14.
The tire dynamics include the effects of slip via the
Pacejka magic tire formula (Pacejka, 1993). The
vehicle model takes the drive torque and the brake
caliper pressure and calculates the resulting vehicle
response and wheel conditions, including wheel speed
and slip. The wheel speed is passed to the model of the
wheel speed sensor for slip estimation, and the vehicle
speed is provided to the controller.

Figure 14. Vehicle dynamics model implemented in
Modelica in Simplorer

While the vehicle dynamics considered are fairly
simple, the native Modelica capability in Simplorer
allows for more complex models to be included to
capture higher frequency dynamics. For example,
models from the Vehicle Dynamics Library (Modelon
AB, 2016) can be integrated to capture higher fidelity
chassis dynamics and also more detailed tire dynamics
and tire/ground interactions.

2.3.6 Controls

Shown in Figure 15, control of the ABS valve is
implemented as a state machine in ANSYS SCADE
Suite, a model-based environment for developing
embedded software, often for applications where safety
is critical (ANSYS, 2016).

Figure 15. ABS control as a state diagram which
modulates the activation of the ABS valves.

During a braking event, the control algorithm uses

the measured vehicle speed and calculation of wheel to
determine which braking mode to activate. If vehicle
speed is below a low-speed threshold or if the
calculated wheel slip is less than a minimum value, an
unmodulated braking command is sent to the ABS
actuator. If vehicle speed is above the low-speed
threshold, the controller sends a modulated command
signal to the ABS actuator when wheel slip exceeds the
established threshold.

Using SCADE code generation, the model-based
representation of the controller was transformed into C
code and compiled into an FMU, shown in Figure 16.
The FMU was directly integrated into the braking
system model within ANSYS Simplorer. Simulated
braking tests were applied to the system model to
validate the operation of the control algorithm under
various conditions. Figure 17 shows the modulation of
the ABS during the application of full braking on dry
pavement at a speed of 20 m/s.

Figure 16. Generated C code for the ABS controller,
encapsulated as a Functional Mock-up Unit.

vehicleVelocity

abs_on_vel

Iref

slip

gain

activate

slip_on_val

slip_off_val

vehicle_velocity

abs_on_vel

slip

ctrl_gain

braking

slip_ON

slip_OFF

ctrl_sig

controller

A Simulation-Based Digital Twin for Model-Driven Health Monitoring and Predictive Maintenance of an
Automotive Braking System

40 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713235

Figure 17. Simulated results of maximum braking
applied on dry pavement at 20 m/s.

2.3.7 Speed sensor

The sensor for measuring the wheel speed is an
anisotropic magnetoresistive sensor (Lenz, 1990). As
the teeth on a magnetic tone ring pass by the sensor,
the changes in the direction of the magnetic field
relative to the current flow in the sensor cause changes
in the resistance of the modules, as seen in Figure 18
and Figure 19.

Figure 18. Magnetoresistive material, showing a varying
resistance as an external magnetic field angle of incidence
changes vs the direction of current flowing through the
material.

The variation in resistance follows a squared
sinusoidal dependence on angle from -90deg to 90deg
shown in Figure 18, according to the relation
(McGuire, 1975):

)(cos)(2 tRRtR o α∆+= (1)

Taking advantage of this variation, the modules are

arranged in Wheatstone bridge configuration so
measurable voltage changes result on their output. The
change in direction of the magnetic field due to the
variable reluctance of the teeth as they pass is
calculated by the Maxwell3D finite element program
(ANSYS, 2016), as seen in Figure 19 using a 2-D view
to visualize the magnetic flux lines. The flux lines can
be seen originating from a permanent magnet and then
linking with the nearest tooth creating an angle relative
to the face of the magnet and sensor.

Figure 19. Magnetic flux bending as the tone ring teeth
move past the stationary sensor, measuring flux direction
as points, P1 and P2.

The two sets of resistive sensor modules are at each
point, P1 and P2, as shown in Figure 19. The resistive
Wheatstone bridge shown in Figure 20 has equal
resistors in opposing positions within the bridge.

Figure 20. Magnetoresistor bridge with matching
resistors placed in opposite positions.

With this arrangement, the output voltage, Vout, can
be seen to change with a change in direction leading to
incremental changes in resistance, dR, as the following:

Session 4A: Automotive I

DOI
10.3384/ecp1713235

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

41

+
−

+
=−= −+

31

3

42

4

RR

R

RR

R
VVVV inoutoutout (2)

()tdRRRR o +== 41 (3)

()tdRRRR o −== 32 (4)

where from (1),

)(cos)(2 tRtdR α∆= , (5)

()tRItdR
R

V

R

tdR
VV o

o

in

o
inout α2cos)(

)(∆=

=

=∴ (6)

So it can be seen that the output voltage would be

equal to the current, Io, through the nominal resistance,
Ro, times the change in the resistance. ∆R is the
maximum possible change in resistance, Ro is the
nominal resistance, and α(t) is the field angle relative
to the current flow. If there is no change in resistance,
the output voltage is zero, as expected from a balanced
bridge configuration.

To model the resistor bridge in a circuit simulation
using Simplorer (ANSYS, 2016), the equation for the
resistance in Figure 18 and (1) is used. Ro is given as
1200 ohm and ∆R is given as 0.02 ohm. α is measured
for all positions of the sensor in the FEA simulation at
both P1 and P2, which are used for R1, R4 and R2, R3
respectively. The average magnetic fields in the
volumes of P1 and P2 are used according to the
following equation for α:

=

∫
∫−

dVH

dVH

x

y1tanα (7)

Therefore, for any given velocity of the tone ring,

the position can be instantaneously measured and
evaluated against a precomputed table of values of α,
for P1 and P2, for different tone ring positions. This
method excludes any dynamic eddy currents.

In the circuit, this table is represented by a lookup
table model with the angle position as an input and the
corresponding value of α at P1 and P2, Figure 21.

Figure 21. Circuit model of finite element based lookup
table, with tone ring position as an input and magnetic
field angle measured at P1 and P2.

The values of α are then passed to an equation
block where the resistance in (1) is calculated for R1,
R2, R3, and R4, as shown in Figure 22.

Figure 22. Circuit model equations for the value of the
magnetoresistors as the field angles change.

These computed values of resistance are then linked
to a resistor bridge, with the value of each resistance
being fed from each corresponding output of the
equation block, Figure 23 and Figure 24.

Figure 23. Circuit magnetoresistor bridge model,
graphically using resistance values calculated from the
equation block in Figure 22 with wire connections.

Figure 24. Resistor model properties obtaining resistance
from the equation block.

The output of this resistor bridge generates a
voltage on the order of 30µV for a wheel rotation of
600rpm, so this measurement voltage is passed onto a

A Simulation-Based Digital Twin for Model-Driven Health Monitoring and Predictive Maintenance of an
Automotive Braking System

42 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713235

comparator amplifier which, using a 5V, ground
referenced input, generates a 10V bipolar waveform,
Figure 25.

Figure 25. Comparator amplifier electrical circuit and the
output before and after amplification.

This waveform is then used in an encoder that
counts the zero crossings to estimate the speed of
rotation, using state transition blocks, as seen in Figure
26.

Figure 26. Circuit state-diagram containing the zero-
crossing logic to count the duration of teeth passing the
sensor to derive the wheel rotation speed.

The state diagram has a transition to catch the signal
zero crossing from positive to negative and a state
transition to catch the zero cross from negative to
positive. The time between them is the transit time of
the tooth, which is used to calculate the instantaneous
rotation speed, since the angular spacing of the teeth is
fixed at 15 deg. If the speed slows down to near zero,
the encoder also slows down in its response, so it has
several timeout loops that estimate the speed as zero if
the time between zero crossings exceeds a user defined
threshold, 50ms in this case.

All of these sensor components are placed into sub-
circuits, Figure 27.

Figure 27. Circuit representation of speed sensor with
resistor bridge, amplifier, and encoder.

As indicated in Figure 27, the vehicle model
rotation wheel speed is taken as an input, integrated to
create an angle for the tone ring which is passed to the
magnetoresistor bridge. The resistor bridge signal is
sent into the amplifier, which is connected to the
encoder, which outputs the estimated wheel speed.
Any faults in the tone ring or other subcircuits will
create estimated wheel speed errors compared to the
actual wheel speed.

The nominal operation of the speed sensor is shown
in Figure 28 using a 600rpm sinusoidal varying input
speed. The waveform varies between 20 rpm and 600
rpm, some stepping can be seen in the encoder output
at low input speeds since the encoder counter also
slows.

Figure 28. Encoder response (bottom) compared to input
600rpm sinusoidal speed input (top).

3 Simulation Results
With all of the component models represented in the
system, several results can be obtained. The
simulation results of the system are very useful for
analyzing failure data, since in many real measured
datasets this type of data can be difficult to obtain,
especially for corner cases. This failure data is very
useful for training analytics to enable predictive
maintenance and enhanced failure analysis. Simulation
results in this example will be obtained with the
integrated model in Figure 1 for normal ABS operation
and abnormal ABS operation break wear, and sensor
waveform signature for normal and abnormal sensor
operation.

(Vin == 0.0)
SET: Speed:=7.5 / (Time - Tprev)
SET: WavePeriod:=Time-Tprev
SET: Tprev:=Time

SET: Tprev0:=time

(Vin == 0.0)

SET: Speed:=0

(time-Tprev0) > 0.05 (time-Tprev) > 0.05

SET: Speed:=0

(Vin == 0.0)

(Vin == 0.0)

Session 4A: Automotive I

DOI
10.3384/ecp1713235

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

43

3.1 Baseline System Performance
The baseline performance is shown in Figure 29 for a 3
second braking event from 20 m/s to a complete stop
including normal ABS activation.

Figure 29. Normal vehicle telemetry results for a full
stop from 20 m/s using normal ABS activation.

The amount of brake wear that results, measured in
mm, is shown in Figure 30.

Figure 30. Brake wear for normal stopping condition
with ABS activation.

3.2 Fault Injection: Disconnected ABS
Controller

In the first fault scenario, the controller fails and is
disconnected from the circuit. In this case, the ABS
activation does not occur. The vehicle telemetry
results in this scenario can be seen in Figure 31 for the
same braking scenario from 20 m/s to a complete stop.

Figure 31. Vehicle telemetry results for a full stop from
20 m/s with abnormal ABS failure.

The brake wear that results in the absence of the
ABS activation can be seen in Figure 32.

Figure 32. Brake wear for abnormal stopping condition
without ABS activation.

It can be seen that with ABS activation there is a
cumulative brake wear for this single braking event of
6.25x10-10 mm. Without ABS, the brake wear is
1.38x10-10 mm. There is less wear in the absence of
ABS since the wheel spends more time locked to the
brake pads, which also causes the vehicle to spend
more time coming to a complete stop. The cumulative
wear numbers are very low, since only a single braking
event is being investigated.

3.3 Fault Injection: Broken Sensor
In the second scenario, the speed sensor tone ring is
modeled with missing teeth (Obrochta, 2015), as seen
in Figure 33, and causes the sensor to misread the
wheel speed.

For this simulation, the first second of braking
behavior is investigated for a sensor signature and the
effect on ABS behavior. Figure 34a shows the normal
sensor behavior. Figure 34b shows the effect of
missing one tooth, and Figure 34c shows the effect of
missing two non-adjacent teeth.

Figure 33. Tone ring mechanical failure with missing
teeth.

A Simulation-Based Digital Twin for Model-Driven Health Monitoring and Predictive Maintenance of an
Automotive Braking System

44 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713235

a) Vehicle telemetry results for the first second

with no missing teeth.

b) Vehicle telemetry results for the first second

with one missing tooth

c) Vehicle telemetry results for the first second
with two non-adjacent missing teeth on the
tone ring.

Figure 34. Vehicle telemetry results showing the effect of
missing teeth

As teeth go missing from the tone ring, the wheel
speed and slip measurements show intermittent dips.
The dips represent a perceived reduction in speed since
the time between zero crossings increases in the gap,
resulting in an interpreted slowdown in speed. This
perceived reduction in wheel rotation results in
inadvertent ABS activation since it is interpreted as
wheel slip since the vehicle speed does not change with
it. The simulation can be run for any combination of
missing teeth to create signatures leading to more
accurate diagnosis of the ABS sensor and specific tone
ring failure.

4 Summary and Future Work
A model-driven simulation approach combining 0-D
and 3-D physics-based models with controls to support
heat monitoring and predictive maintenance for
automotive braking stems was shown. These
simulation-based digital twins are useful for providing
inputs into analytics systems that support predictive
maintenance for critical sub-systems, especially under
abnormal operating conditions. As an example, the
difference in wear rate was identified for normal
conditions and abnormal conditions where the ABS
controller becomes disconnected, to predict when
maintenance is required on the braking system.

Simulation-based digital twin models are also
useful for obtaining sensor signatures of the fault
conditions needed to train machine learning algorithms
that support advanced system diagnostics. These
models are particularly useful for observing
abnormalities and failures which cannot be observed
easily in physical tests or in sufficient quantities to
reliably train learning algorithms. In this paper, the
unique ABS activation and speed-slip signals were
recorded using simulation for several cases of
mechanical failure of the teeth on the wheel sensor.

In order to realize these simulation-based digital
twins, several methods of system, circuit, and reduced
order modeling were shown using 3-D finite element
analysis and 0-D multi-domain circuit simulation.

Future work will include more detailed physical
models to support more vehicle operating scenarios
and adding fault tree analysis with rigorous and
automated scenario analysis for detailed root-cause and
diagnostics analysis of brake wear. Further work can
also be done to connect the simulation-based digital
twin with real-time data from the vehicle and adding
HMI (Human-Machine Interface) components to depict
vehicle health management parameters (diagnostics,
prognostics) to the driver.

Acknowledgements
The authors gratefully acknowledge Leon Voss and
Michael Sielemann for their work on the original
braking system simulation model.

References
ANSYS, Inc, Canonsburg, PA. (2016). Maxwell2D.

http://www.ansys.com.

ANSYS, Inc, Canonsburg, PA. (2016). Maxwell3D.
http://www.ansys.com.

ANSYS, Inc, Canonsburg, PA. (2016). Mechanical.
http://www.ansys.com

ANSYS, Inc, Canonsburg, PA. (2016). SCADE Suite.
http://www.ansys.com.

ANSYS, Inc, Canonsburg, PA. (2016). Simplorer.
http://www.ansys.com.

Session 4A: Automotive I

DOI
10.3384/ecp1713235

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

45

GE, Boston, MA. (2016). How a ‘Digital Twin’ for
physical assets can help achieve no unplanned downtime
[Online]. Available: http://www.geglobalresearch.com/
impact/how-a-digital-twin-for-physical-assets-can-help-
achieve-no-unplanned-downtime

J.F. Archard. Wear theory and mechanisms. Wear control
handbook. Peterson MB, Winer WO, editors. New York
ASME, 1980.

Donald C. Augustin, Mark S. Fineberg, Bruce B. Johnson,
Robert N. Linebarger, F. John Sansom, and Jon C. Strauss.
The SCi Continuous System Simulation Language
(CSSL). Simulation, No 9, pp. 281–303, 1967.

M. V. K. Chari, Z. J. Csendes. Finite Element Analysis of
the Skin Effect in Current Carrying Conductors. IEEE
Transactions on Magnetics, 13(5): 1125-1127, September
1977.

Iain S. Duff and John K. Reid. An Implementation of
Tarjan’s Algorithm for the Block Triangularization of a
Matrix. ACM Transactions on Mathematical Software,
4(2):137–147, 1978. doi:

W.N Fu, P. Zhou, D. Lin, S. Stanton, Z.J. Cendes. Magnetic
force computation in permanent magnets using a local
energy coordinate derivative method. IEEE Trans. on
Magnetics, 40(2): 683-686, 2004. doi:
10.1109/TMAG.2004.824774

S. Holland. Integrated Vehicle Health Management in the
Automotive Industry. Health Management, Krzysztof
Smigorski (Ed.). InTech, 2010. doi:10.5772/9889.J.E.
Lenz. A review of magnetic sensors. Proc. of the IEEE,
78(6): 973-989, 1990. doi: 10.1109/5.56910

T. R. McGuire. Anisotropic magnetoresistance in
ferromagnetic 3d alloys. IEEE Trans. Magn., 11(4), 1018–
1038, 1975.

Modelon AB, Lund, Sweden. (2016). OPTIMICA Compiler
Toolkit. http://www.modelon.com/products/optimica-
compiler-toolkit/

Modelon AB, Lund, Sweden. (2016). Hydraulics Library.
http://www.modelon.com/products/modelica-
libraries/hydraulics-library/

Modelon AB, Lund, Sweden. (2016). Pneumatics Library.
http://www.modelon.com/products/modelica-
libraries/pneumatics-library/

Modelon AB, Lund, Sweden. (2016). Vehicle Dynamics
Library. http://www.modelon.com/products/modelica-
libraries/vehicle-dynamics-library/

Eric Obrochta. (2015, Dec. 5). Saturn S series - unwanted
ABS activation at all speeds. [YouTube video]. Available:
https://www.youtube.com/watch?v=oGwyrLxtaNY&t=36
8s. Accessed Dec. 15, 2016.

Pacejka, H.B., and Bakker, E. (1993): The Magic Formula
tyre model. Proceedings of 1st Colloquium on Tyre
Models for Vehicle Analysis, Delft 1991, ed. H.B.
Pacejka, Suppl. Vehicle System Dynamics, 21, 1993.

PTC, Needham, MA. (2016). Thingworx Analytics.
http://www.ptc.com/internet-of-things/analytics.

R. Prytz. Machine Learning Methods for Vehicle Predictive
Maintenance using Off-Board and On-Board Data.
Halmstad University Dissertations, No. 9, 2014.Siemens,
Munich, GmBH (2016). The Digital Twin [Online].

Available: https://www.siemens.com/customer-
magazine/en/home/ industry/digitalization-in-machine-
building/the-digital-twin.html

H. H. Woodson and J. R. Melcher. Electromechanical
Dynamics: Part I: Discrete Systems. New York, NY:
John Wiley & Sons, 1968.

A Simulation-Based Digital Twin for Model-Driven Health Monitoring and Predictive Maintenance of an
Automotive Braking System

46 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713235

Improved Aerodynamic Prediction Through Coupled System and

CFD Models

 Ed Tate1 Joaquin Gargoloff 1 Brad Duncan 1

Hubertus Tummescheit2 John Griffin2 John Batteh 2
1Exa, USA, {edtate, joaquin, brad}@exa.com

2Modelon, USA, {hubertus.tummescheit, john.griffin, john.batteh}@modelon.com

Abstract
Accurate predictions of aerodynamic forces using

computational fluid dynamics require accurate

geometry. The aerodynamic forces on the vehicle body

affect the vehicle posture or the vehicle position with

respect to the ground. When a vehicle is cruising on the

road, the change in vehicle posture is usually relatively

small with respect to the size of a vehicle. However,

these small changes in geometry can lead to significant

differences in aerodynamic drag and airflow structures.

To address this issue, a coupled simulation approach

was developed to predict vehicle posture in typical

cruise and wind tunnel test conditions. This coupled

approach was tested using Exa’s PowerFLOW and

Modelon’s Vehicle Dynamics Library (VDL). In this

approach, the aerodynamic forces on the body are used

to calculate the movement of the body and the

suspension geometry. This modified geometry is then

used to recalculate the operating aerodynamic forces.

The modified geometry shows changes in total force,

the distribution of forces, and the structure of the

airflow over the vehicle. The results provided by

correct geometry under loaded conditions offer better

correlation to test and provide car makers with the

increased accuracy to confidently improve real world

fuel economy.

Keywords: aerodynamics, suspension, co-simulation

1 Introduction

One of the most important aspects of a vehicle for fuel

economy is the aerodynamic drag. Reducing drag

improves fuel economy in conventional vehicles and

range in electric vehicles. When a new vehicle is

designed, a car maker must decide where to invest

resources in meeting mandated and customer expected

efficiency requirements. Meeting efficiency targets

usually involves improving drag, reducing powertrain

losses, and reducing vehicle mass. Improvements in

each of these areas represent significant investments on

any new program. Accurately predicting the drag is

critical to predicting the performance that a production
vehicle will achieve. If this value is accurately

predicted, an OEM can confidently direct the large

investments associated with improving fuel economy

and range. If this value is incorrectly predicted, then

late design changes that carry a large risk and expense

are needed to meet the original vehicle targets.

Predicting vehicle efficiency involves many tools that

are used for simulating the different aspects of a

vehicle. The vehicle drag prediction requires 3D CFD

simulation. The efficiency is usually predicted in

system simulations that consider drag, body, and

powertrain behavior.

Two common assumptions are used when

determining drag for fuel economy, range, and vehicle

dynamics simulations. The first is that vehicle

aerodynamic forces are accurately represented by a

load curve that is a function of vehicle speed. The

second is that vehicle geometry is fixed for

characterizing aerodynamic forces. Both assumptions

are valid, but only for limited conditions. In both the

wind tunnel and the real world, these assumptions

reduce the accuracy of the resulting predictions.

In a system simulation, the effect of aerodynamic

forces on a vehicle is usually calculated using the

coefficient of drag. This coefficient is determined from

a CFD simulation, measured in a wind tunnel, or

derived from a coast down test. For fixed geometry in

still air, the drag force, 𝐹𝐷, is a function of the square

of the vehicle speed, 𝑣, the air density, 𝜌, the

coefficient of drag, 𝐶𝐷, and the frontal area of the

vehicle.

𝐹𝐷 =
1

2
∙ 𝜌 ∙ 𝑣2 ∙ 𝐶𝐷 ∙ 𝐴 (1)

The drag force works against the direction of travel

of a vehicle. However, in addition to the drag force, the

airflow over the vehicle also generates lift forces.

These lift forces cause the posture of the vehicle to

change, with a 2 millimeter front ride height increase

and a 3 millimeter rear ride height for our example, as

illustrated in Figure 1. The lift force is calculated

similar to the drag force using a lift coefficient. To

calculate the vehicle posture, lift forces are calculated

over the front and rear axles using an equation similar

to the drag equation.

DOI
10.3384/ecp1713247

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

47

𝐹𝐿,𝐹𝑟𝑜𝑛𝑡 =
1

2
∙ 𝜌 ∙ 𝑣2 ∙ 𝐶𝐿,𝐹𝑟𝑜𝑛𝑡 ∙ 𝐴 (2)

𝐹𝐿,𝑅𝑒𝑎𝑟 =
1

2
∙ 𝜌 ∙ 𝑣2 ∙ 𝐶𝐿,𝑅𝑒𝑎𝑟 ∙ 𝐴

(3)

The lift is determined in this way so that the effect

of different lift forces on the front and rear of the

vehicle are considered. The lift driven changes in

posture mean that the assumption of fixed geometry

doesn’t hold. Therefore, for accurate prediction of

forces on a vehicle, this interaction between vehicle

posture and aerodynamic forces should be considered.

CFD accuracy is improved by considering the impact

of aerodynamic forces on vehicle posture.

Figure 1. Lift forces and displacement.

2 Determining Posture Change

Changes in vehicle posture affect the position and

orientation of suspension parts and wheels. These small

changes in geometry affect the airflow over the entire

vehicle. The changes in airflow change the pressure on

the vehicle surfaces. This change in the pressure

distribution and magnitude cause a change in the lift

and drag forces. In some cases, this change in posture

has an easily observable effect on the airflow. For

example, a part of the underbody which was shielded

from high speed airflow might be exposed and act like

an aeronautic air brake. In other cases, the effect may

be subtle, causing changes in the distribution of the

flow over the vehicle body and relative change in the

flow under and over the vehicle. This effect is similar

to how changing an airfoil’s angle of attack changes its

lift and drag. A key difference is that a vehicle’s

geometry is much more complex than an airfoil. It has

complex surfaces, heat exchangers, fans, airflow

through the engine bay, rotating tires, and airflow

around the vehicle body.

 To accurately determine the effect of these geometry

changes a full 3D flow simulation is required. This

simulation is done using the Lattice-Boltzmann (LB)

solver in PowerFLOW (Exa Corporation, 2017). This

solver offers several advantages over traditional

Navier-Stokes (NS) based solvers. The LB solver is

inherently a transient solver, and the PowerFLOW

implementation is able to handle fully detailed

automotive geometry without simplification. This

ability to handle geometry changes without special

consideration simplifies implementation of geometry

movement. This solver is used by OEM’s globally for

aerodynamic, thermal, and acoustic simulation. Its

accuracy and robustness are well documented

(Kotopati, 2009; Duncan, 2010; Duncan, 2012).

Modelica was used in this application because it is

capable of describing problems in many engineering

domains. Most importantly, it can elegantly describe

multi-body problems such as suspension simulations.

The features inherent in the language make it easy to

present the model in a form that can be used by

someone who is not an expert in a particular

engineering domain, such as suspension simulation.

Furthermore, since Modelica is able to address

multiple engineering domains, it provides a solution to

describing different functional behavior in the vehicle

using a single language. Vehicle Dynamics Library

(VDL) (Modelon AB, 2016) has been used extensively

in the automotive domain and proven for simulation of

complex vehicle behavior (Andreasson, 2011;

Andreasson, 2016; Griffin, 2012; Klomp, 2016) in

Dymola (Dassault Systemes, 2017). VDL is a

commercial Modelica library with a wide range of full

fidelity, multibody suspension configurations. VDL

can solve for the effect of aerodynamic load, like in a

wind tunnel or the open road, and inertial loads, like on

the track. In conjunction with OPTIMICA Compiler

Toolkit (OCT) (Modelon AB, 2016), Functional

Mockup Units (FMUs) (MODELISAR, 2010) from

VDL can be created to simply the task of interfacing

between multiple solvers.

A model of a proprietary vehicle from Exa known as

the EV12 was implemented using the Vehicle

Dynamics Library (VDL) from Modelon. The EV12

vehicle has a McPherson strut front suspension and a

twist beam rear suspension. As suspension topologies

are available in VDL, modelling the EV12 was simply

a matter of modifying the suspension geometry

parameters to match those of the EV12. The resulting

vehicle model in Dymola is shown in Figure 2.

Improved Aerodynamic Prediction Through Coupled System and CFD Models

48 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713247

Figure 2. Diagram view of EV12 chassis model

Two different approaches were used during to the

investigation to quantify the difference in drag forces

and vehicle pressure distribution.

2.1 Change in vehicle posture based on downforce

In the first approach, the goal was to determine the

effect changes in aerodynamic forces had on the static

vehicle posture.

To quantify this effect, the vehicle posture was

controlled by aerodynamic downforce. As changes in

downforce directly relate to changes in tire vertical

forces, tire vertical forces were used to resolve the ride

height. This change was implemented as a controller in

the system model.

The ride height controller, shown in Figure 3, was

implemented by defining the fender height, or vertical

height of the chassis at each vehicle corner, versus tire

vertical force as tabular data and adjusting the force in

the actuator until the desired fender height was

achieved. The tire vertical force is a standard output in

VDL for vehicle simulations. Therefore, accessing the

tire vertical force to use it in the actuator was simply a

matter of pulling this signal off the signal Bus. A PID-

controller from the Modelica Standard Library was

used to control the force.

Figure 3. Ride height controller

Control of the vehicle posture was achieved by

using ride height actuators as shown in Figure 4. VDL

uses both standardized templates and interfaces to

describe vehicle components and sub-components. The

ride height controller described above used a consistent

interface as the standard ride springs. As such changing

from the standard ride spring model to ride height

actuator was simply a matter of changing classes.

Figure 4. Standard ride springs replaced with actuators

Based on this approach, we concluded that even

small changes in aerodynamic downforce affected both

vehicle posture and the position and orientation of the

suspension components.

f

f

combiTable1Ds controller

.Modelica.Blocks.Types.SimpleController.PID

rideActuator[wheel_number]

VDL_whl_frc_z[wheel_number]

Session 4A: Automotive I

DOI
10.3384/ecp1713247

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

49

2.2 Controlled vehicle posture

In the second approach, the vehicle posture was

explicitly controlled.

The vehicle posture was changed using a standard

experiment in VDL in which the wheel hubs are held at

a fixed vertical position and the chassis is pulled down

by two actuators. The attachment points of the

actuators on the vehicle were located at positions

consistent with the sensors that measure the front and

rear ride height in the CFD simulation. The diagram

layer of the heave rig experiment is shown in Figure 5.

Figure 5. Diagram layer of HeaveRig experiment

The resulting animation of the heave rig experiment

is shown in Figure 6.

Figure 6. Animation of HeaveRig experiment

The desired results of the heave rig were the time

history of all suspension part positions and orientations

at all front and rear right heights. To generate this data,

a full variable sweep was used in which the front and

rear ride heights were varied from –15 to 15 mm of

travel at 1 mm intervals. This full sweep resulted in

961 different vehicle postures.

As is evidenced in Figure 7, the suspension

components of the vehicle move significantly across

the various vehicle postures. The image below was

generated by superimposing all the animation frames.

Figure 7. Superimposed frames of HeaveRig animation

The overall magnitude of the change in suspension

component position and orientation is shown in Figure

8. This plot shows the change in the height of the outer

tierod point vs. front and rear heave changes.

Figure 8. Variation of outer tierod height with changes in

vehicle posture

The HeaveRig simulation provided a complete time

history of suspension parts position and orientation

during the vehicle posture changes. These results were

exported and reformatted for use in PowerFLOW.

3 Improved Drag Prediction

The most important design point for a vehicle’s

aerodynamics is the performance under steady speed

conditions on a flat road. This condition is the one

-0.015

-0.004

0.007

0.32

0.325

0.33

0.335

0.34

0.345

0.35

-0
.0

1
5

-0
.0

1
1

-0
.0

0
7

-0
.0

0
3

0
.0

0
1

0
.0

0
5

0
.0

0
9

0
.0

1
3

0.32-0.325 0.325-0.33 0.33-0.335

0.335-0.34 0.34-0.345 0.345-0.35

Improved Aerodynamic Prediction Through Coupled System and CFD Models

50 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713247

replicated in most wind tunnels. When operating in this

manner, the vehicle’s change in posture is caused by

the drag force and the lift forces. When the vehicle

posture changes, many components in the suspension

move. This movement is illustrated in Figure 9. Most

importantly, the vehicle body position changes.

Figure 9. Suspension displacement under aerodynamic

load.

While small changes in posture of a few millimeters

may appear to be inconsequential, these effects are

often a source of error for accurately predicting the

drag of a vehicle. Furthermore, these small changes in

posture lead to appreciable changes the flow structures

on the vehicle. Such an effect is illustrated in Figure

10.

The change in the vehicle posture exposes the front

suspension to more incoming flow, which increases the

static pressure on the surface of the vehicle, increasing

drag. This effect (higher static pressure) is visible in

both the lower A-arm attachment to the body as well as

the front wheel arch pressure, behind the front

suspension. These two areas are marked with white

arrows on each image of Figure 10. Both areas show a

redder shade of static pressure, contributing to about 1

count of aerodynamic drag (a count is 0.001 or a tenth

of a percent).

Figure 10. Differences in surface pressure and underbody

airflow. Original posture [top] vs. realistic posture

[bottom]

Focusing on the rear of the vehicle, Figure 11 shows

the surface pressure for both the baseline vehicle (top)

as well as the realistic posture (bottom). It can be seen

that updating the posture and the suspension yield a

lower surface pressure on the back of the vehicle,

which contributes to 3 count of drag increase.

Session 4A: Automotive I

DOI
10.3384/ecp1713247

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

51

Figure 11. Differences in surface pressure on the back of

the vehicle. Original posture [top] vs. realistic posture

[bottom]

In this case study, this coupling improved the

accuracy of the drag predictions by 4 counts, about a

1% improvement. Simulating a step in between

(updating the body posture alone without updating the

suspension) enabled us to find that of the 4 total counts

of drag increase, 3 were due to the body posture update

and 1 count was due to updating the suspension
geometry. These effects can be seen in Table 1.

Case: Cd [counts] ΔCd [counts]

Baseline 387

Posture alone 390 +3

Posture+Suspension 391 +4
Table 1. Difference in vehicle drag due to posture and

suspension change.

This improved accuracy was achieved by first

finding the drag and lift forces on the vehicle using the

at-rest posture. This model included all the vehicle

geometry details such as underhood and suspension

components. After finding the lift forces, they were

applied to the suspension model described in Section

2.1.

The change in posture resulted in changes in the

airflow pressure on the vehicle body. Using the

corrected geometry, these refined forces are a more

accurate representation of the vehicle forces and flows.

The local impact of the changes can be seen in the drag

development show in Figure 12. This graph shows that

the body posture effect of 3 counts is mainly felt at the

back of the vehicle, manifesting in a reduction in the

base pressure. The suspension effects, on the other

hand, have a 1 count of drag impact that is felt mainly

on the front axle suspension and the front wheel arches.

Figure 12. Difference in drag due to posture change.

This iterative coupling solved for the vehicle lift,

posture change, and then for the improved drag value.

The inputs to the process are the vehicle geometry and

the suspension characteristics. The vehicle geometry

provides the surface data for CFD simulation and the

location of the hard points in the suspension which are

used to setup the system simulation. The suspension

characteristics allow the system model to properly

calculate the changes in geometry due to the lift forces.

Improved Aerodynamic Prediction Through Coupled System and CFD Models

52 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713247

4 A Case Study

This process was applied to a proprietary vehicle from

Exa known as the EV12. This vehicle has dimensions

and details similar to a small SUV. To calculate the

posture change, Vehicle Dynamics Library was used to

determine the vehicle geometry changes in response to

these forces. These changes in geometry were used to

modify the vehicle geometry. This modified vehicle

geometry was used to find an updated drag value. For

this case study, the need to iterate on this process was

investigated. It was found that a single iteration was

sufficient to account for posture driven changes in

drag. This quick convergence allows improved drag

prediction at an affordable computational and wall-

time cost.

The system model was integrated in a rig which

simulates the body motion in response to the drag and

lift forces. This rig is shown in Figure 4. The remaining

part of this solution is the translation of the suspension

movement back to changes in geometry. This

translation is accomplished by using consistent frames

of reference between the system model and the CFD

model. The changes of the frames of reference are

determined in response the aerodynamic forces.

5 Conclusions

A methodology was developed that improves the

correlation of vehicle geometry to real world loading

conditions and thus improves accuracy in replicating

test conditions in CFD. This improvement was

accomplished by coupling a Vehicle Dynamics Library

model of the vehicle with Exa’s PowerFLOW for 3D

CFD simulation. The vehicle model was coupled with

the CFD simulation via an FMU generated using

OPTIMICA Compiler Toolkit.

In the case study considered, changes in drag of

about 1% were seen due to the changes in vehicle

posture and consequently changes to the suspension

geometry. Improving aerodynamic prediction accuracy

is critical because of the large impact on certification

and real world fuel economy. This case study

examined a single aspect of coupling aerodynamic and

suspension simulations. This coupling is important

enough that it is expected to be part of every vehicle

aerodynamic simulation. Future applications will

consider the impact of real world conditions, tire tread,

and driving cycles to improve designs for efficiency

and comfort.

References

Andreasson, J., “The Vehicle Dynamics Library: New

Concepts and New Fields of Application”, Proceedings of

8th International Modelica Conference, 2011.

Andreasson, J., Machida, N., Tsushima, M., Griffin, J.,

Sundström, P.: Deployment of high-fidelity vehicle

models for accurate real-time simulation. Japanese

Modelica Conference 2016, Tokyo, Japan, May 23-24,

2016.

Dassault Systemes, Velizy, France (2017) Dymola 2017

FD01. https://www.3ds.com/products-

services/catia/products/dymola/

Duncan BD, Fischer A, and Kandasamy S.: Validation of

lattice-Boltzmann aerodynamics simulation for vehicle lift

prediction. In: ASME 2010 3rd joint US–European fluids

engineering summer meeting, 8th international conference

on nanochannels, microchannels, and minichannels,

Montreal, Quebec, Canada, 1–5 August 2010, ASME

paper FEDSM-ICNMM2010-30891, pp. 2705–2716. New

York: ASME.

Duncan B, Kandasamy S, Gau H, et al.: Aerodynamic

performance assessment of BMW validation models using

computational fluid dynamics. SAE paper 2012-01-0297,

2012.

Exa Corporation, Burlington, Mass, USA (2017)

PowerFLOW. http://exa.com/en/product/simulation-

tools/powerflow-cfd-simulation/

Griffin, J., Batteh, J., and Andreasson, J., “Modeling Vehicle

Drivability with Modelica and the Vehicle Dynamics

Library”, Proceedings of 9th International Modelica

Conference, pp. 599-608, 2012.

Klomp, M., Sundström, P., Johnsson, A.: Real-Time

Simulation of Elasto-kinematic Multi-body Vehicle

Models. 13th International Symposium on Advanced

Vehicle Control, Munich, Germany, pp. 255-260, Sep. 13-

16, 2016.

Kotopati R, Keating A, Kandasamy S, et al.: The lattice-

Boltzmann-VLES Method for automotive fluid dynamics

simulation, a review. SAE paper 2009-26-057, 2009.

MODELISAR, Functional Mock-up Interface for Model

Exchange, Version 1.0, 2010.

Modelon AB, Lund, Sweden. (2017). OPTIMICA Compiler

Toolkit. http://www.modelon.com/products/optimica-

compiler-toolkit/

Modelon AB, Lund, Sweden. (2017). Vehicle Dynamics

Library. http://www.modelon.com/products/modelica-

libraries/vehicle-dynamics-library/

Session 4A: Automotive I

DOI
10.3384/ecp1713247

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

53

54 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

1

Coupled Simulation between CFD and Multizone Models Based on
Modelica Buildings Library to Study Indoor Environment Control

Wei Tian1 Wangda Zuo1,* Thomas A. Sevilla1 Michael D. Sohn2
1Department of Civil, Architectural, and Environmental Engineering, University of Miami, USA,

w.tian@umiami.edu w.zuo@miami.edu, t.sevilla@umiami.edu; *Corresponding Author
2Sustainable Energy Systems Group, Lawrence Berkeley National Laboratory, USA, mdsohn@lbl.gov

Abstract
Multizone models are widely used in building airflow
and energy performance simulations because they are
often suitable for the analysis needed, and due to their
fast computation speed. However, the results provided
by the multizone models are sometimes limited due to
the underlying well-mixed assumption of the air in a
zone (e.g., a room). For zones where this assumption is
not suitable, a Computational Fluid Dynamics (CFD)
models may be needed. This paper proposes a coupled
simulation model between the multizone and CFD
model, which in the paper is fast fluid dynamics, a freely
available and publicly released program. The model
allows the simulation of a dynamic interaction between
airflow and Heating, Ventilation and Air-Conditioning
(HVAC) systems for buildings with stratified airflow
distribution in some of the zones. The approach is
implemented using Modelica and its buildings library.
In this presentation, we first discuss the design and
implementation of a data synchronization strategy
between the two models. We then show a possible
validation of the implementation by comparing the
simulated results with experimental data from previous
research. Finally, we perform a case study by linking a
Variable Air Volume (VAV) terminal box to space in
order to evaluate the capability of the coupled
simulation. Finally, further research needs are discussed
at the end of the paper.

Keywords: CFD, Multizone, Coupled Simulation

1 Introduction
On average, Americans spend 90% of their time indoors
(Kats 2003). Therefore, in order to maintain thermal
comfort using HAVC systems, buildings consume about
41% of total energy in the US (Department of Energy
2011). However, the current indoor environment is far
from satisfactory. The estimated loss of productivity
due to the poor indoor environment is up to 160 billion
dollars in the US (Fisk 2000). Thus, it is critical to
improve the indoor environment while decreasing the
energy consumption.

To improve the design of HVAC system and indoor
environment, we can use numerical simulation. On the
airflow simulation, there are various models available,

such as multizone models, zonal models, and CFD
models (Chen 2009). For the HVAC simulation, there
are some conventional building performance simulation
programs such as EnergyPlus (Crawley et al. 2001),
ESP-r (Strachan et al. 2008), IDA Indoor Climate and
Energy (IDA ICE) (Kropf and Zweifel 2001),
TRYNSYS (Klein et al. 1976), and some advanced
techniques such as Modelica-based modeling (Wetter
2009).

Multizone models are widely used in building energy
performance simulation programs to save computation
time. By asserting that the air is suitably well mixed in
a zone, a multizone model solves the mass balance
equation and energy balance equation in a significantly
faster fashion, compared to the speed of the CFD models
(Chen 2009). However, the underlying well-mixed air
assumptions for multizone models may be invalid if, for
example, the air in the room is stratified. In this case, the
multizone models may calculate incorrect results (Wang
and Chen 2008).

To model a multiple air distribution type zone
building, Wang (Wang 2007) proposed dynamic
coupling between CFD and multizone models. As a
result, the multizone models are adopted for zones with
well-mixed air distribution and CFD model is used for
zones with stratified air distribution. At the
synchronization time, data is exchanged between the
CFD and multizone models. The data exchange is
performed iteratively to ensure a fully-converged
solution. To achieve convergence and stability, Wang
and Chen (2005) recommended transferring pressure
data from multizone models to CFD while
simultaneously giving airflow rates from CFD to
multizone models. While significant, however, their
work only focused on the airflow movement and did not
demonstrate their approach for buildings that included
HVAC systems, and with HVAC controls.

To model the control and distribution of airflow
movement in a building with multiple zones, it is
necessary to integrate the HVAC system modeling,
multizone model, and CFD model. In previous work,
multizone models were implemented in Modelica
(Wetter 2006a). Similar models are also implemented in
the Modelica Buildings library (Wetter et al. 2014)
which can link to the HVAC system model to study the

DOI
10.3384/ecp1713255

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

55

2

control of airflow. Besides the multizone models, there
are several CFD model implementations in Modelica
such as a sub-zonal CFD model (Bonvini et al. 2014)
and VEPZO (Norrefeldt et al. 2012). Moreover, a
externally coupled simulation model between CFD
model for airflow, HVAC, building envelopes and
control was implemented in the Modelica Buildings
library to enable the study of their dynamic interactions
(Zuo et al. 2016). The coupled simulation model was
then validated and used to study a case with stratified
non-isothermal airflows with an idealized constant air
volume system. The results demonstrated that the model
is capable of capturing the dynamics of the system.

Based on the previous efforts, this paper implements
the coupled simulation of CFD and multizone models in
Modelica to study the interaction between airflow
movement and HVAC system. This paper first discusses
the data synchronization strategy used in the
implementation. Then it focuses on the validation by
using a case with well-controlled boundary conditions.
Finally, a more complex case stemmed from research
(Wang 2007) was used to further evaluate the capability
of the coupled simulation.

2 Methodologies
A quasi-dynamic data synchronization strategy (Zhai et
al. 2002; Tian and Zuo 2013) is used for the coupled
simulation. As shown in Figure 1, CFD and multizone
models exchange data at a given data synchronization
point ݐ and then run on their own till the next point
 is dependent on ࢞ ାଵ. The exchange of informationݐ
different scenarios. Note that CFD models have a
constant time step size and multizone models
programmed in Modelica uses an adaptive time step size.

Figure 1. Two-way data synchronization strategy

As shown in Figure 2, we present a simplified
physical representation of the data exchange strategy. In
this scenario, Zone 1 is simulated by CFD as a non-
uniform momentum distribution formed by the inlet
directly facing one of the outlets. The mass flow rate and
temperature at the inlet of the CFD zone are already
known. CFD models feed the mass flow rates and

temperature values at two outlets, which are the
averages for time and area, to the multizone modeled
zones, namely, Zone 2 and Zone 3.

Figure 2. Sketch of the case on which data exchange was
implemented

Note that in this simplified data synchronization
scheme there is no pressure information exchanged
mutually between two programs. After receiving the
mass flow rate at openings to from the CFD models, the
multizone models can then determine the pressure at
zones and mass flow rates at the openings using the
equation introduced in the next section.

3 Mathematical Description of
Multizone model and FFD

FFD solves the Navier-Stokes equations:
ࢁ߲

ݐ߲
ൌ െࢁ

ࢁ߲

߲࢞
 ߥ

߲ଶࢁ

߲࢞
ଶ െ

1
ߩ
߲ܲ
߲࢞

 ࡲ (1)

where ࢁ and ࢁ are the velocity component in ࢞ and
 ,is the kinematic viscosity ߥ , directions, respectively࢞
 is the time, and ݐ ,is the fluid density, ܲ is the pressure ߩ
 is the source term, such as the buoyancy force. FFDࡲ
splits the Navier-Stokes equation into the following
three equations:

ࢁ߲

ݐ߲
ൌ െࢁ

ࢁ߲

߲࢞
	 (2)

ࢁ߲

ݐ߲
ൌ ߥ

߲ଶࢁ

߲࢞
ଶ ࡲ (3)

ࢁ߲

ݐ߲
ൌ െ

1
ߩ
߲ܲ
߲࢞

 (4)

FFD first solves the advection equation (2) using a semi-
Lagrangian method (Courant et al. 1952). It then solves
the diffusion equation (3) with an implicit scheme.
Finally, it solves the pressure equation (4) together with
the continuity equation

ࢁ߲

߲࢞
ൌ 0 (5)

using a projection-correction method (Chorin 1967).
FFD also applies a similar algorithm to solve the
conservation equations of energy and species. The
detailed implementation of sequential FFD model can

Coupled Simulation between CFD and Multizone Models Based on Modelica Buildings Library to Study
Indoor Environment Control

56 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713255

3

be found in (Zuo and Chen 2009; Jin et al. 2012). One
can also refer to the parallelized FFD model by CUDA
and OpenCL in these literature (Zuo and Chen 2010;
Yang 2013; Tian, Sevilla, and Zuo 2017).

Typical multizone models, for example,
CONTAMW, use the power law to calculate the mass
flow rate ሶܳ from zone ݅ to zone ݆ (Dols and Walton
2002). In Modelica Buildings library, the ሶܳ is defined
as follows (Wetter 2006b):

ሶܳ ൌ ට2ܣௗܥ ൗߩ Δܲ (6)

where ܥௗ is the discharge coefficient normally ranging
between 0.6 to 0.75; ܣ is the area size of the opening; ߩ
is the density of the air; ݉ is constant, which is 0.5 for
large openings. Δܲ is the pressure difference consisting
of total pressure difference ห ܲ െ ܲห , pressure
difference due to wind Δ ௪ܲ, and pressure difference due
to density and elevation difference Δ ௧ܲ (Wang and Chen
2007).

Since Modelica is an equation-based, object-oriented
modeling language (Fritzson 1998), the sign of ሶܳ can
be automatically determined based on the pressure in
two zones. Thus, we can write the mass conservation for
zone ݅ as:

݀݉

ݐ݀
ൌ ሶܳ

ୀଵ

	ܨ	 (7)

where ݉ is the mass at zone ݅ ; ݊ is number of
surrounding neighbours to zone ݆ ܨ ; is the air mass
source in the zone ݅ . Since the flow in buildings is
typically incompressible, we can assume that ݉ is not
changing with the time. Once the boundary conditions
are applied, the pressure at each zone and mass flow rate
between neighboring zones can be uniquely determined.

4 Model Implementation
The key obstacle to the implementation is to realize the
extraction of the flow rates and the value of the scalar
variables at the outlets from CFD and to feed them to
the multizone model. To overcome the problem, we put
virtual sensors at the outlets to obtain the necessary
information. For detailed information of the CFD model
in the Modelica Buildings library, please refer to
previous research (Zuo et al. 2014).

Figure 3 shows the detailed implementation. The
CFD zone is modeled using the CFD model in the
Modelica Buildings library. Three real inputs for
radiative heat gain, convective heat gain, and latent heat
gain, are connected to the CFD model. At the lower part
of the figure, there are fluid and heat ports connected to
the CFD model as boundary conditions. Note that the
CFD model will calculate the mass flow rates at all ports
using the mass balance law and the CFD program will
assign the tag of inlet or outlet to the ports based on the

sign of the mass flow rate. On the right side of the figure,
the mass flow rates and temperature at the outlets from
CFD were given to the prescribed fluid mover through
the first order delay model. The delay model is used to
mimic reality by making the mass flow rate increase
gradually.

Figure 3. Diagram of Modelica model for coupling

In this paper, we chose Fast Fluid Dynamics (FFD),

as an intermediate model between multizone and CFD
models, due to its fast computation speed. By sacrificing
some accuracy the FFD method is shown to be about 50
times faster than CFD programs if running on the CPU
(Zuo and Chen 2009). By taking advantage of the GPU,
the FFD program can gain another 30 times computation
acceleration, which will be added up to achieve 1500
times faster than CFD program running on CPU (Zuo
and Chen 2010).

5 Case Study

5.1 Isothermal with non-uniform
momentum distribution

We used one of the three experiments conducted by
Wang and Chen (2009) to validate the coupled
simulation model. As shown in Figure 4, space consists
of four zones. Zone 1, which has one inlet and two
outlets, is simulated by FFD, due to the non-uniform
momentum distribution as the inlet is directly facing
opening 1. Other zones were simulated using multizone
models.

Figure 5 shows the Modelica representation of the
validation case. A prescribed fluid mover was connected
to the CFD zone (Zone 1) to provide the inlet boundary
conditions for the FFD program. Other zones were
simulated by the multizone models, namely,
MixingVolume. The openings were simulated by
Orifice, which nonlinearly correlates the mass flow rates
with a pressure difference between zones.

multiplex3_1

roo

q

u

boundary

air

radiation

surface

yCFD

air
radiation

surface

m

MasFloRat
m_flow

m

MasFloRat
m_flow

firstOrder

PT1

T=1

firstOrder

PT1

T=1

qRadGai_flow

k=0
qConGai_flow

k=0

qLatGai_flow

k=0

TWal

T=T_Wall

K

TWal

T=T_Wall

K

FakR
es

dp_nom
inal=10

m
0=1 FakR

es

dp_nom
inal=10

m
0=1

Fa
kO

ut
Fa

kO
ut

ports1

ports2

Radiative
heat gain

Convective
heat gain

Latent
heat gain

Fluid ports to
connect inlet flows

The ambient with
prescribed pressure

Resistance
connected to the
ambient

Surface temperature of
CFD zone

CFD zone

First order delay

Fluid mover with
prescribed mass flow
rate

Fluid ports connected
to mixed volume model

Sen

Output of sensor
information at CFD
zone

T

Session 4B: Buildings I

DOI
10.3384/ecp1713255

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

57

4

Figure 4. Schematic of a building with two rooms

Figure 5. Diagram of Modelica model for a building with
two rooms

The radiative heat gain, the convective heat gain, and
the latent heat gain inside CFD_Zone model are all set
to zero. The inlet mass flow rate is changing at 0.033,
0.053, 0.105, 0.14, and 0.215 m3/s. Since this
experiment is essentially isothermal, we set the inlet
temperature, the temperature at all walls of Zone 1 and
initial temperature at fluid cells as 10 Ԩ. The data
synchronization time step is set up to 5 s. The simulation
span is 100 s and the Radau solver is used. The residual
is regulated to be below 1E-6.

FFD uses a mesh of 34 × 12 × 18. The time step size
for the former two mass flow rates is 0.1 s and for others
is 0.05 s. To simulate the turbulence introduced by the
high-velocity jet, we employed the zero equation model
proposed by Chen and Xu (1998).

Figure 6 shows the mass flow rates ratio at opening 1
and opening 2 in Zone 1. Our simulated results have
good agreement with the experiment when the inlet
mass flow rate is generally larger. Due to the fact that
there is considerable numerical viscosity (can be acted
as turbulence viscosity) in the FFD model as a result of
the solution method, we tuned the coefficients of the
zero equation turbulence model.

Figure 6. Validation results of mass flow rate ration at
opening 1 and opening 2

5.2 Multizone airflow with a VAV terminal
box

In a validation effort, we demonstrate that the coupled
simulation model can study the airflow distribution for
space with a non-uniform momentum distribution. After
adding a VAV terminal box to the validation case, the
case study aimed to investigate the control of room
temperature for Zone 1, as shown in Figure 7. To
increase the efficiency of temperature control, we
increased the length of the inlet (in the X direction) by
0.53 m, in order to insert more air from the terminal box
in the room.

Here we modeled the heat transfer and radiative heat
transfer through and between the envelopes in Zone 1 in
Modelica. The exterior surface temperature for floor and
other walls are 25 Ԩ and 27 Ԩ, respectively. The initial
temperature of the space is 30 Ԩ. The objective is to
sustain 25 Ԩ temperature for occupant zone of Zone 1,
which is in the lower half part, by adjusting the VAV
terminal box.

Figure 7. VAV terminal box with validation space

Figure 8 illustrates the detailed model of VAV

terminal box. Since we isolated the room from a VAV
system which serves multiple rooms, we assume that the
pressure difference at terminal box and space outlet as

X

YZ
O

inlet

opening 1

opening 2

opening 3
opening 4

outlet

zone 1

zone 2

zone 3

zone 4

Zone 1 Zone 2

Zone 3 Zone 4

Zone_1

CFD_Zone
int1_2

A=0.08

int1_3

A=0.08

int2_4

A=0.13

int3_4

int4_out

A=0.06

out

V=2.49*2.44*2.44

Zone_2

V=2.49*2.44*2.44

Zone_2

V=2.44*2.44*2.44

Zone_3

V=2.44*2.44*2.44

Zone_3

V=4.93*1.77*2.44

Zone_4

V=4.93*1.77*2.44

Zone_4

m

bouIn

Inlet
airflow

Zone 1

Opening 1

Opening 2

Zone 3

Zone 2

Opening 3

Opening 4

Zone 4

Ambient

Outlet

A=0.13

Zone 1 Zone 2

Zone 3 Zone 4

Zone_1

CFD_Zone
int1_2

A=0.08

int1_3

A=0.08

int2_4

A=0.13

int3_4

A=0.13

int4_out

A=0.06

out

V=2.49*2.44*2.44

Zone_2

V=2.49*2.44*2.44

Zone_2

V=2.44*2.44*2.44

Zone_3

V=2.44*2.44*2.44

Zone_3

V=4.93*1.77*2.44

Zone_4

V=4.93*1.77*2.44

Zone_4

Zone 1

Opening 1

Opening 2

Zone 3

Zone 2

Opening 3

Opening 4

Zone 4

Ambient

Outlet

VAV Terminal Box

Coupled Simulation between CFD and Multizone Models Based on Modelica Buildings Library to Study
Indoor Environment Control

58 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713255

5

constant. Thus, we set the pressure of the cold air source
as 20 Pa. The temperature of the cold air source is
constant as 16 Ԩ. The opening of the valve in the cold
air loop is adjustable and reheat coil can be turned on by
opening the valve in the hot water loop. A controller is
implemented to coordinate the opening position of the
valve in cold air and hot water loop.

Figure 8. VAV terminal box

As shown in Figure 9, we implemented a pressure-

dependent control logic (Liu et al. 2012). The occupant
zone temperature signal is first sent to adjust the valve
position in the cooling air loop, which is at the lower
part of the figure. If the valve opening decreases to 30%,
which is deemed as the lower limit, then, the reheat coil
will be turned on by feeding the opening position signal
to the valve of the reheat coil. The control of the reheat
coil is shown in the upper part of the figure. To avoid
the short cycling of the reheat coil, we added to the
controller a hysteresis, which has lower bound of 0.3
and higher bound of 0.4.

Figure 9. Controller in VAV terminal box

From Figure 10 to Figure 12, the dynamic response
of the VAV terminal box and indoor environment is
shown. In the beginning, as shown in Figure 10, the
room temperature is initially higher than the set point
(25 Ԩ), the opening ratio of the valve in the cold air loop
is decreasing from 1.0 to 0.3 as shown in Figure 11. The
mass flow rate of the supply air as shown in Figure 12
then drops from 0.120 kg/s to 0.044 kg/s. Since the
reheat coil does not turn on, the supply air temperature
remains constant as 16 Ԩ, as shown in Figure 13.

At around 60 seconds, when the opening ratio of the
valve in the cold air loop reaches 30%, and the room
temperature is lower than the set point (Figure 10), the
reheat coil is turned on. Then, the room temperature is
increased and meets the set point at around 160 seconds.
Since the room temperature is lower than the set point at
this period (60-160 seconds), the opening ratio of the
valve in cold air loop remains a minimum of 30% and
the opening of the valve in reheat coil first climbs up and
then drops, as shown in Figure 11. As a result, the mass
flow rate of the supply air remains constant at 0.044 kg/s
(Figure 12). Consequently, one can see in Figure 13 that
the supply air temperature first increases to a maximum
of 25.4 Ԩ and then gradually drops to 23.0 Ԩ, along
with the change of opening of the valve in reheat coil.

From 160 to 225 seconds, the room temperature is
higher than the set point and their difference is
decreasing (Figure 10). As the difference changes, the
opening of the valve in the cold air loop increases from
0.3 to 0.4 kg/s. Though the room temperature is higher
than set point, due to the hysteresis embedded in the
controller, the reheat coil is still on with a small opening
(Figure 11). Thus, the supply air temperature is higher
than 16 Ԩ and generally decreasing with the valve
opening becoming smaller (Figure 13).

After approximately 225 seconds, the room
temperature is approaching the set point (Figure 10). At
end of the simulation (15 min), the difference between
room temperature and the set point is marginal. Since
the room temperature is higher than set point and the
opening of the valve in cold air loop is larger than 0.4,
the reheat coil is turned off (Figure 11) and supply air
temperature is 16 Ԩ (Figure 13).

va
v

dp
_n

om
in

al
=1

5
m

0=
m

_f
lo

w
_n

om
in

al

te
rH

ea

sinTer
con

TRoo

TSup

yHea

yCoo

se
nM

as
Fl

o m
_f

lo
w

k=1/m_flow_nominal

fraMasFlo

TS
upT

k=1/2.44/4.93/6.22/1.2*3600

ACH

valHea

souTer

A
irS

ou

port_b

yDam

TR
oo

Room temperature
Input

Cold air source with
constant pressure

Terminal Box
Controller

Valve

Hot water source

Hot water sink

Reheat coil

Temperature sensor

Mass flow rate
sensor

Valve

Outlet of terminal box

Air loop valve position

Mass flow rate fraction

ACH

conHea

PIPI

conCoo

PIPI

one

k=1

zero

k=0.3

HeaSet

k=273.15 + 25

CooSet

k=273.15 + 25

product

booleanToReal

B
R

min

min

max

max

hysteresis

0.301 0.4

TRoo
yHea

yDam

Reheat control loop

Lower limit of the valve
position in air loop

Room temperature
set point

Room temperature
set point

PI controller

PI controller

Hysteresis to avoid short
cycling of reheat coil valve

Valve position in air loop

Valve position reheat coil
Room temperature
input

Cooling control loop

0 100 200 300 400 500 600 700 800 900

Simulation T ime [s]

20

22

24

26

28

30

T
[◦
C
]

Measured Temperature

Set Point

Measured Temperature

Set Point

Session 4B: Buildings I

DOI
10.3384/ecp1713255

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

59

6

Figure 10. Zone 1 temperature control

Figure 11. Control outputs from VAV terminal box

Figure 12. Mass flow rates at different openings

Figure 13. Zone temperature in the space

Note that we presented the mass flow rate of supply

air and at different openings in the space in Figure 12.
We can clearly identify the mass flow rate difference at
Opening 1 and Opening 2, which would be ignored if a
multizone model is used. Due to the mass conservation
law, the mass flow rate at Opening 1 and Opening 3 are
equal, and the same rule applies to Opening 2 and
Opening 4.

 Figure 13 shows the temperature of supply air and
other zones. As the room temperature in Zone 1
approaches set point of 25 ℃, the temperature at Zone 3
and Zone 4 gets close to the set point with an error of

1.0 ℃. However, in the Zone 2, the temperature is 21.7
℃, which is as expected, because part of the cold supply
air in Zone 1 is directly injected into Zone 2 as opening
1 is facing to the inlet of Zone 2.

6 Conclusion and Discussion
The results shown in the validation case prove that the
coupled simulation is capable of handling the airflow
simulation in a multi-zone space with non-uniform
momentum distribution. By further adding a VAV
terminal box to the validation case, the coupled
simulation model further demonstrates its application
potential in indoor climate control and its capability to
capture the dynamics of the building system as well as
the indoor environment. In the future, more case studies
need to be performed to holistically assess the coupled
simulation model such as contaminant control and fire
or smoke control. Moreover, the FFD simulation can be
performed in parallel (Tian, Sevilla, and Zuo 2017) or a
reduced order model such as in situ adaptive tabulation
(Li et al. 2016; Tian, Sevilla, Li, et al. 2017) can be
further used to accelerate the computation speed.

Acknowledgements
This research was supported by the National Science
Foundation under Award No. IIS-1633338 and the U.S.
Department of Energy under Contract No. DE-
EE0007688. This research was also supported in part by
the U.S. Defense Threat Reduction Agency. LBNL’s
research was performed under U.S. Department of
Energy Contract No. DE-AC02-05CH11231.

References
Bonvini, M., M. Popovac, and A. Leva. 2014. Sub-Zonal

Computational Fluid Dynamics in an Object-
Oriented Modelling Framework. Proceedings of the
Building Simulation.

Chen, Q. 2009. Ventilation Performance Prediction for
Buildings: A Method Overview and Recent
Applications. Building and Environment, 44
(4):848-58.

Chen, Q., and W. Xu. 1998. A Zero-Equation Turbulence
Model for Indoor Airflow Simulation. Energy and
Buildings, 28 (2):137-44.

Chorin, A. J. 1967. A Numerical Method for Solving
Incompressible Viscous Flow Problems. Journal of
Computational Physics, 2 (1):12-26.

Courant, R., E. Isaacson, and M. Rees. 1952. On the Solution
of Nonlinear Hyperbolic Differential Equations by
Finite Differences. Communications on Pure and
Applied Mathematics, 5 (3):243-55.

Crawley, D. B., L. K. Lawrie, F. C. Winkelmann, W. F. Buhl,
Y. J. Huang, C. O. Pedersen, R. K. Strand, et al. 2001.
Energyplus: Creating a New-Generation Building
Energy Simulation Program. Energy and Buildings,
33 (4):319-31.

0 100 200 300 400 500 600 700 800 900

Simulation T ime [s]

0.0

0.2

0.4

0.6

0.8

1.0

O
pe
n
in
g
R
a
ti
o

Cooling Air V alve

Reheat Coil V alve

Cooling Air V alve

Reheat Coil V alve

0 100 200 300 400 500 600 700 800 900

Simulation T ime [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

ṁ
w
a
te
r
[k
g
/s
]

Supply air

Opening 1

Opening 2

Opening 3

Opening 4

0 100 200 300 400 500 600 700 800 900

Simulation T ime [s]

14

16

18

20

22

24

26

28

30

32

T
[◦
C
]

Supply air

Zone 1

Zone 2

Zone 3

Zone 4

Coupled Simulation between CFD and Multizone Models Based on Modelica Buildings Library to Study
Indoor Environment Control

60 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713255

7

Department of Energy. 2011. "Building Energy Data Book."
In.

Dols, W. S., and G. N. Walton. 2002. Contamw 2.0 User
Manual: Multizone Airflow and Contaminant
Transport Analysis Software: US Department of
Commerce, Technology Administration, National
Institute of Standards and Technology.

Fisk, W. J. 2000. Health and Productivity Gains from Better
Indoor Environments and Their Relationship with
Building Energy Efficiency. Annual Review of
Energy and the Environment, 25:537-66.

Fritzson, P. 1998. Modelica - a Language for Equation-Based
Physical Modeling and High Performance
Simulation. Applied Parallel Computing, 1541:149-
60.

Jin, M., W. Zuo, and Q. Chen. 2012. Improvements of Fast
Fluid Dynamics for Simulating Air Flow in
Buildings. Numerical Heat Transfer, Part B:
Fundamentals, 62 (6):419-38.

Kats, G. 2003. Green Building Costs and Financial Benefits:
Massachusetts Technology Collaborative Boston,
MA.

Klein, S. A., J. A. Duffie, and W. A. Beckman. 1976. Trnsys-
a Transient Simulation Program. Ashrae
Transactions, 82:623.

Kropf, S., and G. Zweifel. 2001. Validation of the Building
Simulation Program Ida-Ice According to Cen
13791 “Thermal Performance of Buildings–
Calculation of Internal Temperatures of a Room in
Summer without Mechanical Cooling–General
Criteria and Validation Procedures”. Hochschule
Technik+ Architektur Luzern. HLK Engineering.

Li, D., W. Tian, Z. Wetter, Wangda, and Michael. 2016.
Simulation Using in Situ Adaptive Tabulation and
Fast Fluid Dynamics. IBPSA-USA Journal, 6 (1).

Liu, G., J. Zhang, and A. Dasu. 2012. Review of Literature on
Terminal Box Control, Occupancy Sensing
Technology and Multi-Zone Demand Control
Ventilation (Dcv). US Department of Energy, Tech.
Rep.

Norrefeldt, V., G. Grün, and K. Sedlbauer. 2012. Vepzo–
Velocity Propagating Zonal Model for the
Estimation of the Airflow Pattern and Temperature
Distribution in a Confined Space. Building and
Environment, 48:183-94.

Strachan, P., G. Kokogiannakis, and I. Macdonald. 2008.
History and Development of Validation with the
Esp-R Simulation Program. Building and
Environment, 43 (4):601-9.

Tian, W., A. T. Sevilla, D. Li, W. Zuo, and M. Wetter. 2017.
Fast and Self-Learning Indoor Airflow Simulation
Based on in Situ Adaptive Tabulation. Journal of
Building Performance Simulation.

Tian, W., T. A. Sevilla, and W. Zuo. 2017. A Systematic
Evaluation of Accelerating Indoor Airflow
Simulations Using Cross-Platform Parallel
Computing. Journal of Building Performance
Simulation, 10 (3):243-55. doi:
10.1080/19401493.2016.1212933.

Tian, W., and W. Zuo. 2013. Literature Review and Research
Needs to Couple Building Energy and Airflow

Simulation. Proceedings of the Proceedings of the
the APEC Conference on Low-carbon Towns and
Physical Energy Storage.

Wang, L. 2007. Coupling of Multizone and CFD Programs
for Building Airflow and Contaminant Transport
Simulations: ProQuest.

Wang, L., and Q. Chen. 2005. On Solution Characteristics of
Coupling of Multizone and CFD Programs in
Building Air Distribution Simulation. Proceedings
of the Proceedings of the 9 th International IBPSA
Conference (Building Simulation 2005), Montreal,
Canada.

Wang, L., and Q. Chen. 2007. Validation of a Coupled
Multizone-CFD Program for Building Airflow and
Contaminant Transport Simulations. HVAC&R
Research, 13 (2):267-81.

Wang, L. L., and Q. Chen. 2008. Evaluation of Some
Assumptions Used in Multizone Airflow Network
Models. Building and Environment, 43 (10):1671-7.

Wang, M., and Q. Chen. 2009. Assessment of Various
Turbulence Models for Transitional Flows in an
Enclosed Environment (Rp-1271). HVAC&R
Research, 15 (6):1099-119.

Wetter, M. 2006a. Multizone Airflow Model in Modelica.
Proc. of the 5-th International Modelica Conference,
2:431-40.

Wetter, M. 2006b. Multizone Airflow Model in Modelica.
Proceedings of the Proc. of the 5-th International
Modelica Conference.

Wetter, M. 2009. Modelica-Based Modeling and Simulation
to Support Research and Development in Building
Energy and Control Systems. Journal of Building
Performance Simulation, 2 (2):143-61.

Wetter, M., W. Zuo, T. S. Nouidui, and X. Pang. 2014.
Modelica Buildings Library. Journal of Building
Performance Simulation, 7 (4):253-70. doi:
10.1080/19401493.2013.765506.

Yang, P. 2013. "Real-Time Building Airflow Simulation
Aided by GPU and FFD." Concordia University.

Zhai, Z., Q. Chen, P. Haves, and J. H. Klems. 2002. On
Approaches to Couple Energy Simulation and
Computational Fluid Dynamics Programs. Building
and Environment, 37 (8):857-64.

Zuo, W., and Q. Chen. 2009. Real-Time or Faster-Than-Real-
Time Simulation of Airflow in Buildings. Indoor Air,
19 (1):33-44.

Zuo, W., and Q. Chen. 2010. Fast and Informative Flow
Simulations in a Building by Using Fast Fluid
Dynamics Model on Graphics Processing Unit.
Building and Environment, 45 (3):747-57.

Zuo, W., M. Wetter, D. Li, M. Jin, W. Tian, and Q. Chen. 2014.
Coupled Simulation of Indoor Environment, HVAC
and Control System by Using Fast Fluid Dynamics
and Modelica. Proceedings of the 2014
ASHRAE/IBPSA-USA Building Simulation
Conference, Atlanta, GA, Sep. 10-12.

Zuo, W., M. Wetter, W. Tian, D. Li, M. Jin, and Q. Chen. 2016.
Coupling Indoor Airflow, HVAC, Control and
Building Envelope Heat Transfer in the Modelica
Buildings Library. Journal of Building Performance
Simulation, 9 (4):366-81.

Session 4B: Buildings I

DOI
10.3384/ecp1713255

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

61

62 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Co-Simulation between detailed building energy performance
simulation and Modelica HVAC component models

Andreas Nicolai1 Anne Paepcke1

1Institut for Building Climatology, Faculty of Architecture, TU Dresden, Germany,
andreas.nicolai@tu-dresden.de

Abstract
We discuss the application of the FMI Co-Simulation
technology to building energy performance simulation,
where detailed physical building models are coupled
to Modelica-based HVAC component and plant models.
First, we describe the generation process of the build-
ing FMU from our stand-alone building simulation pro-
gram NANDRAD and sketch out internal algorithms for
FMI version 2 capabilities. Then, coupling scenarios
are described and physical interface conventions are pre-
sented. Usability is addressed by automatic generation of
building-model specific adapters and wrappers. The build-
ing FMU and plant FMUs are then simulated together us-
ing different Co-Simulation master algorithms. Finally,
based on simulation results and performance analysis we
conclude with recommendations on suitable master algo-
rithm options and specific features of suitable building
FMUs.
Keywords: FMI, Co-Simulation, Energy, Building Simula-
tion, HVAC System, Physical Interface, Master Algorithm

1 Introduction
Building energy performance simulation is a technology
used by planners and building designers in the planning
process. A typical usage scenario includes evaluation of
different options regarding building envelope construc-
tion, HVAC systems and control strategies. Currently,
available simulation tools, such as EnergyPlus TRNSYS
(Klein et al., 1976; Dols et al., 2014), IDA-ICE (Sahlin
et al., 2004) and our own development NANDRAD (Nico-
lai and Paepcke, 2012; Paepcke and Nicolai, 2014) (in
C/C++) are concepted as stand-alone tools. Modeling and
simulation of integrated modern buildings requires flex-
ible plant and equipment models, which are often case-
specific. Extending the source code of existing building
simulation models is often only possible by original model
developers and also very difficult and time consuming.

Alternatively, Modelica as one example for a model-
ing language can be used to express such equipment and
control systems. There are a number of libraries provid-
ing suitable components for modeling building systems,
for example the Annex60-based libraries AixLib, Build-
ingSystems, Buildings and Idias (Wetter et al., 2013; Wet-
ter, 2009; Nytsch-Geusen et al., 2013; Sahlin et al., 2004)

or the GreenBuilding library1. However, modeling the en-
tire building with sufficient physical detail in Modelica
alone is not meaningful for several reasons:

• larger building complexes may involve many zones,
constructions, facade elements, thermal storage
members resulting in thousands of differential equa-
tions,

• Modelica code may become huge and may cause
problems with the generic Modelica solvers, even
symbolic analysis may be extremely slow,

• modeling the building in Modelica without suitable
BIM-style data import or code generation will not
be possible for realistic buildings, it is too time-
consuming and thus too expensive, and

• manual connection of many building components
with corresponding equipment and control models
may be extremely time-consuming and error-prone.

For practical purposes, planners and engineers will not
accept a procedure that involves creation of such com-
plex models with current Modelica user interfaces, alone.
There are, however, tools under development that as-
sist with prototyping Modelica-based building and equip-
ment models, for example TEASER2. However, limita-
tions with respect to the detail of the building model and
simulation efficiency persist.

1.1 Benefits of Simulation Coupling within the
Building Energy Simulation Context

The use of stand-alone simulation tools or Modelica-only
based building modeling may not be a satisfying strategy.
Instead, a hybrid approach appears meaningful:

• using existing building simulation software tailored
to the building engineering user group, prefere-
ably Building Information Model (BIM) preprocess-
ing software packages (DesignBuilder3, BIM-HVAC

1Green City/ SimulationX – Planungstool,
http://www.ea-energie.de/de/products/←↩
green-city-simulationsbibliothek-2-2

2TEASER - Tool for Energy Analysis and Simulation for Efficient
Retrofit, https://github.com/RWTH-EBC/TEASER

3https://www.designbuilder.co.uk

DOI
10.3384/ecp1713263

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

63

tool4, etc.) with database support, graphical repre-
sentation of the building, and input error control with
automatic generation of input data to building sim-
ulation engines (e.g. IDF-files for EnergyPlus, or
nandrad-files for NANDRAD), and

• use of Modelica and suitable libraries by HVAC
system planners to model building equipment
(heater/chiller/ventilation systems) and required con-
trol strategies.

Joining both models in a coupled simulation will com-
bine also the benefits of both modeling approaches. With
the FMI standard a unified methodology and technical de-
scription for coupled simulation is available. With respect
to the two described operation modes ModelExchange and
Co-Simulation, we prefer the latter variant that allows in-
dividual FMUs to use their own dedicated solver engines.
However, it can be expected that the Co-Simulation ap-
proach and gained flexibility implies a simulation over-
head and performance penalty. In the remainder of the
article we always refer to Co-Simulation according to the
FMI standard when discussing coupled simulation.

1.2 Envisioned Usage of Co-Simulation
We envision two suitable scenarios of combining a dedi-
cated building energy simulation FMU with one or more
HVAC component FMUs created with Modelica. In the
first scenario, the user will model the equipment system
in Modelica and import a previously generated building
FMU into the modeling environment, connect it to the
Modelica components and run the simulation within the
Environment (Figure 1).

Alternatively, HVAC component or control models may
be designed with Modelica and than exported by the mod-
eling tool into FMUs. These are then combined with
the building FMU and simulated by an alternative Co-
Simulation master. This approach allows prefabrication
of HVAC component sub-models.

1.3 Co-Simulation Requirements
A central requirement for the application of Co-
Simulation is that obtained results are of a similar ac-
curacy as if the entire model would be calculated stand-
alone. Accuracy shall be defined in this respect such that
the global error, i.e. the difference between numerical so-
lution and true solution is bounded to a defined limit. In
practice, within each integration step the local error is con-
trolled. Every FMU should implement such an error con-
trol algorithm to be considered a consistent model.

In the building energy simulation side, this demand re-
stricts the choice of suitable simulation tools, for exam-
ple, older simulation engines like EnergyPlus and TRN-
SYS do not implement such an error testing procedure.
Our building simulation models THERAKLES and NAN-
DRAD (Nicolai, 2013; Nicolai and Paepcke, 2012) belong

4http://www.building-engineering.de

to a class of modern solvers that use dynamic time step
adjustment schemes based on local error estimates, with
the advantage of maintaining required accuracy while im-
proving simulation speed whenever possible (Hindmarsh
et al., 2005). This is an important feature, since differ-
ent building equipment may be active during different an-
nual seasons and may enforce different time integration
regimes. For example, heating systems are turned off dur-
ing summer, and if air conditioning is not used, simulation
can speed up since no interaction with actively controlled
equipment occurs. Simulation time steps typically vary
between 1 second and 30 minutes in annual simulations.

The requirement on error control made for FMUs
should also be fulfilled by the Co-Simulation master,
which effectively needs to adjust communication interval
sizes. When separating control and equipment systems
from the building’s thermal response in a Co-Simulation
scenario, the use of larger communication intervals may
cause stability and accuracy problems. Such problems can
be avoided by choosing a sufficiently small time step size.
In realistic simulation cases it is generally not possible to
predict the allowed maximum of the communication step
size. Also, using a fixed tiny communcation step size leads
to inacceptable long simulations and would limit the ad-
vantage of performance optimized FMU-internal solvers.
Therefore, a master algorithm which supports error/sta-
bility control and dynamic adjustment of communication
step sizes is desirable. This, in return, requires FMI Ver-
sion 2.0 capabilities of the slaves, in particular the get and
set state functionality (FMI, 2014).

Note, that an error control algorithm within a Co-
Simulation master will also detect and compensate, by re-
ducing communication step size, potential numerical in-
stabilities, again leading to excessive and inacceptable
simulation times. Phenomena of instability may grow
with increased coupling strength of FMUs interface quan-
tities and often arising from the choice of the model inter-
face.

2 Choice of the FMU Interface
The separation of a complex building energy simulation
model into subcomponents is not trivial. A natural choice
for separation of the entire model into FMUs may be to
keep the passive building and its physics regarding in-
teraction with climate and user loads within the building
simulation FMU. All active components such as heating,
cooling, ventilation and associated equipment and control
models will be in one ore more HVAC-FMUs. In this ar-
ticle we use a single FMU with all HVAC equipment and
control models written in Modelica.

2.1 Building Simulation FMU Input/Output
Variables

One option for a flexible interface would be to export all
relevant states like temperatures and solar radiation loads
from the building simulation FMU, and import calculated

Co-Simulation between detailed building energy performance simulation and Modelica HVAC component
models

64 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713263

Figure 1. Usage Scenario 1: Building simulation FMU (NANDRAD) imported into Modelica environment (SimulationX)

heating/cooling loads from the HVAC FMUs. This inter-
face can be considered a very universal interface, since
any kind of heating/cooling loads can be modeled and im-
ported as energy source to each thermal zone’s energy bal-
ance. The interface defines for each thermal zone an ex-
port of mean air and operative temperature and input of
convective and radiative thermal load.

The building simulation FMU includes databases for
climatic loads and user behavior and related equipment
schedules5. Hence, climatic data and schedules are ad-
ditionally exported via the FMU interface. This allows
consistent treatment of climatic input data in building and
equipment models. Part of the scheduled user loads are
also hot and cold water demand as well as user-related
electric power consumption.

2.2 Convenience Adapters and Wrappers
The interface definition allows exporting and importing
zonal quantities. Considering typical buildings of more
than hundred conditioned zones, a large number of in-
put/output variables need to be connected to the plant
FMU. Even if the FMI standard would allow usage of vec-
tor variables, the manual connection of exported temper-
atures to the various input ports on the plant side would
not be expedient and may lead to errors that are difficult
to identify and track.

Also, when importing a building simulation FMU into
a Modelica development environment the graphical repre-
sentation of the inserted FMU with hundreds of ports is
not suitable for practical use. Therefore, we utilize helper
components that assist with mapping native FMU inter-

5Typically, such schedules and databases are part of the building
model definition and will be generated/collected within the BIM pro-
cess

face quantities to Modelica library ports and buses.
Different helper components are used depending on the

usage scenario:

• When the building FMU is imported into the Mod-
elica environment, the FMU is encapsulated into
a Modelica wrapper model, which internally holds
the FMU and connects to the native FMU interface.
On the outside it provides port and bus connectors
matching the corresponding library interfaces, in our
case the GreenBuilding climate, electrical and HVAC
buses (see Figure 2, we use the HVAC, HotWater and
Electrical port of the GreenBuilding library). This
wrapper is therefore specific to each building6 and to
the interfaced library.

• When the plant model is to be exported from Mod-
elica into a stand-alone Co-Simulation FMU, the
adapter (Figure 3) is used instead. It provides the
same library-specific connectors as the wrapper, but
does not connect to the building FMU. Instead, it
exports and imports exactly the counterparts of the
building FMU interface variables . When exporting
the Modelica model, only these connectors become
part of the FMU interface. Also, the connector coun-
terparts are identically named to the building FMU
interface quantities, which greatly simplifies auto-
mated connection between plant and building FMU
connectors7. The graphical annotations of zonal con-

6The native interface of the FMU changes with the number of ther-
mal zones, or their IDs, and so does the wrapper component.

7Similarly, when importing a building FMU into a Modelica envi-
ronment an automated matching of connectors between FMU and wrap-
per/adapter model would be possible. Unfortunately, none of the cur-
rently available modeling environments supports such a procedure.

Session 4B: Buildings I

DOI
10.3384/ecp1713263

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

65

nectors with same quantities but different zone refer-
ences are arranged on top of each other, thus keeping
the adapter symbol compact.

Figure 3 does not show the actual connector names,
but rather a physical description and associated unit
(see (Paepcke et al., 2016) for a complete specification).

2.2.1 Adapter/Wrapper Configurations

The use of wrappers/adapters is a compromise between
flexibility of the building model interface and easy-of-use
within Modelica environments. The current specification
of our adapter/wrapper Modelica component is special-
ized of interfacing all building zones with exactly one
HVAC system model in Modelica. For other situations,
the adapter/wrapper models may look different. Yet, the
principle approach to provide FMU-independent connec-
tors for the remainder of the Modelica model appears to be
a promising way to avoid connecting to individual FMU
input/output variables directly.

3 Parametrization and Export of
NANDRAD FMUs

3.1 Configuration for FMU Export
When NANDRAD is executed as stand-alone building en-
ergy simulation model, for example to compute annual en-
ergy demand and comfort criteria, it uses a set of input
files with the building model (BIM) and database elements
(material data, constructions, climatic data, etc.). The in-
put data include definitions of all zones and their heating
and cooling requirements, which enables an ideal heating
and cooling load calculation.

When NANDRAD is used as building simulation FMU
to simulate a realistic heating/cooling system, all condi-
tioned zones need to be connected to the heating cycle
or to the electrical grid of the plant model. All zones
that are part of the interface and import/export variables
are given different usage scenarios, for example, heating
scenario or electrical usage scenario. This information is
then used during export to generate required import/ex-
port quantities and also create the internal data structures

GreenBuilding HVAC Port

GreenBuilding HotWater Port

GreenBuilding Electrical Port

Figure 2. Modelica wrapper encapsulates NANDRAD FMU
and provides collector ports for climate, HVAC and electrical
quantities

that map FMU input/output variables to existing internal
variables. Selecting the usage scenarios and selecting the
corresponding zones is part of the FMU preprocessing.

3.2 Export procedure
The export procedure involves several steps:

• NANDRAD is run as stand-alone simulation to gen-
erate auxiliary information needed for parametriza-
tion of the HVAC/plant model, for example the heat-
ing/cooling design day calculation.

• The NANDRAD solver initialization is used to gen-
erate the variable dependency information, which is
stored in the modelDescription.xml file.

• The modelDescription.xml is composed (in-
cluded data for ModelExchange and Co-Simulation
and the FMI v2 functionality).

• All referenced databases are collected. All input
files, the pre-compiled NANDRAD dynamic library
(with implemented FMI functionality), and addi-
tional dependent libraries8 are copied. Finally, the
FMU archive is created.

• Modelica wrapper and adapter models (.mo files)
are generated individually for the current building
project.

• A report including zone naming, dimensions, unique
IDs and heating/cooling design loads is written to be
used during configuration of the HVAC component
model, and for automatic Modelica model generation
scripts.

During export, compilation of source code is not neces-
sary and the model initialization and the design day calcu-
lation are usually very fast, except for large buildings with
several hundred of zones. The auxiliary files are provided
seperately from the generated FMU.

8Depending on the target platform, different libraries are copied.
Currently, one NANDAD FMU holds only binaries for one platform
Win32, Win64, Linux64, Darwin64 at a time.

Temperature [K]
Relative Humdity [1]
Direct solar radiation [W/m2]
Diffuse solar radiation [W/m2]
Long wave radiation [W/m2]
Air pressure [Pa]
Wind direction [Rad]
… (4 more components)

Exported climatic data (weather data file content)

Mean air temperature [K] Zone #...
Operative temperature [K] Zone #...

Cooling setpoint [K] Zone #...
Heating setpoint [K] Zone #...

Convective thermal load [W] Zone #...
Radiative thermal load [W] Zone #...

Electrical power consumption [W]

Domestic water setpoint [K] Zone #...
Domestic water mass flow [kg/s] Zone #...

Domestic water temperatur [K] Zone #...

GreenBuilding HVAC Port

GreenBuilding HotWater Port

GreenBuilding Electrical Port

Figure 3. NANDRAD adapter provides Modelica collector
ports as well as input and output variables identically named as
the building FMU ports

Co-Simulation between detailed building energy performance simulation and Modelica HVAC component
models

66 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713263

Modeling modern complex integrated buildings will
require much more data being commonly used by the
building simulation model and HVAC system model.
Hereby, the procedure of using BIM-data for consistent
parametrization of all model components is desirable and
an ongoing research issue.

4 NANDRAD FMU Calculation Func-
tionality

4.1 State-based model evaluation and time in-
tegration in NANDRAD

When the building simulation engine NANDRAD was
developed at the IBK, its design was heavily influenced
by the first version of the FMI for ModelExchange stan-
dard. The entire physics evaluation is encapsulated within
a state-based model object, whose state changes only by
modification of the time point or conservative quantites
(solution variables). After spatial discretization of all par-
tial differential equations within the building model, a
large sparse system of coupled ordinary differential equa-
tions is assembled. The time integration is then performed
using our own integration framework, which incorporates
the SUNDIALS:CVODE solver (Hindmarsh et al., 2005).
Internally, the CVODE integrator is called by the frame-
work for each integration step at a time. It selects/pre-
dicts a suitable integration time step, performs a modified
Newton iteration9 and upon convergence or error test fail-
ure reduces integration step until an acceptable solution is
found. Note, since integration step sizes are exclusively
determined by the integrator engine, synchronization with
communication intervals needs to be adressed.

Figure 4 illustrates the architecture of the stand-alone
NANDRAD solver. The physical model implementa-
tion is encapsulated in a model object which has simi-
lar access functions as the ModelExchange specifications
require. Therefore, the ModelExchange FMU interface
implementation is only a thin layer around our physi-
cal model. Our integration framework calls one of the
supported time integration methods in a step-wise man-
ner. This core loop, which also signals successful steps
(stepCompleted()) and tells the model to write in-
terim outputs (writeOutputs()), is partially replaced
by the Co-Simulation master.

4.2 Implementation of the doStep functional-
ity

When NANDRAD runs as a simulation slave, the time in-
tegration is now interrupted at the end of communication
interval and control is returned to the master. Since in-
ternal integration steps may not match interval end, we
choose to limit the internal integration step size so that the
communication interval is not exceeded. However, this

9Within each Newton iteration the large sparse equation system is
solved using a Krylov-subspace method with NANDRAD-specific pre-
conditioner.

may lead to situations, wherein the last integration step be-
fore end of communication interval is much shorter than
previous integration steps10.

An alternative to limiting the last integration step would
be to allow the integrator to take its natural step size. In
the case of CVODE, the solution at communication in-
terval end could be easily obtained by backward interpo-
lation. The CVODE integrator could now be re-started
with that interpolated solution in the next communication
interval. However, such a restart would destroy the his-
tory within the multi-step BDF method, effectively forcing
CVODE to restart integration from first order with very
small time steps. This approach leads to inacceptable sim-
ulation times and cannot be recommended.

4.3 Retrieving and restoring the FMU state
The aforementioned functionality is sufficient for exe-
cuting NANDRAD as FMI for Co-Simulation version 1.
However, as soon as the Co-Simulation master is using
an iterative or error controling algorithm, the slaves must
be repeatedly set back in time (see, for example (Clauß
et al., 2017)). The master needs to retrieve and restore
each FMU’s state.

Within NANDRAD the internal state is stored in several
solver components:

• State of the integrator (time point, state variables and
Nordsieck history array, counters, control variables)

• State of linear equation system solver, in case of GM-
RES only control variables

• state of Jacobian, since with modified Newton algo-
rithm it is only infrequently updated

• state of preconditioner (part of Jacobian matrix and
in case of ILU preconditioner also the factorized rep-
resentation)

• integral model states (integral outputs, state of hys-
teresis loops etc.)

The data structures are typically very fragmented. The
serialization implementation within NANDRAD creates a
continuous memory array and then copies all data mem-
bers into the array, hereby advancing an insertion pointer
after each copy operation. With the use of C macro def-
initions, the entire serialization, deserialization and size
computation functionality is only coded once, thus ensur-
ing binary compatibility and improving code maintenance
(Nicolai and Paepcke, 2016).

Additionally, the ability to serialize the entire state of
model and integrator into a continuous memory block en-
ables implementation of the fmi2Serialize() and
fmi2Deserialize() functions.

10Drastic changes in time step sizes typically lead to invalidation of
Jacobian matrix information, with the related overhead of re-composing
and factorizing the Jacobian.

Session 4B: Buildings I

DOI
10.3384/ecp1713263

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

67

Integrator Implementation Physical Model ImplementationsetTime(t)

i
n
i
t
(
m
o
d
e
l
)

s
t
e
p
(
)

t
(
)

solves ODE system of type ydot = f(t,y)

implicit solver with Newton-Raphson
iteration

Solver Control System

Implements core integration loop: calls step() function in Integrator, also manages output schedules

control functions

query functions

y
0
(
)

t
0
(
)

t
E
n
d
(
)

implements physical model equations and the
computation of the system function f(t,y)

state of object changes only through calls of
control functions

n
(
)

setY(y)

ydot()

y
O
u
t
(
t
_
o
u
t
)

s
t
e
p
C
o
m
p
l
e
t
e
d
(
t
,
y
)

w
r
i
t
e
O
u
t
p
u
t
s
(
.
.
.
)

Corresponds to FMI ModelInterface

To be replaced by Co-Simulation Master

Figure 4. Core components of the NANDRAD stand-alone solver.

4.4 Integration of FMU inputs and outputs in
the NANDRAD building model

The physical model of NANDRAD is internally imple-
mented by means of interconnected state-based model ob-
jects. We allow a single model object calculation to de-
pend on other model results. For example, room air bal-
ance is encapsulated in a single model object that requests
heating and cooling load as input quantities. In turn, the
power of controlled heating and cooling elements reacts
on thermal response of the zone. In complete, NANDRAD
owns several model objects with arbitrary interconnec-
tions that form an unstructured graph. Indeed, the states
of all these models must be updated in the correct order
whenever a solver state change is registered. For this pur-
pose we cluster the model graph into nodes with cyclic and
sequential connections first and order it afterwards during
initialization process. As a result, all model objects appear
stacked with respect to their evaluation chronology. This
strategy guarantees all internal states to be current when-
ever an update is necessary because of changes of solver
states or solver time.

This modeling concept can be easily extended to FMU
inputs and outputs. In detail, we encapsulate all FMU
quantities into an FMU import and an FMU export model
object. The export model transfers all required output
variables from the building model towards the FMI. The
import model caches FMI input quantities, such as heat-
ing and cooling loads, and provides them just like calcu-
lation results to other internal model objects. This struc-
ture enables the model initialization to sort FMU inputs
and outputs to the correct position inside the model object
graph. For evaluation of all models depending on FMU in-
put we store the position of the FMU import model object
within the graph. In the case of update due to FMU input
changes only the corresponding dependent nodes of the

model graph are taken into account. This allows a model
evaluation/update with only small computational effort.

To achieve good simulation performance we follow the
concept of lazy evaluation: the call of fmi2SetReal()
does not enforce an update of dependent building model
objects but temporarily fills a data container. Only at the
beginning of each communication step the container val-
ues are copied and the model evaluation is triggered. So,
during each communication interval the model results as
well as FMU outputs are consistent to the FMU inputs.

5 Application Cases
The procedure of creating and parametrizing building and
equipment models and exporting FMUs has been tested
with three application cases of different scales: an office
room (1 conditioned zone, 383 ODEs in the building sim-
ulation part), a family row-house (2 heated zones, 502
ODEs in the building FMU) and a large appartment com-
plex (178 conditioned zones, 23220 ODEs in the building
FMU).

In this article we will only look at the first case and dis-
cuss the observed behavior with respect to the different
Co-Simulation master algorithms employed. Note, it is
generally possible to reduce the number of ODEs, which
mostly result from spatial discretization of envelope/inte-
rior constructions, by adjusting the grid-generation param-
eters. As with most spatial discretization techniques, such
a variation should be complemented by sensitivity studies
which are beyond the scope of the article. In the test case
we selected medium-fine discretization settings, leading to
the reported number of elements.

5.1 Office Room Model Setup
In this model, the office is represented by four enclosing
wall/floor constructions, where internal walls with same
behavior are lumped into one. The only external wall

Co-Simulation between detailed building energy performance simulation and Modelica HVAC component
models

68 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713263

faces west and contains a large window. The old con-
struction is made from massive lime sandstone (simplified
as single layer construction) with poor thermal insulation
properties. The HVAC system operates with ideal control
for a heating and cooling demand calculation, dynamic
daily schedules and low setback temperature on weekends.
During the week, schedules distinguish between daytime
and nighttime use (occupied/not-occupied). Correspond-
ing thermal loads are computed by the plant model and
imposed onto the room energy balance. Infiltration is con-
sidered with standard settings. Since the heating system
is modeled in an idealistic way. The interaction between
room response and heating system is very strong, leading
to stiffly coupled system.

5.2 Reference Solution and Verification Proce-
dure

Initially, for this problem a Modelica-only solution ex-
isted, yet with simplified building representation. The
results of this calculation can be used for plausibility
tests (Figure 5).

A correct reference solution with detailed building
physics can be obtained using the ModelExchange-
functionality of the building FMU and the Modelica-based
equipment model. Generation of a correct reference solu-
tion depends on the following assumptions:

• building FMU correctly implements the ModelEx-
change interface and internal room physics,

• ModelExchange master correctly implements time
integration with error checking,

• Modelica model is correctly solved within the envi-
ronment.

As Modelica simulation environment and ModelExchange
master we use the SimulationX11 software, which has a
comprehensive quality testing procedure to ensure correct-
ness of Modelica and FMI master implementation. Our
own NANDRAD implementation is tested against stan-
dard and customized dynamic test scenarios, and also
compared to the thermal room model THERAKLES12.

Given these testing procedures, we are confident that
the results of the ModelExchange calculation will be cor-
rect and can be used to evaluate the quality of the Co-
Simulation runs.

5.2.1 ModelExchange Reference Simulation

A first step in generating this reference solution was to ex-
port the NANDRAD model as FMU for ModelExchange.
Since NANDRAD exports a single FMU with both Co-
Simulation and ModelExchange specification, the same

11https://www.simulationx.de
12See http://bauklimatik-dresden.de/therakles.

THERAKLES was used in the test case as plugin alternative to
NANDRAD and gave the same results for this single-zone model
problem.

Real time [d]

A
ir

T
e

m
p

e
ra

tu
re

[C
]

0 5 10 15 20 25 30

19

20

21

22

23

Modelica StandAlone

ModelExchange

Figure 5. Comparison of reference ModelExchange solution
with Modelica-only variant, using SimulationX for both simula-
tions

FMU is used for later Co-Simulation testing. The FMU
was imported into SimulationX (version 3.7), connected
manually to the plant model and simulated with the Simu-
lationX internal solver (CVODE solver, sparse Jacobian).

The fully coupled ModelExchange simulation is a fairly
small problem and was simulated in acceptable time. The
results were then compared to the stand-alone simplified
Modelica variant and showed good agreement (Figure 5).
We also did not expect much difference, since the single-
layer constructions with high thermal conductance will be
reasonably well approximated by the mean thermal resis-
tance approach used by the Modelica model.

For the office room model, we use the ModelExchange
reference solution for the subsequent Co-Simulation tests.
However, for larger buildings (more than one hundred
zones) the procedure of using ModelExchange for sim-
ulation fails, because already the symbolic analysis takes
excessive time. For example, in the case of the appartment
complex the symbolic analysis was not yet finished after
three days.

5.3 Co-Simulation Variants
For the Co-Simulation approach, we exported the Mod-
elica plant model from SimulationX into an FMU for
Co-Simulation, version 2, hereby using the CVODE inte-
grator option and numerical Jacobian generation method.
Then, we ran the coupled simulation between the plant
and building simulation FMUs with MASTERSIM13. We
developed this open-source Co-Simulation master imple-
mentation specifically for testing and evaluation of build-
ing simulation applications.

5.3.1 Non-Iterating Gauss-Jacobi with Fixed Step-
Size (only FMI v1)

The most trivial approach to Co-Simulation is the use
of the Gauss-Jacobi algorithm without iteration and fixed

13http://mastersim.sourceforge.net

Session 4B: Buildings I

DOI
10.3384/ecp1713263

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

69

Real time [d]

A
ir

T
e

m
p

e
ra

tu
re

[C
]

0 5 10 15 20 25 30

19

20

21

22

23

GaussJacobi 10 min

GaussJacobi 1 min

ModelExchange

Figure 6. Gauss-Jacobi, non-iterating, fixed communica-
tion step sizes (ModelExchange results from SimulationX, Co-
Simulation results calculated with MASTERSIM)

time step. This algorithm does not require any FMI v2
features and is thus the most compatible.

For the office room case the simulation was done with
a fixed communication step size of 10 and 1 minutes. For
both variants, stability problems appear. Figure 6 shows
computed room mean air temperatures for the first weeks
of the annual simulation.

The two Co-Simulation variants are plotted vs. the ref-
erence solution and clearly show unphysical oscillations,
even at times when heating setpoints are constant. Source
of the problem is the delayed reaction of the plant FMU
on changes in room air temperature. Whenever the room
temperature crosses the setpoint temperature during the
course of the communication interval, the plant loop con-
tinues calculating based on outdated information. Specif-
ically, when room temperature increases above setpoint
temperature, the heating system still provides heat to the
room based on previous room air temperature informa-
tion. During cooling, the heating system remains off for
too long, allowing the room air temperature to drop below
the setpoint temperature. As expected, reducing the com-
muncation step size also reduces magnitude of observed
oscillations.

Using SimulationX as Co-Simulation master with same
time steppings gave nearly identical results compared to
MASTERSIM. Thus, we have confidence in correct be-
havior of the building and HVAC system FMUs.

5.3.2 Non-Iterating Gauss-Seidel with Fixed StepSize
(only FMI v1)

An attempt at improving the solution was made by using
the Gauss-Seidel algorithm, again with fixed step size and
no iteration. Hereby, the building FMU is been given up-
dated plant FMU results when integrated in the same step.
Figure 7 shows a comparison between a Gauss-Seidel and
Gauss-Jacobi simulation using the same communication
step size.

Real time [d]

A
ir

T
e

m
p

e
ra

tu
re

[C
]

0 5 10 15 20 25 30

19

20

21

22

23

GaussJacobi

GaussSeidel

ModelExchange

Figure 7. Comparison of non-iterating Gauss-Jacobi and Gauss-
Seidel calculation for a fixed communication step of 1 minute
(Co-Simulation cases done with MASTERSIM)

Despite the notable improvement, even Gauss-Seidel
does not provide sufficiently accurate results. Lowering
the time step will of course improve results, but at the cost
of reduced simulation performance. In practical applica-
tions the user would have to guess the communication in-
terval and refine it in the case of stability/accuracy prob-
lems. Recognizing incorrect results may not always be
easy, especially since for realistic application scenarios a
reference solution does not exist. Therefore, it would be
desirable to automatically adjust the time step such that
results are within acceptable tolerances.

5.3.3 Adaptive Communication Step Size

We implemented the step-doubling technique in
MASTERSIM as adaptive communication step method
(Clauß et al., 2017). Clauß discusses such an ap-
proach within in context of FMI Co-Simulation. The
error tests uses the weighted root mean square norm
of all communicated real variables. When this al-
gorithm is used, all FMUs must have the capability
canGetAndSetFMUstate and formally implement
version 2 of the FMI standard. The algorithm begins
with storing the current FMU states, followed by a full
communication step calculation. The results are cached,
FMUs are set back and two subsequent communication
steps of half length are computed. The result of the single
step and the double-step calculation are used as a measure
for the local truncation error. With this approach, each
step, even if successful, requires 3 FMU evaluations
compared to one FMU evaluation without error test.

Three simulations cases were run: Gauss-Jacobi and
Gauss-Seidel methods, each with only one evaluation (no
iteration), and the last with Gauss-Seidel allowing three it-
erations. All tests were done with a relative tolerance and
an absolute tolerance of 10−5. The latter may be impor-
tant since thermal loads, the output variables of the plant
FMU, can go down to zero.

Co-Simulation between detailed building energy performance simulation and Modelica HVAC component
models

70 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713263

Real time [d]

A
ir

T
e

m
p

e
ra

tu
re

[C
]

0 5 10 15 20 25 30

19

20

21

22

23

GaussJacobi

GaussSeidel noniterating

GaussSeidel iterating

ModelExchange

Figure 8. Comparison of non-iterating Gauss-Jacobi and Gauss-
Seidel calculation variants with adaptive communcation step
sizes (Co-Simulation cases done with MASTERSIM)

When time step sizes fall below 1 s, iteration is dis-
abled. This is a fallback criterion in MASTERSIM in or-
der to avoid useless iterations in case of encountered dis-
continuities. Changing this value may also change per-
formance of the simulation, but not impact accuracy of
results.

Figure 8 shows the results obtained with variable step
sizes for non-iterating cases. The results are now within
the requested tolerance limit and are, with very few ex-
ceptions, nearly identical to the ModelExchange variant.
The simulation time, however, has increased substantially
compared to the incorrect fixed step variants.

Table 1 shows the statistics obtained from the three
cases. For the first two cases iteration is not used, hence
no convergence failures were recorded. Error test failures
occurred about three times more frequent for the Gauss-
Jacobi variant, which resulted in a drastic reduction of av-
erage time step sizes and similar increase of simulation
time. The step sizes were sometimes reduced drastically
to 10−7s. Figure 9 illustrates the strong variations in time
step. For the Gauss-Jacobi simulation, the time step varies
permanently over several orders of magnitude. For all
variants, when the heating system has been turned off at
0.75 d (6:00 pm), the time steps increase again up to the
allowed maximum of 15 minutes. This is important for
increasing overall simulation performance.

Interesting is the comparison between iterating and
non-iterating Gauss-Seidel. Apparently, even with three
iterations often a situation is encountered, that Gauss-
Seidel cannot resolve. In these cases time step sizes were
reduced due to convergence errors, which in turn reduced
the number of error test failures. With this stability-
dominated simulation case, use of the iterating Gauss-
Seidel approach is not meaningful.

Real time [d]

C
o

m
m

u
n

ic
a

ti
o

n
S

te
p

S
iz

e
[s

]

0.5 0.55 0.6 0.65 0.7 0.75 0.8

10
2

10
1

10
0

10
1

10
2

10
3

10
4

GaussJacobi

GaussSeidel noniterating

GaussSeidel iterating

Figure 9. Illustration of step-size variation with adaptive time
step methods within the first day of simulation.

6 Summary and Conclusion
We presented the tasks necessary to successfully run a
coupled building energy performance simulation using the
FMI standard. We discussed the physical interface be-
tween plant and building FMU, the process of generating
the building FMU itself and its internal interface imple-
mentation. In realistic cases buildings may have a large
number of conditioned zones, resulting in many input and
output variables. Therefore, we presented an approach for
improving usability by automatically generating Modelica
helper components. Further, we showed one example ap-
plication for a single zone model and tested different Co-
Simulation algorithms for accuracy and simulation perfor-
mance.

In the test case we used an ideal heating system. The
strong coupling between building and plant FMU caused
stability problems for fixed-step solvers. These could be
controlled by use of an adaptive communcation time step,
based on local error estimates. The non-iterating Gauss-
Jacobi method performed poorly compared to the non-
iterating Gauss-Seidel method. Iteration, tested with the
case of Gauss-Seidel, did not improve simulation perfor-
mance. Without iteration, stability problem were detected
by the error test, with iteration these stability problems of-
ten caused conversions failures. In either case communca-
tion step sizes were reduced. However, in all variants the
error test and communcation time step adjustment method
yielded results of acceptable quality.

In our test case, the iterative Gauss-Seidel method
failed frequently due to stability problems. Therefore, us-
ing Gauss-Seidel or Gauss-Jacobi iteration is not mean-
ingful for such strongly coupled cases.

The observed behavior and conclusions drawn from the
simulations are of course only an indication of general be-
havior. In particular, the ideal plant model and control
method in conjunction with a strong thermal response of
the building are definitely an extreme case. Still, success-

Session 4B: Buildings I

DOI
10.3384/ecp1713263

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

71

Table 1. Simulation statistics obtained with adaptive step simulations

Method Comm. Steps Error Test Fails Convergence Fails Simulation Time

ModelExchange — — — 54 min
Gauss Jacobi non-iterating 1984803 590539 — 25 min
Gauss Seidel non-iterating 827616 146637 — 10 min

Gauss Seidel iterating 1595677 4003 809681 28 min

ful simulation was possible by use of time step adjustment,
and the method and approach itself is suitable for general
application.

To achieve this, the following requirements on FMU
and master simulator must be fulfilled:

• the solvers within the building and plant FMU must
implement an error test procedure to give consistent
results,

• the FMUs must implement FMI standard version 2
with capability to set and get their states, and

• the Co-Simulation master must support communica-
tion time step adjustment based on local error esti-
mates.

It has to be noted, though, that our conclusions are spe-
cific to the idealistic HVAC system used and observations
may be different when dealing with detailed HVAC sys-
tem models for modern integrated buildings.

For practical applications, overall simulation perfor-
mance remains a crucial criterion. Considering the still
long simulation times when applying Co-Simulation, fur-
ther work is required with regard to finding suitable physi-
cal interfaces, choice of master algorithms and algorithmic
parameters.

Acknowledgements
We gratefully acknowledge the support and funding re-
ceived from the German Federal Ministery for Eco-
nomic Affairs and Energy in the research project “En-
Tool:CoSim” #03ET1215A F-002792.

References
FMI 2.0 Standard, 2014. Functional Mock-up Interface for

Model Exchange and Co-Simulation.

Christoph Clauß, Kristin Majetta, and Richard Meyer. Appli-
cation of Richardson Extrapolation to the Co-Simulation of
FMUs from Building Simulation. In Proceedings of the 12th
international Modelica Conference, 2017.

William.S. Dols, Wang Liangzhu, Steven J. Emmerich, and
Brian J. Polidoro. Development and Application of an Up-
dated Whole-Building Coupled Thermal, Airflow, and Con-
taminant Transport Simulation Program (TRNSYS/CON-
TAM). Journal of Building Performance Simulation, 8(5):
326–337, 2014.

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L.
Lee, Radu Serban, Dan E. Shumaker, and Carol S. Wood-
ward. SUNDIALS: Suite of nonlinear and differential/alge-
braic equation solvers. ACM Transactions on Mathematical
Software, 31(3):363–396, 2005.

Sanford A. Klein, William A. Beckman, and John A. Duffie.
TRNSYS - A Transient Simulation Program. ASHRAE Trans-
actions, 82(1):623–633, 1976.

Andreas Nicolai. Physikalische Grundlagen des ther-
mischen Raummodells THERAKLES, 2013. URL
http://nbn-resolving.de/urn:nbn:de:bsz:
14-qucosa-102112.

Andreas Nicolai and Anne Paepcke. Die Gebäudesimula-
tionsplattform NANDRAD - Physikalisches Modell, Umset-
zungskonzept und Technologien im Überblick. In Proceed-
ings of the BauSIM 2012, 2012.

Andreas Nicolai and Anne Paepcke. Transformation
der Gebäudeenergiesimulation NANDRAD mit variablem
Zeitschrittlöser in eine FMU für Co-Simulation. In Proceed-
ings of the BauSIM 2016, 2016.

Christoph Nytsch-Geusen, Jörg Huber, Manuel Ljubijankic,
and Jörg Rädler. Modelica BuildingSystems – eine Mod-
ellbibliothek zur Simulation komplexer energietechnischer
Gebäudesysteme. Bauphysik, 35(1):21–29, 2013.

Anne Paepcke and Andreas Nicolai. Anlagenregelung in ODE-
Systemen am Beispiel der thermischen Raum- und Gebäudes-
imulation. In Proceedings of the BauSIM 2014, 2014.

Anne Paepcke, Torsten Schwan, and Andreas Nicolai.
Schnittstellen für die Co-Simulationskopplung zwischen
Gebäude- und Heizungsanlagensimulation. In Proceedings
of the BauSIM 2016, 2016.

Per Sahlin, Lars Eriksson, Pavel Grozman, Hans Johnsson,
Alexander Shapovalov, and Mika Vuolle. Whole-building
simulation with symbolic DAE equations and general pur-
pose solvers. Building and Environment, 39:949–958, 2004.

Michael Wetter. A Modelica-based model library for building
energy and control systems. In Proceedings of the 11th IBPSA
Conference, 2009.

Michael Wetter, Christoph van Treeck, and Jan Hensen. IEA
EBC Annex 60: New generation computational tools for
building and community energy systems. Technical report,
Lawrence Berkeley National Laboratory, 2013.

Co-Simulation between detailed building energy performance simulation and Modelica HVAC component
models

72 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713263

Aspects of FMI in Building Simulation

Dipl.-Ing. Torsten Schwan
1
 Dipl.-Ing. René Unger

1
 B.A. Jörg Pipiorke

2

1EA Systems Dresden GmbH, Germany, {torsten.schwan,rene.unger}@ea-energie.de
2ESI ITI GmbH, Germany, Joerg.Pipiorke@esi-group.com

Abstract
Building physics and HVAC system simulation have

become an important usage scenario of the Modelica

modeling language and related simulation tools since

the publication of first adequate libraries (Wetter,

2009). In 2010, the tool independent standard FMI was

published in version 1.0. It enables the exchange of

models between different simulation tools and even

different modeling approaches. Although, automotive

industry mainly initiated the FMI development, it can

extensively benefit building simulation, too.

This paper describes four completely different

applications of FMI in the building simulation

environment which even extend the basic idea of

simple model exchange. This includes the description

of developed models as well as additionally required

software components implementing the FMI standard.

Keywords: Building Simulation, FMI, Model-in-the-

loop, Controller Test

1 Introduction

The versatile modeling language Modelica enables

engineers to model and simulate complex multi-

physical problems in a wide range of different

domains. Although it has been growing in the

automotive industry during the late 1990s and 2000s

building engineers (mainly HVAC and building

physics specialists) more and more use Modelica for

their purposes as well.

Since the first publications of building physics and

HVAC system related Modelica libraries in 2009, a

wide range of different modeling approaches have been

developed. Most of them are freely available under

open-source license. Some are more commercial and

only partly open-source.

One of the main open-source representatives of

building modeling libraries is the Modelica Buildings

library of LBNL (Wetter, 2009). This constantly

refined library is based on Modelica Fluid library. It

focuses on detailed modeling of heating, ventilation

and air conditioning systems together with detailed

thermal room models. Further open-source library

examples with similar modeling approaches and

objectives are the Modelica Building library of RWTH

Aachen (Lauster, 2012) and the Modelica

BuildingSystems library of UdK Berlin (Nytsch-

Geusen et. al., 2012). Today, these libraries as well as

further similar derivatives are mainly dedicated to the

worldwide growing academic community of building

systems engineers and researchers.

Further commercial but partly open-source libraries

like ESI ITI’s Green Building (Unger et. al., 2012) and

its latest derivative Green City (Schwan et. al., 2016)

focus on integrated planning of sustainable and

profitable solutions of buildings’ and even whole

cities’ heat, cold and power supply.

Besides the Modelica language and derived libraries

the Modelica Association has been supporting the MA

Project Functional Mockup Interface (FMI) since its

publication in 2010 as well. The FMI 1.0 standard was

developed by 29 partners in the MODELISAR project

between 2008 and 2011. In this ITEA 2 European

project mainly the automotive industry forced the

development of a tool independent model exchange

standard. The FMI 2.0 standard followed these first

developments with its publication in 2014.

The FMI standard in both versions enables

engineers to exchange or co-simulate dynamic models

of different domains. This way, FMI can extend the

field of application of building and energy system

simulation. It can furthermore help to overcome current

and future limits of simulation.

Integrated planning processes more and more use

accurate building physics and HVAC system models

based on any kind of public or in-house library. Their

main task is currently the simulation of different

variants of complex building and energy system

structures. This way, engineers make feasibility studies

and profitableness analyzes of different system

configurations. This application of building systems

related Modelica libraries does not basically require

FMI.

However, there is a wide range of further fields of

application and benefits of Modelica in the building

simulation environment. This paper describes four

sample applications of FMI during integrated planning

processes.

The first example supports the development of a

high-level building control system including weather

forecast and user prediction to optimize ecological

footprint of a sophisticated multivalent HVAC system

in a school and sports complex. This way, FMI

DOI
10.3384/ecp1713273

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

73

provides the basics of a software-in-the-loop test stand

of iteratively learning control software.

In the second example FMI provides the

communication between a real-world HVAC system

component (i.e. micro combined heat and power unit)

and a complex model of the virtually connected

building and hydronic heating system. This way, FMI

represents the basic part of modern hardware-in-the-

loop test stand.

The third example uses FMI to integrate a fast-

calculating simulation model in a complex virtual

power plant controller. In this model-in-the-loop

structure the functional mockup unit of the Modelica

model helps to identify optimal operation strategies of

complex diversified power plants.

The last application uses FMI to combine

advantages of different simulation platforms including

individually optimized numerical solvers. This way,

FMI couples highly-optimized hygrothermal multi-

zone building models with easy-to-use Modelica

HVAC system models. In this case, FMI helps to

separate stiff ODE systems with heavily varying time

constants.

2 Example 1 – Software-in-the-Loop

In a small town in northern Bavaria (Germany) a local

architect wants to transfer the local 1970’s school and

sports complex to a future 2040’s energetic level.

HVAC engineers therefore planned a sophisticated

multivalent heat, cold and power supply system

including heat pumps, cogeneration units and backup

gas-fired condensing boilers as heat supply. Main heat

and power source are large-scale solar thermal

absorbers and photovoltaic fields. Besides an

integrated waste-water heat recovery system the

integration of three different storage types (stratified

heat storage, cold storage and ice storage) helps to

balance daily and seasonal differences between energy

consumption and production (Wicke et. al., 2014).

However, this quite complex HVAC system

additionally requires smart control algorithms because

of the higher degree of freedom. But such iteratively

learning, optimality-based control software needs

sufficient testing.

The developed controller and optimization software

is based on an existing Python Framework. To provide

the software engineers a suitable software-in-the-loop

Coupling-FMU

Multivalent heating and

cooling system incl.

renewables and storages

Building heat,

cold and power

consumption

Figure 1: Modelica simulation model of the school and sports complex including coupling-FMU to external controller

software (Wicke et. al., 2014)

Aspects of FMI in Building Simulation

74 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713273

test environment, a Modelica model of the developed

HVAC system including the building complex’s heat,

cold and power demand is coupled to this Python-

based controller software. This software-in-the-loop

test bench uses the pyFMI-framework in the software

and an automatically created coupling-FMU in the

model (c.f. Figure 1) to establish a variable step size

communication via TCP/IP protocol between model

and software. This way, controller software and

simulation model can run on different computer

devices or even at different places.

The generation of the coupling FMU runs

automatically using newly implemented FMU

generator software in java. This software uses an

external csv-file to define the required coupling

interface (inputs and outputs of coupling FMU)

between controller software and test model.

Software-in-the-loop tests of new controller

software require extensive scrutinizing regarding

internal controller timings, especially in combination

with PI or PID controllers. The integrator time

constants have great influence on later robustness.

Building simulation models normally run (much) faster

than real-time to provide sufficient results (at least one

year) within adequate time periods. Those time

constants therefore have to be adapted regarding

communication time steps as well as a constantly

synchronized real-time factor.

3 Example 2 – Hardware-in-the-Loop

Existing complex building structures, like the school

and sports complex in Figure 1, require smart solutions

for energetic renovations. But also smaller buildings,

like simple single-family homes, require holistic

optimization approaches of heat and power supply.

Photovoltaic and cogeneration units this way enable

massive reductions of overall annual power

consumption with manageable investment costs.

Photovoltaic (PV) modules provide renewable

power and small cogeneration modules (so-called

micro combined heat and power units – mCHPs)

utilize synergy effects of heat and power production.

To enable a wide range of different system

configurations as well as an ongoing system

optimization CHP and PV manufactures have to

constantly improve their products. This includes

controller software as well as hardware components.

But reliable developments again require sufficient

testing. Hardware tests of single system components

can use simple test stand configurations (e.g. mCHP –

heat storage, controlled recooling) and generically

calculated heat and power load profiles. But dynamic

tests of hardware and software with evaluated real-

world-conditions need further expenses.

This way, Modelica models in combination with

FMI can again help to provide an easy-to-use platform

for hardware-in-the-loop tests. Figure 2 shows a simple

example of a developed single-family home model for

a hardware-in-the-loop test of a small mCHP. This

single-family home model includes heat and power

consumption of a small house (3-thermal zones),

renewable power production and storage by

photovoltaic modules, a battery and a connected

eVehicle charging infrastructure. Heat is supplied by a

2.5 kW mCHp with 1.0 kW power output and a peak-

Coupling-FMU

Bivalent heating system incl.

space heating and domestic

hot water supply

Single-family home with

ground and first floor as

well as roof

Renewables, Storages and

eMobility

Figure 2: Modelica model the single-family-home including coupling-FMU to a real-world mCHP (Unger et. al., 2012)

Session 4B: Buildings I

DOI
10.3384/ecp1713273

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

75

power gas-fired condensing boiler (Unger et. al.,

2012).

The real-world counterpart of the mCHP is

connected to the model via a specific coupling FMU.

This again automatically created FMU connects real-

world measurement sensors (heat and power sensors of

the mCHP) with the model. Measured heat and power

is added as additional heat and power supply to the

building. The mCHP controller gets temperature

measurements of the simulated building (ground and

first floor) and the heat storage to start and stop the

real-world mCHP engine. Furthermore, the mCHP

controller decides to run the simulated peak-power

boiler if reference temperatures are underrun.

The required coupling FMU (c.f. Figure 2) couples

Modelica inputs and outputs in the model with real-

world digital and analogue signals of the mCHP

controller. Therefore, the FMU internally converts

model variables into TCP/IP protocol compatible

signals. These signals are interchanged between the

simulation computer unit and the local PLC

(Programmable Logic Controller) of the hardware-in-

the-loop test stand. This PLC directly communicates

with the mCHP controller via a system specific

communication bus (e.g. Modbus). Heat supply to

recooler and power supply to test stand’s grid are

measured with electronic sensors which send back the

measurement data to the model.

This configuration represents a simple closed-loop

hardware-in-the-loop test stand based on Modelica

models and FMI. Again timing balance between real-

world-time and simulation time is highly important. In

opposite to the software-in-the-loop approach a

hardware-in-the-loop test stand cannot easily be

accelerated. It requires rigid real-time synchronization

between model and device under test. This avoids the

adaption of controller-internal timing constants.

Fortunately, building physics and HVAC system

models mostly are (much) faster-than-real-time. Model

acceleration is not necessary. The model even has to be

stopped after each communication step to synchronize

simulation time and real-world time.

4 Example 3 – Model-in-the-Loop

Modelica models as well as the Functional Mockup

Interface standard will be a major part of future

sophisticated test stands (both hardware- and software-

in-the-loop) in the building sector. However, both

provide more potential to improve the current situation

of planners and engineers in this environment.

FMI was developed to provide an independent

model exchange and co-simulation standard. Besides

using FMI as a pseudo data exchange interface,

Modelica models of sophisticated building and HVAC

system structures can also be exported as standalone

FMUs.

District heating grid with

connected buildings

Thermal power plant with

cogeneration

Local utility’s power grid including large-

scale wind parks and photovoltaic fields

Figure 3: Modelica model of a simple district heating grid with cogeneration plant and superior electric grid connection

(Schwan et. al., 2016)

Aspects of FMI in Building Simulation

76 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713273

The integration of these FMUs in upcoming model-

in-the loop controller architectures (e.g. Virtual Power

Plant Controller – c.f. Schwan et. al., 2016) helps

building engineers to design optimality-based

controllers which can increase overall system

efficiency without major extra investment costs.

Figure 3 shows such a simple Modelica model based

on ESI ITI’s Green City library. It represents a highly-

simplified model of a cold district heating grid with

decentral heat pumps, a thermal power plant with

cogeneration and the local utility’s power grid

including wind parks and photovoltaic fields. This

system is a role-model of a future part of a virtual

power plant which provides balancing power to the

transmission grids via energy exchange (EEX).

Available heat storage capacities in the district the

heating grid provide virtual storage capacities for

renewable power surplus of wind parks or photovoltaic

(i.e. negative balancing power). Furthermore, decentral

heat pumps can partly run as renewable energy dump

as well by utilizing each building’s thermal capacity. In

times of grid deficits, the district heating grid reduces

the power consumption of the heat pump and the

cogeneration plant provides positive balancing energy.

These strategies will help to decarbonize overall

energy supply of buildings in the future. However,

such concepts require major investments and

refinancing is not possible with diminishing energy

profits. But the sale of balancing energy at the energy

exchange (c.f. EEX) will help to partly compensate

resulting add-on costs. This requires though highly-

accurate prediction of available storage capacities.

The integration of accurate but fast calculating

simulation models of those grids in energy trading tool

chains and corresponding system controllers (e.g.

controller of a cogeneration plant) increases profit

reliability at the balancing energy exchange. Therefore,

these models are exported including a suitable

numerical solver as independent FMUs.

Then, these FMUs are simulated for comparatively

short time periods (i.e. few days ahead) to identify

maximum profit margins regarding different upcoming

weather conditions as well as expected power and heat

consumption profiles.

In this model-in-the-loop configuration the models

must run much-faster-than-real-time to enable the

evaluation of a great number of different input

parameter sets and influencing characteristics.

Synchronization is not needed because the controller

only uses the accumulated simulation results.

5 Example 4 – Co-Simulation

All three previously shown FMI applications in the

building sector mainly use the standard to provide

sophisticated test scenarios or to optimize controller

functionality. However, FMI is also applicable in this

environment in its inherent manner, a model exchange

and co-simulation standard.

Complex building models combine a vast number of

different physical components with highly diversified

Building-FMU Monovalent heating system

with geothermal heat pump

Townhouse with

ground and first floor Building-FMU Adapter

Figure 4: Coupling of a Modelica HVAC system model (SimulationX/Green City) with a TU Dresden building-FMU

based on the building physics simulation tool Nandrad (Paepcke et. al., 2016)

Session 4B: Buildings I

DOI
10.3384/ecp1713273

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

77

time constants. Building physics mainly represent slow

processes. Heating up or cooling down walls or whole

buildings need several hours to several days depending

on thermal inertia and available heating/cooling system

configurations. Power supply of renewables, e.g.

photovoltaic modules or wind power plants, can

fluctuate within several seconds or few minutes

depending on cloudiness and surrounding shadings.

Inverter controllers of photovoltaic, batteries or even

eMobility charging stations can react within a few

seconds regarding available measurements (e.g.

inhabitants’ individual power consumption in a

dwelling house).

This great variety of time constants can cause very

stiff ODE systems in one Modelica model. But FMI

enables to separate models regarding different time

constants or to combine the strength of different

simulation tools and solvers. Coupled models can co-

simulate specialized building physics models with

highly optimized PDE solvers (e.g. heat and moisture

transport through walls) together with fast and accurate

HVAC system models in Modelica and its therefore

optimized ODE solvers.

Figure 4 therefore shows the coupling between

Modelica HVAC system models based on ESI ITI’s

Green City library coupled to a townhouse building

physics model in TU Dresden’s Nandrad simulation

environment (Paepcke et. al, 2016). This way, a

Modelica simulation environment imports the

Building-FMU created in Nandrad as an additional

model component. The townhouse model consists of

two thermal zones representing ground and first floor.

The HVAC system includes a monovalent heat pump

and a heat storage which provides the heat to the two

hydronic heating circuits.

However, both FMI 1.0 and FMI 2.0 only allow

scalar interface variables (inputs and outputs). But

especially complex building physics models require a

high number of common interface variables (e.g.

indoor temperatures and temperature set points of all

thermal zones or rooms). Therefore, Nandrad

additionally provides a building-FMU adapter which

automatically connects the bus interfaces in the

Modelica model with the vast number of scalar inputs

and outputs of the building-FMU.

On the one hand, this approach provides an interface

between a Modelica HVAC system model and an

imported building physics model. Co-simulation this

way uses basic master algorithms of the available

Modelica simulation environments, like ESI ITI’s

SimulationX. On the other hand, the HVAC system

model including the required adapter can be exported

as standalone FMU, too. This way, co-simulation

between two or more FMUs can use more specialized

master algorithms (Clauß et. al., 2016) to optimize

simulation speed and accuracy. This can furthermore

improve the tradeoff between increase of simulation

speed by usage of several individually optimized

solvers and speed reduction by adding additional

communication time between the FMUs.

6 Conclusion

This paper presents an overview of different fields of

application of Functional Mockup Interface standard in

the building simulation environment. Building and

HVAC system simulations currently become one major

domain of the Modelica language including an

increasing number of available academic and

commercial libraries.

The Modelica community also focuses on coupling

of different models as well as software and hardware

components to utilize synergy effects and to extend

Modelica’s fields of application (e.g. BCVTB -

Nouidui et. al., 2014). Because of its tool indepen-

dency, its industrial support and its adjustability to

latest network and internet technologies, the FMI

standard and its upcoming updates will help to

integrate Modelica in all design, test and validation

processes in the building sector within the next years.

References

M. Wetter. A Modelica-based model library for building

energy and control systems, 11
th

International IBPSA

Conference, Glasgow, 2009.

M. Lauster. Modelica Building Library and Building Models.

Symposium on Integrated Planning and Simulation in

Building Physics and Technology. Dresden, 2012.

C. Nytsch-Geusen, J. Huber, M. Ljubijunkic, J. Rädler.

Modelica-BuildingSystems – A Simulation Library of

complex Building Energy Systems. BauSIM, Berlin, 2012.

R. Unger, T. Schwan, B. Mikoleit, B. Bäker, C. Kehrer, T.

Rodemann. “Green Building” – Modelling renewable

building energy systems and electric mobility concepts

using Modelica. 9
th
 International Modelica Conference,

Munich, 2012.

T. Schwan, R. Unger. Holistic District Heating Grid Design

with SimulationX / Green City. ESI SimulationX User

Forum, Dresden, 2016.

M. Wicke, T. Schwan, R. Unger. Model-based design of

control strategies for a sophisticated building energy

system in a school and sports complex. 17
th
 ITI

Symposium, Dresden, 2014.

A. Paepcke, A. Nicolai, T. Schwan. Interfaces of Co-

Simulation Coupling between Building and Heating

System Simulation. Central European Symposium on

Building Physics, Dresden, 2016.

C. Clauß, K. Majetta, R. Meyer. Development of Simulator

Coupling Algorithms using FMI Interface for Building

Simulation Applications. Central European Symposium

on Building Physics, Dresden, 2016.

T. S. Nouidui, M. Wetter. Tool coupling for the design and

operation of building energy and control systems based on

the Functional Mock-up Interface standard. 10
th

International Modelica Conference, Lund, 2014.

Aspects of FMI in Building Simulation

78 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713273

Application of Richardson Extrapolation to the Co-Simulation of

FMUs from Building Simulation

Christoph Clauß, Kristin Majetta, Richard Meyer
Fraunhofer IIS EAS, Zeunerstraße 38, D-01069 Dresden, GERMANY

christoph@clauss-it.com, {kristin.majetta, richard.meyer}@eas.iis.fraunhofer.de

Abstract
The application of the FMI technology gains ground in

building simulation. As far as specialized tools support

the FMI simulator coupling becomes an important

option to simulate complex building models. Co-

simulation needs a master algorithm which controls the

communication time steps as well as the signal

exchange between FMUs. Often a constant

communication step size is applied chosen by the user.

The Richardson extrapolation approach allows variable

master step sizes. An extension of this approach is

presented, and the method is applied to both academic

test examples as well as examples of building simulation

which co-simulate FMUs from NANDRAD and

SimulationX. Although variable step size control could

improve the performance this cannot be observed at the

building simulation examples presented. But

Richardson extrapolation turns out to guarantee finding

an appropriate step size at the prize of downgraded

performance.

Keywords: Building Simulation, FMI, Co-Simulation,

Richardson Extrapolation, Variable Time Step Size

1 Introduction

In order to reduce the primary energy production by

both reduction the consumption in buildings and

growing the portion of renewable energy a much higher

knowledge of the dynamic energy and mass fluxes is

essential. Especially the daily and hourly fluctuations of

sun and wind based energy generation require detailed

dynamic considerations by simulation. Since the first

publication of the FMI standard well established

simulation tools have been improved to support FMI

both for model exchange and for co-simulation. This

allows the combination of dedicated tools as well as

their model libraries which contain results of a long

period of investigations. Basing on tool as well as model

combination by co-simulation a big step to generate

detailed simulation results was managed.

Modern buildings typically are divided into the “proper”

building (walls, roof, windows …, thermal, hygric

behavior), HVAC (heating, ventilation, air conditioning

devices…), and often a central acting control software

(building energy management systems, BEMS). Within

the German research project EnTool:CoSim the tools

NANDRAD [Nicolai, 2012] for building simulation,

and the Modelica simulation tool SimulationX [ESI ITI

GmbH] for mainly HVAC and control simulation were

prepared to export FMUs for co-simulation. Since the

FMI standard does not offer dedicated master

algorithms which control the coordinated simulation of

different FMUs, master algorithms have been

investigated and implemented [Bastian. 2011]. So far

master algorithms with a constant step size were

considered mostly. FMUs generated from SimulationX

for HVAC models often have a higher performance than

building FMUs generated by NANDRAD. Furthermore,

different “activity ranges” can be recognized (less

activity at night, weekend, less heating in summer …).

The required time intervals to be simulated can be very

long (years). Often the user is overstrained to define a

suitable master step size, especially if the co-simulation

method shall leave the research area to be applied in

building practice. These issues as well as the hope for

improved performance suggested the investigation of

variable step size master algorithms, and furthermore

asynchronous algorithms. In this paper results of the

investigation of synchronous variable step size

algorithms are presented. After the introduction of

Richardson extrapolation methods some small academic

test examples are presented, followed by three building

simulations of different complexity which apply

Richardson extrapolation.

2 Algorithms

The task of co-simulation of 𝑚 Simulators (FMUs) can

be described according to (1) with 𝑆𝑖 , (𝑖 = 1. . .𝑚) being

the simulators. 𝑄𝑖 and 𝑃𝑖 are matrices which project the

output values of 𝑆𝑖 into, and the input values of 𝑆𝑖 out of

the vector of coupling values 𝑥(𝑡)𝜖[0, 𝑇] → 𝑅𝑛. The

argument 𝑃𝑖𝑥 is missing if the simulator 𝑆𝑖 lacks input

values. In [Petridis, 2015] this description is derived,

and basic solution methods for cycles are presented

there.

{

 𝑥 = ∑ 𝑄𝑖𝑆𝑖(𝑃𝑖𝑥)

𝑚

𝑖=1
𝑄𝑖 𝑒𝑥𝑖𝑠𝑡𝑠

𝑄𝑖 𝑒𝑥𝑖𝑠𝑡𝑠

 𝑆𝑖(𝑃𝑖𝑥) 𝑄𝑖 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑒𝑥𝑖𝑠𝑡

 (1)

DOI
10.3384/ecp1713279

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

79

The projector 𝑃𝑖 takes the input values of the simulator

𝑆𝑖 out of the coupling values 𝑥. The simulator 𝑆𝑖
calculates its output values which are written into the

coupling value vector 𝑥 via 𝑄𝑖. Since all coupling values

𝑥 are output values of exactly one simulator, and since

no output value is input of the same simulator the

summarizing is possible. This is described in the first

line of (1). The second line clarifies that simulators

without output values also have to be called.

Due to the FMI-intention the interval [0, 𝑇] is divided

into communication intervals [0, 𝑇] =∪ [𝑡𝑐𝑘 , 𝑡𝑐𝑘+1]
with 𝑡𝑐𝑘 being the 𝑘𝑡ℎ communication point, and

ℎ𝑐𝑘 = 𝑡𝑐𝑘+1 − 𝑡𝑐𝑘 the communication step size.

The communication step size can be chosen

synchronously by calling each simulator with the same

step size, or asynchronously by using individual step

sizes for each simulator. Otherwise, the step size can be

constant, or it can vary. Both properties are independent

from each other. In this paper Richardson extrapolation

is applied as a method of variable but synchronous step

size control.

Figure 1. Richardson extrapolation

According to [Hairer, 1993], [Schierz, 2013] the

Richardson extrapolation algorithm consists of the

following steps (Figure 1):

1) Start at 𝑡𝑐𝑘, and simulate two steps using the step

same size ℎ𝑐𝑘 which results in the coupling

variables 𝑥𝑘+2. At the first step ℎ𝑐0 is provided by

the user. For following steps ℎ𝑐𝑘 is calculated by

previous steps.

2) Roll back to 𝑡𝑐𝑘 and simulate one step using the

doubled step size 2ℎ𝑐𝑘 which results in 𝑋𝑘+2.
3) Calculate an individual error estimation for each

coupling variable (𝑗 = 1. . . 𝑛) with 𝑞 being the

degree of the interpolation polynomial of input

values:

𝑒𝑟𝑟𝑒𝑠𝑡𝑗 = (𝑥𝑗
𝑘+2 − 𝑋𝑗

𝑘+2) (1 − 2𝑞+1)⁄ (2)

4) Calculate a total error estimation according to

𝐸𝑅𝑅 = √
1

𝑚
∑ (

𝑒𝑟𝑟𝑒𝑠𝑡𝑗

𝐴𝑇𝑜𝑙𝑗+𝑅𝑇𝑜𝑙𝑗|𝑥𝑗
𝑘+2|

)
2

 𝑚
𝑗=1 (3)

with 𝐴𝑇𝑜𝑙 and 𝑅𝑇𝑜𝑙 being absolute and relative

error limits which can be chosen individually for

each coupling variable.

5) Calculate the new step size ℎ𝑛𝑒𝑤 according to

ℎ𝑛𝑒𝑤 = ℎ𝑐𝑘 𝑚𝑖𝑛 {𝑄𝑚𝑎𝑥 , 𝑚𝑎𝑥 {𝑄𝑚𝑖𝑛 ,
𝑄𝑠

√𝐸𝑅𝑅
𝑝 }} (4)

The heuristic values 𝑄𝑚𝑎𝑥 ∈ [1.5,5], 𝑄𝑚𝑖𝑛 ∈
[0.2,0.5], and 𝑄𝑠 ∈ [0.8,0.9] prevent too “strong”

step size variations. 𝑝 has to be 𝑝 = 𝑞 + 1, if there

are no algebraic dependencies between inputs and

outputs, otherwise 𝑝 = 𝑞 + 2 is necessary.

6) If 𝐸𝑅𝑅 ≤ 1: Both time steps are accepted, 𝑡𝑐𝑘+2 =
𝑡𝑐𝑘 + 2ℎ𝑐𝑘, ℎ𝑐𝑘+2 = ℎ𝑛𝑒𝑤, 𝑘 ≔ 𝑘 + 2 , go to 1)

If 𝐸𝑅𝑅 > 1: Both time steps are rejected ℎ𝑐𝑘 =
ℎ𝑛𝑒𝑤, go to 1)

Due to the steps 2) and 6) the FMUs must be able to be

set back to a former communication time step.

Otherwise Richardson extrapolation cannot be applied.

This Richardson extrapolation algorithm assumes that

the simulators 𝑆𝑖 solve DAEs, and their output variables

depend on input variables. If output variables do not

depend on input variables, but on any purely time

depending formula or algorithm, then intermediate time

steps do not at all influence the results. Even if

simulators without inputs solve DAEs their output

values are in general not influenced by the master

communication step size. For such components 𝑙 of the

coupling variables 𝑒𝑟𝑟𝑒𝑠𝑡𝑙 = 0 follows because of

𝑥𝑙
𝑘+2 = 𝑋𝑙

𝑘+2. If the components 𝑙 cover the vector of

coupling values totally 𝐸𝑅𝑅 becomes zero, and

Richardson extrapolation cannot be applied reasonably.
In such cases the step size of the output values has to be

chosen such that simulators which take the output values

as inputs can reconstruct the output values without

losses. The step size must meet the sampling theorem

[Kotelnikov, 1933]. Therefore, a maximum

communication step size could be calculated if the

fastest frequency component of the output values is

known. Since this is not the case in general, the step size

is controlled similar to classic predictor-corrector

approaches [Hairer, 1993] by simply keeping the

deviation from linear extrapolation small (Figure 2).

The linear extrapolation of the first step is compared

with the values of the second step to generate an error

estimation. This algorithm called Linear extrapolation

algorithm throughout this paper is identical to

Richardson extrapolation except the error estimation

formula (2) of step 3), which is replaced by

𝑒𝑟𝑟𝑒𝑠𝑡𝑗 = 𝑥𝑗
𝑘+2 − 2𝑥𝑗

𝑘+1 + 𝑥𝑗
𝑘 (5)

The double sized step to calculate 𝑋𝑘+2 is no more

necessary there.

Application of Richardson Extrapolation to the Co-Simulation of FMUs from Building Simulation

80 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713279

Figure 2. Linear extrapolation

This way the more communication points are inserted

the more the coupling variable behavior is nonlinear. If

the behavior is linear temporarily or generally then 𝐸𝑅𝑅

also becomes zero. For such cases 𝐸𝑅𝑅 gets a small

positive minimum value. It is known that this

extrapolation method on its own gives no reliable step

size control if DAEs are solved. Therefore, it is

combined with the Richardson extrapolation method to

vanishing errors in Richardson extrapolation

reasonably: At first 𝑒𝑟𝑟𝑒𝑠𝑡𝑗 is calculated according to

Richardson, formula (2) within step 3). If 𝑒𝑟𝑟𝑒𝑠𝑡𝑗

vanishes (|𝑒𝑟𝑟𝑒𝑠𝑡𝑗| < 1. 𝑒 − 12) then 𝑒𝑟𝑟𝑒𝑠𝑡𝑗 is

replaced by the linear extrapolation error estimation

according to (5). This approach is called Extended

Richardson extrapolation method in this paper.

In summary three methods with variable step size

control are available:

 Richardson extrapolation comprising formula (2)

 Linear extrapolation algorithm comprising formula

(5) instead of formula (2), without the double sized

step. It does not guarantee reliable step size control

in case of DAEs.

 Extended Richardson extrapolation as a

combination of both of them

These algorithms are implemented in the ”EAS master

tool“ [Petridis, 2015] which is a proprietary tool for

testing master algorithms.

3 Simple Test Examples

The following simple academic examples were

developed to test features of the co-simulation

algorithm. They illustrate the implemented Richardson

extrapolation algorithms.

3.1 Precision Test Example

The precision test example presented in [Petridis 2015]

consists of three FMUs according to

Table 1. Each table line describes the equations of one

FMU. The example is designed such that 𝑦(𝑡) is zero.

Table 1. Equations of the precision test example

Input Equations Output

𝑥2 𝑥1 = −𝑥2 𝑥1

𝑥1 𝜕𝑥2
𝜕𝑡

= 𝑥1, 𝑥2(0) = 1 𝑥2

𝑥2 𝑒−𝑡 − 𝑥2 = 𝑦 𝑦

The example contains one cycle which is treated by

Newton’s method. Since 𝑥2(𝑡) is differentiated, and all

coupling values depend on 𝑥2(𝑡), the pure Richardson

extrapolation algorithm offers correct results. Two cases

of different tolerances are regarded (care for formula (3)

in the algorithm):

 Case 1 (usually default values): 𝐴𝑇𝑜𝑙 = 1. 𝑒 − 6,

and 𝑅𝑇𝑜𝑙 = 1. 𝑒 − 4

 Case 2 (higher precision): 𝐴𝑇𝑜𝑙 = 1. 𝑒 − 8, and

𝑅𝑇𝑜𝑙 = 1. 𝑒 − 6
The limitation of the Richardson step size variation is

kept far (min 1.e-5 s, max 5 s) to not restrict the step size

choice.

Figure 3. Precision test example results case 1

In case 1 (Figure 3) the accepted step size is growing

which is expected since the solution converges to the

steady state. 𝑦(𝑡) is numerically near zero.

If the tolerances demand a higher accuracy (case 2,

Figure 4) 𝑦(𝑡) is closer to zero. The step size starts not

significantly smaller than in case 1 but does not increase

as fast as in case 1. That indicates that the smallest

possible accuracy seems to be reached using the step

size 0.1 s.

Figure 4. Precision test example results case 2

Session 4B: Buildings I

DOI
10.3384/ecp1713279

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

81

This Richardson extrapolation study advises to choose a

constant step size of about 0.01 s if a constant step size

algorithm should be used. Doing that Figure 5 shows the

reasonable result.

Figure 5. Precision test example using the constant step

size of 0.01 s

When setting the CPU time necessary in the Richardson

case 1 to be one, the normalized CPU times are listed in

Table 2. Although the step size in Richardson

extrapolation exceeds 0.01 s clearly in the second half

of the time interval, the constant step size simulation is

significantly faster than Richardson extrapolation. The

reason is that Richardson extrapolation simulates the

whole interval more than twice.

Table 2. Normalized CPU time comparison

Richardson

case 1

Richardson

 case 2

Constant step

size 0.01 s

1 1.14 0.42

3.2 Linear System of Equations

The linear system of equations with time dependent

system matrix according to Table 3 was already

presented in [Petridis 2015].

Table 3. Linear system of equations

In Equations Out

 𝑟1 = 1, 𝑟2 = 𝑡,𝑟3 = 1 𝑟1, 𝑟3, 𝑟3

𝑥2, 𝑥3, 𝑟1 3𝑥1 + (0.1 + 𝑡)𝑥2 + 0.2𝑥3 = 𝑟1 𝑥1

𝑥1, 𝑥3, 𝑟2 0.1𝑥1 + 3𝑥2 + (0.1 + 𝑡)𝑥3 = 𝑟2 𝑥2

𝑥1, 𝑥2, 𝑟3 (0.1 + 𝑡)𝑥1 + 0.2𝑥2 + 4𝑥3 = 𝑟3 𝑥3

𝑥1, 𝑥2, 𝑥3 𝑥1 + 𝑥2+𝑥3 = 𝑦 𝑦

Applying Richardson extrapolation (Figure 6) the step

size increases since each variable depends on the point

in time only. The step size does not affect the

Richardson error calculation. The values calculated at

each time step are correct indeed, but there are too less

time steps generated. This drawback is overcome

applying the Linear extrapolation time step method

instead of Richardson extrapolation (Figure 7). This

example shows that the combination of both variable

step size methods is necessary. The Extended

Richardson extrapolation method shows the same

results as the Linear extrapolation method.

Figure 6. Linear system of equations example results

applying Richardson extrapolation

Figure 7. Linear system of equations example results

applying the Linear extrapolation method

3.3 Touching Mass Example

Similar to a bouncing ball the touching mass example

[Klein 2015] switches on a stiff spring as soon as the

mass touches the base. This accelerates the mass into

the opposite direction, and the stiff spring is switched

off when the base is left.

Table 1 shows the equations of this example, separated

into two parts (FMUs). The spring part contains

switching as well as the calculation of the stiff spring

force 𝑓.

Table 4. Equations of the touching mass example

Input Equations Output

𝑓 𝜕𝑠

𝜕𝑡
= 𝑣𝑠(0) = 10

𝜕𝑣

𝜕𝑡
∗ 0.1 = 𝑓 − 0.1𝑓(0) = 0

𝑠

𝑠
𝑓 = {

−1𝑒6 ∗ 𝑠 𝑠 < 0
0 𝑠 ≥ 0

 𝑓

All tests reported use Newton’s method to calculate

cyclic equations. The constant step size approach needs

a very small step size to handle the reversal process

correctly. Figure 8 shows that the step size of 1.e-5 s

calculates a nearly correct result.

Application of Richardson Extrapolation to the Co-Simulation of FMUs from Building Simulation

82 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713279

Figure 8. Course of s(t) at different communication step

sizes

Using Richardson extrapolation (max. step size 0.1 s,

min. step size 1.e-15 s, start step size 1.e-3 s, absolute

tolerance ATol 1.e-15, relative tolerance RTol 1.e-8) the

maximum step size is used. Only to calculate the

reversal regions (see Figure 9) the step size decreased

down to about 1.e-7 s (Figure 10).

Figure 9. Reversal region calculated by Richardson

extrapolation

Figure 10. Varying step size using Richardson

extrapolation

To calculate the reversal region correctly a small step

size is necessary, otherwise the result becomes useless.

The usage of the necessary small step size over the

whole interval as a constant step size increases the CPU

time abnormally (Table 5). The varying step size

provided by Richardson extrapolation is the method of

choice. The Linear extrapolation method does not

succeed since the step size does not increase after

deceasing. The reason is still to investigate.

Table 5. Normalized CPU time comparison for touching

mass example

Step size

0.01 s

Step size

1e-4 s

Step size

1e-5 s

Richardson

1 56 572 1.3

If the spring constant is 1.e10 instead of 1.e6, the

constant step size 1.e-5 s does no more show the correct

result (Figure 11). Richardson extrapolation test

calculates the expected result within a short CPU time

of less than 1s. The step size decreases to 1.8e-9 s.

This example demonstrates the importance of the
Richardson extrapolation method.

Figure 11. Course of s(t) with spring constant 1.e10,

constant step size 1.e-5 s

4 Application in Building Simulation

Three examples from building simulation are presented

to study the obviousness of Richardson extrapolation at

realistic use cases. The examples of different

complexity consist of two FMUs each. One FMU

describes both the heating facility and heating control

modeled using Modelica and SimulationX [ESI ITI

GmbH]. The other FMU of each example contains the

building physics description as well as weather data

using the NANDRAD tool [Nicolai, 2012] which solves

PDEs. Table 6 shows roughly the structure of all

examples.

Table 6. Macrostructure of the building examples

Input Equations, Tool Output

Room

temperature,

weather

DAEs (heating,

heating control),

SimulationX,

Green Building,

Modelica

Heat flow

Heat flow PDEs (building

physics),

NANDRAD

Room

temperature,

weather

4.1 Single Room

The single room model is based on a small conference

room (up to 20 people, Figure 12).

Figure 12. Meeting room on which the model is based

The room has a floor space of 52 m², and a height of 3,3

m, one outer wall (west oriented), at which ambient

conditions are applied. The boundary temperature of the

opposite wall and the ceiling is set to constantly 18 °C,

for the other walls to 20 °C. The four walls consist of a

Session 4B: Buildings I

DOI
10.3384/ecp1713279

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

83

heavy construction from clinker bricks and plastering,

both ceiling and floor from lightweight concrete.

Furthermore, an intermediate ceiling is included made

of papier mâché. The room is equipped with a radiator

heating operating a supply temperature of 70 °C. A

valve that can operate continuously between valve

position 0 and 1 regulates its volume flow.

Figure 13 shows the single room model. It consists of a

thermal zone and heating facilities. The green framed

part of Figure 13 contains both the thermal zone and the

weather source, both modeled using NANDRAD, and

therefore placed within the NANDRAD-FMU “thermal

zone” which solves PDEs. The remaining model part of

Figure 13 contains the heating facilities including the

controller both taken from the GreenBuilding library

[EA Systems Dresden, Unger et alt. 2012]. This model

part is written in Modelica, and exported as FMU

“facility” using SimulationX 3.7.4

Figure 13. Single room model

This co-simulation task of both the FMUs “thermal

zone” and “facility” has 17 coupling variables according

to Table 7. Since one of the heating power components

is zero, and the ambient variables do not depend on

inputs, there are two “true” coupling values which form

a cycle.

Table 7. Coupling variables of the single room example

 variables th. zone facility

2 Heating power input output

2 Zone temperature output input

10 Ambient values output input

2 Temperature set points output input

1 Electric power
consumption

output input

Using the Gauss-Jacobi method for solving the cyclic

equations the three step size methods

 Constant step size 60 s

 Richardson extrapolation

(tstepMax: 3600 s, tstepMin: 1 s, tstepStart: 60 s,

default accuracy ATol: 1e-6, RTol: 1e-4)

 Linear extrapolation

(tstepMax: 3600 s, tstepMin: 1 s, tstepStart: 60 s,

default accuracy ATol: 1e-6, RTol: 1e-4)

calculate the same result (Figure 14) which does not

differ from the reference solution obtained without

coupling.

Figure 14. Room temperature and convective thermal

heat load

Figure 15. Step size variation in Richardson extrapolation

Figure 16. Step size variation in Linear extrapolation

According to Figure 15 the accepted step size in

Richardson extrapolation varies considerably. The

constant step size of 60 s is much smaller than most of

the Richardson steps. Therefore, the Richardson method

is even faster than constant step size simulation (Table

8). The Linear extrapolation time step method calculates

smaller step sizes than Richardson extrapolation (Figure

16). In this example, Richardson extrapolation is the

best choice since it is fast, and the user does not have to

define a constant step size.

Table 8. Normalized CPU time comparison single room

Step size 60 s Richardson Lin. Extr.

1 0.7 1.6

4.2 Row House

The row house is a building according to Figure 17 with

three floors. The heat to the ground floor and the first

floor is provided by a volume flow controlled heating

system (underfloor heating), the attic is not heated. A

thermal storage buffer (50 m3) which is provided with

warm water by a heat pump supplies the heating system.

Application of Richardson Extrapolation to the Co-Simulation of FMUs from Building Simulation

84 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713279

Figure 17. Row house sketch

Similar to the single room model the row house is

modeled with different tools. Using NANDRAD the

thermal zones including their interdependencies and

additionally the weather were modeled, and exported as

one FMU “thermal zones”. The facility model including

heat pump, buffer, and the heating system are modeled

using the GreenBuilding library. This model part is

exported as “facility” FMU by SimulationX.

Figure 18 shows the graphical model representation of

the row house. The green dashed frame shows the

thermal zones, which form together with the weather

model the “thermal zones” FMU. All other parts are

within the “facility” FMU. Table 9 gives an overview on

the 26 coupling variables.

Figure 18. Row house model

Table 9. Coupling variables of the row house example

 variables th. zones facility

4 Heating power input output

2 Zone temperature output input

2 Zone mean radiant temp. output

9 Ambient values output input

1 Ambient values output

2 Heating setpoints output input

2 Cooling setpoints output

2 User load output

2 Electric power consumption output

The following results are based on Newton’s method for

solving the cyclic equations. Figure 19 shows the zone

temperatures, and Figure 20 shows the heat flow into the

heated zones over a time interval of 31 days using

constant step size of 60 s. This step size was chosen

based on experience. The temperatures differ less than

5e-3 K from reference results obtained by closed

simulation via model exchange. The constant step size

cannot be enlarged considerably, since already a

constant step size of 300 s creates clear deviations, see

Figure 21.

Figure 19. Row house room temperatures, constant step

size 60 s

Figure 20. Row house convective thermal heat load,

constant step size 60 s

Figure 21. Row house room temperatures with

deviations, constant step size 300 s

Richardson extrapolation calculates the same results as

shown in Figure 19 and Figure 20, differences are

negligible. Figure 22 shows the step size variation which

was allowed to vary in a wide range from 0.01 s up to

3600 s, the lower limits were not reached.

Session 4B: Buildings I

DOI
10.3384/ecp1713279

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

85

Figure 22. Row house Richardson accepted step size

According to Figure 22 the constant step size of 60 s is

not a bad choice. This inspires to use a short time

Richardson extrapolation for finding an appropriate

constant step size. Table 10 compares different

simulations. All variable step size methods calculate

wrong results using the default tolerances. If a higher

precision is applied correct results are achieved.

Richardson extrapolation with higher precision is more

twice as slow as well chosen constant step sizes. The

reason is that Richardson extrapolation simulates the

whole interval more than twice. Furthermore, it is to

notice that some wrong simulations take much more

CPU than correct ones at that example.

Table 10. Row house comparison of simulation runs

method step size deviation** CPU*

Constant 60 s 0.004 K 21 min

Constant 300 s 0.4 K 20 min

Richardson 3600 s…60 s 0.4 K 1 day

Linear extr. 3600 s…60 s 0.4 K 24 min

Extended
Richardson

3600 s…60 s 0,4 K 52 min

Richardson*** 3600 s…60 s 0.004 1.1 h

Linear extr. *** 3600 s…60 s 0.004 38 min

Extended
Richardson***

3600 s…60 s 0.004 1.1 h

* Desktop-PC, SSD, Intel 2, 1 GHz, 8 GB RAM,

Windows 7 (64 bit), ** max. deviation of the first floor

room temperature from reference values, *** tighter

tolerances (ATol=1e-8, RTol=1e-6)

4.3 Apartment Building

The apartment building has four floors, and three

staircases. Per staircase and per floor there are three flats

so that the building comprises 36 flats, see Figure 23.

The model consists of 168 thermal zones which are

described using NANDRAD like at the row house and

single room model. The thermal zones are exported

altogether with one FMU2.0 “zones” for co-simulation.

The heat supply of the building consists of a thermal

storage buffer which is recharged by a both a block heat

and power plant and a gas boiler. To keep the huge

model smaller the heat supply model was simplified by

prescribing the temperature of the medium that supplies

the radiators. The 168 heating systems of the thermal
zones comprise the model of a radiator, a controller

model for the volume flow, and a controller model for

the supply temperature each, see Figure 24. The heat

supply is modeled using the Green Building library

(Modelica) and SimulationX, and exported as one FMU

2.0 “facility”.

Figure 23. CAD model of the apartment building

Figure 24. Heating system models of 5 thermal zones

The apartment house example has 1186 coupling

variables which are roughly explained in

Table 11.

Application of Richardson Extrapolation to the Co-Simulation of FMUs from Building Simulation

86 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713279

Table 11. Coupling variables of the apartment building

example

 variables th. zones facility

336 Heating power input output

168 Zone temperature output input

168 Zone mean radiant temp. output input

10 Ambient values output input

168 Heating setpoints output input

168 Cooling setpoints output input

168 Electric power
consumption

output input

Because of the bad performance the model is simulated

over 7 days only. The following considerations are

based on the Gauss-Seidel method with one iteration for

cycle handling. Newton’s method is not applicable due

to its extremely bad performance. Figure 25 shows the

mean zone temperatures as well as the thermal load of

some rooms which are result of Richardson

extrapolation with step sizes varying between 0.01 s and

1 hour. This result coincidences with a reference

solution obtained by a co-simulation using SimulationX

3.7.4 for the facility part with included NANDRAD

FMU for the thermal zones. Therefore, the result is

regarded to be correct.

Figure 25. Apartment building: temperatures and heat

load, Richardson extrapolation

Figure 26 shows the accepted step size variation of

Richardson extrapolation. The step size varies between

2 seconds and an hour, however, only some peaks are

below 100s. Therefore, a constant step size simulation

was tested, which shows no visible deviation from the

Richardson extrapolation result at some selected signals.

A gradual increase of the constant step size up to 1 hour

does not change the calculated signals clearly. At 1 hour

step size the differences are about 0.05 K at some

temperatures, and 0.5 W at thermal loads. A more

detailed comparison is necessary. It is an advantage of

Richardson extrapolation that no fixed step size needs to

be defined.

Figure 26. Apartment building: accepted step size

variation during Richardson extrapolation, limited by

3600 s…0.01 s

Table 12 shows the performance of the different

simulations. Reasonable constant step size simulations

are about twice as fast as Richardson extrapolation. The

Extended Richardson extrapolation as well as the Linear

extrapolation approach also calculate correct results.

But their performance is worse than Richardson

extrapolation since it uses smaller step sizes (Figure 27).

Figure 27. Apartment building: step size variation during

Extended Richardson extrapolation

Table 12. Apartment building: performance comparison

method step size CPU*

Richardson 3600 s … 0.01 s 11.4 min

Constant 100 s 7.3 min

Constant 200 s 6.4 min

Constant 400 s 6.0 min

Constant 1000 s 5.4 min

Constant 3600 s 5.4 min

Linear extrapolation 3600 s…0.01 s 14.3 min

Extended Richardson 3600 s…0.01 s 18.2 min
* Desktop-PC, SSD, Intel 2, 1 GHz, 8 GB RAM,

Windows 7 (64 bit)

This example demonstrates that Richardson

extrapolation seems to ensure finding the correct

solution. Furthermore, it is useful for finding adequate

step sizes for constant step size simulations. But it is not

an approach to obtain a somewhat high performance.

5 Conclusion

Richardson extrapolation is recognized to be an

important and useful approach for co-simulation. It was

shown that enhancements are necessary for the cases of

outputs that do not depend on inputs which control

DAEs.

There are examples which need a variable step size

approach in co-simulation. The touching mass example

requires the Richardson extrapolation approach.

To apply Richardson extrapolation in building

simulation three differently sized examples are

presented. The results which are by far not yet

representative to building simulation models at all, are:

 The performance of Richardson extrapolation is

worse than the performance of constant step size

method, although Richardson extrapolation partly
uses higher step sizes.

Session 4B: Buildings I

DOI
10.3384/ecp1713279

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

87

 Richardson extrapolation with a wide step size

limitation can be applied to find out a trustable

constant step size. This helps the user to define the

step size. This approach should be automated.

 Furthermore, the building simulation examples

show that a high number of coupling variables is to

be expected. This frustrated the application of

Newton’s method for cycles. Therefore,

modifications of Newton’s method should be

investigated.

Acknowledgements
This paper is based on the results of the German research

project „Entwicklung der Kopplungstechnologie von

Komplexmodellen für Bauteil-, Raum- und

Gebäudesimulation mit Modelica-basierten Anlagen-,

Regelungs- und Nutzermodellen“ (EnTool:CoSim),

funding reference 03ET1215C.

The authors are much obliged to the contributors of the

research project J. Bastian, T. Blochwitz (ESI ITI

GmbH), A. Nicolai and Anne Paepke (IBK TU

Dresden), Torsten Schwan, and Monika Wicke (EA

Systems Dresden) as well as Kosmas Petridis and

Andreas Klein for support and discussions.

References

Andreas Klein. Private information, 2015.

Andreas Nicolai, Anne Paepke. Die Gebäudesimulations-

plattform NANDRAD – Physikalisches Modell,

Umsetzungskonzept und Technologien im Überblick.

BauSIM 2012, Berlin, 26.-28. September 2012.

EA Systems Dresden: Portfolio. Die neue Generation

intelligenter Energiekonzepte. Company internal document,

via info@ea-energy.de, 2015.

Ernst Hairer, Syvert Paul Norsett, Gerhard Wanner. Solving

Ordinary Differential Equations. Berlin, Springer, 1993.

ESI ITI GmbH: Simulation software SimulationX, website

https://www.simulationx.de/simulationssoftware.html

Jens Bastian, Christoph Clauß, Susann Wolf, Peter Schneider.

Master for CoSimulation Using FMI. 8th International

Modelica Conference, Dresden, March 20-22, 2011.

Kosmas Petridis, Christoph Clauß. Test of basic co-simulation

algorithms using FMI. 11th International Modelica

Conference, Versailles, 2015.

Vladimir Aleksandrovitch Kotelnikov. On the transmission

capacity of the ether and of cables in electrical

communications. Proc. of the first All-Union Conference on

the technological reconstruction of the communications

sector and low-current engineering, Moscow 1933.

Rene Unger, Torsten Schwan et alt.. ”Green Building“-

Modelling Renewable Building Energy Systems and

Electric Mobility Concepts Using Modelica. 9th

International Modelica Conference, Munich, Germany,

2012.

Tom Schierz, Martin Arnold, Christoph Clauß. Cosimulation

with communication step size control in an FMI compatible

master algorithm. 9th International Modelica Conference,

Munich, 2012.

Tom Schierz. Modulare Zeitintegration gekoppelter

Differentialgleichungssysteme in der technischen

Simulation. Fortschritt-Berichte, VDI Reihe 20 Nr. 447.

Düsseldorf, VDI Verlag 2013.

Application of Richardson Extrapolation to the Co-Simulation of FMUs from Building Simulation

88 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713279

Development of a Thermodynamic Engine in OpenModelica

Rahul Jain1 Kannan M. Moudgalya1 Peter Fritzson2 Adrian Pop2

1Dept. of Chemical Engineering, Indian Institute of Technology Bombay, India,
rahjain1@gmail.com,kannan@iitb.ac.in

2Dept. Computer and Information Sciences, Linköping University, Sweden,
{peter.fritzson,adrian.pop}@liu.se

Abstract
OpenModelica, an open source equation oriented model-
ing environment for steady state and dynamic simulation,
lacks good chemical engineering support. This problem is
addressed by making available in different ways the ther-
modynamic library Chemsep that comes with DWSIM,
an open source sequential modular steady state simulator.
Only slow speeds could be achieved through a Python-C
API based interface connecting OpenModelica with the
thermodynamic library. A socket programming based in-
terface helps achieve faster speeds. Best results have been
achieved by porting the thermodynamic library and the
calculation routines to OpenModelica, due to two reasons:
(1) thermodynamic equations are solved simultaneously
with mass and energy balances (2) overheads in calling
the external routines of DWSIM are eliminated. Perfor-
mances of the above mentioned three approaches have
been validated with steady state and dynamic simulations.
Benzene - toluene separation, methanol - ethanol - wa-
ter distillation, and steam distillation of an n-octane - n-
decane mixture, have been carried out through these sim-
ulations. This work makes available a powerful simulation
platform to the chemical engineering.
Keywords: OpenModelica, DWSIM, Chemsep, thermo-
dynamics, modeling, simulation, chemical engineering,
Python-C API, socket programming, media

Abbreviations
API Application programming interface
csv Comma separated values
dll Dynamic link library
DTL DWSIM thermodynamics library
EOS Equation of state
VLE Vapor liquid equilibrium

1 Introduction
Modelica (Modelica Association, 2000) is a powerful
modelling language and OpenModelica (Fritzson, 2014)
is its open source implementation. In OpenModelica has
an excellent interface to build models and to perform sim-
ulations. As it implements an equation oriented solution
approach, models and solution methods are maintainable
(Piela et al., 1992). Many engineering domains have used
OpenModelica.

Unfortunately, OpenModelica does not have a library
of chemical engineering models and a thermodynamic
database. As a result, it is not yet of much use to the
chemical engineering community. If we can add a CAPE
Open thermodynamic database to OpenModelica, it can
immensely increase the utility for chemical engineers.

DWSIM is a state of the art open source steady state
process simulator (Medeiros, 2015). It comes with two
CAPE Open thermodynamic databases, Chemsep (Kooij-
man and Taylor, 2001) and the native one. In this work,
we describe the different methods to make the DWSIM
chemical engineering library available for OpenModelica.

This paper is organized as following. We explain the
Python-C interfacing approach to call the DWSIM’s ther-
modynamic database from OpenModelica. We then ex-
plain how to instead use socket programming to connect
the two simulators. The final part is devoted to the porting
of thermodynamics in native mode on to OpenModelica.
We conclude with a comparison of the three approaches.

2 Importing the Thermodynamic en-
gine of DWSIM in OpenModelica

As DWSIM is based on sequential modular solution tech-
niques (Westerberg et al., 1979), it is more suitable to
solve analysis type of problems. One will have to resort
to iterations to design systems, which may involve finding
the value of some parameters in the output stream or in
the equipment, or the building block. It is also difficult to
carry out dynamic simulation in DWSIM. DWSIM has a
strong thermodynamic engine. DWSIM also has a stan-
dalone thermodynamic library (DTL) which can be used
externally.

The weakness of DWSIM is the strong point of Open-
Modelica: it is equation oriented and capable of han-
dling unsteady state equations. Similarly, the weakness
of OpenModelica is the strength of DWSIM: thermody-
namic database and routines. As they complement each
other, there is a good case to integrate OpenModelica with
DTL.

2.1 Python-C API approach to Integrate
OpenModelica with DTL

DTL consists of a file with an extension .dll (dynamic
link library) which is written in VB.NET in windows en-

DOI
10.3384/ecp1713289

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

89

Figure 1. Structure of Python-C API approach

Figure 2. Structure of Python-C socket approach

vironment. This file is COM (component object model)
enabled, which means that any programming language
which supports COM can import this library and access
the built-in thermodynamic subroutines. OpenModelica is
written in C in Linux environment and it is not straight
forward to call programs written in VB.NET.

We used Python as the glue language to call the COM
enabled objects of DWSIM from C routines of OpenMod-
elica. This was achieved through the package win32com
of Python. This allowed us to access the DTL library
and all the thermodynamic routines available in DWSIM
from OpenModelica. Figure 1 describes the flow of the
approach, which are further described below.

• DTL routines are imported to Python first through a
package named win32com.client. This package al-
lows Python to call routines from a dll file registered
in the windows registry. Once the dll file is dis-
patched through win32com.client, Python has access
to all the COM enabled functions of the dll.

• Now Python functions can send input parameters to
DTL routines, get the required thermodynamic prop-
erties calculated and receive them. As results of cal-
culations are available, these Python functions can be
considered to behave similar to DTL routines.

• These Python functions are now called by C through
Python-C API. In computer programming, an API
(Application Programming Interface) is a set of rou-
tines, protocols, and tools for building software ap-
plications. An API expresses a software component

in terms of its operations, inputs, outputs, and under-
lying types. This API is responsible for converting C
variables to Python and vice versa.

• Finally as OpenModelica is compatible with C, the
inputs are then sent to C functions through Open-
Modelica external C functions, which in turn calls
the Python functions, which in turn calls DTL rou-
tines.

2.2 Client-Server (sockets) approach to inte-
grate OpenModelica with DTL

Client-Server or socket approach (Rhodes and Goerzen,
2010) is another approach through which the integration is
possible. Figure 2 describes the data flow of the approach,
which are further explained below.

• In this approach also, firstly the the DTL routines are
called in Python with the help of win32com.client
package.

• Similar to Python-C approach, functions are written
in Python which calls DTL to calculate various phys-
ical properties.

• Now a Python server which consists of all the above
functions is created. This server waits for a C client
to establish connection, receive inputs from it and
send the calculated values back to the client.

• For every calculation (e.g. vapor pressure, equilib-
rium constant, etc.), a Python server is established.

Development of a Thermodynamic Engine in OpenModelica

90 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713289

Table 1. Thermodynamic routines and the procedures to call
them

Thermodynamic Prop. Thermodynamic Func. Arguments
Vapor Pressure VapPres Comp,T

Enthalpy Ent Comp., T,P
Liquid Density LiqDen Comp,T
Vapor Density VapDen Comp,T

Pres. Temp. Flash PTFlash Comp,Z,T,P,Model
Pres. Volume. Flash PVFlash Comp,Z,V,P,Model

Pres. Enth. Flash PHFlash Comp,Z,H,P,Model
Liquid Viscosity LiqVis Comp,T
Vapor Viscosity VapVis Comp,T
Surface tension SurfTen Comp,T

• Clients are coded in C which establishes connections
with the Python servers and send and receive data
from them.

• Once the connection is established, a Python server
receives the data from C client, contacts DTL, calcu-
lates the required property as asked by the C client
and sends it back to the client.

• Finally, these C clients are called by OpenModelica
external C functions giving the required inputs to the
client which in turn contacts the Python servers for
calculations. The C clients receive calculated values
from Python servers and transfer them to OpenMod-
elica.

2.3 Comparison of the two approaches
In this section, we compare the two approaches presented
above. In both approaches, before any routine in DTL is
called, one has to carry out initialization. This Initialize
routine loads all the compounds and their properties from
the database, which is a time consuming operation. In the
Python-C API approach, this initialization is done every
time a call is made from OpenModelica to DTL. On the
other hand, this has to be done only once in the Client
Server approach. As a result, the latter is far more efficient
than the former.

Whenever an API is used in any program it makes it
slow as there is a lot of conversions involved, such as data
type conversions. As the Python-C API approach is based
on API it is slow.

To verify the speeds of two approaches, we use the
thermodynamic calculations presented next. Table 1 lists
the thermodynamic functions and their arguments that
we have implemented in OpenModelica to receive values
from DTL. These functions can be used directly in any
simulation. When using the socket approach, the Python
server should be up and running during the execution of
the simulation. We now present two case studies that
helped compare the two approaches.

• Steady State Flash Separator
An equimolar mixture of Benzene and Toluene was
flashed in a flash separator. The thermodynamic

package used was Raoult’s law. All the pure com-
ponent and mixture properties were imported from
DTL. To test the capability of the integration meth-
ods, the composition of the resulting vapor stream
was specified, and the temperature at which this com-
position was attained was left unknown. It was ob-
served that the Python-C API approach took 30 sec-
onds to solve the system, whereas the Client-Server
method took less than 1 second to simulate.

• Dynamic Flash
A dynamic flash was simulated with the feed as
equimolar mixture of benzene and toluene. The ther-
modynamic package used was again Raoult’s Law.
It was assumed that the output liquid stream was at
the same composition and temperature, as the holdup
inside the flash separator. Heat supplied to flash sep-
arator was kept constant. The set of equations in-
volved were mass balance, energy balance and equi-
librium equations. The mass and energy balance
were differential equations. It was observed that the
Python-C API approach took 30 minutes to solve,
whereas the Client-Server approach took 4 minutes
to solve the system.

The above two examples and others that we have not re-
ported here show that the Client-Server approach is more
efficient than the Python-C API approach.

3 Development of a native thermody-
namic engine in OpenModelica

A thermodynamic engine consists of the following three
components: Compound database, thermodynamic func-
tions and phase equilibria models. In this section, we de-
scribe how we have developed a native thermodynamic en-
gine in OpenModelica.

3.1 Development of Compound Database
A Compound database is a comprehensive database of
physical and chemical properties of all compounds. It
also includes constants for calculating various temperature
or pressure dependent properties like vapor pressure, en-
thalpy, viscosity, etc.

We first describe the Chemsep (Kooijman and Taylor,
2001) database that we ported to OpenModelica. Chem-
sep is an open source database, written in xml format. It
has over six hundred compounds with a comprehensive
set of thermodynamic properties of each compound. It
also has an extensive database of binary interaction pa-
rameters for thermodynamic packages like NRTL (Renon
and Prausnitz, 1968), Peng Robinson (Peng and Robin-
son, 1976), UNIQUAC, SRK (Soave, 1972), etc. Most
of the thermodynamic properties are calculated by empir-
ical equations that are functions of temperature or pres-
sure. Chemsep database includes the constants which are
used in these equations. Therefore, Chemsep database is

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp1713289

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

91

Table 2. Independent thermodynamic properties and OpenMod-
elica routines to call them.

Thermodynamic Property Calling procedure
Critical Temperature Compound.Tc
Critical Pressure Compound.Pc
Critical Volume Compound.Vc
Boiling point Compound.Tb
Melting point Compound.Tm
Molecular weight Compound.MW
Acentric Factor Compound.AF
Triple Point Compound.TT
Solubility parameter Compound.SP
Dipole moment Compound.DP
Heat of formation Compound.HOF
Absolute enthalpy Compound.ABSENT

a comprehensive database that can be used to built a pow-
erful and robust thermodynamic engine.

We now explain how we ported Chemsep to Open-
Modelica. First, the xml data have to be rewritten in a
form understandable by OpenModelica. Therefore, each
compound (including all its thermodynamic properties) is
replicated as a single class in OpenModelica, as shown
in Figure 3. The properties are given abbreviations (as
shown in Table 2) so that they can be called conveniently.
The conversion from xml to OpenModelica classes is car-
ried out by developing a Python script which automates
this process, thus making it fast and robust.

Now, one can extract any independent property of a
compound by the . (dot) operator, followed by the prop-
erty relevant abbreviation. For example the critical tem-
perature (Tc) of methane can be accessed by Methane.Tc.
Similarly, all properties of any compound can be accessed
in the same way as shown in table 2.

3.2 Development of Thermodynamic Func-
tions

Thermodynamic properties are generally calculated
through empirical equations that include constants, whose
values are provided by the compound database as ex-
plained above, and independent variables, such as tem-
perature, pressure and composition. These properties are
written in the form of functions in OpenModelica. Ar-
guments to these functions are the independent variables
mentioned above, and the coefficients of respective com-
pounds whose properties have to be calculated. These co-
efficients can be accessed by instantiating the base com-
pound class. The functions then return the calculated
property. For example, the vapor pressure of methane
at 300 K can be calculated by first instantiating the base
Methane class (parameter Methane methane) and then
calling Pvap(methane.VP, 300). Where Pvap is a generic
function to calculate the vapor pressure of any compound
at any given temperature. The whole process is shown

Table 3. Dependent thermodynamic properties and OpenMod-
elica functions to call them.

Thermodynamic Property Calling procedure
Liquid density LiqDen(Compound name,temp)
Vapor pressure VP(Compound name,temp)
Heat of Vaporization HOV(Compound name,temp)
Liquid heat capacity LiqCp(Compound name,temp)
Liquid viscosity LiqVis(Compound name,temp)
Vapor viscosity VapVis(Compound name,temp)
Liquid thermal conductivity LiqK(Compound name,temp)
Vapor thermal conductivity VapK(Compound name,temp)

in Figure 4. Similarly, all other thermodynamic proper-
ties can be calculated using their respective functions as
shown in Table 3.

3.3 Development of Phase Equilibria models
Phase equilibria models consist of modelling equations for
Vapor Liquid Equilibrium (VLE) models like Peng Robin-
son, NRTL, UNIQUAC, etc. These models are used to
predict the behavior of various systems.

In a mixture of phases that are in an equilibrium, the
component fugacities are the same in all phases (Smith
et al., 2005), that is :

f L
i = f V

i (1)

where f L
i and f V

i are the liquid and vapor phase fugaci-
ties of the ith component respectively. The fugacity of a
component in a mixture depends on temperature, pressure
and composition. In order to relate f iV with temperature,
pressure and molar fraction, we define the fugacity coeffi-
cient,

Φi =
f V
i

yiP∗ (2)

where Φi is the fugacity coefficient and P∗ is the pressure
of the system, which can be calculated from PVT data,
commonly obtained from an equation of state (EOS). For
a mixture of ideal gases, Φi = 1. The fugacity of compo-
nent i in the liquid phase is related to the composition of
that phase by the activity coefficient γi, which by itself is
related to xi and standard-state fugacity f 0

i by

γi =
f L
i

xi f 0
i

(3)

The standard state fugacity f 0
i is the fugacity of the ith

component at the system temperature, i.e. mixture, and in
an arbitrary pressure and composition. Here, the standard-
state fugacity of each component is considered to be equal
to pure liquid i at the system temperature and pressure.
An Equation of State is used to calculate equilibria. The
fugacity of the ith component in the liquid phase is calcu-
lated by

γi =
f L
i

xiP∗ (4)

Development of a Thermodynamic Engine in OpenModelica

92 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713289

Figure 3. Porting Chemsep database in OpenModelica

Figure 4. Using built in thermodynamic functions (Pvap)

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp1713289

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

93

Figure 5. Porting Chemsep’s binary interaction parameters in
OpenModelica

with the fugacity coefficient Φi calculated by the EOS, just
as it is done for the vapor phase.

We have implemented the following four phase equilib-
ria models: Peng Robinson, SRK, NRTL and UNIQUAC.
Peng Robinson and SRK are the most abundantly used
EOS models, whereas NRTL and UNIQUAC find a wide
variety of applications where activity coefficient models
are required (Medeiros, 2015).

The binary interaction parameters for each of the EOS
and activity coefficient models have been extracted from
Chemsep database where they are stored in a .dat file. The
following procedure is used to port all the binary interac-
tion parameters to OpenModelica.

• First, the dat file is converted to a csv file, which is
easier to process by Python.

• This csv file is then converted to an OpenModelica
function by a Python script which converts the com-
pound and the binary interaction parameters as an ar-
ray.

Figure 5 demonstrates the above process for NRTL activ-
ity coefficient model. This code is automatically generated
by the Python script. Line 6 of this code has been short-
ened for convenience. The actual code has 400 triplets of
real numbers on the right hand side of line 6.

Figure 6 shows the NRTL model. The model acquires
the required binary interaction parameters from the BIP-
NRTL function. The model incorporates the equilibrium
relation described in equation 4. This model can now be
directly extended into any model which requires calcula-
tion of phase equilibrium. All other phase equilibria mod-
els have been modeled similarly.

Figure 6. NRTL model as written in OpenModelica 1.11.0

4 VLE curve (Txy) for a binary sys-
tem through the UNIQUAC model

In this section, we explain the procedure to generate the
VLE curve for a binary system and demonstrate it with
results from an ethanol-water system.

We will first explain the procedure to generate the bub-
ble point curve. Suppose γ1 and γ2 are the activity coef-
ficients, y1 and y2 are vapor phase compositions, x1 and
x2 are liquid phase compositions, and Pvap1, Pvap2 are
corresponding vapor pressures, of components 1 and 2,
respectively. Then, the following equations are used to
generate the bubble point curve.

y1.P = γ1.x1.Pvap1 (5)
y2.P = γ2.x2.Pvap2 (6)

This is known as the modified Raoult’s law.
Adding the above two equations and equating the vapor

phase mole fractions to one (y1 + y2 = 1), we get

P = γ2.x2.Pvap2 + γ1.x1.Pvap1 (7)

Here γ1 and γ2 are complex nonlinear functions of temper-
ature and liquid compositions and Pvap1 and Pvap2 are
functions of temperature.

The pressure is kept constant at 1 atm. The value of
x1 is varied from 0 to 1 with an interval of 0.1 and for
each value of x1, the corresponding value of temperature
is calculated by equation 7. This is known as the bubble
point.

Now we explain how the dew point curve is generated.
We once again use the modified Raoult’s law for this pur-
pose. Manipulating the equations 5 and 6 and putting x1 +
x2 = 1 we get

y1

γ1.Pvap1
+

y2

γ2.Pvap2
= 1 (8)

The pressure is kept constant at 1 atm. The value of
y1 is varied from 0 to 1 with an interval of 0.1 and for
each value of y1 the corresponding value of temperature if
calculated by equation 8.

Figure 7 describes the implementation of the bubble
point model in OpenModelica. The dew point model have
also has been modeled similarly. As shown all the three
parts of the thermodynamic engine, namely, compound

Development of a Thermodynamic Engine in OpenModelica

94 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713289

Figure 7. Bubble point model as written in OpenModelica
1.11.0

(a) Results from OpenModelica 1.11.0

(b) Results from Aspen Plus 8.1

Figure 8. Comparison of T-xy curve for ethanol water system
using UNIQUAC VLE model

database, thermodynamic functions and phase equilibria
models, have been incorporated in the model.

Using the above procedure, we have calculated the bub-
ble point curve and the dew point curve for the ethanol(1)-
water(2) system, and presented them in Figure 8(a). One
can see it to be identical to the figure generated by Aspen
Plus (Aspentech, 2017), presented in Figure 8(b).

Reliable azeotropic data source by American Chemi-
cal Society (Gmehling et al., 1995) says that for ethanol-
water system, at 1 atm, the azeotropic composition and
temperatures are 0.96 mole fraction ethanol and 351.4 K,
respectively. These values are also in agreement with the
OpenModelica results.

The same simulation when carried out with the im-
ported DWSIM’s thermodynamic engine in OpenModel-
ica resulted in an execution time of about 20 minutes,
whereas for the built in thermodynamic engine, the exe-

cution time was 0.58s.

5 Steady State Flash
Now that thermodynamics is available in OpenModelica,
we simulate a steady state flash of a methanol, ethanol,
water system, using NRTL. To check the design efficiency
of the developed thermodynamic engine in OpenModel-
ica, the output composition of the vapor product is spec-
ified, while the temperature at which this desired compo-
sition of vapor is attained is left unspecified. Thus, it is a
design problem. To carry out this simulation in DWSIM,
we have to use the adjust operation that uses a trial and
error method.

We now explain the problem we propose to solve. The
flow rate and the composition of the feed is specified.
Pressure is kept constant at 1 atm. It is desired to calculate
all other variables for three different values of methanol
mole fraction, x1. In other words, vapor compositions of
ethanol and water, temperature of all streams and all flow
rates need to be calculated. The schematic of the problem
statement is presented in Figure 9.

The input stream enters at 1 atm and its temperature is
to be determined according to the specified input compo-
sition. The simulation is run for three different desired
vapor compositions of methanol. The minimum and max-
imum temperatures were taken to be boiling points of pure
methanol and water and the initial guess for temperature
is taken to be average of these two boiling points. The
following equations describe the model.

Mass balance:

ziF = xiL+ yiV (9)
F = L+V (10)

Equilibrium equation:

yi = Kixi (11)

Summation Equation:

2

∑
i=1

yi = 1 (12)

Here, F, L, V are the feed, liquid, and vapor flow rates,
respectively, in kmol/hr and zi,xi,yi are the feed, liquid,
and vapor compositions respectively. Ki is the equilibrium
constant. UNIQUAC activity coefficient model is used as
the phase equilibria model.

Figure 10 depicts the example as developed in Open-
Modelica. The type compound in the fifth line is a general
class used to represent the compound class.

Results of these calculations have been presented in Ta-
ble 4. One can see that these results are consistent with
the general requirement that higher the mole fraction of
the least volatile component, lower the temperature. All
calculations got completed in OpenModelica in less than
a second.

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp1713289

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

95

Figure 9. Model with problem statement for steady state flash of Methanol-ethanol-water.

Figure 10. Flash model as written in OpenModelica 1.11.0

Same calculations are repeated in DWSIM using the ad-
just function, by trial and error, and the results are reported
in the same Table. One can see the results to be compara-
ble. It took 15 to 20 seconds to do each of these calcula-
tions in DWSIM, however.

6 Semi-Batch Steam Distillation of a
Binary Organic Mixture

We now illustrate the ease with which dynamic simula-
tion can be carried out in OpenModelica, using the semi-
batch steam distillation of a binary mixture. We present
the model first and then an example.

Table 4. Results of simulation in OpenModelica using the built-
in thermodynamics and in DWSIM

OpenModelica 1.11.0
Desired Vapor Comp.(Methanol) Temperature Liquid Comp.

0.35 351.21 0.1985
0.38 350.28 0.2354

0.425 349.24 0.274
DWSIM 3.4

0.35 351.26 0.199
0.38 350.211 0.234

0.425 349.12 0.279

6.1 Model of the process
This illustrative example involves semi-batch steam dis-
tillation of a binary mixture (n-octane and n-decane). A
schematic plot of the steam distillation apparatus is shown
in Figure 11. The organic mixture is charged into the still
initially, and then steam is bubbled through continuously
until the desired degree of separation has been reached.
There are two different periods in the operation of the still:
the heating period, until the boiling point temperature of
the organic mixture is reached, and the distillation period.
A brief description of the mathematical models for the two
periods follows (Shacham et al., 2012).

We present the model for the heating period first. A
simple mass balance on the water phase yields

dmw

dt
=Ws (13)

where Ws is the steam flow rate in kmol/s and mw is the
mass of water in the still in kmol. It is assumed that all
the steam condenses in the distillation vessel and that the
organic phase masses remain constant during the heating
period.

Development of a Thermodynamic Engine in OpenModelica

96 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713289

Figure 11. Schematic of steam distillation apparatus (Shacham
et al., 2012).

An energy balance on the still provides the equation for
the change of the temperature T in ◦C

dT
dt

=
Ws(Hs −Hlw)−Q

mwcpLw +m(x1cpL1 + x2cpL2)
(14)

where Hs is the enthalpy of the steam in J/kmol, Hlw is
the enthalpy of liquid water in J/kmol, Q is the rate of
heat transfer to the surroundings in J/sec, cpLw is the molar
specific heat of the water in J/kmol-K, m is the mass of the
organic phase in the still in kmol, x1 and x2 are the mole
fractions, and cpL1 and cpL2 are the molar specific heats of
organic compounds No. 1 and 2, respectively, in J/kmol-
K. The heat transfer rate to the surroundings is calculated
from the following equation.

Q =UA(T −Ta) (15)

where UA is the product of the overall heat transfer co-
efficient U and the contact area A with the surroundings
in J/s-K, Ta is the ambient temperature in K, and T is the
temperature of the liquid in the still in K.

Assuming ideal liquid behavior, Raoult’s law can be
used to calculate the vapor mole fraction of the compo-
nents in the organic phase

y1 =
x1P1

P
y2 =

x2P2

P
(16)

where P is the total pressure in Pa and P1 and P2 are the va-
por pressures of the organic compounds in Pa. The mole
fraction of the water which is immiscible in the organic
phase is given by yW = PW/P. y1 and y2 are the vapor
phase mole fraction of n-octane and n-decane respectively.
The heating period continues until the sum of vapor pres-
sures of the organic compounds and the water is equal to
the total pressure. Thus, the bubble point equation to be
satisfied can be expressed as

f (T) = 1− (y1 + y2 + yw) = 0 (17)

We now present the model for the distillation period.
During the distillation period, there is output of water va-
por from the still.

dmw

dt
=Ws −V yw (18)

where V is the outlet vapor flow rate. Material balances
on the two organic compounds yield two additional differ-
ential equations

d(mx1)

dt
=−V y1

d(mx2)

dt
=−V y2 (19)

The organic mass in the still at any time is given by:
m = mx1 +mx2. The temperature in the still changes in a
manner so that the bubble point equation is satisfied. The
energy balance at a particular temperature yields the mo-
mentary vapor flow rate

V =
Ws(HS −HLW)−Q

Hv− [ywhlw +(y1hL1 + y2hL2)]
(20)

where HV is the molar enthalpy of the vapor phase;
hLw,hL1, and hL2 are the liquid phase molar enthalpies
of water, n-octane and n-decane, respectively. Material
balances on the water and organic phases in the still can
provide the amount and the mole fractions of the various
components in the distillate.

6.2 Example: n-octane, n-decane distillation
Semibatch steam distillation of a mixture containing n-
octane (compound 1) and n-decane (compound 2) is to
be processed. Initially M = 0.015 kmol of organics with
composition x1 = 0.725 is charged into the still. The ini-
tial temperature in the still is T0 = 25 ◦C. Starting at time
t = 0, steam at a temperature Tsteam = 99.2 ◦C is bub-
bled continuously through the organic phase at the rate of
MS = 3.85e-5 kmol/s. All the steam is assumed to con-
dense during the heating period. The ambient temperature
is TE = 25 ◦C and the heat transfer coefficient between the
still and the surrounding is UA = 1.05 J/s-K. The ambient
pressure is P = 9.839E+04 Pa.

Assumptions: 1) Ideal behavior of all components in
pure state or mixture; 2) complete immiscibility of the wa-
ter and the organic phases; 3) ideal mixing in the boiler;
and 4) equilibrium between the organic vapor and its liq-
uid at all times. The standard state for enthalpy calcula-
tions pure liquids at 0 ◦C and 1 atm. can be used.

We have to Calculate and plot the still temperature (T),
component mole fractions inside the still (x1, x2, y1, and
y2), and the component mole fractions in the distillate
(x1dist and x2dist) using the data and the initial values pro-
vided.

We have to determine the lowest n-octane mole fraction
in the feed that can yield a distillate concentration of 90%
of n-octane. Compute the percent recovery of n-octane
in the distillate as function of its concentration in the feed.

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp1713289

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

97

(a) Temperature profiles generated in OpenModelica 1.11.0

(b) Temperature profiles as reported in literature (Shacham et al., 2012)

(c) Profiles of vapor and liquid compositions, as generated in OpenMod-
elica 1.11.0

(d) Profiles of vapor and liquid compositions, as reported in the literature
(Shacham et al., 2012)

Figure 12. Comparison of temperature and composition change
during semi-batch steam distillation

Vary the feed concentration in the range where the require-
ment for the n-octane concentration in the distillate is at-
tainable.

Plots in Figure 12 shows that the results of OpenModel-
ica are in agreement with that of (Shacham et al., 2012). It
can be observed that the temperature increases during the
heating period and then stays constant during the distilla-
tion period when the Bubble point is attained. The liquid
phase compositions is constant during the heating period
as there is no vapor formation.

7 Conclusion and Future Work
In this paper, we have implemented and compared three
different ways of making available thermodynamics in
OpenModelica. Each of these approaches has been illus-
trated with simulations of one or more chemical processes.
We have found the native port to be the most efficient.

We have compared the results of OpenModelica with
those from DWSIM, Aspen Plus, and published literature,
and they match quite well in all calculations.

As now OpenModelica has its own thermodynamic en-
gine, a library of steady state chemical process models
could be modeled. It may also be possible to build a li-
brary of dynamic chemical process models in OpenMod-
elica, to carry out general purpose dynamic simulation.

We hope to explore the possibility of enhancing
OMEDIT’s (Asgharand et al., 2011) features so that the
GUI shall resemble that of established simulators, such as
Aspen Plus or DWSIM, for chemical process simulation.

We propose to check the correctness of thermodynamic
calculations by solving a large number of already solved
flowsheets. Sources for these will include examples from
books, journals, reports and sample problems from other
process simulators. We hope to present these flowsheets
in a way similar to what we have done for DWSIM
(DWSIM-Team-FOSSEE-Project, 2017). Usefulness of
such an initiative has been articulated in a similar context
(Braatz, 2014).

A difficult task we face is with respect to thermodynam-
ics in general and the thermodynamic database, in partic-
ular. This facility has to be strengthened by adding in-
formation on more chemicals and more thermodynamic
calculations. We invite experts in this important area to
contribute and to make OpenModelica a much better open
source process simulator.

Acknowledgements
This work has been supported by Swedish Vinnova gov-
ernmental agency and the Indian Department of Sci-
ence and Technology governmental agency in the Indo-
Swedish RTISIM project, and by the National Mission on
Education through ICT, Ministry of Human Resource De-
velopment, through the FOSSEE project. The OpenMod-
elica development is supported by the Open Source Mod-
elica Consortium.

Development of a Thermodynamic Engine in OpenModelica

98 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp1713289

References
Adeel Asgharand, Sonia Tariq, Mohsen Torabzadeh-Tariand,

Peter Fritzson, Adrian Pop, Martin Sjolund, Parham Vasaiely,
and Wladimir Schamai. An open source modelica graphic ed-
itor integrated with electronic notebooks and interactive sim-
ulation. Proc. of the 8th International Modelica Conference
2011, pp, pages 739–747, 2011.

Aspentech. Aspen plus. http://www.aspentech.com/
products/engineering/aspen-plus/, 2017. Last
seen on 1 April 2017.

R. D. Braatz. Scilab textbook companions. IEEE Control Sys-
tems Magazine, page 76, June 2014.

DWSIM-Team-FOSSEE-Project. Dwsim flowsheets. http:
//dwsim.fossee.in/flowsheeting-project/
completed-flowsheet, 2017. Last seen on 1 Aprtil
2017.

Peter Fritzson. Principles of Object Oriented Modeling
and Simulation with Modelica 3.3: A Cyber-Physical Ap-
proach. Second edition, 2014. ISBN 9781118989166.
doi:10.1002/9781118989166.

Jürgen Gmehling, Jochen Menke, Jörg Krafczyk, and Kai Fis-
cher. A data bank for azeotropic data - status and applica-
tions. Fluid Phase Equilibria, 103(1):51–76, 1995. ISSN
03783812. doi:10.1016/0378-3812(94)02569-M.

H.A. Kooijman and R. Taylor. The ChemSep Book. Books on
Demand, Norderstedt, Germany, 2001.

Daniel Medeiros. Dwsim technical document. Technical report,
2015. http://dwsim.inforside.com.br/.

Modelica Association. ModelicaTM - A Unified Object-
Oriented Language for Physical Systems Modeling: Lan-
guage Specification. ReVision, 2000. ISSN 09284869.
doi:10.1016/S0928-4869(97)84257-7.

Ding-Yu Peng and Donald B. Robinson. A New Two-
Constant Equation of State. Industrial & Engineering
Chemistry Fundamentals, 15(1):59–64, 1976. ISSN 0196-
4313. doi:10.1021/i160057a011. URL http://pubs.
acs.org/doi/abs/10.1021/i160057a011.

Peter Piela, Roy McKelvey, and Arthur Westerberg. An intro-
duction to the ascend modeling system: Its language and in-
teractive environment. Journal of Management Information
Systems, 9(3):91–121, 1992.

Henri Renon and J. M. Prausnitz. Local compositions
in thermodynamic excess functions for liquid mixtures.
AIChE Journal, 14(1):135–144, 1968. ISSN 15475905.
doi:10.1002/aic.690140124.

Brandon Rhodes and John Goerzen. Foundations of
Python Network Programming, 2010. ISSN 1098-6596.
URL http://www.springerlink.com/index/
10.1007/978-1-4302-3004-5{%}5Cnhttp:
//it-ebooks.info/book/1796/.

M. Shacham, M. B. Cutlip, and M. Elly. Semi-Batch Steam
Distillation Of a Binary Organic Mixture: a Demonstration of
Advanced Problem-Solving Techniques and Tools. Chemical
Engineering Education, 46(3):173–181, Summer 2012.

J M Smith, H C Van Ness, and M M Abbott. Intro-
duction to Chemical Engineering Thermodynamics, vol-
ume 27. McGraw Hill Education, 2005. ISBN 0072402962.
doi:10.1021/ed027p584.3.

G. Soave. Equilibrium constants from a modified redlich-kwong
equation of state. Chemical Engineering Science, 27(6):
1197–1203, 1972.

A.W. Westerberg, H.P. Hutchison, R.L. Motard, and P. Winter.
Process Flowsheeting. Cambridge University Press, Cam-
bridge, 1979.

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp1713289

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

99

100 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Integrated Process and Molecular Design with Modelica
Using Continuous-Molecular Targeting

Christoph U. Gertig1 Dominik Tillmanns1 Johannes Schilling1 Uwe Bau1

Franz Lanzerath1 Joachim Gross2 André Bardow1
1Institute of Technical Thermodynamics, RWTH Aachen University

Schinkelstr. 8, 52062 Aachen, Germany
2Institute of Technical Thermodynamics and Thermal Process Engineering, Stuttgart University

Pfaffenwaldring 9, 70569 Stuttgart, Germany

andre.bardow@ltt.rwth-aachen.de

Abstract
The performance of many chemical and energy conver-
sion processes depends on the choice of the molecules
used, e.g. as solvents or working fluids. To capture the
complex relations between the properties of the mole-
cules used and the process conditions, the selection of
suitable molecules should be directly integrated into
process design. Solving the resulting challenging inte-
grated design problem is enabled by the Continous-Mo-
lecular Targeting – Computer-Aided Molecular Design
(CoMT-CAMD) approach. Here, the combinatorial
complexity of the molecular decisions is avoided by re-
laxing molecular parameters in a physically-based ther-
modynamic model. So far, implementations of CoMT-
CAMD were based on procedural programming lan-
guages. This impedes reusability and the investigation
of process variants as well as the design of complex pro-
cesses. In order to overcome these shortcomings, we im-
plement the CoMT-CAMD approach based on object-
oriented process modeling and thus enable the inte-
grated process and molecular design with Modelica. The
resulting approach is demonstrated for the design of a
process and the working fluid for a geothermal Organic
Rankine Cycle application.

Keywords: GenOpt, optimization, integrated fluid and
process design, computer-aided molecular design, PC-
SAFT

1 Introduction
In order to achieve high performance, chemical as well
as energy conversion processes have to be tailored to the
specific applications. The key to tailoring a process is
often the choice of suitable molecules. Examples are the
selection of solvents for absorption processes (Adjiman
et al., 2014; Bardow et al., 2010; Burger et al., 2015;
Papadopoulos and Linke, 2009), refrigerants for com-
pression chillers (Roskosch and Atakan, 2015; Sahinidis
et al., 2003) and working fluids for Organic Rankine

Cycles (Linke et al., 2015; Bao and Zhao, 2013; Lampe
et al., 2015).

Today, design methods usually separate the choice of
suitable molecules and the process design (for a litera-
ture review, see e.g. Linke et al., 2015): in a first step,
molecular candidates are pre-selected using criteria
based on heuristics. In a second step, the pre-selected
molecules are used for process optimization.

However, these two-step approaches usually lead to
suboptimal solutions. Heuristic selection criteria cannot
capture the strong and complex relations between the
properties of chosen molecules and the corresponding
optimal process conditions. Therefore, the global opti-
mum might already be excluded from the solution space
when heuristics are applied. Consequently, the design of
molecules should be directly integrated into the process
design (Adjiman et al., 2014; Linke et al., 2015). The
direct formulation of this integrated design problem
leads to a mixed integer nonlinear program (MINLP)
(Gani, 2004) where each molecule considered adds one
degree of freedom. Due to the large number of potential
candidate molecules, the solution of this MINLP is usu-
ally prohibitively difficult.

Thus, systematic approaches have been proposed for
the approximate solution of the integrated design prob-
lem: Pereira et al. (2008; 2011) solve the integrated de-
sign problem based on property predictions with the sta-
tistical associating fluid theory for potentials of variable
attractive range (SAFT-VR) with a search space limited
to linear alkanes. For Organic Rankine Cycles, the re-
view by Linke et al. (2015) summarizes the state of the
art. Recently, Burger et al. (2015) have solved the inte-
grated design problem utilizing a hierarchical approach
and short-cut models for the process. Gopinath et al.
(2016) have proposed an approach for the integrated de-
sign utilizing physical domain reduction. They employ
tests to remove regions from the molecular and process
domains where constraints, e.g., on phase behavior, are
violated.

DOI
10.3384/ecp17132101

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

101

Bardow et al. (2010) proposed a targeting-based design
approach called Continuous-Molecular Targeting –
Computer-Aided Molecular Design (CoMT-CAMD)
for the integrated molecular and process design. Here,
the molecular properties are modeled by the Perturbed-
Chain Statistical Associating Fluid Theory (PC-SAFT)
equation of state (Gross and Sadowski, 2001). In PC-
SAFT, each fluid is described by a set of physically-
based pure component parameters. In the first step of
CoMT-CAMD, the so-called Continuous-Molecular
Targeting (CoMT), the discrete PC-SAFT pure compo-
nent parameters are regarded as continuous degrees of
freedom of the design problem and are optimized sim-
ultaneously with the process conditions (Lampe et al.,
2014; Stavrou et al., 2014). The resulting design prob-
lem can be formulated as a nonlinear program (NLP)
optimization problem. The results of this optimization
are the set of optimal pure component parameters for a
hypothetical target molecule and the corresponding op-
timal process parameters. In a second step, Computer-
Aided Molecular Design (CAMD) methods can be used
to design the real molecule which best matches the op-
timal process performance (Lampe et al., 2015). The
CoMT-CAMD approach has been applied successfully
to the design of solvents for CO2 capture (Stavrou et al.,
2014) and working fluids for Organic Rankine Cycles
(Lampe et al., 2014; 2015). A similar targeting approach
for integrated design was presented by Roskosch and
Atakan (2015). They use a cubic equation of state for
property modeling and relax its parameters in a simulta-
neous optimization of a compression heat pump process
and working fluid. Subsequently, they select suitable
fluids from databanks utilizing a fitted function for COP
estimation.

So far, integrated process and molecular design with
CoMT-CAMD was based on process models imple-
mented in a procedural programming language. This
hinders the reusability of models and complicates the
design of complex processes as well as the investigation
of process variants. Furthermore, the use of procedural
languages is not convenient in case dynamic processes
have to be investigated.

These shortcomings can be overcome by using a lan-
guage suited for object-oriented and equation-based
modeling like Modelica (Fritzson, 1998) to model the
process. Thus, in this work, we present the first imple-
mentation of the CoMT-CAMD approach based on
Modelica process models. Thereby, we enable the inte-
grated process and molecular design with Modelica. In
order to illustrate the design approach, a case study is
presented for the design of a geothermal Organic Ran-
kine Cycle (ORC) application.

The paper is structured as follows: in Section 2, the
CoMT-CAMD approach is explained. In Section 3, the
implementation of CoMT-CAMD based on Modelica

models is described. The case study of the ORC appli-
cation is presented in Section 4 before conclusions are
drawn in Section 5.

2 The CoMT-CAMD Approach
The Continuous-Molecular Targeting – Computer-
Aided Molecular Design (CoMT-CAMD) approach was
introduced by Bardow et al. (2010). In CoMT-CAMD,
the fluids are modeled by the Perturbed-Chain Statistical
Associating Fluid Theory (PC-SAFT) equation of state
(EOS). Thus, any fluid can be described by a set of PC-
SAFT pure component parameters. The CoMT-CAMD
approach comprises two main steps as shown in Figure
1.

Figure 1: The workflow of the CoMT-CAMD approach.

In the first step, the so-called Continuous-Molecular
Targeting (CoMT), the process conditions and the mol-
ecules are simultaneously optimized. For this purpose,
the PC-SAFT pure component parameters describing
the properties of the molecules are relaxed and treated
as continuous variables of the optimization problem.
The results of this optimization are the PC-SAFT pure
component parameters of a hypothetical optimal fluid,

Integrated Process and Molecular Design with Modelica Using Continuous-Molecular Targeting

102 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132101

the so-called target, and the corresponding optimal pro-
cess conditions. In the second step, real fluids are iden-
tified in the so-called structure-mapping. For this pur-
pose, a second-order Taylor-approximation is computed
around the hypothetical optimum. This Taylor approxi-
mation is used to estimate the objective function value
of processes with real fluids. In the structure-mapping,
real fluids can either be selected from databanks of
known fluids (Lampe et al., 2014) or designed using
Computer-Aided Molecular Design (CAMD) algo-
rithms (Lampe et al., 2015). This CAMD algorithm em-
ploys Group Contribution (GC) methods to link PC-
SAFT pure component parameters to molecule struc-
tures. This link is used to identify the optimal molecular
structure by solving a mixed-integer quadratic program
(MIQP) optimization problem (for details, see Section
2.3). Due to inaccuracies in the models and the method,
usually, not only one fluid but a ranking of candidates is
desired. Thus, the CAMD algorithm is applied repeat-
edly using integer cuts (see e.g. Fazlollahi et al., 2012)
to exclude previously found molecules in each new run.
The CoMT-CAMD approach thus yields a list of real
fluids which best match the target. For these fluids, in-
dividual process optimizations are performed to deter-
mine the optimal process performance.

Details of the CoMT step are explained in Section 2.1
and the PC-SAFT equation of state is described in Sec-
tion 2.2. The structure-mapping step of CoMT-CAMD
is discussed in more detail in Section 2.3 followed by a
short section on the final process optimizations.

2.1 Continuous-Molecular Targeting
The aim of the CoMT step is the simultaneous optimi-
zation of process conditions and fluids to obtain a target
for the subsequent structure-mapping (Bardow et al.,
2010). As mentioned before, the fluids are modeled with
the PC-SAFT equation of state. The PC-SAFT pure
component parameters used to describe the fluids are re-
laxed and thus treated as continuous variables of the op-
timization problem. This relaxation transforms the
mixed-integer nonlinear program (MINLP) of the fully
integrated design into a nonlinear program (NLP) given
by problem (1) (Lampe et al., 2015):

max�,� ��	,
�

�. �. ���	,
� ≤ 0
							���	,
� = 0� "�������	�����"

 ℎ�	,
� = 0 "!"-#$%&" (1)

 $
 ≤ ' "��()�		ℎ*��"

	min ≤ 	 ≤ 	max 	∈ ℝm

min ≤
 ≤
max 	∈ ℝl.

Here, 	 is the vector with the degrees of freedom of the
process and
 the vector containing the PC-SAFT pure
component parameters of the molecules.

The objective function � is, for example, a thermody-
namic measure like an efficiency. The process model is
formulated in terms of inequality constraints �� and
equality constraints ��. The PC-SAFT equation of state
ℎ is used to compute thermodynamic quantities based
on the pure component parameters and the process con-
ditions. Additionally, bounds are defined on the process
degrees of freedom 	012 and 	034 and the PC-SAFT
pure component parameters
012 and
034.

Additional linear inequality constraints ($
 ≤ ') are
used which set up a convex hull around the PC-SAFT
pure component parameters of real fluids (see Lampe et
al. (2014) for details). This ensures that the CoMT step
results in a hypothetical fluid which is similar to any real
substance. The NLP optimization of the CoMT step re-
sults in a hypothetical optimal fluid
∗ and optimal pro-
cess conditions 	∗.

In general, the pure component parameters
∗ of the
optimal hypothetical fluid are not equal to those of any
real fluid. Thus, real substances with favorable perfor-
mance are identified in a subsequent structure-mapping
(discussed in Section 2.3).

2.2 PC-SAFT Equation of State
The Perturbed-Chain Statistical Associating Fluid The-
ory (Gross and Sadowski, 2001, 2002; Gross, 2005;
Gross and Vrabec, 2006) is a physically-based equation
of state model for the residual Helmholtz energy. The
underlying molecular picture considers molecules as
chains of hard spheres (segments) which interact with
each other.

Both pure fluids and fluid mixtures are described
based on typically 3 to 7 parameters per each pure com-
ponent. In this work, we consider only non-polar and
non-associative molecules, so that 3 parameters of PC-
SAFT are sufficient: the segment number �, the seg-
ment diameter 6 and the segment dispersion energy
7 8⁄ .

As only the residual part of the Helmholtz energy is
calculated from PC-SAFT, an additional property is re-
quired to calculate absolute caloric properties. Here, the
additional property is the ideal gas heat capacity. In the
CoMT step, the molecules are exclusively described by
the PC-SAFT pure component parameters, which
should therefore also be used in order to obtain the ideal
gas heat capacity (Lampe et al., 2014). For this purpose,
Quantitative Structure-Property Relationships (QSPR)
are used with PC-SAFT pure component parameters as
inputs to calculate ideal gas heat capacities �:,;< (for de-
tails see Stavrou et al., 2014; Lampe et al., 2014; 2015).
Additionally, another QSPR model based on PC-SAFT
pure component parameters is used to calculate molar
masses (Lampe et al., 2015).
By combining the QSPR methods and PC-SAFT, all
thermodynamic equilibrium properties can be calculated
based on 3 PC-SAFT pure component parameters in a
thermodynamically consistent form.

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp17132101

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

103

2.3 Structure-Mapping using Computer-
Aided Molecular Design

As shown in Figure 1, we use Computer-Aided Molec-
ular Design (CAMD) in the structure-mapping step in
order to design real fluids which best match the target
obtained from the CoMT step. For this purpose, a meas-
ure for the expected performance of fluids in the process
is needed.

A simple measure is the distance ‖
 −
∗‖ of a real
fluid’s pure component parameters from those of the hy-
pothetical optimal fluid in the space of the PC-SAFT pa-
rameters. However, this simple measure is not appropri-
ate since it neglects the different sensitivities of the ob-
jective function with respect to different PC-SAFT pa-
rameters and it depends on scaling. To overcome these
limitations, a performance measure is calculated in the
space of the objective function itself. For this purpose,
we compute the following Taylor-approximation to es-
timate the performance:

Here, �?@A is the objective function of Problem (1)
��	,
� rewritten such that it yields the optimal perfor-
mance solely based on the PC-SAFT pure component
parameters:

�?@A�
� = min� ��	,
�

 �. �. 	���	,
� ≤ 0

 ���	,
� = 0 (3)

 ℎ�	,
� = 0

 	min ≤ 	 ≤ 	max 	∈ ℝm
.

The estimated objective function value �B�
� is used as
assessment criterion in the structure-mapping.

In this work, a CAMD algorithm is employed to de-
sign optimal molecules. This CAMD algorithm opti-
mizes the molecular structure with respect to the perfor-
mance estimate �B�
� (2). In order to evaluate �B�
�, the
PC-SAFT pure component parameters have to be known
for each molecule. Lampe et al. (2015) employ a Group
Contribution (GC) method in order to calculate PC-
SAFT pure component parameters from molecule struc-
tures. They use the homosegmented approach from
Sauer et al. (2014) which they call GPC-SAFT. We use
the same method as Lampe et al. (2015) and all non-
polar, non-associating groups they considered.

Following Lampe et al. (2015), the CAMD problem
is formulated as mixed integer quadratic problem
(MIQP) by employing the second-order Taylor approx-
imation (2) as objective function:

In this formulation, a fluid is described by a vector (
representing the functional groups constituting the mo-
lecular structure. The set of PC-SAFT pure component
parameters
 are calculated with a GC method as de-
scribed above (C"�(� =
�. A set of constraints
(%D$#�(� ≤ 0) ensures feasible connectivity of the de-
signed molecules (Struebing, 2011; Struebing et al.,
2011). A convex hull ($
 ≤ 'EFG) as described in Sec-
tion 2.1 is also used in the CAMD optimization. In order
to permit the design of novel fluids, the convex hull is
relaxed compared to the one used in the CoMT step, i.e.
'EFG ≥ ' (Lampe et al., 2015). The result of the MIQP is
the optimal molecular structure of a real fluid.

A ranking of fluid candidates can be obtained by re-
peating the CAMD optimization with integer cuts (see
e.g. Fazlollahi et al., 2012) which exclude previously
found molecular structures from the design space.

2.4 Final Process Optimizations
The result of the structure-mapping step of CoMT-
CAMD is a ranking of candidate molecules. Since the
objective function used for the structure-mapping is a
second-order Taylor-approximation (2) as described in
Section 2.3, process optimizations are performed with
the identified real molecules in a final step in order to
obtain the respective optimal process conditions and ac-
tual objective function values. These objective function
values are also used to refine the ranking of the mole-
cules.

3 CoMT-CAMD with Modelica Mod-
els

As explained in Section 1, the integrated process and
fluid design with the CoMT-CAMD approach was
based on process models implemented in a procedural
programming language so far. The contribution of this
work is to enable the utilization of CoMT-CAMD based
on object-oriented process modeling with Modelica.
The utilization of this language facilitates the conven-
ient development, adaption and reusability of models. In
this way, the design of complex processes is enabled.
Furthermore, equation-based modeling with Modelica is
suited for the investigation of dynamic processes. The
implementation of all steps of CoMT-CAMD based on
Modelica is described in the subsequent sections.

�B�
� = �?@A�
∗� + ��?@A
�
 	�
 −
∗�

+ 1
2 �
 −
∗�L �

��?@A
�
� �
 −
∗�.

(2)

minM �B�
�

(4)

�. �.		 C"�(� =

 %D$#�(� ≤ 0

 $
 ≤ 'EFG
 (∈ ℤO

Integrated Process and Molecular Design with Modelica Using Continuous-Molecular Targeting

104 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132101

3.1 PC-SAFT Modelica-Package
Since the CoMT-CAMD approach is based on fluid
property calculations with PC-SAFT, these calculations
have to be available in Modelica to model the processes.
Examples of such property calculations are the calcula-
tion of saturation pressures and temperatures as well as
of caloric properties like specific enthalpies.

For this purpose, a PC-SAFT implementation written
in the procedural language FORTRAN 90 is used for ex-
ternal property calculations. The interface with Model-
ica is constructed using the Modelica external function
interface (Modelica Association, 2012).

According to Modelica Association (2012), however,
interfaces are only supported with external FORTRAN
77 code. For this reason, FORTRAN 77 subroutines are
implemented as wrappers for all relevant top-level sub-
routines in the FORTRAN 90 code. The wrapper sub-
routines are called by Modelica external functions (for
details see Modelica Association (2012)). As the prop-
erties are calculated on mole basis in the external code
and calculations on mass basis are desired for the pro-
cess simulations in Modelica, additional functions for
conversions between mole and mass basis as well as unit
conversions are implemented.

In order to enable the convenient use of the PC-SAFT
property calculations in Modelica, a Modelica package
with the following functions is developed:

• Modelica external functions needed to call
external subroutines.

• Additional functions for conversion between
mole and mass basis as well as unit conver-
sions.

• “Top-level” functions for each type of prop-
erty calculation which call the external func-
tions and functions for necessary conver-
sions, perform any additional calculations
required and return the desired thermody-
namic properties.

As the focus of this work is embedding Modelica in the
existing CoMT-CAMD framework, the PC-SAFT pack-
age is created independent of other libraries. The follow-
ing types of property calculations are available in the
package:

• Vapor-Liquid Equilibrium (VLE) calcula-
tions for pure components with specified sat-
uration pressure or temperature.

• pT-flash calculations for mixtures.
• Bubble point and dew point calculations for

mixtures.
• Property calculations for pure components

and mixtures in subcooled liquid and super-
heated vapor states.

• Estimation of the critical point.
All these functions can be conveniently used in Model-
ica process models.

3.2 CoMT-CAMD Based on Modelica Mod-
els and GenOpt

In order to facilitate the integrated optimization of pro-
cesses and fluids based on object-oriented modeling, the
process and all its equipment models are implemented
in Modelica. For any required property calculation, the
functions in the PC-SAFT package described in Section
3.1 are utilized.

In order to find the hypothetical optimum in the
CoMT step, an objective function is defined. Then, the
Modelica process model is used to search for the point
in the solution space of process conditions and PC-
SAFT pure component parameters with the maximal ob-
jective function value.

One tool suited for this search is the open-source op-
timization program GenOpt (Generic Optimization Pro-
gram) (Wetter, 2000; 2016) which provides algorithms
for parametric runs as well as several optimization algo-
rithms and can be coupled with Modelica models (Wet-
ter, 2009).

In this work, parametric runs with GenOpt are used
in the CoMT step to find the hypothetical optimal fluid
and the corresponding optimal process conditions. The
derivatives required for the Taylor-approximation of the
objective function are approximated by finite differ-
ences. These are computed with MatLab from the results
of the GenOpt calculations. As the output files of Gen-
Opt are conveniently imported by MatLab, no special
interface is required here.

The CAMD formulation described in Section 2.3 was
implemented in the high-level modeling system GAMS
(General Algebraic Modeling System) (Rosenthal,
2016) which is used to solve the MIQP with integer cuts
to obtain a ranking of real fluids.

For the final process optimizations described in Sec-
tion 2.4 parametric runs with GenOpt are used to find
optimal process conditions. The workflow of the Mod-
elica-based CoMT-CAMD is shown in Figure 2.

4 Case Study: Design of a Geother-
mal ORC Application

The proposed molecular and process design with the
CoMT-CAMD approach based on process modeling
with Modelica is applied to a case study of a geothermal
application for an Organic Rankine Cycle. Organic Ran-
kine Cycles (ORCs) are used to transform low tempera-
ture heat into electric power (Colonna et al., 2015). The
performance of ORCs depends strongly on the proper-
ties of the chosen working fluid. Therefore, the ORC is
a very relevant case study for the integrated fluid and
process design (Linke et al., 2015; Bao and Zhao, 2013).
In the subsequent sections, the ORC process itself as
well as the process model implemented in Modelica and
the specifications of the case study are described. In Sec-
tion 4.4, the results of the integrated fluid and process
design are presented.

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp17132101

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

105

4.1 Organic Rankine Cycles
Organic Rankine Cycles (ORCs) are energy conversion
processes with a sequence of process steps equivalent to
the classical thermodynamic Rankine cycle (Colonna et
al., 2015). The flowsheet and the temperature-entropy
diagram of a basic ORC process are shown in Figure 3.
In contrast to classical Rankine cycles which use water
as working fluid, organic fluids are utilized in ORCs.
The organic fluid can be tailored to specific applica-
tions, in particular the utilization of low temperature
heat and cases with low power output where water be-
comes unfavorable (Colonna et al., 2015).

In the ORC process, the liquid working fluid (state 1
in Figure 3) is pressurized in a pump (1 � 2) with power
input !P before the vaporization in an evaporator (2 �
3) using heat (QRFS3@) from the available heat source with
inlet temperature &TU,12. At the outlet of the evaporator
(State 3 in Figure 3), the working fluid can be in a satu-
rated or superheated vapor state. The vapor is expanded
in a turbine (3 � 4) to gain the desired power output !V.
Subsequently, the fluid is completely condensed in a
condenser (4 � 1) by transferring heat (QRW?2X) to a cool-
ing medium with inlet temperature &YZ,12 in order to
close the cycle.

Figure 3: Upper part: Flowsheet of a basic ORC process.
Lower part: T-s diagram for ORC process, heat source and
heat sink.

4.2 Modelica ORC Model
To demonstrate the integrated design of working fluid
and process, the ORC is modeled assuming steady state
conditions. Four equipment models are implemented
and connected to a process model (cf. Figure 3): a pump,
a turbine and two heat exchangers, namely the evapora-
tor and the condenser. These equipment models are con-
nected as shown in Figure 3 via suitable connectors to
assemble an ORC process model. Although the use of
libraries for modeling the ORC would be possible, no
existing libraries are used in this work to keep the equip-
ment models and connectors simple. The most im-
portant model equations and assumptions are presented
in the following.

4.2.1 Pump

The pump is adiabatic and modeled based on an isen-
tropic pressure increase and an isentropic efficiency
[1\,]:

Figure 2: Workflow of the integrated molecular and pro-
cess design with CoMT-CAMD including the tools used
in the individual steps.

Integrated Process and Molecular Design with Modelica Using Continuous-Molecular Targeting

106 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132101

																			�],12 = �],?^A∗

(5)
									ℎ],?^A∗ = ���FS3@, �],?^A∗ �

														ℎ],?^A = ℎ],12 +	_`,abc∗ d_`,ef
geh,`

Here, ℎ],12 = ℎ� and ℎ],?^A = ℎ� are the specific en-
thalpies at pump inlet and outlet, respectively, and ℎ],?^A∗
is the specific enthalpy at the pump outlet in case of is-
entropic pressure increase. �],12 and �],?^A∗ are the spe-
cific entropies at inlet and outlet conditions for the isen-
tropic case. The pressure level of the evaporation is
termed �FS3@.

From the energy balance, the required power input
can be obtained:

!] = �R Zijℎ],?^A − ℎ],12k (6)

where �R Zi is the working fluid mass flow rate and !]
the required power input.

4.2.2 Turbine

The adiabatic turbine is modeled in the same way as the
pump based on an isentropic efficiency [1\,V:

			�V,12 = �V,?^A∗ 																																							

(7)
	ℎV,?^A∗ = �j�W?2X, �V,?^A∗ k																					

								ℎV,?^A = ℎV,12
+	[1\,VjℎV,?^A∗ − ℎV,12k					

where �W?2X is the pressure level of condensation. The
power output of the turbine can be obtained from an en-
ergy balance as:

!V = �R ZijℎV,?^A − ℎV,12k (8)

4.2.3 Evaporator

It is assumed that pressure losses in the evaporator can
be neglected such that preheating and evaporation take
place on the same constant pressure level �FS3@. The ge-
othermal heat source is assumed to be hot liquid water

with a known inlet temperature &TU,12, mass flow �R TU
and constant specific heat capacity �TU.

The heat transferred is calculated from energy bal-
ances of the evaporator:

	QRFS3@ = �R TU�TUj&TU,12 − &TU,?^Ak	
																							= �R ZijℎFS3@,?^A − ℎFS3@,12k

(9)

where &TU,?^A denotes the outlet temperature of the heat
source and ℎFS3@,12 and ℎFS3@,?^A the specific enthalpies
of the working fluid at the evaporator inlet and outlet,
respectively.
The specific enthalpy of the working fluid at the outlet
of the evaporator ℎFS3@,?^A is calculated from the evap-
orator pressure �FS3@ and outlet temperature &l. The
temperature &l is calculated from the saturation temper-
ature of the working fluid and a degree of superheating
∆&\n.

4.2.4 Condenser

The condenser is modeled based on energy balances
equivalent to those shown for the evaporator. It is as-
sumed that cooling water with known inlet temperature
&YZ,12 and a known constant specific heat capacity �YZ
is used as cooling medium. The required mass flow of
the cooling water is calculated from a given temperature
increase of 5 K. The outlet state of the working fluid is
assumed to be a saturated liquid state. Pressure losses in
the condenser are neglected.

4.3 Specifications of the Case Study and the
Optimization Problem

The specifications of the case study are based on the
subcritical geothermal ORC application presented by
Heberle and Brüggemann (2010) and are shown in Ta-
ble 1. The ORC designed in our work is medium-sized
regarding its power capacity and utilizes low-tempera-
ture heat from a geothermal source with a maximum
temperature of 120 °C.

Table 1: Specifications of the case study based on Heberle and Brüggemann (2010).

Parameter Symbol Value Parameter Symbol Value

heat source mass flow
rate

�R TU 66 kg/s cooling water in-
let/outlet temperature

&YZ,12/&YZ,?^A 15 °C / 20 °C

heat source inlet tem-
perature

&TU,12 120 °C cooling water heat ca-
pacity

�YZ 4200 J/(kg K)

heat source specific
heat capacity

�TU 4200 J/(kg K) pinch temperature dif-
ference

∆&@12Wn 5 K

min. and max. abso-
lute pressure

�012/034 1 bar / 50 bar min. vapor fraction at
turbine outlet

pA^Eq,012 0.95

max. reduced pressure �E,034 0.8

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp17132101

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

107

Table 2: Optimal process conditions and PC-SAFT parameters of the hypothetical optimal fluid resulting from the CoMT
step as well as the achieved net power output. Values at their bounds are marked with a +.

Parameter Symbol Value Parameter Symbol Value

condensation pressure �W?2X∗ 7.1 bar segment number �∗ 3.15

evaporation pressure �FS3@∗ 25.7 bar segment diameter 6∗ 3.45 Å

degree of superheating+ ∆&\n∗ 0 °C segment dispersion energy �7 8⁄ �∗ 164.0 K

working fluid mass flow
rate

�R Zi∗ 70.0 kg/s net power output !2FA∗ 1.9 MW

The degrees of freedom 	 of the ORC process con-

sidered in the optimization are the pressure levels of
evaporation �FS3@ and condensation �W?2X, the mass
flow rate of the ORC working fluid �R rs and the degree
of superheating at the evaporator outlet ∆&\n. The PC-
SAFT pure component parameters
 considered for the
working fluid optimization are the segment number �,
segment diameter 6 and segment dispersion energy
�7 8⁄ � (cf. Section 2.2).

Bounds on the process degrees of freedom are mini-
mal and maximal absolute pressures �012	 and �034 of
1 bar and 50 bar, respectively. Additionally, an upper
bound of the reduced pressure �E,034, defined as the ab-
solute pressure � divided by the critical pressure �W, of
0.8 is used because only subcritical ORCs are consid-
ered. In order to avoid damage of the turbine, it is im-
portant in practice to avoid the formation of liquid drop-
lets during expansion. Thus, a minimal vapor fraction
pA^Eq,012 of 0.95 at the turbine outlet is used as a further
constraint (see Table 1).
Additional constraints arise to ensure that the tempera-
ture differences between the heat source and the work-
ing fluid in the evaporator and between the working
fluid and the cooling water in the condenser do not vio-
late the specified pinch temperature difference ∆&@12Wn
of 5 K at any point. As can be seen in the T-s diagram
shown in Figure 3, possible pinch points in the evapora-
tor are at the inlet and outlet and at the point where the
working fluid reaches the saturation temperature. Possi-
ble pinch points in the condenser are at the condenser
inlet and, in case the working fluid is superheated at the
inlet, at the point where it first reaches a saturated state.

The net power output !2FA of the ORC is used as ob-
jective function for the optimization and can be calcu-
lated from the required power input of the pump !] and
the power output of the turbine !V as

��	,
� = !2FA = −�!V + !]� (10)

This definition of !2FA leads to a positive objective func-
tion ��	,
� which is maximized in the optimization.

4.4 Results
To identify an optimal working fluid and the corre-
sponding optimal process conditions for the considered

ORC the CoMT-CAMD approach is used (see Figures
1 and 2). First, an optimal hypothetical fluid and corre-
sponding process conditions are obtained as target in the
CoMT step. Subsequently, fluids are designed in the
CAMD step which best match the target.

The results of the CoMT step are shown in Table 2.
The PC-SAFT pure component parameters shown in the
table correspond to a hypothetical optimal fluid. The net
power output !2FA of the target is 1.9 MW. This target
value serves as an upper bound as it represents the high-
est power output achievable for all hypothetical fluids
represented by PC-SAFT in the considered convex hull
(cf. Section 2.1).

In order to determine a ranking of real fluids which
best match the hypothetical optimum, a Computer-
Aided Molecular Design (CAMD) algorithm is em-
ployed as described in Sections 2.3 and 3.2. Subse-
quently, the optimal process parameters and correspond-
ing net power output !2FA for the individual fluids are
obtained from process optimizations (cf. Sections 2.4
and 3.2).

The top 10 fluids of the CAMD step are presented in
Table 3 together with the respective net power outputs
resulting from the process optimizations.

As can be seen in Table 3, the top fluids suggested by
the CAMD algorithm are all linear and branched alkanes
and alkenes with a maximum of 6 carbon atoms. We
identify propene as the best working fluid for the ORC
with a net power output !2FA of 1.45 MW. This value is
24 % less than the target value of the hypothetical mol-
ecule.

From Table 3, it can be seen that the net power out-
puts determined in the process optimizations do not per-
fectly match the ranking from the CAMD step. The ob-
jective function used in the CAMD step is a Taylor-ap-
proximation of the real objective function of the inte-
grated optimization problem as explained in Section 2.
As the Taylor-approximation does not match the real ob-
jective function perfectly, the ranking from the CAMD
step slightly deviates from the final ranking based on
optimized net power outputs. It is therefore recom-
mended to generate a list of candidates and not only one
working fluid. This behavior was also found in earlier
implementations of the CoMT-CAMD approach (cf.
Lampe et al., 2014; 2015) and is thus not specific for the
Modelica-based implementation.

Integrated Process and Molecular Design with Modelica Using Continuous-Molecular Targeting

108 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132101

Table 3: Top fluids resulting from the CAMD step and cor-
responding net power output determined using process op-
timizations. The order is according to the ranking of the
CAMD step. The sorted rank according to the results of the
individual process optimizations is shown in parentheses.

Rank
(Sorted Rank)

Fluid Net Power Output

1 (2) Propane 1.44 MW
2 (6) Neopentane 1.31 MW
3 (1) Propene 1.45 MW
4 (9) Propyne 1.24 MW
5 (3) Isobutene 1.38 MW
6 (4) 2-Butene 1.38 MW
7 (7) Butane 1.25 MW
8 (5) 1-Butene 1.33 MW
9 (10) Neohexane 1.11 MW
10 (8) 1-Butyne 1.25 MW

Clearly, the net power output of the target given in Table
2 serves as an upper bound of the objective function.
Therefore, the target is not reached by the designed real
working fluids.

In order to find the target in the CoMT step with Gen-
Opt, about 2·105 evaluations of the process model are
required. On the other hand, an individual process opti-
mization for one working fluid requires about 104 eval-
uations of the process model. Thus, the effort for the in-
tegrated molecular and process design with the Model-
ica-based CoMT-CAMD is similar to the effort for pro-
cess optimizations for about 30 working fluid candi-
dates. This shows the strength of CoMT-CAMD, where
thousands of different molecules are considered in the
structure-mapping. Additionally, there are further im-
provements possible compared to the current implemen-
tation. As presented in Section 3.2, parametric runs with
GenOpt are used in the CoMT step to find the optimal
hypothetical fluid and the corresponding optimal pro-
cess conditions. Employing gradient-based optimization
instead of the parametric runs has the potential to further
decrease the computational effort while substantially in-
creasing the accuracy.

5 Conclusion
In this work, we propose the Continuous-Molecular Tar-
geting – Computer-Aided Molecular Design (CoMT-
CAMD) approach based on object-oriented process
modeling with Modelica. The CoMT-CAMD approach
originally proposed by Bardow et al. (2010) enables the
simultaneous optimization of processes and fluids with-
out any fluid pre-selection by utilizing the physically-
based equation of state PC-SAFT. So far, implementa-
tions of the CoMT-CAMD design approach were based
on process modeling utilizing procedural programming
languages. Thus, the reusability of models has been hin-
dered and the investigation of process variants as well
as complex processes has been cumbersome. For this
reason, it is shown in this work how integrated process

and molecular design with CoMT-CAMD can be based
on object-oriented process modeling with Modelica.
The proposed implementation uses the Modelica exter-
nal function interface for external property calculations
with PC-SAFT and the optimization tool GenOpt for the
search of optimal hypothetical fluids and process condi-
tions. Additionally, a Computer-Aided Molecular De-
sign algorithm implemented in GAMS is used in order
to design real fluids which best match the hypothetical
optimum. The Modelica-based CoMT-CAMD imple-
mentation is demonstrated for the design of a subcritical
geothermal Organic Rankine Cycle (ORC). The results
show that the approach efficiently identifies optimal
ORC processes and working fluids. The CoMT-CAMD
approach implemented in an object-oriented language
for process modeling allows for convenient and efficient
integrated process and fluid design for complex pro-
cesses. Future work will address the use of deterministic
optimization and the utilization of libraries for the Mod-
elica-based CoMT-CAMD.

Acknowledgements
We thank the Deutsche Forschungsgemeinschaft (DFG)
for funding this work (BA2884/4-1). Furthermore, the
authors thank Heike Schreiber, Matthias Lampe and
Christian Schulze for valuable discussions.

References
Claire S. Adjiman, Amparo Galindo and George Jackson.

Molecules Matter: the Expanding Envelope of Process De-
sign. Computer Aided Chemical Engineering, 34:55–64,
2014. doi: 10.1016/B978-0-444-63433-7.50007-9.

Junjiang Bao and Li Zhao. A Review of Working Fluid and
Expander Selections for Organic Rankine Cycle. Renewa-
ble and Sustainable Energy Reviews, 24:325–342, 2013.
doi: 10.1016/j.rser.2013.03.040.

André Bardow, Klaas Steur and Joachim Gross. Continuous-
Molecular Targeting for Integrated Solvent and Process De-
sign. Industrial & Engineering Chemistry Research,
49(6):2834–2840, 2010. doi: 10.1021/ie901281w.

Jakob Burger, Vasileios Papaioannou, Smitha Gopinath,
George Jackson, Amparo Galindo and Claire S. Adjiman. A
Hierarchical Mmethod to Integrated Solvent and Process
Design of Physical CO2 Absorption Using the SAFT-γ Mie
Approach. AIChE Journal, 61(10):3249–3269, 2015. doi:
10.1002/aic.14838.

Piero Colonna, Emiliano Casati, Carsten Trapp, Tiemo
Mathijssen, Jaakko Larjola, Teemu Turunen-Saaresti and
Antti Uusitalo. Organic Rankine Cycle Power Systems.
Journal of Engineering for Gas Turbines and Power,
137(10):100801, 2015. doi: 10.1115/1.4029884.

Samira Fazlollahi, Pierre Mandel, Gwenaelle Becker and
Francois Maréchal. Methods for Multi-Objective Invest-
ment and Operating Optimization of Complex Energy Sys-
tems. Energy, 45(1):12–22, 2012. doi: 10.1016/j.en-
ergy.2012.02.046.

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp17132101

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

109

Peter Fritzson. Modelica – A Language for Equation-Based
Physical Modeling and High Performance Simulation. Ap-
plied Parallel Computing, 1541:149-160, 1998. ISSN:
0302-9743.

Rafiqul Gani. Chemical Product Design. Computers & Chem-
ical Engineering, 28(12):2441–2457, 2004. doi:
10.1016/j.compchemeng.2004.08.010.

Smitha Gopinath, George Jackson, Amparo Galindo and
Claire S. Adjiman. Outer approximation algorithm with
physical domain reduction for computer-aided molecular
and separation process design. AIChE Journal, 62(9):3484–
3504, 2016. doi: 10.1002/aic.15411.

Joachim Gross and Gabriele Sadowski. Perturbed-Chain
SAFT. Industrial & Engineering Chemistry Research,
40(4):1244–1260, 2001. doi: 10.1021/ie0003887.

Joachim Gross and Gabriele Sadowski. Application of the
Perturbed-Chain SAFT Equation of State to Associating
Systems. Industrial & Engineering Chemistry Research,
41(22):5510–5515, 2002. doi: 10.1021/ie010954d.

Joachim Gross. An Equation-of-State Contribution for Polar
Components. AIChE Journal, 51(9):2556–2568, 2005. doi:
10.1002/aic.10502.

Joachim Gross and Jadran Vrabec. An Equation-of-State Con-
tribution for Polar Components. AIChE Journal,
52(3):1194–1204, 2006. doi: 10.1002/aic.10683.

Florian Heberle and Dieter Brüggemann. Exergy Based Fluid
Selection for a Geothermal Organic Rankine Cycle for
Combined Heat and Power Generation. Applied Thermal
Engineering, 30(11-12):1326–1332, 2010. doi:
10.1016/j.applthermaleng.2010.02.012.

Matthias Lampe, Marina Stavrou, Hanns M. Bücker, J. Gross
and A. Bardow. Simultaneous Optimization of Working
Fluid and Process for Organic Rankine Cycles Using PC-
SAFT. Industrial & Engineering Chemistry Research,
53(21):8821–8830, 2014. doi: 10.1021/ie5006542.

Matthias Lampe, Marina Stavrou, Johannes Schilling, Elmar
Sauer, Joachim Gross and André Bardow. Computer-Aided
Molecular Design in the Continuous-Molecular Targeting
Framework Using Group-Contribution PC-SAFT. Comput-
ers & Chemical Engineering, 81:278–287, 2015. doi:
10.1016/j.compchemeng.2015.04.008.

Patrick Linke, Athanasios Papadopoulos and Panos Seferlis.
Systematic Methods for Working Fluid Selection and the
Design, Integration and Control of Organic Rankine Cy-
cles—A Review. Energies, 8(6):4755–4801, 2015. doi:
10.3390/en8064755.

Modelica Association. Modelica - A Unified Object-Oriented
Language for Systems Modeling - Language Specification
Version 3.3. URL=” https://www. modelica. org/docu-
ments/ModelicaSpec33. Pdf ”, 2012.

Athanasios I. Papadopoulos and Patrick Linke. Integrated Sol-
vent and Process Selection for Separation and Reactive Sep-
aration Systems. Chemical Engineering and Processing:
Process Intensification, 48(5):1047–1060, 2009. doi:
10.1016/j.cep.2009.02.004.

Frances E. Pereira, Emmanuel Keskes, Amparo Galindo,
George Jackson and Claire S. Adjiman. Integrated Design
of CO2 Capture Processes from Natural Gas. In: Efstratios
Pistikopoulos, Michael Georgiadis and Eustathios S. Kik-

kinides. Editors. Process Systems Engineering: Energy Sys-
tems Engineering. Weinheim: Wiley-VCH Verlag GmbH
& Co. KG, pp. 231-248, 2008.

Frances E. Pereira, Emmanuel Keskes, Amparo Galindo,
George Jackson and Claire S. Adjiman. Integrated Solvent
and Process Design Using a SAFT-VR Thermodynamic
Description. Computers & Chemical Engineering,
35(3):474–491, 2011. doi: 10.1016/j.compche-
meng.2010.06.016.

Richard E. Rosenthal. GAMS – a User's Guide, GAMS Re-
lease 24.6.1. URL: http://www.gams.com/help/topic/
gams.doc/userguides/GAMSUsersGuide.pdf. 2016.

Dennis Roskosch and Burak Atakan. Reverse Engineering of
Fluid Selection for Thermodynamic Cycles with Cubic
Equations of State, Using a Compression Heat Pump as Ex-
ample. Energy, 81:202–212, 2015. doi: 10.1016/j.en-
ergy.2014.12.025.

Nikolaos V. Sahinidis, Mohit Tawarmalani and Minrui Yu.
Design of Alternative Refrigerants via Global Optimiza-
tion. AIChE Journal, 49(7):1761–1775, 2003. doi:
10.1002/aic.690490714.

Elmar Sauer, Marina Stavrou and Joachim Gross. Comparison
between a Homo- and a Heterosegmented Group Contribu-
tion Approach Based on the Perturbed-Chain Polar Statisti-
cal Associating Fluid Theory Equation of State. Industrial
& Engineering Chemistry Research, 53(38):14854–14864,
2014. doi: 10.1021/ie502203w.

Marina Stavrou, Matthias Lampe, André Bardow and Joachim
Gross. Continuous Molecular Targeting–Computer-Aided
Molecular Design (CoMT–CAMD) for Simultaneous Pro-
cess and Solvent Design for CO2 Capture. Industrial & En-
gineering Chemistry Research, 53(46):18029–18041, 2014.
doi: 10.1021/ie502924h.

Heiko Struebing. Identifying Optimal Solvents for Reactions
Using Quantum Mechanics and Computer-Aided Molecu-
lar Design. Ph.D. thesis, Imperial CollegeLondon, London,
2011.

Heiko Struebing, Amparo Galindo and Claire S. Adjiman. Op-
timal Solvent Design for Reactions Using Computer-Aided
Molecular Design. URL: http://www.minlp.org/li-
brary/problem/mod/index.php?lib=MINLP&i=180&pi=-
137. 2011.

Michael Wetter. Design Optimization with GenOpt. Building
Energy Simulation, (21):19–28, 2000.

Michael Wetter. Modelica-Based Modelling and Simulation
to Support Research and Development in Building Energy
and Control Systems. Journal of Building Performance
Simulation, 2(2):143–161, 2009. doi:
10.1080/19401490902818259.

Michael Wetter. GenOpt – Generic Optimization Program –
User Manual – Version 3.1.1. URL: https:// http://simula-
tionresearch.lbl.gov/GO/download/manual-3-1-1.pdf,
2016.

Integrated Process and Molecular Design with Modelica Using Continuous-Molecular Targeting

110 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132101

Dynamic Simulations of the Post-combustion CO2 Capture System

of a Combined Cycle Power Plant

Rubén M. Montañés Lars O. Nord

Department of Energy and Process Engineering, NTNU – Norwegian University of Science and Technology,

Trondheim, Norway

Abstract
Dynamic process models of the capture unit of a

600 MW combined cycle power plant with post-

combustion CO2 capture were developed in the

Modelica language. The process models were utilized to

understand the transient response of the capture unit

when the plant was initially operated at steady-state

conditions at different power plant’s loads. Simulations

to characterize the open-loop response of main process

variables of the process to step-change disturbances in

flue gas mass flow rate, solvent circulation mass flow

rate and reboiler duty were performed. It was found that

the plant was slower when operated at lower loads, i.e.,

it required longer total stabilization times for the most

relevant variables of the process. Simulations revealed

that the PCC unit responded significantly faster to an

increase in exhaust gas mass flow rate than to a

reduction in exhaust gas mas flow rate.

Keywords: transient, carbon capture, gas liquid
contactors, operational flexibility, chemical absorption.

1 Introduction

CO2 capture and storage (CCS) comprises a group of

technologies that can significantly reduce the CO2

emissions from thermal power plants and other

industrial sources (IEA, 2016). Post-combustion CO2

capture based on the chemical absorption-desorption

process using amines is a technology that has been

technically proven at commercial scale from coal fired

power plants in projects such as Boundary Dam in

Saskatchewan, Canada, and the Petra Nova project in

Texas, USA.

The introduction of large shares of variable

renewable energy sources such as wind and solar in

power systems is changing the operating patterns of

thermal power generation units, including coal power

plants and natural gas combined cycle plants (IEA,

2011). Power plants traditionally operated as base load

units are operated as load-following units (Montañés, et

al., 2016). Therefore, during the last years, interest has

grown in the field of operating flexibility of thermal

power plants with CO2 capture technologies (IEA-GHG,

2012).

The low amount of existing commercial-scale post-

combustion capture plants (PCC) and the scarcity of

published transient performance data of such systems

claims for an interest for the development of dynamic

process models (Bui, et al., 2014). These models allow

studying plant dynamic performance, analyzing various

plant transient events as well as developing and

implementing optimal control strategies for PCC plants

integrated with thermal power plants. Dynamic process

simulation provides process insight and contributes to

the development of the learning curve for flexible

operation of future thermal power plants with CO2

capture.

The purpose of the study is to provide understanding

of the open-loop transient performance of the main

process variables of the PCC unit at different load

operation points of the power plant. A thermal power

plant operated as load-following unit will be operated at

part-load conditions during a significant amount of

hours during its lifetime (Montañés, et al., 2016).

Therefore it is of importance to find out differences in

the transient behavior of the process at part-load

operating conditions with respect to those of nameplate

capacity. In this work, a dynamic process model of the

PCC unit of a 600 MW combined cycle power plant with

post-combustion CO2 capture using aqueous

monoethanolamine (MEA) as chemical solvent is

utilized for providing understanding of the open-loop

response of key performance variables to different

disturbances applied to the PCC plant. The process

insight and understanding developed in this work will

be valuable to develop control strategies of the process

when integrated with the thermal power plant.

2 Post-combustion CO2 capture with

chemical absorption

2.1 Chemical absorption process

The process of CO2 capture by chemical absorption is a

two-steps regenerative process; one involves the

absorption of CO2 into a solvent, while the other

involves the desorption or stripping of CO2 from the

solvent and the regeneration of the solvent. The process

conditions change in the absorption and desorption

DOI
10.3384/ecp17132111

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

111

process, being main changes temperature and pressure,

and also solvent concentrations and pH. For absorption,

low temperature and high partial pressure of CO2 is

desired, while for desorption, high temperature and low

partial pressure of CO2 is desired.

When the process is utilized for flue gas treatment

from a power plant, the exhaust gases are normally

cooled down by means of a direct contact cooler (DCC),

that reduces the flue gas temperature and the water

content. A fan allows overcome the gas pressure drop in

the absorber, which is operated slightly above

atmospheric conditions, and at around 40 ºC, refer to

Figure 1. In the absorber column, the exhaust gas

flowing upwards meets the chemical solvent flowing

downwards. Packing material allows having a thin film

of liquid with high surface contact area for heat and

mass transfer between the gas and liquid phases, and the

exothermal chemical absorption process. Depleted flue

gas leaves the absorber at the top through a stack,

normally after flowing through a water wash section that

allows keeping the water mass balance of the process

and reduces chemical solvent emissions due to solvent

droplets or solvent vapor carry over. The rich solvent,

i.e., solvent with a lot of bounded CO2, accumulates in

the absorber sump and is then pumped towards the top

of the stripper. An intermediate heat exchanger allows

for heat integration between the absorber and stripper

columns. The rich solvent is heated up by the lean

solvent coming from the stripper bottom towards around

110 ºC and then enters the stripper at the top of the

column. This heat integration allows reducing reboiler

and cooling duties. A mixing tank allows for

accumulation of the solvent at different operating

conditions of the plant.

The desorption process normally occurs at around

100 to 130 ºC. Steam supplied from the power plant

provides the reboiler duty required to regenerate the

solvent (endothermal desorption process), and to

generate the stripping vapors flowing upwards in the

stripper column, consisting mainly of H2O and CO2. The

regenerated lean solvent is sent to the absorber inlet via

the heat integration exchanger and a lean amine cooler

that controls the temperature of the solvent at the inlet

of the absorber to around 40 ºC. At the top of the stripper

there is a condenser and a cooler where the solvent and

steam condenses. The condensate is conducted back to

the column via a reflux. The product CO2 rich flow the

top of the stripper is conducted to the compression

section where it will be conditioned for transport and

storage purposes.

2.2 Process configuration

The PCC unit was designed to treat flue gas from a

611 MW combined cycle power plant. The gas turbine

(GT) of the power plant was the heavy duty Mitsubishi

JAC 701, and the steam cycle consisted of a three-

pressure reheat (3PRH) configuration. The design of the

PCC unit included the process integration with the

power plant through the flue gas line from the HRSG

outlet and a steam extraction from the steam turbine’s

IP/LP crossover. The steam extraction was utilized to

feed the reboiler duty required to produce the stripping

vapors needed for chemical desorption in the stripper

column. The design point chosen for the post-

ABSORBER A

ABSORBER B

Depleted flue gas

Depleted flue gas

L/R HX

DESORBER

REBOILER

C.W.

CO2 rich to compression

LAC A

LAC B

TANK

Fs,b

Fs,a

C.W.

C.W.

Qreb

LC

LC

Make up water
PC

LT

LCLT

LT

PT

FCFT

FCFT

TCTT

TCTT

TCTT
DCC

C.W.LAC A

Flue gas

Fabs,in

Figure 1. Process configuration of the post combustion CO2 capture unit (PCC) of the natural gas combined cycle power

plant studied in this work. Includes temperature (T), level (L), flow (F) and pressure (P); transmiters (T) and controllers (C).

Dynamic Simulations of the Post-combustion CO2 Capture System of a Combined Cycle Power Plant

112 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132111

combustion unit was 100% GT load under ISO

conditions, which, for the gas turbine, corresponded

to flue gas with a mass flow rate of 887.1 kg/s with

4.33 vol % CO2 (wet). The chemical solvent utilized

was 30%wt aqueous MEA and the target capture rate

was 90%. Further details on design aspects of PCC units

for combined cycle power plants can be found

in (Dutta, et al., 2017).

The resulting process configuration of the PCC unit

consisted of a two absorbers and one stripper layout, as

shown in Figure 1. Each absorber column had

dimensions of 16.3 m in diameter and 23.2 m height,

while the desorber had a 9.7 m diameter with 10 m

height. The process equipment included absorber

columns, desorber column and reboiler, overhead

condenser, internal lean/rich heat exchanger, mixing

tank for water and MEA makeups, direct contact coolers

and circulation pumps. A fan was included in the

process to overcome the pressure drop imposed by the

absorber column.

3 Dynamic process model

development and validation

The Modelica library Gas Liquid Contactors (GLC)

(Modelon AB, 2016), from Modelon AB, was utilized

as a basis to develop the dynamic process model of the

PCC unit. The library contains dynamic process models

of the main equipment for systems’ level modeling of

the absorber-desorber process with monoethanolamine

(MEA) as chemical solvent. That equipment includes

absorber and desorber columns, sumps, reboiler,

condensers, water wash sections, pumps, valves, mixing

tank, and property media packages.

The chemical absorption-desorption process within

packed segments was modelled considering the two-

film theory approach for heat and mass transfer.

Chemical equilibrium for reactions was assumed, and

mass transfer was modeled considering rate-based

models with enhancement factor (Kvamsdal, et al.,

2009). Detailed description of the dynamic process

models included in the GLC library has been presented

previously in literature (Prölß, et al., 2011).

The dynamic process models included in the GLC

library have been previously validated with large-scale

experimental data by (Montañés, et al., 2017). The

validation consisted of modeling the whole absorber-

desorber system of the demonstration scale chemical

absorption plant at CO2 Technology Centre Mongstad

(TCM DA), in Norway. The amine plant at TCM DA

was configured to treat exhaust gases coming directly

from the exhaust of a natural gas fueled combined heat

and power (CHP) plant placed at Mongstad’s refinery.

The exhaust gas from two GE 9001E gas turbines

contains about 3.5 %vol CO2, and around 3% of the total

exhaust gas mass flow rate is conducted to the amine

plant for CO2 absorption. The PCC plant at TCM can

treat up to 60 000 Sm3/hr of exhaust gas and can capture

around 80 ton CO2/day at nameplate capacity when

configured to treat CHP gas. The experimental data

utilized for validation includes steady-state data for a

wide range of operating conditions and multiple

transient events. The plant was operated with 30 wt %

aqueous MEA. The conclusion of the work in

(Montañés, et al., 2017) is that the process models can

capture, with sufficient accuracy, the steady-state and

transient phenomena of the process at the demonstration

plant scale. In addition, it gives confidence towards

using the models for simulation and analysis of the

transient performance of the scaled-up process to

commercial scale of 4770 ton/day CO2 captured.

Rules for consistent inventory control (Aske &

Skogestad, 2009) were applied to design the regulatory

control layer of the PCC unit in Figure 1. It included

level controllers for absorbers and stripper sumps,

overhead condenser pressure control, lean solvent

temperature at absorbers inlet, and exhaust gas

temperature at absorber inlet. The controllers were

tuned by means of the SIMC tuning rules.

The supervisory control layer for this process has

three degrees of freedom, consisting of the two solvent

mass flow rates at absorber inlet �̇�s,a and �̇�s,b, and the

reboiler duty �̇�reb.

4 Process simulations description

Generally, a combined cycle power plant is brought to

part-load operating conditions by reducing the GT load

and consequently the steam turbine’s power output will

be reduced. A GT load reduction results in reduced GT

exhaust gas mass flow rate sent to the HRSG of the

combined cycle and to the absorbers of the PCC unit.

The open-loop transient performance of the plant is

studied for three steady-state operating conditions of the

power plant, corresponding to 100%, 80% and 60% GT

load.

4.1 Steady-state operating conditions at

100%, 80% and 60% GT load

In order to obtain the steady-state operating conditions

of the PCC unit at the three operating points, simulations

were run with different flue gas mass flow rates as input

boundary conditions to the dynamic process model,

corresponding to different GT loads, refer to Table 1.

The exhaust gas temperature and composition of the

absorber was considered constant as boundary condition

(input). Note that the exhaust temperature at the inlet of

the absorber is normally controlled by the DCC, and that

it was observed that exhaust gas composition did not

change considerably for the purpose of this study,

considering the part load range analyzed of 100% to

60% GT load, and for the specific GT utilized in this

work. In addition, a decentralized control structure for

the supervisory control layer was included. Several

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp17132111

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

113

studies, including the one based on self-optimizing

control theory by (Panahi, 2011), suggest that keeping

the capture ratio Cap and a temperature in the stripper

column constant can lead to efficient operation of the

process for varying loads of the absorption-desorption

process. Therefore, the available degrees of freedom for

operation where utilized to control these process

variables. Solvent mass flow rates �̇�s,a and �̇�s,b were

utilized to control the respective CO2 capture rates Capa

and Capb at the top of the absorbers to the design value

of 0.9, while reboiler duty was used as manipulated

variable to control reboiler temperature Treb to the value

119 °C. CO2 capture rates are calculated for each

absorber column at the top, by using Equation (1), where

�̇�abs,in is the exhaust flue gas at the inlet of the absorber

column, Xabs,in is the CO2 mass fraction in the exhaust

gas at the absorber inlet, �̇�abs,out is the depleted flue gas

mass flow rate at the absorber stack and Xabs,out is the

CO2 mass fraction in the flue gas at the absorber stack.

The resulting operating conditions of the PCC at

different GT loads are shown in Table 1 and Table 2.

Table 1. Values of PCC unit input variables at different

power plant’s load operating conditions. Note that both

absorber columns were operated in parallel, so �̇�s,a was

equal to �̇�s,b.

GT load [%] �̇�abs,in [kg/s] �̇�s,a [kg/s] �̇�reb [MW]

100 887.1 613.3 205.9

80 765.1 535.2 176.2

60 653.5 464.1 149.6

𝐶𝑎𝑝𝑎 =
�̇�𝑎𝑏𝑠,𝑖𝑛∙𝑋𝑎𝑏𝑠,𝑖𝑛−�̇�𝑎𝑏𝑠,𝑜𝑢𝑡∙𝑋𝑎𝑏𝑠,𝑜𝑢𝑡

�̇�𝑎𝑏𝑠,𝑖𝑛∙𝑋𝑎𝑏𝑠,𝑖𝑛
 (1)

Table 2. Values of most relevant process variables of the

PCC unit at different operating conditions of the power

plant. Note that both absorber columns were operated in

parallel, so 𝐶𝑎𝑝a was equal to Capb (in the table shown as

Cap). It also resulted in same value of solvent loading at

absorbers inlets (Li,abs).

GT load [%] Li,abs Li,str Cap Prod [kg/s]

100 0.280 0.501 0.9 55.2

80 0.280 0.497 0.9 47.6

60 0.279 0.493 0.9 40.7

4.2 Open-loop step response simulations

The simulations consisted of step-changes of ±10% of

main PCC inputs, or disturbances, when the plant was at

steady-state operating conditions at the three GT

operating points. Step-changes were applied to each

process input at a time, keeping the remaining process

inputs constant. The output in main process variables

was recorded and dead times and 10% settling times

were calculated.

 Dead time ϴ describes how long it takes before a

process variable begins to respond to a change in the

process input. With begins to respond it is meant

that the trajectory of the process variable moves out

of the band defined by the initial steady-state value

of the process variable y0, and a ±1% change in the

process variable Δy, i.e.: -0.01 Δy + y0< y0< 0.01 Δy
+ y0, for the first time.

 The 10% settling time ts is the time it takes from the

instant in which the process variable begins to

respond to the input change, until it remains within

an error band described by the final steady-state

value of the process variable y∞, and 10% of the

change in the process variable Δy, i.e.: -0.1 Δy + y∞<

y∞< 0.1 Δy + y∞.

 The resulting total stabilization time tsta is the sum

of the dead time and the settling time. In addition,

the relative change RC in the process variable is

calculated as in Equation (2), where y0 is the initial

steady-state value of the process variable.

𝑅𝐶 (%) = 100 ∙
𝒚∞−𝒚𝟎

𝒚𝟎
 (2)

The main inputs/disturbances applied to the process

in this analysis were:

 Flue gas mass flow rate �̇�abs,in. Note that the flow

was split and the absorber columns were operated

in parallel. This means that each absorber column

treated an exhaust gas mass flow rate of �̇�abs,in/2.

 Solvent mass flow rates at absorbers inlets �̇�s,a and

�̇�s,b.

 Reboiler duty �̇�reb.

The responses of the main process variables of

interest in this analysis were:

 Solvent lean CO2 loading at absorbers inlet Li,abs.

 Solvent rich CO2 loading at stripper inlet Li,str.

 CO2 capture rate at absorbers stacks Capa and Capb.

 CO2 product mass flow rate Prod, at the outlet of

the overhead condenser of the desorber. This is the

CO2 rich product flow of the PCC unit sent to

conditioning, compression and transport.

 Temperature at stripper column bottom Treb.

The difference in solvent loading at inlet and outlet

of the absorber determines the capability of the solvent

to carry CO2. This in turn depends on the absorber size,

operating conditions, regeneration of the solvent and

CO2 partial pressure. Solvent CO2 loading L is defined

as the ratio between moles of CO2 and moles of solvent

(mol/mol) in Equation (3).

Dynamic Simulations of the Post-combustion CO2 Capture System of a Combined Cycle Power Plant

114 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132111

𝐿 =
𝑚𝑜𝑙𝑠 𝑜𝑓 𝐶𝑂2

𝑚𝑜𝑙𝑠 𝑜𝑓 𝑠𝑜𝑙𝑣𝑒𝑛𝑡
 (3)

5 Results and discussion

5.1 Response to step changes in flue gas

mass flow rate �̇�abs,in

The resulting response times of the PCC unit’s main

process variables to step-changes in flue gas mass flow

rate are shown in Table 3 and Table 4. Figure 2 shows

the transient response of the main process variables for

the different step changes studied in this work. In

addition, Figure 3 shows trends of total stabilization

times tsta for the main variables of the process when

operating the plant at different loads.

It can be observed that CO2 capture rate Cap

stabilized relatively fast, within 1 h, after a disturbance

in flue gas mass flow rate. The CO2 capture rate

decreased for increased flue gas mass flow rate (+10%).

A faster response in Cap was observed when the flue gas

flow rate was increased (+10%) than when it was

decreased (-10%), showing the non-linear performance

of the PCC system. This behavior was consistent at the

different operating points of the PCC plant. The dead

time of this response was negligible, since the flue gas

mass flow rate was included in the calculation and

naturally changes when a step change is applied.

The CO2 product flow rate Prod required larger

stabilization times than Cap. This shows the differences

in performance of the absorbers and desorber columns

during transient conditions when a disturbance is

applied to the PCC unit. The dead times observed in the

CO2 product mass flow rate can be explained by the

residence time imposed by the solvent hold-ups in the

cold side of the internal heat exchanger’s piping and rich

solvent piping. These residence times resulted in dead

times in convectively transported variables of the liquid

solvent from absorber outlet to stripper inlet, including

rich solvent loading at the stripper inlet Li,str. Note that

the dead times of Li,str and Prod responses are similar in

Table 3 and Table 4. Stabilization of the Prod was

significantly faster when increasing flue gas mass flow

rate (around 1 h) than when flue gas mass flow rate was

decreased (9 to 11 h). It can also be observed that the

Prod response was slower at lower power plant loads,

refer to Figure 3.

For flue gas flow rate increase (+10%), the relative

change in solvent loadings was small. This is because

the solvent capacity was close to the limit under these

operating conditions. In general, it was found that lean

solvent loading at the inlet of the absorber Li,abs required

larger stabilization times tsta than rich loading at stripper

inlet Li,str. This can be explained by the buffering effect

introduced by the mixing tank placed in the recycle loop
(from stripper sump to absorber liquid inlet). In

addition, larger dead times to this specific disturbance

were found for Li,abs than for Li,str, due to the additional

0.8

0.85

0.9

0.95

1

0 60 120 180 240 300 360

C
O

2
C

ap
tu

re
 r

at
e

a) Time [min]

Flue gas +10% Flue gas -10%

Solvent flow +10% Solvent flow -10%

Reboiler heat +10% Reboiler heat -10%

35

36

37

38

39

40

41

42

43

44

45

0 60 120 180 240 300 360 420 480 540 600 660 720 780

C
O

2
P

ro
d

u
ct

 f
lo

w
 r

at
e

[k
g
/s

]

c) Time [min]

Flue gas +10% Flue gas -10%

Solvent flow +10% Solvent flow -10%

Reboiler heat +10% Reboiler heat -10%

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0 60 120 180 240 300 360

L
ea

n
 C

O
2

lo
ad

in
g

b) Time [min]

Flue gas +10% Flue gas -10%

Solvent flow +10% Solvent flow -10%

Reboiler heat +10% Reboiler heat -10%

0.48

0.485

0.49

0.495

0.5

0 60 120 180 240 300 360 420 480 540 600 660 720 780 840 900 960

R
ic

h
 C

O
2

lo
ad

in
g

d) Time [min]

Flue gas +10% Flue gas -10%

Solvent flow +10% Solvent flow -10%

Reboiler heat +10% Reboiler heat -10%

Figure 2. Transient responses of the relevant process variables to different step-changes in process inputs. These simulations

correspond to the initial steady-state operation of the PCC unit for 60% GT load. Step-changes were applied at t = 0 min.

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp17132111

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

115

Table 3. Response to +10% step increase in flue gas mass

flow rate �̇�abs,in at various GT loads. Dead times ϴ, settling

times ts and total stabilization times tsta are shown.

 10 %

GT load

[%]

ϴ

[min]

ts

[min]

tsta

[min]

RC

[%]

100

Li,abs 74 53 127 0.45

Li,str 26 11 36 0.45

Cap 0 12 12 -8.79

Prod 26 5 31 0.29

Treb 0 127 127 -0.05

80

Li,abs 36 105 141 0.47

Li,str 27 12 39 0.50

Cap 0 15 15 -8.74

Prod 28 45 72 0.35

Treb 0 54 54 -0.05

60

Li,abs 68 88 156 0.48

Li,str 34 13 46 0.54

Cap 0 17 17 -8.70

Prod 34 28 62 0.42

Treb 0 60 60 -0.06

Table 4. Response to -10% step decrease in flue gas mass

flow rate �̇�abs,in at various GT loads. Dead times ϴ, settling

times ts and total stabilization times tsta are shown.

 -10 %

GT load

[%]
ϴ

[min]

ts

[min]

tsta

[min]

RC

[%]

100

Li,abs 47 578 626 -2.50

Li,str 26 538 564 -2.62

Cap 0 55 55 8.55

Prod 27 556 583 -0.98

Treb 3 572 575 0.30

80

Li,abs 50 639 689 -2.31

Li,str 29 592 621 -2.53

Cap 0 58 58 8.84

Prod 30 603 633 -1.90

Treb 0 625 625 0.27

60

Li,abs 129 619 748 -1.99

Li,str 131 529 661 -2.26

Cap 0 39 39 8.88

Prod 163 503 666 -1.85

Treb 5 667 672 -2.83

residence time introduced by liquid hold-ups in desorber

packed segments and sump, lean amine piping and hot

side piping of the integral heat exchanger, mixing tank

and lean amine cooler. Again, the plant response in

solvent CO2 loadings was faster when flue gas mass

flow rate was increased for all power plant loads studied,

refer to Figure 3. It must be mentioned that the relative

change in process variables to step-changes is more

significant the step-down than step-up of the flue gas

flow rate. This can be explained by the fact that the

solvent rich loading at the steady-state operating

conditions is close to the solvent limit CO2 loading

capacity, which is limited by stoichiometry.

5.2 Response to step-changes in solvent mass

flow rate �̇�s,a and �̇�s,b

The resulting response times of the PCC unit’s main

process variables to step-changes in solvent circulation

mass flow rates are shown in Table 5 and Table 6.

Table 5. Response of the main process variables to 10%

step increase in solvent circulation mass flow rate �̇�s,a and

�̇�s,b at the inlet of the absorbers, for different GT loads.

Dead times ϴ, settling times ts and total stabilization times

tsta are shown.

 10 %

GT load

[%]

ϴ

[min]

ts

[min]

tsta

[min]

RC

[%]

100

Li,abs 27 50 77 8.04

Li,str 25 118 143 -0.02

Cap 0 131 131 -1.46

Prod 21 40 60 -1.48

Treb 0 25 25 -1.04

80

Li,abs 31 113 144 8.19

Li,str 37 112 149 -0.01

Cap 0 137 137 -1.77

Prod 25 21 46 -1.78

Treb 0 35 35 -1.05

60

Li,abs 35 67 102 7.85

Li,str 29 813 842 0.00

Cap 0 161 161 -1.47

Prod 31 22 52 -1.46

Treb 0 39 39 -0.99

Solvent circulation mass flow rate step changes

resulted in inverse responses in CO2 capture rates, refer

to Figure 2. This can be explained by the coupled

operation of the absorbers and desorber columns via the

recycle loop. When increasing the solvent circulation

flow rate (10%), the Cap increases during the first part

of the transient. However, since the reboiler duty is kept

constant, the lean loading at the inlet of the absorber

Li,abs will increase (more solvent being circulated for the

same regeneration energy introduced in the process

�̇�reb), resulting in a reduction of Cap, with a delay

imposed by solvent hold-ups (residence time) through

piping and mixing components in the recycle loop.

Dynamic Simulations of the Post-combustion CO2 Capture System of a Combined Cycle Power Plant

116 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132111

Observe the large dead time in Li,abs in Figure 2. An

analog explanation could be used for the inverse

response observed when solvent circulation mass flow

rate was reduced. Larger stabilization times were

required when the plant was operated at lower loads, see

Figure 3.

For these disturbances, CO2 product mass flow rate

Prod stabilizes relatively faster (around 1 h) than CO2

capture rate Cap (2–3 h). Similar stabilization times tsta

were noted when increasing (10%) and when decreasing

(-10%) the solvent circulation mass flow rates �̇�s.

The relative change in stripper inlet rich solvent

loading Li,str was very small, so it can be considered

constant when changing the solvent circulation rate by

10%. It shows that the solvent’s capacity was working

at the limit. However, lean loading Li,abs relative change

was large. A large dead time was observed in Li,abs (27-

47 minutes), due to the large amount of solvent

inventory within the plant (residence time), and in the

recycle loop. In addition, a settling time of 1 to 2 hours

was observed, this is likely due to the buffering effect

introduced by the absorber tank and other mixing

components, such as, desorber and absorber sumps.

Table 6. Response of the main process variables to -10%

step decrease in solvent circulation mass flow rate �̇�s,a and

�̇�s,b at the inlet of the absorbers, for different GT loads.

Dead times ϴ, settling times ts and total stabilization times

tsta are shown.

 -10 %

GT load

[%]
ϴ

[min]

ts

[min]

tsta

[min]

RC

[%]

100

Li,abs 35 53 88 -10.26

Li,str 29 150 180 0.00

Cap 0 118 118 2.05

Prod 26 29 55 2.03

Treb 0 8 8 1.09

80

Li,abs 35 74 108 -10.60

Li,str 0.00

Cap 0 125 125 2.11

Prod 30 33 64 2.85

Treb 0 37 37 1.13

60

Li,abs 43 71 115 -9.47

Li,str 37 788 825 0.00

Cap 0 166 166 1.38

Prod 35 28 63 1.40

Treb 0 9 9 0.99

5.3 Response to step-changes in reboiler

duty �̇�reb

Simulations in which reboiler duty �̇�reb was changed

with step-changes by ± 10% were performed. Flue gas

conditions and solvent circulation flow rates were kept

constant at each operating point of the plant. The

resulting response times of the PCC unit’s main process

variables are shown in Table 7 and Table 8.

Table 7. Response of the main process variables to 10%

step increase in reboiler duty �̇�reb, for different GT loads.

Dead times ϴ, settling times ts and total stabilization times

tsta are shown.

 10 %

GT load

[%]

ϴ

[min]

ts

[min]

tsta

[min]

RC

[%]

100

Li,abs 28 384 412 -10.00

Li,str 172 526 697 -1.80

Cap 31 69 100 9.54

Prod 0 322 322 9.70

Tprod 0 335 335 1.09

80

Li,abs 33 419 451 -9.42

Li,str 247 531 778 -1.52

Cap 35 67 102 9.06

Prod 0 332 332 9.67

Treb 0 353 353 1.02

60

Li,abs 37 457 494 -8.91

Li,str 335 539 874 -1.34

Cap 40 87 126 9.24

Prod 0 606 606 9.44

Treb 0 368 368 0.96

Table 8. Response of the main process variables to -10%

step decrease in reboiler duty �̇�reb, for different GT loads.

Dead times ϴ, settling times ts and total stabilization times

tsta are shown.

 -10 %

GT load

[%]

ϴ

[min]

ts

[min]

tsta

[min]

RC

[%]

100

 Li,abs 28 56 85 8.448

 Li,str 44 694 739 0.008

 Cap 29 52 81 -10.81

 Prod 0 24 24 -10.84

 Treb 0 11 11 -1.10

80

 Li,abs 29 66 96 8.1519

 Li,str 92 685 777 0.0058

 Cap 34 65 99 -10.62

 Prod 0 27 27 -10.63

 Treb 0 13 13 -1.05

60

 Li,abs 37 72 109 7.88

 Li,str 93 403 496 -0.006

 Cap 39 75 113 -10.44

 Prod 0 33 33 -10.44

 Treb 0 12 12 -1.01

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp17132111

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

117

Increasing the reboiler duty will result in increased

CO2 capture rate Cap due to the lower resulting lean

loading at the inlet of the absorber Li,abs. Reducing

reboiler duty will result in reduced Cap due to the

increase in Li,abs. A relatively large dead time in the Cap

response of 28–37 min was found. This dead time was

larger when the plant was operated at lower power plant

loads. This is because at lower power plant loads solvent

circulation rates are smaller (refer to Table 1), resulting

in larger residence time though piping and mixing tank

in the recycle loop.

The relative change in CO2 product mass flow rate

Prod was also large, but with practically no dead time.
This is because the reboiler duty introduced in the

reboiler is physically closer to the overhead of the

stripper. However, the recycle loop and coupled

operation of the absorber and desorber makes the total

stabilization time tsta of the Prod longer than for Cap.
Observe the slow response in Li,str in Figure 3. In

general, longer total stabilization times were found for

both Cap and Prod when the plant was operated at lower

loads, refer to Figure 3.

The relative change was also significant for lean

loading at absorber inlet Li,abs with a large dead time, as

previously mentioned. The dead times were even larger

for rich loading at the inlet of the stripper Li,str, and

longer total stabilization times than for Li,abs were

observed.

6 Conclusions

The open–loop transient performance of the main

process variables of the plant were studied when the

plant was operated at different power plant’s load

conditions, and for different disturbances to the PCC

unit. In general, it is found that the plant was slower

when the plant was operated at lower loads, i.e., it

required longer total stabilization times for the main

variables of the process. In general, CO2 capture rate

stabilized relatively faster (1–3 h) than other process

variables (1–11 h).

Figure 3. Trends in total stabilization times of main process variables of the PCC unit, when disturbed by the different plant

input step changes, at different GT loads. a) CO2 capture rate Cap; b) Solvent CO2 loadings at absorbers inlets Li,abs; c)

Product CO2 mass flow rate Prod; and d) solvent CO2 loading at stripper inlet Li,str.

0

100

200

300

400

500

600

700

800

900

60 70 80 90 100

T
o
ta

l
st

ab
il

iz
at

io
n
 t

im
e

t s
ta

 [
m

in
]

b) GT Load [%]

Li,abs

Fgas +10%
Fgas -10%
Fsolvent +10%
Fsolvent -10%
Qreb +10%
Qreb -10%

0

100

200

300

400

500

600

700

800

900

60 70 80 90 100

T
o
ta

l
st

ab
il

iz
at

io
n
 t

im
e

t s
ta

 [
m

in
]

d) GT Load [%]

Li,str

Fgas +10%

Fgas -10%

Fsolvent +10%

Fsolvent -10%

Qreb +10%

Qreb -10%

0

100

200

300

400

500

600

700

800

900

60 70 80 90 100

T
o
ta

l
st

ab
il

iz
at

io
n
 t

im
e

t s
ta

 [
m

in
]

a) GT Load [%]

Cap

Fgas +10%
Fgas -10%
Fsolvent +10%
Fsolvent -10%
Qreb +10%
Qreb -10%

0

100

200

300

400

500

600

700

800

900

60 70 80 90 100

T
o
ta

l
st

ab
il

iz
at

io
n
 t

im
e

t s
ta

 [
m

in
]

c) GT Load [%]

Prod

Fgas +10%
Fgas -10%
Fsolvent +10%
Fsolvent -10%
Qreb +10%
Qreb -10%

Dynamic Simulations of the Post-combustion CO2 Capture System of a Combined Cycle Power Plant

118 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132111

In addition, it was found that the PCC unit responded

significantly faster to the increase in flue gas mass flow

rate than to reductions in flue gas mas flow rate. This

could have significant implications on efficient

operation of the PCC unit when ramping down the

power plant’s load, due to long stabilization times

require of the process and the resulting inefficient

operation during transient conditions, if a suitable

control structure cannot be implemented.

Process variables respond differently to different

disturbances. For the same process disturbance and

process variable, the response was different when

increasing or decreasing the input. This shows the non-

linear behavior of the process. The recycle loop in the

process from desorber outlet to absorber inlet connects

the operation of the absorbers units and the stripper, and

the resulting dynamic interaction between the

absorption and desorption unit resulted in long

stabilization time of main process variables, up to 11 h.

Current and future work includes the integration of

the PCC unit with a dynamic process model of the power

plant. That will allow the study of dynamic interactions

between the power plant and the PCC unit under

transient events of the power plant, and to analyze

optimal control structures and operation of the

integrated process for efficient flexible operation.

References

Aske, E. M. B. & Skogestad, S., 2009. Consistent inventory

control. Industrial engineering chemistry research, Volume

48, pp. 10892-10902.

doi: http://pubs.acs.org/doi/abs/10.1021/ie801603j

Bui, M., Gunawan, I., Verheyen, V., Feron, P.,Meuleman, E.,

Adeloju, S., 2014. Dynamic modeling and optimisation of

flexible operation in post-combustion CO2 capture plants - A

review. Computers and Chemical Engineering, Volume 61,

pp. 245 - 265.

doi: http://dx.doi.org/10.1016/j.compchemeng.2013.11.015

Dutta, R., Nord, L. O. & Bolland, O., 2017. Selection and

design of post-combustion CO2 capture process for 600 MW

natural gas fueled thermal power plant based on operability.

Energy, Volume 121, pp. 643-656.

doi: http://dx.doi.org/10.1016/j.energy.2017.01.053

Flø, N. E., 2015. Doctoral Thesis: Post-combustion

absorption-based CO2 capture: modeling, validation and

analysis of process dynamics. Trondheim (Norway): Doctoral

Theses at NTNU, 2015:244.

doi: http://hdl.handle.net/11250/301562

IEA, 2011. Harnessing Renewable Energies: A guide to the

balancing challenge, 9, rue de la Fédération, 75739 Paris

Cedex 15, France: International Energy Agency.

IEA, 2016. 20 years of carbon capture and storage -

Accelerating future deployment, Paris, France: IEA.

IEA-GHG, 2012. Operating Flexibility of Power Plants with

CCS.

Kvamsdal, H. M., Jakobsen, J. P. & Hoff, K., 2009. Dynamic

modeling and simulation of a CO2 absorber column for post-

combustion CO2 capture. Chemical Engineering Process,

Volume 48, pp. 135-144.

doi: http://dx.doi.org/10.1016/j.cep.2008.03.002

Modelon AB, Post-combustion capture with amine solutions.

Montañés, R. M., Flø N. E., Dutta, R., Nord, L. O., Bolland,

O., 2017. Dynamic process model development and validation

with transient plant data collected from an MEA test campaign

at the CO2 Technology Center Mongstad. Energy Procedia.

(accepted for publication).

doi: 10.1016/j.egypro.2017.03.1284

Montañés, R. M., Korpås, M., Nord, L. O. & Jaehnert, S.,

2016. Identifying operational requirements for flexible CCS

power plant in future energy systems. Energy Procedia,

86(TCCS-8), pp. 22-31.

doi: https://doi.org/10.1016/j.egypro.2016.01.003

Panahi, M., 2011. Ph.D. Thesis: Plantwide control for

economically optimal operation of chemical plants -

Applications to GTL plants and CO2 capturing processes.

Trondheim: Norwegian University of Science and

Technology. doi: http://hdl.handle.net/11250/248272

Prölß, K., Tummerscheit, H., Velut, S. & Åkesson, J., 2011.

Dynamic model of a post-combustion absorption unit for use

in a non-linear model predictive control scheme.. Energy

Procedia, 4(GHGT-11), pp. 2620-2627.

doi: https://doi.org/10.1016/j.egypro.2011.02.161

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp17132111

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

119

120 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Optimizing the start-up process of post-combustion capture plants
by varying the solvent flow rate

Thomas Marx-Schubach1 Gerhard Schmitz1

1Institute of Engineering Thermodynamics, Hamburg University of Technology, Germany,
{thomas.marx,schmitz}@tuhh.de

Abstract
This paper presents an optimization of the start-up process
of a post-combustion carbon capture plant (PCC-plant) by
varying the solvent flow rate. In a first optimization run
the start-up time is minimized. In a second optimization
run the overall carbon capture rate during the start-up pro-
cess is maximized. The results show the great potential
of the optimization, as the start-up time can be reduced
from ∆t = 4650s in the reference case to ∆t = 2840s in
the optimized scenario.
Keywords: optimization, start-up, absorption process, car-
bon capture, process engineering

1 Introduction
To stop global warming, ambitious goals have to be set. At
the United Nations Climate Change Conference in Paris in
2015 a limit for the global temperature increase was set to
1.5 ◦C above pre-industrial levels (United Nations, Frame-
work Convention on Climate Change, 2016). To achieve
this goal the carbon dioxide emissions have to be reduced
significantly. One possibility is the usage of the Carbon
Capture and Storage (CCS) technology, which means that
the carbon dioxide is removed from the flue gas and can be
stored in underground formations. As reported by the In-
ternational Energy Agency (IEA) it is estimated that CCS
can have a 17 % share on the CO2 reduction in the year
2035 (IEA (International Energy Agency), 2013).

Furthermore, the increasing amount of renewable ener-
gies will lead to more fluctuations of net load in the power
grid (Montañés et al., 2016). This will impose new chal-
lenges and operational requirements on the flexibility of
thermal power plants as start-up and shutdown sequences
and the operation at partial load will become still more
important in the future.

The start-up process of a power plant is a time consum-
ing and complex operation. When a carbon capture plant
is coupled to a power plant the start-up procedure becomes
even more complex. As power plants will start up and
shutdown even more frequently in the future, the mini-
mization of the start-up time is desirable. Hence, there
is a requirement of reducing the start-up time. This can be
achieved by optimizing the start-up time using dynamic
models. As a first step an approach for the optimization

of a post-combustion carbon capture plant is given in this
paper. At the moment the common start-up procedure of
carbon capture plants is only based on experience.

Many different studies focus on the dynamic simula-
tion of post-combustion carbon capture plants (Bui et al.,
2014). Some studies present the optimization of a cap-
ture plant but most of them focus only on the steady state
and full time operation. Since the full time operation of
carbon capture plants might not be economically feasible,
also the optimization of dynamic operation periods will be-
come important in the future (Bui et al., 2014). There are
also studies available dealing with the optimal control of
the process, e.g. (Panahi and Skogestad, 2011), (Åkesson
et al., 2012), (Lin et al., 2011), (Luu et al., 2015) and
(Mechleri et al., 2017). However, to the authors knowl-
edge the studies do not concentrate on modelling start-up
and shut down procedures of the whole plant. In order to
close this gap, a model which can describe the start-up pro-
cess is developed and a first approach for an optimization
of the process is presented.

2 Process description
Several processes are available for the post-combustion
capture (PCC) of CO2 from power plant flue gases such as
membrane processes, adsorption and absorption processes.
One possibility is to remove the CO2 in a gas scrubbing
unit using aqueous solutions of different alkylamines as a
solvent, also known as the amine gas treating process. A
process flow diagram of this process is shown in figure 1.
The flue gas first enters a flue gas cooler and is compressed
in a blower. The cooled flue gas enters the absorption unit
at the bottom of the column. The solvent flows counter-
current to the flue gas down to the column sump. 90 %
of the CO2 is chemically absorbed by the solvent. After-
wards the rich solvent is preheated in a heat exchanger
and pumped to the stripper. The solvent is evaporated in
a reboiler using steam from the power plant to provide
the required energy for solvent regeneration. Desorption
takes place in the stripper and the almost pure CO2 (up
to 99.9 %) leaves the plant through a condenser. The re-
generated solvent is pumped back to the absorption unit.
Many different solvent additives, primary, secondary and
tertiary amines, can be used. In this case the used solvent
is a 30 wt.-% monoethanolamine (MEA) aqueous solution.

DOI
10.3384/ecp17132121

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

121

Treated
Flue Gas

Condenser

Absorber

StripperRich-Lean
Heat

Exchanger

Lean Solvent
Pump

Rich Solvent
PumpFlue Gas

Reboiler

BlowerFlue Gas
Cooler

Washing
Section

Heating
Steam

Water

Pure CO2

Figure 1. Process flow diagram of a post-combustion capture
plant (Wellner et al., 2016).

The columns are usually filled with structured or random
packings of different types.

The start up process of the plant is described in the fol-
lowing. At the beginning, the columns are in a cold and
empty state. The process is started with the activation of
the solvent pumps. Simultaneously, the other pumps for
the washing sections, flue gas cooler and condenser are
switched on. When the packing units inside the columns
are wetted the heating steam can be supplied in the re-
boiler and the flue gas compressor can be switched on.
The start up process is completed when the capture rate in
the absorber reaches its nominal value of 90 %. To achieve
this goal, the thermal and chemical equilibrium in the ab-
sorption unit has to be reached and the stripper has to at-
tain his operation temperature of approximately 120 ◦C to
ensure a sufficient regeneration of the solvent. The heat up
process of the stripper takes the most time and is therefore
the limiting factor for the start up time. The stripper heats
up in two different ways.

1. The solvent is evaporated in the reboiler and the
vapour enters the stripper at the lower part of the col-
umn.

2. The solvent which remains in the stripper sump is
pumped through a counter flow heat exchanger and
heats up the rich solvent that enters the stripper at
the top.

A reduction of the start-up time can be performed by se-
lecting the right solvent flow trajectory, which is not trivial,
since the variation of the solvent flow rate has counteract-
ing effects on the heat up rate. When the solvent flow rate
is increased the temperature in the reboiler is reduced and
it takes more time for the solvent to reach the boiling point.
On the downside, the residence time of the solvent in the
stripper sump decreases leading to a faster increase of the
solvent temperature in the stripper sump. Decreasing the
solvent flow rate leads to the opposite result. Therefore,
the optimal trajectory of the solvent flow rate has to be

found numerically using a model of the post combustion
carbon capture plant.

3 Model description

In this section the developed model and the used model
libraries are described briefly. A detailed model for the
dynamic simulation of the described process is developed
within the ThermalSeparation library in Modelica (Dietl,
2012; Joos et al., 2009). The Optimization is performed
with the commercial Optimization Library developed by
DLR (A. Pfeiffer, 2012).

3.1 Model libraries

The ThermalSeparation library is a free Modelica library
intended to describe separation processes such as absorp-
tion and rectification processes in Modelica. It can be used
for the dynamic simulation of tray and packed columns
with different levels of detail. More information about the
library can be found in (Dietl, 2012; Joos et al., 2009).

The Optimization library is a commercial library for
many different optimization tasks such as Trajectory Opti-
mization, Realtime Optimization and Model Optimization.
The library is released with Dymola and works only in this
simulation environment. In this article the Trajectory Op-
timization is used. Further information about the library is
given in (A. Pfeiffer, 2012).

3.2 Start-up model

A model of a post-combustion CO2 capture plant, that can
describe the start-up process, is developed at the Institute
of Engineering Thermodynamics in Modelica using the
ThermalSeparation library and validated with data of a pi-
lot plant.

The pilot plant is located in Heilbronn, Germany and
can handle a nominal flue gas stream of 1500 m3/h. The
absorber has a height of 40 m and the stripper of 30 m.
Both columns have a diameter of 0.6 m and are filled with
the random packing type VSP-25 (VFF GmbH, 2016).
The most relevant parameters of the nominal operation
point are listed in table 1. More information about the pi-
lot plant can be found in (Rieder and Unterberger, 2013).

The pilot plant is modelled using a first principle ap-
proach where the columns are axially divided into stages.
The vapour and liquid mass and energy balances are
solved separately in each stage. For the heat- and mass
transfer across the phase boundary a equilibrium approach
is used. The chemical reaction of carbon dioxide with the
solvent is considered. It is assumed that the reaction takes
place only in the liquid phase. More information about
the model and the underlying assumptions can be found
in (Wellner et al., 2016).

The most important input variables of the pilot plant are
the solvent flow rate V̇liq, the molar flue gas flow rate Ṅ f g

Optimizing the start-up process of post-combustion capture plants by varying the solvent flow rate

122 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132121

Table 1. Main parameters of pilot plant.

Parameter Value

Flue gas volume flow rate 1500 m3/h
CO2 concentration flue gas 12.3 mol-%
Flue gas temp. absorber inlet 40 ◦C
Solvent flow rate 5.3 m3/h
Solvent temp. absorber inlet 35 ◦C
MEA concentration 30 wt.-%
Stripper pressure 2 bar
CO2 product temperature 23 ◦C
CO2 target capture rate 90 %

and the heat flow rate to the reboiler Q̇reb.
While the solvent flow rate and the heat flow rate are

controllable within their limits, the flue gas flow rate de-
pends on the firing output of the power plant. The flue gas
flow rate is only controllable when a part of the flue gas
is bypassed. In an usual start up scenario the solvent flow
rate and the heat flow in the reboiler are set to their steady
state values during the whole start-up process. However,
this results in a very high start-up time. Hence, there is a
high potential for optimization.

Simulation and validation results of the validation start-
up scenario are shown in the following. At the beginning
of the start-up procedure, the solvent pumps are switched
on until the CO2 concentration in the solvent is homoge-
nized in the whole plant and until the columns are wetted.
This step was not included in the optimization, since the
solvent pumps should be operated at maximum flow rate
to wet the columns as fast as possible. Hence, the focus
of the optimization lies on the second part of the process
when the flue gas flow enters the absorber.

In Figure 2 the carbon capture rate during the second
part of the start-up process in the model and in the pilot
plant is illustrated. The CO2 capture rate is defined in the
following way, where ṄCO2,Abs,out is the molar flow rate
of CO2 after the absorption unit and ṄCO2,Abs,in the molar
flow rate of CO2 before the absorption unit.

XCO2 = 1− ṄCO2,Abs,out

ṄCO2,Abs,in
(1)

At t = 0s the flue gas flow to the absorber is started. The
steam supply in the reboiler starts later at t = 240s due to
the time delay in the steam generator and the steam cycle
of the power plant. All incoming CO2 is absorbed until
the solution is saturated. Therefore, the CO2 capture rate
is nearly 100 % at the beginning and drops quickly after
approximately 2000 s since the solvent in the absorption
unit is saturated with CO2 and is not regenerated in the
stripper yet. The capture rate in the pilot plant can only be
calculated from this point on because the CO2 concentra-
tion at the absorber outlet has not been measured correctly
before. Due to the increasing temperature in the stripper,
the CO2 loading of the solvent in the stripper decreases

0 5000 10000 15000 20000
0

0.2

0.4

0.6

0.8

1

time in s

X C
O

2

pilot plant
model

Figure 2. Validation start-up strategy - CO2 capture rate

and the capture rate rises slowly to its steady state value.
After t = 2000s the results of the model show a signif-

icant deviation from the measurements of the pilot plant.
One reason is that the columns are modelled based on a
equilibrium approach which means that the heat and ma-
terial transport equations in each stage are neglected. An-
other reason is the deviation of the measuring instruments,
since some measured values, e.g. the CO2-concentration
at the absorber outlet, are far from their nominal values.
However, the agreement of the dynamic behaviour be-
tween the model and the pilot plant is very good except
the small overshoot after t = 10000s. The start-up pro-
cess is completed when the plant is capable of keeping a
capture rate of 90 %.

Figure 3 shows the transient behaviour of the stripped
CO2 mass flow rate downstream the condenser for the
same time period. The measured values are also compared
with the simulated ones.

0 5000 10000 15000 20000
0

100

200

300

400

time in s

ṁ
C

O
2,

st
r,

ou
t

in
kg

/h

pilot plant
model

Figure 3. Validation start-up strategy - CO2 mass flow down-
stream the stripper

The simulation data shows a very good agreement with
the measurement data except the overshoot in the simula-
tion data at the end of the start-up process. The overshoot
can be explained by the model assumption that the steam
in the stripper condenses in every stage where the boiling
temperature is not reached yet. In reality the CO2 leaving
the stripper is loaded with steam especially at high tem-
peratures close to the boiling point. This energy loss leads
to a smaller amount of stripped CO2 in the pilot plant at

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp17132121

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

123

Table 2. General criteria in optimization runs

Variable name Constraint Type

Reboiler temperature TReb ≤ 125 ◦C at any time

Liquid hold-up Vliq,Reb ≥ 0.35m3 at any time

Solvent flow rate 0.0002m3/s ≤ V̇liq ≤ 0.002m3/s at any time

the end of the start-up process. It can be seen that the
amount of stripped CO2 in the stripper is nearly the same
in the model an in the pilot plant in the timespan between
approximately t = 2000s and t = 8000s. However, the
amount of captured CO2 is much higher in the model in
the same timespan. Therefore, if one assumes a correct
initial amount and loading of the solvent, the overall CO2
mass balance in the pilot plant is not fulfilled, which leads
to the assumption of a certain measuring error. Further-
more, the time limiting component during the start-up pro-
cess is the stripper. The model can therefore be used for
optimization purposes.

According to the simulation, the start-up time in the val-
idation case is ∆t = 9440s, which is very high.

4 Optimization setup

In this section the simplification of the model and the im-
plementation of the optimization run is presented.

The model used for validation is simplified in a first step
in order to reduce the computation time and improve the
robustness of the model. The following simplifications of
the model were made:

• The intermediate cooling unit in the absorber was ne-
glected.

• The flue gas scrubbing units before and after the ab-
sorber were removed

Furthermore, the total amount of solvent in the pi-
lot plant is specifically high compared to other post-
combustion capture plants (Wellner et al., 2016). There-
fore, the total amount of solvent in the pilot plant is re-
duced by 50 % to get more commonly results. Thermal
stresses were neglected in the reboiler as the start-up pro-
cess is most of all limited due to the high amount of sol-
vent in the stripper sump. Nevertheless, thermal stresses
should be taken into account in the future to prove this
assumption. An overview of the model used for the opti-
mization is shown in Figure 5. The gas streams are marked
orange, the solvent streams are marked blue. The flue gas
stream entering the absorber and the heat flow rate are im-
plemented using a ramp from the Modelica Standard li-
brary as source signal. The solvent flow rate can be set by
using an input connector which is connected to the lean

solvent pump. The input connector is used for the opti-
mization. The rich solvent pump is controlled keeping the
filling level of the absorber sump at a setpoint of 2 metres.

As optimization method a Single Shooting Technique
approach is used. The trajectories are approximated with
B-splines of order 3. For the construction of the splines 10
equidistant knots, so called de Boor points, are used in the
optimization runs. They can be used as tuner variables in
the optimization method. Using more knots would lead
to a more accurate solution but the optimization would
take more time. Optimizations with different amounts of
knots were carried out. The result is that 10 knots are a
good compromise between accuracy and simulation time.
An example of the construction of the trajectory using B-
splines is shown in figure 4. The optimization problem is
solved by using the gradient based Sequential Quadratic
Programming (SQP) algorithm. The algorithm is effective
for solving nonlinear optimization problems with linear
constraints. The constraints are essential for the optimiza-
tion problem. Therefore an algorithm which is capable of
solving optimization problems with constraints has to be
used.

Generally, different optimization algorithms for nonlin-
ear optimization with constraints can be used, such as Ran-
dom search, interior-point method. A overview of possible
optimization algorithms can be found in (Rao, 2009). In
this paper a gradient based method was used as these algo-
rithms converge faster in general. The SQP algorithm is
sufficient for solving the optimization problem. A disad-
vantage is that the algorithm can only find local optima.

0 5000 10000 15000 20000

0.5

1

1.5

2
·10−3

time in s

V̇ l
iq

in
m

3 /
s

Figure 4. Example of the construction of B-splines

A general optimization problem with equality and in-

Optimizing the start-up process of post-combustion capture plants by varying the solvent flow rate

124 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132121

Desorber

Reboiler

Absorber
sump

Absorber Counter Flow
Heat Exchanger

Condenser

Desorber
sump

Figure 5. Simplified Modelica model of the carbon capture plant in Dymola simulation environment.

equality constraints can be defined in the following way.

minimize f(x)
in subject to

gi ≤ a
hi = b

(2)

Before the optimization is started, the minimization crite-
ria and the different constraints have to be defined. In the
first optimization the start-up time is minimized. In a sec-
ond optimization the mean value of the CO2 capture rate
during the start-up process is maximized.

The optimal trajectory of the solvent flow rate has to sat-
isfy many constraints to ensure that the plant is operated
within the permissible operation range. Two of them are
used in both optimization runs. First, the temperature in
the reboiler may not exceed 125 ◦C at any time since the
degradation of the solvent increases significantly at higher
temperatures. Second, the hold-up in the reboiler may not
fall below 0.35 m3 to provide that the heat pipes are cov-
ered with solvent.

The SQP solver can only handle inequality constraints
in the following form.

gi ≤ b (3)

As the hold-up in the reboiler may not fall below a specific
value, the inverted hold-up is used as constraint. For the
reboiler temperature and the hold up a Maximum-Block
of the Optimization-Library is used to make sure that the
temperature or liquid hold-up do not exceed their limits
during the whole simulation time as the optimization al-
gorithm only evaluates the last value of the criteria. The
general constraints are summarized in table 2.

The other two input variables, the flue gas flow and the
heat flow rate to the reboiler, are kept constant during the
optimization runs at their steady state values.

The optimization runs are executed on a windows server
with two Intel R© Xeon E5-2650 v3 CPU and 128 GB mem-
ory. To improve the simulation time, the integration of
the model is parallelized by the Optimization-library. The
maximum number of threads is set to 8.

5 Reference start-up scenario

As mentioned in section 3.2 the implementation of the
start-up process is based on experience. The current start-
up process is performed by setting all manipulated vari-
ables to their steady-state values, which results in a high

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp17132121

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

125

start-up time. As presented in section 4 the model struc-
ture was changed slightly and the total amount of solvent
was reduced. Therefore, the validation scenario shown in
section 3.2 can not be used as a reference for the optimiza-
tion. The start-up time decreases significantly due to the
reduction of the total amount of solvent. For this reason a
new reference scenario has to be defined by simulating the
reduced model. The carbon capture rate in the reference
scenario is shown in figure 6.

0 5000 10000 15000 20000
0

0.2

0.4

0.6

0.8

1

time in s

X C
O

2

Figure 6. Reference start-up scenario - capture rate

All manipulated variables are kept at their steady state
values during the whole start-up process in the reference
case. The start-up time in the reference scenario is ∆t =
4650s, which is reduced in the following optimization sce-
nario.

6 Minimizing the start-up time

In this section the minimization of the start-up time should
be achieved by finding the optimal solvent flow trajectory
(optimization 1). For the optimization run additional con-
straints and criteria have to be set.

First, the end of the start-up process has to be specified
by using constraints. Therefore, it is defined that the car-
bon capture rate has to be at least 90 % at the end of the
optimization. However, this constraint does not guaran-
tee that the plant can keep a stable capture rate of 90 %.
To make sure that the solvent is sufficiently regenerated at
the end of the start-up process, a constraint for the solvent
loading in the stripper sump is added. The solvent loading
is defined in equation 4 and is the ratio of the amount of
CO2 and MEA in the solvent.

α =
NCO2

NMEA
(4)

The solvent loading in the stripper sump has to reach the
steady-state value of α = 0.184molCO2/molMEA to ensure
a stable carbon capture rate of 90 %. As the library only
handles criteria in the form presented in equation 3 the
capture rate was also inverted in the model. The additional
criteria are shown in table 3.

Table 3. Additional criteria in optimization run 1

Variable name Criteria Type

Capture rate XCO2 ≥ 0.9 end point

Solvent loading αstr,sump = 0.184
molCO2
molMEA

end point

Start-Up time t minimize

The resulting solvent flow rate trajectory of the first op-
timization run is shown in Figure 7.

0 500 1000 1500 2000 2500

0.5

1

1.5

·10−3

time in s

V̇ l
iq

in
m

3 /
s

Figure 7. Minimized start-up time - solvent flow rate

As in the reference start-up scenario presented in chap-
ter 3.2 the flue gas flow to the absorber starts at t = 0s. The
steam supply in the reboiler starts also later at t = 240s
due to the time delay in the steam generator and the steam
cycle of the power plant. The solvent flow trajectory dur-
ing the start-up process can be split up into three phases.
At the beginning of the optimal start-up process the sol-
vent flow rate is at the minimum flow rate of 0.0002 m3/s.
The minimum solvent flow rate leads to a maximum of the
reboiler heat up rate. The reboiler temperature is shown in
figure 8.

0 500 1000 1500 2000 2500

50

100

150

time in s

T r
eb

in
◦ C

Figure 8. Minimized start-up time - Reboiler temperature

When the reboiler reaches its operation temperature
of approximately 120 ◦C the solvent flow rate rises to
0.00037 m3/s. This happens for two reasons. On the one

Optimizing the start-up process of post-combustion capture plants by varying the solvent flow rate

126 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132121

hand the solvent flow rate has to be increased to prevent
that the temperature in the reboiler exceeds the limit of
125 ◦C. On the other hand the increasing solvent flow rate
leads to a smaller residence time in the stripper sump in
order to achieve a higher heat up rate of the solvent in the
stripper sump. As soon as the stripper reaches the oper-
ation temperature the solvent flow rate increases contin-
uously to increase the capture rate. At a capture rate of
90 % a PID controller is switched on. The controller uses
the capture rate of 90 % as a setpoint and the solvent flow
rate as the manipulated variable. This results in a small
oscillation of the solvent flow rate after the controller is
switched on. The start-up process is finished at this point.

Figure 9 shows the carbon capture rate during and after
the start-up process.

0 5000 10000 15000 20000
0

0.2

0.4

0.6

0.8

1

time in s

X C
O

2

Figure 9. Minimized start-up time - capture rate

The capture rate drops quickly to a very small value of
12 % and increases with increasing solvent flow rate and
stripper temperature until a capture rate of 90 % is reached.
The start-up time is significantly reduced from ∆t = 4650s
to ∆t = 2840s. As illustrated in figure 9, the plant can keep
the capture rate of 90 % after the start-up process.

The result of the optimization is a specific optimal sol-
vent flow trajectory for the pilot plant. As the trajectory
cannot be applied directly to other plants a more gener-
alized approach for the solvent flow trajectory should be
given. Furthermore, the optimal solvent flow trajectory is
quite complex since many control actions are required.

To solve this problem a simplified approach based on
the optimal solvent flow trajectory is developed. As al-
ready mentioned, the solvent flow trajectory can be di-
vided into three phases. Based on this segmentation the
recommendations for an optimal start-up scenario are:

1. Set the solvent flow rate to its steady state or maxi-
mum possible value to wet the columns.

2. When the columns are wetted and the steam can be
supplied from the power plant reduce the solvent
flow rate to the lowest possible value.

3. As soon as the reboiler temperature reaches the oper-
ation temperature of 120 ◦C, increase the solvent flow
rate to a certain value (in the case of the pilot plant:

V̇liq = 0.00037m3/s). The value has to be found by
optimizing a model of the certain plant. If this is not
feasible another possibility is to control the reboiler
temperature with the solvent flow rate by using a PID
controller.

4. When the top of the stripper is heated up to 100 ◦C
set the solvent flow rate to the optimal steady state
value (in the pilot plant: V̇liq = 0.001289m3/s).

5. Just as the capture rate reaches 90 % switch on the
PID controller to keep a constant capture rate.

When applying the simplified start-up strategy to the
model, the start-up time increases slightly. However, the
implementation of the start-up strategy is a lot simpler.
The simplified solvent flow rate derived from the optimiza-
tion case is presented in figure 10.

0 500 1000 1500 2000 2500

0.5

1

1.5

·10−3

time in s

V̇ l
iq

in
m

3 /
s

Figure 10. Minimized start-up time - solvent flow rate (simpli-
fied)

The result for the carbon capture rate is shown in fig-
ure 11. The carbon capture rate increases as expected
steeply with increasing solvent flow rate. Between the
steps of the solvent flow rate the capture rate increases
slightly as the CO2 loading in the stripper sump decreases
slowly over time.

0 5000 10000 15000 20000
0

0.2

0.4

0.6

0.8

1

time in s

X C
O

2

Figure 11. Minimized start-up time - capture rate (simplified)

The start-up time in the simple case increases
marginally from ∆t = 2840s to ∆t = 2939s. However, the

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp17132121

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

127

implementation of the strategy requires only three control
actions of the solvent flow rate during the whole start-up
process. The simple approach also offers a high reduction
of the start-up time while the constraints are still fulfilled.
The reboiler temperature and the liquid hold-up in the re-
boiler do not exceed their limits at any time.

7 Maximizing the capture rate

In a second approach, the main goal is to maximize the
mean value of the capture rate during the start-up process
(optimization 2). This start-up strategy is useful when low
CO2 emissions are more important than a minimal start-up
time.

For this optimization run additional constraints have to
be determined. The maximum CO2 capture rate is lim-
ited to XCO2 = 0.95 after t = 1000s since the carbon cap-
ture efficiency is decreasing steeply at very high capture
rates. The reason is the very low CO2 partial pressure in
the gas phase at very high capture rates. The accuracy of
the model decreases in this point of operation. The opti-
mal stationary solvent flow rate is V̇liq = 0.001289m3/s
which is defined as the end point of the trajectory. As the
library only handles minimization criteria as presented in
equation 3 the mean value of the negative carbon capture
rate in a time period of t = 20000s is chosen. The addi-
tional constraints are shown in table 4.

The resulting solvent flow rate trajectory of the sec-
ond optimization run is shown in Figure 12. The tra-
jectory starts at 0.001 m3/s and decreases to a minimum
at approximately 0.00064 m3/s. Afterwards the solvent
flow rate rises till 0.0016 m3/s and drops again until the
optimal stationary solvent flow rate of 0.001289 m3/s is
reached.

Table 4. Additional constraints in optimization run 2

Variable name Criteria Type

Capture rate limit XCO2 ≤ 0.95 anytime

Solvent flow rate V̇liq = 0.001289m3/s end point

Mean capture rate XCO2 maximize

The CO2 capture rate in the second optimization run
is depicted in figure 13. In comparison with the refer-
ence start-up strategy, the capture rate drops quickly to
a lower value at the beginning because of the lower sol-
vent flow rate. However, the lower solvent flow rate leads
to a faster heat-up in the stripper and regeneration of the
solvent. When the solvent flow rate is increased the car-
bon capture rate increases as well. As a side effect, the
start-up time is also in this scenario reduced significantly
to ∆t = 3520s.

0 5000 10000 15000 20000
0.5

1

1.5

·10−3

time in s

V̇ l
iq

in
m

3 /
s

Figure 12. Maximized amount of captured CO2 - solvent flow
rate

0 5000 10000 15000 20000
0

0.2

0.4

0.6

0.8

1

time in s

X C
O

2

Figure 13. Maximized amount of captured CO2 - capture rate

In table 5 a comparison of the mean capture rate in the
different start-up scenarios over the same time period of
t = 20000s is shown. The minimization of the start-up
time is labelled as Optimization 1, the maximization of
the mean capture rate is labelled as Optimization 2. The
reference strategy is presented in section 5.

Table 5. Mean value of capture rate in different start-up scenar-
ios

Reference Optimization 1 Optimization 2

0.836 0.805 0.856

As expected the highest mean capture rate is achieved
in the second optimization run, but the enhancement of the
mean capture rate in comparison with the reference start-
up strategy is quite small. However, the second optimiza-
tion run leads to a very good compromise between a rela-
tively fast start-up process and a high amount of captured
carbon dioxide during the start-up process as the mean cap-
ture rate is comparatively small in the first optimization
run. In the future, also a multicriteria optimization with
the combination of both optimization criteria is conceiv-
able.

Optimizing the start-up process of post-combustion capture plants by varying the solvent flow rate

128 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132121

8 Performance

The optimization model consists of 29833 equations. As
the optimization algorithm can only find local optima one
can not guarantee that the best solution has been found.
Therefore, the optimization is repeated several times and
different start values for the solvent flow rate are used.
The result is that the solutions actually are different but
they vary only slightly when different start values are
used. Sometimes the algorithm does not converge. This
is mostly due to the fact that the optimization algorithm
cannot evaluate a new solution since the integration of the
model fails in some cases. One optimization run takes ap-
proximately an average of 18 hours.

9 Conclusion and Outlook

The results of this paper show that there is a high optimiza-
tion potential for the start-up process of a post-combustion
capture plant. The start-up time can be significantly re-
duced by varying the solvent flow rate only.

The results of the model optimization should be applied
to the real operation of a carbon capture plant for valida-
tion purposes in the future. Unfortunately, the pilot plant
used for the validation of the model is no longer in opera-
tion.

The optimization does not take thermal stresses in the
reboiler into account. Additionally, the reboiler should be
discretized in space in order to calculate local tempera-
tures in the reboiler. Both options should be added to the
model in the future.

This work focusses on the start-up process at full load.
Future work could concentrate on the start-up process at
partial load. Furthermore, future optimization should in-
clude the variation of other parameters of the plant that
influence the start-up process as for example the total
amount of solvent. It could be also performed with the
used Optimization Library.

The technical design of the pilot plant was not changed
during the optimization. Future work should also include
the improvement of the technical design. A possible op-
tion would be for example the implementation of the lean
vapour compression (Fernandez et al., 2012).

The SQP solver used in the optimization does not guar-
antee that the global optimum is found. The optimization
should be also performed by using a genetic algorithm to
confirm the results of this paper in the future.

Nomenclature
α solvent loading (molCO2 /molMEA)

ṁ mass flow rate (kg/s)

Ṅ molar flow rate (mol/s)

Q̇ heat flow rate (W)

V̇ volume flow rate(m3/s)

N amount of substances(mol)

T temperature (◦C)

t time s

X CO2 capture rate (-)

Abbreviations
CO2 carbon dioxide

CCS carbon capture and storage

MEA monoethanolamine

PCC post-combustion carbon capture

Subscripts

abs absorber

fg flue gas

in incoming stream

liq liquid

out outgoing stream

reb reboiler

str stripper

sump column sump

References
A. Pfeiffer. Optimization Library for Interactive Multi-Criteria

Optimization. In Proceedings of the 9th International Model-
ica Conference, pages 669–680. Modelica Association, 2012.
doi:10.3384/ecp12076669.

A. Bui, I. Gunawan, V. Verheyen, P. Feron, E. Meuleman, and
S. Adeloju. Dynamic modelling and optimisation of flexi-
ble operation in post-combustion co2 capture plants-a review.
Computers and Chemical Engineering, 61:245–265, 2014.

Karin Dietl. Equation-Based Object-Oriented Modelling of
Dynamic Absorption and Recification Processes. PhD the-
sis, Hamburg University of Technology, Hamburg, Germany,
2012.

Eva Sanchez Fernandez, Egbertus J. Bergsma, and Thijs
J.H. Vlugt Ferran de Miguel Mercader. Optimization of lean
vapour compression (lvc) as an option for post-combustion
co2 capture: Net present value maximisation. International
Journal of Greenhouse Gas Control, 11:114 – 121, 2012.

IEA (International Energy Agency). World energy outlook spe-
cial report: Redrawing the energy-climate map. Technical
report, OECD/IEA, France, 2013.

Andreas Joos, Karin Dietl, and Gerhard Schmitz. Thermal Sep-
aration: An Approach for a Modelica Library for Absorption,
Adsorption and Rectification. In Proceedings of the 7th In-
ternational Modelica Conference, pages 804–813. Modelica
Association, 2009.

Session 4C: Process & Chemical Engineering

DOI
10.3384/ecp17132121

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

129

Yu-Jeng Lin, David Shan-Hill Wong, Shi-Shang Jang, and Jenq-
Jang Ou. Control strategies for flexible operation of power
plant with CO2 capture plant. AIChE J, 58:2697–2704, 2011.
doi:10.1002/aic.12789.

Minh Tri Luu, Norhuda Abdul Manaf, and Ali Abbas. Dy-
namic modelling and control strategies for flexible operation
of aminre-based post-combustion CO2 capture systems. In-
ternational Journal of Greenhouse Gas Control, 39:377–389,
2015. doi:10.1016/j.ijggc.2015.05.007.

Evgenia Mechleri, Adekola Lawal, Alfredo Ramos, John Davi-
son, and Niall Mac Dowell. Process control strategies for flex-
ible operation of post-combustion CO2 capture plants. Inter-
national Journal of Greenhouse Gas Control, 57:14–25, 2017.
doi:10.1016/j.ijggc.2016.12.017.

Rubén M. Montañés, Magnus Korpås, Lars O. Nord, and Ste-
fan Jaehnert. Identifying operational requirements for flexible
CCS power plant in future energy systems. Energy Procedia,
86:22 – 31, 2016.

Mehdi Panahi and Sigurd Skogestad. Economically efficient op-
eration of CO2 capturing process. Part II. Design of control
layer. Chemical Engineering and Processing, 52:112–124,
2011. doi:10.1016/j.cep.2011.11.004.

Johan Åkesson, Carl D. Laird., Geoffry Lavedan., Katrin Prölß,
Hubertus Tummescheit, Stephane Velut, and Yu Zhu. Non-
linear Model Predictive Control of a CO2 Post-Combustion
Absorption Unit. Chem. Eng. Technol., 35:445–454, 2012.
doi:10.1002/ceat.201100480.

Singiresu S. Rao. Engineering Optimization: Theory and Prac-
tice. Wiley-VCH, 2009. doi:10.1002/9780470549124.

Alexander Rieder and Sven Unterberger. EnBW’s post-
combustion capture pilot plant at Heilbronn - Results of the
first year’s testing programme. Energy Procedia, pages 1553–
1571, 2013.

United Nations, Framework Convention on Climate Change. Re-
port of the Conference of the Parties on its twenty-first ses-
sion, held in Paris from 30 November to 13 December 2015,
2016.

VFF GmbH. Manufacturer of random packings for pilot
plant, 2016. URL http://http://www.vff.de/en/
products/random-packings.

Kai Wellner, Thomas Marx-Schubach, and Gerhard Schmitz.
On the dynamic behaviour of coal fired power plants
with post-combustion CO2 capture. Industrial & Engi-
neering Chemistry Research, 55(46):12038–12045, 2016.
doi:10.1021/acs.iecr.6b02752.

Optimizing the start-up process of post-combustion capture plants by varying the solvent flow rate

130 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132121

Framework for dynamic optimization of district heating systems
using Optimica Compiler Toolkit

Gerald Schweiger1 Håkan Runvik2 Fredrik Magnusson3,2 Per-Ola Larsson2 Stéphane Velut2

1AEE INTEC, 8200 Gleisdorf, Austria, gerald.schweiger@aee.at
2Modelon AB, SE-223 70 Lund, Sweden, {per-ola.larsson,

hakan.runvik,fredrik.magnusson,stephane.velut}@modelon.com
3Lund University, SE-221 00 Lund, Sweden, fredrik.magnusson@control.lth.se

Abstract
Recent studies show that district heating infrastructures
should play an important role in future sustainable energy
systems. Tools for dynamic optimization are required to
increase the efficiency of existing systems and design new
ones. This paper presents a novel framework to represent,
simplify, simulate and optimize district heating systems.
The framework is implemented in Python and is based on
Optimica Compiler Toolkit as well as Modelon’s Thermal
Power Library. The high-level description of optimiza-
tion problems using Optimica allows flexible optimization
formulations including constraints on physically relevant
variables such as supply temperature, flow rate and pres-
sures. The benefit of new algorithms for symbolic elimi-
nation in Optimica Compiler Toolkit is also investigated.
The framework is applied on a test case, which is based on
a planned city district located in Graz, Austria. The results
demonstrate the generality of the representation as well as
the accuracy of the simplification for dynamic optimiza-
tion of temperature supply and pressure control. Key-
words: district heating, dynamic optimization, symbolic
elimination

1 Introduction
A major challenge for future energy systems is the design
of systems that integrate large shares of fluctuating
renewable inputs while improving the overall system
efficiency. There are a number of options for increasing
energy system flexibility, including the combination
of different energy domains, increasing supply and
demand flexibility or the integration of energy storage
technologies. Previous research has shown that district
heating infrastructure has the potential to play a key
role in sustainable energy systems (Lund et al., 2014;
Schweiger et al., 2017b). The new generation of district
heating systems (called 4th generation district heating)
plays an integral part of smart energy systems. Among
others these systems will be characterized by intermittent
operations and highly fluctuating supply temperatures.
As reported by (Allegrini et al., 2015), there is much to
be done to explore the full benefit of innovative district
energy systems. They argue that a shift to fully dynamic

models and sophisticated control design would be sup-
portive. Limitations of standard methods rely often on
simplified models, static relationships and single-domain
approaches. Therefore standard approaches are restricted
and thus unsuitable for investigating many issues. The
presented framework is based on the previous work of
some authors (Velut et al., 2014; Runvik et al., 2015;
Schweiger et al., 2017a).

The main contributions of this paper are (i) a demon-
stration of the capabilities of Modelon’s Thermal Power
Library that in version 1.14 will have out-of-the box mod-
els for dynamic thermo-hydraulic optimization of dis-
trict heating systems, (ii) a demonstration of a frame-
work for creating and manipulating district heating net-
works in Python as well as translating networks into exe-
cutable Code for simulation and optimization and (iii) an
investigation of the impact of the new algorithm for sym-
bolic elimination available in JModelica.org and Optimica
Compiler Toolkit (OCT).

2 Tools and languages
Three environments were used within the framework:
(i)The unified network representation and the aggregation
algorithms are implemented in Python; (ii) Dymola is used
to simulate the complex models and (iii) JModelica.org
and OCT were used to solve the dynamic optimization
problem.

2.1 OCT and JModelica.org overview

2.1.1 JModelica.org

JModelica.org (Åkesson et al., 2010) is an open-source
platform developed for simulation, optimization and anal-
ysis of complex dynamical systems. It utilizes the open
Modelica and FMI (Functional Mock-up Interface) stan-
dards and has a Python-based user interface. It is devel-
oped in collaboration between Modelon and several aca-
demic institutions, such as the Department of Automatic
Control and the group of Numerical Analysis at the Centre
for Mathematical Sciences at Lund University.

Of special interest in this project is the dynamic op-
timization capabilities of this tool. An extension of the

DOI
10.3384/ecp17132131

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

131

Modelica language called Optimica (Åkesson, 2008) is
used for this purpose. The model dynamics of the opti-
mization models are described using Modelica. To add
the extra information necessary to describe the optimiza-
tion formulation Optimica is used. This means that con-
straints, objective function and optimization time horizon
all can be collected in one easily understandable model.
More details of how optimization problems are solved in
the JModelica.org toolchain are presented in the following
sections.

2.1.2 Optimica Compiler Toolkit
Optimica Compiler Toolkit (OCT) is based on JMod-
elica.org technology, but has several additional features
(Modelon, 2016). One of these is the support for en-
crypted libraries, which is of special interest in relation to
this project. This makes it possible to combine the usage
of commercial libraries, here Modelon’s Thermal Power
Library, with the optimization framework. This lowers
the difficulty for users to solve their own optimization
problems, when predefined components and media mod-
els from the library can be used.

3 District Heating Network Models
A district heating network model for short-term produc-
tion planning must capture the following: (i) transport de-
lays depending on mass flows, (ii) pressure losses and (iii)
heat losses.

3.1 General model properties
The presented framework is based on the physics-based
modeling language Modelica and a high-level, large-scale
dynamic optimization method available in OCT.

High-fidelity models of district heating networks often
have high computation cost and some model properties
like events or non-differentiability make them even un-
usable in dynamic optimization. Hence, there is a need
to design simpler models, in particular regarding size and
differentiability, that can be used for online optimization.
There is also a need to design accurate models that can
be used for dynamic simulation to validate the optimal in-
puts computed based on the simpler model. Models of
both types will be available in Modelon’s Thermal Power
Library 1.14.

Pipes are the central components in district heating sys-
tems. The pipe model for simulation is implemented based
on a plug-flow approach as the solution of the following
one dimensional energy balance:

∂T
∂ t

+ v(t)
∂T
∂x

+
1

Sρcp
q(T (x)) = 0

where v is the fluid velocity, S the cross-section area, ρ the
fluid density, cp the specific heat capacity of the fluid and
q the heat loss to the surroundings of the pipe. The Model-
ica built-in operator spatialDistribution provides
a robust method to approximate the solution of such par-
tial differential equations when there is no heat loss, i.e.

q = 0 (Modelica Association, 2014). The operator keeps
track of the spatial distribution via suitable sampling, in-
terpolation and shifting of the stored distribution and it
also supports flow reversal. Assuming positive flow and a
heat loss q that depends linearly on Tboundary−T (x), the
difference between the surrounding temperature and the
fluid temperature, the temperature at the pipe outlet is

T (x = L, t) = Tboundary +(T (x = 0, t−τ)−Tboundary)e
− τ

Tp

where L is the pipe length, τ the time-varying trans-
port delay and Tp a temperature decay constant. From
the previous equation, it can be seen that the pipe
model with heat loss can be implemented using two
spatialDistribution operators, one to keep track
of the temperature distribution inside the pipe and there-
fore T (x = 0, t− τ), and one to calculate the time-varying
delay τ that is needed to compute the impact of the heat
loss given by e−

τ
Tp .

The spatialDistribution operator can however
not be used in the optimization framework because of in-
sufficient differentiability of the involved equations. The
pipe model for optimization (see Figure 1) contains a com-
bination of a fixed time delay and a discretized dynamic
volume. The goal is to compute the main characteristics of
the pipe without having to use a model with a large num-
ber of segments which would increase model complexity.
The fixed delay is dependent on the range of the mass flow
for each pipe and corresponds to the minimal time delay.
The dynamic volume must capture the flow-dependence
of the varying transport delay. The number of segments
within the dynamic volume depends on the geometry of
the pipe.

Figure 1. Pipe model for optimization consisting (from left to
right) of a dynamic volume model (fluidTransport), a model that
captures the fixed delay (fluidDelay), a model that calculates the
heat losses (fluidHeatLoss) and a model that calculates the pres-
sure drop (friction).

3.2 Case study
The case study represents a district heating network in a
planned city district in Graz/Austria that consists of one

Framework for dynamic optimization of district heating systems using Optimica Compiler Toolkit

132 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132131

production unit, 16 consumers and a total length of about
4200 m, see Figure 2. We assume a perfect load prediction
over the entire optimization horizon. Work has also been
done on non-perfect load prediction (Rantzer, 2015), but
was omitted here to focus on other parts of the framework.

Figure 2. The scheme of the district heating system. The pro-
duction unit is seen on the right side; the black/blue circles rep-
resent the 16 consumers.

Optimica files that extend the optimization models are
used to describe the optimization problems. The dynamic
optimization problem used for all optimization cases has
the general form

min.
∫ t f

t0
(αTprod +βd pprod + γQ̇2

prod +δ ḋ p2
prod)dt,

s.t. model dynamics,

mProd(t)≤ mU
Prod ∀t ∈ [t0, t f],

T L
Customer ≤ TCustomer(t) ∀t ∈ [t0, t f],

d pL
Customer ≤ d pCustomer(t) ∀t ∈ [t0, t f],

where Tprod is the supply temperature, d pprod the differ-
ential pressure at the production unit, Qprod the load and
α,β ,γ as well as δ are weights. The load derivative Q̇prod

and the pressure derivative ḋ pprod are the degrees of free-
dom in the optimization formulation. These are squared in
the cost function to penalize fast control signal changes.
mU Prod is the upper limit of the mass flow at the pro-
duction unit and it was set to 65 kg/sec; it is represent-
ing the pump limitations. T L

Customer is the lower limit of
the supply temperature for all customers and it was set to
60 deg.C. The lower limit of the differential pressure for
all customers (d pL

Customer) was set to 0.5 bar. Minimum

supply water temperatures and pressure differences for all
customers were introduced based on real network limits to
satisfy the customers’ demand. The minimization of sup-
ply water temperature and pressure difference for the pro-
duction unit mimics the situation in a real plant where low
temperatures and differential pressures are desirable in or-
der to reduce heating and pumping costs. The weights are
chosen such that a low temperature is given a higher pri-
ority than pressure minimization, as this is the relatively
larger cost in reality. The optimization constraints are in-
equality constraints defined using the min and max vari-
able attributes.

4 Framework
4.1 Overview
A schematic view of the framework is presented in Figure
3 and each step is explained below.

• Step 1: The network is created using a unified net-
work representation that includes data of the net-
work, demand and boundary conditions.

• Step 2: The unified network representation is
translated into executable Modelica code, including
graphics annotations (can be read by any Modelcia
authoring tool). A dynamic simulation with fixed
nominal control signals is performed, to get a nom-
inal operation conditions where the aggregation will
be done (Loewen, 2001).

• Step 3: The original network is aggregated to a size
suitable for optimization. The aggregation depth is
flexible and certain consumers can be excluded from
the aggregation.

• Step 4: The aggregated network is simulated to get
initial trajectories for the dynamic optimization.

• Step 5: The dynamic optimization problem is solved.

• Step 6: The optimal trajectories are applied to the
original network.

Figure 3. Schematic view of the framework showing the dif-
ferent steps for network creation, simulation and optimization.

Session 4D: Control Systems I

DOI
10.3384/ecp17132131

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

133

4.2 Modeling

4.2.1 District heating network representation

The core of the framework is a unified network represen-
tation implemented in Python. In general, the representa-
tion is applicable for all kinds of network-based energy
systems including district heating systems, gas systems
and power systems. Typically such systems consist of
edges and nodes. Edges could be transmission or distri-
bution lines, gas pipes or pipes within a district heating
system. Nodes could represent consumers and produc-
ers in any energy domain, storage or hybrid technologies.
Such a unified network representation is required for two
reasons. Firstly, an automatically generated simulation or
optimization network model based on a unified network
representation reduces the effort for modeling as well as
the liability for errors. Secondly, several steps require de-
tailed information of the network topology and other steps
change the topology of the network. The unified network
representation consists of three central modules: network
representation, aggregation of the network and translation
into executable simulation/optimization code. The first
two modules are independent of the actual simulation and
optimization language. The library is implemented in the
Python module networkX (Hagberg et al., 2008) that is
suitable for the creation and manipulation of complex net-
works. The network representation is in this paper com-
bined with models from Modelon’s Thermal Power Li-
brary suitable for dynamic simulation and optimization of
district heating systems.

4.2.2 Aggregation method

Dynamic thermo-hydraulic optimization of large-scale
district heating systems is very complex and numerically
challenging. Several concepts approach the problem
by simplifying (some) models (Olsthoorn et al., 2016;
Orehounig et al., 2015), others by simplifying the network
topology using aggregation methods (Larsen et al., 2004;
Grosswindhager et al., 2012). Two methods have been
developed in Denmark and Germany (Larsen et al.,
2004); they are called “the Danish” and “the German”
method. The idea behind the aggregation is (i) to change
the tree structure of a network into a line structure and
(ii) to remove short branches. The German method can
handle network topologies with loops as well; this was
the reason why we implemented the German method in
our framework. Both methods were originally defined
for steady state operation. The methods have different
starting points: The German method conserves volume,
mass flow and temperatures in all nodes. Thus, heat
losses from the original and the aggregated networks are
not exactly the same. The Danish method conserves heat
losses. Thus, the node temperatures of the original and the
aggregated networks are not exactly the same. Previous
works on aggregation methods show that networks can
be aggregated up to a very high level even in dynamic
operations without losing significant accuracy (Loewen,

2001; Larsen et al., 2004).

4.2.3 Generation of Modelica models for simulation
and optimization

The network representations are translated into Modelica
models using Python functions. Based on the informa-
tion in the network, corresponding Modelica code is gen-
erated, complete with annotations to enable visual inspec-
tion of the resulting model. In Figure 4, a generated net-
work for the Graz network is visualized in the diagram
view in Dymola. This method allows for the creation of
complete models for simulation or optimization with com-
ponents, connect statements and parameter values defined
by the network model. Apart from the actual network, the
generated Modelica models intended for optimization also
contain input and output connectors, to handle the control
signals and delay modeling in the optimization setup.

The components of the Modelica models which are
used for optimization in this project come from Modelon’s
Thermal Power Library 1.14.

Both the complete district heating network described in
Section 3.2 and aggregated versions of this are translated
into Modelica models. The complete models are used for
simulation, while the aggregated models are used for opti-
mization and for creating initial trajectories for optimiza-
tion. Different aggregation levels are evaluated in opti-
mization, as explained in Section 5.1.

4.3 Optimization
The OCT toolchain that is used to solve the dynamic
optimization problems starts by transferring the gener-
ated Modelica and Optimica code to CasADi Interface
(Lennernäs, 2013), which has a flattened and symbolic
representation of the model and optimization problem
based on CasADi (Andersson, 2013). This representa-
tion is then propagated to the dynamic optimization al-
gorithm implemented in JModelica.org (Magnusson and
Åkesson, 2015). This algorithm implements direct col-
location (Biegler, 2010) to transcribe the problem into a
nonlinear program (NLP), which is then solved by IPOPT
(Wächter and Biegler, 2006). CasADi is used to compute
first- and second-order sparse derivatives using algorith-
mic differentiation (Griewank and Walther, 2008).

The dynamic optimization framework has recently been
extended to treat delay differential-algebraic equations
where the delay is fixed a priori, which is needed for the
pipe models discussed in Section 3.1. Methods based on
direct, local collocation are well-suited for handling such
models (Betts et al., 2016).

4.3.1 Symbolic elimination

Before the model is transferred to CasADi Interface,
the OCT compiler performs alias elimination, variability
propagation and index reduction. The flattened, fully im-
plicit differential-algebraic equation (DAE) is then trans-
ferred to CasADi Interface and later exposed to the direct

Framework for dynamic optimization of district heating systems using Optimica Compiler Toolkit

134 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132131

Figure 4. Modelica model of Graz network generated in Python from network description. The customers are represented by the
orange red house icons, the pipe models are red and blue and the production unit is the gray model located furthest to the left.

collocation.
This approach leads to very large and sparse NLPs be-

cause of the multitude of algebraic variables in the net-
work model. There has been recent work carried out
(Magnusson and Åkesson, 2016) to address this prob-
lem in general by applying a block-lower triangular (BLT)
transformation of the DAE to identify algebraic variables
that only depend affinely on the corresponding block vari-
ables. This allows symbolic elimination of such variables
by forward substitution. Further variables can be elimi-
nated by applying tearing (Meijer, 2011; Baharev et al.,
2016) to handle nonlinear dependencies. The majority of
algebraic variables are thus eliminated prior to discretiza-
tion by direct collocation, drastically reducing the size of
the NLP. However, although the number of variables and
equations are reduced, the resulting NLP Jacobian and
Hessian tend to become more dense as a result, potentially
crippling the performance of the sparse numerical linear
algebra. A novel heuristic, similar to local minimum fill-
in (Duff et al., 1986), is used to identify algebraic variables
that should not be eliminated in order to preserve the spar-
sity of the NLP, typically leading to faster solution times.

In Modelica tools it is common to “eliminate” all al-
gebraic variables by embedding Newton iterations in the
right-hand side of an explicit ordinary differential equa-
tion, which is the foundation of FMI. In the spirit of simul-
taneous discretization, this approach is not used in OCT
to avoid the long evaluation times that may result from
solving implicit equations in each iteration and also the
increased problem density resulting from elimination.

As demonstrated in (Magnusson and Åkesson, 2016),
and as we will also see is the case in this work, the sym-
bolic elimination not only reduces the solution time, but
also improves convergence robustness, that is, probabil-
ity of successfully solving an optimization problem in a
timely manner.

5 Results
The production planning formulation described in Section
3.2 was solved for different optimization and model se-

tups. The goal is to understand the impact of the aggre-
gation level on the production plans and of the symbolic
elimination on the convergence and robustness of the op-
timization problem.

5.1 Optimization setups
The optimization problem was solved for three different
aggregation levels resulting in two, five and seven cus-
tomers. Very little difference in the optimal trajectories
could be observed (data not shown). This indicates that
aggregating the network to just two customers is sufficient
to describe the current network with good accuracy.

The convergence of the optimization algorithm was also
analyzed in detail for each aggregation level, to investi-
gate the scalability of the current approach. All optimiza-
tion cases were run on a laptop with 8 GB RAM and four
2.6 GHz CPUs, with convergence results and optimiza-
tion model statistics displayed in Tables 1 and 2. The re-
sults show that the main benefit of the elimination occurs
for larger network models, when both the time per itera-
tion and the number of iterations is significantly reduced,
resulting in a much better overall performance. The to-
tal time for running the entire script is reduced by more
than a factor 2 and the optimization convergence is also
significantly more robust, as indicated by the number of
iterations and by manual inspection of the output from
IPOPT. For fewer customers, the comparison between the
two methods give less clear results. The overall time for
running the script is approximately the same, as is the ro-
bustness of the convergence. The reason for the similar
performance is that the time gained by eliminating vari-
ables is lost from the extra time needed to perform the
elimination.

5.2 Optimal trajectories
The optimized trajectories are studied for the aggregated
system with five customers. The network aggregation is
displayed in Figure 5, and the trajectories are displayed in
Figure 6. It is clear from the temperature plot that the heat
loss and transport delay are correctly captured in the op-
timization model: the customer at the network periphery

Session 4D: Control Systems I

DOI
10.3384/ecp17132131

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

135

Table 1. Optimization model statistics.

Nbr of customers 2 5 7
Nbr of states 12 22 30
Nbr of algebraics 136 298 413
Nbr of algebraics a.e 17 45 66
Nbr of variables in NLP 61354 130412 150159
Nbr of variables a.e 18395 39079 45712

Table 2. Optimization convergence results.

Nbr of customers 2 5 7
Without symbolic elimination
Nbr of iterations 29 42 88
IPOPT CPU time [s] 13 163 1103
NLP function eval time [s] 24 60 161
IPOPT total time [s] 103 422 1516
Script total time [s] 120 448 1548
With symbolic elimination
Nbr of customers 2 5 7
Nbr of iterations 31 43 44
IPOPT CPU time [s] 7 31 60
NLP function eval time [s] 25 68 71
IPOPT total time [s] 75 240 314
Script total time [s] 121 431 685

received a slightly colder water and with some delay. It
is also visible that the optimization minimizes pump cost,
i.e. discharge pressure at the producer, while respecting
the differential pressure constraint across the customers’
valve: the customer O, furthest away from the producer
has its dp constraint active most of the time. During high
load, the distribution pump of the producer is at its max-
imum capacity and the mass rate saturates. As a conse-
quence the supply temperature is increased to fulfill the
heat demand of all customers. The temperature increase is
done in advance to compensate for the mass flow depen-
dent delays in the network.

Another interesting phenomenon can be seen when cus-
tomer O, far away from the producer is operating at max-
imum valve opening, at about t=2.5h and 9.5h. Figure 7
displays this phenomenon around the first load peak. It
shows that the increase in the supply temperature at the
producer propagates with the flow in the network and re-
sults in valve closing at the customers close to the pro-
ducer, in the figure illustrated with customer I1, which is
closest to the producer. This shifts the mass flow rate from
the close customers to customer O that gets its higher load
fullfilled. The increase in the producer’s supply tempera-
ture propagates quicker than the speed of the hot water.

5.3 Verification in simulation
The previous section demonstrates that the optimization
method is able to generate optimal trajectories for temper-
ature and pressure that fulfill the operational constraints
from the customers and the distribution network. The net-

Figure 5. Complete and aggregated network models.

work model used for optimization differs however from
the original one as it has been simplified by the aggre-
gation method described in Section 4.2.2. The idea is
now to validate the optimization results and the aggrega-
tion method by applying the optimal trajectories on the
complex model with 16 customers. As the pressure pro-
file would not be applied in reality, the supply pressure at
the production unit is instead manipulated by a controller
that maintains a minimum pressure difference over all cus-
tomers. Only the supply temperature trajectory is applied
to the complex network model. The results are shown in
Figure 8. The supply temperature at the customer furthest
away from the plant is very similar when the optimization
and simulation results are compared. The mass flowrate
computed by the differential controller is also very sim-
ilar to the optimized trajectory. Some differences in the
differential pressure can be seen as the optimization does
not always operate at the minimum value but sometimes
at a higher level to minimize the overall cost. The results
indicate in general that the aggregation to two customers
is good enough for this 16 customers network model.

6 Discussion
This paper presents new features of Modelon’s Thermal
Power Library 1.14 in the field of dynamic optimization
of district heating systems as well as the impact of the
new algorithm for symbolic elimination available in Op-
timica Compiler Toolkit. The new features together with

Framework for dynamic optimization of district heating systems using Optimica Compiler Toolkit

136 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132131

0 2 4 6 8 10 12
Time [hours]

4400

4600

4800

5000

5200

5400

5600

5800

Lo
a
d
 [

kW
]

Total load

Total customer load

0 2 4 6 8 10 12
Time [hours]

59

60

61

62

63

64

65

66

T
e
m

p
e
ra

tu
re

 [
d
e
g
 C

]

T_supply Producer

T_supply Customer O

Temperature constraint

Production unit and Customer O feed water temperature and
temperature constraint

0 2 4 6 8 10 12
Time [hours]

54

56

58

60

62

64

66

M
a
ss

 f
lo

w
 [

kg
/s

]

Mass Flow Producer
Mass Flow constraint

Production unit mass flow and mass flow constraint

0 2 4 6 8 10 12
Time [hours]

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

D
if
fe

re
n
ti

a
l
p
re

ss
u
re

 [
b
a
r] Differential pressure Customer O

Differential pressure constraint

Customer O differential pressure and differential pressure con-
straint

Figure 6. Optimal trajectories for an aggregated network model
with five customers.

a unified representation of network-based energy systems
make it possible to analyze, simulate and optimize small
and larger district heating or cooling systems. It is also
possible to include physical constraints based on opera-
tional limitations into the optimization formulation.
Based on the results it can be concluded that the aggre-
gation method achieves accurate results at an aggregation
depth of about 90 %. Furthermore it can be concluded
that the main benefit of the elimination occurs for larger
models where the computation time could be reduced by
more than a factor 2. Enabling the elimination yields an
overall computation time for seven remaining customers
of about 11 minutes and a solution time of about 5 min-
utes. In the context of model predictive control the solu-
tion time is sufficiently low for a real-time application and
it could be further reduced by initializing the optimization
with the results of the latest iteration. In an offline opti-

2.0 2.5 3.0 3.5 4.0
Time [hours]

60

62

64

66

68

70

M
a
ss

 f
lo

w
 [

kg
/s

]

Mass Flow Producer

Total supply mass flow

2.0 2.5 3.0 3.5 4.0
Time [hours]

56

58

60

62

64

66

68

70

T
e
m

p
e
ra

tu
re

 [
d
e
g
 C

]

T_supply Customer I1

T_supply Customer O

Supply temperatures for closest and furthest Customer

2.0 2.5 3.0 3.5 4.0
Time [hours]

15

16

17

18

19

20

M
a
ss

 f
lo

w
 [

kg
/s

]

Mass Flow Customer O

Customer O mass flow

2.0 2.5 3.0 3.5 4.0
Time [hours]

4.0

4.2

4.4

4.6

4.8

5.0

5.2

5.4

M
a
ss

 f
lo

w
 [

kg
/s

]

Mass Flow Customer I1

Customer I1 mass flow

Figure 7. Heat to customer O based on mass flow change for
remaining customers.

mizatino context, the overall computation time could also
be reduced by using the optimization results for lower ag-
gregation levels as initial guesses for the optimization of
more complex networks. The next stage of our research
will include scale-up studies and the integration of the unit
commitment problem in the overall framework.

7 Acknowledgements
Fredrik Magnusson acknowledges support from the
LCCC Linnaeus Center and eLLIIT Excellence Cen-
ter at Lund University. Gerald Schweiger acknowl-
edges the Austrian Federal Ministry of Science, Research
and Economics for funding the project “FlexEnergySys
(848346)". Modelon AB acknowledges support from PiiA
– Processindustriell IT och Automation.

References
Johan Åkesson. Optimica—an extension of Modelica support-

ing dynamic optimization. In Proceedings of the 6th Interna-

Session 4D: Control Systems I

DOI
10.3384/ecp17132131

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

137

0 2 4 6 8 10 12

Time [hours]

58

59

60

61

62

63

64

65

66

T
e
m

p
e
ra

tu
re

 [
d
e
g
 C

]

Limiting Customer Optimization
Limiting Customer Simulation

Supply temperature for limiting customer

0 2 4 6 8 10 12

Time [hours]

50

55

60

65

70

M
a
ss

 f
lo

w
 [

kg
/s

]

Producer Optimization
Producer Simulation

Total mass flow through the production unit

0 2 4 6 8 10 12

Time [hours]

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

D
if
fe

re
n
ti

a
l
p
re

ss
u
re

 [
b
a
r]

Limiting Customer Optimization
Limiting Customer Simulation

Differential pressure for limiting customer

Figure 8. Comparison between optmization results for two cus-
tomers and simulation results for the complete network with op-
timal inputs.

tional Modelica Conference, pages 57–66, 2008.

Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove
Bergdahl, and Hubertus Tummescheit. Modeling and opti-
mization with Optimica and JModelica.org—languages and
tools for solving large-scale dynamic optimization problems.
Computers & Chemical Engineering, 34:1737–1749, 2010.

Jonas Allegrini, Kristina Orehounig, Georgios Mavromatidis,
Florian Ruesch, Viktor Dorer, and Ralph Evins. A review of
modelling approaches and tools for the simulation of district-
scale energy systems. Renewable and Sustainable Energy Re-
views, 52:1391–1404, 2015. URL http://dx.doi.org/
10.1016/j.rser.2015.07.123.

Joel Andersson. A General-Purpose Software Framework for
Dynamic Optimization. Ph.D. thesis, Arenberg Doctoral
School, KU Leuven, Belgium, 2013.

Ali Baharev, Hermann Schichl, and Arnold Neumaier. De-
composition methods for solving sparse nonlinear systems
of equations. Submitted for publication. Available on-
line: http://reliablecomputing.eu/baharev_
tearing_survey.pdf, 2016.

John T. Betts, Stephen L. Campbell, and Karmethia C. Thomp-
son. Solving optimal control problems with control delays
using direct transcription. Applied Numerical Mathematics,
108:185–203, 2016.

Lorenz T. Biegler. Nonlinear Programming: Concepts, Al-
gorithms, and Applications to Chemical Processes. MOS-
SIAM, Philadelphia, PA, 2010.

Iain S. Duff, Albert. Erisman, and John K. Reid. Direct Meth-
ods for Sparse Matrices. Clarendon Press, Oxford, United
Kingdom, 1986.

Andreas Griewank and Andrea Walther. Evaluating Deriva-
tives: Principles and Techniques of Algorithmic Differenti-
ation. SIAM, Philadelphia, PA, 2nd edition, 2008.

Stefan Grosswindhager, Andreas Voigt, Martin Kozek, and
A Varying-coefficient Models. Predictive Control of District
Heating Network using Fuzzy DMC. In International Con-
ference on Modelling, Identification and Control, 2012.

Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. Ex-
ploring network structure, dynamics, and function using Net-
workX. Proceedings of the 7th Python in Science Conference
(SciPy 2008), (SciPy):11–15, 2008.

Helge V Larsen, Benny Bøhm, and Michael Wigbels. A com-
parison of aggregated models for simulation and operational
optimisation of district heating networks. Energy Conversion
and Management, 45:1119–1139, 2004.

Björn Lennernäs. A CasADi based toolchain for JModelica.org.
M.Sc. thesis, Department of Automatic Control, Lund Uni-
versity, Sweden, 2013.

Achim Loewen. Entwicklung eines Verfahrens zur Aggregation
komplexer Fernwärmenetze. Ph.D. thesis, Fraunhofer UM-
SICHT, Germany, 2001.

Henrik Lund, Sven Werner, Robin Wiltshire, Svend Svend-
sen, Jan Eric Thorsen, Frede Hvelplund, and Brian Vad
Mathiesen. 4th Generation District Heating (4GDH):
Integrating smart thermal grids into future sustain-
able energy systems. Energy, 68:1–11, 2014. URL
http://www.sciencedirect.com/science/
article/pii/S0360544214002369.

Fredrik Magnusson and Johan Åkesson. Dynamic optimization
in JModelica.org. Processes, 3(2):471–496, 2015.

Fredrik Magnusson and Johan Åkesson. Symbolic elimination
in dynamic optimization based on block-triangular ordering.
Optimization Methods and Software, 2016. Accepted for pub-
lication.

Patrik Meijer. Tearing differential algebraic equations. M.Sc.
thesis, Centre for Mathematical Sciences, Lund University,
Sweden, 2011.

Modelica Association. Modelica R© - A Unified Object-
Oriented Language for Systems Modeling Language
Specification Version 3.3 Revision 1. 2014. URL
https://www.modelica.org/documents/
ModelicaSpec33Revision1.pdf.

Modelon. OPTIMICA Compiler Toolkit, 2016.
URL http://www.modelon.com/products/
optimica-compiler-toolkit/.

Framework for dynamic optimization of district heating systems using Optimica Compiler Toolkit

138 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132131

Dave Olsthoorn, Fariborz Haghighat, and Parham A Mirzaei. In-
tegration of storage and renewable energy into district heating
systems : A review of modelling and optimization. Solar En-
ergy, 136:49–64, 2016. URL http://dx.doi.org/10.
1016/j.solener.2016.06.054.

Kristina Orehounig, Ralph Evins, and Viktor Dorer. Integra-
tion of decentralized energy systems in neighbourhoods us-
ing the energy hub approach. Applied Energy, 154:277–
289, 2015. URL http://dx.doi.org/10.1016/j.
apenergy.2015.04.114.

Jonatan Rantzer. Robust production planning for district heating
networks. M.Sc. thesis, Centre for Mathematical Sciences,
Lund University, Sweden, 2015.

Håkan Runvik, Per-Ola Larsson, Stéphane Velut, Jonas Fun-
quist, Markus Bohlin, Andreas Nilsson, and Sara Modarrez
Razavi. Production Planning for Distributed District Heating
Networks with JModelica.org. In 11th International Model-
ica Conference, pages 217–223, 2015.

Gerald Schweiger, Per-Ola Larsson, Fredrik Magnusson,
Patrick Lauenburg, and Stéphane Velut. District heating and
cooling systems – framework for modelica-based simulation
and dynamic optimization. Energy, 2017a. ISSN 0360-5442.
doi:https://doi.org/10.1016/j.energy.2017.05.115. URL
http://www.sciencedirect.com/science/
article/pii/S0360544217308691.

Gerald Schweiger, Jonatan Rantzer, Karin Ericsson, and Patrick
Lauenburg. The potential of power-to-heat in swedish
district heating systems. Energy, 2017b. ISSN 0360-5442.
doi:http://dx.doi.org/10.1016/j.energy.2017.02.075. URL
http://www.sciencedirect.com/science/
article/pii/S0360544217302499.

Stéphane Velut, Per-Ola Larsson, Johan Windahl, Linn Saarinen,
and Katarina Boman. Short-term production planning for dis-
trict heating networks with JModelica.org. In Proceedings of
the 10th International Modelica Conference, pages 959–968,
2014.

Andreas Wächter and Lorenz T. Biegler. On the implementation
of a primal-dual interior point filter line search algorithm for
large-scale nonlinear programming. Mathematical Program-
ming, 106:25–57, 2006.

Session 4D: Control Systems I

DOI
10.3384/ecp17132131

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

139

140 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Optimal Control of District Heating Systems using Dynamic

Simulation and Mixed Integer Linear Programming

Loïc Giraud Massinissa Merabet Roland Baviere Mathieu Vallée

Univ. Grenoble Alpes, INES, F-73375 Le Bourget du Lac, France

CEA, LITEN, 17, Rue des Martyrs, F-38054 Grenoble, France, roland.baviere@cea.fr

Abstract
This paper presents the development of a new advanced

control method suitable for variable temperature District

Heating Systems (DHS). The proposed controller

determines optimal planning for the on/off status and

power of the heat generators as well as for the supply

temperature and differential pressure at the production

plant level. Compared to existing methods, the original

features of the developed solution are to fully exploit the

thermal storage capacity of the network and to

determine the best compromise between pumping costs

and heat losses. A numerical case study based on a

representative DHS is used to evaluate the method over

a heating season (5 months). Results show that our

method reduces production costs up to 8.3 % when

compared to a more classical controller. Moreover, the

observed computing time is compatible with the

requirements of the receding time horizon principle,

ensuring that the method is tractable on real DHS.

Keywords: District Heating, Model Predictive

Control, Dynamic Simulation, Mixed Integer Linear
Programming

1 Introduction

Nowadays, many research works devoted to District

Heating Systems (DHS) are performed on low and very

low temperature systems, mainly because of their

energy performance and their ability to use renewable

energy sources. However, High Temperature District

Heating Systems (HTDHS) represent an important share

of the existent systems in Europe. For instance, systems

with temperature over 110 °C account for more than 50

% of the heat delivered by French DHS (SNCU, 2013).

The energy load of HTDHS is generally supplied by

numerous generators and fuels. On the other hand, their

distribution network usually bears large variations in

temperature and differential pressure. Thus, HTDHS are

affected by non-constant production costs yet they

natively comprise important thermal storage capacities,

i.e. network storage, if an adequate supply temperature

control is used. Additionally, HTDHS are subject to

complex dynamic behaviors originating both from the

variability of the demand and the significant

temperature transportation delay. Finally, heat can be

delivered to the consumers using various combinations

of temperature and mass flow rate. Lowering network

temperature would limit the thermal losses; however,

the mass flow rate shall increase in order to maintain the

same heat flow, and this will cause pumping work to

rise. Contrary to what is generally considered, in many

practical situations, particularly recurrent in HTDHS,

the optimal balance between pumping work and heat

losses may be obtained with high supply temperature

and low differential pressure.

As pointed in (Lund, 2014), the intelligent control for

optimal operation is a future challenge for the

improvement of DHS. Due to its complexity and high

parameters combinatorics, the determination of optimal

production and distribution plans in DHS is difficult, if

not impossible, when solely based on empirical laws

and/or expert judgement. In this context, decision

support/making tools relying on a Model Predictive

Control (MPC) scheme are very useful. Despite

significant progress, there is still an important room

for improvement in this domain.

This paper focuses on the optimal control of

pressurized water DHS. For this application, we have

developed and tested an algorithm that optimizes, given

a load prediction, the use of production means as well as

supply temperature and differential pressure. Compared

to existing methods, the original features of the

developed solution are, firstly, to fully exploit the

thermal storage capacity of the network. Secondly, our

controller is suitable for determining the best possible

combination between electrical costs for pumping and

heat production costs compensating distribution losses.

Though generic, the proposed control method is

particularly adapted to existing HTDHS.

Our controller is based on a MPC scheme. At each

time step, a dynamic non-linear model of the

distribution network is simulated over a finite time-

horizon. In the present work, this model is built using

the equation-based object-oriented language Modelica

along with the simulation platform Dymola and an in-

house component model library named DistrictHeating

(Giraud b), 2015). The simulation results are then used

to formulate a linearized model of the distribution

network. Combined with other linear constraints

representing the technical limitations of the different

DOI
10.3384/ecp17132141

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

141

pieces of equipment and with a linear cost function, the

model forms a Mixed Integer Linear Program (MILP).

In a last step, this program is solved yielding the optimal

trajectories for the various control variables of the

problem.

In section 2, we present a literature review on

advanced control for DHS. Section 3 firstly describes

the algorithmic aspects of the proposed controller,

secondly presents the non-linear network model used for

dynamic simulation and finally details the formulation

of the linear optimization problem. A case study

consisting of a virtual yet representative HTDHS is then

described in section 4. In section 5, the simulation

results obtained for various controllers over a heating

season are presented and discussed. Section 6 includes

the conclusions and perspectives of our study.

2 Existing DHS Control Methods

The approach currently used to determine the control

variables of DHS (e.g. supply temperature, differential

pressure, load distribution between different heat

production units …) often relies on heuristic methods,

i.e. a formalization of common sense, simple logic or

expert judgement. As an example, we can recall here the

determination of supply temperature using a single or

even multi-variable heating curve. Though simple to

implement and robust with respect to production or

demand uncertainties, the efficiency of such control

methods is always limited when applied to a system

comprising several sources, variable energy purchase

prices and energy storage capacity. This is partly due to

the fact that anticipative control strategies are difficult if

not impossible to formulate in this framework. Another

difficulty is that production goals may be multiple and

conflicting (e.g. power and heat generation in combined

heat-and-power units).

To overcome the aforementioned difficulties, an

MPC scheme is an interesting alternative. The MPC

approach consists of a load prediction module and an

optimization procedure used to determine the best

possible path for control variables, i.e. the one

minimizing an objective function while meeting

different technical and operational constraints.

Depending on the formulation of the quantitative

objective to minimize, operating costs and/or CO2

content of the delivered heat may be significantly

improved.

However, building an MPC scheme to control a DHS

is a complex task. This explains why most previous

works done on this subject only consider some parts of

the problem. On the one hand, numerous studies deal

with production optimization only, i.e. they address the

unit commitment and load dispatch problems. In

(Eriksonn, 1994), the author determines the heat power

planning for each production unit considering starting

costs, minimal load of each generator and bounds for

heat power ramp rates. This approach is mostly used in

studies interested in combined heat and power plants

since electricity must be produced when it is the most

profitable. On the other hand, several works only

consider the supply temperature determination.

Important features here are to reduce heat losses and to

use the network capacity for heat storage. For instance,

the supply temperature is optimized in (Nielsen, 2005)

using the Finite Impulse Response method to linearize a

dynamic distribution network model and then to solve

the linear optimization problem. Few works study both

the load dispatch problem and the supply temperature

determination. The integer variables, representing for

instance the heat generators’ statuses, are then not taken

into account in these cases in order to reduce the

combinatory.

More recently, both the supply temperature and heat

power planning have been determined in order to

minimize the production costs yet without considering

the time delays in the network (Fang, 2015). Another

possible approach, quite popular in the Modelica

community, consists in modeling, formulating and

solving a dynamic optimization problem using the

JModelica.org tools (Akesson, 2011). Following this

method, (Runvik, 2015) also solve a short-term

production planning problem for a DHS using a two-

steps optimization procedure including production and

distribution variables. However, due to prohibitive
computational costs, the network representation only

includes three customers.

Starting guess

Dynamic
network model

Load Prediction

Optimizer

Convergence

 ?

Optimized control variables

 ,

Yes

No

Figure 1: Proposed optimal control

algorithm for DHS.

Optimal Control of District Heating Systems using Dynamic Simulation and Mixed Integer Linear
Programming

142 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132141

In conclusion of this review, no method has been

identified in the literature that adequately optimizes the

production and the distribution considering network

storage for DHS. In the following, we present such a

method and study its benefits on a representative

HTDH.

3 Optimal Control of DHS

In this section, we describe the optimal control method

we designed. The objective is to determine the optimal

trajectory for the control variables over a defined

anticipation horizon. Taking into account the relatively

slow dynamics of a DHS requires anticipation, i.e. using

load predictions and optimizing of control variables so

that the system produces the desired effects in the future.

Additionally, periodically revising the optimization is

mandatory in order to cope with load prediction

uncertainties.

To address these challenges, we combine a dynamic

nonlinear model of the DHS with linear optimization

methods, similarly to other works like those of

(Benonysson, 1991) and (Sandou, 2006). For each

anticipation horizon, our system encompasses both

production and distribution optimization and controls

heat powers, generators’ statuses, supply temperature

and differential pressure. To guarantee the applicability

of the control trajectories, the optimization is

constrained by the technical limits of the DHS’s pieces

of equipment.

This section first gives a general description of the

algorithm, then details the dynamic nonlinear model,

which we illustrate more specifically in the case study.

It ends with a description of the linear optimization

problem’s formulation.

3.1 General Description

Figure 1 depicts the proposed algorithm. The dynamic

nonlinear network model is first simulated using initial

guesses for the distribution control variables, namely the

supply temperature and differential pressure at

production plants. We then extract relevant input data

for the optimization problem and we formulate a linear

relaxation of the optimization problem using the MILP

formalism. The optimizer finally computes a new set of

control variables. Iterations between the dynamic

network model and the MILP optimizer are conducted

until convergence is reached, using a criteria defined by

a threshold on the supply temperature increment.

We then periodically revise the optimization using

the receding time horizon. At time 𝑡, the optimization

procedure is performed for the predictive horizon t+Nt

yet only the first output values for time slot [𝑡: 𝑡 + 𝑟]
are applied to the system. At time t+Pr, the calculation

is repeated for the optimization horizon t+Pr+Nt. This

algorithm is illustrated in Figure 2 in a situation where

the receding horizon Pr is chosen equal to 1.

3.2 The dynamic distribution network model

The proposed algorithm requires the simulation of a

dynamic model representing the distribution network.

Figure 3 depicts the mesh-free layout of the

distribution network considered in the case study. Since

we study our control strategy on a mid-scale DHS, our

dynamic network model is based on a detailed physical

representation of the system by gathering component

models that we previously developed and validated. The

components models are taken from an in-house

Modelica library named DistrictHeating and presented

in (Giraud b), 2015). The heat generators are represented

considering equivalent heat and momentum sources.

Moreover, the model enables the control of supply

temperature and differential pressure at the production

plant level. The distribution pipe model that we use is

based on the method of characteristics, also called node

method in the specific DHS related literature see

(Benonysson, 1991). This model accounts for heat

propagation delays, heat losses, tube thermal inertia and

pressure losses. Concerning the substation

representation, we use an explicit model comprising a

heat exchanger, a regulation valve and an ideal

controller (see (Giraud a), 2015) for details).

3.3 Formulation of the Linear Optimization

Problem

The linear optimization problem is an approximation, or

relaxation, of the complete, strongly nonlinear problem

that would take into account all the physical and

technical constraints of the system. However,

Figure 2: Receding horizon principle

Session 4D: Control Systems I

DOI
10.3384/ecp17132141

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

143

formulating the linear problem using appropriate

assumptions yields usable results in a limited

computating time. This section details the formulation

of the linear problem we adopted, which includes the

MILP variables, the cost function to minimize, the

technical limits of the DHS, the critical curve describing

consumer’s constraints and a linearized model of the

distribution network.

3.3.1 MILP variables

The optimization variables of the problem are identified

by an asterisk and typed in bold to better readability. All

of them are time discretized and considered constant

over one time step.

Continuous variables

 (𝑡) : Represents the heat power produced by each

generator g at the time t.

 (𝑡) : Represents the supply temperature in the

network at the time t.

 𝒕𝒐𝒕
 (𝑡) : Represents the total mass flow rate at the

production plant at the time t.

 (t) : Represents the differential pressure at the

production plant at the time t.

𝑾
 (t) : Represents the pump work at the time t.

Binary variables

 (𝑡) : Represents the on/off status of each

generator, i.e. it is equal to one when generator 𝑔 is on

and to zero otherwise.

 (𝑡) : Identifies the timing of each generator start-

up, i.e. it is equal to one only when
 switches from 0

to 1 and to zero otherwise.

3.3.2 The cost function

The function to be minimized, presented in expression

(1), reflects the integral of operational costs over a finite

time-horizon. The first term in equation (1) represents

the fuel consumption and it is thus proportional to the

𝐶𝑔
 ℎ parameters standing for fuel prices. The second term

accounts for specific costs linked to generator start-up

and they are therefore proportional to fixed monetary

amounts denoted 𝐶𝑔
 𝑓𝑓/

. The last term accounts for

electricity consumption due to pump’s operation. It is

therefore proportional to a time variable electricity

purchase price hereafter denoted 𝐶 𝑙(𝑡). Pumping and

heat generation efficiencies are accounted for

respectively using the 𝜂 and 𝜂𝑔 constant parameters.

∑ (∑(
𝐶𝑔
 ℎ

𝜂𝑔
∙

 (𝑡) ∙ 𝑑𝑡 + 𝐶𝑔
 𝑓𝑓/

𝑔 .. +𝑃

∙
 (𝑡)) +

𝐶 𝑙(𝑡)

𝜂

∙ 𝑾
 (𝑡)

∙ 𝑑𝑡)

(1)

To guarantee the applicability of its outcomes, the

minimization calculation must be performed in the

presence of linear constraints on the optimization

variables. Inequality constraints will be presented first.

In a second step we present the equality constraints

accounting for the mass, energy and momentum balance

equations governing the relations between the operating

variables.

3.3.3 Inequality constraints

Several continuous variable are considered with lower

and upper bounds representing physical limitations of

DHS components as presented in inequalities (2), (3)

and (4). Each parameter noted with a 𝑖𝑛 or 𝑎𝑥

superscript is a known and fixed parameter of the

problem.

 ≤

 (𝑡) ≤
 𝑎𝑥 (2)

 ≤

 (𝑡) ≤
 𝑎𝑥 (3)

Figure 3: Layout of the distribution network case study in Modelica/Dymola.

Optimal Control of District Heating Systems using Dynamic Simulation and Mixed Integer Linear
Programming

144 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132141

 ≤ 𝒕𝒐𝒕

 (𝑡) ≤
 𝑎𝑥 (4)

To limit thermal fatigue, we bound supply

temperature and heat power variations with expressions

of the following type, written for a sample variable 𝒁 :

 𝑍 𝑎𝑥 ≤ 𝒁 (𝑡) 𝒁 (𝑡 1) ≤ 𝑍 𝑎𝑥 (5)

Inequalities (6) are used to confine
 between 𝑄 𝑔

and 𝑄 𝑔
 𝑎𝑥 when generator 𝑔 is started. Otherwise,

is set to 0.

 (𝑡) ∙ 𝑄 𝑔

 ≤
 (𝑡) ≤

 (𝑡) ∙ 𝑄 𝑔
 𝑎𝑥 (6)

Finally, inequalities (7) are considered to define the

timing of each generator start-up, i.e. variable
 .

 (𝑡)

 (𝑡 1) ≤
 (𝑡) ≤

 (𝑡) (7)

3.3.4 Critical conditions to supply heat demand

Supplying the requested heat demand to a DHS

customer is only possible when the local network

temperature exceeds a threshold called the critical

temperature and hereafter denoted
 (𝑡). The present

section firstly discusses how to derive the formula used

to evaluate
 (𝑡) and secondly presents the linear

inequality constraints necessary in the MILP problem to

guarantee that heat demand is fulfilled.

We consider in this study that the substations are of

the indirectly connected type and that they are composed

of one counter-flow heat-exchanger, free of any by-pass,

and a primary control valve used to regulate the building

heating system temperature at a requested level. For

such system, as long as the consumer heat demand 𝑄 is

fulfilled, a static energy balance applied on the primary

side of the heat exchanger yields the mathematical

expression (8) relating 𝑄 , the primary mass flow rate

 , the primary inlet and outlet temperatures (and

) and the fluid specific heat capacity 𝐶𝑝.

 (𝑡) =
𝑄 (𝑡)

𝐶𝑝 ∙ ((𝑡) (𝑡))
 (8)

On the other hand, cannot exceed the value

reached when the primary control valve is fully open.

Such maximal value, denoted
 𝑎𝑥(𝑡), can be

calculated assuming a quadratic dependency between

the local differential pressure of the network, namely

 , and the mass flow rate. This is shown in equation

(9) used for valve modeling. In this equation,
 and

 are nominal values of the primary mass flow rate

and the differential pressure.

 𝑎𝑥(𝑡) =

 ∙ √
 (𝑡)

 (9)

The critical temperature is obtained by assuming that

the demand is fulfilled while equals
 𝑎𝑥. Thus,

combining equations (8) and (9) leads to expression (10)

for the critical temperature:

 (𝑡) = (𝑡) +

𝑄 (𝑡)

𝐶𝑝 ∙
 ∙ √

 (𝑡)

(10)

At this stage, it is worth mentioning that an additional

heat-exchanger model is requested to evaluate formula

(10) since the primary outlet temperature, namely

 (𝑡), has not been determined yet. In our study, the

Logarithmic Mean Temperature Difference method is

used for this purpose.

𝑄

Figure 4: Consumer critical temperature as a function of the differential pressure and heat demand (left) –

Cut-plane for a fixed heat demand (right).

Session 4D: Control Systems I

DOI
10.3384/ecp17132141

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

145

As a consequence, heat demand of consumer 𝑐 will

only be satisfied if local network conditions in terms of

temperature and differential pressure are above critical

values shown in Figure 4, i.e. if inequality (11) is

verified:

 (𝑡) ≥ (𝑡) +
𝑄 (𝑡)

𝐶𝑝 ∙
 ∙ √

 (𝑡)

(11)

This last expression is adapted to our problem using

piecewise linear approximations compatible with the

MILP formalism:

 (𝑡) ≥ 𝑓𝑙𝑖𝑛 𝑙((𝑡)) 𝑙 = 1 … 𝐿 (12)

In expression (12), the 𝑓𝑙𝑖𝑛 𝑙 functions are a set of 𝐿

linear functions approximating the critical temperature

calculated from the right hand-side of expression (11).

Bearing in mind that the algorithm aims at producing

optimal planning for the supply temperature and the

differential pressure, we then consider linear relations

between the variables at the consumers’ sides and those

at the production plant level where the control variables

are applied. The heat propagation equation (13), detailed

in (Benonysson, 1991), is used to express the consumers

inlet temperature as a function of the supply

temperature
 . It considers a propagation time delay

 and heat losses using the ℎ thermal time

constant and the 𝑥 parameter representing the

ambient temperature surrounding the distribution pipes.

 (𝑡) = 𝑥 + (
 (𝑡 (𝑡)) 𝑥)

∙ 𝑒
−

𝜏𝑐 ()
𝜏𝑡ℎ𝑒𝑟𝑚 𝑐

(13)

At this point, one can note that temperature

propagation delay introduces nonlinearities into the

optimization problem. Thus, propagation delays are

not handled directly in the MILP problem but are

provided by the dynamic model presented in section 3.2.

For the differential pressure losses, a linearized

relation, well verified on the Grenoble DHS, is

considered as shown in expression (14):

 (𝑡) =
 (𝑡) 𝐾 ∙ 𝒕𝒐𝒕

 (𝑡) (14)

Expression (12) is then re-written using (13) and (14)

to introduce the
 , 𝒕𝒐𝒕

 and
 optimization

variables. This yields the linear inequality constraints

(15) that are used in our MILP problem to guarantee that

consumer satisfaction is not sacrificed.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

04/11/13 04/12/13 03/01/14 02/02/14 04/03/14

N
o

rm
al

iz
ed

 h
ea

t
d

em
an

d
 (

-)

Time (day)

-10

-5

0

5

10

15

20E
x

te
rn

at
l

te
m

p
er

at
u

re
 (
 C

)

Figure 5: Evolutions over the heating season of the normalized heat demand (top) and external temperature

(bottom).

Optimal Control of District Heating Systems using Dynamic Simulation and Mixed Integer Linear
Programming

146 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132141

 𝑥 + (
 (𝑡 (𝑡)) 𝑥) ∙ 𝑒

−
𝜏𝑐 ()

𝜏𝑡ℎ𝑒𝑟𝑚 𝑐

≥ 𝑓𝑙𝑖𝑛 𝑙 (
 (𝑡) 𝐾

∙ 𝒕𝒐𝒕
 (𝑡)) 𝑙 = 1 … 𝐿

(15)

3.3.5 The linearized distribution network model

The relations between the optimization variables

accounting for distribution network mass, momentum

and energy conservation laws are considered thanks to a

set of linearized equality constraints that are presented

in this section.

First, the pumping work 𝑾
 appearing in the cost

function (1) is expressed linearly using a first order

Taylor expansion limited to differential pressure and

mass flow rate variations. The fluid density 𝜌 are

therefore assumed constant, which leads to expression

(16):

𝑾
 (𝑡)

=
 (𝑡) ∙

 (𝑡) + 𝒕𝒐𝒕
 (𝑡) ∙ (𝑡)

𝜌

 (𝑡) ∙ (𝑡)

𝜌

(16)

In this last expression, (𝑡), (𝑡) and 𝜂

are provided by the dynamic simulation model

described in section 3.2.

Second, a linearized version of the network energy

balance is obtained. This point is crucial if one wants to

benefit from the possibility to store heat directly in the

distribution network. By following the derivation

presented in (Giraud, 2016), the subsequent expression

can be obtained:

∑
 (𝑡)

𝑔

=∑𝑄 (𝑡)

∙ [1 + 𝑭
 (𝑡)]

 𝑾
 (𝑡)

(17)

In expression (17), 𝑭
 (𝑡) is a modulation term that

depends on past and present values of supply

temperature.

3.3.6 Summary

Our MILP DHS production and distribution optimizer is

composed of a linear cost function (see equation (1))

subject to linear equality (see equations (16) and (17))

and inequality (see equations (2)-(7), (15)) constraints

representing the physical conservation laws and the

technical limitations of the DHS.

4 The case study

The operation of our advanced controller has been

evaluated by simulation means relying on a

representative case-study. This section explains how the

case-study has been designed and it details the models

composing it.

The CCIAG company and our research group are

currently involved in a joint research program devoted

to the development of advanced decision

support/making tools for operational management of

DHS. CCIAG operates the second largest DHS in

France in the city of Grenoble. This system yearly

delivers 900 GWh of heat using 225 km of distribution

pipes and liquid pressurized water as heat carrier fluid.

This system is actually managed using variable supply

temperatures and differential pressures respectively

ranging from 110 °C to 180 °C and 5 to 15 bars. These

features are similar to systems in other French and

European cities (e.g. Metz, Chambéry, Vienna,

Warsaw…). Therefore, we have built the case-study

used in the present paper upon the Grenoble HTDH

system. However, in order to limit the modelling work

during the first stages of our research project we

considered only a portion of the Grenoble distribution

network.

On the production side, we have considered 15 heat

production units as it is representative of the installed

capacity in Grenoble. All the 15 heat production units

form a unique production plant represented in the

dynamic model by equivalent heat and momentum

sources. The sample network serves 26 heat consumers

modelled using load profiles taken from an historical

database (15 min sampling period) provided by CCIAG.

The substation models are parametrized using the

dimensioning rules applied on the Grenoble DHS.

To increase the relevance of the model, the main

parameters used to model the production units in the

MILP model have been proposed by CCIAG, our

industrial partner in the project. For confidentiality

purposes, the fuel prices denoted 𝐶𝑔
 ℎ, the cost of a

generator start up denoted 𝐶𝑔
 𝑓𝑓/

 and the daily

electricity price profile used for pump operation,

denoted 𝐶 𝑙 are not reported here.

4.1 Simulation settings

The simulation period covers the full 2013/2014 French

heating season, i.e. from November 2013 to mid-April

2014. The heat demand normalized by the installed heat

power capacity (designed for an external temperature of

-11 °C) and the external temperature over that period are

shown in Figure 5. Outside this period, low cost heat

from the waste incineration unit is produced in excess of

demand thereby limiting the usefulness of advanced

control strategy. Moreover, the heating season

represents over 80 % of annual production costs.

The simulations were conducted with an elementary

time step of 15 minutes. The optimization time-horizon
is set to 24 hours and the receding horizon is fixed at 6

hours. For control in real conditions, affected by many

sources of uncertainty (e.g. load prediction errors …),

Session 4D: Control Systems I

DOI
10.3384/ecp17132141

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

147

the receding horizon would be chosen equal to the 15

min elementary time step to increase robustness and

stability. A complementary study on this topic is

currently under investigation.

A 1 K threshold on the supply temperature increment

is used to decide that convergence between the dynamic

model and the MILP problem is reached. We set the

relative MIP gap tolerance to 0.03. That instructs

CPLEX to stop as soon as it has found a feasible integer

solution proved to be within three percent of optimal.

This tolerance is less than the error due to the

uncertainties of the predictions. There is no relaxation in

our resolution method since no approximation scheme

is used, so we always find a solution within 3% from the

optimal which is a global minima. It could be interesting

to compute a relaxation of the MIP and compare the

exact and the approximate resolutions, but the good

performance of our model in terms of computational

time makes the exact resolution compatible with the on-

line application of our controller on a real DHS.

4.2 Implementation

The overall algorithm is programmed using an in-house

optimal control framework named PEGASE. PEGASE

is based on the FBSF platform developed by the L3S

company (L3S, 2016). FBSF enables multi-models

simulation based on the FMI 2.0 co-simulation standard.

Figure 6 illustrates the architecture of the PEGASE

optimal control framework. The lower layer is the FBSF

simulation platform, which provides the basic services

for running multi-model simulations. The middle layer

is the optimal control layer, which performs the optimal

control algorithm presented in the previous sections.

The upper layer contains the dynamic simulation models

used by the optimal control layer, as well as other

prediction models and generic OPC connectivity

services.

For the application described in this paper, we use

only one dynamic simulation model, which consists of

the Modelica model of the distribution network. This

model is converted into a 2.0 co-simulation FMU by

DYMOLA 2017. For other applications, several

dynamic simulation models can be used together, either

in the form of FMU or with FBSF-specific C++ code.

Within the optimal control layer, we express the
MILP optimization problem using an in-house C++

code and solve it relying on CPLEX (IBM, 2009).

CPLEX can easily and quickly solve numerous

problems with high combinatory owing to

parallelization and application of the branch and bound

method to reduce the search space (Brah, 1991). As a

result, the computational time is generally lower than

with other MILP solvers.

5 Results and Discussion

The simulation results obtained over the heating season

are presented and discussed in this section. The

numerical performance of the controller are also

described. The current limitations of the proposed

controller are finally presented at the end of this section.

For evaluation purposes, we compared the

performance of our advanced controller to a more

classical controller based on expert laws. This controller

is still a popular method used in many existing systems

owing to its simplicity and robustness. The standard

controller is based on the piling method for the

production planning. On the distribution side, the supply

temperature is determined using a static heating curve

while the differential pressure is maximized. To limit a

chattering effect on the on/off status of heat production

units, a hysteresis time-dependence is considered in the

determination of generators starts and stops.

As displayed in Figure 7, results point that our

method significantly reduces production costs both with

and without the consideration of uncertainties. The

production cost’s decrease is explained in the following

section.

Table 1. Computational time and iterations for a 24 hours

predictive horizon.

Computational time Number of iterations
Mean Max Mean Max

37.8 s 273.7 s 3 29

On the production side, the optimal controller often

keeps several peak generators at minimal load to
anticipate future peak demands and avoid start-up costs

when the produced heat is low (particularly during

nights). As a consequence, the number of generator

Figure 6: Normalized production costs over the

2013/2014 heating season for a standard (1) and an

optimal controller (2).

Figure 7: Architecture of the PEGASE

optimal control framework

Optimal Control of District Heating Systems using Dynamic Simulation and Mixed Integer Linear
Programming

148 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132141

startups over the season is significantly reduced between

the expert law control and the optimal controller.

On the distribution side, due to the optimization of

 and , results are very specific for the optimal

controller. On the one hand, the supply temperature is

often minimized and the differential pressure is

maximized. As a result, the heat losses are reduced and

the pumping work is increased for a global energy

consumption reduction. This is due to the low pumping

costs compared to the heat production costs encountered

in this case study. On the other hand, our optimal

controller is able to use the storage capacity of the

network to anticipate future peak demands thereby

increasing the use of base generators and avoiding the

use of additional and expensive heat generators. To

benefit from the network storage capacity, our control

strategy increases the supply temperature prior to a peak

demand. Accordingly, differential pressure is decreased

without impacting the supplied heat demand. As a

consequence of using the network storage capacity, the

number of generators’ startups is further decreased.

Table 1 presents the mean and maximal values of

computational costs and iterations for a 24 hour

predictive horizon. Using a 15 min time step, the

optimization problem contains 5430 variables including

2460 binary variables and 5530 constraints. The mean

and maximal computational time are respectively less

than 40 s and about 4 minutes. These figures are

compatible with the on-line application of our controller

on a real DHS.

The controller, as described in the present paper, is

currently restricted to DHS comprising one single

heating plant feeding a non-meshed network.

Application of the method to a multiple supply points

DHS and a meshed network is the subject of ongoing

work. Another point worth mentioning is that the

number of constraints of the MILP problem grows

linearly with respect to the number of consumers (see

inequality (15)). Thus, the application of the proposed

method to large-scale DHS impose to consider a set of

critical consumers in the network. As suggested in

(Nielsen, 2005), such consumers may be selected so that

if the - (see inequality (15)) requirements for them

are satisfied then the requirements for all consumers are

satisfied. It has been verified that the current CPLEX

MILP solver could handle problems comprising a set of

several hundreds of critical consumers. This testing can

be considered positive with respect to the scalability of

the proposed controller.

6 Conclusions

In this paper, we present a new control method for DHS

management which simultaneously optimizes the

production and the distribution variables. For each

anticipation horizon, an optimized planning for the

status and power of each generator as well as for the

Figure 8: Snapshot of a dynamic simulation of the Grenoble DHS within the PEGASE

simulation framework.

Session 4D: Control Systems I

DOI
10.3384/ecp17132141

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

149

supply temperature and the differential pressure is

proposed. Based on the heat demand prediction of each

consumer or group of consumers, our controller

determines autonomously the combination of supply

temperature and differential pressure necessary to

supply the heat demand. The method is based on an

algorithm minimizing the production costs and

respecting a family of constraints representing the

conservation laws and the physical limitations of the

generators and the distribution network. We consider

the nonlinearities of the distribution network thanks to

an iterative method between the dynamic network

simulation and the optimizer. Once implemented on a

DHS, this generic control strategy will autonomously

select the best compromise among the control variables

to minimize the production costs.

We also compared the proposed method to a more

classical controller based on expert law. The

comparison is based on the simulation over a heating

season of a virtual DHS representative of the Grenoble

case. Results show that our global optimization method

improves the seasonal production costs by more than 8

% compared to empirical methods. The proposed

controller decreases the production costs by taking

advantage of the network storage capacity. The use of

expensive peak heat generators is then minimized

whereas base heat generators operation is maximized.

The distribution network dynamic model used in the

present study was built by gathering components taken

from the Modelica DistrictHeating modelling library.

However, due to efficiency issues well described in

(Casella, 2015), such modelling approach is currently

not suitable for the representation of large-scale DHS

comprising thousands of consumers and encompassing

several hundreds of kilometers of distribution pipes. For

such systems, we developed a dedicated C++ simulation

code, not detailed in the present paper, and applied it to

the Grenoble DHS (see Figure 8). This last development

paved the way to the application and testing of our

optimal controller on the 400 MWth Grenoble DHS

during the 2016-2017 heating season.

Acknowledgements

The authors sincerely wish to thank Elise Le Goff,

Nicolas Giraud and Philippe Clolot from CCIAG, our

industrial partner in the project, for the many stimulating

exchanges and for providing real-life data from the

Grenoble network. We would also like to acknowledge

the financial support of CCIAG for the joint research

program and of ADEME for the PhD of Loïc Giraud.

References

Akesson, J., Faber R., Laird C.D., Prolb K. Tummescheit H.,

Velut S., Zhu Y., ”Models of a post-combustion absorption

unit for simulation, optimization and non-linear model

predictive control schemes”, Proc. 8th Modelica

Conference, Dresden, Germany, March 20-22, 2011

Brah S. A. and Hunsucker J. L., “Branch and bound algorithm

for the flow shop with multiple processors,” Eur. J. Oper.

Res., no. 51, pp. 88–89, 1991.

Casella F., “Simulation of Large-Scale Models in Modelica:

State of the Art and Future Perspectives”, Proc. 11th

International Modelica Conf., Sept 21-23 2015, Versailles,

France

Donald C. Augustin, Mark S. Fineberg, Bruce B. Johnson,

Robert N. Linebarger, F. John Sansom, and Jon C. Strauss.

The SCi Continuous System Simulation Language (CSSL).

Simulation, No 9, pp. 281–303, 1967.

Benonysson A., Bøhm B., and Ravn H.F., “Operational

optimization in a district heating,” Energy Convers.

Manag., vol. 36, no. 5, pp. 297–314, 1995

Eriksson H., “Short Term Operation of District Heating

Systems: An Application of Mathematical Programming”

Doctoral thesis, Chalmers University of Technology, 1994.

Fang T. and Lahdelma R., “Genetic optimization of multi-

plant heat production in district heating networks,” Appl.

Energy, vol. 159, pp. 610–619, Dec. 2015.

Giraud L., Bavière R., Paulus C., Vallée M., and Robin J.-F.,

“Dynamic Modelling, Experimental Validation and

Simulation of a Virtual District Heating Network,” Proc.

28th Int. Conf. on Efficiency, Cost, Optimization,

Simulation and Environmental Impact of Energy Systems

(ECOS), Pau, France, 2015.

Giraud L., Bavière R., Vallée M., Paulus C. “Presentation,

Validation and Application of the DistrictHeating

Modelica library”, Proc. 11th International Modelica Conf.,

Sept 21-23 2015, Versailles, France doi

10.3384/ecp1511879

Giraud L., “Modélisation Dynamique et Gestion Avancée de

Réseaux de Chaleur”, Doctoral Thesis, Université Grenoble

Alpes, 2016.

IBM, User’s Manual for CPLEX - IBM ILOG CPLEX v12.1.

International Busines Machines Corporation, 2009.

Lund H., Werner S., Wiltshire R., Svendsen S., Thorsen J. E.,

Hvelplund F., and Mathiesen B.V., “4th Generation District

Heating (4GDH),” Energy, vol. 68, pp. 1–11, Apr. 2014.

Nielsen T. S. and Madsen H., “Control of Supply Temperature

in District Heating Systems with Multiple Supply Points,”

presented at the 18th Int. Conf. on Efficiency, cost,

Optimization, Simulation, and Environmental Impact of

Energy Systems (ECOS), Trondheim, Norway, 2005, vol.

2, pp. 1071–1079.

Runvik H., Larsson P.-O., Velut S., Funquist J., Bohlin M.,

Nilsson A., Modarrez Razavi S., “Production Planning for

Dusributed District Heating Networks with JModelica.org”,

Proc. 11th International Modelica Conf., Sept 21-23 2015,

Versailles, France doi 10.3384/ecp15118217

Sandou G., “Modélisation, Optimisation et commande de

parcs de production multi-énergies complexes,” Doctoral

thesis, Université Paris XI Orsay, Paris, France, 2006.

SNCU, “Enquête nationale sur les réseaux de chaleur et de

froid - Restitution des statistiques portant sur l’année 2011,”

2013

https://www.l-3s.fr/, accessed in december 2016

Optimal Control of District Heating Systems using Dynamic Simulation and Mixed Integer Linear
Programming

150 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132141

Rapid development of an
aircraft cabin temperature regulation concept

Alexander Pollok1,2 Daniel Bender1 Ines Kerling1 Dirk Zimmer1

1Institute of System Dynamics and Control, DLR German Aerospace Center, Wessling, Germany,
{alexander.pollok,daniel.bender,ines.kerling,dirk.zimmer}@dlr.de

2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milan, Italy

Abstract
The air in aircraft cabins is controlled for pressure, tem-
perature and humidity. The number of temperature zones
is generally kept low, for reasons of necessary ducting
space. We devise a new ducting concept, which enables
a large number of temperature zones. Controllability of
the system is however predicted to be a potential obstacle.
For a quick resolution of this question, a Modelica model
is created. Model creation is focused on a short develop-
ment time as well as usefulness for controller synthesis. A
workflow is presented that enables a quick iteration time
between controller synthesis in Matlab and controller test-
ing in a Modelica environment. Finally, the impact of this
new concept on the energy consumption of the air genera-
tion unit is discussed.
Keywords: Modelica, energy, exergy, control, modelling

1 Introduction
In modern passenger aircraft, temperature control is re-
alized using a small number of temperature zones. For
instance, the Airbus A320 features two fixed-size temper-
ature control zones for the cabin, plus one additional zone
for the flight deck. A typical cabin temperature regula-
tion system is illustrated in Figure 1. Fresh air is delivered
by the air conditioning packs and ducted into the mixing
chamber (M). There it is mixed with filtered and recircu-
lated air from the cabin underfloor volume. It is split up
into two mass flows. For each mass flow, very hot (around
200 °Celcius) trim air is added to increase the temperature
to the desired value. The air is then ducted into the cabin
volume. Displaced air is ducted into the underfloor, where
some of it is recirculated, the remaining air is vented over-
board.

Airlines like to customize their aircrafts with variations
in travel classes, seat configurations, and availability of
onboard entertainment systems. Generally, the demarca-
tions of travel classes do not conform to the borders of
cabin temperature zones. Imagine an expensive and there-
fore sparsely populated first class, followed by the busi-
ness class, densely packed with business people producing
hot air. This can lead to discrepancies with regard to the
heat load per cabin length, which cannot be compensated
by the control system, if they belong to the same tempera-

M

Pack 1 Pack 2 trim air

cabin

cargo compartment

recirc.

Figure 1. Conventional cabin temperature regulation system

ture zone.
Some ideas have been proposed to remedy this prob-

lem. In (Jacobs and De Gids, 2006) a concept is presented,
where each passenger receives his own air outlet and in-
dividual temperature zone. However, the resulting size of
the necessary ducting system within the crowded installa-
tion space of a modern aircraft is not considered. Similar
concepts are mentioned in (Gao and Niu, 2008) or (Zhang
et al., 2012), but the focus of the work is not on the control
or feasibility side, but on air contamination reduction.

We propose an alternative cabin temperature regulation
concept, which is illustrated in Figure 2. This concept is
based around two main ducts, each one spanning the com-
plete cabin length. One of them ducts air at a relatively
cold temperature, the other one at a relatively hot temper-
ature. At each cabin temperature zone, the air from both
pipes is locally mixed using a small actuator, then ducted
into the cabin.

This concept realises a variable number of temperature
control zones. For a large number of zones, the amount of
necessary ducting space and weight is lower than that of
a conventional architecture, as a simple spreadsheet cal-
culation for a typical single aisle aircraft shows, see Fig-
ure 3. Main reason for this is that only 2 pipes of cabin
length L have to be fitted, instead of N pipes of average
length L/2. System weight and volume even goes down

DOI
10.3384/ecp17132151

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

151

C H

Pack 1 Pack 2

cabin

cargo compartment

recirc.

Figure 2. Proposed cabin temperature regulation concept

for a larger number of temperature zones, as less distri-
bution ductwork between control valves and riser ducts is
needed.

2 4 6 8 10 12 14 16
number of temperature zones

22

24

26

28

30

32

34

d
u
ct

in
g
 v

o
lu

m
e
 [
m

3
]

conventional

proposed

2 4 6 8 10 12 14 16
number of temperature zones

125

130

135

140

145

150

155

160

165

170

d
u
ct

in
g
 w

e
ig

h
t

[k
g]

conventional

proposed

Figure 3. comparison of total ducting weight and ducting vol-
ume for conventional and proposed concept

This is bought at the expense of a potentially much
more involved control system. Pneumatic and thermal
interactions between temperature zones may be strong
enough to prohibit the use of decentralized control. Also,
the energy offtake of such a concept compared to a con-
ventional architecture is unclear.

Given the high cost of testing facilities, a model-based

approach is needed for an early design evaluation. The
corresponding modeling environment must thus be able to
cover all relevant aspects of the proposed concept. Beside
the physical processes belonging to the pneumatic and
thermal domain, this also contains the control design and
of the temperature regulation system. Modelica is a well-
established choice for the physical modelling (Sielemann,
2012; Schlabe and Zimmer, 2012) but provides also suf-
ficient to represent and evaluate the control models (Baur
et al., 2009; Bonvini and Leva, 2012). The control design
can then be achived in interaction with Matlab.

The goal of this paper is to show how Modelica can be
used for accelerated feasibility studies using the example
of a new cabin temperature regulation concept. It is struc-
tured as follows: Section 2 presents the design require-
ments for a suitable model as well as the taken approach.
Section 3 shows the controllability of the temperature reg-
ulation concept, based on the developed model. Section 4
treats energy considerations of the proposed architecture.
Interesting points that came up during the development of
the project are discussed in Section 5. Section 6 concludes
the paper.

2 Modelling
A good simulation model is the basis for all subsequent
development steps. The following requirements hold in
the context of this work (from most to least important):

Development time The time needed to plan, develop,
and test the model shall be short.

Unity If possible, all requirements shall be met in a uni-
fied model. Having several versions of a model often
results in a significant increase in development time
as well as project complexity.

Linearity Small perturbations around the design point
shall result in linear model behavior. Model inputs
that are connected to saturating actuators shall be
scaled symetrically around zero.

Accuracy The simulation model shall include all major
physical effects. Deviations from reality should be
small enough to be irrelevant for the subsequent de-
velopment steps.

Robustness The model should predict accurate transient
responses for boundary conditions that are far from
the design conditions.

Simulation Speed Simulation of the model shall be fast.
Numerical Stiffness shall be avoided if possible.

Size Total size of the model shall be small. This includes
several metrics like the number of variables, number
of states and lines of code. A small model decreases
development time and increases comprehensibility.

Rapid development of an aircraft cabin temperature regulation concept

152 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132151

These requirements partially contradict each other.
Some balancing can be done using multi-objective opti-
mization like shown in (Pollok and Bender, 2014), but ul-
timately, some arbitrariness remains. We decided to keep
the model as simple as possible, with the exception of two
physical effects that posed challenges for the control de-
sign: the first effect is the thermal interaction of air be-
tween the different cabin zones. The second effect is the
pneumatic interaction of air in the asymetric ducting sys-
tem. The complete model structure is shown in Figure 4
and presented in the following.

Figure 4. Top level view of temperature regulation model

Six subsystems were created for air conditioning packs,
mixing chambers, ducting system, cabin, heat sources and
recirculation system. These subsystems were in turn com-
posed from simple components like flow resistances or
volume elements. The model structure was limited to
those three layers of system, subsystem and components.
Inheritance was avoided, based on the results as described
in (Pollok and Klöckner, 2016). The Modelica Standard
Library (Modelica-Association, 2008) was used as much
as possible to save additional modelling time.

All subsystems included an integer parameter n, de-
noting the number of discretized volume elements in the
cabin. In this way, the scalability of the concept can be
tested later without additional modelling effort.

Of those subsystems, ducting and cabin are especially
interesting from a modelling perspective:

2.1 Ducting
As illustrated in Figure 2, air is ducted from the mixing
chambers into the cabin via a network of ducts. This
network is asymetrical and interactive with regard to the
cabin temperature zones. If a large amount of cold air
is needed for the center temperature zones, the effective
hydraulic resistance from the cold mixing chamber to the
outer temperature zones increases. For controller synthe-

sis and concept validation, this effect has to be modelled.
This was done using vectorized flow elements together

with customized connect-statements in a short amount of
code and development time. The implementation is shown
in Figure 5. Not shown are the parameters for the indi-
vidual air resistance components. These are also depen-
dent on the discretization parameter, since for example the
length per pipe is not constant.

Figure 5. ducting subsystem model

2.2 Cabin
The flow configuration inside the aircraft cabin is complex
and can only accurately be determined by experiments or
CFD-calculations. However, for the evaluation of the pre-
sented concept, a low-order approximation suffices. The
cabin is divided lengthwise into n volume elements. These
elements are directly connected to enforce pressure equal-
ization. Fluid volume elements can directly be connected
in Modelica, at the cost of nonlinear systems of equations.
This cost is however preferable to the alternative, where
the very small flow resistances between cabin volumes
leads to a very stiff simulation model. If no equalization
mass flows occur, there is still some amount of thermal
equalization caused by diffusion. This is modelled using
thermal resistance elements, coupled between the volume
elements. They were parameterized according to empiri-
cal experience.

Again, the subsystem was realized using a combina-
tion of vectorized elements and customized connect state-
ments. The implementation is shown in Figure 6.

3 Control
A sufficient way to demonstrate controllability of a system
is to find a stabilizing controller. For a demonstration of

Session 4D: Control Systems I

DOI
10.3384/ecp17132151

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

153

Figure 6. cabin subsystem model

robust performance, the response of the controlled system
with regard to noise and nonlinearities can be shown.

We used linear quadratic Gaussian (LQG) control to
find an optimal controller for the problem. The method is
simple and often satisfactory in the development of mul-
tivariate, or MIMO-controllers for linear time-invariant
(LTI)-systems. LQG controllers consist of a linear
quadratic estimator (LQE, also known as Kalman filter) to
estimate non-measured states, and a linear quadratic reg-
ulator (LQR), essentially an optimal state regulator. The
regulator uses the estimated states to compute a control
signal, the estimator uses the measured states as well as
the control signal to estimate the states. This is illustrated
in Figure 7. Both components can be designed indepen-
dently, this will not compromise stability of the controlled
system, but it can affect stability margins (for reference,
see the very interesting abstract of Doyle (1972)), so ro-
bustness properties have to be verified after controller syn-
thesis.

physical system
(plant)

estimator
(LQE)

controller
(LQR)

control
signal

measure-
ments target

estimated
plant states

Figure 7. Structure of an LQG regulator

For LQG-synthesis, a linearized model is necessary. We
used the linear systems library as presented in (Baur et al.,
2009) as implemented in Dymola 2016 to linearize the
model around the steady state. The model was instanti-
ated with a pack temperature spread of 20Kelvins and 10
cabin temperature zones. Before linearization, the model

was simulated for 1000s to come close to the steady state
solution. Keep in mind that all model inputs are set to zero
at linearization. Therefore, the valid range for all model
inputs has to include zero and some buffer in both direc-
tions. This can be a problem for instance when a model
input is connected to a valve opening with a valid range of
0 to 1. In this work, we scaled all such inputs to a valid
range of -1 to +1. All other in- and outputs were scaled
according to typical orders of magnitude. The linearized
system was exported as a .mat-file using the writeMatrix-
command.

Computation of the LQG controller was done in Mat-
lab, based on the script as described in (Skogestad and
Postlethwaite, 2007, p. 348). This formulation adds in-
tegrators to the plant outputs, ensuring zero steady state
error for the controlled system. The model was reduced
from 32 to 23 states, based on the results of the Hankel sin-
gular value decomposition as presented in Figure 8. Also,
the 1-dof1 variant was used, since setpoint changes are not
a major concern in climate control systems.

Figure 8. Hankel singular value decomposition of temperature
control system

A Matlab-script was developed to automatically gener-
ate Modelica-code of the controller. This script is shown
in Listings 1 and 2. In this way, a candidate controller can
be tested in a Modelica environment in a few seconds.

Listing 2. Matlab code for the generation of Modelica controller
code

function [] = fun_changeMatrixFormat(M)
% Changes the Matrix to a format like
% it is needed for an Matlab- Input
% f.e. M = 1 0

1In a 1-dof (one degree of freedom controller, setpoint changes and
disturbances are handled equally. In a 2-dof controller, setpoint changes
can be handled far more aggressively, as the setpoint is not part of the
feedback-loop and therefore has no impact on system stability.

Rapid development of an aircraft cabin temperature regulation concept

154 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132151

Listing 1. Matlab code for the generation of Modelica controller code

function [] = fun_dymola(sys)
%input: statespace object sys, representing combined estimator and controller
sys_x = size(sys.a,1); % = m_A, n_A, m_B, n_C
sys_y = size(sys.d,1); % = m_C, m_D
sys_u = size(sys.d,2); % = n_B, n_D

% declarations
fprintf('\n\nmodel Controller "1-DOF LQG controller"\n\n'); %Name ""
fprintf('// import \n');
fprintf('import Modelica.Blocks; \n\n');
fprintf('// parameters \n'); %A,B,C,D...
fprintf('parameter Real A_controller[%.0f, %.0f] = ', sys_x, sys_x);
fun_changeMatrixFormat(sys.a);
fprintf('; \n');
fprintf('parameter Real B_controller[%.0f, %.0f] = ', sys_x, sys_u);
fun_changeMatrixFormat(sys.b);
fprintf('; \n');
fprintf('parameter Real C_controller[%.0f, %.0f] = ', sys_y, sys_x);
fun_changeMatrixFormat(sys.c);
fprintf('; \n');
fprintf('parameter Real D_controller[%.0f, %.0f] = ', sys_y, sys_u);
fun_changeMatrixFormat(sys.d);
fprintf('; \n');

% variables
fprintf('// variables \n');
% blocks
fprintf('Blocks.Continuous.StateSpace statespace_controller');
fprintf('(A = A_controller, B = B_controller, C = C_controller, D = D_controller) \n');
fprintf('annotation (Placement(transformation(extent={{36,-2},\n{56,18}})));\n');
fprintf('Blocks.Math.Feedback sum_controller [%0.i] \n', sys_u);
fprintf('annotation (Placement(transformation(extent={{-36,-2},\n{-16,18}})));\n')
% inputs/outputs
fprintf('Blocks.Interfaces.RealInput command[%0.f] "command signal" \n',sys_u);
fprintf('annotation (Placement(transformation(extent={{-120,40},{-80,80}})));\n');
fprintf('Blocks.Interfaces.RealInput feedbacksignal[%0.f] "sensor/feedback signal" \n',sys_u);
fprintf('annotation (Placement(transformation(extent={{-120,-78},{-80,-38}})));\n');
fprintf('Blocks.Interfaces.RealOutput outputsignal[%0.f] "driver/output signal" \n', sys_y);
fprintf('annotation (Placement(transformation(extent={{100,-10},{120,10}})));\n\n');

% equations
fprintf('// equations \n');
fprintf('equation \n');

% connecting the blocks and in/outputs
fprintf('for i in 1:%.0i loop\n', sys_y);
fprintf('connect(statespace_controller.y[i], outputsignal[i]) \n');
fprintf('annotation (Line(\npoints={{57,8},{110,8}},\ncolor={0,0,127}));\n');
fprintf('end for; \n\n');
fprintf('for i in 1:%.0i loop\n', sys_u);
fprintf('connect(statespace_controller.u[i], sum_controller[i].y) \n');
fprintf('annotation (Line(\npoints={{34,8},{-17,8}},\ncolor={0,0,127}));\n');
fprintf('connect(command[i], sum_controller[i].u1) \n');
fprintf('annotation (Line(\npoints={{-100,52},{-64,52},{-64,8},{-34,8}},\ncolor={0,0,127}));\n'

);
fprintf('connect(feedbacksignal[i], sum_controller[i].u2) \n');
fprintf('annotation (Line(\npoints={{-100,-58},{-26,-58},{-26,0}},\ncolor={0,0,127}));\n');
fprintf('end for; \n\n');

% creating symbol for the block
fprintf('annotation (...)');

fprintf('end Controller; \n'); % Name;

Session 4D: Control Systems I

DOI
10.3384/ecp17132151

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

155

% 0 1 to [1, 0; 0, 1]
% for as much information as possible
format long;
mnbigness = size(M);
countm = 1;
countn = 1;
fprintf('[');
while (countm <= mnbigness(1))

while(countn <= mnbigness(2))
if (countn < mnbigness(2))

fprintf('%f, ', M(countm, countn
));

else
if (countm < mnbigness(1))

fprintf('%f; ', M(countm,
countn));

else
fprintf('%f', M(countm,

countn));
end

end
countn = countn+1;

end
countn = 1;
countm = countm+1;

end
fprintf(']');
end

On the first try, equal disturbance and measurement
noise was assumed, and a unity matrix was used for the
input weight matrix R. The state weight matrix Q was cal-
culated so that the projected plant output as well as the
artificial integrator vector were also weighted with a unity
matrix, using the Matlab code shown in Listing 3.

Listing 3. Matlab code for projection of the plant outputs to the
state vector

R=weight_input*eye(n_u);
Q=blkdiag(weight_output.*transpose(C)*
eye(n_y)*C,weight_integrator*eye(n_y));

Since the actual system contains hard nonlinearities
such as actuator saturation, compliance to those limits
has to be tested using simulations of the controlled sys-
tem. These simulations showed that the resulting con-
troller outputs were exceeding the actuator limits. The
variable weight-output was increased to 10.000, resulting
in improved behavior2. Note that no actual optimization
with regard to some performance criterion took place. The
response of the controlled system to target temperature
steps (from 20 to 21 °Celcius) on each temperature zone is
shown in Figure 9. Overshoot3 is generally low, but tem-
peratures are still somewhat affected by temperature steps
on neighboring zones. Rise time is at 68 to 102 seconds
(M4: 85s, SD: 11.3s).

Robustness with regard to sensor noise was validated
using the Noise library as presented by Klöckner et al.

2Using LQR/LQG, it is quite typical that small changes in controller
behavior necessitate large changes in the weighting matrices.

3Overshoot describes the peak of the response to a step input, rise
time describes the time it takes the output to increase from 0.1 to 0.9.

4M denotes the mean value, SD denotes the standard deviation.

(2014). The qualitative behavior of the system remains
unchanged. An illustration of the overall workflow can be
seen in Figure 10.

4 Efficiency
The concept presented within this work requires a cold (C)
and a hot (H) air reservoir (see Figure 2). Each of these
reservoirs is supplied by a separate air conditioning pack.
Conventional architectures duct the cooled air from the air
packs to a common mixer unit (see Figure 1. The packs
therefore condition the fresh bleed air to the same pres-
sure and temperature. The proposed concept now claims
an asymmetrical air conditioning in terms of temperature.
The air pack would then run in different conditions com-
pared to conventional in-service air packs. About 2-3% of
the whole energy consumption of a conventional civil air-
craft applies to the ECS (Bender, 2016). Thus an energy
analysis of the deviating pack operation is necessary.

4.1 System Description
The key part of the ECS is the air generation unit (also
called the pack). The pack conditions the air flow in terms
of temperature, pressure and humidity. Usually there are
two packs installed in an aircraft. Conventional systems
use engine bleed air as the power source. The bleed air is
drawn off from the compressor stages upstream the com-
bustion chamber. Provided at high temperature (around
220 °C) and high pressure (around 2.5bar), the air must be
conditioned before it is distributed into the cabin. First the
air flow is lead to the air pack where it is cooled down and
dehumidified. It passes several heat exchangers, a com-
pressor, a turbine and valves before the flow has reached
the right condition to be lead to the mixing unit. The ram
air enters the pack from the ambient and passes a water
injector, two heat exchangers and a fan. All of them are
installed in the ram air channel. The ram air is used as a
heat sink.

Figure 11 illustrates the Modelica diagram layer
schematic of the air generation unit that is used for the
energy analysis in this work. It includes a conventional
three-wheel bootstrap-cycle, driven by bleed-air. Three
different flows are considered: The bleed air arises from
the compressor stage at the engine, passing at first the
pneumatic distribution device before it enters the ozone
converter. Inside the primary heat exchanger (PHX) the
hot air is cooled down against the ram air flow. Before en-
tering the compressor stage (CMP), a part of the air flow
is separated and bypassed through the temperature con-
trol valve (TCV). Downstream the compressor stage the
heated and compressed air is cooled down a second time
inside the main heat exchanger (MHX) against the cold
ram air flow. Here the most intense heat exchange takes
place due to large temperature differences. The air flow
now enters the hot side of the reheater and is cooled down
again before its temperature is further decreased inside the
condenser in order to dehumidify the air flow and prevent
downstream conditions from reaching the saturation point.

Rapid development of an aircraft cabin temperature regulation concept

156 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132151

Figure 9. Response of controlled system to target temperature steps

Create
System Model

Linearize
Model

Controller
Synthesis

Modelica
environment

Computation
environment

Export as
.mat-File

Modelica Code
Generation

Controller
Validation

Figure 10. Workflow for controller synthesis

This configuration of the three wheel bootstrap cycle uses
the concept of high pressure water separation. In case of
condensation, the free water is separated in the water ex-
tractor and carried to the injector located at the beginning
of the ram air channel. The dehumidified air flow now
passes the reheater a second time, this time at the cold

Figure 11. Diagram layer of air pack system model with three
wheel bootstrap cycle

side where it is reheated against its upstream air flow. In-
side the turbine the air is expanded to a sufficient pres-
sure level. Concurrently the temperature decreases sig-
nificantly below ambient conditions. At this point the air
reaches its coldest condition. Meeting the separated air
from the temperature control valve, the flow gains a higher

Session 4D: Control Systems I

DOI
10.3384/ecp17132151

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

157

temperature und finally is heated up inside the condenser
again before it leaves the air pack to the mixing unit.

The second flow occurring is the ram air flow. It func-
tions as a heat sink and enters the aircraft through inlets
outside the aircraft’s fuselage. The amount of air flow can
be controlled by flaps installed at the inlet and outlet of
the ram air channel. Water from the water extractor is now
injected into the ram air flow where it evaporates and sub-
sequently the temperature of the ram air flow is decreased.
The cool air passes successively the main heat exchanger
and primary heat exchanger before it leaves the ram air
channel to the ambient. In ground operation the ram air
flow is driven by the ram air fan that is mounted on the
same shaft as the compressor and turbine. The compo-
nents shown in Figure 11 are taken from an ECS library
(Sielemann et al., 2007).

4.2 Energy analysis
The proposed cabin temperature regulation concept is
based on asymmetrical pack discharge temperatures for
each pack. Therefore the energy analysis was performed
for a wider range of discharge temperatures. Two identical
air packs were assumed so that simulations were carried
out using the air pack Modelica model shown in Figure 11
for a range of discharge temperatures varying from -30 °C
to 20 °C. The mass flow and the discharge pressure were
kept constant. Two control laws are implemented in the
model. One that keeps the discharge temperature at the
defined value by regulating the bypass mass flow through
the TCV and another law that limits the compressor outlet
temperature by regulating the ram air mass flow.

The three wheel bootstrap cycle is a self-containing air
generation unit, i.e. it does not need any additional power
source to run the turbo components. This is realized by the
turbine that is driven by pneumatic power of the bleed air.
It is assumed that the bleed air is constantly provided by
the engine, independent of the operation of the air pack.
However, the ram air flow changes due to different oper-
ating points and causes different amounts of aerodynamic
drag. It is therefore directly linked to the pack discharge
temperature. For the energy analysis, the variation of oc-
curring drag caused by the ram air is calculated for each
operating point. The drag of both air packs is summed
up and displayed with the average temperature of both
packs and their anomaly in temperature. Temp average
denotes the average discharge temperature of both packs,
Temp anomaly denotes the deviation of both packs from
the common average. For example, if one pack discharges
air at 10 °C while the other discharges air at 20 °C, temp
average is 15 °C, and temp anomaly is ± 5 °C.

Figure 12 shows the result of the simulations for the
different discharge temperatures. The model was simu-
lated for a cruise flight phase at 39.000 feet altitude. The
horizontal axis shows the average temperature that can be
achieved of the two packs. All possible combinations for a
temperature range from -20 °C to 30 °C were considered.
For each combination, the temperature anomaly to the av-

Figure 12. Drag caused by Ram air vs. average temperature and
temperature anomaly

erage temperature was determined and presented by the
vertical axe. The graphic shows a triangular shape what is
related to the fact that e.g. an average temperature of -10
°C could be achieved by a maximum range of 0 °C and
-20 °C what leads to an anomaly of 10 K. The coloring
represents the total drag of both packs and the black lines
represent lines of constant drag. Due to confidential rea-
sons, the values are normalized to an average drag value.

The results show that the drag for the border regions of
high and low average temperature remains constant with
increasing anomaly. However, for the medium tempera-
ture range, the lines of equal drag tip to the left with in-
creasing anomaly. That means, the combined drag of both
packs is slightly higher for packs operating with large tem-
perature differences.

5 Discussion
The resulting concept with its workflow depicted in Fig-
ure 10 proved to be effective for the analysis and optimiza-
tion of a nonlinear MIMO control problem with a complex
plant model. Yet, the concept of this paper for the temper-
ature regulation of aircraft cabin represents only one item
of a more general problem set. In this case, the control
design was an integral part needed to evaluate the overall
system design in an early phase. A rapid LQG controller
provided a sufficient solution. Interfaces to and from Mat-
lab eased the control design whereas Modelica served as
main modeling and evaluation environment.

The long-term goal of this work however goes beyond
this use case. Since many sub-systems are already highly
optimized, further system optimization requires a higher
level of sub-system integration and also more centralized
control approach. This represents a higher level of integra-
tion and it often implies a low availability of correspond-
ing test examples or rigs. Principal questions of control-
lability, performance of controllers and of the system as a
whole need to be evaluated at an early design phase.

Rapid development of an aircraft cabin temperature regulation concept

158 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132151

To this end, it is necessary to bring together the differ-
ent software platforms that engineers use for control de-
sign (such as Matlab) and the modeling environments for
system dynamics (such as Modelica). This is not the first
paper addressing this problem. Typical attempts use the
S-function standard to import the plant model to Matlab.
Alternative approaches use the FMI-Standard to export the
controller from Matlab to a Modelica environment. The
presented work shows that code generation is also a fea-
sible technique to achieve the desired result. It has the
advantage that the final result is pure Modelica and does
not require any further tools or interfaces.

Having the final result in pure Modelica is more suited
when many variations of the plant model shall be created
in order to test for various kinds of robustness. These
changes may go beyond normal parameter changes since a
variety of failure scenarios have to be modelled and simu-
lated. In this application, typical faults are the malfunction
of one pack and the malfunction of one or more valves in
the ducting. Also the controller might be tested against
Modelica models of higher fidelity. For all this work, hav-
ing the controller in Modelica with all the internal con-
troller signals openly available is the most convenient ap-
proach.

The aforementioned robustness tests still have to be per-
formed to a large extent. These will hopefully not only fur-
ther validate the temperature regulation concept but also
the foreseen work-flow.

6 Conclusion
Modelica can be used to quickly generate models for val-
idation studies of new concepts. However, the design of
controllers based on this models makes additional tools
necessary. Integrated modelling and computation environ-
ments such as Modia (Elmqvist et al., 2016) could be a
remedy.

Acknowledgements
We thank Trey and Matt for inspiration.

References
Marcus Baur, Martin Otter, and Bernhard Thiele. Modelica

libraries for linear control systems. In Proceedings of 7th
International Modelica Conference, Como, Italy, September,
pages 20–22, 2009.

Daniel Bender. Exergy-based analysis of aircraft environmen-
tal control systems - integration into model- based design
and potential for aircraft system evaluation. In ECOS 2016
- 29th International Conference on Efficiency, Cost, Optimi-
sation, Simulation and Environmental Impact of Energy Sys-
tems, 2016.

Marco Bonvini and Alberto Leva. A modelica library for in-
dustrial control systems. In Proceedings of the 9th Interna-
tional MODELICA Conference; September 3-5; 2012; Mu-
nich; Germany, number 076, pages 477–484. Linköping Uni-
versity Electronic Press, 2012.

John Doyle. Guaranteed margins for lqg regulators. 1972.

Hilding Elmqvist, Toivo Henningsson, and Martin Otter. Sys-
tems modeling and programming in a unified environment
based on julia. In International Symposium on Leveraging
Applications of Formal Methods, pages 198–217. Springer,
2016.

NP Gao and JL Niu. Personalized ventilation for commercial
aircraft cabins. Journal of aircraft, 45(2):508–512, 2008.

P Jacobs and WF De Gids. Individual and collective climate
control in aircraft cabins. International journal of vehicle de-
sign, 42(1-2):57–66, 2006.

Andreas Klöckner, Franciscus LJ van der Linden, and Dirk Zim-
mer. Noise generation for continuous system simulation. In
Proceedings of the 10th International Modelica Conference-
Lund, Sweden-Mar 10-12, 2014, number 96, pages 837–846.
Linköping University Electronic Press, 2014.

Modelica-Association. The Modelica Standard Library. Online,
URL: http://www.modelica.org/libraries/Modelica, 2008.

Alexander Pollok and Daniel Bender. Using multi-objective
optimization to balance system-level model complexity. In
Proceedings of the 6th International Workshop on Equation-
Based Object-Oriented Modeling Languages and Tools,
pages 69–78. ACM, 2014.

Alexander Pollok and Andreas Klöckner. The use of ockham’s
razor in object-oriented modeling. In Proceedings of the 7th
International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools, pages 31–38. ACM, 2016.

Daniel Schlabe and Dirk Zimmer. Model-based energy man-
agement functions for aircraft electrical systems. Technical
report, SAE Technical Paper, 2012.

Michael Sielemann. Device-Oriented Modeling and Simulation
in Aircraft Energy Systems Design. PhD thesis, Hamburg
University of Technology, 2012.

Michael Sielemann, T Giese, B Öhler, and Martin Otter. A flex-
ible toolkit for the design of environmental control system
architectures. In Proceedings of the First CEAS European
Air and Space Conference, 2007.

Sigurd Skogestad and Ian Postlethwaite. Multivariable feedback
control: analysis and design, volume 2. Wiley New York,
2007.

Tengfei Tim Zhang, Penghui Li, and Shugang Wang. A per-
sonal air distribution system with air terminals embedded in
chair armrests on commercial airplanes. Building and Envi-
ronment, 47:89–99, 2012.

Session 4D: Control Systems I

DOI
10.3384/ecp17132151

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

159

160 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

1

Investigation of the Influence of Controller Types on Room

Thermal Behaviour – A Simulation Study

Kristin Majetta1, Christoph Clauß1, Christoph Nytsch-Geusen2
1 Fraunhofer IIS EAS, Zeunerstraße 38, D-01069 Dresden, GERMANY

kristin.majetta@eas.iis.fraunhofer.de

christoph@clauss-it.com
2Fachgebiet für Versorgungsplanung und Versorgungstechnik, Berlin University of the Arts, Hardenbergstr. 33,

D-10623 Berlin, GERMANY
nytsch@udk-berlin.de

Abstract
To control the indoor temperature of rooms two kinds of

approaches are common. The first one is to use standard

PI-controllers with a set of default parameters, which

often leads to insufficient performance, waste of energy

and unacceptable comfort violations [Rahmati, 2003].

The other approach is to use specifically developed and

adapted controllers [Seidel et al., 2015], which have the

drawback in a time-consuming and expensive

development. Therefore, this paper investigates on

finding rules and guidelines to find a suitable controller

for a given room without the need of expensive

controller adaption via simulation. To provide those

rules a simulation study will be performed. This paper

presents the first preparatory steps of this investigation,

which includes the choice and development of four

different room models equipped with different heating

systems, which are an electrical radiator, a floor heating

system, and a water supplied radiator. The authors

present five types of controller models of different

controller types to control the operative temperature of

a room. Simulations of well-defined scenarios analyze

the eligibility of the controller models regarding net

energy consumption and comfort for the considered

room models. First optimization results to improve the

quality of the controllers are shown and further steps are

explained.

Keywords: Building Simulation, Room Controller,

Room Thermal Behavior, Optimization

1 Introduction

The German government plans the reduction of the

primary energy consumption by 20% by the year 2020

compared to 2008 and, even more ambitious, by 50% by

2050. Many actions are taken to achieve this goal. One

is the foundation and support of research projects to

develop energy saving technologies. In the buildings

sector one of these technologies are advanced control

strategies to regulate e.g. indoor climate, energy

consumption or the choice of an energy source out of

different energy supplies. Normally, those controller

strategies are developed and adapted to a specific room

for which they work efficiently. Often those controllers

can only be sufficiently adapted to other buildings under

application of relatively large simulation effort which

includes the model development and parameterization

of the considered room, the comparison of the room

behavior with measurements and the parameterization

as well as an optimization of the controller model.

Therefore, the adaption to other rooms or buildings is

expensive and often the energy reduction is in no

relation to the effort of adjusting the controller. This is

why nowadays often basic controllers with default

parameters are used which is not sufficient to achieve

the control goals regarding room temperature and net

energy consumption. During the last year’s research in

the field of indoor room temperature controllers, several

example control algorithms have been developed. In

[Lauenburg, 2014] for example, the control of a radiator

heating system is optimized. A similar approach is

presented in [Carlon, 2014] where the energetic

performance of a low-energy house in analyzed and two

possible control strategies of the biomass boiler heating

systems are investigated. Very high research effort

during the last years was done in the field of model

predictive control methods where the future behavior of

the room is predicted by simulating and optimizing a

room model to calculate the in the future needed set

points to ensure comfort and energy optimality.

Deputizing for the abundance of research activities and

literature in this field the following references are

named: [Afram, 2014; Parisio, 2013; Oldewurtel, 2010;

Ma, 2009]. A drawback of this method is that the needed

prediction model must be developed which is normally

done from measurements, and that this model needs to

be updated after each optimization run. Rules would be

helpful that support the choice of indoor room

temperature controllers including a suitable set of

parameters that fit best for the considered room.

Therefore, a methodology is needed which provides

those rules and guidelines for typical use cases of

temperature controllers with regard to given rooms and

their installed HVAC technology. This paper presents

first steps of this investigation, which is the

development of four different, representative room

models as well as five controller models of important

controller types. By means of simulations of defined

scenarios suitable for each type of room (e.g. office

room, class room), the eligibility of the controller

DOI
10.3384/ecp17132161

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

161

2

models is investigated regarding the net energy

consumption and the adherence by temperature comfort

boundaries. First optimization results to improve the

quality of the controllers are shown and further

necessary steps are explained.

2 Modeling

2.1 Building models

To investigate the influence of different controller

models on room behavior, four room models were built,

that differ in size, building materials, heating system and

usage. The chosen rooms are an office room, a class

room a meeting room and a summerhouse (also called

room since it consists of a single thermal zone). All

models are equipped with different heating systems

(electrical radiator, radiator flown through by water,

floor heating) so that the typically range of room heating

supply techniques is covered. That way it is assured that

the methodology, which will be developed for choosing

a suitable controller, is universally applicable and can

easily be transferred to other problems.

The models of the four example rooms are built from

model components of the Modelica BuildingSystems

library, which is developed by the University of Arts

(UdK), Berlin [Nytsch-Geusen, 2013]. This library can

describe the behavior of complex building systems

which consist of thermal and hygrothermal models of

single buildings or districts in combination with the

corresponding energetic supply techniques. The

technical building services can contain thermal,

hydraulic or electrical models for solar heat,

photovoltaic, and HVAC systems. The room models

developed for the purpose of this investigation are based

on the Building1Zone1DBox-template that describes a

single thermal zone with six opaque boundaries that can

contain windows. The template is equipped with

connectors compatible to the ambient model of the

BuildingSystems library, with thermal ports to supply

the building zone with heat and with a connector for the

air change rate. The air temperature TAir of the zone is

supplied by the model via an output connector. Figure 1

shows the graphical representation of the

Building1Zone1DBox template connected to the

ambient model.

Figure 1: Template Building1Zone1D connected to

ambient model

The ambient model provides the outside air temperature,

the relative humidity of the ambient air, the wind speed

and the solar radiation. The influence of the solar

radiation on the operative room temperature depends

mainly on the orientation of the windows, which are

modelled within the Building1Zone1DBox template.

To assure the comparability of results, all room models

receive the same ambient conditions from the TMY

(typical meteorological year) [Deutscher Wetterdienst,

2014] of Chemnitz, a city in the east of Germany with

approximately 250.000 inhabitants. For the sake of

simplicity internal loads are not part of this study.

Summerhouse

The model of the summerhouse has a floor space of 30

m², a height of 3.5 m and, deviating from Figure 2, it is

modeled with six boundaries, which represent four

walls, the ceiling and the floor.

Figure 2: 3D representation of the summerhouse model

The summerhouse is modeled as a free-standing room,

which means that the adjacent conditions of the

boundaries (except for the floor) of the thermal zone are

the ambient conditions. The adjacent boundaries are

modeled as heavy construction from plastering,

Styrofoam and bricks from concrete. The summerhouse

model is equipped with a model of a 2kW electrical

heating system. The actuating mechanism of the heating

system is discrete which means it can either be switched

on or off completely. Therefore, the control signal

provided by the heating controller must also be discrete.

Single office room

The model of the office room is suitable for one person.

It has a floor space of 15 m² and a height of 2.7 m. It is

enclosed by six boundaries of which the west oriented

boundary adjacent conditions are the ambient

conditions. The other boundaries border on neighbour

rooms and have constant adjacent temperatures of 20

°C. The west oriented boundary is modeled as heavy

construction. The other materials are wood for the

ceiling two boundaries (walls) that border on neighbour

rooms and concrete for the wall that separated the office

room from the floor. Figure 3 shows a picture of the

office room that was used as a basis to develop the room

model.

Investigation of the Influence of Controller Approaches on Room Thermal Behaviour A Simulation Study

162 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132161

3

Figure 3. Picture of the office room on which the model

is based

The office room model is equipped with a floor heating

system that works with a supply temperature of 35 °C.

The model of the heating system calculates a heating

power 𝑄 using (1). In (1) 𝑇𝐹 is the temperature of the

floor surface, 𝑇𝑅 is the room temperature and 𝐴 is the

floor area (Recknagel, 2012). 𝑇𝐹 is calculated from the

supply temperature which is given to the heating system

as input signal.

 𝑄 = 8.92 ∗ (𝑇𝐹 − 𝑇𝑅)1.1 ∗ 𝐴𝐹 (1)

The heating power 𝑄 is given to the room as input

signal. The heating model has an input connector for its

control signal. The required control signal must be

Boolean. In case of control signal = true the heating

system provides a heating signal of a certain amount of

heat to the room model. If control signal = false the

amount of heat provided by the heating system is zero.

Meeting room

The model of the meeting room is based on a small

conference room at Fraunhofer IIS/EAS. It is designed

for meetings and workshops for about 20 people (Figure

4).

Figure 4. Picture of the meeting room on which the

model is based

The room model has a floor space of 52 m² and a

height of 3.3 m. it has one outer wall, the west oriented

wall, at which ambient conditions are applied. The

boundary temperature of the opposite wall and the

ceiling is constant 18 °C, and for the other walls, it is 20

°C. The four walls are modeled as heavy construction

from clinker bricks and plastering. The ceiling and the

floor are modeled from lightweight concrete. Also an

interior ceiling is included which is made of papier-

mâché. The room model is equipped with a water

heating systems (Figure 5) that gives radiation and

convective heat via a radiator to the room model. The

model of the water heating system, which is taken from

the BuildingSystems library, is modelled as fluidic

system. It contains a pump, pipes, a valve to regulate the

volume flow, a radiator, an expansion vessel as well as

a boiler. To regulate the volume flow of the water

running through the radiator model, the valve model is

controlled by its actuator position according to the valve

characteristic, which specifies the volume flow rate

depending on the valve position. Accordingly, the

control signal calculated by a controller has to take

values between 0 and 1.

Figure 5. Water heating system

Classroom

The classroom model is based on data of the plus-energy

primary school in Hohen Neuendorf near Berlin which

was built as part of the research program

Energieoptimiertes Bauen (EnOB) founded by the

German Federal Ministry of Economic Affairs and

Energy [Sick, 2015]. Figure 6 shows a picture of one

classroom of the school, that was the basis for the

classroom model.

The model has a floor space of 94 m² and a height of

4 m. It contains one outer wall that’s boundary

conditions are the ambient conditions.

Figure 6. Picture of the classroom on which the model is

based

Session 4D: Control Systems I

DOI
10.3384/ecp17132161

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

163

4

It is modeled as lightweight construction from wood,

mineral wool and plasterboard. The inner walls are also

lightweight and modeled from the materials wood and

mineral wool. The floor consists of concrete, cement,

bitumen, ethafoam and linoleum. The ceiling is modeled

from concrete, cement and linoleum. The boundary

temperatures of the inner walls are constant at 17 °C.

The water based heating system is the same as described

for the meeting room model.

2.2 Controller models

On the way of developing the methodology for choosing

a suitable controller for a given room, the

conformability of different controller models to the four

introduced room models is investigated. Therefore, five

common control strategies were chosen and modeled in

Modelica. Partly they were developed in research

projects at Fraunhofer IIS/EAS, partly they are taken

from the Modelica Standard Library. The choice of the

controller models can easily be extended. For example,

the application of a model predictive controller is

planned.

Two-Point Controller

The model of the two-point controller compares the

actual room temperature with a required set point

temperature. It provides a heating signal of 1 if the room

temperature is below the set point temperature, which

means the heating system should be turned on. The

controller provides a heating signal of 0 if the room

temperature is above the set point temperature. A

hysteresis parameter prevents the controller from

switching on and off permanently. This parameter

influences the span between the given temperature set

point and the actual temperature for turning the heating

system on or off. Therefore, the height of the hysteresis

influences the user comfort and the effective heating

energy.

Forward-looking Switching (FS)

The aim of this controller is to determine the right

moment to turn the heating system of a room model on

and off to reach a desired target temperature at a specific

point in time [Majetta, 2015]. Under the assumption of

a given ambient temperature 𝑇𝐴(𝑡), a given supply

temperature of a water heated heating system,

respectively heating power in case of an electrical

heating system 𝑇𝑆(𝑡), given temperatures of the

adjacent rooms 𝑇𝑁(𝑡) and a given start value of the room

temperature 𝑇𝑅(𝑡 = 0), the idea of this controller is to

approximate the room temperature 𝑇𝑅(𝑡) by the

response of a first order system 𝑓(𝑡) to a step change as

first approximation. This is easily possible because the

heating and cooling characteristics of single rooms are

known neglecting disturbances and providing it with

constant power. Figure 7 shows exemplarily the heating

of the office room model under constant ambient and

neighbour room temperatures.

Figure 7. Heating up process of office room model

𝑓(𝑡) is characterized by its steady-state value 𝑔, its start

value 𝑠 and its slope of the temperature change 𝑎(𝑡 =
0) at time 𝑡 = 0 and can be described by (2).

 𝑓(𝑡) = 𝑔 − (𝑔 − 𝑠)𝑒
−𝑎

𝑔−𝑠
𝑡
 (2)

The variables 𝑔 and 𝑎 depend on 𝑇𝑆(𝑡), 𝑇𝑅(𝑡 = 0),

𝑇𝐴(𝑡) and 𝑇𝑁(𝑡). Internal loads are not considered. For

simplicity reasons the temperatures of the neighbour

rooms are chosen to be identical. The variables 𝑔 and 𝑎

are identified using results from particular simulations

with defined constant values of 𝑇𝑆(𝑡), 𝑇𝑅(𝑡 = 0), 𝑇𝐴(𝑡),

and 𝑇𝑁(𝑡). In the following, the identification process of

𝑔 is shown exemplarily. To identify the dependency of

the steady-state value 𝑔 from 𝑇𝐴(𝑡), 𝑇𝑁(𝑡) and 𝑇𝑆(𝑡), the

linear approach

𝑔 = 𝑇𝐴 ∙ 𝑥1 + 𝑇𝑁 ∙ 𝑥2 + 𝑇𝑆 ∙ 𝑥3 (3)

was chosen. To identify the unknowns (𝑥1, 𝑥2, 𝑥3) in

(3), n simulations under defined conditions were

undertaken and the linear system

𝐴𝑥 = 𝑏 (4)

with

 𝐴 = [

𝑇𝐴,1 𝑇𝑁,1 𝑇𝑆,1

⋮ ⋮ ⋮
𝑇𝐴,𝑛 𝑇𝑁,𝑛 𝑇𝑆,𝑛

] and 𝑏 = [

𝑔1

⋮
𝑔𝑛

]

is solved applying the least squares method [Isermann,

1991]. To do so, a solution 𝑥∗ shall be calculated that

minimizes the quadratic error 𝑒𝑟𝑟 = |𝐴𝑥∗ − 𝑏|2. 𝑥∗ is

calculated by solving the normal equation 𝐴𝑇𝐴𝑥∗ =
𝐴𝑇𝑏. Using (2) for each value of 𝑇𝐴, 𝑇𝑁, 𝑎𝑛𝑑 𝑇𝑆, 𝑔 can

be calculated. A similar approach is applied for

identifying the parameter 𝑎. The parameter 𝑠 does not

have to be identified since it is the start value of the room

temperature, which simply can be taken from the

simulation. Knowing 𝑔, 𝑠 and 𝑎(𝑡 = 0), (2) is

parameterized during the whole simulation of the room

model and calculates the points in time for turning on or

off the heating system online by transforming (1) to

 𝑡𝑜𝑛,𝑜𝑓𝑓(𝑡) = −
𝑔−𝑠

𝑎
ln (−

𝑤−𝑔

𝑔−𝑠
) (4)

Investigation of the Influence of Controller Approaches on Room Thermal Behaviour A Simulation Study

164 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132161

5

where 𝑤 is the desired target temperature in the room.

Since the heating and cooling process of the room model

cannot be described exactly by an exponential function,

two parameters were introduced to the controller model

to optimize the point in time for turning the heating

system on and off.

Combination of Two-point controller and Forward-

looking Switching – Combi-Controller

Both of the introduced controllers have properties that

might be considered as drawbacks. The two-point

controller responds to a change of the set point not

before the change happened, i.e. in case of a desired

temperature that is warmer than the actual set point, the

heating system starts to warm up the room at that

moment the desired room temperature should be already

reached. That means that it probably, especially in the

case of a slow working heating system will be too cold

in the room for some time. Once the desired target

temperature is reached, the two-point controller works

well within the tolerance given by the hysteresis.

The forward-looking switching has the ability to turn

the heating system on and off at the right moment in

order to achieve a desired target temperature in the

future. However, once it is turned on, no mechanism is

available to prevent the room from overheating. In the

upper part of Figure 8 the room temperature is shown

that results from controlling the room temperature with

the two-point controller (red continuous line marked

with dots) and the forward-looking switching controller

(blue dashed line). The desired target temperature is

pictured as the green continuous line. The temperature

related heating signal is pictured in the lower part of

Figure 8.

Figure 8. Room temperature and heating signal for two-

point controller and forward-looking switching

Since both of the mentioned controllers have their

described properties which might be drawbacks in some

cases, the two controller approaches are combined and

considered as the third type of room temperature

controller within this study called combi-controller.

Statechart controller

Related to defined conditions (e.g. desired

temperatures) certain states occur naturally (e.g. actual

temperature too high or low). Those are identified as

system states that require certain actions (e.g. heating)

and represented as finite state machines (statechart). The

statechart controller [Clauß, 2014] presented here

controls the required target temperatures due to the

occupancy of the room and it calculates the set points

for the heating system to achieve those target

temperatures. To realize those control actions two

statecharts were developed that work together. Figure 9

shows one of those statecharts. It calculates the target

temperatures dependent on the occupancy situation in

the room

Figure 9. Occupancy statechart to calculate target

temperature

The occupancy statechart contains the four states

Room_Unoccupied, PrepToOcc (preparation state for

oncoming occupancy), Room_Occupied and

PrepToUnOcc (preparation state for oncoming leaving).

Within those states different parameters are calculated,

e.g. minimal (TempMin) and maximal (TempMax)

temperatures and set points for heating and cooling for

each state.

Values of control variables that have to be determined

and decision to be taken, which are normally

represented by transitions are calculated by a

parameterized function approach which combines the

available sensor values by a physically motivated

equation. For example, the length of the preparation

time (PrepTimeOcc) the room is pre-heated in order to

reach the target temperature when persons enter or leave

the room. With Tr – room temperature, Tout – ambient

temperature and Tmin/Tmax – admissible minimal/

Session 4D: Control Systems I

DOI
10.3384/ecp17132161

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

165

6

maximal room temperature the following heuristic and

parameterized function approach to calculate the

preparation time PrepTimeOcc is used

𝑃𝑟𝑒𝑝𝑇𝑖𝑚𝑒𝑂𝑐𝑐 = 𝑐0

+ 𝑐1(𝑏𝑒𝑙𝑜𝑤(𝑇𝑟, 𝑇𝑚𝑖𝑛)

+ 𝑏𝑒𝑙𝑜𝑤(𝑇𝑜𝑢𝑡, 𝑇𝑚𝑖𝑛))
2

 + 𝑐2(𝑎𝑏𝑜𝑣𝑒(𝑇𝑟, 𝑇𝑚𝑎𝑥)

+ 𝑎𝑏𝑜𝑣𝑒(𝑇𝑜𝑢𝑡, 𝑇𝑚𝑎𝑥))
2

(5)

with

𝑏𝑒𝑙𝑜𝑤(𝑎, 𝑏) = {
𝑏 − 𝑎 𝑖𝑓 𝑎 < 𝑏

0 𝑒𝑙𝑠𝑒
 (6)

𝑎𝑏𝑜𝑣𝑒(𝑎, 𝑏) = {
𝑎 − 𝑏 𝑖𝑓 𝑎 > 𝑏

0 𝑒𝑙𝑠𝑒
 (7)

Equation (5) was chosen so, that the preparation time

increases if the room temperature or the ambient

temperature are outside the interval [Tmin, Tmax]. Other

parameterized function approaches calculate the set

point for the heating system respectively in the occupied

or unoccupied state of the room. The parameters

𝑐0, 𝑐1, 𝑐2 in (5) and other parameters of the statechart

controller are determined by optimization.

The statechart controller is implemented in Modelica

using if-then-else constructions.

P-controller

The fifth controller used in this study is a well-known p-

controller with limited output. It is taken from the

Modelica Standard Library

(Modelica.Blocks.Continuous.LimPID).

3 Simulation Study

The aim of the work presented in this paper is to analyze

the suitability of different control strategies to ensure a

desired room temperature with possibly less net energy

consumption. Therefore, each room model is simulated

with each controller model. To ensure the comparability

of the results, for each combination of room model and

controller model simulation scenarios were defined.

Those guarantee the same simulation conditions e.g.

ambient and boundary conditions of the room or the

number of people entering the room at specified

moments in time. The scenarios represent the usage of

the rooms during heating periods (mid seasons, winter)

since heating is the only action that can be done actively

in the rooms (no cooling facilities are regarded).

In the following, one scenario is chosen to demonstrate

the functioning of the controllers and further steps like

their evaluation and optimization are discussed.

3.1 Scenario “Working Period” for the office

room

This scenario was developed for the single office room.

It comprises three working weeks from February 28 to

March 21 including weekends. The daily working time

from Monday to Friday is from 8.00 am to 5.00 pm.

During this time, the desired target temperature is 22 °C.

During absence of people the target temperature is 18

°C (Figure 10).

Figure 10. Target temperature of scenario "working

period" for the office room

The aim of the controller models is to keep the office

room temperature as close as possible to the set point

while minimizing net energy consumption. To measure

that the deviation between target and room temperature

is calculated during occupancy and distinguished

between too warm for times when the room temperature

is more than 1 K higher than the target temperature and

too cold if the room temperature is more than 1 K below

the target temperature. To calculate the total times (too

warm total and too cold total) too warm and too cold are

integrated over the simulation time period. Looking at

the example of the room temperature controlled by the

two-point controller (Figure 11), the signal tooCold

shows that at the beginning of every working day, it is

too cold. Especially on Mondays, it is too cold nearly

half of the day since the room temperature decreased a

lot on the weekends before. The energy consumption is

159.6 kWh, the total time where it was too cold is 16.8

h and the total time where it was too warm in the room

is 0.1 h.

Investigation of the Influence of Controller Approaches on Room Thermal Behaviour A Simulation Study

166 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132161

7

Figure 11. Room temperature and signals tooWarm and

tooCold achieved by two-point controller

In comparison to the two-point controller, the statechart

controller meets the required target temperature better

however more net energy consumption is required. The

reason for that is that before the new week begins, the

room is being preheated in order to meet the high target

temperature on Monday morning. Figure 12 shows the

operative room temperature caused by the statechart

controller as well as the signals tooWarm and tooCold.
The energy consumption is 168.3 kWh and the total time

where it has been too cold is 7.4 h. It is never too warm

in the room.

Figure 12. Room temperature and signals tooWarm and

tooCold achieved by statechart controller

Table 1 shows the net energy consumption and the

aggregated times when it was too warm or too cold in

the room coursed by the five introduced controllers. It

can be seen that the combi controller containing the

forward-looking switching controller and the two-point

controller, needs the most net energy, however it meets

the required target temperature best whereas the p-

controller needs least energy at the price of the strongest

comfort violation with regard to the times when it is too

cold in the room. Figure 13 shows the room

temperatures caused by the five different controllers as

well as the desired target temperature

Table 1. Comparison of controllers regarding net energy

consumption and violation of comfort boundaries

Controller Energy
in kWh

tooWarm
(total) in h

tooCold
(total) in h

two-point 161.1 2.1 8.3

FS 163.9 0.9 0

combi 175.5 0 0

statechart 168.3 0 7.4

p 137.31 0 32.4

Session 4D: Control Systems I

DOI
10.3384/ecp17132161

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

167

8

Figure 13. Room temperatures caused by the five

controllers

The so far investigated eight simulation scenarios for

each combination of the four room models and the five

controller models show, that all of the controller models

work different and fit better to one or another room

models. Therefore, it is promising to take the type of the

room and its HVAC equipment into consideration when

choosing a suitable room temperature controller.

3.2 Further Steps

Up to now, the introduced controller models are

parameterized from experience of the modeler. To

achieve less energy consumption by sticking to the

temperature comfort conditions, optimization of the

controller parameters is considered. Optimization will

be done by using the generic optimization program

GenOpt [Wetter 2000]. GenOpt can be used with

simulation programs that support textual based

input/output functionality like EnergyPlus [EnergyPlus

2016], TRNSYS [TRNSYS, 2016] or Dymola [Dymola,

2016]. For the optimization, a cost function is needed

that characterizes if a controller model is “good”. This

evaluation will be done by rating the net energy

consumption and the violation of the comfort

specifications regarding the room temperature. Equation

(8) shows the considered cost function in principle.

𝑐𝑜𝑠𝑡 = 𝑒𝑛𝑒𝑟𝑔𝑦 + 𝑝𝑒𝑛𝑎𝑙𝑡𝑦1 ∙ 𝑡𝑜𝑜𝑊𝑎𝑟𝑚𝑇𝑜𝑡𝑎𝑙
+ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦2 ∙ 𝑡𝑜𝑜𝐶𝑜𝑙𝑑𝑇𝑜𝑡𝑎𝑙

(8)

In (8) energy denotes the net energy for heating the

room, tooWarmTotal and tooColdTotal are the total

times the room has been to warm or to cold respectively.

The two penalty terms are weighting factors.

The principal optimization procedure was so far

tested for the scenario working period for the office

room controlled by the two-point controller using

Dymola. The two-point controller has one free

parameter, the hysteresis parameter that can be tuned in

order to optimize the cost function. This parameter was

allowed to vary within the boundaries of 0.1 and 5. The

minimal cost function value was reached at a hysteresis

parameter of 1.04. To verify this result, a parameter

variation using the mos-script functionality in Dymola

was operated which showed the same result. The net

energy consumption decreased from 161.1 kWh for the

default hysteresis parameter value of 2 to 159.5 kWh for

the optimized hysteresis parameter value.

After optimizing the controller parameters for all

scenarios, sensitivity analyses of the optimized

parameters regarding different locations (including

different weather) of the rooms, different HVAC

systems and other, still to be defined parameters, will be

performed. Aim of this analysis is to figure out how

robust the controller parameters are.

The subsequent step will be to find and establish

criteria to assess the quality of the controller and hence

to deduce rules for choosing a specific controller to a

given room and decide if the controller needs special

parameter adaption or if the default parameter will be

sufficient.

4 Conclusion

The work presented in this paper are the first steps of a

broad investigation with the aim to develop a

methodology to provide rules and guidelines for

choosing a suitable room temperature controller with

regard to the given room and its installed HVAC

technology. To achieve this goal a simulation study is

performed. The instrument of simulation instead of

measured data is used in this study for several reasons.

First, one is considerably faster than real-time. Second,

the investigations can be done under specified

conditions and third, several scenarios can be elaborated

and easily compared to each other. This paper presents

the first steps of this investigation which is the

development of four different representative room

models with different heating systems like floor heating,

electrical heating and radiator heating as well as five

controller models of important controller types. Within

the simulation of defined scenarios suitable for the type

of the room (e.g. office room, classroom), the eligibility

of the controller models is investigated. In addition, an

outlook to further steps is given which will be the

optimization of controller parameters including the

definition of a cost function, a sensitivity analysis to

study the robustness of the optimized controller

parameters and the definition of criteria to evaluate the

quality of the controller.

Acknowledgements

This paper is based on the results of the research project

„Entwurfsverfahren für ganzheitliche

Energiemanagementsysteme in Gebäuden

(ENERMAT)“, funding reference 03ET1084A.

The authors are much obliged to the contributors of the

research project Torsten Blochwitz, Eva Fordran,

Investigation of the Influence of Controller Approaches on Room Thermal Behaviour A Simulation Study

168 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132161

9

Matthias Franke, Jeanette Floss, Jürgen Haufe, Jörg

Hohlfeld, Edgar Liebold, Richard Meyer, Paul Pinther,

Stephan Seidel and Jens Wurm.

References

Abdolreza Rahmati, Farzan Rashidi, Mehran Rashidi: A hybrid

fuzzy logic and PID controller for control of nonlinear HVAC

systems. Proceedings of IEEE International Conference on

Systems, Man and Cybernetics, pp. 2249-2254, 2003.

Abdul Afram, Farrokh Janabi-Sharifi. Theory and application

of HVAC control systems – A review of model predictive

control (MPC). Building and Environment 72, pp. 343-355,

2014. http://dx.doi.org/10.1016/j.buildenv.2013.11.016

Alessandra Parisio, Marco Molinari, Damiano Varagnolo, et al.:

A Scenario-based Predictive Control Approach to Building

HVAC Management Systems. IEEE International Conference

on Automation Science and Engineering (CASE), pp. 428-435,

2013.

Christoph Clauß, Eva Fordran, Matthias Franke, et al.

Entwicklung und Optimierung von Gebäude-Management-

Systemen. Fifth German-Austrian IBPSA Conference,

pp.166-173, Aachen, 2014.

Christoph Nytsch-Geusen, Jörg Huber, Manuel Ljubijankic,

Jörg Rädler. Modelica BuildingSystems – eine

Modellbibliothek zur Simulation komplexer

energietechnischer Gebäudesysteme. Bauphysik 35, Heft1,

Ernst & Sohn Verlage für Architektur und technische

Wissenschaften GmbH & Co. KG, 2013

Deutscher Wetterdienst. Testreferenzjahre von Deutschland

für mittlere, extreme und zukünftige

Witterungsverhältnisse. Handbuch, 2014. Website:

www.dwd.de

Dymola Website: http://www.3ds.com/products-

services/catia/products/dymola

Elisa Carlon, Markus Schwarz, Christoph Schmidl, et al. Low

Energy Houses Heated By Biomass Boilers: Optimization

Of The Heating System Control Strategy By Means Of

Dynamic Simulation. 3rd International High Performance

Buildings Conference, pp.3303/1 – 3303/8, 2014.

EnergyPlus Website: https://energyplus.net/

Frauke Oldewurtel, Alessandra Parisio, Colin N. Jones et al.:

Energy efficient building climate control using stochastic

model predictive control and weather predictions. Proceedings

of American control conference, 2010

Friedrich Sick, Sebastian Dietz, Gustav Hillmann, Margarethe

Korolkow, Susanne Rexroth. Monitoring Plusenergie-

Grundschule Hohen Neuendorf und IEA Task 41 (Solar

Energy and Architecture). Schlussbericht, Berlin, 2015,

Website:

http://www.enob.info/fileadmin/media/Publikationen/EnB

au/Projektberichte/27_Projektbericht_EnBau_0327430M_

-_Monitoring_Schule_Hohen-Neuendorf.pdf

Kristin Majetta, Christoph Clauß, Jürgen Haufe, et al. Design

and Optimization of an Energy Manager for an Office

Building. ASIM/GI-Section Workshop – Simulation of

Technical Systems & Methods in Modeling and Simulation,

pp. 289-296, 2015.

Michael Wetter. Design optimization with GenOpt. Building

Energy Simulation User News 21, p. 200, 2000.

Patrick Lauenburg, Janusz Wollerstrand. Adaptive control of

radiator systems for a lowest possible district heating return

temperature. Energy and Building 72, pp. 132-140. 2014.

http://dx.doi.org/10.1016/j.enbuild.2013.12.011

Stephan Seidel, Christoph Clauß. Eva Fordran, et al.: Design

and Optimization of Building Energy Management

Systems. Proceedings of 18th ITI Symposium. pp. 329-337,

November 9-11, Dresden, 2015.

Rolf Isermann. Identifikation dynamischer Systeme 1,

Springer-Verlag, 2. Auflage, pp. 189-195, 1991.

TRNSYS website: http://www.trnsys.com/

Yudong Ma, Francesco Borrelli, Brandon Hencey, et al.: Model

predictive control of thermal energy storage in building cooling

systems. Proceedings of the 48th IEEE conference on decision

and control, pp. 392-397, Shanghai, China, 2009.

Hermann Recknagel, Eberhard Sprenger, Ernst-Rudolf

Schramek.: Taschenbuch für Heizung+Klimatechnik

Oldenbourg Industrieverlag GmbH; p.804, 2011/2012.

Session 4D: Control Systems I

DOI
10.3384/ecp17132161

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

169

170 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Powertrain and Thermal System Simulation Models of a High

Performance Electric Road Vehicle

Massimo Stellato
1
 Luca Bergianti

2
 John Batteh

3

1
Dallara Engineering, Italy m.stellato@dallara.it

2
Dallara Engineering, Italy l.bergianti@dallara.it

3
Modelon Inc., Ann Arbor, Michigan USA john.batteh@modelon.com

Abstract

Performance and range optimization of electric

vehicles are challenging targets in the design of

contemporary automobiles. This paper illustrates that

the thermal system and the development of the related

control logic are key factors in achieving these targets.

Both subjects benefit from the support of modeling and

simulation. The paper describes our approach applied

to a real case study.

 The activity is the result of a cooperation between

Dallara, responsible for the case study, and Modelon,

developers of the libraries used to build the simulation

model.

Keywords: electric vehicle, thermal system, control
logic, powertrain, battery, cooling, range, derating.

1 Introduction

The goal is to evaluate the potential of the simulation

models to define the thermal system architecture of an

electric vehicle. This approach should allow the

maximum degree of freedom for the control logic to be

optimized later in the project, in order to optimize both

vehicle range and performance.

Thanks to new technologies in the automotive field

in general and for electric vehicles, a multi-physics

approach to analyze the interactions between complex

subsystems becomes necessary to evaluate the vehicle

performance (Bouvy et al, 2012). This need has led to

the construction of a multi-physics model developed in

the Modelica environment with components taken from

four different application libraries: “Vehicle

Dynamics”, “Liquid Cooling”, “Vapor Cycle” and

“Heat Exchanger” (Modelon, 2016). The models are

developed using Dymola (Dassault Systèmes, 2016).

2 Case Study Description

The activity reported in this paper supports the design

of the thermal system of a real case high performance

Sedan class electric vehicle which features three

inboard motors (one at the front and two at the rear).

The thermal system architecture, the components

and all the car data in this analysis reflect the real case.

3 Model Description

Figure 1 shows the top level of the “Systems Model”,

comprising of the following sub-models using the

libraries noted:

 Driver

 Powertrain (Vehicle Dynamics Library)

 Brakes (Vehicle Dynamics Library)

 Thermal System (Liquid Cooling, Vapor Cycle and

Heat Exchanger Libraries)

Figure 1. Systems model top view

The aim of the Systems Model is to match the

reference speed profile (input) while considering the

thermal limits of battery and powertrain together with

the longitudinal vehicle performance (speed and

acceleration) in order to calculate the range.

Figure 2 shows the main input and output of the model.

Figure 2. Model input and output

DOI
10.3384/ecp17132171

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

171

It’s also possible to develop different driving cycles

to represent typical real driving styles in order to

evaluate their effect on the range.

The Systems Model can be interfaced with the

multi-body vehicle model for vehicle dynamics

analysis (Figure 3).

This approach allows both the refined analysis of the

vehicle performance and the study of the cooling

system at the same time.

Figure 3. Full vehicle multibody model

3.1 Driver Model

The driver model, (see Figure 4), tries to match the

speed profile (input) by varying the accelerator and

brake pedal positions, which are respectively

connected to the powertrain and brake models. If the

coolant temperatures reach the limits, the control logic

applies a progressive power derating as needed.

Figure 4. Driver sub-model

3.2 Powertrain Model

The powertrain model, illustrated in Figure 5, is

composed by the following elements:

 Battery

 3x Motors

 Driveline

Figure 5. Powertrain sub-model

The battery model has both electric and thermal

features with variable internal resistance and open

circuit voltage as function of state of charge and cell

temperature. The cell heat capacity is modeled with a

lumped thermal element storing heat. The physical

interaction between the cell and the coolant is modeled

with a lumped thermal element transporting heat

(Figure 6).

Figure 6. Battery sub-model

 The model provides interfaces to the thermal

system at the cell bottom, cell top or cell surface, as

shown in Figure 7.

Figure 7. Cell temperature in the case of the thermal

system linked to cell surface vs cell bottom

This approach looks at the irreversible heat

generation due to the ohmic thermal loss caused by the

battery’s internal resistance, in the real case there’s

Powertrain and Thermal System Simulation Models of a High Performance Electric Road Vehicle

172 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132171

also the effect of the reversible heat due to the

chemical reactions in the battery electrodes (Schmitke

et al, 2015).

 A finite volume and finite element method would

not represent a preferable alternative for system

simulations as they slow down the simulation (Krüger

et al, 2012) and still does not consider the effect of the

reversible heat due to chemical reactions.

The battery energy consumption is used to predict

the range via the state of charge calculated by

integrating the generated current over time.

The motors are characterized in terms of both

peak and continuous power curves, which depend on

the available voltage at the inverter inlet. This voltage

depends on the generated current, open circuit voltage

and internal resistance of the battery. The motor and

inverter efficiencies vary with torque and rpm. The

model includes both winding and stator core

temperatures. The winding is not interfaced with the

thermal system. The equation describing the

relationships between winding temperature and peak

power is provided by the motor supplier. When the

winding temperature reaches the limit value, the motor

available power switches gradually from peak to

continuous (Figure 8). The stator core is interfaced

with the thermal system through coolant ducts (Figure

9); when the coolant temperature at the stator outlet

reaches its limit, the control logic applies the power

derating, as described later in the paper.

The stator core modeling consists of a thermal

capacitance and a thermal conductance between stator

and coolant which reflect the real geometry and

material property.

Figure 8. Winding temperature as function of peak and

continuous power in a typical electric motor for

automotive applications

Figure 9. Stator of the electric motor

The energy recovery under braking is also

considered: the motors assist the mechanical brakes by

providing a torque of up to 10% that available in

normal driving conditions; the energy recovery under

braking affects both range and heat rejection.

An ABS / traction control model is included to

avoid front and rear wheel spin during acceleration and

braking.

3.3 Thermal System Model

The thermal system is the most innovative block of the

systems model; its aim is to cool the battery and the

powertrain as needed.

All the thermal components considered in the model

are calibrated to match the behavior of the actual

components. For example the radiator characteristic

(Figure 10) has been provided by the supplier and

validated by Dallara with experimental tests in the

cooling rig (Figure 11).

Figure 10. Coolant radiator characteristic: Heat

dissipation normalized and air pressure drops

Figure 11. Radiator testing at the Dallara cooling rig

The thermal system is composed of multiple coolant

radiators, complete with fans, and one chiller (plate

heat exchanger).

The chiller utilizes the air conditioning refrigeration

power to assist the radiators in cooling batteries and

powertrain. The compressor’s electrical power,

Session 5A: Automotive II

DOI
10.3384/ecp17132171

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

173

required to activate the chiller, affects the range

calculation as well.

Through one or more 4-way valves, different

architectures can be studied and allow the

reconfiguration of the thermal system into multiple

loops in order to cool both the battery and the

powertrain as a single system or as separate systems

(see Figure 12).

The modularity of the thermal system model allows

the analysis of different architectures to select the best

solution subject to the vehicle design constraints.

Figure 12. Thermal system sub-model

The model allows the performance of weight

sensitivity analysis on the range; the effect of the

weight in the configurations under investigation can be

considered in the choice of the thermal system

architecture.

The radiator cooling efficiency is a function of the

air flow across radiator, which varies with vehicle

speed and fan performance.

The air flow across the radiator is calculated by

considering the maximum available between the effect

of the vehicle speed and the performance of the fan

(Figure 13). At low vehicle speeds, the airflow due to

the fan is dominant; at higher vehicle speeds the air

flow is essentially a function of the vehicle speed

alone. In the real world these two effects interact and

provide an even higher air flow rate.

Figure 13. Fan performance curve vs radiator + duct air

pressure drops

Figure 14 shows the thermal system components:

chiller, radiator, battery, inverter and motor.

Figure 14. Thermal system components

The coolant flow rate has been calculated by

considering the pump characteristic, the coolant

pressure drops for each component and pipes’

geometry (Figure 15). The heat exchange between

pipes and the environment is also considered.

Figure 15. Pipes modeling in the thermal system, both

distributed and concentrated pressure drops are

considered for each pipe

The 4-way valve model, shown in Figure 16, has

been developed with the Liquid Cooling Library

starting from the model of the 3-way valve.

Powertrain and Thermal System Simulation Models of a High Performance Electric Road Vehicle

174 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132171

Figure 16. 4-way valve sub-model

3.4 Control Logic Model

The control logic analyzes the battery and powertrain

coolant temperatures and continuously switches to the

most efficient cooling loop configuration among those

available through the thermal system model.

If the coolant temperatures reach the limits, then

the control logic applies power derating.

4 Approach

The main purpose of designing the thermal system of

an electric vehicle is to optimize the vehicle range and

minimize power derating.

The chiller reduces the battery power which then

makes it necessary to minimize its use to optimize the

range. Moreover, as the chiller power demand to cool

the battery increases, less power is available for the air

conditioning of the vehicle interior, with negative

implications on passenger comfort (Krüger et al,

2012).

The battery and powertrain cooling requirements

vary throughout the simulation, as they depend on both

the instantaneous power required to match the

reference speed profile (Krüger et al, 2012), and

battery and powertrain efficiency; in some conditions

the powertrain requires more cooling than the battery

while the opposite holds true in other conditions.

For this reason, a variable thermal system

architecture is more efficient than a fixed layout in

both the case of low heat rejection values to minimize

the chiller use and with high heat rejection values to

minimize the power derating. This variable architecture

is configurable during vehicle operation in order to

favor battery cooling over powertrain cooling or vice

versa, depending on the instantaneous cooling

requirements.

Following this approach, a variable thermal system

layout has been designed to switch between three

different configurations.

While the specifics of the variable system

configuration are confidential, the general architecture,

which shows how the coolant flow path is arranged in

each configuration, is reported in Figure 17. The grey

blocks represent radiators, chiller, battery and

powertrain.

An outline of the three configurations is given below:

 Config 0 All components in series to cool

battery and powertrain in a single system (Figure

17a). This configuration is suitable for low heat

rejection requirements of both battery and

powertrain with moderate ambient temperature;

 Config 1 Components in separate loops (Figure

17b) to independently cool battery and powertrain.

This first “two-loops” configuration caters for

high battery heat rejection and medium powertrain

heat rejection requirements with medium and high

ambient temperatures;

 Config 2 Components in separate loops (Figure

17c) to cool independently the battery and

powertrain. This second “two-loops” configuration

caters for medium battery heat rejection and high

powertrain heat rejection requirements with

medium and high ambient temperatures.

Figure 17a. Thermal system configuration 0

Figure 17b. Thermal system configuration 1

Session 5A: Automotive II

DOI
10.3384/ecp17132171

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

175

Figure 17c. Thermal system configuration 2

By monitoring the battery and powertrain coolant

temperatures, the best configuration among the three

choices is continuously selected by the control logic

that switches from one configuration to another

through two 4-way valves.

When either the battery or the powertrain coolant

temperature approaches the limit values, a gradual

power derating is applied.

The amount of coolant in the system plays an

important role as it affects the thermal inertia and

therefore the time before reaching the maximum

temperature values. More coolant in the system,

allows running in unstable conditions (i.e. extreme

acceleration) for longer periods of time, before the

control logic starts to degrade power.

This effect is shown in Figure 18, where the

temperatures (considering coolant quantities of 8l and

24l in the system) are calculated for the same heat

rejection profile.

Figure 18. Coolant temperature sensitivity with coolant

volume.

5 Results

The results reported in Figures 20-22 show the

comparison between the variable thermal system

architecture defined by this activity and three different

fixed architectures (config 0, 1, 2 of Figure 17) with

the same radiators and chiller of the variable thermal

system. The driving cycle considered (Dimensioning

Cycle) is confidential; it was developed to represent an

aggressive use of the vehicle in terms of cooling

requirements, Figure 19 summarizes the main input

and output. A maximum available cooling power of 3

kW is considered for the chiller. The vehicle range is

calculated with and without considering the power

consumption due to the thermal components (fans,

pumps and compressor). The impact of the thermal

considerations of the system results in a roughly 8%

decrease in vehicle range.

Figure 19. Dimensioning Cycle, input and output,

variable thermal system architecture

The vehicle speed profile achievable with the

variable thermal system architecture matches the

Dimensioning Cycle speed profile (input) much better

than the one provided by a fixed architecture, which

needs more power derating (Figure 20-21). The

performance gain of the variable thermal system

architecture could be increased by optimizing the

control logic.

Figure 20. Dimensioning Cycle, Tout motor coolant,

variable vs fixed thermal system architecture

Powertrain and Thermal System Simulation Models of a High Performance Electric Road Vehicle

176 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132171

Figure 21. Dimensioning Cycle, Tout battery coolant,

variable vs fixed thermal system architecture

 Figure 22 shows the battery cell’s temperature

profile, achieved with the variable thermal system

architecture in comparison with the profiles achieved

with the fixed architectures.

Figure 22. Dimensioning Cycle, T battery cell, variable

vs fixed thermal system architecture

 Figure 23 shows that the battery cell temperature is

higher than the coolant temperature because of the

thermal conductance of the cell.

Figure 23. Dimensioning Cycle, T battery cell vs T out

battery coolant, variable thermal system architecture

 The thermal system configuration, managed by the

control logic, changes during the simulation to best

cope with the cycle requirements (Figure 24).

Figure 24. Dimensioning Cycle, thermal system

configuration, variable thermal system architecture

 The total mechanical power (front motor + rear

motors) required to perform the Dimensioning Cycle is

reported in Figure 25.

Figure 25. Dimensioning Cycle, total power (front +

rear_1 + rear_2) @ outlet powertrain, variable thermal

system architecture

 Figure 26 shows that for low acceleration levels, the

cooling demand from the powertrain is greater than the

cooling demand from the battery; at high acceleration

levels the opposite is true.

Figure 26. Dimensioning Cycle, powertrain heat rejection

(front + rear_1 + rear_2) vs battery pack heat rejection,

variable thermal system architecture

Session 5A: Automotive II

DOI
10.3384/ecp17132171

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

177

 Further analyses were performed on the

homologation cycles US06 and NEDC where power

derating is not required. All the simulations are

performed considering the same SOC start (0.95) and

SOC end (0.15).

 The homologation cycles are generally of low

thermal demand, consequently the chiller is typically

not necessary and a variable thermal system not

required. In the real world, or considering more

aggressive cycles, the advantages (energy saved)

related to the introduction of a variable system

architecture (with Chiller) could represent a noticeable

increase of the range (up to 15 km), to further

minimize the power derating as reported for the

dimensioning cycle.

 Figure 27 summarizes the main input and output

for the US06 Cycle.

Figure 27. US06 Cycle, input and output, variable

thermal system architecture

 Figure 28 shows that the vehicle speed matches

the US06 speed profile (input) without derating.

Figure 28. US06 Cycle, reference speed profile (input) vs

vehicle speed, variable thermal system architecture

Figure 29 reports the motor outlet coolant

temperature in the US06 cycle.

Figure 29. US06 Cycle, Tout motor coolant, variable

thermal system architecture

Figure 30 reports the battery outlet coolant

temperature and the battery cell temperature in the

US06 cycle, the chiller is turned off.

Figure 30. US06 Cycle, T battery cell vs T out battery

coolant, variable thermal system architecture

 Figure 31 summarizes the main input and output

for the NEDC Cycle.

Figure 31. NEDC Cycle, input and output, variable

thermal system architecture

Figure 32 shows that the vehicle speed matches the

NEDC speed profile (input) without derating.

Figure 32. NEDC Cycle, reference speed profile (input)

vs vehicle speed, variable thermal system architecture

Figure 33 reports the motor outlet coolant

temperature in the NEDC cycle.

Figure 33. NEDC Cycle, Tout motor coolant, variable

thermal system architecture

Powertrain and Thermal System Simulation Models of a High Performance Electric Road Vehicle

178 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132171

Figure 34 reports the battery outlet coolant

temperature and the battery cell temperature in the

NEDC cycle, the chiller is turned off.

Figure 34. NEDC Cycle, T battery cell vs T out battery

coolant, variable thermal system architecture

 A weight sensitivity analysis has been performed

on the NEDC cycle; an increase of 10 kg reduces the

range by 2 km.

 The homologation cycles were also helpful for a

first validation of the system’s model, because the car

manufacturers tipically declare the vehicle’s range on

these cycles. A systems model with the architecture

and available data of a benchmark vehicle has been

developed, achieving range results on US06 and NEDC

cycles aligned with those declared by the benchmark

vehicle constructor.

 The last analysis reported (Figure 35) concerns the

total electric power needed to cool the battery during

the fast charge, considering a battery power supplies of

100 kW, 110 kW and 150 kW; these are representative

of the typical and maximum values used in the real

case for the fast charge of the electric vehicles.

 In all three cases analyzed the pumps and fans are

kept at max rpm, the chiller power is the power in

surplus at the radiator needed to keep the coolant

battery temperature below its limit.

Figure 35. Fast charge analysis, the total electric power

required to cool the battery is reported in red color

6 Conclusions and Further

Developments

The activity described in this paper was useful to

evaluate the potential of the simulation model and to

define the thermal system layout for a real case study.

The performance gains of a variable thermal system

architecture with respect to a fixed architecture have

been detailed.

 The model continues to support and evolve with the

case study and can be fully validated in the future with

real vehicle tests, as well as being used as a starting

point for future electric vehicle projects.

Ongoing work with this model to further support

the case study includes the following:

 Powertrain and thermal system control logic

optimization.

 Analysis of the battery heating required in low

ambient temperature conditions, which constitutes

another critical point in the design of Electric

Vehicles (Bouvy et al, 2012).

 Analysis, supported by experimental test, of the

fans and vehicle speed interaction for the air flow

rate across the radiators.

 Battery model with electrochemical features

development, which describes the battery physics

in detail (Schmitke et al, 2015).

 Interface with the vehicle multi-body model for

real time applications at Dallara Dynamic Driving

Simulator.

 Air conditioning system development with effects

on passenger human comfort.

 Active grill shutter model development (Batteh et

al, 2014).

References

J. Batteh, S. Chandrasekar and J. Gohl. Integrated Vehicle

Thermal Management in Modelica: Overview and

Applications. Proceedings of 10th International Modelica

Conference, pp. 409-418, 2014

C. Bouvy , P. Jeck, J. Gissing, T. Lichius, L. Ecksterin.

Holistic Vehicle Simulation using Modelica – An

Application on Thermal Management and Operation

Strategy for Electrified Vehicles. Proceedings of 9th

International Modelica Conference, pp. 263-270, 2012.

C. Bouvy, P. Jeck, S. Ginsberg, P. Jeck, B. Hartmann, S.

Baltzer and L. Eckstein. Holistic Battery Pack Design.

Aachen, pp. 367-380, 2012.

I. Krüger, A. Mehlhase and G. Schmitz. Energy

Consumption of Battery Cooling In Hybrid Electric

Vehicles. Proceedings of 14th International Refrigeration

and Air Conditioning Conference, 2012.

I. Krüger , A. Mehlhase and G. Schmitz. Variable Structure

Modeling for Vehicle Refrigeration Applications.

Proceedings of 9th International Modelica Conference,

pp. 927-934, 2012.

C. Schmitke and T. Son Dao. Developing Mathematical

Models of Batteries in Modelica for Energy Storage

Applications. Proceedings of 11th International Modelica

Conference, pp. 469-477, 2015.

Dassault Systèmes. Dymola 2017., 2016.

www.Dymola.com

Session 5A: Automotive II

DOI
10.3384/ecp17132171

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

179

Modelon. Heat Exchanger Library. Version 1.4.1, 2016.

www.modelon.com/products/modelicalibraries/heat-

exchanger-library/

Modelon. Liquid Cooling Library. Version 1.5, 2016.

www.modelon.com/products/modelicalibraries/liquid-

cooling-library/

Modelon. Vapor Cycle Library. Version 1.3, 2016.

www.modelon.com/products/modelica-libraries/vapor-

cycle-library/

Modelon. Vehicle Dynamics Library. Version 2.3, 2016.

www.modelon.com/products/modelica-libraries/vehicle-

dynamics-library/

Powertrain and Thermal System Simulation Models of a High Performance Electric Road Vehicle

180 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132171

Investigating the Effect of a Sonic Restrictor in the Intake of an

Engine

Maura Gallarotti Alessandro Picarelli Mike Dempsey

Claytex Services Ltd., Edmund House, Rugby Road, Leamington Spa, CV32 6EL, UK
{maura.gallarotti, alessandro.picarelli, mike.dempsey} @claytex.com

Abstract

The air induction system is one of the engine

subsystems that most influences fuel efficiency and

power generation, especially in restricted race

engine applications.
In this paper, the quasi-1D model of a sonic restrictor

is presented, together with its integration in an engine

model, in order to investigate the behaviour of the

engine power and torque when the choked condition is

reached.

The study shows how power and torque curves are

affected when a sonic restrictor is installed within the

intake system and outlines the need of detailed

simulations in a restricted engine development process,

to avoid steep engine power reductions at high speeds.

Keywords: sonic restrictor, choked flow, engine,

MVEM, intake manifold.

1 Introduction

The development of high-fidelity predictive models of

vehicle engines is one of the main objectives of

powertrain simulation engineers. Dymola is a

convenient software for vehicle and engine modelling,

since the underlying Modelica language is suited to

complex multi-domain systems.

However, as Dymola is mainly limited to 0D-1D

thermofluid systems, engineers can face some

intricacies in modelling the more complex flows

happening in engines. To get better results, CFD

simulations can be performed, but often at the cost of

losing the integration with the mechanical part of the

model and losing any real-time simulation capability.

This paper shows that although Dymola is not a

CFD code, it can handle the inherent non-linearities of

the nozzle flow that arise in the transition from the

subcritical to the choked state.

A sonic restrictor is a converging-diverging nozzle

installed in the intake system in order to limit the

maximum power output of the engine by limiting the

mass flow of air flowing into the cylinders.

In situations where the engine would require a

higher mass flow than the one allowed by the nozzle,

the constraint of sonic flow velocity at the throat limits

the mass flow and a shock takes place in the divergent

section of the nozzle, thus introducing strong pressure

losses that ultimately limit the engine power.

Sonic restrictors are being used in several

motorsport championships in order to equalize the

maximum power of the engines. Among the racing

series that make use of air restrictors are the Formula 3,

the Formula SAE, the FIA GT1 World Championship,

Le Mans Series and several others. Sometimes sonic

restrictors are also used in road applications for de-

rating purposes, mainly in motorbike engines.

In restricted engines, a reliable model of the air

induction system is of paramount importance, as the

flow in the sonic restrictor has direct effects on power

generation and fuel efficiency.

The challenge when modelling a converging

diverging nozzle lies in the asymmetric behaviour of

the flow before and after the shock, with equations for

the subsonic flow being very different from the ones

used for supersonic conditions.

If not implemented in an efficient way, such a

physical problem could trigger in Dymola several

events and non-linear iterations, making the model

computationally expensive.

2 The sonic restrictor model

The sonic restrictor is modelled in Dymola as a

component where steady momentum, continuity and

energy balances are performed. It uses the fluid

connectors from Modelica.Fluid (Casella, F. et al.,

2006) which make it fully compatible with the

Modelica Standard Library.

As in pipes, the pressures at inlet and outlet

determine the mass flow rate, the flow goes from the

higher to the lower pressure and a greater pressure

difference gives a higher mass flow.

For a pressure drop weaker than the critical one, the

flow accelerates in the converging section and

decelerates in the diverging one isentropically.

If the pressure at the throat equals the critical one,

the nozzle becomes choked and the sonic condition is

reached (see Equation 1, where is the critical

DOI
10.3384/ecp17132181

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

181

pressure and the inlet pressure). Being the speed of

sound the speed of propagation of small disturbances,

the Mach at throat cannot be higher than 1, as the flow

upstream the throat does not receive any information

about what is happening downstream.

Figure 1. Sonic restrictor.

(1)

If the pressure at the throat is further reduced, the

mass flow at the throat is limited to the critical value,

the flow becomes supersonic in the diverging section

and a shock occurs. The critical mass flow rate can be

found using Equation 2, where is the total pressure

and the total temperature.

(2)

For air, with =1.4, the critical pressure ratio (given

by Equation 1) is 0.528, meaning that in a nozzle, the

sonic condition is reached when the pressure at the

throat is lower or equal to 0.528 times the pressure at

inlet.

In all the other air ducts of the engine, the Mach is

much lower than 1 and the continuity equation for a

subsonic flow states that a decrease in area causes an

increase in velocity. However, if the flow becomes

supersonic, the flow behaviour changes and Equation 3

tells us that an increase in velocity is associated with an

increase in area. In fact, the flow accelerates in the

diverging section of a choked nozzle.

(3)

In a choked nozzle, the flow accelerates isentropically

from the inlet and its static pressure decreases

maintaining a constant total pressure, until a shock

occurs in the diverging section.

A shock is a discontinuity in the flow field across

which the flow abruptly slows down from a supersonic

to a subsonic speed while increasing the static pressure

with huge associated viscous losses that reduce the

total pressure.

The Mach numbers upstream (u) and downstream

(d) of the shock are related by Equation 4 (Anderson J.,

2002)

(4)

This equation states that the further along the nozzle

the shock occurs, the stronger it will be: as the Mach

upstream increases above 1, the normal shock becomes

stronger and becomes progressively less than 1,

decreasing the total pressure of the flow leaving the

sonic restrictor and entering the cylinders.

From a practical point of view, this means that the

section in which the shock will occur will influence the

total pressure of the flow entering in the cylinders.

The total pressures upstream and downstream the

shock are linked by Equation 5 (Anderson J., 2002):

 (5)

Figure 2. Discontinuity in the Mach number at the nozzle

outlet going from a subsonic (red curve) to a supersonic

(green curve) flow.

Figure 2 shows the Mach at the outlet of the sonic

restrictor both when the sonic condition is not reached

(red curve) and in case of shock (green curve). For a

given inlet pressure, if the throat pressure is higher

than the critical value, the flow remains isentropic,

while if the throat pressure decreases further, the sonic

condition is reached and the outlet Mach decreases

drastically.

Investigating the Effect of a Sonic Restrictor in the Intake of an Engine

182 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132181

Figure 3. Discontinuity in the mass flow going from a

subsonic (red curve) to a supersonic (green curve) flow.

Figure 3 shows the mass flow through the sonic

restrictor for a subsonic flow (red curve) and for a

supersonic flow (green curve).

The transition from the subsonic to the supersonic

condition has been implemented in Dymola avoiding

the use of if statements, as conditional expressions can

trigger events. The mass flow rate through the sonic

restrictor has been defined as the minimum value

between the critical mass flow rate and the value from

the isentropic solution using the operator min.

In case the sonic condition is not reached, the mass

flow rate can be calculated using Equation 6:

 (6)

For the chocked condition, the mass flow rate can be

calculated using Equation 2.

In the same way, the Mach at the outlet of the

sonic restrictor has been defined as the minimum value

between the one reached in case of shock and the one

in case of an isentropic solution, avoiding the use of

conditional expressions.

The Mach at the outlet in case the sonic condition

is not reached can be calculated using the definition of

total pressure (Equation 7), assuming that

 .

 (7)

When the shock occurs, the Mach at the outlet can be

calculated using Equation 8, that can be derived from

Equations 2 and 6:

 (8)

In this way, the solution will follow the continuous line

of figures 2 and 3, discarding the dotted parts without

using computationally expensive conditional

expressions.

As far as the energy balance is concerned, the total

temperature has been assumed to be constant between

inlet and outlet.

3 The engine model

The sonic restrictor was integrated in an engine model

developed using the Engines library (Picarelli, A. et al.,

2009; Roberts, N. et al., 2013). A 0.6 L motorcycle-

derived four-cylinder naturally aspirated spark ignition

engine was used.

A MVEM (Mean Value Engine Model) was used in

place of a more detailed CAREM (Crank Angle

Resolved Engine Model) in order to be able to focus on

the effects of the sonic restrictor on the average air

mass flow rate rather than on an oscillating value.

Figure 4. Engine test model: 1-Engine, 2-Engine Control

Unit, 3-Rig Controller, 4-Engine coolant system, 5-Dyno.

1

2 3

4 5

Session 5A: Automotive II

DOI
10.3384/ecp17132181

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

183

Figure 4 shows the test rig, where the engine is

connected to a dyno (5) and controlled by the ECU (2).

The engine is run on a dynamometer and controlled to

ramp up from around 5000 rpm to 11000 rpm with

wide open throttle in order to generate the full load

curve. To achieve this, the rig controller (3) specifies

the throttle opening.

Figure 5. Engine model: 1-Intake, 2-Exhaust, 3-Camshaft

4-Timing belt, 5-Cylinder block, 6-Crankshaft.

Figure 5 shows the engine model, with the intake

system (1), the exhaust system (2), the camshaft (3),

the timing belt (4), the cylinder block (5) and the

crankshaft (6).

Having used a MVEM in place of a CAREM, the

camshaft and the timing belt models are empty, but

they can be replaced with detailed models in case a

CAREM engine is used.

Figure 6. Intake model: 1-Air filter, 2-Throttle, 3-Intake

manifold with sonic restrictor.

The intake system is shown in Figure 6 and consists of:

- The air filter (1) modelled with a pressure loss

characteristic curve

- The throttle (2), modelled with an orifice also

capable of modelling the choked condition. If the

throttle is almost closed, the pressure ratio across it

can be higher than the critical value (0.528) and

the choked condition can be reached. Also in this

case, in the same way as for the sonic restrictor,

the air flow rate at a given throttle position will be

independent of manifold pressure and engine

speed.

Having tested the engine at WOT (wide open

throttle), there is no risk that the flow could

become choked in the throttle, influencing the flow

in the sonic restrictor.

- The intake manifold (3), containing the sonic

restrictor and the plenum volume.

The sonic restrictor was placed after the throttle and

before the plenum, as shown in Figure 7.

Figure 7. Intake manifold model: 1-Sonic restrictor, 2-

Plenum.

To compute the cycle-averaged torque, the Mean Value

combustion model uses IMEP maps where the output

is a function of engine speed and plenum pressure,

with corrections for air fuel ratio, spark timing and cam

timing. It’s clear that, by influencing the plenum

pressure, the sonic restrictor can yield a different

engine torque characteristic.

The mass flow rate through the engine is calculated

using Equation 9, as a function of intake air

temperature, engine speed and plenum pressure

(Hendricks et al., 1996).

 (9)

Where n is the engine speed [rpm], the

volumetric displacement of each cylinder [m
3
], the

intake manifold pressure, R the specific air gas

constant [J/Kg/K] and T the fluid temperature [K].

The coefficients and are function of speed and

are provided in tabular format using experimental data.

1 2

2 3 1

h

v

v

1
2

3 4

5

6

Investigating the Effect of a Sonic Restrictor in the Intake of an Engine

184 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132181

Figure 8. Cylinder block: 1- Piston head, 2-Combustion

block, 3-Piston mechanism.

4 Results

The sonic restrictor model was integrated on a 0.6 L

four-cylinder naturally aspirated spark ignition engine

in order to analyse engine power and torque in case of

choked flow.

Three different sonic restrictor throat areas were

tested, with a throat diameter ranging from 20 mm to

25 mm, increasing the throat area in each test by 25%.

The results are shown in the following plots where

At represents the case with a throat diameter of 22.4

mm, 0.75 At the case with a throat area 25% smaller

(throat diameter: 20 mm) and 1.25 At with a throat area

25% larger (throat diameter: 25 mm).

The inlet area has always been assumed to be the same

as the outlet one.

In all the three cases, the engine was run at WOT

from 5500 to 10500 rpm.

Figure 9. Boolean on the choked condition, true means

that the restrictor is choked.

First of all, Figure 9 shows that in two of the 3

analysed cases the sonic condition was reached, while

for the largest throat area (1.25 At) the flow remained

always subsonic.

For a throat diameter of 20 mm (0.75 At), the

choked condition was reached at 8760 rpm, while for a

throat area 25 % larger the choked flow was reached at

9450 rpm (a speed around 8% higher).

Figure 10. Total pressure at the inlet and the outlet of the

sonic restrictor.

In the case of the largest throat area 1.25 At, the

flow through the nozzle was isentropic and the total

pressure across the sonic restrictor remained constant

as shown in Figure 10, where the total pressures at the

inlet and outlet of the sonic restrictor are plotted.

Figure 11. Mach at the sonic restrictor throat.

1

2

3

Session 5A: Automotive II

DOI
10.3384/ecp17132181

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

185

The Mach at throat reached 0.8 at 10500 rpm, the

engine torque, the engine power and the engine air

mass flow rate followed the same trends as in a non-

restricted engine.

The engine torque reached its maximum at around

9000 rpm, the engine power reached its maximum at

around 10000. At 10500 rpm the engine torque was

already decreasing relatively steeply, while the engine

power had just started to decline.

The mass flow rate increased following the engine

speed ramp, as shown in Figure 14.

Figure 12. Normalised engine torque.

Figure 13. Normalised engine power.

For a throat area At, the sonic condition was reached

at 9450 rpm, as shown in Figure 9.

 Seemingly surprisingly, both the engine torque and

the engine power decreased substantially at higher

speeds (by around 18% with respect to the non-choked

condition at 10500 rpm). This happens because of the

sonic restrictor losses associated to the shock. As the

static pressure required by the engine downstream the

sonic restrictor decreases, the nozzle needs a stronger

shock to keep a constant mass flow, and the stronger

shock corresponds to increased total pressure losses, as

shown in the total pressure chart in Figure 10.

After the sonic speed was reached at throat, the mass

flow rate was limited to the choked value and at 10500

rpm the mass flow rate was 13% lower than in the non-

choked case.

Figure 14. Normalised engine air mass flow rate.

Figure 15. Volumetric efficiency.

By reducing the throat area a further 25%, the

simulations showed that the shock was reached at a

lower engine speed (8760 rpm).

An important result to outline is that the shock was

stronger in case of a smaller throat area, as shown by

the greater total pressure drop in Figure 10 (from 1 bar

to 0.73 bar at 10500 rpm).

At 10500 rpm both the engine torque and the engine

power were around 40% lower than in the case without

shock.

For the same speed, the engine air mass flow rate

was around 30% less than in the case without shock.

Investigating the Effect of a Sonic Restrictor in the Intake of an Engine

186 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132181

The drop in efficiency and power for the smallest

throat area is clear also from Figure 15, where the

volumetric efficiency is plotted.

The case with the smallest throat area shows clearly

that the engine should not operate at speeds much

higher than the one at which the sonic condition is

reached. This suggests that the rev limiter should be set

not far from the engine speed at which the air flow

through the sonic restrictor becomes choked.

Furthermore, for a given displacement, engines with

a higher torque at lower rotational speeds are likely to

produce a higher power before the sonic restrictor

becomes choked, thus bringing an advantage over ones

optimised for higher regimes.

5 Conclusions

In this paper a sonic restrictor was integrated in an

engine model to analyse the effect of choked flow

through a nozzle on the engine mass flow rate, engine

torque and engine power. Three cases with decreasing

throat areas were analysed to assess the effect of the

throat diameter on the shock intensity.

The full load curve showed that a considerable torque

and power drop was reached after the choked

condition, highlighting the need of limiting the

maximum engine speed around the one at which the

nozzle starts to be choked.

The study shows how Dymola can be used to

analytically solve the fluid mechanics in engines. Of

course, a quasi-1D code cannot solve phenomena such

as flow separation and boundary layer development,

but it can solve the shock and the compressible

chocked flow, making it a good starting point for

testing and development of restricted engines.

References

Casella F., Otter M., Proelss K., Richter C., Tummescheit H.,

The Modelica Fluid and Media library for modeling of

incompressible and compressible thermo-fluid pipe

networks, Proceedings of the 5th Int. Modelica Conference,

Vienna, 2006.

Anderson J., Modern Compressible Flow: With Historical

Perspective (Aeronautical & Aerospace Engineering),

McGraw-Hill Education; 3rd edition, 1 Aug. 2002.

Hendricks, E., Chevalier, A., Jensen, M., Sorenson, S. et al.,

Modelling of the Intake Manifold Filling Dynamics, SAE

Technical Paper 960037, 1996, doi:10.4271/960037.

Picarelli, A., Dempsey M., Investigating the multibody

dynamics of the complete powertrain system, Proceedings

7th Modelica Conference, Como, Italy, 2009. doi:

10.3384/ecp09430085

Roberts, N., Dempsey M., Picarelli A., Detailed Powertrain

Dynamics Modelling in Dymola – Modelica, IFAC

Proceedings Volumes, 2013, doi: 10.3182/20130904-4-JP-

2042.00111

Session 5A: Automotive II

DOI
10.3384/ecp17132181

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

187

188 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Engine thermal shock testing prediction through coolant and
lubricant cycling in Dymola

Eduardo Galindo1 Rodolfo Soler1 Alessandro Picarelli2 Victor Avila2

1AVL IBERICA SA - VALLADOLID, Spain, {Eduardo.Galindo, Rodolfo.Soler}@avl.com
2Claytex Services Ltd. – Leamington Spa, UK, {alessandro.picarelli}@claytex.com

Abstract
In this work, an acausal multi-domain physical system
model is used to study the interaction between an
internal combustion engine operation and a range of
cooling and lubrication system thermal cycling
scenarios. Although the model can be used for
modelling a wide range of scenarios, this paper
concentrates on the application of engine thermal shock
test dynamics prediction through coolant and lubricant
cycling. An internal combustion engine is load-
controlled on a dynamometer. Coolant and lubricant
temperature transients are imposed on the engine
system. Using freely available and commercial
Modelica Libraries within the Dymola environment, the
systems integration of the coolant rigs, lubricant rigs and
engine is achieved. The rigs and the controllers are
validated against test data to create predictive models of
such systems for test virtualisation. This allows the user
to develop and define control strategies for the tests
from desktop, prior to engaging in laboratory tests.

Keywords: Engine testing, thermal-shock, control
system development

1 Introduction

Engines need to work under a variety of temperature
conditions. Some engine failure modes are caused by
temperature cycling which in turn causes thermal
expansion and contraction of the components. This
phenomenon can induce mechanical stresses which in
extreme cases can lead to component failure.
This paper builds on (Picarelli et al, 2014) and seeks to
validate engine coolant and lubricant conditioning rigs
for virtualisation of test scenarios in order to predict the
system behaviour and to tune the control systems prior
to the real testing taking place.
In addition to previous tests, where only the engine
coolant was conditioned, in this paper we present
thermal shock testing where the dynamics of the
lubrication system are also included.

2 Thermal shock testing
Many manufacturers carry out thermal shock tests to
understand and prevent component failure, as well as to
accelerate durability testing of engines and engine
components, including cylinder-head gaskets.
Thermo-mechanical fatigue is the term used to describe
the type of fatigue in which temperature is varied
throughout a cycle. The maximum tensile strain occurs
at the same time as the maximum temperature.
Maximum compressive strain occurs at the minimum
temperature. The main factor causing thermos-
mechanical failure is a large number of temperature
cycles. As in fatigue testing, it is possible to accelerate
thermal cycling failure modes by increasing the
frequency or amplitude of the thermal cycles.
These thermal tests are used to simulate critical
conditions inside the engine by circulating a coolant
flow with very large temperature gradients occurring
over short periods of time (e.g. 30ºC to 120 ºC). This
cycle is repeated a several times.
The main task performed in this study is simulation of
repeated hot/cold thermal cycles. The engine is cycled
between rated power and idle speed. The coolant and
lubricant are also cycled between hot and cold
temperatures by means of external conditioning units.

Figure 1. Example of an engine thermal shock cycle.
Engine speed shown in red and coolant outlet temperature
from engine shown in blue (ºC).

DOI
10.3384/ecp17132189

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

189

The temperature gradient in the warm up and cooling
down cycles is critical to generating the mechanical
stresses applied to the engine due to the thermal shock.
These kinds of tests allow manufacturers to reproduce
the whole life of an engine in about 500 hours for a light
duty passenger car and 2000 hours for a heavy-duty
vehicle. Manufacturers expend great efforts in obtaining
a good correlation between specific tests and the actual
lifetime of an engine. Once the correlation is completed,
the test must be performed as accurately as possible to
preserve this correlation.

Figure 2. Cracks in the valve seat produced by thermal
stress.

3 The need for a simulation model
An accurate and representative simulation model allows
us to reduce engineering time for the prediction of new
tests and design of new systems giving us the ability to
predict the behaviour of a given system before
manufacturing it.
This simulation ability also allows us to change the test
or equipment parameters and foresee their impact on the
results. This way, we can have a better view on how the
system will behave, so that any specific issue or change
can be adapted quickly and easily.
Furthermore, the simulation model has already
predicted some unexpected and unwanted behaviours
such as pressure spikes, giving the opportunity to make
the necessary corrections early enough, thus avoiding
additional engineering efforts and potential system
failures.

4 Case Study
The thermal shock rig system in this study was intended
to test engines from 60 kW to 120 kW, with an engine
mass of 90kg to 120 kg. This power was limited by a
maximum torque of 130-250Nm and a maximum speed
of 6700rpm.
The actual engine used in the real test was a 4-cylinder
gasoline engine with a maximum torque of 130 Nm and

a maximum speed of 5600 rpm, yielding a maximum
power of 76.2kW.
The physical model is tested in two relatively different
scenarios, which are as follows:

1. Thermal-shock test with low temperature gradients
for heating and high temperature gradients for cooling,
running between 110ºC and -30ºC. This test also
includes the cooling of the engine’s oil down to -20ºC.
In advance we’ll refer to this test cycle as
“Thermalshock 1”:

Figure 3. Temperature path for the engine coolant (black)
and oil (red) for Thermalshock 1.

Figure 4. Throttle position of the engine for the
Thermalshock 1 (solid line) and engine speed (dashed
line).

2. Hot and cold test, with low temperature

gradients for both cooling and heating, but with high
frequency heat transients produced by quick variation
on the engine throttle position. Hereon we will refer to
this test cycle as “Thermalshock 2”.

Engine thermal shock testing prediction through coolant and lubricant cycling in Dymola

190 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132189

Figure 5. Temperature profile for the engine coolant and
oil for the Thermalshock 2.

Figure 6. Throttle position of the engine for the
Thermalshock 2 (solid line) and engine speed (dashed
line).

These two tests are important in order to check the
durability of their internal combustion engines, specially
focused on the endurance of the head gaskets which are
particularly affected by the thermal stress.

4.1 Thermal Shock Equipment Concept
The equipment consists of several fluid conditioning
devices all connected to each other and/or the engine
(Figure 7). Given that the thermalshock test itself has
two well differentiated parts (hot part and cold part),
there are two cool-ant conditioning devices and a further
device that switches the connection of the engine
between them.
Since the oil has to be conditioned too, the engine is
connected to a heat exchanger on the gallery
connections (the engine’s oil pump is responsible for the
flow), and to an oil cooling device on the sump.

Figure 7. Complete system’s simplified P&ID (Piping and
Instrumentation Diagram).

4.2 Thermal Shock Testing Equipment

Coolant conditioning unit:
Composed of a pump and a 3-way valve that directs the
coolant through a heat exchanger (for cooling) or a
heating resistance (for heating).

Switch over valves:
A device composed of several 2 way pneumatic valves
that allows the engine to be connected either to the
coolant conditioning unit (Consyscool) or to the
thermalshock chiller. This way the valves connect the
engine to the coolant conditioning unit during the hot
phase, and to the chiller during the cold phase.

Thermalshock chiller:
Composed of a water chiller specially designed and built
for engine thermalshock testing. A pump flows the
coolant from the inertia tank to the engine and to the oil
cold heat exchanger.

Session 5A: Automotive II

DOI
10.3384/ecp17132189

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

191

Figure 8. Thermalshock chiller picture showing the large
water tank on the left and the controllers and valves on the
right hand side.

The design of this chiller is specially customized for
engine testing, with special features like a on-standby
design that allows the system to be ready for a
thermalshock at any time (Figure 8).

Figure 9. Thermalshock chiller controller screen.

The controller of the chiller is custom-designed for the
engine testing process, with several programming
parameters, interface with the testing facilities and
remote control for operation and diagnosis (Figure 9).

High temperature oil conditioner (see Figure 12):
Consisting of a plate heat exchanger which is connected
to a conditioning unit (similar to the engine coolant
conditioning unit). The oil is cooled by means of a cold-
water heat exchanger.

Low temperature oil conditioner (see Figure 12):
Consisting of an oil pump (variable speed), and a heat
exchanger cooled by the same chiller used for cooling
the engine coolant.

5 Model Development

5.1 Engine Model

The engine type used on the rig is a 1.8l turbo-petrol
inline 4-cylinder engine.
The engine model in these tests is a thermal
representation of the real engine which includes heat
rejection from combustion to the coolant, lubricant and
the engine’s thermal mass.

The engine heat release to coolant and lubricant has
been defined as a fraction of the crank power and varies
depending on engine speed and load. The fraction value
is determined from steady state tests by calculating the
power required for the coolant and lubricant temperature
changes between the inlets and outlets of the engine
circuits. The fluid paths within the engine are
represented by a single pipe having average diameter of
the passageways and the measured total engine pathway
volume and surface area. The pipe dimensions are
adjusted to achieve the required flow velocities through
the engine.

The engine thermal mass used in this study is a lumped
thermal mass and is not split by subsystem. More
detailed models are available within the Claytex
Engines library for studies which require higher level of
engine thermal mass discretisation. The engines library
was used in a previous study (Dempsey et al, 2009;
Dempsey et al, 2012; Dempsey et al, 2013; Picarelli et
al, 2014).

The coolant pump of the engine is replaced by electric
coolant pumps within the rig which can be controlled to
deliver specific flows or flow profiles. The lubricant
pumped by the engine lubricant pump itself when the
engine is running. An electric lubricant pump within the
rig is used when the engine is switched off.

The heat transfer from the engine to the coolant is
calculated by means of a Nusselt Number correlation,
calculated specifically for this engine. The Nusselt
Number (Nu) correlation is then used within the pipe
model which represents the coolant path within the
engine. Due to the fact that the thermal mass of the
engine is of lumped type, the volume model used to
represent the mass of coolant within the engine has one
thermal node. The same Nu correlation can be
implemented with multiple node fluid pipes derived
from the Modelica.Fluid library should a more detailed
thermal discretisation be required and will be the subject
of further work when engine CAD data becomes
available. This will also increase the predictive
capabilities of the model. The exact same Nusselt

Engine thermal shock testing prediction through coolant and lubricant cycling in Dymola

192 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132189

Number heat transfer approach is used for the heat
exchangers in the rig model described in section 5.2.

5.2 Rig Model

The thermal shock rig must be able to supply
preconditioned coolant to two different flow
conditioning units and by means of a switch valves
device controls the engine fluid temperatures. The rig
described in this paper uses a 2000 litre coolant tank
kept at temperature with fixed set-points and an external
source which supplies water permanently. The water
tank is kept at constant ambient temperature and the
coolant tank is kept at low temperature, around -30 ⁰C
(Figure 10. Complete thermal shock rig with water tank
(1), coolant tank (2), Mean Value engine model (3)).
The tanks are required to also smooth out and absorb
any temperature fluctuations in the rig, in addition to
these two tanks, there are also some small expansion
tanks included throughout the rig to absorb any possible
pressure, temperature and volume fluctuations.

Figure 10. Complete thermal shock rig with water tank (1),
coolant tank (2), Mean Value engine model (3), coolant
conditioning (4), lubricant conditioning (5) and hot/cold
switchover valve (6).

At particular points in the cycle, the switchover valves
(Figure 11) model and the internal valves of the
conditioning units before described, are controlled to
channel either hot or cold coolant through the engine.
These changes in coolant and lubricant temperatures
yield the required thermal shock for the engine to
experience and operate through.

Figure 11. Switch over valve model used in the rig to lead
the coolant from the different heat exchangers through the
engine.

Both lubricant conditioning units (see Error!
Reference source not found.) are included in the same
model (Figure 12. Oil conditioning unit DiagramFigure
12).

Figure 12. Oil conditioning unit Diagram: High
temperature conditioner (1), plate heat exchanger (1a), cold
water heat exchanger (1b), low temperature conditioner (2)
and electric pump (3).

The rigs are modelled using the Modelica.Fluid and
Modelica.Media libraries (Casella et al, 2006) with
some customized components from the Claytex library
which incorporates advanced functionality within the
components both for visualization and enhanced model
efficiency. The fluids used match that of the rig in terms
of properties and are a mixture of 50% Ethylene Glycol
and water with linear compressibility for the coolant

1

2

3

5

4 6

1b

1a

3

Session 5A: Automotive II

DOI
10.3384/ecp17132189

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

193

side and Oil with constant compressibility for the
lubricant side.

The controller for the tank cooler is of on/off type and
starts to cool with 40.4 kW of power when the tank fluid
temperature has deviated from the set point by +1 ⁰C.

Figure 13. PID controllers for controlling the coolant and
lubricant conditioning units and chiller tank to maintain the
corresponding fluid temperatures close to the set points.

To control the 3-way valves, within the fluid
conditioning devices, a Modelica.StateGraph model was
used which is shown below (Figure 14). The valves are
operated to route the coolant and the lubricant through
the heat exchangers or bypassing them to restore desired
temperature targets at particular points in the cycle.
The same type of StateGraph model controls the throttle
pedal position which is cycled from 0-100% in a similar
phase to the engine speed (Figure 15).

Figure 14. StateGraph controller for the internal coolant
conditioning unit 3-way valve.

Figure 15. Resulting accelerator pedal position (top) and
engine speed (bottom) for the thermal shock test.

Engine thermal shock testing prediction through coolant and lubricant cycling in Dymola

194 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132189

6 Results

6.1 Initial Results from Dymola

Before the actual rig commissioning tests were
undertaken, the Modelica system model was already
finished, and showing the following expected results:

Thermalshock 2:

Figure 16. Dymola initial Thermalshock 2 stability
estimated as ±0.6ºC with only low frequency and
amplitude oscillations.

 Thermalshock 1:

Figure 17. Dymola initial Thermalshock 1 stability
estimated as ±0.5º C with only low frequency oscillations
on the hot phase an asymptotic cooling up to -30ºC on the
cold phase.

6.2 Experimental Results

After the commissioning of the actual real life system,
the following data was gathered:

Thermalshock 2 experimental results:

Figure 18. Real Thermalshock 2 results, with higher
frequency oscillations and a maximum amplitude of ±3ºC.

At first sight it was seen that the expected accuracies
and oscillation frequencies were underestimated.

6.3 Model Adjusting

Since the same system model was used for both tests,
the model validation strategy was as follows:
For the thermalshock 2 tests, the real PID control
parameters used for the test were recorded. Then, these
PID parameters were introduced to the Dymola model.
Next, the following parameters where adjusted in order

Session 5A: Automotive II

DOI
10.3384/ecp17132189

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

195

to have similar paths on the engine outlet coolant
temperature:

 Engine thermal mass and heat transfer
coefficient

 3-way valve actuation speed

The following parameters/model properties did not
require adjustment:

 Fluid properties
 Pipe/ducting geometries
 Bend losses
 Heat exchanger pressure drops
 Heat exchanger performance and thermal

coefficients
 Pump flow characteristics
 Pump loss characteristics
 Valve losses
 Engine combustion heat release
 Engine combustion heat release
 Engine inertia

The 3 tuned parameters had different effects on the
modelled outlet temperature of the system, and
modifying them one by one the following results were
achieved:

Figure 19. Adjusted Dymola model, running a
Thermalshock 2 test, with higher frequency variations and
maximum amplitudes of ±1.75ºC on the coolant outlet
temperature.

Although the maximum amplitudes measured in the
experiment and model results differed (larger in the
experiment results: ±3ºC vs. ±1.75ºC, the average
temperature and remaining oscillations we of similar
value: ±1ºC vs. ±0.8ºC.

6.4 Validation

After checking the model was running accurately
simulations on the Hot-Cold tests, all the tuned
parameters where frozen, thus obtaining a validated
mathematical model.

This model was then used for the Thermalshock 1 test,
with the following results:

Figure 20. Validated Dymola model, running a
Thermalshock 1 test, with higher frequency variations and
amplitudes of ±2.7ºC on the coolant outlet temperature on
the hot phase, and asymptotic cooling on the cold part.

Where the Thermalshock 1 experimental results were:

Figure 21. Real Thermalshock 1 results, high frequency
oscillations and amplitude of ±2.5ºC.

After model validation and calibration using the hot-
cold results, the results for the thermalshock tests were
much more realistic, proving that the model can be used
for any test made using the same system, regardless of
the test conditions.

Engine thermal shock testing prediction through coolant and lubricant cycling in Dymola

196 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132189

Figure 22. Comparison of the thermalshock 1 real results
(black) and the validated Dymola model (blue).

Further investigation is required to confirm the reason for
which the higher temperature oscillations in the model are
half those measured in the experimental results. Further
tuning of the valves pressure drops, hence flow speeds in
this operation mode might improve the discrepancy.

6.5 Lubricant Dynamics Validation

Despite the rig model being prepared to also simulate
lubricant conditioning and heating (

Figure 23), technical issues in the real rig suggested the
lubricant measurement data could have been
compromised, hence preventing detailed validation of
lubricant conditioning (Figure 24).

Figure 23. Example of the non-validated results for the
lubricant temperature (blue line), running Thermalshock 1
test. Throttle position is also displayed (red line).

Figure 24. Comparison of the Thermalshock 1 real results
(Orange) and the non-validated Dymola model (blue)

This validation will be the objective of a further
investigation in the future.

7 Conclusions

After adjusting the Modelica model parameters, the
simulation results were much more realistic. Even
though the system’s hysteresis/entropy is still a
parameter that cannot be simulated and produces non-
periodic oscillations, the more significant results such as
temperature accuracies, heating and cooling times are
correctly simulated and can predict an actual behaviour
of a system under different test scenarios with an
accuracy of ±0.5ºC.
The information about the engine’s thermal mass and
global heat transfer coefficient will be useful for future
projects with similar engines. Even with different
engines, these parameters are now a starting point for
estimating these values otherwise impossible to know.

References

Casella. F. et al. (2006) The Modelica Fluid and Media
library for modeling of incompressible and compressible
thermo-fluid pipe networks Modelica Conference, 2006

Dempsey M., and Picarelli A. (2009). Investigating the
multibody dynamics of the complete powertrain system.
Como, Italy: Proceedings 7th Modelica Conference.

Dempsey M., Picarelli A, Fish G. (2012). Using Modelica
models for driver-in-the-loop simulators. Munich,
Germany: Proceedings 9th Modelica Conference.

Dempsey M., Roberts N., Picarelli A. (2013) Detailed
Powertrain Dynamics Modelling in Dymola – Modelica.
IFAC-AAC conference Tokyo, Japan.

Picarelli A., Galindo E., Diaz G. (2014) Thermal shock
testing for Engines in Dymola. Lund, Sweden. 10th
Modelica Conference, 2014

Session 5A: Automotive II

DOI
10.3384/ecp17132189

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

197

198 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Template based code generation of

Modelica building energy simulation models

Christoph Nytsch-Geusen1 Alexander Inderfurth1 Werner Kaul1

Katharina Mucha1 Jörg Rädler1 Matthis Thorade1 Carles Ribas Tugores1
1Institut für Architektur und Städtebau, Berlin University of the Arts, Germany, nytsch@udk-berlin.de

Abstract
This contribution describes an approach for a template

based code generation for different detailed Modelica

models for building energy simulation (BES).

The information from several data sources, which

describe the building geometry, the building

construction, the building location and the building

itself, is used to fill a building data model. This

intermediate data structure is still independent of a

certain building simulation tool.

A new developed tool for template based code

generation (CoTeTo) uses the building data model and

combines it with a set of different code generators,

which are able to generate Modelica building models

with a different level of detail: Strong simplified low-

order building models for district energy simulation

with a large population of buildings, more advanced

multi-zone building models for building energy

simulation and 3D space resolved room models for a

detailed indoor climate analysis.

Three case studies for the mentioned building model

types demonstrate the code generation approach.

Keywords: building energy simulation, adapted model
level of detail, Modelica code generation

1 Introduction

The generation of machine-readable code usually

combines static and dynamic data sources. The static

part describes the keywords and syntactical

requirements of a computer language and builds a static

framework while the dynamic part injects real values

and structures from the runtime environment of the

code-generating application or from an external data

source. In the simplest case the application uses some

(potentially nested) print()-like statements. This

approach has some limitations because even the smallest

change in the output format requires access to the source

code of the application, programming skills and

potentially large compile cycles.

With the rise of dynamic web-sites a more flexible
technology was widely used and much improved: the

template engines. Such an engine is a program library

linked into an application, but the process of the code

generation is controlled by external text files. These

template files embed simple control structures and

placeholders in normal text and can be easily edited. The

concept is similar to the serial letter function in word

processing applications.

The idea of code generation for Modelica BES

libraries was first applied within the EnEff BIM project.

In this project the structured data of an IFC files were

used for the automatic generation of Modelica system

models, consisting of a HVAC sub-model and a strong

simplified building model (for more details see Thorade

et al., 2015).

This contribution is focused on code generation for

Modelica building energy models with different levels

of detail. Important information for the code generation

are the building geometries, the building topologies, the

building constructions, the building locations and the

behavior of the building occupants.

2 Template based code generation

A general approach for code generation of BES models

has to consider the heterogeneous data formats (data

sources) in the building industry sector and should be

able to generate models with a different level of detail,

which fits to the question of the simulation analysis.

Figure 1. Template based code generation of BES models

with a different level of detail

A set of data mappers transform the input data into a

common building data model. Dependent on the present
information within this data model one or more template

based code generators can produce Modelica BES

Generator 3 D

Generator 1 D

Generator 0 D

Building data modelData sources Data mapper Template based
code generator

IFC

JSON

MySQL
Database

Generated models

Building model

Room model

District model

Geometry

Topology

Construction

Ambient data

Building use

Type A

Type B

Type D

CityGML

Type C

CoTeTo

DOI
10.3384/ecp17132199

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

199

models for room simulation, building simulation or

district simulation (compare with Figure 1).

2.1 Data sources

In the building industry sector, there are different data

sources and data formats available, which can satisfy the

needs of the building energy simulation domain. On the

scale of single buildings, the IFC-Format in the version

IFC2x3 (IFC2x3, 2017) can be used and in near future

also the version IFC4 (IFC4, 2017). This format

represents the digital building model in a well-structured

form (the entire building, several spaces, walls,

windows etc.) in combination with a precise description

of the building geometry. Most of the architecture CAD

programs can export the IFC data format. It fits perfect

to the structure of a multi-zone-building model (building

model, thermal zones, building components) and the

precise geometrical data also allows the

parameterization of spatial resolved room models.

On the scale of city districts the CityGML format

(CityGML, 2017) and the GeoJSON format (GeoJSON,

2017) can deliver the necessary building parameter for

district energy models. Normally, GIS programs are

able to export one or both of these data formats with

simplified building geometries, which fits to the reduced

parameter sets of the low-order building models on the

district model scale. In this case, the challenge consists

in the data acquisition of huge populations of buildings

and not for a single building (Kaul et al., 2014).

In special cases, building parameter sets are also

available in data base formats, e.g. MySQL (Inderfurth

et al., 2017).

2.2 Data mapper

A data mapper is a specialized software module, which

is able to map a certain data source file format to the

format independent building data model (see paragraph

2.3). Two different data mappers were realized based on

Python up to now: the first data mapper can be used for

1-dim. multi-zone-building simulation and 3-dim. room

simulation and uses the IFC format as the data input.

The Python bindings of the IfcOpenShell-library

(IfcOpenShell, 2017) are used to read the IFC-files and

Python bindings of the OpenCascade-library

(pythonOCC, 2017) are used to transform in a second

step the geometrical and the topology data in a manner,

that they can be stored in the building data model. The

second data mapper was implemented for district energy

simulation and can read the GeoJSON-format. A third

data mapper for information input from SQL data bases

is under development.

2.3 Building data model

The building data model holds all the information,

which is necessary for the Modelica code generation.

This includes the data for the building geometry (full

geometrical description or simplified geometry), the

building topology (substructure of a building in thermal

zones), the used construction types (multi-layer

definitions), the definition of the building ambient data

(location, weather data) and the type of building use

(e.g. air change rates, set temperatures for heating and

cooling etc.). The building data model itself is

independent of the type of the data sources (but it has

functions for setting building parameters from data

sources) and also on the type of the code generator

(different code generators use the same function to get

building parameters from the building data model).

2.4 CoTeTo

To automate some of the required steps for the

generation and parametrization of Modelica code a

software tool (Code Templating Tool) was developed in

the context of the EnEff-BIM project (Thorade et al,

2015). CoTeTo (CoTeTo, 2017) comes with an open

source license and can be download from GitHub

(https://github.com/UdK-VPT/CoTeTo). It includes

pluggable input, filter and output components that cover

the process of data acquisition, preprocessing and output

using a template system. CoTeTo is implemented in

Python and can be used standalone or as a library

imported in Python applications. A command line

interface is provided for interactive usage or inclusion

in shell scripts. A GUI based on PyQt4 (PyQt4, 2017)

can be started as an application (see Figure 2Figure 1) or

included in PyQ4-based applications as a widget.

Figure 2. CoTeTo GUI for template based code generation

CoTeTo uses the Mako template engine (Mako,

2017) for the code generation step, but an experimental

interface to the Jinja2 engine (Jinja2, 2017) is

implemented as well.

2.5 Generators

CoTeTo documents (called generators) can be easily

edited and shared without deep programming

knowledge. A generator is stored in a folder structure or

a zip file containing plain text files. The idea of a

generator is to include all parts necessary to generate the

code for a defined target (like a certain Modelica

buildings library) form a defined source (like a special

file format or database structure).

Template based code generation of Modelica building energy simulation models

200 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132199

A generator depends on a so-called input API, which

is defined in a Python module. Some standard input

APIs are included in CoTeTo (CSV, JSON, XML, …),

but generators can define own input modules. Between

the data input and the output templates filter functions

can be called to preprocess the data structure. These

Python functions are defined in the generator.

The CoTeTo framework handles this conversion

process completely data-agnostic, the structure and

format of the data objects is defined by the input APIs,

generators and filter functions only.

2.6 Adaption to the BuildingSystems library

Based on the CoTeTo framework three code generators

for the Modelica BuildingSystems library

(http://www.modelica-buildingsystems.de) were imple-

mented. This library is being developed for the dynamic

simulation of the energetic behavior of single rooms,

multi-zone buildings or entire city districts (Nytsch-

Geusen et al., 2016). The simulation models of the

library describe the dynamic energy balance of the

building envelope under consideration of the building

geometry, the thermal properties of the building

construction, the ambient climate and the user behavior.

As the Modelica library IDEAS, AIX Lib and Buildings,

the BuildingSystems library uses as a core the same

Annex 60 Library, which was developed as a common

project from the authors of the four mentioned libraries

in the Annex 60 project (Wetter et al., 2015).

The predefined components of the BuildingSystems

library such as air volumes models, building

construction models, wall and window models, zone

models, low-order building models or ambient models

(compare Figure 3, Figure 6 and Figure 10) are the base

for the generated Modelica code. These model classes

include the physical description (energy and mass

balances, empirical equations etc.) and are instantiated

and parameterized by the code generator using the

information, which is stored in the building data model.

The following code shows as an example the Mako

code, which generates the Modelica records for the

definition of all multi-layered opaque constructions of a

building model:

% for con in constructions:

record ${con.name}

 extends OpaqueThermalConstruction(

 nLayers=${con.nLayers},

 thickness={

% for value in con.thickness:

 ${value}${',' if not loop.last else ''}

% endfor

 },

 material={

 % for value in con.material:

 ${value}()${',' if not loop.last else ''}

 % endfor

 });

end ${con.name};

% endfor

Based on the stored information in the building data

model the code generator generates for example the

code for three different building constructions:

record ConstructionFacade

 extends OpaqueThermalConstruction(

 nLayers=4,

 thickness={0.015,0.2,0.15,0.02},

 material={

 HighGradePlaster(),

 Concrete(),

 ExpandedPolystyrene(),

 HighGradePlaster()});

end ConstructionFacade;

record ConstructionInnerWall

 extends OpaqueThermalConstruction(

 nLayers=3,

 thickness={0.015,0.12,0.015},

 material={

 HighGradePlaster(),

 Kalksandstein1800(),

 HighGradePlaster()});

end ConstructionInnerWall;

record ConstructionBottom

 extends OpaqueThermalConstruction(

 nLayers=3,

 thickness={0.02,0.06,0.2},

 material={

 Wood(),

 WoodFibreInsulation(),

 Concrete()});

end ConstructionBottom;

3 Case studies

The case studies shall demonstrate the general

approach for template based Modelica code generation

for building energy simulation. The examples address

three different scales of building simulation: District

modelling, multi-zone modelling and single room

modelling.

3.1 City district

The first case study considers a city district in Berlin-

Kreuzberg, which was designated by the Berlin city

government as a redevelopment area (SenStadtWohn,

2016). In this context an analysis about the present

energy efficiency of the building stock within this areal

will be of interest. Because the whole district includes

144 buildings, the challenge for a district energy model,

which could describe the present energy demand,

consists in the data gathering of a huge parameter set

(geometries, U-values etc.) for all buildings.

Data source: In the former research project Open

eQuarter, a new layer-oriented geographic information

system (GIS) based method was developed to obtain

building sharp parameter data sets (Kaul et al., 2014).

For this purpose, different city maps with information

such as the building outlines, the number of stories, the

building age in combination with a data base with U-

values of the building elements were used, dependent on

the building age (Loga et al., 2015). The open source

GIS tool QGIS (QGOS, 2017) in combination with the

Session 5B: Buildings II

DOI
10.3384/ecp17132199

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

201

Open eQuarter plugin is able to export a GeoJSON file,

which includes all the necessary building parameters

(location, simplified building geometries, U-values)

gained and calculated by the mentioned data sources.

This GeoJSON file serves as the data input for the

building data model in Figure 1.

Data mapper: In a first step the building data model

takes the information through a data mapper from a

GeoJSON file, which contains beside the mentioned

building parameters also the building outlines for each

building as polygon points. A python filter function

calculates the centroids of these polygons to obtain the

local placements of the building models within the

district model. After this intermediate step all needed

building data are stored in the building data model and

can be used afterwards by the Modelica code generator.

Components: Two components of the

BuidingSystems library are used for the code generation

(see Figure 3). First, an ambient model, which describes

the climate boundary condition of the city district, in

particular the outside air temperature and the solar

radiation on the building surfaces. Second, a low order

building model (described in Nytsch-Geusen and Kaul,

2015), which is able to calculate the dynamic heating

and cooling demand for an individual building with a

small set of input parameters.

Figure 3. Components for district modelling.

Code generator: During the code generation the

building centroids are used for component related

annotations, which defines the graphical appearance of

the individual building models on a realistic position.

This is possible, because the positions of each individual

building were gained from geo-referenced maps

(compare with Figure 4). The excerpt of the generated

code shows the instantiation and parameterization of the

first two building models of the district, the ambient

models and the connections between the ambient model

and the two building models:

model DistrictModel

 extends Modelica.Icons.Example;

 Building1Zone0DDistrict building1(

 UValFac = 0.371,

 UValRoo = 0.269,

 UValGro = 0.4,

 UValWin = fill(1.575,4),

 fWin = 0.21,

 length = 8.127566,

 width = 5.318865,

 heightSto = 3.0,

 nSto = 4)

 annotation(Placement(transformation(

 extent={{0.0,0.0},{10.0,10.0}})));

 Building1Zone0DDistrict building2(

 UValFac = 1.83,

 UValRoo = 1.23,

 UValGro = 1.2,

 UValWin = fill(3.1,4),

 fWin = 0.294,

 length = 48.020794,

 width = 7.903955,

 heightSto = 3.0,

 nSto = 4)

 annotation(Placement(transformation(

 extent={{29.574,1.040},{19.574,11.040}})));

...

Ambient ambient(

 nSurfaces = 720,

 weatherDataFile = WeatherDataFile_Berlin());

equation

connect(ambient.toSurfacePorts[1:5],

 building1.toAmbientSurfacesPorts[1:5]);

connect(ambient.toAirPorts[1:5],

 building1.toAmbientAirPorts[1:5]);

connect(ambient.TAirRef, building1.TAirAmb);

connect(ambient.xAir, building1.xAirAmb);

connect(building1.airchange[1],airchange.y);

connect(building1.T_setHeating[1],TSetHeating.y

);

connect(building1.T_setCooling[1],TSetCooling.y

);

...

connect(ambient.toSurfacePorts[6:10],

 building2.toAmbientSurfacesPorts[6:10]);

connect(ambient.toAirPorts[6:10],

 building2.toAmbientAirPorts[6:10]);

 ...

end DistrictModel;

Figure 4. Generated Modelica district model with 144

low-order building models (the City map is taken from

OpenStreetMap, https://www.openstreetmap.org)

Template based code generation of Modelica building energy simulation models

202 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132199

3.2 Multi-zone building

The second case study demonstrates the code

generation of a multi-zone building model (a storey of

an office building) with thirteen thermals zones. It

includes eight single office rooms, each of them with the

same floor space, oriented to the North. Second, it has

a bullpen with a large south oriented window and a

smaller west oriented window. Beside the bullpen a

conference room is attached, which has also a south

oriented window. Further the story includes two sanitary

rooms without windows and a corridor, which divides

the north oriented by the south oriented rooms as a

thermal buffer zone.

Data source: The building was constructed in

Archicad 19 (see Figure 5) and afterwards exported as

an IFC2x3 file. This model includes a precise

description of the building geometry, topology and also

the information about the layered construction of the

building (used materials and the thicknesses of each

layer).

Figure 5. Building model, constructed in Archicad 19.

Data mapper: The data mapper reads the IFC file

and analyses the building geometry and modifies if

necessary the topology. For example, the south façade

of the building is constructed in the CAD tool as one

continuous element, but it has to be divided into two

individual thermal wall models, because these models

will have different thermal boundary conditions in a

multi-zone building model. After this analysis the

building data is stored in the building data model.

Components: Different models of the

BuildingSystems library (opaque and transparent

building element models, zone models, building

template models etc. and again an ambient model) are

used as the base for the code generation (see Figure 6).

Figure 6. Components for multi-zone modelling.

Code generator: In this case study the stored

information in the building data model is used twice:

First for the generation of the Modelica code of the

thermal multi-zone building model (see Figure 7) and

second for a corresponding C# script, which is able to

visualize the simulation results within a 3-dimensional

building model (see Figure 8), based on Unity 5

(Nytsch-Geusen et al., 2017).

Figure 7. Generated Modelica multi-zone building model

with 13 thermal zones.

The excerpt of the generated code shows the

instantiation of the individual opaque and transparent

building elements, thermal zones and their connections

to a multi-zone building model (model Building). In

the next step this “container class” is instantiated and

connected on a higher level together with the ambient

model to the Modelica system model (model

MultiZoneBuilding):

model MultiZoneBuilding

 extends Modelica.Icons.Example;

 record ConstructionFacade

 extends OpaqueThermalConstruction(

 nLayers=4,

 thickness={0.015,0.2,0.15,0.02},

 ...

 model Building

 extends BuildingTemplate(

 nZones = 13,

 surfacesToAmbient(nSurfaces = 43),

 nSurfacesSolid = 13, ...);

 // building zones

 ZoneTemplateAirvolumeMixed office1(

 V=36.0,height=3.0,

 nConstructions1=8,...);

 ...

 ZoneTemplateAirvolumeMixed bullpen(

 V=450.0,height=3.0,

 nConstructions1=11,...);

 // constructions elements

 WallThermal1DNodes wall11(

 redeclare ConstructionFacade

 constructionData,

 angleDegAzi = 180.0,angleDegTil = 90.0,

 nInnSur = 1, AInnSur = {window2.A},

 height = 3.0,width = 3.0);

 ...

 Window window2(

 angleDegAzi = 180.0,angleDegTil = 90.0,

 height = 1.5,width = 2.5, UVal = ...);

Session 5B: Buildings II

DOI
10.3384/ecp17132199

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

203

 equation

 // construction elements <-> zones

 connect(wall11.toSurfacePort_1,

 office2.toConstructionPorts1[1]);

 connect(window2.toSurfacePort_1,

 office2.toConstructionPorts1[5]);

 ...

 // construction elements <-> ambient

 connect(window2.toSurfacePort_2,

 surfacesToAmbient.toConstructionPorts[5]);

 connect(wall11.toSurfacePort_2,

 surfacesToAmbient.toConstructionPorts[6]);

 ...

 // construction elements <-> ground

 connect(bottom1.toSurfacePort_2,

 surfacesToSolids.toConstructionPorts[1]);

 ...

 end Building;

 Building building(

 show_TSur = true,nSurfaces = 182,nZones = 13);

 Ambient ambient(

 nSurfaces = building.nSurfacesAmbient,

 weatherDataFile = WeatherDataFile_Berlin());

equation

 connect(ambient.toSurfacePorts,

 building.toAmbientSurfacesPorts);

 connect(ambient.toAirPorts,

 building.toAmbientAirPorts);

 connect(ambient.TAirRef, building.TAirAmb);

 connect(ambient.xAir, building.xAirAmb);

...

end MultiZoneBuilding;

Figure 8. Generated multi-zone Unity building model for

visualization of simulation results.

Figure 8 shows the visualization of the simulated surface

temperatures of the multi-zone building model. The

following code is an excerpt of the automatically

generated C# script, which instantiates in Unity 5 this

3D visualization model:

using UnityEngine;

using System.Collections;

public class Surfaces : MonoBehaviour{

 public GameObject[] surfaces;

 private int nSur = 182;

 private Vector3 dirY = new Vector3(0,1,0);

 private Vector3 dy = new Vector3(0,0,0);

 private float[] rgb = new float[3];

 private float time = 0.0F;

 void Start(){

 sur = new GameObject[nSur];

 sur[0] = GameObject.CreatePrimitive(

 PrimitiveType.Cube);

 sur[0].name = "wall1_sur1";

 sur[0].transform.localScale =

 new Vector3(4.0F,0.01F,3.0F);

 sur[0].GetComponent<Renderer>().material=

 new Material(Shader.Find("Transparent/Diffuse"));

 sur[0].GetComponent<Renderer>().material.

 color = new Color(1, 0, 0, 0.3F);

 sur[0].transform.rotation =

 Quaternion.Euler(90.0F,90.0F,0.0F);

 sur[0].transform.position =

 new Vector3(0.0F,1.5F,-2.0F);

 sur[0].GetComponent<Collider>().enabled = false;

 dy = sur[0].transform.TransformDirection(dirY);

 sur[1] = GameObject.CreatePrimitive(

 PrimitiveType.Cube);

 sur[1].name = "wall1_sur2";

 ...

}

void Update(){

 time += 0.01F;

 float[] T_Surface = new float[]{

 // C# code for reading the simulation results

 // from the Modelica simulation

 ...

 }

 for (int i = 0; i < nSurfaces; i++){

 rgb = RGBMapper (T_Surface[i],10.0F,30.0F);

 sur[i].GetComponent<Renderer>().

 material.color=

 new Color(rgb[0],rgb[1],rgb[2],0.3F);}

 }

}

3.3 Single room

The third case study for template based code

generation was taken from the DFG Forschergruppe

1736 UCaHS (UCaHS, 2017). Within this project, the

indoor climate of a patient room in a Berlin hospital (see

Figure 9) was analyzed in detailed regarding the heat

stress risk during hot summer weeks.

Figure 9. Floorplan and 3D model of the patient room.

For this purpose, a discretized room model in

Modelica, a so called “zonal model”, which is based on

a finite-volume-method and a simplified imple-

mentation of the Navier-Stokes equations was

developed by Mucha (2017). A typical configuration of

this room model includes between 300 to 500 air volume

models, which are interconnected to each other by

coupling models, which consider the friction between

the air layers and the momentum transport. Caused by

the high number of air volume elements and their

necessary interconnections a manually failure free

configuration of a room model, especially for non-box-

shaped rooms would be nearly impossible.

Data source: At the moment the geometrical

description of the 3-dim. room geometry inclusive its

space discretization and also the physical parameter of

Template based code generation of Modelica building energy simulation models

204 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132199

the building construction are stored in a structuresd

JSON file.

DataMapper: The data mapper reads the building

parameter from the JSON file and stores it in the

building data model.

Components: Figure 10 shows the components of

the BuildungSystems library, which are used for the

configuration of the space-discretized room model: an

air volume model (energy and mass balance), a flow

element model (friction calculation within the air), a

heat conduction model (heat conduction within the air)

and an interface model for the boundary condition of the

room model (surface, wall and window models).

Figure 10. Components for room modelling.

Code generator: The code generator takes the

information from the building data model and generates

the Modelica code for the space discretized room model.

This case study clearly demonstrates the advantage of

the template based code generation approach. More than

500 air volume models have to be connected in three

room coordinates with flow element models. In

addition, different special cases have to be considered

during the code generation process, for example the

presence of furniture or the changing boundary

condition models at the borders of the air space (e.g. a

connection of a border air volume model with an

adjacent wall or opening model).

Figure 11. Generated discretized Modelica room model

with 532 air volume models.

Figure 11 shows a variation of a generated room model

of the patient room: one with a large cooling ceiling and

one with a small cooling ceiling, which covers only the

area of one of the patient beds. The correspondent

adaptions in the building data model, before the code

generation is repeated for the varied model are relative

simple in comparison to manually changes in the

generated code of the originally model.

The excerpt of the generated code exemplary shows the

instantiation of two of the air volume elements, the flow
and the heat conduction elements and the

interconnections of the components to the 3-

dimensional air flow model:

model Room

 ...

 FlowConnectionY floConY5710;

 ZoneHeatConductionY heaConY5710;

 AirElementThermal airEle6710(

 posX= vecX[10], posY= vecY[6], posZ= vecZ[7],

 T_start = T_inside,

 scalF = {scalX[10],scalY[6],scalZ[7]},

 enabled = false, BCwall_west = false,

 BCwall_east = true, BCwall_floor = false,

 BCwall_roof = false, BCwall_south = false,

 BCwall_north = true);

 ...

 FlowConnectionY floConY6710;

 ZoneHeatConductionY heaConY6710;

 AirElementThermal airEle7710(

 posX= vecX[10], posY= vecY[7], posZ= vecZ[7],

 T_start = T_inside,

 scalF = {scalX[10],scalY[7],scalZ[7]},

 enabled = false,BCwall_west = false,

 BCwall_east = true, BCwall_floor = false,

 BCwall_roof = true, BCwall_south = false,

 BCwall_north = true);

 ...

equation

 ...

 connect(floConX679.Port2, airEle6710.PortX1);

 connect(airEle679.PortHeatIntern,

 heaConX679.Port1);

 connect(heaConX679.Port2,

 airEle6710.PortHeatIntern);

 connect(airEle679.PortY2, heaConY679.Port1);

 connect(floConY679.Port2, airEle779.PortY1);

 connect(airEle679.PortHeatIntern,

 heaConY679.Port1);

 connect(heaConY679.Port2,

 airEle779.PortHeatIntern);

 connect(airEle779.PortX2, airEle779.Port1);

 ...

end Room;

3.4 Analysis and discussion

The three case studies are compared to each other with

the help of benchmark values, e.g. the line of codes, the

number of components or the number of connections

within the generated system model (see Table 1).

Table 1. Comparison of the three case studies.

 District Building Room

Lines of code 2,904 1,544 15,985

Number of

components
150 173 3713

Number of

connections
1,008 544 10,982

Number of

equations
435,765 40,434 132,712

Continuous

time states
1,872 305 2,481

Time-varying

variables
34,285 3,139 30,194

Session 5B: Buildings II

DOI
10.3384/ecp17132199

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

205

It can be stated, that building energy simulation analysis

in Modelica usually leads to large system models.

System models with 3,000 up to 16,000 lines of

Modelica code cannot be manually configured failure

free. The number of the components reaches from 150

to 3,713 and the number of connections from 544 to

10,982.

The generated models of Table 1 can be compiled and

simulated without any problems by Dymola 2017 FD01.

A test width a generated district model with more than

500 buildings illustrated the present limitations of the

Modelica simulation tools: Dymola 2017 FD01 was not

able to compile this large model, neither with a 64 bit

compiler.

In the case of the district model, information from the

GIS system can be used to generate a Modelica model

which is able to display the real location of the

individual buildings in the city map.

In the case of the multi-zone building model the input

data can be used to generate consistent program code for

two different purposes (Modelica and Unity code).

In the case of the room model, the code generator

enables configuration of 3 dimensional models, which

cannot be really modeled within a 2-dimensional

graphical editor of a Modelica simulation tool.

4 Summary and Outlook

The described new approach for a template based code

generation for Modelica building models was

successfully applied to three different case studies on

different room scales: district simulation, multi-zone

building simulation and room simulation. A building

data model, which stores the information in a structured

and compact manner in combination with a template

based code generator (CoTeTo), can avoid failures of

manually written large Modelica system models.

In the next development step, the described Modelica

code generators will be extended for special modelling

cases. For this purposes, Mako code for conditional code

generation will be introduced, which allows variations

of generated components and connections within the

Modelica system model.

The import of complex building or district data based

on IFC or CityGML can be potentially incomplete or

error prone. For this purpose, a graphical viewer incl. a

consistency check shall be developed in future to obtain

a more reliable base for the following code generation

process.

Modelica simulator developers should improve their

tools regarding the compiler technologies and also their

numerical efficiency and flexibility. Especially large

city district models, which can be easily generated from

the GIS data with the described method, can address a

lot of computer memory and potentially need a huge

amount of numerical resources. In this context, the

application of parallel computing technologies could

improve the situation.

Acknowledgements

The research described in this paper is conducted within

research project “EnEff BIM: Planung, Auslegung und

Betriebsoptimierung von energieeffizienten Neu- und

Bestandsbauten durch Modellierung und Simulation auf

Basis von Bauwerkinformationsmodellen” funded by

the Federal Ministry for Economic Affairs and Energy

in Germany (reference: 03ET1177D).

References

CityGML. Exchange and storage of virtual 3D city models -

http://www.citygml.org (last access on 2017 Jan 20).

CoTeTo - Code Templating Tool - https://github.com/UdK-

VPT/CoTeTo (last access on 2017 Jan 20).

Alexander Inderfurth, Arda Karasu, Christoph Nytsch-

Geusen, Claus Steffan. Architectural-Geometrical

Simplification for Multi-Zone Building Models for Urban

Refurbishment Projects. Accepted for Building Simulation

2017, 15th International Conference of IBPSA. San

Francisco, August 2017.

GeoJSON. A format for encoding a variety of geographic data

structures - http://geojson.org (last access on 2017 Jan 20).

PyQt4. Python bindings for the Qt application framework -

https://riverbankcomputing.com/software/pyqt (last access

on 2017 Jan 20)

Werner Kaul, Christoph Nytsch-Geusen, Phillip Wehage, and

Michael Färber. Teilautomatisierte Akquise energetischer

Gebäudedaten für die Quartiersanalayse und - simulation

durch den Einsatz von Geo-Informations-Systemen (GIS).

BAUSIM 2014 IBPSA Germany. Conference Proceedings.

Aachen, September 2014.

Tobias Loga, Britta Stein, Nikolaus Diefenbach, and Rolf

Born. Deutsche Wohngebäudetypologie. Beispielhafte

Maßnahmen zur Verbesserung der Energieeffizienz von

typischen Wohngebäuden, Institut Wohnen und Umwelt,

Darmstadt / Germany, ISBN: 978-3-941140-47-9, 2015.

IFC2x3. IFC2x Edition 3 specification -

http://www.buildingsmart-tech.org/ifc/IFC2x3/TC1/html

(last access on 2017 Jan 20)

IFC4. IFC4 specification - http://www.buildingsmart-

tech.org/ifc/IFC4/final/html/ (last access on 2017 Jan 20)

IfcOpenShell. The open source IFC toolkit and geometry

engine - http://ifcopenshell.org/python.html (last access on

2017 Jan 20)

Mako. Mako templates for python -

http://www.makotemplates.org (last access on 2017 Jan 20)

Jinja2. Jinja2 (the python template engine) -

http://jinja.pocoo.org (last access on 2017 Jan 20)

Christoph Nytsch-Geusen, and Werner Kaul. Generation of

dynamic energetic district models from statistical

relationships. 14th IBPSA Building Simulation Conference,

Hyderabad, Conference Proceedings, December 2015.

Christoph Nytsch-Geusen, Christoph Banhardt, Alexander

Inderfurth., Katharina Mucha, Jens Möckel, Jörg Rädler,

Matthis Thorade, and Carles R. Tugores. BuildingSystems

– Eine modular hierarchische Modell-Bibliothek zur

energetischen Gebäude- und Anlagensimulation. BAUSIM

Template based code generation of Modelica building energy simulation models

206 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132199

2016 IBPSA Germany, Conference Proceedings. Dresden,

September 2016.

Christoph Nytsch-Geusen, Thaeba Ayubi, Jens Möckel, Jörg

Rädler, Matthis Thorade. BuildingSystems_VR – A new

approach for immersive and interactive building energy

simulation. Accepted for Building Simulation 2017, 15th

International Conference of IBPSA. San Francisco, August

2017.

Katharina Mucha. Ein Simulationsansatz zur Bewertung von

Hitzestressrisiken in Innenräumen. Weiterentwicklung

eines zonalen Modells in Modelica. Dissertation, Fakultät

Gestaltung, Universität der Künste Berlin, 2017.

pythonOCC. pythonOCC – 3D CAD for python -

http://www.pythonocc.org (last access on 2017 Jan 20).

QGIS. Ein freies Open-Source-Geographisches-

Informationssystem - http://www.qgis.org/de/site (last

access on 2017 Jan 20).

Senatsverwaltung für Stadtentwicklung und Wohnen:

Sanierungsgebiet Friedrichshain-Kreuzberg –

Rathausblockhttp://www.stadtentwicklung.berlin.de/staedt

ebau/foerderprogramme/stadterneuerung/de/rathausblock/i

ndex.shtml (last access on 2016 Dec 29).

Matthis Thorade, Jörg Rädler, Peter Remmen, Tobias Maile,

Reinhard Wimmer, Jun Cao, Moritz Lauster, Christoph

Nytsch-Geusen, Dirk Müller, and Christoph van Treeck. An

open toolchain for generating Modelica code from Building

Information Models. 11th International Modelica

Conference, p.383–391, Versailles, September 2015.

UCaHS. DFG Research Unit 1736 UCaHS - Urban Climate

and Heat Stress in mid-latitude cities in view of climate

change http://www.ucahs.org (last access on 2017 Jan 20).

Wetter Michael, Fuchs Marcus, Grozman Pavel, Helsen

Lieve, Jorissen Filip, Lauster Moritz, Müller Dirk, Nytsch-

Geusen Christoph, Picard Damien, Sahlin Per, and Thorade

Matthis. IEA EBC Annex 60 Modelica Library - An

international collaboration to develop a free open-source

model library for buildings and community energy systems.

14th IBPSA Building Simulation Conference, Hyderabad,

Conference Proceedings, December 2015.

Session 5B: Buildings II

DOI
10.3384/ecp17132199

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

207

208 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Modelling and Simulation of Standardised Control Functions from
Building Automation

Georg Ferdinand Schneider1 Georg Ambrosius Peßler1 Simone Steiger1

1Group Technical Building Systems, Fraunhofer Institute for Building Physics IBP, Nürnberg, Germany,
georg.schneider@ibp.fraunhofer.de, georg.pessler@ibp.fraunhofer.de,

simone.steiger@ibp.fraunhofer.de

Abstract
Despite the accepted fact that control logic deployed in
future and existing buildings through building automation
systems constitutes a key factor for increasing their en-
ergy efficiency, the support for modelling and simulation
of these in current state-of-the-art simulation tools and li-
braries is rather limited. In particular a gap exists for mod-
elling and simulation of standardised control functions. In
this work we present an approach for modelling standard-
ised control logic using Modelica. We evaluated the inter-
operability of the modelling approach by simulating a test
case of an automation solution controlling the sunshade of
a room and by reimplementing a state-based control for an
air handling unit reusing models from two Annex60 com-
pliant libraries.
Keywords: Building Automation, Control Function,
VDI 3813, VDI 3814, ISO 16484

1 Introduction
The three pillars which influence the energy demand in
buildings are a sophisticated façade, energy efficient tech-
nical equipment and the actual operation by means of con-
trol through a Building Automation System (BAS). The
use of BAS is stipulated by relevant standards, e.g. EN
15232:2013. However, benefits in terms of reduced en-
ergy demand from the façade and/or technical equipment
can easily be spoilt by operating a building using a poorly
designed, misconfigured or malfunctioning BAS.

The operation of a building is a complex control task in-
volving multiple sensors, actuators and control algorithms
spanning different scales in terms of time and space; the
sum of input and outputs can easily reach ten thousand.
Hence, the design, (continuous-) commissioning and op-
eration of such a complex system is a challenging, time-
and cost-intensive task.

A possible solution for managing this complexity dur-
ing BAS design and operation is the use of a Model-Based
Design (MBD) methods, where all components of a build-
ing are modelled and simulated to design and test the con-
trol logic of a BAS prior to its deployment in a build-
ing. Also, comparison of the simulation model and the
real-world implementation provides a helpful insight in
detecting anomalies during operation (Venkatasubrama-

nian et al., 2003). The model and adjacent simulation
infrastructure can further be used for Model-in-the-loop
and Software-in-the-Loop (SIL) evaluation, e.g. for au-
tomotive applications (Chrisofakis et al., 2011) and later
in Hardware-in-the-loop simulation, e.g. for circulating
pump control (Schneider et al., 2015).

Models to describe the behaviour of control logic and
algorithms are part of the Modelica Standard Library
(MSL) since its very beginnings. A research effort from
the International Energy Agency’s Energy Buildings and
Communities Programme (IEA EBC) develops as one out-
come a core library for Building Performance Simulation
(BPS) using Modelica. A set of four libraries, all suit-
able for MBD within the buildings domain, Buildings
(Wetter et al., 2014), AixLib (Constantin et al., 2014)
BuildingSystems (Nytsch-Geusen et al., 2013) and
IDEAS (Baetens et al., 2012) now share one common core
library Annex60 (Wetter et al., 2015). A special library
NCLib for the simulation of automation systems is pre-
sented by Liu (2013), however its focus is on modelling
automation system devices rather than the control logic
involved. A library specifically designed to model and
simulate control functions from industrial automation in
Modelica without specific control functions for standard-
ised room or building automation is presented by Bonvini
and Leva (2012).

Several national and international standards exist to
support the design process of BAS, e.g. VDI 3813-2:2011;
VDI 3814-6:2009; ISO 16484:2011 by providing a set of
commonly utilised control functions which can be reused
to compose an automation solution for room and building
automation. The number of defined control functionalities
and the detail of the descriptions varies between standards.
Having these pieces of control logic readily available in a
simulation environment to compose by drag-and-drop a
control strategy for a room or a piece of equipment in a
building can result in significant benefits in terms of time
required for the design and quality of the resulting con-
trol logic. Automation engineers may design and test their
control solution prior to the deployment in a real building
by coupling its simulation to models of rooms, buildings
and equipment. Also in later stages of the life-cycle the
outcome of the simulation model can be compared with
actual monitoring data for fault detection purposes.

DOI
10.3384/ecp17132209

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

209

However, to the best of our knowledge, no library ex-
ists for the modelling and simulation of standardised con-
trol functions (see comparison in Table 1). The contribu-
tion aspect of this work resides in presenting Modelica-
based modelling approach for standardised control func-
tions from BAS.

We present a model library BuildingControlLib
which provides a basis to implement standardised control
functions in a streamlined manner. For the implementa-
tion of block oriented control functions from standards we
recommend representing the structure by class diagrams
and the actual control behaviour for state-based control
logic using activity diagrams, as defined by the Unified
Modeling Language (UML) (Object Management Group,
2015). The design of the models and library is such that
the compatibility to the MSL as well as libraries from An-
nex60 effort is ensured. The graphical visualisation in-
cluded in the models is designed such that representations
composed to the standards and control solutions may be
compiled in a ease-to-use manner from interested BAS
practitioners.

As a beginning we include models of control functions
compliant to the standards VDI 3813-2:2011 and VDI
3814-6:2009. Due to partly ambiguous textual descrip-
tions for control behaviour in standards the models com-
pliant to VDI 3813-2:2011 are designed such that stan-
dardised interfaces and actual control functionality are
separated. This offers the benefit that the actual function-
ality can be easily exchanged with own code or implemen-
tations, possibly using the Functional Mockup Interface
(FMI) standard (Blochwitz et al., 2012). To support users
when composing own control solutions by drag and drop-
ping control functions from the library we include the no-
tion of connector semantics (Dibowski et al., 2010) to help
users composing only semantically correct automation so-
lutions; for example it is not possible to connect an indoor
air temperature output and an outdoor air temperature in-
put. To represent state-based control we include models
to simulate state-based control descriptions in BAS as de-
fined in VDI 3814-6:2009

In the remainder of this work we describe the under-
lying design principles when modelling standardised con-
trol functions in section 2. We then demonstrate the us-
ability of the approach by simulating two test cases where
the automation models are coupled to physical room and
equipment models from Annex60 compliant libraries in
section 3.

2 Implementation
The models are included in a library termed
BuildingControlLib. Its overall structure is
depicted in Figure 1 from a screenshot in Dymola 2015
FD01 (Dymola, 2015) which we use for implementation.
The design of the overall structure follows the best
practices and conventions documented in the MSL,
e.g. naming convention of models and classes, package

structure with a user’s guide, ready-to-simulate examples,
components, interfaces and types.

Figure 1. Overall structure of model library.

At the top level we include the mandatory pack-
ages for documentation and examples and three packages
VDI3813, VDI3814 and Nonstandardized. The
number of packages mentioned is not meant to be exhaus-
tive. Instead the implementation undertaken so far may
serve as a blue print for implementing control functions
from further standards, e.g. ISO 16484:2011.

The first package contains models for the simulation
of room automation functions from VDI 3813-2:2011;
the second contains models for the simulation of state
graphs as defined in VDI 3814-6:2009; and the third pack-
age gathers models for common non-standardised control
functions. In some cases, e.g. a schedule, we reuse func-
tionality already implemented for non-standardised appli-
cations.

Auxiliary models used in example models are kept in
the Utilities package.

2.1 Room Automation According to VDI 3813
Beside the general best practices for Modelica libraries,
e.g. package structure, the following requirements have
been defined to enable seamless use of the library:

1. Modular design such that control functionality is en-
capsulated and may be exchanged as needed;

Modelling and Simulation of Standardised Control Functions from Building Automation

210 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132209

Table 1. Overview of the reviewed open-source libraries. X - criteria fulfilled and - not fulfilled. (1) - Annex60 (Wetter et al.,
2015), (2) - Buildings (Wetter et al., 2014), (3) - AixLib (Constantin et al., 2014), (4) - BuildingSystems (Nytsch-Geusen
et al., 2013), (5) - IDEAS (Baetens et al., 2012), (6) NCLib (Liu, 2013), (7) - IndustrialAutomationSystems (Bonvini
and Leva, 2012) and (8) - this work.

Criteria (1) (2) (3) (4) (5) (6) (7) (8)

Models for
... control X X X X X - X X
... room automation (X) (X) (X) (X) (X) - - X
... building automation (BA) (X) (X) (X) (X) (X) - - X
... standardised BA - - - - - - - X
Semantic connectors - - - - - - - X
Based on Annex60 obsolete X X X X - - -
Active development X X X X X - X X

2. Automated compatibility checking of control func-
tions as proposed by Dibowski et al. (2010);

3. Graphical representation as defined within the stan-
dard.

The first requirement results from prevalent heterogene-
ity in actual implementations of control behaviour in stan-
dards. Existing standards do provide textual descriptions
on how the actual behaviour should be, however this de-
scriptions leave room for interpretation. Thus functionali-
ties might comply to standards but have minor differences.
To ensure the seamless exchange of functionality, possi-
bly from non-Modelica implementations, we separate the
definition of interfaces (function) from its functionality as
described in detail in the next sections.

The second requirement is motivated by an approach
reported by Dibowski et al. (2010). The methodology de-
scribed allows to automatically derive interoperable au-
tomation solutions for room automation. The approach
relies on the formal specification of input and output vari-
ables of control functions, by annotating exchange vari-
ables with information on e.g. its unit, quantity, etc. The
approach is exemplified for control functions for room au-
tomation (Dibowski, 2013). As Modelica provides mecha-
nisms for consistency checking on exchange variables the
requirement should be fulfilled by implementation to sup-
port library users when implementing own solutions.

Finally to allow easy composition of control solutions
also by interested practitioners the visual appearance of
the modelled control functions should align with the defi-
nitions in the standards. Thus allowing the easy reuse and
composition of automation solutions.
Structure of VDI3813 Package

The top-level structure of VDI3813 package is illus-
trated in Figure 1. It follows the taxonomy established
within the standard which classifies available control func-
tions into:

• SensorFunctions - which convert physical sig-
nals into automation signals;

• ActuatorFunctions - which receive a setpoint
to generate a physical control command for a motor;

• OperatorAndDisplayFunctions - which ex-
change status information to occupants and give
them the ability to send manual commands;

• ApplicationFunctions - which provide the
actual automation functionality by processing sensor
or operator functions and transmit new setpoints and
commands to actuators;

• Macrofunctions - which provide an interface
to compose reusable macro-functions from low-level
control functions.

The standard also defines supervisory control functions
such as data storage and external messaging which we
found to be out of scope for dynamic simulation of con-
trol behaviour and coupling to models of physical pro-
cesses. The category Common I/O functions with two con-
trol functions for interfacing the automation system to ex-
ternal applications is not explicitly modelled.

To ensure computationally efficiency we implement the
control functions as Modelica block as suggested by Liu
(2013). Whenever possible we reuse models from MSL.
Encapsulating Functionality

The actual functionality in the standard is defined us-
ing textual descriptions. This leaves a wide range for in-
terpreting and implementing this descriptions; hence, im-
plementations of control functions vary between different
manufacturers of devices for room automation.

To represent and model this heterogeneity as defined in
the first requirement (see section 2.1) the following de-
sign principle is applied within this library. We introduce
a block Function as a base class for defining the in-
terface to other functions. Each Function has a as-
sociated block Functionality (see Figure 2) which
serves as a template to implement the respective intended
functionality. This allows for easy maintainability and
quick exchange of functionality within the library, e.g.

Session 5B: Buildings II

DOI
10.3384/ecp17132209

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

211

a manufacturer would like to place his own functional-
ity within the model, potentially using the FMI standard
(Blochwitz et al., 2012). By leaving the respective block
Function unaltered its interoperability with other func-
tion blocks is ensured and changes are only applied within
Functionality.

«block»

PartialFunction

«block»

PartialFunctionality

«block»

Functionality

«block»

Function

«connector»

Input

«connector»

Output

Implement
semantic data
types«connector»

PartialInput

«connector»

PartialOutput

Provide
graphical
layout

«connector»

PhysicalInput

«connector»

PhysicalOutput

«connector»

PartialPhysicalInput

«connector»

PartialPhysicalOutput

Figure 2. Class diagram in UML describing the modelling prin-
ciple of encapsulating functionality.

To ensure uniform and complaint graphical layout of
the control functions it is once defined in the partial block
PartialFunction using Modelica annotations.

To implement a control function a block is created
which inherits from PartialFunction. Parameters
and connectors must be added. In the corresponding func-
tionality block the actual control logic is implemented in
what ever way is preferred, e.g. reusing models from other
libraries.

For all implemented control functions we provide a
default functionality which may be adapted to the users
needs or exchanged if required. However, regarding the
mentioned space for interpretation arising from textual de-
scriptions in the standard these are not meant to be nor-
mative. To ensure understandability we provide UML ac-
tivity diagrams for describing the respective functionality
as implemented and include it into the documentation of
each model. As an example we present the UML activity
diagram of AutomaticThermalControl in Figure 3.

!"#$%&'#()&%*+,"%'-(%&$./01-()2'#%1')3"#$%&'#()&%*

45,2.

6578.

.5977:

.5;<.4.;

;5:,=

4,9565,2.

4,95;56<,.

4,95;5277>

$/0$?@A10B0#$0

&))"-&#(#$0@%/10B/')C@A(BB0C

!"#$%&'(

C0($%&D(%0@B&E#()!")*+'(

!"#$%&'(

$'-A(10@1''-@@%0-A01(%"10@%'@$'-!'1%@-'C0@B0%A'&#%B

!")*+'(

1''-@%0-A@E10(%01@%/(#@$'')&#E@B0%A%

1''-@%0-A@)0BB@%/(#@/0(%&#E@B0%A%

!"#$%&'(

($%&D(%0@$'')&#E@A'B&%&'#
!")*+'(

($%&D(%0@/0(%&#E@A'B&%&'#

!")*+'(

!"#$%&'(

Figure 3. UML activity diagram of a functionality
AutomaticThermalControl as described in VDI 3813-
2:2011.

Semantic Connectors
To solve the task of automating the design process of

room automation systems recently the semantically un-
ambiguous specification of function profiles for room au-
tomation is introduced (Dibowski et al., 2010; Dibowski,
2013). This approach allows for the automated generation
of room automation profiles, i.e. a set of control func-
tions from a standard, automatically from initially defined
requirements. The approach requires to formally specify
automation devices including their functional profiles, i.e.
the control functions implemented on a devices. More-
over to automatically bind variables of different control
functions detailed semantics of the input and output vari-
ables are specified. The approach has been successfully
demonstrate by modelling functions and devices comply-
ing to the VDI 3813-2:2011 standard.

To support library users in the design of a room automa-
tion solution using the library we integrate the notion of
semantics in the design of connector classes. We define
for every variable type in the standard a separate connec-
tor class. We specify the unit, quantity, basic type (Real,
Boolean, Integer, ...) and direction of information
flow (input/output) in the connector definition and a
corresponding type definition using the known Modelica
language elements for this. As emphasised by Dibowski
et al. (2010); Dibowski (2013) these specifications are not
enough to differentiate among input and output variables.
As Modelica does not provide additional ways to specify
variable semantics we introduce a naming convention for
exchange variables specified in the connector classes. The
naming convention has two parts: (1) Each variable starts
with one of the strings value, status, command and set-
point, a classification recommended by Dibowski (2013);

Modelling and Simulation of Standardised Control Functions from Building Automation

212 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132209

(2) in the second part we added additional strings specify-
ing additional semantics e.g. to differentiate between an
indoor and an outdoor air temperature.

For example for the exchange variable describing
the outdoor illuminance abbreviated in the standard as
H_OUT we specify a connector ValueIlluminanceOut-
door:

Listing 1. Source code of connector ValueIlluminance
OutdoorInput.

connector ValueIlluminanceOutdoorInput
extends Partial.PartialInput;

input
BuildingControlLib.[...].

ValueIlluminanceOutdoor
valueIlluminanceOutdoor; // Specified

variable name
end ValueIlluminanceOutdoorInput;

The semantic correctness when composing automation
solutions from drag and dropping control function blocks
in e.g. a macro is ensured by the ability of a Modelica
simulation environment to check connector compatibility
in terms of unit, quantity, basic type, input/output and the
name of the variable. Hence, a user can only connect
different control functions if input and output connectors
match. To ensure compatibility with models which imple-
ment connectors using the MSL interfaces, converter mod-
els are provided in the Sources and Sensors pack-
ages.

2.2 State Graph According to VDI 3814
Control logic for the control of Heating Ventilation and
Air-Conditioning (HVAC) often follows a state-centric be-
haviour. Multiple descriptions exist for modelling this be-
haviour originally described by Harel (1987). The stan-
dard VDI 3814-6:2009 defines the concept of a State
Graph to provide a graphical representation of state-
centric control behaviour in BAS.

In the package VDI3814 we provide models to com-
pose by drag-and-drop a State Graph. The graphical
layout of the models fits the definitions in the standard
(see Figure 4). For implementing we use models from
Modelica.StateGraph package from MSL.

An example of the modelling capabilities of the pack-
age is displayed in Figure 4 where the control of a generic
air handling unit is modelled with control states off, cool-
ing, heating or frost protection. A specific characteristic
of VDI 3814 State Graphs is that the explicit concept of
a transition does not exist. A new state is active when a
Boolean expression is evaluated as true. However transi-
tion conditions are included into a state. This definition is
modelled by including an array of transitions and a state
into one model. This allows to display the designed state
graphs as defined in the standard while reusing the models
from Modelica.StateGraph package. Also in the
standard it is possible to put return objects symbolised by
a circle around a number of the targeted state. This can
also be modelled and when removing the graphical anno-

0

off

1

cooling

2

heating

and1

and&

or1

or>1

booleanStep

10

booleanStep1

10

switchON

20

switchON1

30

3

freezeProtect

switchOFF

30

stateGraphRoot

root

0

switchON2

40

0

Figure 4. Ready to simulate model of a state graph from pack-
age VDI3814.

tations of the connect statements it is possible to derive a
graphical layout which is very similar to the one used in
the standard.

Additionally we reused blocks from MSL to model log-
ical conjunction and logical disjunction as required in the
standard.

3 Results from Test Cases
To evaluate the performance of the implemented control
library and to examine its interoperability to existing Mod-
elica libraries in the domain, we present results from two
test cases implemented for demonstration purposes. In the
first test case we implement an automation solution of a
sunshade in a room using control function models from
the package VDI3813 where we reuse a room model in-
cluded in the AixLib-library (Constantin et al., 2014). In
the second example we re-implement the state-based con-
trol of an Air Handling Unit from Buildings-library
(Wetter et al., 2014) using the models provided in the
VDI3814 package.

3.1 Room automation according to VDI 3813
Most room automation control functions focus on main-
taining acceptable indoor comfort conditions for occu-
pants while minimising the energy demand required to
provide these comfort conditions to the occupant.

In Figure 5 the scheme of an automation solution for
a room with a sunshade is illustrated. It is composed of
control functions from VDI 3813-2:2011 which are mod-
elled within the library presented in this work. As out-
lined above, the standard distinguishes between: sensor
functions; actuator functions; operator and display func-

Session 5B: Buildings II

DOI
10.3384/ecp17132209

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

213

tions and application functions. Disconnected inputs in
the simulation of this test case have been fixed to reason-
able constants for keeping results easy to understand.

The overall functionality intended to be realised here
automatically limits or increases the amount of solar
heat gains of a room either by deploying or elevat-
ing a sunshade, respectively. It is implemented as a
macro function (VDI 3813-2:2011) using the applica-
tion functions OccupancyEvaluation, Priority-
Control, AutomaticThermalControl and Set-
pointCalculation. The connection to the physical
inputs required by these functions is realised using the
control functions PresenceDetection (Check with a
sensor if room is occupied), WindowMonitoring (Sen-
sor function to check if window is open), Brightness-
MeasurementOutdoor (Determine outdoor bright-
ness), AirTemperatureMeasurementRoom (Deter-
mine room air temperature) and AirTemperature-
MeasurementOutdoor (Determine outdoor air tem-
perature). A user may adjust the current temperature set-
point via the AdjustTemperatureSetpoint func-
tion. The outcome of the automation solution affects the
actual (real or virtual) sunshade by using the function
sunshadeActuator.
AutomaticThermalControl is only active if the

room is unoccupied and the outdoor illuminance levels are
higher than a threshold. Then, dependent on the compari-
son of current setpoint of the room and the measured room
temperature, the sunshade is either deployed or elevated.

Between the control output of AutomaticTher-
malControl and its actual deployment via the Act-
uateSunshade control function finally, i.e. Prior-
ityControl checks if no higher prioritised signal is
found or the window is open. If the signal of Auto-
maticThermalControl is of current highest priority,
it is then forwarded to the SunshadeActuator control
function and deployed on the actual sunshade.

We implemented the described room automation so-
lution using models from the previously described li-
brary. We couple it to a model which captures the phys-
ical behaviour of a room which we adapted from the
model ASHRAE140.Case900FF from Constantin et al.
(2014). The boundary conditions (weather, internal gains,
etc.) remained unchanged. We adapted the ventilation
schedule to 30 min once every day and introduced a con-
stant heat flow rate of 500 W to heat the room in order
to limit the outcome of these disturbances to the sunshade
control on the automation solution. Also we modified the
model of the south facing wall to contain a window with
a sunshade which may be deployed from outside via a
Boolean connector. We calculate the value of the outdoor
illuminance assuming a constant factor of 2.49 between
the value of irradation on a horizontal surface provided by
the model radOnTiltedSurf_Perez[5].

We simulated the coupled room and automation model
for the first day in the weather file. We chose boundary
conditions such that no presence is detected and no au-

tomatic or manual set point changes are applied. Hence
the automatic control is active only when illuminance
levels are sufficient. Results of the simulation are pre-
sented in Figure 6. Presented therein are the input sig-
nals affecting the AutomaticThermalControl con-
trol function, i.e. in the upper third the outdoor illumi-
nance H which is compared within the control function
with a threshold PH . If the illuminance is too low, no
control action happens. In the mid part the Boolean ex-
pressions indicating if AutomaticThermalControl
is operating in heating yhea or cooling mode ycoo and a sig-
nal telling the sunshade to be deployed or not are plotted
(usun). In the lowest subplot in Figure 6 the outdoor Toa
and indoor air temperature Tra are given and their respec-
tive heating (Thea,s) and cooling (Tcoo,s) set point. Also the
air exchange rate AER is given, representing the ventila-
tion scheme applied.

Given the described boundary conditions the control
functionality allows to keep the room temperature within
the bounds set by the heating and cooling set points, Thea,s
and Tcoo,s respectively. Before ventilating (time < 43200 s)
the sunshade is deployed several times when the control
switches to cooling mode, triggered by the actual room
temperature reaching the upper temperature set point at
24 degrees Celsius. The sharp decline during ventilation
results in a period where the heating mode is active and
the sunshade is elevated.

When the temperature recovers after ventilation with
outdoor air the cooling mode is active until the automatic
control enters the inactive mode when illuminance levels
fall below the threshold specified (PH).

3.2 Control of an Air Handling Unit via
VDI 3814 compliant State Graph

To evaluate the models implemented in the pack-
age VDI3814 we re-implement the model Mode-
Selector from the Buildings-library (Wetter
et al., 2014). The model is used in the example
VAVReheat.ClosedLoop to control a model of an
Air Handling Unit which supplies conditioned air to a
thermal zone. It encompasses six states representing the
behaviour of the system (initial, unoccupied off, morning
pre-cooling, morning warm-up, unoccupied night set back
and occupied).

We simulate VAVReheat.ClosedLoop with the
provided model and with the same control logic imple-
mented using models from VDI3814-package. We use a
Dymola 2015 FD01, 64bit with the following simulation
settings:

• start time: 0 s, end time: 172800 s;

• solver: Esdirk23a - order 3 stiff;

• interval length: 600 s; Tolerance: 1e-6.

We compare the results of the two simulations by cal-
culating the R squared value and the Mean Absolute Per-
centage Error (MAPE) between the respective results. The

Modelling and Simulation of Standardised Control Functions from Building Automation

214 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132209

Lx

°C

°C

BrightnessMeasurement-

Outdoor
H

H_OUT

PresenceDetection

P_AUTO

P

AirTemperature-

MeasurementOutdoor

T

T_OUT

WindowMonitoring

B

B_WINDOW

AirTemperature-

MeasurementRoom

T

T_ROOM

AutomaticThermalControl

P_ACT

H_OUT

T_ROOM

T_SETPTS

S_MAN

SetpointCalculation

T_SETPTS

T_OUT

T_SETPT

T_BMS

P_MAN

P_ACTP_AUTO

OccupancyEvaluation

SunshadeActuator

S_SET S_STA

PriorityControl

S_MAINT

S_MAN

S_AUTO

S_PROT

B_WINDOW S_SET

5°C

BMS

AdjustTemperatureSetpoint

OUTPUT

T_SETPTT_STA

INPUT

M

Legend

SensorFunction

ActuatorFunction

OperatorDisplayFunction

ApplicationFunction

© Fraunhofer IBP

Figure 5. Scheme of the control functions utilised in the simulated room automation test case.

results are summarised in Table 2. The results show a
high agreement of the two simulations reflecting the sim-
ilar behaviour. Some discrepancies can be observed on
the compared simulated data which can be explained from
errors resulting from interpolating these values. An error
of 0.192% for the control mode exists as a negligible de-
viation between the control mode signals of both simula-
tion was identified; this originates from the waiting times
which at some point in the state graph network need to be
introduced. For the VDI3814 case with integrating transi-
tions and states in one model, a fixed delay is introduced to
avoid the termination of the simulation when initialising.

Table 2. Results from comparing the simulation of
VAVReheat.ClosedLoop with the original model from
Buildings library (Wetter et al., 2014) and this work. MAPE
- Mean Absolute Percentage Error.

Variable R2 MAPE in %

TOut .999 6.816e-6
controlMode .970 0.192
occupied 1.00 0.000
TRooMin 0.999 6.475e-4
TRooAve 0.999 6.157e-4
TRooSetCoo 0.997 20.24e-4
TRooSetHea 0.997 19.48e-4

4 Discussion
From the results presented in this work the Modelica mod-
elling language is found to be suitable for the proposed

modelling and simulation of standardised control func-
tions.

However, some limitations have been identified when
implementing the notion of semantic connectors. We
found the ability of the Modelica language to support
checking of the consistency of connector variables accord-
ing to units, quantity and the name of the variable to be
a helpful feature. However, when attempting to include
detailed semantics of connector variables the only pos-
sibility is to introduce a naming convention for the ex-
change variables which is cumbersome to maintain and
prone to errors. It may be of interest to extend the Mod-
elica language in future releases in this direction to eval-
uate the types of a connector variable (not only the basic
type, e.g. Real, Boolean, Integer, etc.) allowing to
define a taxonomy of types instead of a naming conven-
tion. An approach known from the simulation of cyber-
physical systems embedded in the Ptolemy II framework
offers a possibility to include consistency checking (Le-
ung et al., 2009) of units based on ontology. The concept
of expandable connector is not found to be suit-
able in this context as a variable name might occur sev-
eral times in one automation solution but must not be con-
nected to each of its occurrences.

Standards are evaluated and revised on a regular basis,
thus a regular revision and maintenance of the library is
required. We are confident that the presented underlying
design principles of the modelling approach remain rel-
evant and applicable to future and upcoming versions of
standards.

Most standards provide textual descriptions of the func-
tionality of a control function which often is ambiguous

Session 5B: Buildings II

DOI
10.3384/ecp17132209

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

215

0
200
400
600
800

1000
1200

Ill
u
m

in
a
n
ce

 i
n
 l
u
x

Time in s
inactive

active
inactive

active
not deployed

deployed

B
o
o
le

a
n
 i
n
 -

0 14400 28800 43200 57600 72000 86400
5
0
5

10
15
20
25

T
e
m

p
e
ra

tu
re

 i
n
 d

e
g
C

0

12

E
x
ch

a
n
g
e
 r

a
te

 i
n
 1

/h

H

PH

yhea

ycoo

usun

Tra

Toa

Tcoo,s

Thea,s

AER

Figure 6. Simulation results of room automation example for one day. H - outdoor illuminance, PH - threshold for illuminance,
yhea - heating mode, ycoo - cooling mode, usun - sunshade control signal, Thea,s - temperature set point heating, Tcoo,s - temperature
setpoint cooling, Tra - room air temperature, Toa - outdoor air temperature, AER - air exchange rate.

Modelling and Simulation of Standardised Control Functions from Building Automation

216 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132209

and is prone for different interpretation. When imple-
menting the models we use established documentation
measures, namely UML class and activity diagrams to
document our implementation. Having well-documented,
commonly-agreed on simulation models of the control
functions available as a reference implementation may
help the wide-spread and further adoption of BAS in the
buildings domain.

When modelling buildings, technical equipment and
components and control logic of BAS the resulting hy-
brid system involves continuous and discrete event dy-
namics (Fritzson, 2014). In particular modelled discrete
behaviour in control logic, e.g. a transition from one state
to another if the condition tRoom > 22◦C is evaluated to
true, triggers events involving state variables which need
to be handled by the numerical solver. A large number of
these events leads to a significant slow down of simulation
speed when simulating the mentioned systems.

The Modelica modelling language provides built-in
functionalities to efficiently handle events and should be
applied when ever possible. Discrete behaviour with re-
spect to time, e.g. sampling, can be efficiently handled
using discrete variables or clocks introduced in Modelica
3.3 language specification (Otter et al., 2012).

The generation of state events can be prevented
from using noEvent(expression) in case it is
known that the respective expression is continuous
and smooth(p,expression) if not known.

The use of clocked variables and expressions seems to
be a promising path for efficient implementation of con-
trol behaviour in Modelica. In particular the ability to
transfer clocked control systems from its Modelica im-
plementation to clocked control hardware is a huge ben-
efit. However, its effect on computational efficiency when
simulating needs to be investigated as in the buildings do-
main distinguishing models with discrete and continuous
dynamics is sometimes difficult; For example the discrete
behaviour of a user opening a window when some tem-
perature threshold is crossed may be modelled within the
buildings model, thus discrete and continuous models are
mixed.

5 Conclusion
In this work we present a modelling approach to model
and simulate standardised control functions from build-
ing automation in Modelica. We exemplify this by mod-
elling block like control functions from VDI 3813-2:2011
and state-centric control from VDI 3814-6:2009. In par-
ticular this includes models for sensor, actuator, operator-
and display, application control functions and a template
to model macro functions from VDI 3813-2:2011 and set
of models to compose state graphs as specified in VDI
3814-6:2009 built on top of StateGraph package from
Modelica Standard Library.

The usability of the models is demonstrated in two ex-
ample applications linking a room automation solution

to room models from AixLib-library (Constantin et al.,
2014) and a state graph to control an air handling unit
model from Buildings-library (Wetter et al., 2014).

The models presented, along with the models existing
for building elements and equipment, allow to investigate
the interaction and influences of an automation solution on
the buildings behaviour in an integrated manner. Through
the respective feedback from user models and also the in-
teraction of user and automation solution as it is imple-
mented in a real BAS is possible.

The total number of models and standards described in-
cluded here is still limited. In future we plan to include
more standardised, e.g. from ISO 16484:2011, and non-
standardised control functions, e.g. for HVAC control.

We introduce the notion of a semantic connector which
allows the library user to only connect control functions
which are supposed to be connected, following the idea
presented by Dibowski et al. (2010). The approach relies
on a naming convention, despite the ability of consistency
checking of Modelica modelling language for quantities
and units. Future research may expand on this allowing
to define variable semantics more freely as previously dis-
cussed and implemented by Leung et al. (2009).

In future we intend to investigate the potential benefits
of using clocked variables in the definition of BAS control
behaviour and standardised control functions for efficient
simulation of the resulting hybrid systems.

Our intention is to stream line this effort with develop-
ments connected to the Annex60 effort and stipulate col-
laboration and reuse by open-sourcing the described mod-
els. For this purpose we intend to integrate the models
within an open library. Through doing this we hope that
this effort acts as a catalyst for implementing and provid-
ing control logic from BAS for building control in a com-
prehensive, well-documented and efficiently implemented
way.

Acknowledgements
This research was performed as part of the Energie Cam-
pus Nürnberg and supported by funding through the ’Auf-
bruch Bayern (Bavaria on the move)’ initiative of the state
of Bavaria.

References
R. Baetens, R. De Coninck, J. Van Roy, B. Verbruggen,

J. Driesen, L. Helsen, and D. Saelens. Assessing electri-
cal bottlenecks at feeder level for residential net zero-energy
buildings by integrated system simulation. Applied Energy,
96:74–83, 2012.

T. Blochwitz, M. Otter, J. Akesson, M. Arnold, C. Clauß,
H. Elmqvist, M. Friedrich, A. Junghanns, J. Mauß,
D. Neumerkel, H. Olsson, and A. Viel. Functional mockup
interface 2.0: The standard for tool independent exchange of
simulation models. In Proceedings of the International Mod-
elica Conference, pages 173–184, Munich, Germany, 2012.

Session 5B: Buildings II

DOI
10.3384/ecp17132209

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

217

M. Bonvini and A. Leva. A modelica library for industrial con-
trol systems. In Proceedings of the International Modelica
Conference, pages 477–484, Munich, Germany, 2012.

E. Chrisofakis, A. Junghanns, C. Kehrer, and A. Rink.
Simulation-based development of automotive control soft-
ware with Modelica. In Proceedings of the International
Modelica Conference, pages 1–7, Dresden, Germany, 2011.

A. Constantin, R. Streblow, and D. Müller. The Modelica
HouseModels Library: Presentation and Evaluation of a
Room Model with the ASHRAE Standard 140. In Proceed-
ings of the International Modelica Conference, pages 293–
299, Lund, Sweden, 2014.

H. Dibowski. Semantischer Gerätebeschreibungsansatz für
einen automatisierten Entwurf von Raumautomationssyste-
men. PhD thesis, Department of Computer Science, TU Dres-
den, Dresden, Germany, 2013.

H. Dibowski, J. Ploennigs, and K. Kabitzsch. Automated De-
sign of Building Automation Systems. IEEE Transactions on
Industrial Electronics, 57(11):3606–3613, 2010.

Dymola, 2015. URL http://www.3ds.com/
products-services/catia/products/dymola.
Dassault Systemes AB, Lund, Sweden, [Accessed: 31-12-
2016].

EN 15232:2013. Energy performance of buildings - Impact of
Building Automation, Controls and Building Management,
2013.

P. Fritzson. Principles of object-oriented modeling and simu-
lation with Modelica 3.3: A cyber-physical approach. John
Wiley & Sons, 2014.

D. Harel. Statecharts: A visual formalism for complex systems.
Science of Computer Programming, 8(3):231–274, 1987.

ISO 16484:2011. Building automation and control systems
(BACS), 2011.

J. M.-K. Leung, T. Mandl, E. A. Lee, B. Osyk, C. Shelton, S. Tri-
pakis, and B. Lickly. Scalable semantic annotation using
lattice-based ontologies. In Proceedings of MDELS, pages
393–407, Denver, USA, 2009.

L. Liu. Object-oriented Modeling and Efficient Simulation
of C3-Systems. PhD thesis, University of Saarland, Saar-
brücken, Germany, 2013.

C. Nytsch-Geusen, J. Huber, M. Ljubijankic, and J. Rädler.
Modelica BuildingSystems- eine Modellbibliothek zur Simu-
lation komplexer energietechnischer Gebäudesysteme. Bau-
physik, 35(1):21–29, 2013.

Object Management Group. OMG Unified Modeling Language,
2015.

M. Otter, B. Thiele, and H. Elmquvist. A Library for Syn-
chronous Control Systems in Modelica. In Proceedings of
International Modelica Conference, 2012.

G. F. Schneider, J. Oppermann, A. Constantin, R. Streblow,
and D. Müller. Hardware-in-the-Loop-Simulation of a Build-
ing Energy and Control System to Investigate Circulating
Pump Control Using Modelica. In Proceedings of the In-
ternational Modelica Conference, pages 225–233, Versailles,
France, 2015.

VDI 3813-2:2011. Building automation and control systems
(BACS) Room control functions (RA functions), 2011.

VDI 3814-6:2009. Building automation and control systems
(BACS) Graphical description of logic control tasks, 2009.

V. Venkatasubramanian, R. Rengaswamy, K. Yin, and S. N.
Kavuri. A review of process fault detection and diagnosis:
Part I: Quantitative model-based methods . Computers &
Chemical Engineering, 27(3):293 – 311, 2003.

M. Wetter, W. Zuo, T. S. Nouidui, and X. Pang. Modelica Build-
ings Library. Journal of Building Performance Simulation, 7
(4):253–270, 2014.

M. Wetter, M. Fuchs, P. Grozman, L. Helsen, F. Joris-
sen, M. Lauster, D. Müller, C. Nytsch-Geusen, D. Picard,
P. Sahlin, and M. Thorade. IEA EBC Annex 60 Modelica
Library - An International Collaboration to Develop a Free
Open-Source Model Library for Buildings and Community
Energy Systems. In BuiSim 2015, Hyderabad, India, 2015.

Modelling and Simulation of Standardised Control Functions from Building Automation

218 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132209

Modelling of Heat Pumps with Calibrated Parameters Based on

Manufacturer Data

Massimo Cimmino1 Michael Wetter2
1Department of Mechanical Engineering, Polytechnique Montreal, Montreal QC, Canada,

massimo.cimmino@polymtl.ca
2Lawrence Berkeley National Laboratory, Energy Technologies Area, Building Technology and Urban Systems Division,

Simulation Research Group, Berkeley CA, USA, mwetter@lbl.gov

Abstract
A Modelica model for the simulation of heat pumps is

presented. The model uses a simplified vapor

compression cycle with only five refrigerant states.

Parameters to the model are evaluated using an

optimization procedure to minimize the differences

between the model predicted heating capacities and

power input and those provided in the manufacturer

technical data. The optimization process is done from a

Python implementation of the heat pump model.

The model is first tested by verifying that calibration

from performance data generated by the heat pump

model results in the same parameters as the ones used in

the generation of the performance data. In the presented

example, calibrated parameters were found close to the

original parameters used to generate the data, except for

the evaporator heat transfer coefficient for which the

model was found not to be very sensitive. In a second

example, the model is calibrated against manufacturer

data. The heating capacities and power input calculated

from the calibrated model are within 2.7% and 4.7% of

the manufacturer data, respectively. Finally, the

computational performance of the model is tested in a

system simulation of a hydronic heating system. The

simulation using the presented heat pump model was

executed in 48 seconds, compared to 17 seconds for the

same system using a simple boiler model.

Keywords: Heat Pump, Vapor Compression Cycle,

Model Calibration

1 Introduction

Heat pump systems offer great potential for the

reduction of energy use for heating, cooling and heat

recovery, and are attractive heat delivery systems in

applications involving low temperature thermal

networks (Lund et al., 2014). To optimize the design and

evaluate the energy performance of such systems,

efficient simulation tools are required to model the

annual behavior of the system components.

Heat pump models can be divided into two major
categories: empirical models and refrigerant cycle

models. Empirical models are obtained by mapping the

heat pump performance in terms of capacity, power

input and coefficient of performance to the operating

conditions, i.e. the water mass flow rates and

temperatures on the load and source side of the heat

pump. The performance map can then be interpolated

during numerical simulations, or used to produce an

equation-fit of the heat pump performance. On the other

hand, refrigerant cycle models are obtained from first

principles, with varying degree of details in the

definition of each heat pump component.

Empirical models have been shown to provide good

approximations of the heat pump performance as

shown, for instance, by Swider (2003), Lee and Lu

(2010) and Carbonnell et al. (2012). However,

researchers have pointed out that these models might not

be suitable for extrapolation of the heat pump

performance outside of the operating conditions used to

formulate the model (Jin, 2002; Scarpa et al., 2012).

Unfortunately, such extrapolation is often required as

manufacturers generally provide performance data for a

narrow operating range. Models based on first principles

offer better potential to accurately predict the heat pump

performance over a wider range of operating conditions.

Refrigerant cycle models are often more demanding

in terms of computational time when compared to

empirical models, and may require parameters not

provided by manufacturers. Simplified vapor

compression cycles may be used to reduce the

computational time (Domanski and McLinden, 1992;

Jin, 2002; Lemort and Bertagnolio, 2010; Scarpa et al.,

2012). These simplified cycles divide the vapor

compression cycle into a limited number of steps and

refrigerant states, thereby reducing the number of –

usually computationally expensive – refrigerant

thermodynamic properties to evaluate. Parameters to

these models may then be obtained through calibration,

using an optimization procedure to minimize the model

predicted heat pump performance and the performance

data from the manufacturer.

A calibrated water to water heat pump model with a

scroll compressor is presented in this paper, based on the

work of Jin (2002). The model relies on a simplified

vapor compression cycle with 5 refrigerant states, where

DOI
10.3384/ecp17132219

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

219

only 3 of the states need to have refrigerant

thermodynamic properties evaluated. The model is

implemented into the Modelica Buildings library

(Wetter et al., 2014). An external implementation of the

heat pump model into Python is used to obtain the

calibrated model parameters based on tabulated

manufacturer data. The computational efficiency of the

Modelica model is tested in the simulation of a hydronic

heating system.

2 Heat Pump Model

A heat pump model has been built from components

from – and components added to – the Buildings

library (Wetter et al., 2014). The model presented in this

paper is for a water to water heat pump with a scroll

compressor using refrigerant R410A and is shown in

Figure 1. The heat pump model incorporates two new

component models, Buildings.Fluid.

HeatExchangers.EvaporatorCondenser for the

evaporator and condenser and Buildings.Fluid.

HeatPumps.Compressors.ScrollCompressor for

the scroll compressor, as well as a refrigerant package

for the thermodynamic properties of R410A

Buildings.Media.Refrigerants.R410A.

The heat pump model is based on the work of Jin

(2002), and has been extended to allow for single- and

variable-speed compressors and dynamic heat storage

on the water side. The model relies on a simplified vapor

compression cycle, which removes the need to explicitly

model the expansion device. The model is meant to use

parameters for the sub-components, obtained from

calibration of the model to manufacturer data.

 The vapor compression cycle and the refrigerant,

evaporator, condenser and compressor models and their

implementation in Modelica are presented in this

section.

Figure 1. Model of a water to water heat pump with a

scroll compressor.

2.1 Simplified Vapor Compression Cycle

A simplified vapor compression heat pump cycle, as

proposed by Jin (2002), is presented in Figure 2. The

simplified cycle serves two purposes: (1) to reduce the

number of parameters in the heat pump model and

thereby facilitate the calibration process, and (2) to

reduce the number of evaluations of thermodynamic

properties of the refrigerant and thereby reduce

computing time.

The simplified vapor compression cycle relies on the

following assumptions:

1. The refrigerant leaves the condenser in the

saturated liquid state, i.e. there is no subcooling of

the refrigerant.

2. The refrigerant leaves the evaporator in the

superheated vapor state, with a constant degree of

superheating Δ𝑇𝑠𝑢𝑝. The enthalpy increase from

superheating has been magnified in Figure 2 and is

usually small compared to the latent heat of

evaporation.

3. The theoretical compressor work is the result of

isentropic compression at the built-in volume ratio

followed by isochoric compression or expansion to

the condensing pressure.

4. Sensible heat transfer to the refrigerant is neglected

in the evaporator.

5. The expansion process is isenthalpic.

From this set of assumptions, only a limited number of

refrigerant thermodynamic properties need to be

evaluated to solve the complete vapor compression

cycle: the temperatures, pressures and specific

enthalpies of the saturated vapor and saturated liquid

refrigerant (i.e. points A and B), and the specific volume

and isentropic exponent of the superheated vapor

refrigerant (i.e. point C).

Figure 2. Simplified vapor compression cycle.

2.2 Refrigerant Properties

The necessary routines for the evaluation of the

thermodynamic properties of refrigerant R410A were

implemented in a media package. Except for the

Modelling of Heat Pumps with Calibrated Parameters Based on Manufacturer Data

220 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132219

enthalpy of saturated refrigerant vapor, coefficients for

the equations presented in this section were obtained

from commercial supplier data (du Pont, 2004).

Coefficients for the enthalpy of saturated refrigerant

vapor were produced from tabulated properties in the

supplier data.

The implemented refrigerant routines and their

associated inputs are presented in Table 1. Specific

enthalpies and pressures of the saturated liquid and

saturated vapor refrigerant are calculated from degree 5

polynomial correlations. Thermodynamic properties of

the superheated refrigerant vapor are calculated using

the 11-term Martin-Hou equation of state (Martin and

Hou, 1955). Note that temperatures in all equations

related to thermodynamic properties are in Kelvin.

Table 1. Refrigerant routines.

Output Input(s)

Specific enthalpy (Saturated liquid), ℎ 𝑇

Pressure (Saturated liquid), 𝑝 𝑇

Specific enthalpy (Saturated vapor), ℎ 𝑇

Pressure (Saturated vapor), 𝑝 𝑇

Isentropic exponent (Vapor), 𝛾 𝑣, 𝑇

Specific isobaric heat capacity (Vapor),

𝑐𝑝
𝑣, 𝑇

Specific isochoric heat capacity (Vapor),

𝑐𝑣
𝑣, 𝑇

Specific volume (Vapor), 𝑣 𝑝, 𝑇

The specific enthalpy and pressure of saturated liquid

and saturated vapor refrigerant are calculated from

degree 5 polynomial correlations of the following form:

ℎ = ∑ 𝑎𝑖𝑋ℎ
𝑖−1

6

𝑖=1

 (1)

ln(𝑝 𝑝𝑐𝑟𝑖⁄) = ∑ 𝑎𝑖𝑋𝑝
𝑖−1

6

𝑖=1

 (2)

where 𝑝𝑐𝑟𝑖 is the critical pressure (= 4926.1 kPa for

R410A), 𝑋ℎ = (1 − 𝑇 𝑇𝑐𝑟𝑖⁄)
1

3⁄ − 𝑋0, 𝑇𝑐𝑟𝑖 is the critical

temperature (= 72.13°C for R410A), 𝑋𝑝 = (1 −

𝑇 𝑇𝑐𝑟𝑖⁄) − 𝑋0, and 𝑎𝑖 and 𝑋0 are correlation coefficients

that differ for Eqs. 1 and 2 and for saturated liquid and

saturated vapor.

The specific volume of the superheated vapor

refrigerant is evaluated from the Martin-Hou equation

of state:

𝑝 =
𝑅𝑇

𝑣 − 𝑏0
+ ∑

𝑎𝑖 + 𝑏𝑖𝑇 + 𝑐𝑖 exp (−𝑘
𝑇

𝑇𝑐𝑟𝑖
)

(𝑣 − 𝑏0)𝑖+1

4

𝑖=1

 (3)

where 𝑅 is the gas constant (= 0.11455 kJ/(kg·°C) for

R410A), and 𝑎𝑖, 𝑏𝑖, 𝑐𝑖 and 𝑘 are coefficients to the

equation of state.

During the development of the heat pump model, it

was found that the numerical solver needs to solve Eq. 3

for 𝑣. In many cases, the numerical solver could not

converge since it could not choose a proper guess value

for 𝑣. A refrigerant routine was then implemented to

evaluate the specific volume based on pressure and

temperature by successive evaluation of 𝑝 and
𝜕𝑝

𝜕𝑣
,

starting from a guess value 𝑣𝑔𝑢𝑒𝑠𝑠 = 𝑅𝑇 𝑝⁄ + 𝑏0. This

leads to an efficient implementation of the inverse of

Eq. 3, as the guess value 𝑣𝑔𝑢𝑒𝑠𝑠 is relatively close to the

final value.

The isentropic exponent is calculated from the

derivatives and integrals of the equation of state (de

Monte, 2002):

𝛾 = 𝑐𝑝 𝑐𝑣⁄ (4)

𝑐𝑝 = 𝑐𝑣 − 𝑇 (
𝜕𝑝

𝜕𝑇
|

𝑣,𝑇
)

2
𝜕𝑝

𝜕𝑣
|

𝑣,𝑇
⁄ (5)

𝑐𝑣 = 𝑐𝑝,𝑖𝑑 − 𝑅 − 𝑇 ∫
𝜕2𝑝

𝜕𝑇2
|

𝑣′,𝑇

𝑑𝑣′
𝑣

∞

 (6)

The derivatives and integrals in Eqs. 5 and 6 are

calculated directly by implementations of the

corresponding derivatives and integrals of the equation

of state in Eq. 3. The specific isobaric heat capacity of

ideal gas, 𝑐𝑝,𝑖𝑑 , is evaluated from a degree 3 polynomial

correlation based on temperature, in the form:

𝑐𝑝,𝑖𝑑 = ∑ 𝑎𝑖𝑇𝑖−1

4

𝑖=1

 (7)

where 𝑎𝑖 are correlation coefficients.

2.3 Compressor

The compressor model solves the complete vapor

compression cycle presented in Section 2.1. The model

interfaces with the evaporator and condenser models

through HeatPorts. The temperature and heat transfer

rates at the ports correspond to the refrigerant

temperature and heat transfer rates in the evaporator and

condenser.

The scroll compressor model proposed by Jin (2002)

was implemented and extended to consider variable-

speed compressors. As outlined in Section 2.1, the

theoretical compressor work is the result of isentropic

compression at the built-in volume ratio followed by

isochoric compression or expansion to the condensing

pressure. The volume ratio between discharge and

suction of the scroll compressor is fixed and the

compressor work must be adjusted if the pressure ratio

does not match the pressure ratio obtained from

isentropic compression at the fixed volume ratio. The

theoretical compressor work is then:

Session 5B: Buildings II

DOI
10.3384/ecp17132219

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

221

�̇�𝑡 =
𝛾

𝛾 − 1
𝑝𝑒𝑣𝑎𝑦�̇�𝑛𝑜𝑚𝑖𝑛𝑎𝑙 (

𝛾 − 1

𝛾

𝑝𝑐𝑜𝑛

𝑝𝑒𝑣𝑎𝑉𝑟

+
1

𝛾
𝑝𝑟

𝛾−1
𝛾

− 1)

(8)

where �̇�𝑡 is the theoretical compressor work, 𝑝𝑒𝑣𝑎 and

𝑝𝑐𝑜𝑛 are the evaporating and condensing pressure, 𝑦 is

the normalized speed of the compressor, with 𝑦 = 1 the

value at the nominal speed, �̇�𝑛𝑜𝑚𝑖𝑛𝑎𝑙 is the nominal

refrigerant volume flow rate, 𝑉𝑟 is the “built-in” volume

ratio between discharge and suction of the compressor

and 𝑝𝑟 = 𝑉𝑟
𝛾
 is the “built-in” pressure ratio.

The theoretical compressor work is adjusted for the

electro-mechanical efficiency of the compressor to

obtain the power input into the compressor. A constant

electro-mechanical efficiency is assumed:

�̇� =
�̇�𝑡

𝜂
+ �̇�𝑙𝑜𝑠𝑠 (9)

where �̇� is the power input into the compressor, 𝜂 is the

electro-mechanical efficiency of the compressor and

�̇�𝑙𝑜𝑠𝑠 is the constant part of the compressor power

losses.

Since sensible heat transfer is neglected in the

evaporator and expansion is considered isenthalpic, the

evaporator heat transfer rate is obtained from the

enthalpy difference between the enthalpy of saturated

vapor at the evaporating pressure (point A in Figure 2)

and the enthalpy of saturated liquid at the condensing

pressure (point B in Figure 2):

�̇�𝑒𝑣𝑎 = 𝑦 (
�̇�𝑛𝑜𝑚𝑖𝑛𝑎𝑙

𝑣𝑠𝑢𝑐
− �̇�𝑙𝑒𝑎𝑘) (ℎ𝐴 − ℎ𝐵) (10)

where �̇�𝑒𝑣𝑎 is the evaporator heat transfer rate, 𝑣𝑠𝑢𝑐 is

the specific volume at the suction of the compressor

(point C in Figure 2) and �̇�𝑙𝑒𝑎𝑘 = 𝐶
𝑝𝑐𝑜𝑛

𝑝𝑒𝑣𝑎
 is the leakage

mass flow rate in the compressor, with 𝐶 being the

leakage coefficient.

The condenser heat transfer rate is then evaluated

from an energy balance:

�̇�𝑐𝑜𝑛 = −(�̇�𝑒𝑣𝑎 + �̇�) (11)

where �̇�𝑐𝑜𝑛 is the condenser heat transfer rate.

The specific enthalpies ℎ𝐴 and ℎ𝐵 are evaluated from

the implemented refrigerant routines presented in

Table 1 for the saturated liquid at 𝑇 = 𝑇𝑐𝑜𝑛 the

condensing temperature and the saturated vapor at 𝑇 =
𝑇𝑒𝑣𝑎 the evaporating temperature. The specific volume

at suction is evaluated for 𝑝 = 𝑝𝑒𝑣𝑎 and 𝑇 = 𝑇𝑒𝑣𝑎 +
Δ𝑇𝑠𝑢𝑝, where 𝑇 is the temperature of the superheated

vapor at the compressor suction. The evaporating and

condensing pressure used in Eq. 8 are evaluated from

the refrigerant routines for the pressure of saturated

vapor evaluated at 𝑇 = 𝑇𝑒𝑣𝑎 and 𝑇 = 𝑇𝑐𝑜𝑛. The

isentropic exponent used in Eq. 8 is evaluated at 𝑣 =
𝑣𝑠𝑢𝑐 and 𝑇 = 𝑇𝑒𝑣𝑎 + Δ𝑇𝑠𝑢𝑝. Superheating of the

refrigerant is included in the compressor model and not

in the evaporator model. Only the effects of

superheating on the suction specific volume and

isentropic exponent are considered. The superheating

enthalpy increase is neglected.

2.4 Evaporator and Condenser

The evaporator and condenser model is shown in

Figure 3. It extends from the already implemented

TwoPortHeatMassExchanger of the Buildings

library. It interfaces with the compressor model through

a HeatPort. The refrigerant in both the evaporator and

condenser is assumed to exchange heat with the fluid

stream at a constant temperature. The effective heat

transfer coefficient 𝑈𝐴𝑒𝑓𝑓 between the refrigerant and

the fluid is calculated by the 𝜀 − 𝑁𝑇𝑈 method:

𝑁𝑇𝑈 = 𝑈𝐴 �̇�𝑓𝑐𝑝,𝑓⁄ (12)

𝜀 = 1 − exp(−𝑁𝑇𝑈) (13)

where 𝑁𝑇𝑈 is the number of transfer units, 𝜀 is the heat

exchanger effectiveness, 𝑈𝐴 is the heat transfer

coefficient of the evaporator or condenser, �̇�𝑓 is the

fluid mass flow rate and 𝑐𝑝,𝑓 is the fluid specific isobaric

heat capacity.

Figure 3. Model used for both the evaporator and

condenser of the heat pump.

The effective heat transfer coefficient is then

evaluated based on the outlet fluid temperature, since

the HeatPort of the MixingVolume returns the outlet

fluid temperature. The heat transfer rate is given by:

{�̇�𝑒𝑣𝑎, �̇�𝑐𝑜𝑛} = 𝑈𝐴𝑒𝑓𝑓({𝑇𝑒𝑣𝑎, 𝑇𝑐𝑜𝑛}

− 𝑇𝑓,𝑜𝑢𝑡,{𝑒𝑣𝑎,𝑐𝑜𝑛})
(14)

𝑈𝐴𝑒𝑓𝑓 = 𝜀𝑐𝑝,𝑓�̇�𝑓 (1 − 𝜀)⁄ (15)

where 𝑇𝑓,𝑜𝑢𝑡,{𝑒𝑣𝑎,𝑐𝑜𝑛} is the outlet fluid temperature in

the evaporator or condenser.

Modelling of Heat Pumps with Calibrated Parameters Based on Manufacturer Data

222 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132219

3 Model Calibration

The parameters required by the heat pump sub-

component models are typically not provided by the heat

pump manufacturers. These parameters therefore need

to be determined by calibrating the model to the

manufacturer data. There are 8 parameters that need to

be evaluated: the nominal refrigerant flow rate �̇�𝑛𝑜𝑚𝑖𝑛𝑎𝑙,

the volume ratio 𝑉𝑟, the leakage coefficient 𝐶, the degree

of superheating Δ𝑇𝑠𝑢𝑝, the electro-mechanical

efficiency 𝜂, the constant part of the power losses �̇�𝑙𝑜𝑠𝑠

and the heat transfer coefficients 𝑈𝐴𝑒𝑣𝑎 and 𝑈𝐴𝑐𝑜𝑛 of

the evaporator and condenser.

Manufacturers usually provide technical data in the

form of tabulated values of heat pump capacities and

power input at different operating conditions in terms of

inlet water temperatures and mass flow rates into the

evaporator and condenser. Jin (2002) proposed the use

of optimization methods to identify the set of parameters

that minimize the sum of normalized square errors of the

heat pump capacities and power inputs. The cost

function to minimize is:

𝐶𝑜𝑠𝑡 = ∑ [(
�̇�𝑐𝑜𝑛

(𝑖)
− �̇�𝑐𝑜𝑛,𝑑𝑎𝑡𝑎

(𝑖)

�̇�𝑐𝑜𝑛,𝑑𝑎𝑡𝑎
(𝑖)

)

2

𝑖

+ (
�̇�(𝑖) − �̇�𝑑𝑎𝑡𝑎

(𝑖)

�̇�𝑑𝑎𝑡𝑎
(𝑖)

)

2

]

(16)

An optimization routine was set-up in Python using the

SciPy (Jones et al., 2001) package. Analogous models

for the refrigerant properties, the compressor, the

evaporator and the condenser were implemented in

Python. The set of parameters that minimizes the cost

function are evaluated from the Python model using a

sequential least square programming method. Once the

parameters are evaluated, the Python implementation of

the heat pump model is verified against the Modelica

model.

The time required to calibrate the model increases

with the number of manufacturer data points that are

used. Jin (2002) showed that using the combinations of

maximum and minimum entering water temperature and

mass flow rates on the evaporator and condenser sides,

for a total of 16 data points, decreases the calibration

time significantly with minimal effect on the accuracy

of the calibrated model. The Python optimization

routine thus only uses a subset of 16 data points from

the manufacturer data, and compares the model with the

complete manufacturer data set once the calibration is

complete.

Not all combinations of parameters yield a valid heat

pump model. For example, certain sets of parameters

may result in refrigerant temperatures in the condenser

to be greater than the critical temperature. In these cases,

it is not possible for the model to evaluate the capacity

and power input of the heat pump, since property

routines for saturated refrigerant (Eqs. 1 and 2) are only

valid for temperatures below the critical temperature.

It is then important to choose proper guess values for

the parameters when calibrating the model. Guess

values of the electro-mechanical efficiency and the

degree of superheating are simply chosen to be 𝜂 = 0.95

and Δ𝑇𝑠𝑢𝑝 = 4°C. The rest of the parameters are

evaluated from the nominal values of the heat pump

capacity �̇�𝑐𝑜𝑛,𝑛𝑜𝑚𝑖𝑛𝑎𝑙, power input �̇�𝑛𝑜𝑚𝑖𝑛𝑎𝑙 and

corresponding entering water temperatures

𝑇𝑓,𝑖𝑛,𝑒𝑣𝑎,𝑛𝑜𝑚𝑖𝑛𝑎𝑙 and 𝑇𝑓,𝑖𝑛,𝑐𝑜𝑛,𝑛𝑜𝑚𝑖𝑛𝑎𝑙, assuming a 5°C

temperature difference between the inlet fluid

temperatures and the refrigerant temperatures and a 1%

leakage mass flow rate. The guess values of the

parameters are evaluated following this sequence:

1. Evaluate the refrigerant temperatures:

𝑇𝑒𝑣𝑎 = 𝑇𝑓,𝑖𝑛,𝑒𝑣𝑎,𝑛𝑜𝑚𝑖𝑛𝑎𝑙 − 5°C (17)

𝑇𝑐𝑜𝑛 = 𝑇𝑓,𝑖𝑛,𝑐𝑜𝑛,𝑛𝑜𝑚𝑖𝑛𝑎𝑙 + 5°C (18)

2. Evaluate the evaporator heat transfer rate at

nominal conditions:

�̇�𝑒𝑣𝑎,𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = �̇�𝑛𝑜𝑚𝑖𝑛𝑎𝑙 − �̇�𝑐𝑜𝑛,𝑛𝑜𝑚𝑖𝑛𝑎𝑙 (19)

3. Evaluate the evaporating pressure 𝑝𝑒𝑣𝑎 and

condensing pressure 𝑝𝑐𝑜𝑛 at the corresponding

refrigerant temperature from the refrigerant

routines.

4. With the suction temperature 𝑇 = 𝑇𝑒𝑣𝑎 + Δ𝑇𝑠𝑢𝑝

and evaporating pressure 𝑝𝑒𝑣𝑎, evaluate the specific

volume and isentropic exponent from the

refrigerant routines.

5. Evaluate the volume ratio:

𝑉𝑟 = (𝑝𝑐𝑜𝑛 𝑝𝑒𝑣𝑎⁄)1 𝛾⁄ (20)

6. Evaluate the nominal refrigerant volume flow rate:

�̇�𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = (�̇�𝑟𝑒𝑓 + �̇�𝑙𝑒𝑎𝑘)𝑣𝑠𝑢𝑐 (21)

�̇�𝑟𝑒𝑓 = −
�̇�

𝑒𝑣𝑎,𝑛𝑜𝑚𝑖𝑛𝑎𝑙

(ℎ𝐴 − ℎ𝐵)
 (22)

�̇�𝑙𝑒𝑎𝑘 = 0.01�̇�𝑟𝑒𝑓 (23)

7. Evaluate the leakage coefficient:

𝐶 = �̇�𝑙𝑒𝑎𝑘 (𝑝
𝑐𝑜𝑛

𝑝
𝑒𝑣𝑎

⁄)⁄ (24)

8. With the theoretical power evaluated from Eq. 8

and the previously evaluated parameters, evaluate

the constant part of the power losses:

�̇�𝑙𝑜𝑠𝑠 = max(0, 𝜂�̇�𝑛𝑜𝑚𝑖𝑛𝑎𝑙 − �̇�𝑡) (24)

9. Evaluate the condenser and evaporator heat transfer

coefficients:

{𝑈𝐴𝑐𝑜𝑛 , 𝑈𝐴𝑒𝑣𝑎} = �̇�𝑐𝑜𝑛,𝑛𝑜𝑚𝑖𝑛𝑎𝑙 5°C⁄ (25)

This sequence has been implemented in Python and is

used to choose starting values for the parameters. It was

found to produce valid parameters in all cases

considered.

Session 5B: Buildings II

DOI
10.3384/ecp17132219

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

223

4 Examples

4.1 Calibration from Model Produced Data

The calibration method for the heat pump model is first

verified using data produced by the model. Heat pump

capacities and power input were calculated using the

Python model for water mass flow rates of 0.6, 0.9 and

1.2 kg/s at both the evaporator and condenser, inlet

water temperatures of 0, 5, 10, 15, 20 and 25°C at the

evaporator and inlet water temperatures of 15, 25, 35

and 45°C at the condenser, for a total of 216 data points.

The calibration is done using only the 16 points

corresponding to the combinations of minimum and

maximum values of the inlet water temperatures and

flow rates. The set of parameters used to evaluate the

heat pump capacities and power input, the guess values

for each parameter and the set of parameters resulting

from the calibration are shown in Table 2. A comparison

of the heat pump capacities and input power at all

216 points for the model values and calibrated values is

shown in Figure 4.

Table 2. Heat pump parameters for calibration using

model produced data.

Parameter
Original
value

Guess
value

Calibrate
d value

𝑉𝑟 (-) 2.365 1.668 2.362

�̇�𝑛𝑜𝑚𝑖𝑛𝑎𝑙

(m3/s)
0.00288 0.00193 0.00287

𝐶 (kg/s) 0.0041 0.00049 0.0041

Δ𝑇𝑠𝑢𝑝 (°C) 6.84 4.00 6.49

𝜂 (-) 0.924 0.950 0.922

�̇�𝑙𝑜𝑠𝑠 (W) 396.1 2206 398.7

𝑈𝐴𝑐𝑜𝑛 (W/°C) 7007.7 5044.9 7014.5

𝑈𝐴𝑒𝑣𝑎 (W/°C) 29991 5044.9 49136

The calibration process yielded parameters within 0.7%

of the model value, except for the degree of superheating

(5.1%) and the heat transfer coefficient of the evaporator

(64%). The model appears not be very sensitive to the

heat transfer coefficient of the evaporator. For instance,

the sum of normalized square errors (Eq. 16) is

8.94×10-6 using the calibrated values and 1.344×10-5

when replacing only the heat transfer rate of the

evaporator with the model value. The computing time

for the calibration of the model was 80.5 sec.

4.2 Calibration from Manufacturer Data

The calibration method is also verified against

commercial heat pump data. Technical data for a

commercial water to water heat pump with 19.3 kW

nominal capacity and 4.5 nominal coefficient of
performance was used to calibrate the heat pump model.

The technical data includes values of the capacity and

power input for mass flow rates of 0.47, 0.71 and

0.94 kg/s at both the evaporator and condenser, inlet

water temperatures of -1.2, 4.5, 10.1, 15.6, 21.2 and

26.7°C at the evaporator and inlet water temperatures of

15.6, 26.7, 37.8 and 48.9°C at the condenser, for a total

of 216 data points. Once again, the calibration is done

using only the 16 points corresponding to the

combinations of minimum and maximum values of the

inlet water temperatures and flow rates. The guess

values for each parameter and the set of parameters

resulting from the calibration are shown in Table 3. A

comparison of the heat pump capacities and input power

at all 216 points for the model values and calibrated

values is shown on Figure 5.

Figure 4. Comparison of model produced and calibrated

model heat pump capacities and power input.

Overall, the calibrated model is in good agreement with

the manufacturer data. The sum of the normalized

square errors is 0.00507 and the maximum differences

between calculated heat pump capacities and power

input from the model and the manufacturer data are

Modelling of Heat Pumps with Calibrated Parameters Based on Manufacturer Data

224 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132219

2.7% and 4.7%, respectively. Similar results have been

obtained for different technical data from different

manufacturers. The computing time for the calibration

of the model was 72.3 sec. A database of sets of

parameters, provided via Records, for various heat

pumps from different manufacturers will be included

with the heat pump model.

Figure 5. Comparison of manufacturer and calibrated

model heat pump capacities and power input.

4.3 Hydronic Heating System

The heat pump model is integrated into a simulation

model of a hydronic heating system. The system model

is equivalent to the Buildings.Examples.

HydronicHeating.TwoRoomsWithStorage system

model from the Buildings library, with the boiler

replaced by a water to water heat pump with a constant

source temperature of 8°C.

The hydronic heating system consists of two rooms

equipped with radiators. Hot water is produced by the

heat pump, stored into a storage tank and fed to the

radiators when required. The radiators are turned on

when the room temperature falls below the temperature

set points of 21°C during the day and 16°C at night. The

heat pump is turned on if the supply water temperature

from the radiators falls below the current set point and

turned off when the temperature at the bottom of the

storage tank rises above 55°C. Cooling is provided by

outside air if the room temperatures rise above 22°C.

Table 3. Heat pump parameters for calibration using

manufacturer data.

Parameter Guess value
Calibrated
value

𝑉𝑟 (-) 1.436 1.975

�̇�𝑛𝑜𝑚𝑖𝑛𝑎𝑙

(m3/s)
0.001484 0.001984

𝐶 (kg/s) 0.0004947 0.002566

Δ𝑇𝑠𝑢𝑝 (°C) 4.0 5.703

𝜂 (-) 0.95 0.8192

�̇�𝑙𝑜𝑠𝑠 (W) 2134 856.9

𝑈𝐴𝑐𝑜𝑛 (W/°C) 6633.2 2840.4

𝑈𝐴𝑒𝑣𝑎 (W/°C) 6633.2 21523

The nominal heating power of the boiler in the original

system is 2.2 kW. Therefore, the parameters to the heat

pump model were the same as those presented in

Table 3, with parameters �̇�𝑛𝑜𝑚𝑖𝑛𝑎𝑙, 𝐶, �̇�𝑙𝑜𝑠𝑠, 𝑈𝐴𝑐𝑜𝑛 and

𝑈𝐴𝑒𝑣𝑎 scaled by a factor 0.125 to obtain approximately

the same heating capacity.

The simulation time for the simulation model using

the heat pump is compared to the simulation time for the

model using the boiler. Both simulations are done using

the Radau solver, a tolerance of 1×10-6 and a simulation

stop time of 1 week. The simulation time using the heat

pump model was 48 seconds while the simulation time

using the boiler was 17 seconds.

5 Conclusions

A model for a water to water heat pump with a scroll

compressor is presented. To keep the computational

time small and to reduce the number of evaluations of

refrigerant thermodynamic properties, the model is

based on a simplified vapor compression cycle with

only five refrigerant states. Components for the

compressor, the evaporator and condenser, as well as

routines for the evaluation of thermodynamic properties

of refrigerant R410A were implemented in Modelica.

Parameters to the model are evaluated from

manufacturer data by solving the optimization problem

that minimizes the differences between the model

predicted heat pump capacities and power input and

those found in the manufacturer technical data.

The heat pump model was also implemented in

Python to facilitate the calibration process. While it

Session 5B: Buildings II

DOI
10.3384/ecp17132219

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

225

would be possible to call the Modelica model during the

optimization, a Python implementation was judged

more convenient in terms of ease of use. However, it

duplicates the implementation of the heat pump model,

which would make it difficult to apply the same

methodology to more complex systems. Support for the

preprocessing of parameters using Modelica models

within the Modelica framework would facilitate the use

of calibrated Modelica models.

The calibrated model presented in this paper has been

shown to generate heat pump capacities and power input

very close to the manufacturer data, and to be able to be

integrated into simulation models with minimal impact

on the simulation time. Future work will be devoted to

the extension of the methodology to more complex

cycles, such as multi-stage cycles, and to the modeling

of chillers.

Acknowledgements

This research was supported by the Assistant Secretary

for Energy Efficiency and Renewable Energy, Office of

Building Technologies of the U.S. Department of

Energy, under Contract No. DE-AC02-05CH11231.

References

Carbonell, S. D., Cadafalch, R. J., Pärlisch, P., and Consul, S.

R. (2012). Numerical analysis of heat pumps models:

comparative study between equation-fit and refrigerant

cycle based models. in Proc. Int. Conf. on Solar Heating,

Cooling and Buildings, EuroSun 2012 (Rijeka, HR).

De Monte, F. (2002). Calculation of thermodynamic

properties of R407C and R410A by the Martin–Hou

equation of state — part I: theoretical development.

International Journal of Refrigeration, 25(3): 306-313.

Domanski, P. A., and McLinden, M. O. (1992). A simplified

cycle simulation model for the performance rating of

refrigerants and refrigerant mixtures. International Journal

of Refrigeration, 15(2): 81-88.

E. I. du Pont de Nemours and Company (2004).

Thermodynamic properties of du Pont Suva 410A

refrigerant. URL

https://www.chemours.com/Refrigerants/en_US/assets/do

wnloads/h64423_Suva410A_thermo_prop_si.pdf.

Jin, H. (2002). Parameter estimation based models of water

source heat pumps. Ph.D. Thesis. Oklahoma State

University, Stillwater, OK, USA.

Jones, E., Oliphant, T., and Peterson, P. (2001). Open source

scientific tools for Python. URL http://www. scipy. org, 73,

86.

Lee, T. S., and Lu, W. C. (2010). An evaluation of

empirically-based models for predicting energy

performance of vapor-compression water chillers. Applied

Energy, 87(11): 3486-3493.

Lemort, V., and Bertagnolio, S. (2010). A Generalized

Simulation Model of Chillers and Heat Pumps to be

Calibrated on Published Manufacturer's Data. In

Proceedings of the International Symposium on

Refrigeration Technology 2010, Zhuhai, China.

Lund, H., Werner, S., Wiltshire, R., Svendsen, S., Thorsen, J.

E., Hvelplund, F., and Mathiesen, B. V. (2014). 4th

Generation District Heating (4GDH): Integrating smart

thermal grids into future sustainable energy

systems. Energy, 68: 1-11.

Martin, J. J., and Hou, Y. C. (1955). Development of an

equation of state for gases. AIChE Journal, 1(2): 142-151.

Scarpa, M., Emmi, G., and De Carli, M. (2012). Validation of

a numerical model aimed at the estimation of performance

of vapor compression based heat pumps. Energy and

Buildings, 47: 411-420.

Swider, D. J. (2003). A comparison of empirically based

steady-state models for vapor-compression liquid

chillers. Applied Thermal Engineering, 23(5): 539-556.

Wetter, M., Zuo, W., Nouidui, T. S., and Pang, X. (2014).

Modelica Buildings library. Journal of Building

Performance Simulation, 7(4): 253-270.

Modelling of Heat Pumps with Calibrated Parameters Based on Manufacturer Data

226 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132219

Simulation of Large Grids in OpenModelica:
reflections and perspectives

Francesco Casella1 Alberto Leva1 Andrea Bartolini2

1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy,
{francesco.casella,alberto.leva}@polimi.it

2Dynamica s.r.l., Italy, andrea.bartolini@dynamica-it.com

Abstract
This paper belongs to a long-term research activity on
modelling and simulation of large-size power grids in
Modelica, using the OpenModelica Compiler. We de-
scribe the present state of the research, its evolution over
the last year, the conclusions we could reach in this pe-
riod in comparison with the initial hypotheses, and some
results. Finally, we outline the future of the presented ac-
tivity.
Keywords: Grid Modelling and Simulation, Large-Scale
Systems, Efficient Simulation.

1 Introduction
The modelling and simulation of large power grids is an
emerging domain of interest for the Modelica language,
as the encountered problems basically consist of large net-
worked systems with decentralized control, where multi-
ple producers and consumers cooperate to the goals of sta-
ble network behaviour, satisfaction of all the load requests,
and system optimality.

Although control strategies for such large-scale systems
are usually designed as hierarchical systems, abstracting
low-level behaviours within higher levels, it is sometimes
necessary to simulate the entire system. This can be the
case when a full verification of the designed strategy, in-
cluding the interactions among its parts, is in order—and
this is an issue shared by any large-scale system.

In the case of electric grids, there is another problem
to address. For management reasons at the nation- or
continent-wide scale, it is required to periodically assem-
ble a model of the entire system and use it to run numerous
simulations, to verify that the stress expected in the next
time period can be sustained without incurring in stability
problems, to test critical manoeuvres when required, and
possibly to take decisions in a view to optimise the oper-
ation. This particular use of simulation makes a fast code
generation vital.

Over the last two years, we have been working on
this subject, with the goal of providing an entirely
Modelica-based solution using the open-source Open-
Modelica Compiler (OMC) for code generation. The
problem at hand is one very interesting case of an emerg-
ing class of large-scale models, see (Casella, 2015) for an

overall discussion on this topic. Preliminary results were
presented in (Casella et al., 2016), which was mainly ad-
dressed to the power system community. This paper in-
corporates the results of additional work carried out since
then, and presents the current state of the research from
the perspective of the Modelica community.

2 Previous research
In this section we summarise the research context and
the results from which we started, referring the interested
reader to (Casella et al., 2016) for further details.

National grids in Europe are rapidly evolving (ENTSO-
E, 2015, 2014). The penetration of intermittent sources
like wind and solar enhances the need for continent-level
integration for countries to help one another. Trans-
mission networks are moving from the traditional struc-
ture dominated by large synchronous generators and AC
links, toward an increasing share of HVDC links and of
medium- and small-scale generators interfaced to the grid
via AC/DC/AC links. As a consequence, the manage-
ment of transmission grids by national Transmission Sys-
tem Operators (TSOs) increasingly requires knowledge of
the dynamic behaviour of the the system outside the coun-
try boundaries.

Traditionally, well-established domain-specific tools
are used such as PowerFactory, PSS/E, and Eurostag.
These tools come with extensive component libraries, but
the exact formulation of the said models is difficult to ac-
cess, since they are written in low-level languages like
FORTRAN. With commercial tools, the models’ source
code might even be unavailable to the end user. This hin-
ders the required interoperability, as models of the same
object in different tools may behave differently. Indeed,
full interoperability would ideally require all European
TSOs to use the same simulation tool.

Modelica has been already used for the modelling
of electrical power systems, including detailed machine
models (Franke and Wiesmann, 2014; Kral and Haumer,
2005), and more recently it has been considered also to
model electro-mechanical transients in high-voltage gen-
eration and transmission system. In this context, an ac-
tivity worth mentioning is the iTesla European FP7 re-
search project (Vanfretti et al., 2013, 2014; Zhang et al.,
2015), although the results of the project refer to small- or

DOI
10.3384/ecp17132227

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

227

medium-sized power systems, with at most a few dozens
generators and transmission lines.

At the beginning of this activity, we formulated the
following research question: "Are Modelica and Model-
ica tools adequate to support the simulation of electro-
mechanical models of national- and continental-size
power grids?". From that moment till now, we have been
building a prototype model library, using which many test
cases have been created and analysed to answer the re-
search question stated above. The library contains repre-
sentative models for the main components used in the ad-
dressed systems, i.e., generators, governors, transformers,
transmission lines, and loads. Note that the goal of this
library is not the accurate modelling of any real system,
but rather to build realistic models of large-scale power
systems in order to test the ability of Modelica tools to
handle them. The simulation code is generated with the
open-source OpenModelica Compiler (OMC).

The results obtained so far are encouraging, but at the
same time the activity has revealed several shortcomings
of the OpenModelica environment, in particular referring
to the efficiency of both the code generation and the sim-
ulation phase. A development activity was therefore car-
ried out – and is still ongoing – within the OpenModelica
Consortium to address the evidenced problems, and verify
the effects of the introduced improvements with respect to
some representative benchmark cases. The result of the
activities just sketched is presented in the following.

3 Current research activity
For the purpose of this study, a prototype library has been
built, providing models of synchronous generators, trans-
formers, transmission lines with breakers and over-current
protections, electrical loads, and governors. All the high-
level modelling features of Modelica, like the support for
complex numbers, were extensively used.

Figure 1. Connector definition.

Figure 1 shows the types for complex current and volt-
age, used to define the electrical connector. It is assumed
that the three-phase voltages and currents are always bal-
anced and described by phasors referred to a common ref-
erence frame rotating with a reference speed/frequency,
usually that of a strong generator in the network.

Under these assumptions, a three-phase voltage and
current system can be described by just one voltage and
one current phasor, provided the appropriate factors of 3
or
√

3 are taken into account when computing the actual
power flows. Most large-scales grid studies are made un-
der this assumption; extensions to unbalanced three-phase

systems are feasible, but are far more computationally de-
manding, and outside the scope of our study.

It is also assumed that the network frequency stays
close enough to its reference value, so that the impedances
can be computed with that value, ans considered constant.

There are some similarities between the de-
sign of this library and that of the Model-
ica.Electrical.QuasiStationary library.
However, the specific modelling framework which is
required for large power grid studies, i.e., three-phase
balanced systems represented by one equivalent phase
only, is not directly available there.

Figure 2. Model of a transmission line (excerpt).

Figure 2 shows an excerpt of transmission line model,
including breakers for current protection. The two algo-
rithms compute the state of the breaker on the one side of
the line (the other is omitted for brevity), while the equa-
tions describe admittances, currents and voltages.

Figure 3. Model of a transformer (excerpt).

The equations for the transformer model are
analogous—see Figure 3, where again just an excerpt is
reported for brevity.

The model of a synchronous generation unit is built
hierarchically, by connecting those of synchronous ma-
chine, governor, and exciter controller, see Figure 4. The
synchronous generator is described by the simplest pos-
sible 4-state model, taking the mechanical power input
Pm_req from the governor, and the normalised excitation
voltage vf from the voltage controller.

Simulation of Large Grids in OpenModelica: reflections and perspectives

228 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132227

Figure 4. Generator model.

Figure 5. Synchronous generator equations (excerpt).

This model is interfaced to the rest of the system
through a Pin connector (see Figure 1). The core equa-
tions are shown in the excerpt of Figure 5.

Figure 6. Excitation system model, according to IEEE Std
421.5-2005.

The governor and exciter models (see for example Fig-
ure 6) are simple block diagrams, in accordance to the
IEEE standards. A graphical representation is here pre-
ferred to a text-based one, as it is immediately familiar to
any practitioner in the field.

Coming to loads, both linear and nonlinear models
are provided. The basic linear load model is described

by the equation V = ZI, where Z is a constant complex
impedance. PQ models can be easily obtained by writing
equations that prescribe the real and imaginary parts of
the complex power flow through the Pin connector of the
load. However, doing so makes the (large) implicit system
of equations describing the network nonlinear.

Since reliable sparse nonlinear solvers were not avail-
able in the Modelica tool used for this study at the be-
ginning of the work, a linearized PQ model was also im-
plemented, in which the relationships between complex
voltage, current and power were linearized around the
nominal operating point, which is supplied by an exter-
nal power flow computation. Later on, as full nonlinear
sparse solvers became available both for initialization and
simulation, the regular PQ load models were used.

In order to simulate network protection strategies, it
is necessary to be able to simulate the dynamic forma-
tion of more than one electrical islands from an single
synchronous network, due to the opening of strategically
placed circuit breakers. The newly formed islands need
separate frequency references and may drift apart from
each other. In this case, three factors shall be considered:

1. topological factor, i.e., detecting the formation of
sub-islands in the network, starting from the actual
status of circuit breakers,

2. functional factor, i.e., assessing the ability of each
island to survive in terms of voltage and frequency
regulation,

3. modelling factor, i.e., finding a model structure
which allows the models to properly work after the
islanding event in each of the possible functional
condition, avoiding singularities or other numerical
problems that would cause the simulation to abort.

Up to the authors’ understanding, this is a major depar-
ture from the modelling assumption and the structure of
all the existing Modelica libraries for multi-phase power
system modelling, which assume a fixed connection topol-
ogy throughout the simulation, and exploit this property to
use the over-constrained connector features originally in-
troduced in Modelica 3.0, propagating the phase reference
through the connectors. Unfortunately, this feature can-
not be used for the grid models considered in this paper,
unless it is extended to handle dynamically changing con-
nection graphs; this in turn would require a change of the
Modelica language, and major changes to how this feature
is handled in the Modelica tool.

In this study a prototype framework to manage this as-
pect was implemented using Modelica 3.3. In fact, for
the purposes of the testing activities carried out so far,
the topological analysis was not handled with a general-
purpose algorithm (that could be implemented as an exter-
nal C function), but rather hard-coded in simple Modelica
functions that returned the results of the analysis, which
were known a-priori for those tests.

Session 5C: Electrical & Power Systems I

DOI
10.3384/ecp17132227

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

229

In a nutshell, the prototype framework is based on a
Network Supervisor model, which is unique for the entire
grid model. The supervisor:

• receives the status of the network breakers via in-
put/output connections and monitors their changes;

• performs the topological analysis and detects the for-
mation of islands in the grid each time the breaker
status changes;

• sends to each load via input/output connections the
new activation status (active/not active) and to each
generator the new frequency reference (or reference
generator), when the breaker opening actually leads
to island formation.

Generators and loads change their active equations (us-
ing conditional equations) and frequency reference, ac-
cording to the information received from the Network Su-
pervisor, in order to avoid singularities that may prevent
the simulation from continuing. For example, all PQ load
models are turned into open circuits when they find them-
selves in a not active island„ i.e., an island without gen-
erators, because otherwise the system of equations of the
sub-island would have no solution, aborting the simula-
tion.

Network Nodes Gens Lines Trafos Equations
GRID_C 751 74 369 583 56386
GRID_E 1817 267 1458 1202 157022
GRID_D 8376 2317 1946 2489 579470
GRID_G 8113 407 6833 2824 593886

Table 1. Features of the exemplary grids.

Coming to the test cases, four exemplary grids of dif-
ferent sizes were considered, named in the following
GRID_{C,E,D,G}. Table 1 summarizes the main fea-
tures of the models, which describe the Irish power sys-
tem, the 400 kV Italian power system, the 400 kV pan-
european transmission system, and the detailed 400-220-
150-132 kV transmission system, respectively. The mod-
els were supplied by CESI in the context of the study re-
ported in (Casella et al., 2016). Note that the number of
nodes, reported for convenience, is not always a reliable
complexity indicator, because a node can have a very vari-
able number of attached entities, each in turn of different
complexity; for this reason, we also report the number of
equations. The results obtained by simulating these mod-
els are summarised and discussed in the next section.

4 Simulation results
During the first round of activity, that took place between
November 2015 and July 2016, the only fully reliable
large-scale sparse solver made available by the OpenMod-
elica tool was the KLU linear solver, which is geared

specifically towards the efficient solution of electrical cir-
cuit equations. This restricted the choice of system mod-
els to those in which the very large strong component of
the causalized system equations is linear. This sub-set
of equations comprises the transformer and transmission
lines components (which are linear) and the load models,
which can then be either constant impedances or PQ load
models linearized around the nominal operating point.

The only viable integration strategy given this limi-
tation was then to causalize the system of differential-
algebraic equations, bringing it into state-space form, and
then integrating it with an explicit ODE solver. At each
time step, the calculation of the derivatives requires the
solution of the very large strong component of the system,
which is performed by the KLU sparse solver.

Steady-state initialization was also feasible by prescrib-
ing the currents at the boundaries of the synchronous
generators to the values obtained by the external power-
flow computations, which allows to split the initialization
problem into one very large linear system (transformers
+ transmission lines + loads) and many small nonlinear
problems (each individual synchronous generator). The
availability of an external power-flow computation is also
essential to set proper initial guess values on the nonlinear
problems.

The models were simulated for 20 seconds, which is
the typical length of transients for stability studies, us-
ing Heun’s algorithm (2nd order Runge-Kutta) and a fixed
time step of 20 ms. The transmission lines currents are
monitored on both sides, but no breaker ever tripped.

Code generation and simulations reported here were
carried out on an Intel Xeon CPU E5-2650 server with
20 virtual cores at 2.30GHz, 72 GB of RAM installed,
running Linux Ubuntu 16.04 LTR 64 bit and using OMC
1.11.0-dev-59. Each simulation was carried out as a single
thread, which is reasonable as multi-core systems can be
exploited by running several simulation scenarios in par-
allel. The parts of the code generation process that can run
independently are instead parallelised in OMC, as well as
the compilation of the C code.

Network Flattening C gen. Compilation Simulation
GRID_C 24 24 13 12
GRID_E 73 67 35 44
GRID_D 334 315 123 111
GRID_G 318 303 144 186

Table 2. Performance results (times in seconds).

Performance results are summarised in Tab. 2. Notice
for clarity that the third column includes both the time for
structural analysis and optimisation, and that for C code
generation. The fourth column is the time used by the C
compiler and by the linker, while the fifth shows the total
simulation time. The simulation time is almost twice as
fast as real time for the smallest grid, and about 10 times
slower for the largest one.

Simulation of Large Grids in OpenModelica: reflections and perspectives

230 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132227

The time spent for flattening, structural analysis, C-
code generation and compilation currently dominates, tak-
ing up to about 13 minutes for the largest case. This is al-
ready a feasible situation for off-line applications, in par-
ticular if one generates the simulation code once and then
runs many simulations with it, by only changing the pa-
rameters in the initialization files, which can include for
example the tripping times for circuit breakers, the load
values, and so forth. However, such a code generation and
compilation time is still definitely too long for real-time
applications, with the typical turnover time of TSO oper-
ations, which is around 15 minutes. The peak recorded
memory allocation was about 20 GB of RAM, which does
not pose any problem on reasonably sized systems.

As to event handling, the event detection logic currently
implemented in OMC uses a simple bisection algorithm
to determine the exact point in time when thresholds are
crossed. If a great precision is not necessary, only a few it-
erations would be required, whose cost will be comparable
to that of carrying out a two-stage time integration step.
Otherwise, it could be possible to implement a more so-
phisticated event detection, for example using a Newton-
based algorithm.

Later on, as the sparse nonlinear solver Kinsol and the
sparse DAE solver IDA became available in the Open-
Modelica tool, it was possible to use the full nonlinear
PQ load models, as well as to employ a variable step size
sparse implicit DAE solver, which turns out to be more
efficient than explicit solvers as the underlying system is
somewhat stiff. Note that in this case the system is not
causalized and brought to state-space form; after alias re-
duction (and possibly index reduction, which however is
not required for these specific models), the resulting DAEs
are passed directly to the solver.

An example is shown in Figures 7 and 8, where three
solvers are compared:

• Runge-Kutta/KLU on the grid model with linearized
PQ loads,

• IDA/Kinsol/KLU on the grid model with linearized
PQ loads,

• IDA/Kinsol/KLU on the grid model with nonlinear
PQ loads.

The simulated transient is a 30% step reduction of the
active power of one of the PQ loads (node N_152) in
the smaller GRID_C model. The transients obtained with
KLU and IDA/Kinsol on the linear network model match
within the relative tolerance of the variable-step integrator,
i.e., 10−6.

Figures 7 and 8 show the frequency transient in node
N_152 (load) and node N_144 (generator). The frequency
peak at node N_152 is about 50.1 Hz. The blue and green
(overlapped) traces refer to the PQ linearised model, in-
tegrated using the KLU and the IDA solvers respectively,

Figure 7. KLU and IDA/Kinsol test – frequency transient at
load N_152.

while the red one refers to the PQ non-linear model, in-
tegrated using the IDA solver. It is apparent how the lin-
earized model is perfectly adequate to solve this kind of
transients, although it could end up being badly off in
other more severe transients.

Performance results obtained with the IDA solver are
reported in Table 3, using the same hardware of earlier ex-
periments and OMC 1.12.0-dev-731. The simulation time
shown is net of the time for set-up, initialisation and writ-
ing results to mass storage. Comparing these results with
those of Table 2, it is apparent how this solution strategy is
much more efficient, despite the additional computational
complexity brought in by the nonlinear load models.

The advantage of using the variable step-size DAE
solver are even more evident if longer simulation inter-
vals are taken, as is for example the case when addressing
voltage stability studies. The ability of the implicit DAE
solver to take steps with a length of many seconds when
the system is close to steady-state, allow to massively out-
perform the explicit ODE solver, whose step length is un-
conditionally limited to a few tens of milliseconds owing
to numerical stability problems.

The times for code generation and compilation are not
reported here, as these phases have not yet been optimized
for this kind of solver, so that the results are not indicative
of the performance that could be achieved once all current
performance bottlenecks have been resolved.

Finally, the Network Supervisor prototype was tested
on the same GRID_C model, using PQ linearized
load models, and changing some over-current protection
thresholds in such a way to result in the opening of four
lines after 1 s from the simulation start. These lines open-
ing generate three sub-islands.

Session 5C: Electrical & Power Systems I

DOI
10.3384/ecp17132227

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

231

Figure 8. KLU and IDA/Kinsol test – frequency transient at
generator N_144.

Table 3. Simulation performance with the IDA sparse DAE
solver

Network Rel. tol. No. of steps Sim. time [s]

GRID_C 10−4 39 0.96
GRID_C 10−6 146 3.18
GRID_E 10−4 140 8.80
GRID_E 10−6 364 15.22
GRID_G 10−4 221 59.95
GRID_G 10−6 615 123.19

• Sub-island 1, which contains only three generators,
two of these in frequency regulation. The genera-
tors will be shut down, bringing their power output
to zero rapidly.

• Sub-island 2, a small sub-island with six generators.
All generators are kept in regulation and a new refer-
ence generator will be assigned (N_517).

• Sub-island 3, a big sub-island, which contains the
rest of the network. All generators are kept in reg-
ulation and the reference generator does not change.

Figure 9 shows the new frequency rearrangement af-
ter the protection opening. Starting from the top, the
first trace refers to the sub-island 2, which reaches a new
steady-state with a frequency deviation of about 0.9 Hz;
the second trace refers to the sub-island 1, which is shut
down, and shows a transient with a frequency peak devia-
tion of about 1.2 Hz; the last trace refers to the sub-island
3, which is the most stable due to its large dimension.

Figure 10 shows the shut-down transient in the sub-
island 1 for the two generators in frequency regulation.

Figure 9. Network generator frequencies.

One can see a small power oscillation (lower than 20 kW),
taking place symmetrically between the two machines.

5 Conclusions and future work
At the beginning of the activity to which this paper be-
longs, the research question was whether or not is it fea-
sible to use the Modelica language and Modelica simula-
tion tools to handle nation- and continental-wide electro-
mechanical power system models. Over the last year, we
reached an affirmative conclusion, though there is clearly
work to be done to speed up the code generation phase,
which is still too long for many application contexts.

More in detail, we could prove the feasibility of us-
ing 100% Modelica models for the simulation of tran-
sients in systems of national and continental size, albeit
currently with very simple generator and controller mod-
els. The only exception is topological analysis, which will
arguably be better handled by external C code, possibly
re-using legacy code that performs the same task.

The simulation times we observed, particularly when
using the variable step-size sparse DAE solver IDA, are
acceptable, and are certainly amenable to further improve-
ments as the implementation of that solver in OpenMod-
elica is streamlined and optimized. On the other hand,
there is still much work to do in order to reduce the time
for code generation by at least one order of magnitude.
Development activities are under way on the OpenMod-
elica compiler to achieve this goal, most notably a new,
much faster front-end, as well as code generation algo-
rithms that are optimized for the sparse DAE solver. We
also evidenced the need for further improvements as for
the model initialisation and the event handling.

It is worth noticing that we could carry out all the re-

Simulation of Large Grids in OpenModelica: reflections and perspectives

232 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132227

Figure 10. Active power of generators in sub-island 1.

search activity entirely within the OpenModelica frame-
work, particularly after several improvements were made
to the compiler front-end, back-end, and simulation run-
time.

Given the positive outcome of this first one and a half
year of ground-breaking work, the authors believe that
some more specific investment in the development of the
OpenModelica tool for this type of applications could lead
to much better performance than what is reported in this
paper. Even if the performance of domain-specific tools
may not be fully reached, the added value brought in terms
of flexibility and openness by the use of the Modelica
object-oriented modelling framework, as well as by the
use of open-source tools like OpenModelica, makes this
research activity worth to be further pursued.

6 Acknowledgements
The authors gratefully acknowledge the financial support
of CESI S.p.A. and RTE for supporting this research work.
They also want to thank the entire development team of
OpenModelica for their support and hard work, which
made these developments possible.

References
F. Casella. Simulation of large-scale models in Modelica: state

of the art and future perspectives. In Proc. 11th International
Modelica Conference, pages 459–468, Versailles, France,
2015.

F. Casella, A. Bartolini, S. Pasquini, and L. Bonuglia. Object-
oriented modelling and simulation of large-scale electrical
power systems using Modelica: a first feasibility study. In
Proc. 42nd Annual Conference of the IEEE Industrial Elec-
tronics Society, pages 6298–6304, Florence, Italy, 2016.

ENTSO-E. ENTSO-E policy paper: Future TSO coordination
for Europe. Technical report, ENTSO-E, 2014.

ENTSO-E. ENTSO-E work programme 2015 through 2016.
Technical report, ENTSO-E, 2015.

R. Franke and H. Wiesmann. Flexible modeling of electrical
power systems – the Modelica PowerSystem library. In Proc.
of the 10th International Modelica Conference, pages 515–
522, Lund, Sweden, 2014.

C. Kral and A. Haumer. Modelica libraries for DC machines,
three phase and polyphase machines. In Proc. 4th Interna-
tional Modelica Conference, pages 549–558, Hamburg, Ger-
many, 2005.

L. Vanfretti, M. LI, T. Bogodorova, and P. Panciatici. Unam-
biguous power system modeling and simulation using Mod-
elica tools. In 2013 IEEE Power & Energy Society General
Meeting, 2013.

L. Vanfretti, T. Bogodorova, and M. Baudette. A Modelica
power system component library for model validation and pa-
rameter identification. In Proc. 10th International Modelica
Conference, pages 1195–1203, Lund, Sweden, 2014.

M. Zhang, M. Baudette, J. Lavenius, S. Løvlund, and L. Van-
fretti. Modelica implementation and software-to-software
validation of power system component models commonly
used by nordic TSOs for dynamic simulations. In Proc. 56th
SIMS Conference on Simulation and Modelling, pages 105–
112, Lund, Sweden, 2015.

Session 5C: Electrical & Power Systems I

DOI
10.3384/ecp17132227

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

233

234 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

A Tool to ease Modelica-based Dynamic Power System Simulations

Raul Viruez1 Silvia Machado1 Luis María Zamarreño1 Gladys León1 François Beaude2

Sébastien Petitrenaud2 Jean-Baptiste Heyberger2

1Aplicaciones en Informática Avanzada S.L., Sant Cugat del Vallès, Spain.
{viruezr,machados,zamarrenolm,leonge}@aia.es

2Réseau de Transport d’Électricité , Paris, France.
{francois.beaude,sebastien.petitrenaud,jean-baptiste.heyberger}@rte-france.com

Abstract
Developments made during the EU FP7-funded project
iTesla towards automatic ways of transforming power sys-
tems from proprietary format to Modelica, served as a
proof of concept for the adoption of Modelica as a com-
mon and standardized language for power system mod-
elling and simulation. This work is a continuation of
the progress made during the iTesla project. This paper
presents a tool developed with the main purpose of provid-
ing users with an easy way to generate power system net-
works in Modelica and perform time-domain simulations.
The tool is validated by generating Modelica systems for
IEEE cases and comparing simulation outputs with a ref-
erence commercial tool (Eurostag).
Keywords: Modelica, open source software, power system
modelling, power system dynamics, CIM.

1 Introduction
The work presented here is a continuation of the develop-
ments made during the iTesla1 project towards the auto-
matic transformation of power system networks for per-
forming phasor time-domain simulations using Modelica.
The specification for the automatic transformation was
presented in (Vanfretti et al., 2016) and this work presents
its full implementation in a user-friendly and open source
tool.

One of the most challenging objectives of the iTesla
project was to conduct accurate pan-European security as-
sessments taking into account system dynamics in addi-
tion to static analysis. This task requires the execution
of time-domain simulations considering a large number
of contingencies. But one of the main obstacles for run-
ning such simulations is that each European TSO relies
on its own (proprietary) data format in order to describe
dynamic models.

To address this issue, iTesla partners agreed to use
Modelica2 as the standard language for power system dy-
namic modelling. The use of Modelica as a common lan-
guage for power system dynamic simulations began with

1iTesla: Innovative Tools for Electrical System Security within
Large Areas. http://www.itesla-project.eu/

2Modelica R© and the Modelica Association. https://
modelica.org/

a previous European project named PEGASE3, where
simple systems were studied. During the iTesla project
several software modules were developed to automatically
transform power system models from different proprietary
formats, used by TSOs, to Modelica. Also, a Modelica
library containing electrical and logical models was im-
plemented (Bogodorova et al., 2013) and validated against
domain-specific simulation tools (PSS/E and Eurostag).
This library called iPSL (iTesla Power System Library),
is open source and can be found at the project repository4.

The developments made during the iTesla project al-
lowed the successful conversion of several European
power systems ranging from a dozen to hundreds of buses,
and a similar number of generator machines, from PSS/E
or Eurostag format to Modelica. Time-domain simula-
tions, including contingencies, were performed on the
automatically converted systems, thus achieving one of
the main objectives of the project. The iTesla project
served as a proof of concept for the usage of Modelica as a
standard language for power system modelling, but many
manual tasks were still required for each study conducted.

At the end of the project, the authors of the present
work decided to further expand the iTesla software devel-
opments exploiting some of the current results, the expert-
ise gained in Modelica, and the team working strength, for
the development of a simulation tool based on Modelica.
This user-friendly tool, from now on referred to as Power
Systems on Modelica (PSM) tool, automatically generates
and simulates power systems in Modelica. The tool is in-
tended to be fully compatible with the iPSL library (iPSL
has been enlarged and improved for this purpose), but the
user will not be limited to the library models, since any
Modelica model may also be freely added.

One of the main goals pursued with the development
of such a tool, which will be released open source, is
to enable users to easily convert CIM5 electrical net-
works to Modelica, in order to ease the transition to an
open equation-based language for power system model-
ling. This paper presents the automatic model generation

3PEGASE: Pan European Grid Advanced Simulation and State Es-
timation. http://www.fp7-pegase.com/

4iPSL repository. https://github.com/itesla/ipsl
5ENTSO-E Common Information Model (CIM) for grid model ex-

change. https://www.entsoe.eu

DOI
10.3384/ecp17132235

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

235

developed for the tool and shows some preliminary res-
ults.

The paper is organized as follows. Section 2 presents
the PSM tool and how the automatic model generation is
achieved. In section 3 specific cases are used to validate
the tool. And finally, section 4 presents the conclusions
and future work.

2 PSM tool
The PSM tool6 is intended to generate power system net-
works in Modelica (*.mo files) from CIM files containing
static system models and state variables from a given snap-
shot, plus dynamic data given in XML files. A power flow
computation is run over the network to obtain the steady-
state of the system. A Dynamic Data Repository (DDR) is
used for defining which dynamic models, either from iPSL
library or user-defined, should be used to map network
equipment, and which parameters must be used to instanti-
ate those dynamic models. The users also have the possib-
ility to perform time-domain simulations using a Modelica
solver engine (either OpenModelica or Dymola).

The tool has been designed to ensure modularity, al-
lowing users to either run processes individually or as a
full workflow. The software is built as a modular Java
application. Modules can be used directly from the com-
mand line or from a simple JavaFX user interface. Various
power flow engines and Modelica simulation engines can
be used, and further user-defined interfaces may be added
later on.

The general architecture of the tool is shown in Fig-
ure 1. The different modules involved in the conversion
process are: 1) CIM importer, 2) Power flow computation,
3) Modelica file generation, 4) Dynamic simulation defin-
ition, and 5) Time-domain simulation.

The tool first converts CIM data files into the iTesla
Internal Data Model7 (IIDM), on which a power flow is
computed. Then another module generates the Modelica
file connecting to the Dynamic Data repository to retrieve
dynamic data. The user has the possibility of introduce
events to be studied in the dynamic simulation, and fi-
nally run time-domain simulations with a Modelica engine
(currently OpenModelica or Dymola) selecting the desired
simulation parameters.

The individual modules are described below.

2.1 CIM importer
The main goal of this module is to import a network sys-
tem model file in CIM format and convert it to IIDM. The
module only supports CIM-compliant files (at the time this
work was prepared: ENTSO-E CIM Profile 1). The user

6PSM tool will be released open source in a specific repository start-
ing June 2017. The exact link will be published in the iPSL repository
https://github.com/itesla/ipsl.

7The IIDM allows to import, export and edit power system models
in the iTesla platform. Specifications on IIDM format can be found
at the GitHub repository for iTesla Power System Tools. https://
github.com/itesla/ipst

is free to manually write/update CIM files, as long as the
generated file is CIM-compliant8.

2.2 Power flow computation
This module is in charge of computing the power flow over
the IIDM network obtained in the previous step. The tool
has been designed to work with two different alternatives
for power flow computation:

• HELMTM-Flow power flow engine9.

• HADES power flow engine 10.

The tool is intended to allow easy switching between
these two engines. The values obtained from the power
flow computation are re-injected into the IIDM network
before moving on to the next module, i.e. the Modelica
file generation. The user also has the possibility of de-
activating the power flow computation and generating the
Modelica file using input values from CIM.

2.3 Modelica file generation
This module is responsible for the generation of the
Modelica (.mo) file. The tool enables the user to specify
dynamic models (relying on the iPSL library and/or user-
defined libraries) and parameters for each static item in the
given network setup, as well as to provide default paramet-
ers for each dynamic model. Default dynamic models can
also be defined for each static object type.

As depicted in the general architecture of the tool (Fig-
ure 1), this module connects to the DDR populated with
the system dynamic data and all necessary models.

The DDR is based on a set of XML files that store:

• Which mappings from static network elements to dy-
namic models to use in the dynamic system model
building (and its connections).

• The definitions required for building full model ini-
tialization simulations of complex dynamic models.

• The parameter sets used for dynamic model instan-
tiations. Global declarations and system wide equa-
tions.

Full model initializations (see the blue box at the bottom
of the Modelica file generation module in Figure 1) refer
to the derivation of relevant and coherent initial values for
all model variables based on power flow outputs and ex-
ternal parameters. This is done by performing very short-
time simulations of the specific models using either Open-
Modelica or Dymola. This initialization is performed

8Although CIM format can be used for dynamic models exchange, it
is currently hardly used for this purpose in the power system community.
Therefore the DDR option was considered more appropriate for PSM.

9For more information on HELMTM-Flow, see http://
elequant.com/. This product is based on the Holomorphic Em-
bedding Load Flow Method(Trias, 2012).

10RTE official power flow engine.

A Modelica-based Tool for Power System Dynamic Simulations

236 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132235

Figure 1. General Architecture of the PSM tool

only for component models requiring explicit initializa-
tion, which is the case of some generator machines and
may be the case for specific control models. The main ad-
vantage of using full model initialization instead of initial
equation inside Modelica models (the common initializa-
tion strategy in Modelica) is that the use of external (local)
initializations can significantly increase simulation speed
since it reduces the size of the initial system to be solved
(especially for large systems) and it is designed to be very
scalable. The use of initial equation may cause boundary
problems and increase the number of equations, resulting
in a decreased performance. See (Vanfretti et al., 2016)
for more details on initializations schemes.

2.4 Dynamic simulation definition
This module is intended to define the simulation scenario.
The user can define events to be triggered at specific times
during the simulation. This module also allows defining
load variations, capacitor changes, etc. As a result, one
or several Modelica files are generated in addition to the
Modelica base case generated in the previous step.

2.5 Time-domain simulation
This module is in charge of running time-domain simula-
tions on the Modelica files generated with the tool, allow-
ing the user to chose between two Modelica simulations
engines: OpenModelica or Dymola. PSM fully relies on
these engines to run simulations, and thus one of them
must be previously installed before the user starts running
the PSM tool.

OpenModelica is an open source Modelica environ-

ment, freely downloadable11. Instead, Dymola is a com-
mercial environment12. The user may also directly open
the generated Modelica file in any preferred Modelica en-
vironment for edition and simulation.

In PSM, the user has access to the definition of stand-
ard simulation setup (simulation interval, output interval,
integration method, integration tolerance, fixed integrator
step, etc.) given by the available simulation solver: Open-
Modelica or Dymola. The Time-domain simulation mod-
ule will generate output files in the standard Modelica
output format (MATLAB binary format *.mat), which is
provided by both supported simulation engines, as well as
in *.csv format. This will allow the user to import simu-
lation results into the preferred Modelica environment or
other software for plotting and analysis of results.

2.6 User interface
The tool also includes a basic graphical user interface with
functionalities allowing the user to select which processes
to run, on which data sets, and displaying progress and
logs, without having to manually run command line ac-
tions.

3 Tool’s validation
Different power system networks are being used to test
and validate PSM. Some of these systems were already
used for testing developments made during the iTesla pro-
ject and the results are presented in (Vanfretti et al., 2016)
and (León et al., 2015). In this work, validation was

11OpenModelica. https://openmodelica.org/
12Dymola by Dassault Systèmes. http://www.3ds.com

Session 5C: Electrical & Power Systems I

DOI
10.3384/ecp17132235

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

237

also performed using IEEE13 cases (IEEE14, IEEE30,
IEEE57, and IEEE118), which have not yet been used be-
fore.

All IEEE cases have been generated in Modelica format
using PSM, and for this all necessary dynamic models
from Eurostag were included in iPSL and DDR files were
generated with the corresponding dynamic data. Eurostag
equivalent models were created in Modelica using the ex-
act same equations used by this proprietary software. This
section presents the results obtained with the IEEE57 and
IEEE118 cases.

The results obtained with the different generated
Modelica systems are compared against the exact same
networks built in Eurostag, taking this software as a ref-
erence. Validations are done both graphically and nu-
merically. The numerical assessment is carried out using
the Root Mean Square Error (RMSE) as done in previ-
ous works (Vanfretti et al., 2016). The assessment metric
chosen to accept the results as valid is that the absolute
RMSE is ≤ 10−03 for all compared values (voltage mag-
nitudes in p.u. and angles in radians in all buses).

3.1 IEEE57 case
The IEEE57 test case is composed of 57 buses, 7 gener-
ators, 63 lines, 17 transformers, 42 loads, and 3 compens-
ation banks. The generators are modelled in Modelica
as synchronous machines defined by external paramet-
ers. This Eurostag’s model, together with the machine
described using internal parameters, were developed and
included in iPSL during the iTesla project. The control
systems present in this IEEE case are a voltage controller
ExcSEXS, an stabilizer PSSI3E2B, and a governor Gov-
Steam014. These models were developed in Modelica and
Eurostag specifically for PSM, and have been included in
iPSL15. Two types of events were introduced to validate
the results of time-domain simulation performed with the
Modelica model, using Dymola, against Eurostag.

Figure 2 shows the voltage magnitude at a given spe-
cific bus when a bus fault event is introduced (at this
bus) at time t=1 seconds, lasting 0.2 seconds. As can be
seen in the figure, the curves obtained with the Modelica
system generated with PSM and simulated using Dymola
(blue dashed line), and the Eurostag system (red solid line)
match very well. The numerical assessment test was car-
ried out obtaining a RMSE for all voltage magnitudes and
angles bellow the defined threshold (10−03).

Figure 3 shows the response of the IEEE57 test case
to a line fault lasting 0.1 seconds occurring at time t=1
seconds, where again, the results obtained with Modelica
system using Dymola (blue dashed line) and Eurostag (red
solid line) are very similar. The RMSE obtained is below

13Power Systems Test Case Archive from the University of Wash-
ington. https://www2.ee.washington.edu/research/
pstca/

14Control systems were built following standard IEC 61970-302.
15All these Modelica models can be found at the iPSL repository.

https://github.com/itesla/ipsl

Figure 2. Simulation of the IEEE57 case with a bus fault of 0.2
seconds occurring at t=1 s. The blue dashed line corresponds
to Dymola simulation results and the red solid line to Eurostag
results.

Figure 3. General Simulation of the IEEE57 case with an open
line of 0.1 seconds occurring at t=1 s. The blue dashed line
corresponds to Dymola simulation results and the red solid line
to Eurostag results.

the threshold.
All simulations in Dymola were performed using the

DASSL integration method with a tolerance of 10−06.
Typical times for running the type of simulations shown
for the IEEE57 case are ∼300 seconds to simulate 4 actual
seconds. These simulations were run in a machine with
the following characteristics: Intel R© Xeon R© CPU E5-
2690 2.60 GHz (2 processors), 48 GB of installed memory
(RAM) and 64-bit Operating System. Eurostag simulation
for the same system takes only a few seconds to complete.

A Modelica-based Tool for Power System Dynamic Simulations

238 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132235

Figure 4. General Simulation of the IEEE118 case with a bus
fault of 0.2 seconds occurring at t=1 s. The blue dashed line
corresponds to Dymola simulation results and the red solid line
to Eurostag results.

3.2 IEEE118 case
The IEEE118 case was also used to test PSM. This system
is composed of 118 buses, 177 lines, 9 transformers, 54
generators, 91 loads, and 14 compensation banks. The
dynamic models are the same as those used in the IEEE57
with CMCONST governor added.

Figure 4 shows the comparison between the Modelica
generated file and Eurostag for the voltage magnitude at
a specific bus, when a bus fault is introduced at time t=1
sec, lasting 0.2 seconds.

Due to the size of the IEEE118 network, the number
of equations in Modelica (∼14,000 equations) increases
considerably compared to the IEEE57 case (∼2,000 equa-
tions), and this greatly increases the simulation time in any
Modelica engine. For the IEEE118 results shown, it takes
Dymola approximately 6 hours to run 2.5 actual seconds
(on the same machine used for the IEEE57 case). This
is clearly a limitation for achieving scalability to real net-
works, which are of the order ∼10,000 nodes. Further
work is needed in this direction16.

4 Conclusions and future work
This paper presents the implementation of a user-friendly
and open source tool that allows users to automatic-
ally generate and simulate power system networks in
Modelica. This work is the result of years of develop-
ment made during the iTesla project and the extension of
those developments in a post-iTesla collaboration work.
This collaboration motivated by the authors’ commitment

16OpenModelica developers are working on the integration of the
Sundials IDA solver in order to significantly improve simulation times
for large DAE systems. For more information see https://www.
openmodelica.org/.

to open simulation tools to improve cooperation and ex-
change for performing dynamic power system simula-
tions.

Modelica allows enhanced transparency and results in
power system modelling and simulation, with all the ne-
cessary ingredients to become a standard language for
power system modelling. However, there is a clear need
for easier ways to transform power systems networks
into the Modelica language. The proposed tool is de-
signed to provide such possibility and bridge the gap
between Modelica and power system simulations, in or-
der to ease widespread adoption among the power system
community.

For the development of this tool, the authors have pro-
posed a simple architecture that, given the correct inputs,
allows the user to generate a Modelica file and simulate it
using a Modelica solver engine. The tool has been valid-
ated with a variety of power system networks, comparing
simulation results with a reference commercial software
(Eurostag). In particular, results obtained with two IEEE
cases are presented here, showing very accurate results.

Nevertheless, further work on Modelica simulation en-
gines is needed in order to achieve scalability. The net-
works studied are below or around a hundred nodes, but
simulation time increases excessively with systems size
and rapidly becomes unmanageable above 100 nodes.

PSM will be released as open source in a specific
repository starting June 2017. The exact link will be
published in the iPSL repository: https://github.
com/itesla/ipsl.

References
T. Bogodorova, M. Sabate, G. León, L. Vanfretti, M. Halat, J-B.

Heyberger, and P. Panciatici. A Modelica power system lib-
rary for phasor time-domain simulation. Smart Grid Techno-
logies Europe (ISGT EUROPE), 2013 4th IEEE/PES, pages
1–5, 2013. doi:10.1109/ISGTEurope.2013.6695422.

G. León, M. Halat, M. Sabate, J-B. Heyberger, F.J. Gomez, and
L. Vanfretti. Aspects of power system modeling, initialization
and simulation using the Modelica language. IEEE PES In-
novative Smart Grid Technologies Europe, pages 1–6, 2015.
doi:10.1109/PTC.2015.7232504.

A. Trias. The Holomorphic Embedding Load Flow method.
Power and Energy Society General Meeting, 2012 IEEE,
pages 1–8, 2012. doi:10.1109/PESGM.2012.6344759.

L. Vanfretti, A. Adib Murad, F. Gómez, G. León, S. Machado,
J-B. Heyberger, and S. Petitrenaud. Towards Auto-
mated Power System Model Transformation for Multi-
TSO Phasor Time Domain Simulations using Modelica.
PES Innovative Smart Grid Technologies Conference
Europe (ISGT-Europe), 2016 IEEE, pages 1–7, 2016.
doi:10.1109/ISGTEurope.2016.7856341.

Session 5C: Electrical & Power Systems I

DOI
10.3384/ecp17132235

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

239

240 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

A Modelica VSC-HVDC Average Value Model Implementation and
its Software-to-Software Validation using an EMT

Power System Domain Specific Simulator

Mohammed Ahsan Adib Murad1 Luigi Vanfretti2

1School of Electrical Engineering, University College Dublin, Ireland, mohammed.murad@ucdconnect.ie
2School of Electrical Engineering, KTH Royal Institute of Technology, Sweden, luigiv@kth.se

Abstract
This paper reports the implementation of a three-phase
VSC-HVDC model using the Modelica language. The
model is suitable for power system simulation where the
power electronic circuitry can be represented using equiv-
alent voltage and current sources to model the high fre-
quency switching process. Differently from the authors
previous work, this model is built using as much compo-
nents as possible from the MSL (Modelica Standard Li-
brary) to represent the three-phase electrical circuit, while
implementing the de facto control system models used
within typical power system simulation tools. To show
the applicability of Modelica for modeling a VSC-HVDC,
a software-to-software validation is performed using the
EMTP-RV power system simulator.
Keywords: VSC, HVDC, power systems, software-to-
software validation, power electronics, electro-magnetic
transients, DC grids, power systems

1 Introduction
1.1 Motivation
High Voltage Direct Current (HVDC) transmission sys-
tems have received renewed attention in the last decade
due to their applications for long distance power trans-
mission, particularly to enable interconnections between
distant wind farms and the main electrical grid (Bahrman,
2006). There are two main converter technologies used
in HVDCs: Line-Commutated Converter (LCC) and Volt-
age Source Converter (VSC), which are used for differ-
ent applications in power systems (Abildgaard and Moli-
nas, 2012). VSC-based HVDC systems provide certain
advantages w.r.t. those based on LCC, including (Reed
et al., 2003; Flourentzou et al., 2009), including indepen-
dent control of active and reactive power,energy supply to
weak and passive grids, etc.

An overview of different VSC topologies are reported
in (Andersen et al., 2002) and include conventional two-
level, multi-level diode-clamped, floating capacitor multi-
level converters, etc.
Recently, the Modular Multilevel Converter (MMC) tech-
nology has been adopted because of its advantages com-
pared to other multilevel converter topologies for HVDC

applications. With the adoption of MMC-based VSC tech-
nologies, modeling and simulation is becoming of crucial
importance for different network studies; where modeling
and simulation tools are needed in all facets related to their
utilization: from design, through implementation, and in
their operation.

1.2 Related Works
Power system electro-mechanical dynamic modeling and
simulation is used for the analysis of dynamic behav-
ior of large power networks, and the use of Modelica is
now becoming attractive because of several advantages
offered by the Modelica language as compared to exist-
ing power system simulation tools (Vanfretti et al., 2016;
Casella et al., 2016). Another modeling and simulation
approach that is important for power system analysis is
the Electro-Magnetic Transient (EMT) methodology, and
previous work has shown the advantages and limitations
of the use of Modelica (Bachmann and Wiesmann, 2000)
in adopting the EMT approach.

EMT analysis tools, such as EMTP-RV (see http://
emtp-software.com/), are typically used for the anal-
ysis of VSC-HVDC systems (Peralta et al., 2012), which
allow to analyze their performance for different levels of
modeling granularity of the power electronics of these sys-
tems (including average value models). To the knowledge
of the authors, there only exists two previous implementa-
tions of VSC-HVDC models using the Modelica language
in the literature (Majumder et al., 2013; Olenmark et al.,
2015), however, these have not been implemented-in nor
validated-against EMT (Electro-Magnetic Transient)-type
power system simulation tools (e.g. EMTP-RV), and more
importantly, they are not publicly available.

1.3 Paper Contributions
This paper reports the implementation of a three-phase
VSC-HVDC average value model, and a power system
test model that is compared against EMTP-RV. The aim
is to show the potential use and challenges of applying
the Modelica language for EMT-type analysis of VSC-
HVDC networks when detailed switching circuits do not
need to be represented (e.g. system-level control design
purposes).

DOI
10.3384/ecp17132241

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

241

The remainder of this paper is organized as follows. Sec-
tion 2 gives a brief description of the VSC-HVDC model.
In Section 3, the model implementation in Modelica is ex-
plained, while in Section 4, software-to-software valida-
tion results are summarized. Finally, in Section 5, conclu-
sions are drawn and future work is outlined.

2 VSC-HVDC Model
In EMTP-RV two types of VSC-based MMC station mod-
els are available, which are based on the results by (Per-
alta et al., 2012): Monopole, and Bipole configuration
with ground return. The MMC stations are represented
using four kinds of models: (a) Full detailed model, (b)
Detailed equivalent model, (c) Switching function of arm
model, and (d) Average-value model (AVM). The three-
phase configuration of the MMC topology assumed by
these models is shown in Figure 1.

SM1ua

SM2ua

SMNua

SM1ub

SM2ub

SMNub

SM1uc

SM2uc

SMNuc

SM1la

SM2la

SMNla

SM1lb

SM2lb

SMNlb

SM1lc

SM2lc

SMNlc

V
dc

vc
vb
va

Larm Larm Larm

Larm Larm Larm

iua iub iuc

ila ilb ilc

ic
ib

ia

Idc

V
u
a

V
la

Figure 1. MMC topology.

In this work the AVM model with an high level con-
trol system is implemented. The full description of the
model is documented in (Peralta et al., 2012). In this Sec-
tion, the most relevant components of the model available
in EMTP-RV are reviewed, as they are replicated in the
Modelica implementation, in Section 3.

2.1 Average-Value Model (AVM)
In an AVM, the power electronic switches (IGBTs) and
diodes are not modeled in detail, instead the MMC be-
havior is represented using controlled voltage and current
sources. Thus, an ideal behavior of the internal variables
of the MMC is assumed. For each phase j = a,b,c; the
voltage of the converter is derived from Figure 1, from
where,

vconv j =
Larm

2
di j

dt
− v j. (1)

Assuming the total number of sub-modules in each
phase is constant,

vu j + vl j =Vdc (2)

where, vu j and vl j are upper and lower arm voltages. Using
(1) and (2) the MMC is represented as a classical VSC.
The controlled voltage source in the AC side is determined
by:

vconv j = vre f j

Vdc

2
(3)

where, vre f j are the reference voltages generated from the
inner controller of the high level control system (i.e. they
are dimensionless quantities in per unit). Based on the
principle of power balance, the DC side model equations
are derived assuming no energy is stored inside the MMC
converter, as follows

VdcIdc = ∑
j=a,b,c

vconv j i j (4)

where the DC side current is given by,

Idc =
1
2 ∑

j=a,b,c
vre f j i j. (5)

Using these principles, the AVM model implementation
in EMTP-RV allows to build up an entire VSC-HVDC
model. Figures 2 and 3 show the schematic of the im-
plementation of the two basic components as available in
EMTP-RV for this purpose.

AC Side
Phase A

VDC
Varef

Vac AC Side
Phase B

VDC
Vbref

Vac AC Side
Phase C

VDC
Vcref

Vac

Larm Larm Larm

AC

Figure 2. AC side of AVM model.

IDC

DC_SideVaref

Vbref

Vcref

Ia

Ib

Ic

Req_DC

Leq_DC

C1

P

N

Figure 3. DC side of AVM Model.

In Figure 2 the AC side voltage for each phase is calcu-
lated using (3) and Larm is the arm inductance. In Fig-
ure 3 the DC side current IDC is calculated using (5)
and equivalent inductance, total conduction loss and the
equivalent capacitor are given by, Leq_DC = (2/3)Larm,
Req_DC = (2/3)NRON and C1 = 6C/N; where N is the
number of sub-modules per arm, C is calculated using
the energy conservation principle, and RON represents the
conduction loss of each IGBT.

A Modelica VSC-HVDC Average Value Model Implementation and its Software-to-Software Validation using
an EMT Power System Domain Specific Simulator

242 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132241

2.2 Control System
The VSC type MMC topology uses an “upper level” con-
trol system, which includes an outer and inner control.
The structure of the overall “upper level” control system
is shown in Figure 4. The “upper level” control system
serves two main purposes: (i) to regulate “system vari-
ables”, i.e. the active and/or reactive power or voltages
(labeled “outer control” in Figure 4), and (ii) to generate
reference voltages (vd_re f and vq_re f), which are used
as input to the AVM.

2.2.1 Upper Level Control
The VSC-MMC model uses the classical vector control
strategy. The inputs to the upper level control are three-
phase per unit (p.u.) variables, using the matrix in (8),
these variables are converted to direct-and-quadrature-axis
components rotating at synchronous speed (dθ

dt). The
phase angle θ is calculated using a Phase-Locked Loop
(PLL). The blocks for Clarke transformation, P/Q/VAC
calculations and d-q transformation are used to compute
the variables required for the outer and inner controllers.
The d-q transformed voltage and currents are calculated
using the transformation matrix, T , as follows:

idq = Tiabc (6)
vdq = T vabc_grid (7)

where

T =
2
3

 cos(ωt) cos(ωt − 2π

3) cos(ωt + 2π

3)
−sin(ωt) −sin(ωt − 2π

3) −sin(ωt + 2π

3)
1
2

1
2

1
2

 . (8)

The AC grid voltage, active and reactive power are calcu-
lated from the d-q reference,

P = vd id + vqiq (9)
Q =−vd iq + vqid (10)

vgrid =
√

v2
d + v2

q (11)

The signals are converted to per unit (p.u.) quantities be-
fore entering to the upper level control system. The outer
and inner control block is used to control active power, re-
active power, DC and AC voltage. All these controllers are
realized using proportional and integral (PI) control loop.
The input to these PI controller loops are the difference
between the reference (set by the user) and the controlled
variable. The references to the outer control loop are usu-
ally fixed set points, that in practice are varied by a remote
dispatcher. In this model the references to the outer con-
trol loop are fixed and can be varied by the user. The final
block (d-q to abc) is used to convert the d-q reference to
three-phase voltage references.

3 VSC Model Implementation in
Modelica

All the components included in the VSC model available
in EMTP-RV are implemented in Modelica and described

next. In addition to the VSC model, an equivalent gen-
erator model and a two winding transformer three-phase
models were also implemented for software validation
purposes.

3.1 AVM Model in Modelica
The AVM model was implemented using component mod-
els from the MSL (Modelica Standard Library). The con-
nector models used in the AC side are the three-phase
plug, and in DC side is the single phase positive and nega-
tive pin. The AVM model in Modelica is shown in Figure
5.

3.2 Upper Level Control in Modelica
Next, all the blocks of the upper level control system
shown in Figure 4 were implemented in Modelica. As
all the controllers in the upper level control system use the
same PI controller implementation, first a PI controller us-
ing components from the MSL was implemented. Next
the Modelica implementation was compared to the one
implemented in EMTP-RV. After validating this compo-
nent against EMTP-RV, the same PI controller was used
in the remaining P, Q, VDC, VAC, inner control and PLL
blocks.

3.3 PLL in Modelica
The phase locked loop (PLL) implemented in Modelica is
shown in Figure 6. The main function of the PLL loop is to
synchronize with the phase angle and frequency of the AC
grid voltage. The implementation of the PLL used simi-
lar components in Modelica, as those available in the spe-
cific power system tool’s documentation/description (i.e.
EMTP-RV). Given the fact that the reference documenta-
tion has a copyright, so the detail description is not given
here.

4 Software-to-Software Validation
4.1 Sub-system Model Validation
The AVM and each block of the upper level control sys-
tem were implemented as individual models within one
package, then all the blocks were assembled to realize
complete the implementation of the VSC model.
Next, software-to-software validation was carried out
against the EMTP-RV model. For example, consider the
PLL block shown in Figure 6, it has two inputs and two
outputs. After the implementation of the entire PLL block
in Modelica, this model was validated by simulating it us-
ing the same input signals in both Modelica and EMTP-
RV. The results of the PLL block simulations are shown in
Figures 7 and 8.
The same procedure is followed for the three-phase equiv-
alent generator and three-phase two winding transformer
models shown in Figure 9. After implementing needed
components, a test power system model described next is
used to validate the VSC-HVDC model.

Session 5C: Electrical & Power Systems I

DOI
10.3384/ecp17132241

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

243

VDC

P

Q

VAC Grid

P/Q/VAC
Calculations

Clarke TR

dq
Transformation

PLL

Iq

Id_ref

Iq_ref

Id_ref

Iq_ref

vd
vq

id
iq

Vd_ref

Vq_ref

Vd_ref

Vq_ref

theta

Outer Control

Inner Control

Linearization &
dq to abc

Vabc_refvd

vq

id

iq

V_alpha

V_beta

P
Q

VDC

P

Q

VAC Grid

I_alpha_D

I_beta_D

V_alpha_Y
V_beta_Y
I_alpha_Y
I_beta_Y

V_alpha_Y

V_beta_Y
I_alpha_D

I_beta_D

VDC_meas

Vac_prim

Iac_prim

Vac_secon

Iac_secon

Figure 4. Block diagram of the control system of the VSC-HVDC.

Figure 5. AVM Model in Modelica.

4.2 Power System Test model
The VSC-HVDC test power system model implemented
in Modelica and EMTP-RV is shown in Figure 10. A DC
cable model is yet to be implemented in Modelica, and
thus, resistive line model (R = 1.022Ω) is used instead.
Converter 1 (VSC1) controls the active power and Con-

Figure 6. PLL in Modelica.

verter 2 (VSC2) controls the DC voltage, while 1000 MW
active power is transferred from VSC1 to VSC2. The user
can select which controller should be active in each VSC.
The model parameters used (i.e. transformer resistance
and reactance, MMC arm inductance, etc), are exactly
the same in both software tools, and are summarized in

A Modelica VSC-HVDC Average Value Model Implementation and its Software-to-Software Validation using
an EMT Power System Domain Specific Simulator

244 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132241

Time(s)

0.35 0.4 0.45 0.5 0.55

In
p

u
t

a

-1

-0.5

0

0.5

1

1.5

2

Time(s)

0.36 0.38 0.4 0.42 0.44 0.46 0.48 0.5 0.52

In
p

u
t

b

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 7. Inputs to the PLL block. (Red traces: EMTP-RV and
blue traces: Modelica)

the Appendix. In EMTP-RV the integral and proportional
gains of each PI controller (in upper level control system)
are automatically calculated by specifying the desired set-
tling time (with 5% error). The computation method used
by EMTP-RV is proprietary, and thus, for the sake of con-
sistency, the values computed by this tool are used in the
Modelica model.

4.3 Steady State

EMTP-RV initializes the model variables using a three-
phase power flow solver, which is not available outside of
this tool. To validate the sub-system models (i.e. equiva-
lent generator, controllers, PLL, etc.), no initialization val-
ues were provided to the Modelica models (starting values
of the voltage and currents were set = 0). At the beginning
of the simulation, the Modelica and EMTP-RV results do
not match, however, after the Modelica trajectories reach
in their steady-state, the simulation results show an ade-
quate match. To illustrate, consider the test system shown
in Figure 9, where an equivalent generator and three-phase
two winding transformer are included. No initialization
values for the inductor currents (i.e. the states) were pro-

Time(s)

0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

F
 [

H
z
]

49.75

49.8

49.85

49.9

49.95

50

50.05

50.1

Time(s)

0.4 0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6

T
h

e
ta

 [
ra

d
]

0

1

2

3

4

5

6

Figure 8. Outputs of the PLL block. (Red traces: EMTP-RV
and blue traces: Modelica)

Figure 9. Test system of the equivalent generator and the two
winding transformer.

vided.
The simulation was carried out using the solver Dassl
with interval length equal to 1e-5. The same interval
length is used in EMTP-RV, however note that EMTP-RV
uses a Trapezoidal solver.

The simulation results shown in Figure 11 show that at

Session 5C: Electrical & Power Systems I

DOI
10.3384/ecp17132241

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

245

VSC 1 VSC 2400/320 KV

 S=100 MVA
 VDC=640 KV

 S=100 MVA
 VDC=640 KV

320/400 KVR

VAC = 400 KV
F = 50 Hz

VAC = 400 KV
F = 50 Hz

Figure 10. VSC-HVDC Test system.

Time(s)
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05

Is
 (

A
)

-1000

-500

0

500

1000

Figure 11. Secondary current of the transformer before the
steady-state is reached (Red: EMTP-RV, other: Modelica).

Time(s)
0.705 0.71 0.715 0.72 0.725 0.73 0.735 0.74

Is
 (

A
)

-800

-600

-400

-200

0

200

400

600

800

Figure 12. Secondary current of the transformer when the
steady-state is reached .

the beginning of the simulation the traces do not match
for the two different implementations. The traces in red
are from EMTP-RV, while other traces in different colors
are from the Modelica tool used. The simulation output of
the Modelica model matches the EMTP-RV results after
the steady-state is reached (shown in Figure 12).

Observe that when a larger test system model is to be
simulated (see Section 4.2), there are more states that
need to be initialized. The authors found that some of the
Modelica-tools (OpenModelica and Dymola), the solvers
are not able to solve the initialization problem and/or to
execute the simulation successfully. For the test system
shown in Figure 10 the Rkfix4 solver with interval length
1e-5 and tolerance of 0.01 were used.

Time(s)
0.745 0.75 0.755 0.76 0.765 0.77

V
re

f (
p.

u.
)

-0.5

0

0.5

Figure 13. Vabc_re f of VSC1 i.e. output of upper level control
(Red: EMTP-RV, other: Modelica).

Time(s)
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ID
C

 (
A

)

-500

0

500

1000

1500

2000

2500

3000

Figure 14. DC current of VSC1 (Red: EMTP-RV, Blue: Mod-
elica).

4.4 Software-to-Software Validation
Software-to-Software validation of the VSC-HVDC
model (see Figure 10) is carried out in two steps. First,
simulations are carried out without applying any perturba-
tions to the model in order to check whether the steady-
state trajectories match or not. In addition, no initial val-
ues were provided to the controller’s integrators in the
Modelica model. As a result, the simulation is allowed
to reach the steady state value before disturbances are
applied and comparisons are made. Figures 13 and 14
show the simulation results for Vabc_re f and IDC of VSC1,
showing the close match between the two different imple-
mentations.
Next, a step change in the active power reference form 1
to 0.5 (1000 MW to 500 MW) at 0.8 second is applied.
The step change and response of the controller are shown
in Figure 15, while other trajectories are shown in Figures
16-19. It is noted that a close match is achieved between
both implementations.

5 Conclusion
This paper showed the potential use of the Modelica lan-
guage to model EMT-type models of VSC-HVDC systems
when the high-frequency switching process can be repre-
sented using equivalent voltage and current sources. Dif-
ferently from the authors previous work (Vanfretti et al.,
2017), this model is built using as much components as
possible from the MSL to represent the three-phase elec-

A Modelica VSC-HVDC Average Value Model Implementation and its Software-to-Software Validation using
an EMT Power System Domain Specific Simulator

246 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132241

Time(s)
0.7 0.75 0.8 0.85 0.9 0.95 1 1.05

P
 [p

.u
.]

0.5

0.6

0.7

0.8

0.9

1

← P

Pref →

Figure 15. Active power response of VSC1 (Red: EMTP-RV,
Blue: Modelica).

Time(s)
0.7 0.75 0.8 0.85 0.9 0.95 1

I_
ph

sA
 [A

]

-2000

-1000

0

1000

2000

Figure 16. Primary current (Phase A) of VSC1 (Red: EMTP-
RV, Blue: Modelica).

Time(s)
0.6 0.8 1 1.2 1.4 1.6

Id
re

f

0.4

0.6

0.8

1

Figure 17. Current reference of upper level control of VSC1
(Red: EMTP-RV, Blue: Modelica).

Time(s)
0.6 0.8 1 1.2 1.4

V
D

C
 (

p.
u.

)

0.97

0.98

0.99

1

1.01

1.02

Figure 18. DC voltage on the VSC1 side (Red: EMTP-RV,
Blue: Modelica).

trical circuit, while implementing the de facto control sys-
tem models used within typical power system simulation
tools.

Time(s)
0.8 0.9 1 1.1 1.2 1.3 1.4

ID
C

 (
A

)

800

1000

1200

1400

1600

Figure 19. DC current on the VSC1 side (Red: EMTP-RV, Blue:
Modelica).

The Modelica implementation was compared to the
EMTP-RV software, a de facto power system model-
ing and simulation tool used for VSC-HVDC analyses,
yielding surprisingly similar results (even identical when
a desired disturbance is applied after the steady-state is
reached). The major benefit of the work reported herein
is that the control system implemented can now be ex-
changed with different tools that support the FMI stan-
dard, including Simulink and EMTP-RV, which makes it
possible to keep and maintain a single version of the con-
trol system model implemented (i.e. the one in Modelica).

The results from this work show that there is great po-
tential for the use of Modelica for EMT-type modeling and
simulation of electrical power systems, and particularly
of power electronic components. However, further work
must be carried out with respect to the provision of ade-
quate starting guess values for the initialization problem,
and more importantly, to efficiently simulate switching
processes without substantially affecting simulation time.

The Modelica files of the model presented
in this paper are available under the GPLv3
license in the following GitHub repository:
https://github.com/SmarTS-Lab/2017_
ModelicaConf_VSC-HVDC_AVM_Model

6 Acknowledgment
This work was supported in part by the FP7 iTesla project,
the ITEA3 openCPS project, and the STandUP Collabora-
tion Initiative.

Mohammed Ahsan Adib Murad is supported by Sci-
ence Foundation Ireland under Grant No. SFI/15/IA/3074.

The authors would like to thank Professor Federico Mi-
lano for supporting the first author during the preparation
of this paper.

7 Appendix
The two node test power system model parameter data are
provided in the Tables 1 and 2.

References
E. N. Abildgaard and M. Molinas. Modelling and con-

trol of the Modular Multilevel Converter (MMC). En-

Session 5C: Electrical & Power Systems I

DOI
10.3384/ecp17132241

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

247

Table 1. Equivalent generator data.

Parameter Value

Line to line RMS voltage (KV) 400
Generator short circuit capacity (MVA) 10000
R/L ratio (p.u.) 10
Fequency (Hz) 50

Table 2. VSC and two winding transformer data.

Parameter Value

Rated power (MVA) 1000
Transformer primary voltage [r.m.s. LL]
(KV)

400

Transformer secondary voltage [r.m.s.
LL] (KV)

320

Fequency (Hz) 50
Transformer resistance (p.u.) 0.001
Transformer reactance (p.u.) 0.18
MMC arm inductance (p.u.) 0.15
Capacitor energy in each sub-module
(KJ/MVA)

40

Number of sub-module per arm, N 400
Conduction loss of each IGBT (p.u.) .001

ergy Procedia, 20:227 – 236, 2012. ISSN 1876-6102.
doi:http://dx.doi.org/10.1016/j.egypro.2012.03.023.

B. R. Andersen, L. Xu, P. J. Horton, and P. Cartwright.
Topologies for VSC transmission. Power Engineering
Journal, 16(3):142–150, June 2002. ISSN 0950-3366.
doi:10.1049/pe:20020307.

B. Bachmann and H. Wiesmann. Advanced modeling of electro-
magnetic transients in power systems. In Modelica Workshop
2000, Oct 2000.

M. P. Bahrman. Overview of HVDC transmission. In 2006
IEEE PES Power Systems Conference and Exposition, pages
18–23, Oct 2006. doi:10.1109/PSCE.2006.296221.

F. Casella, A. Bartolini, S. Pasquini, and L. Bonuglia. Object-
oriented modelling and simulation of large-scale electrical
power systems using Modelica: A first feasibility study. In
IECON 2016 - 42nd Annual Conference of the IEEE In-
dustrial Electronics Society, pages 6298–6304, Oct 2016.
doi:10.1109/IECON.2016.7793558.

N. Flourentzou, V. G. Agelidis, and G. D. Demetri-
ades. VSC based HVDC power transmission systems:
An overview. IEEE Transactions on Power Electron-
ics, 24(3):592–602, March 2009. ISSN 0885-8993.
doi:10.1109/TPEL.2008.2008441.

R. Majumder, B. Berggren, and M. Larsson. Develop-
ment and comparison of DC grid model in Powerfactory
and Dymola for controller design. In 2013 IEEE Power
Energy Society General Meeting, pages 1–5, July 2013.
doi:10.1109/PESMG.2013.6672328.

A. Olenmark, J. Sloth, A. Johnsson, C. Wilhelmsson, and
J. Svensson. Control development and modeling for flexi-
ble DC grids in Modelica. In 2015 The 11th International
Modelica Conference, September 2015.

J. Peralta, H. Saad, S. Dennetiere, J. Mahseredjian, and
S. Nguefeu. Detailed and averaged models for a 401-
level MMC-HVDC system. IEEE Transactions on Power
Delivery, 27(3):1501–1508, July 2012. ISSN 0885-8977.
doi:10.1109/TPWRD.2012.2188911.

G. Reed, R. Pape, and M. Takeda. Advantages of volt-
age sourced converter (VSC) based design concepts for
FACTS and HVDC-link applications. In 2003 IEEE
Power Engineering Society General Meeting (IEEE Cat.
No.03CH37491), volume 3, page 1821 Vol. 3, July 2003.
doi:10.1109/PES.2003.1267437.

L. Vanfretti, T. Rabuzin, M. Baudette, and M. Mu-
rad. itesla power systems library (iPSL): A Mod-
elica library for phasor time-domain simulations.
SoftwareX, 5:84 – 88, 2016. ISSN 2352-7110.
doi:http://dx.doi.org/10.1016/j.softx.2016.05.001.

L. Vanfretti, M.A.A. Murad, and F.J.Gómez. Calibrating a
VSC-HVDC model for dynamic simulations using RaPId and
EMTP simulation data. In 2017 IEEE Power Energy Society
General Meeting, pages 1–5, July 2017.

A Modelica VSC-HVDC Average Value Model Implementation and its Software-to-Software Validation using
an EMT Power System Domain Specific Simulator

248 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132241

From system model to optimal control -

A tool chain for the efficient solution of optimal control problems

Manuel Gräber1 Jörg Fritzsche2 Wilhelm Tegethoff3
1TLK Energy GmbH, Germany, manuel.graeber@tlk-energy.de

2Volkswagen AG, Germany
3Institut für Thermodynamik, TU Braunschweig, Germany

Abstract
Based on a specific application example - the thermal
management system of an internal combustion engine -
a toolchain is presented for formulating and solving of

nonlinear optimal control problems. Starting from
graphical modeling of the thermal management system
with the Modelica library TIL, the model is exported to

the standardized model exchange format Functional
Mock-up Interface (FMI). Furthermore, it is imported to

the optimal control software package MUSCOD-II.
Python is used as scripting language for the problem
formulation, the numerical solution and the processing

of results. By using FMI as an interface, models from
any simulation and modeling tools can be used if there
is an FMI model export and the models fulfill certain

mathematical requirements (smoothness).

Keywords: Optimal control, Functional mock-up
interface, thermal management, cooling system

1 Introduction

When developing control concepts or superior operating

strategies, frequently the question arises, what is the
theoretically best possible control of a system.
Questions of this kind can be mathematically expressed

as Optimal Control Problems (OCP) describe. What is
special about this class of optimization problems is the
dynamics of the controlled system. Contrary to static

optimization problems, not a finite number of
parameters are free for optimization, but trajectories of
system inputs. Therefore, an OCP is an infinite-

dimensional optimization problem, which usually
cannot be solved directly. However, different

mathematical methods exist to determine approximated
numerical solution. Detailed introductions in the theory
of optimal control can be found in (Bryson and Ho 1979)

and (Betts 2001). The Direct Multiple Shooting Method
according to (H. G. Bock and Plitt 1984) used in this
article is explained in Section 3.

Although these and other specialized OCP algorithms

have existed for a long time, they have not yet made it
into the broad industrial application. An exception to

this is the aerospace industry, in which OCPs have been

solved for optimal trajectory planning for decades. The
largest (in our opinion) obstacle to a widespread
industrial use of optimal control is the necessary time

and knowledge-intensive effort. Successful work with
existing software requires a high degree of expert
knowledge. According to our experience, the by far

largest time effort in optimization projects cannot be
seen in performing the actual optimization calculations,
but rather in the modeling of the system under

consideration. On the one hand, derivative-based
optimization algorithms require a certain numerical

model quality (differentiability) that go beyond the
requirements of pure simulation algorithms. On the
other hand, it is important to depict the correct positive

and negative effects, the superposition of which
determines the optimum. The modeling process is
almost always iterative. Reliable results can only be

produced by repeatedly interpreting optimization results
and changing modelling details.

Based on the described experiences and observations,
we suggest a tool chain in this article to use optimal

control efficiently. The thermal management system of
a combustion engine serves as a continuous example.
Starting with the modeling of the controlled system in

Section 2, the model is exported as FMU (Blochwitz et
al. 2012) and imported into to the specialized
optimization package MUSCOD-II (H. G. Bock and

Plitt 1984; Diehl 2001; Leineweber et al. 2003). For the
problem formulation, the numerical solution and the

processing of results Python is used as scripting
language.

Other Modelica-related optimal control projects are
described in (Åkesson et al. 2010), direct collocation
(Imsland et al. 2010), single shooting, and (Franke

2002), multiple shooting.

2 Modelling of the controlled system

The most important part in the successful work with
optimal control is the dynamic model of the system
under consideration. Mathematically, the system model

DOI
10.3384/ecp17132249

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

249

is described as a system of ordinary differential

equations:

d𝒙

d𝑡
= 𝑓(𝒙, 𝒖, 𝒑, 𝑡) (1)

Here x denotes the vector differential states, u the vector
of inputs, p the vector of parameters and t is time. It is

also possible system models with additional algebraic
implicit equations. Since this is not supported by the
current FMI 2.0 standard and due to better readability,

we limit ourselves to explicit ordinary differential
equations (ODE) of the form shown above.

Equation systems of this type are the mathematical basis
of various industrially used system simulators such as

Simulink or Dymola. In order to be able to exchange
models between different simulators, the open standard
Functional Mock-up Interface (FMI) was developed.

We use FMI to link system models to optimization
algorithms. Thus, it is possible to develop the system

model of an optimum control problem in the modeling
tool of choice. The only requirement is the availability
of FMI exports.

Models that are suitable for simulation need not yet be
suitable for the use of derivative-based optimizers.

Discontinuities in the model equations can lead to poor
or even failing convergence behavior. In practice,
however, the theoretical mathematical requirements for

models must not be completely satisfied. Even if the
continuous differentiability of all model equations is not

fulfilled, for example by the linear interpolation of
characteristic fields, reasonable results can be achieved
with derivation-based optimizers.

Thermal systems such as the thermal management
system considered here, can be graphically modelled

with the Modelica library TIL (Schulze 2013; Gräber et
al. 2010; Richter 2008). Large parts of TIL are directly

suitable for use in optimizers. This includes circuits with
compressible liquids and ideal gas mixtures. Two-phase
fluid circuits modeled with TIL are not yet suitable for

optimization. However, current research deals with this
topic.

Figure 1 shows the thermal management system as a
TIL model. The coolant (blue) is pumped through the
engine block by an electrically driven pump. There,

waste heat from the combustion engine is added as time-
dependent heat flow. The upper circuit through the

heating heat exchanger is constantly flowed through.
The lower circuit for heat dissipation to the environment
can be connected via an electrical valve as required.

Figure 1. Sketch of the thermal management system.

Screenshot of Modelica / TIL system models.

The manipulated variables of this system are:

• Water pump speed

• Cooling fan speed

• Opening degree of the valve

Both heat-exchangers are modelled according to the
finite volume method with 5 discrete volumes. The

system model has 36 differential states in total.

The primary control task is temperature control of the

engine, which is achieved by demanding a setpoint of
90°C for the fluid temperature at the engine block outlet.

Three manipulated variables and only one control
variable leave two degrees of freedom. An open
question is how to deal with these degrees of freedom.

An obvious idea is to introduce the additional demand
for the lowest possible energy consumption. Thus, the
cost function to be minimized follows as:

𝐶 = ∫ 𝑃pump + 𝑃fan + 𝑐(𝑇 − 𝑇set)
2d𝑡

𝑡f

0

 (2)

The electrical power consumption of pump and fan as
well as a squared penalty term for setpoint deviations are

integrated over a given period of time. The two control
objectives can be weighted with the factor c. High

values result in higher energy consumption but
temperatures closer to the setpoint.

From system model to optimal control - A tool chain for the efficient solution of optimal control problems

250 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132249

The input trajectories within the period under
consideration are free for optimization. However, upper

and lower bounds for all manipulated variables are taken
into account:

𝒖lb ≤ 𝒖(𝑡) ≤ 𝒖ub ∀ 𝑡 ∈ [0, 𝑡f] (3)

In addition, the given initial state of the system model

enters as equality constraint:

𝒙(0) = 𝒙0 (4)

The complete optimal control problem follows as:

min
𝒙(∙),𝒖(∙)

𝐶(𝒙(∙), 𝒖(∙), 𝒑)

s.t.
d𝒙

d𝑡
(𝑡) = 𝑓(𝒙(𝑡), 𝒖(𝑡), 𝒑, 𝑡) ∀ 𝑡 ∈ [0, 𝑡f]

 𝒖lb ≤ 𝒖(𝑡) ≤ 𝒖ub ∀ 𝑡 ∈ [0, 𝑡f]
 𝒙(0) = 𝒙0

(5)

3 Numerical solution of optimal

control problems

This section is based on (Gräber 2013) and attempts to
explain the basic mathematical ideas behind the used

numerical methods. For a deeper and more
mathematical representation, references to further
literature are given in several places.

Optimal control problems of the above-described form
are not directly solvable by numerical methods.

Considering the continuous trajectories sought as a set
of infinitely many individual points, it becomes clear

that an OCP is an infinite-dimensional optimization
problem. Deriving analytical solutions is only possible
for very simple subclasses. For most real problems, only

an approximate numerical solution is possible.

Within the last decades, various methods have been

developed to numerically solve optimal control
problems. These can be divided into two large groups:
indirect and direct methods. Indirect methods are based

on Pontryagin's Maximum Principle. With the help of
this necessary optimum condition, the OCP is

analytically transformed into a boundary value problem
with the original differential equations and additional
adjoint equations. This boundary value problem can

then be solved with various numerical methods. A
frequently mentioned disadvantage of these methods is
the difficult consideration of restrictions. Since it is

necessary in many technical applications to limit state
variables and controls to certain areas, this disadvantage

is not insignificant.

Recent work deals almost exclusively with direct

methods. The term comes from the fact that not a
transformed problem, but directly the original OCP is

used. By discretizing the trajectories, the infinite-

dimensional OCP is approximated with a finite-
dimensional Nonlinear Program (NLP). This NLP can

then be solved with common numerical methods such as
Sequential Quadratic Programming (SQP) or Interior
Point Method (IP). Within direct methods, a distinction

is made between sequential and simultaneous methods.

In direct sequential procedures, the control trajectories

are described by piecewise defined functions – mostly
polynomials. In the simplest case, the polynomials are

of the order of zero, and the controls are piecewise
constant functions over time. The coefficients of these
polynomials are the free optimization variables. Using

an ODE or DAE solver, the cost function can now be
evaluated for given control trajectories and initial
values. Coupled to an optimization algorithm, the OCP

can be iteratively solved by repeatedly solving an initial
value problem with different control trajectories. It has

been shown, that particularly for ill-conditioned
problems convergence and stability properties of such
methods are not very good (Hans Georg Bock 1987;

Albersmeyer and Diehl 2010).

Direct simultaneous methods go one step further and

discretize not only the control but also the state
trajectories. In the case of direct collocation, the
trajectories of all state variables and controls are again

described by piecewise defined functions. The
continuous ODE is converted into a system of difference

equations using a suitable scheme. This equation system
is included as an equality constraint in the optimization
problem. Leading to a very large but finite-dimensional

NLP, which can be solved with conventional methods.
In order to reduce the computation time, the special
structure of the equation systems can be exploited.

(Biegler 2007) provides an overview of current
simultaneous methods.

Figure 2. Multiple Shooting Method. Control trajectories

(red) are discretized with piecewise constant functions and

state trajectories (black) are discretized by solving

independent initial value problems.

Session 5D: Control Systems II

DOI
10.3384/ecp17132249

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

251

The direct multiple shooting method used in this work

is usually seen as simultaneous method, but could also
be interpreted as a mixed form between the sequential

and simultaneous methods. Control trajectories are
discretized analogously to the methods described so far.
The state trajectories are also divided into individual

sections. However, the path within these sections is not
described by polynomials. Rather, initial values for the
states are introduced at the nodes of the multiple

shooting grid. At node i, these additional variables are

designated as 𝒔𝑖. Based on these initial values and the
original ODE, the trajectories of the states are
determined by solving several independent initial value
problems. For an arbitrary choice of the initial values,

the resultant total trajectories of the states have jumps,
see Figure 2. Therefore, closing conditions are included

in the OCP as additional equality constraints. The value
of a state variable at the end of a section must be equal
to the initial value of the next section.

If an identical discretization grid with n intervals is
chosen for controls and states and the controls are

parameterized piecewise constant with the values 𝒒𝑖, the
following NLP results from OCP (5):

min
𝒔0 ,…,𝒔𝑛

𝒒0 ,…,𝒒𝑛−1

∑ 𝑘𝑖(𝒔𝑖, 𝒒
𝑖
, 𝒑)

𝑛

𝑖=0

s.t. 𝒔𝑖+1 = 𝒙𝑖(𝑡𝑖+1; 𝑡𝑖, 𝒔𝑖, 𝒒
𝑖
, 𝒑)

 ∀𝑖 ∈ {0, … , 𝑛 − 1}
 𝒖lb ≤ 𝒒

𝑖
≤ 𝒖ub ∀𝑖 ∈ {0, … , 𝑛}

 𝒔0 = 𝒙0

(6)

It should be noted that the solution of an initial value
problem is behind the evaluation of the cost functions

𝑘𝑖(𝒔𝑖, 𝒒𝑖, 𝒑) and the determination of the states at the

end of an interval 𝒙𝑖(𝑡𝑖+1; 𝑡𝑖, 𝒔𝑖, 𝒒𝑖 , 𝒑). In the solution of
this NLP with derivative-based methods, it is of great
importance to determine the derivatives of these
functions with respect to the free optimization variables

accurately and efficiently. This is a non-trivial task
when using variable step size integrators. An extensive
discussion of this topic can be found in (Bauer 1999)

and (Albersmeyer 2010).

To illustrate the multiple shooting method, the

discretization for a simple example is shown in Figure
2. On each shooting interval i, an independent initial

value problem is solved with the initial value 𝑠𝑖 and the

constant control 𝑞𝑖. The figure shows the result of an
optimization iteration, that has not yet converged. The
violation of the matching conditions for the state
variables is clearly visible.

4 Optimal Control of a Thermal

Management System

This section describes optimization results for the

thermal management system described in section 2.

The system model is graphically generated and
parameterized in Dymola using the library TIL. With the
Dymola FMI export functionality, the model is exported

as FMU for Model Exchange 2.0. Control inputs must
be declared as top level inputs in Modelica and
variables, which are used in the cost function, as top

level outputs.

The coupling of the FMU to the optimizer MUSCOD-
II, and the complete configuration of the calculations is
done in the Python language. The Python code used her

is shown in Figure 3.

Figure 3. Python code for the numerical solution of the

optimal control problem.

The scenario considered is a 10-minute drive up a
mountain pass after a cold start at 20°C. This means that

relatively much engine waste heat is introduced into the
cooling circuit, which in turn has to be dissipated to the
ambient air. Due to the comparatively low uphill speed

the cooling fan has to be used more extensively. The

From system model to optimal control - A tool chain for the efficient solution of optimal control problems

252 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132249

optimum control trajectories are calculated as piecewise

constant curves with an interval length of 10s. A
simulation of the thermal management system with a

simple control concept is used as a basis for comparison
For this purpose, the pump, such as a mechanical water
pump, is operated at a rotational speed coupled to the

motor speed. The valve is controlled by a P-controller
and a setpoint of 85°C for the coolant temperature.
While the fan controls the same temperature with a PI

controller to the desired setpoint of 90°C.

Figure 4 shows the optimum and simulated (with PI

controllers) controls. Obvious differences are:

• Maximum pump speed in the first minute of the
optimal solution

• The fan becomes active in the optimal solution

earlier.

The first difference is only to be explained by the fact
that the electrical power of the pump is used to heat the

coolant. At the beginning all temperatures are at 20°C.
In order to reach the setpoint of 90°C as quickly as
possible, it is worth (in the sense of the cost function) to

use the electrical power of the pump to heat up the
system.

Figure 4. Controls from optimization and simulation. The

optimum control uses the fan earlier and completely opens

the valve later.

The second difference can be explained by looking at
figure 5. While the PI control of the temperature does

not become active until the setpoint is exceeded, the
optimum control reacts earlier. With increased fan speed

and valve opening, cooling is started before 90°C is
reached. An exact approach of the setpoint can thus be
achieved, without overshooting. In addition, it is

avoided that the fan is operated with maximum speed
and disproportionately high energy demand.

This second positive aspect is clearly visible in figure 6.
The cumulative electrical energy consumption of both
variants is shown, divided into fan and pump energy.

The fan energy clearly dominates in both cases. In the
case of PI control, the fan runs at a much higher speed

compared to optimal control, especially between

minutes 4 and 5. Within this time span, the PI controller
reacts to the overshooting temperature. This has the

consequence that the cumulative energy consumption
increases sharply. Whereas the more uniform optimal
control of the fan speed leads to total energy

consumption reduced by 19%. The individual numerical
values are listed in Table 1.

Figure 5. Results from optimization and simulation. The

primary control objective of keeping the coolant

temperature at 90 ° C is achieved in both cases. The

optimum control achieves the setpoint value somewhat

earlier, without overshooting.

Figure 6. Cumulative electrical energy consumption from

optimization and simulation. The optimum control

achieves a 19% reduction in energy consumption.

For the described cold-start high-load scenario, the

optimum control shows a significant reduction in energy
consumption while at the same time better compliance
with the setpoint for the coolant temperature. With the

presented tool chain, such investigations can also be
carried out for other systems and scenarios. Such

optimal control results can be used for various purposes:

• as reference for control concepts

• finding heuristic (almost optimal) control laws

• for online optimization (NMPC)

Session 5D: Control Systems II

DOI
10.3384/ecp17132249

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

253

Table 1. Total consumed electrical energy for both

variants.

 Pump Fan Total

PI control 0.18 MJ 0.98 MJ 1.16 MJ

Optimal
control

0.20 MJ 0.74 MJ 0.94 MJ

Difference +12% -25% -19%

5 Summary

With the presented tool chain Modelica/TIL → FMI →

MUSCOD-II thermal system can be modeled
conveniently and optimal control trajectories can be
calculated rapidly. For the example application, thermal

management of an internal combustion engine,
electrical energy savings of 19% (fan and pump)
compared to PI control are achieved. By comparing the

optimization and simulation results, the causes for
energy savings can be explained.

Optimization calculations of this type can serve as a
reference for control concepts to be developed. The

interpretation of the optimal trajectories can also be used
in finding heuristic (almost perfect) control laws. In
principle, optimum control calculations are also suitable

for online use in vehicles or other technical systems.
Which is known as nonlinear model predictive control
(NMPC). For prototypical NMPC applications on a

Windows laptop, the presented tool chain can be used
directly. However, it is not yet suitable for implemen-

tation on embedded control units.

References

Åkesson, Johan, Karl-Erik Årzén, Magnus Gäfvert, Tove

Bergdahl, and Hubertus Tummescheit. 2010.

“Modeling and Optimization with Optimica and

JModelica.org--Languages and Tools for Solving

Large-Scale Dynamic Optimization Problems.”

Computers & Chemical Engineering 34 (11): 1737–

49. doi:10.1016/j.compchemeng.2009.11.011.

Albersmeyer, Jan. 2010. “Adjoint Based Algorithms and

Numerical Methods for Sensitivity Generation and

Optimization of Large Scale Dynamic Systems.”

Ruprecht-Karls-Universität Heidelberg.

Albersmeyer, Jan, and Moritz Diehl. 2010. “The Lifted

Newton Method and Its Application in

Optimization.” SIAM Journal on Optimization 20

(3): 1655–84.

http://epubs.siam.org/doi/abs/10.1137/080724885.

Bauer, Irene. 1999. “Numerische Verfahren Zur Lösung

von Anfangswertaufgaben Und Zur Generierung

von Ersten Und Zweiten Ableitungen Mit

Anwendungen Bei Optimierungsaufgaben in

Chemie Und Verfahrenstechnik.” Universität

Heidelberg. doi:10.1159/000328458.

Betts, John T. 2001. Practical Methods for Optimal

Control Using Nonlinear Programming. Society for

Industrial and Applied Mathematics.

Biegler, L. 2007. “An Overview of Simultaneous

Strategies for Dynamic Optimization.” Chemical

Engineering and Processing: Process

Intensification 46 (11): 1043–53.

Blochwitz, T., M. Otter, J. Akesson, M. Arnold, C. Clauß,

H. Elmqvist, M. Friedrich, et al. 2012. “Functional

Mockup Interface 2.0: The Standard for Tool

Independent Exchange of Simulation Models.” In

9th International Modelica Conference.

Bock, H. G., and K. J. Plitt. 1984. “A Multiple Shooting

Algorithm for Direct Solution of Optimal Control

Problems.” In Proc. of the 9th IFAC World

Congress Budapest, 243–47. Pergamon Press.

Bock, Hans Georg. 1987. Randwertproblemmethoden Zur

Parameteridentifizierung in Systemen Nichtlinearer

Differentialgleichungen. Universität Bonn.

Bryson, Arthur E., and Yu-Chi Ho. 1979. Applied

Optimal Control: Optimization, Estimation, and

Control. John Wiley & Sons Inc.

Diehl, Moritz. 2001. “Real-Time Optimization for Large

Scale Nonlinear Processes.” Universität Heidelberg.

Franke, Rüdiger. 2002. “Formulation of Dynamic

Optimization Problems Using Modelica and Their

Efficient Solution.” In 2nd International Modelica

Conference, 315–23. Oberpfaffenhofen.

Gräber, Manuel. 2013. “Energieoptimale Regelung von

Kälteprozessen.” TU Braunschweig.

Gräber, Manuel, Kai Kosowski, Christoph Richter, and

Wilhelm Tegethoff. 2010. “Modelling of Heat

Pumps with an Object-Oriented Model Library for

Thermodynamic Systems.” Mathematical and

Computer Modelling of Dynamical Systems 16 (3):

195–209. doi:10.1080/13873954.2010.506799.

Imsland, L., P. Kittilsen, and T. S. Schei. 2010. “Model-

Based Optimizing Control and Estimation Using

Modelica Models.” Modeling, Identification and

Control 31 (3): 107–21. doi:10.4173/mic.2010.3.3.

Leineweber, D B, I Bauer, A A S Schäfer, H G Bock, and

J P Schlöder. 2003. “An Efficient Multiple Shooting

Based Reduced SQP Strategy for Large-Scale

Dynamic Process Optimization (Parts I and II).”

Computers and Chemical Engineering 27: 157–74.

Richter, Christoph. 2008. “Proposal of New Object-

Oriented Equation-Based Model Libraries for

Thermodynamic Systems.” Technische Universität

Braunschweig.

Schulze, C. 2013. “A Contribution to Numerically

Efficient Modelling of Thermodynamic Systems.”

Technische Universität Braunschweig.

From system model to optimal control - A tool chain for the efficient solution of optimal control problems

254 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132249

Nonlinear Model Predictive Control of a Thermal Management
System for Electrified Vehicles using FMI

Torben Fischer1 Tom Kraus2 Christian Kirches2 Frank Gauterin3

1Fraunhofer Institute for Chemical Technology (ICT), Project Group New Drive Systems, Germany,
torben.�scher@ict.fraunhofer.de

2Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Germany,
{tom.kraus,christian.kirches}@iwr.uni-heidelberg.de

3Institute of Vehicle System Technology, Karlsruhe Institute of Technology (KIT), Germany, frank.gauterin@kit.edu

Abstract
Energy-efficient thermal management systems for E-
mobility help to decrease energy consumption and in-
crease range. Due to transient external conditions and the
increasing system complexity, optimization-based control
approaches are required in order to harness the full po-
tential of such systems. In (Fischer et al., 11th Int. Mod-
elica Conf, 2015), we have presented a model-based de-
velopment cycle for a thermal management system in E-
mobility to this end. In this article, we build upon this
work to describe the use of this model within a nonlin-
ear model predictive control (NMPC) approach. The main
benefits of using an advanced optimization-based con-
trol system in this application are a) the ability to con-
trol the battery temperature and the cabin temperature si-
multaneously, b) the increased energy efficiency achieved
by exploiting the predictive character of the optimization-
based control approach, c) the possibility to include oper-
ational limits as constraints in the optimization problems
and d) the fast reaction to disturbances or model parameter
changes. We evaluate the merit of the proposed advanced
control system by way of a comparison to conventional
PID controller.
Keywords: thermal management system, nonlinear model
predictive control, Functional Mock-up Interface

1 Introduction
E-mobility is widely considered to be a key concept to
achieve ambitious goals set forth in contemporary climate
and environmental protection plans. Due to higher costs
and lower ranges compared to combustion engine driven
vehicles, a breakthrough in the mass market has yet to take
place. In this article we propose an optimization-based
control for energy-efficient operation of a thermal man-
agement system. In (Fischer et al., 2015) we observed a
decrease of the energy consumption of up to 30%, depend-
ing on ambient conditions. To improve the system further,
a nonlinear model predictive control (NMPC) approach is
proposed with the aim to harness the full potential of the
multiple-input multiple-output system (MIMO).

This article constitutes a follow-up of (Fischer et al.,

2015), where the concept of the thermal management sys-
tem is presented, including simulation results. The re-
mainder of this article is structured as follows: §1 intro-
duces the subject and describes the related state-of-the-art.
§2 recalls the process model of the thermal management
system. A short discussion of the NMPC approach re-
sides in §3 covering the formulation as a mathematical op-
timization problem, the multiple-shooting discretization,
a real-time solution algorithm and the employed software
interface. In §4 process model modifications are described
which were necessary in order to employ derivative-based
optimization techniques. §5 contains an ”offline” case
study to compare different approaches of jacobian matrix
generation on the basis of the Karush-Kuhn-Tucker (KKT)
violation and an ”online” case study to compare NMPC to
conventional PI control. Finally, we provide conclusions
and an outlook on future topics in §6.

1.1 State of the Art
NMPC is widely used in, e.g., process control and chemi-
cal engineering, often with rather slow sampling rates. In
the past years, the automotive industry has also shown an
increased interest in model predictive control. Applica-
tions like adaptive cruise control (Kirches, 2011; Kirches
et al., 2013), lateral dynamic stabilization, etc., can be typ-
ically controlled by a MPC-controller. Further examples
may be found in, e.g., (del Re et al., 2010). In the area
of heating, ventilation, and air conditioning (HVAC), con-
ventional control methods like PID-controllers and bang-
bang-controllers are still state-of-the-art, mostly due to
simplicity of design and implementation. There are, as
well, investigations on advanced control systems. For ex-
ample, (Esen et al., 2014) and (Karnik et al., 2016) use
MPC-controllers in the application field of thermal man-
agement systems, and (Afram and Janabi-Sharifi, 2014)
gives an general overview for HVAC systems. To reduce
the computational effort, these approaches however of-
ten do not rely on first-principles models, but rather on
data models or linearized state-space representations. The
first publication of an NMPC-controller based on first-
principle models using Modelica is (Franke, 2002). In
(Gräber et al., 2012), a functional mock-up unit (FMU)

DOI
10.3384/ecp17132255

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

255

of a first-principle Modelica model was used for the first
time within an fully nonlinear MPC setting. This exam-
ple is closely related to the present article, as it treats a
compression-vapor cycle.

2 Thermal Management System
In this section, we review the layout of a thermal man-
agement system as introduced in (Fischer et al., 2015).
The thermal management system of a vehicle has multiple
tasks. Primarily, for passenger comfort heating or cool-
ing of the passenger cabin is required. Moreover, there
are a number of legal requirements to be met including
windshield defrosting and defogging. Finally, powertrain
components have to be kept within their thermal opera-
tional range. In the particular case of an electrified vehicle,
increasing demands due to thermally even more sensitive
components and significant less amount of waste heat lead
to a development of new thermal management systems.

2.1 Concept and Model
The main feature of the system, depicted in Fig. 1, is a re-
versible heat pump, called thermal module (1), which pro-
vides heating and cooling power to keep the components
within a thermal operating range. Waste heat emitted by
electric components (2) is used to increase the temperature
level of the heat source, thereby contributing to a higher
efficiency of the system. By way of a flexible intercon-
nection, independent thermal conditioning of the cabin (3)
and the battery (4) may be achieved. By using waste heat
from an optional energy converter like a fuel cell or an in-
ternal combustion engine (5) in a hybrid electric vehicle,
the thermal module can be switched off.

Figure 1. Scheme of the thermal management system

The heat exchangers in the refrigerant cycle are mod-
eled in distinct ways. The condenser is modeled using
a moving boundary approach while the evaporator is real-
ized using a finite volume method. Details can be found in
§4.2. The heat exchangers modeling the heat flow between

coolant and air are also realized using a finite volume
method. The refrigerant accumulator, the coolant reser-
voirs, and the passenger cabin are modeled using lumped
volumes. The fluid data is taken from the TILMedia li-
brary, which provides bi-cubic spline interpolants for the
used refrigerant. The coolant is modeled as pure water and
the ambient air as dry air.

2.2 Controlled Variables
The controlled variables in the system shown in Fig. 1
are the cabin temperature Tcabin, the superheating temper-
ature of the heat pump Tsh and also the battery temperature
Tbattery. The desired cabin temperature Tcabin is assumed to
be at 22°C according to passenger preference. To ensure
a safe and efficient operating mode, the superheating tem-
perature of the heat pump Tsh is desirable to be at 5 K.
The admissible thermal operating interval of the battery is
from 20°C to 40°C. A temperature above this range can
lead to increased aging effects and eventually to degrada-
tion and a thermal runaway. The operating temperatures
of the electric motor and the power electronics are usually
observed but not tracked to a preset value.

2.3 Manipulated Variables
One manipulated variable in the system is the rate of
change ucompr of the compressor frequency of the heat
pump, which in a PID framework would be controlled
according to the cabin temperature setpoint. The second
input is the rate of change uvalve of the expansion valve
which in a PID logic would be assigned to the superheat-
ing temperature setpoint. As the system contains two ther-
mally conditioned components, the output heat rate is split
up by a 3/2-way-valve ((6) in Fig. 1) in the coolant by di-
viding the mass flow. The valve is a linear control valve
and accepts continuous values between 0 (path to battery
closed) and 1 (path to battery open).

2.4 Control Approach
In (Fischer et al., 2015), we have described a first control
approach, namely a decoupling of the MIMO-system into
multiple SISO-systems, which can then be controlled in-
dividually and by separate PID controllers. This approach
turned out to be problematic, as the battery temperature
and thus the cabin comfort was affected by a starting ther-
mal conditioning of the battery. The influences of the PID
controllers on each other also led to inefficient overshoot-
ing behavior and oscillations. As the main control goal is
energy-efficiency in order to allow for maximum electric
range of the vehicle, we propose an NMPC approach to
control the system.

In a first step, a reduced model of the thermal manage-
ment system without battery and attached vehicle model
is used to compare the control schemes in the computa-
tional studies in §5. This is appropriate since it is still con-
venient to control this reduced system by PI-controllers
which serves as good reference for the NMPC-controller.

Nonlinear Model Predictive Control of a Thermal Management System for Electrified Vehicles using FMI

256 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132255

3 Nonlinear Model Predictive Control
In this section, we briefly review Nonlinear Model Predic-
tive Control (NMPC) as an optimization-based scheme for
advanced closed-loop feedback control of dynamic pro-
cesses.

3.1 NMPC Problem Formulation
A suitable mathematical model description, capable to
predict the future behavior of the dynamic process under
consideration, must be available for the realization of any
NMPC controller. For the system at hand, a nonlinear
differential-algebraic system of equations (DAE) is suit-
able. The objective function to be minimized is typically
assumed to be of “tracking type”, i.e. set-points are pro-
vided for the controlled variables. In addition, NMPC
permits to include nonlinear constraints on process quan-
tities. The optimization problem to be solved in order to
find optimal controls may then be formulated as a DAE-
constrained optimal control problem and reads

min
x,z,u

∥∥∥∥∫ T

0
`(x(τ),z(τ),u(τ), p)dτ

∥∥∥∥2

2,Q
+ ||e(x(T), p)||22,W

s.t. ẋ(τ) = f (x(τ),z(τ),u(τ), p) τ ∈ [0,T] (1a)
0 = g(x(τ),z(τ),u(τ), p) τ ∈ [0,T] (1b)

x(0) = x̂0(t) τ ∈ [0,T] (1c)
0≤ c(x(τ),z(τ),u(τ), p) τ ∈ [0,T] (1d)
0 5 ri(x(τi),z(τi), p) {τi} ⊂ [0,T] (1e)

Herein, an objective function of least-squares type on the
prediction horizon [0,T] is composed of an integral term `
with weight matrix Q and an end-point term e with weight
matrix W , and tracks set-points provided for certain con-
trolled variables. The problem is constrained by the DAE
model equations (1a, 1b), by inequality path constraints on
dynamic states and controls (1d), and by point constraints
on a grid {τi}⊆ [0,T] that may cover, for example, bound-
ary or periodicity conditions.

By way of constraint (1c), the current process state x̂0(t)
at physical time t is embedded into the dynamic opti-
mization problem, and must hence be available as a mea-
surement or be provided by an observer. If the process
model is sufficiently accurate and the formulation of the
optimization problem is suitable, its solution yields opti-
mal process inputs u∗(τ) on τ ∈ [0,T] where τ = 0 coin-
cides with the physical time t at which the observation was
taken.

In practice, however, model predictions must be as-
sumed inaccurate because of inevitable measurement or
actuation errors as well as due to systematic model errors.
Naturally, this effect becomes more apparent over longer
time horizons T . For this reason, u∗, computed from the
initial state x̂0(t), is applied to the process for a ”short”
time only. The natural choice for the length of this “short”
time interval is the system’s sampling time.

The optimization procedure is continuously repeated,
each time a new measurement is available. This makes

NMPC a true closed-loop control scheme. Fig. 2 visual-
izes this control concept.

0 = τ0
τ1 τ2 τN−1

τN = T

past future

prediction horizon

past controls feedback control to be optimized
future controls to be optimized

x̂0(t)

Figure 2. The Nonlinear Model Predictive Control paradigm
for a piecewise constant control subject to optimization on the
prediction horizon.

3.2 Direct Multiple Shooting
In order to computationally solve problem (1) efficiently,
a parameterization of the control u and a discretization
of the states x and z in time is necessary in a direct ap-
proach to optimal control. With the direct multiple shoot-
ing method (Bock and Plitt, 1984), we employ a simul-
tanous approach.

To this end, the control u is parameterized by piecewise
constant control parameters q on a discretization grid 0 =
τ0 < τ1 < .. . < τN−1 < τN = T ,

u(τ) := qi ∈ Rnu , τ ∈ (τi,τi+1), 0≤ i≤ N−1.

On each control interval [τi,τi+1], a separate DAE initial-
value problem (IVP)

ẋ(τ) = f (x(τ),z(τ),qi, p), τ ∈ [τi,τi+1] (2a)
0 = g(x(τ),z(τ),qi, p)−θi(τ)g(si,zi,qi, p) (2b)

x(τi) = si, z(τi) = zi (2c)

is solved, given the initial value si ∈ Rnx .
The DAE condition is relaxed using a function θi(τ)

that is monotonically strictly decreasing on [τi,τi+1] and
that satisfies θ(τi) = 1 and θ(τi+1) = 0. This relieves us
of having to find consistent initial values zi ∈Rnz for solv-
ing the IVP. Consistency in the optimal solution will be
ensured by requiring

0 = g(si,zi,qi, p), 0≤ i≤ N.

Continuity of the IVP solutions thusly obtained is en-
forced by additional matching conditions,

0 = x(τi+1; τi,si,zi,qi, p)− si+1, 0≤ i≤ N−1,

wherein x(τi+1; τi,si,zi,qi, p) denotes the solution of the
i-th IVP on [τi,τi+1] and for initial values si and zi. Finally,
path and point constraints (1d,1e) are enforced in the time
grid points τi only. The integral least-squares objective
function is evaluated along the solution of (2).

Session 5D: Control Systems II

DOI
10.3384/ecp17132255

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

257

The nonlinear programming problem (NLP) resulting
from this discretization and parameterization reads

min
s,z,q

Φ :=
N−1

∑
i=0
||Li(si,zi,qi)||22,Q + ||e(sN ,zN)||22,W (3a)

s.t. 0 = x(τi+1;τi,si,zi,qi)− si+1, 0≤ i≤ N−1 (3b)
0 = g(si,zi,qi) 0≤ i≤ N (3c)
0 = s0− x̂0(t) (3d)
0 5 ri(si,zi,qi) 0≤ i≤ N. (3e)

Herein, Li is an appropriate quadrature rule for `
on [τi,τi+1], ri summarizes the path and point con-
straints (1d,1e) in τi, qN := qN−1, and the dependencies
on p have been omitted. For future reference, we denote
by c(·) the set of equality constraints (3b, 3c, 3d) and d(·)
refers to (3e).

This highly structured nonlinear programming prob-
lem is solved by a tailored sequential quadratic program-
ming (SQP) method as described in (Bock and Plitt, 1984;
Leineweber et al., 2003). For NMPC, a single iteration k
of this method may be divided into three distinct phases
according to the real-time iteration scheme first proposed
in (Diehl, 2001), as follows:

1. Prepare: In the k-th SQP iterate w(k) =
(s(k),z(k),q(k)), compute the gradient b(k) of the
objective and the Jacobian J(k) of the least-squares
objective residuals of (3), evaluate the (in-)equality
constraint residuals c(k), d(k), and compute lineariza-
tions C(k), D(k) of the (in-)equality constraints.

2. Feedback: Obtain a state measurement or estimate
x̂0(t). Solve the quadratic programming problem

min
∆w

1
2 ∆wT (J(k)

T
J(k))∆w+b(k)

T
∆w

s.t. 0 =C(k)
∆w+ c(k) (QP)

0≤ D(k)
∆w+d(k)

to find ∆w = (∆s,∆z,∆q) and return u(k)0 +∆u(k)0 as
the new feedback control.

3. Transition: Determine a step length α(k) ∈ (0,1] by
way of a globalization approach, and let w(k+1) ←
w(k)+α(k)∆w, k← k+1.

For online optimal control (NMPC), the three phases are
continuously repeated as fast as CPU resources permit
and state estimates become available. For offline opti-
mal control, the three phases constitute one iteration of an
SQP method for nonlinear programming, cf. (Nocedal and
Wright, 2006). These are carried out until the termination
criterion

||∇L (w(k))||+∑
i

λi|ci(w(k))|+∑
j

µ j[d j(w(k))]−,

referred to as the KKT violation, falls below a preset
threshold. Herein, L denotes the Lagrangian of (3) and

λ , µ denote the most recent Lagrange multipliers of the
equality and inequality constraints of (QP), respectively.
In the offline case, the embedding of x̂0(t) is replaced by
a fixed initial value.

3.3 Software Interfaces
A state of the art software package that implements the nu-
merical algorithm just presented is MUSCOD, see (Bock
and Plitt, 1984; Leineweber et al., 2003). The DAE ini-
tial value problems (2) are solved by DAESOL, cf. (Bauer
et al., 1999; Albersmeyer, 2010).

The developed Modelica model has to be interfaced
with the DAE solver of MUSCOD. To this end, the Func-
tional Mockup Interface (FMI) (Blochwitz et al., 2011)
is one convenient way to do this. Advantages are easy
handling, simulation speed (as the model is provided as
a dynamic link library), and the small effort required to
export existing Modelica models as Functional Mockup
Units (FMU). The interfacing between MUSCOD and the
FMU is carried out in C++, which has already been de-
scribed in detail in (Gräber et al., 2012).

Due to limitations in the current version 2.0 of the FMI
standard, only an ODE interface can be exposed to MUS-
COD. Hence, in place of the DAE IVPs (2), the ODE IVPs

ẋ(τ) = f (x(τ),g−1(x(τ),qi, p),qi, p), τ ∈ [τi,τi+1],

x(τi) = si

are solved and the local inversion of the algebraic con-
straint g for the unknown z(t) is internally taken care of
by the FMU by way of an iterative nonlinear root-finding
method. This situation is unfortunate from the point of
view of an all-at-once method for dynamic optimization,
as these inner iterations could be carried out much cheaper
as part of the solution procedure for the nonlinear pro-
gramming problem (3). Moreover, the possibility of dif-
ferent outcomes of adaptive choices during finite differ-
ence approximation of Jacobians of f may introduce un-
necessary approximation errors here. Nonetheless, we
have not observed numerical instabilities that could be
traced back to this issue.

Offline Optimization. ”Offline” optimization is a dy-
namic optimization for a given initial point, time hori-
zon and number of intervals which does not incorporate
any feedback from the real-world plant. The output data
comprises the state vector and the optimal control vector
at each interval, which can be provided in the simulation
within a time table in a further step. A stable and robust of-
fline optimization is essential for the online optimization.
Fig. 3 shows the scheme of the offline optimization.

For the ”online” optimization an integration of the real-
world plant model is needed. The optimized manipulated
variables, provided by MUSCOD, have to be applied on-
line to the real-world plant model. This requires that an
up-to-date measurement of the real-world plant state is
available, since it serves as the initial state for predictions

Nonlinear Model Predictive Control of a Thermal Management System for Electrified Vehicles using FMI

258 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132255

Figure 3. Scheme of the offline optimization

in the control model. Fig. 4 shows the scheme of the on-
line optimization. Basically, there are two paths we follow
to interface the model:

Online Optimization with Simulation in Dymola. A
Python script is the central control script, which starts the
simulation in Dymola, sets the optimal manipulated vari-
able and gets the updated measurement data via the Direct
Data Exchange (DDE) Interface. It is challenging though
to filter the needed variables, as there is no function in Dy-
mola to get the state vector of a model. The DDE Server
of Dymola has to be executed before and the simulation
speed must be reduced to real-time.

Online Optimization with Simulation in MUSCOD.
In this approach no simulation environment is needed any-
more. A Python script starts the optimization, and starts a
sequential simulation after each optimization interval. At
the end of each simulation part, the states can be extracted
out of the FMU and passed to MUSCOD as new initial
point. This leads to a very fast result since the simulation
is a lot faster than real time. Furthermore, an ideal NMPC
can be simulated, where no time is needed to calculate the
optimal manipulated variables.

Figure 4. Scheme of the online optimization.

4 Model Adaptations for Optimiza-
tion

In this section, we report on lessons learned while devel-
oping and carrying out adaptation procedures necessary in
order to make the existing thermodynamical model fit for
optimization based control using gradient-based methods.

4.1 Continuous Differentiable Model
This choice of numerical optimization algorithm and ini-
tial value problem solver implies certain smoothness and

regularity assumptions for (1). In particular, `, e, f , g, c,
and ri in (1) need to be twice continuously differentiable
w.r.t. all arguments. Furthermore, the algebraic constraint
function g needs to be invertible w.r.t. the algebraic state
z(t), i.e., the Jacobian ∂g(x,z,q, p)/∂ z ∈ Rnz×nz has full
rank for all applicable values of its arguments.

A first requirement hence is to adapt the existing model
to a model that conforms to the requirements set forth.
The model must not contain any discontinuities; condi-
tional statements, min(), max(), abs()-functions and lim-
iters have to be avoided; the use of the actualStream()-
operator is no longer possible. Occurrences must be re-
placed by continuous and twice differentiable statements.
Fig. 5 shows a discontinous function, typically used in hy-
brid simulations, which in this case is replaced by the lo-
gistic function with k = 10 and x0 = 3,

f (x) = (1+ e−k(x−x0))−1.

1 2 3 4 5
0

0.5

1

1 2 3 4 5
0

0.5

1

Figure 5. Discontinuous transitions have to be replaced by nu-
merical smooth functions.

4.2 Phase Change in Condenser
The rise of the density when crossing the boiling point
curve of the refrigerant in the condenser is discontinuous
and leads to problems in the optimizing process. As stated
in section 2.1, the heat exchangers are modeled by a finite-
volume-method. This means, that the flow path is dis-
cretized into N cells. Each cell consists of mass flow and
energy conservation. Depending on the operating point or
in transient conditions, the crossing of the boiling point
curve can occur in different cells, and also within a cell.
The discontinuous rise of the density affects the state vari-
able enthalpy, which eventually leads to problems for the
optimizer finding a proper gradient.

To solve this problem, the modeling approach of
a moving boundary heat exchanger, cf. (Jensen and
Tummescheit, 2002) is used. In this case, the flow path
is not discretized into N cells, but always into three cells
according to the fluid phases: subcooled, two-phase and
superheated. Thus, the rise of the density within a cell can
be avoided, as one cell is always considered as a homoge-
neous phase.

However, using a moving boundary heat exchanger
leads to another major problem. The model is only valid, if
the condenser still contains the three zones superheating,
two-phase and subcooled. It is therefore essential to keep
the heat pump in an operating state, where all three zones
exist. This is achieved by introducing soft constraints pun-
ishing operating points of the heat pump which should be
avoided. The limits are defined as follows: the length of

Session 5D: Control Systems II

DOI
10.3384/ecp17132255

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

259

the subcooled condenser cell lsc should be greater than 5%
of the total length, and the superheating temperature Tsh
should be greater than 4 K. In case of violating these soft
constraints, a high weighted penalty is added to the objec-
tive variable, indicating the optimizer to avoid this state.
There are some approaches to model a switching mov-
ing boundary model, cf. (Bonilla et al., 2015). Since the
switching algorithm always relies on boolean logic, it can-
not be used with a gradient-based SQP algorithm.

4.3 FMU Status Report
The status of the FMU is returned by each function after
calling to indicate the success of the function call. In the
case of fmi2SetContinuousStates the status can
be fmi2Discard, indicating that it is recommended to
discard the last solution and to evaluate the model equa-
tions again with a smaller time step. This information has
to be directed to the ODE solver. Ignoring this informa-
tion can obviously lead to much higher computation time
or even to non-convergence.

5 Computational Results
In this section, we report on computational findings for the
adapted thermodynamical model both for offline optimal
control and in the NMPC context. The results presented
in this section focus on the thermal management system
without battery and attached vehicle model.

5.1 Problem Setup
The manipulated variables ucompr and uvalve of the reduced
model are the rates of change of the compressor frequency
and the area of the expansion valve. The controlled vari-
ables are the cabin temperature Tcabin and the superheating
value of the heat pump Tsh. All results are generated with
the same basic system model, counting a total number of
43 differential states, and with a time horizon of h = 20 s
discretized by N = 20 shooting intervals.
The sole difference between the model used in the offline
and the NMPC study is the incorporation of the ambient
temperature as an additional pseudo–dynamic state in the
NMPC controller’s model (Ṫamb = 0) while in the offline
controller’s model the temperature is merely a constant.
An incorporation of this easily measureable quantity ob-
viously is the more suited choice since it yields better pre-
dictions. However, since required derivative functions for
the ambient temperature were not available this was omit-
ted in the offline study for sake of comparability (see also
§5.2).
The objective function, defined in Eq. (4), penalizes the
differences between controlled variables and their set-
points, as well as input changes. Moreover, a soft con-
straint formulation is chosen to avoid that the superheating
temperature Tsh drops below the lower operational bound
of Tsh,LB = 4 and that lsc drops below lsc,LB = 0.05:

max(0,Tsh,LB−Tsh) = 0.5 · (Tsh,LB−Tsh + |Tsh,LB−Tsh|)
max(0, lsc,LB− lsc) = 0.5 · (lsc,LB− lsc + |lsc,LB− lsc|)

The final objective function including the two soft con-
straints reads as follows:

`(x(t),z(t),u(t), p) =
(

w
− 1

2
i Θi(ξi(t)− ξ̄i)

)
i=1,...,6

(4)

wherein ξ T = (Tcabin,Tsh,ucompr,uvalve,−Tsh,−lsc) and
with weights

wT =
(104

292
,

10
5
,

10−5

72.5
,

10−5

4.5 ·10−7 ,
104

8
,

104

0.1

)T

chosen such that denominators normalize quantities to 1
and numerators indicate relative weights. The set-point is

ξ̄
T = (295.15, 5, 0, 0, −4, −0.05)T .

The functions Θi are Θi(x) = Id (identity) for i = 1, . . . ,4
and Θi(x) = x ·H(x) (Heaviside integral) for i = 5,6. To
guarantee smoothness assumptions, the Heaviside integral
function x ·H(x) is exponentially smoothed in computa-
tional practice. The end-point term is

e(x(T),z(T), p) =
(

w
− 1

2
i (ξi(t)− ξ̄i)

)
i=1,...,2

for ξ T = (Tcabin,Tsh)
T , identical set point, and weights

wT =
(106

292
,

50
5

)T
.

5.2 Performance Comparison of Different Ja-
cobian Methods

The performance of the online optimizing controller criti-
cally depends on the choice of the method to generate Ja-
cobians. Fundamentally, derivatives can be computed by
automatic differentiation (AD) or numerically by a finite
difference scheme (ND). The FMUs generated by Dymola
use numerical Jacobians by default. By setting the flag Ad-
vanced.GenerateAnalyticJacobian, Dymola can be con-
figured to generate analytic Jacobians and include them
in the FMU. For this to be effective, it is necessary that
every function used in the Modelica model also declares
a corresponding derivative function. For the given sys-
tem, this required the use of a tailored version of the fluid
database TILMedia supplying derivative functions for a
wide range of material–dependent functions. MUSCOD
can be configured to use Jacobians, which are provided
from ”outside”, e.g. the FMU (numerical or analytical), or
to approximate Jacobian matrices numerically by its built-
in finite difference scheme.
This section’s numerical study compares these three gen-
eration methods for Jacobians on the basis of respective
offline optimization runs. In the scenario, an instantaneous
step change of the ambient temperature of 5 K is applied to
a stationary system state (compare also the ”online” study
at t = 600 s). To investigate effects on precision the inte-
gration tolerance was set to 10−9.

Nonlinear Model Predictive Control of a Thermal Management System for Electrified Vehicles using FMI

260 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132255

5 10 15 20 25

10
−10

10
−5

10
0

Iteration number

K
K

T
 v

io
la

tio
n

5 10 15 20 25

10
−10

10
−5

10
0

Iteration number

K
K

T
 v

io
la

tio
n

Jacobians generated by ND (MUSCOD)
Jacobians generated by AD (FMU)
Jacobians generated by ND (FMU)

Figure 6. After 25 SQP iterations, the remaining KKT violation during offline optimization is smallest (best) when using AD
Jacobians. ND Jacobians provided by MUSCOD are runner-up. ND Jacobians provided by the Modelica FMU perform worst.

5 10 15 20 25

10
−10

10
−5

10
0

Iteration number

R
el

. d
is

ta
nc

e
to

 la
st

 it
er

at
e

5 10 15 20 25

10
−10

10
−5

10
0

Iteration number

R
el

. d
is

ta
nc

e
to

 la
st

 it
er

at
e

objective function (ND)
infeasibility (ND)
objective function (AD)
infeasibility (AD)

Figure 7. A self-convergence plot of objective function values and infeasibility measures reveals convergence after 10 SQP itera-
tions regardless of the choice of method for generating Jacobians.

5 10 15 20 25
0

10

20

30

Iteration number

T
im

e
pe

r
ite

ra
tio

n
in

 [s
]

5 10 15 20 25
0

10

20

30

Iteration number

T
im

e
pe

r
ite

ra
tio

n
in

 [s
]

Jacobians generated by ND (MUSCOD)
Jacobians generated by AD (FMU)
Jacobians generated by ND (FMU)

Figure 8. AD Jacobians from the Modelica FMU are computationally more expensive than MUSCOD ND Jacobians. Measured
time refers to an integration tolerance of 10−9.

Fig. 6 assesses the impact of the Jacobian generation
method on the convergence behavior of MUSCOD in
terms of the remaining KKT violation. As expected, AD
yields a solution with the highest precision. Fig. 7 shows
a self-convergence plot for the objective function value
and the infeasibility measure, i.e., we show for iterations
k = 0, . . . ,N−1 the fractions

|χ(k)
m −χ

(N)
m |/(χ(0)

m −χ
(N)
m)

of objective function (m = 0) and infeasibility (m = 1):

χ
(k)
0 = Φ(s(k),q(k))

χ
(k)
1 = ∑i[ci(s(k),q(k))]+∑ j[d j(s(k),q(k))]−

As can be seen, after six SQP iterations convergence has
essentially been achieved regardless of the chosen method.
As Fig. 8 reveals the MUSCOD internal finite difference
scheme is, to our surprise, faster than both of the FMU
Jacobian generation methods. Thus, all following numer-
ical results on NMPC were obtained using this Jacobian
generation scheme.

5.3 Comparison of PI Control and NMPC

In this section two tuned PI-controllers are compared to
the developed NMPC controller. The parameters for the
PI-controller were determined using a step response of the
system and were manually tuned to a normal and more ag-
gressive behavior. The scenario used for this purpose con-
sists of a transient heat-up, starting from a steady state, at
an ambient temperature of 5°C and of a following abrupt
ambient temperature change of +5°C, which is applied at
t = 600 s after reaching steady state again, see Fig. 9.
The resulting controlled variables are shown in Fig. 10
(cabin temperature) and in Fig. 12 (superheating value).
The corresponding manipulated variables are plotted in
Fig. 11 (compressor frequency) and in Fig. 13 (expansion
valve area). In contrast to §5.2 the integration tolerance is
now set to 10−5. Based on experience this is a sufficient
value for this application.

Transient Heat-Up of Passenger Cabin We observe,
that the NMPC curve rises and settles significantly faster
than both PI-controllers and without any temperature
overshoot indicating a very efficient control system (cf.

Session 5D: Control Systems II

DOI
10.3384/ecp17132255

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

261

0 100 200 300 400 500 600 700 800 900 1000

5

10

Time in [s]

A
m

b
ie

n
t

te
m

p
e

ra
tu

re
in

 [
°

C
]

0 100 200 300 400 500 600 700 800 900 1000

5

10

Time in [s]

A
m

b
ie

n
t

te
m

p
e

ra
tu

re
in

 [
°

C
]

Figure 9. Ambient temperature step of +5K.

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

20

25

Time in [s]

T
em

pe
ra

tu
re

 in
 [°

C
]

0 100 200 300 400 500 600 700 800 900 1000
5

10

15

20

25

Time in [s]

T
em

pe
ra

tu
re

 in
 [°

C
]

NMPC
PI (normal)
PI (aggressive)

Figure 10. Passenger cabin temperature during scenario (transient heat-up and temperature step) with different controllers.

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

Time in [s]

C
om

pr
es

so
r

fr
eq

ue
nc

y
in

 [H
z]

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

Time in [s]

C
om

pr
es

so
r

fr
eq

ue
nc

y
in

 [H
z]

NMPC
PI (normal)
PI (aggressive)

Figure 11. Frequency of the compressor during scenario (transient heat-up and temperature step) with different controllers.

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

Time in [s]

S
up

er
he

at
in

g
in

 [K
]

0 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

Time in [s]

S
up

er
he

at
in

g
in

 [K
]

NMPC
PI (normal)
PI (aggressive)

Figure 12. Superheating value during scenario (transient heat-up and temperature step) with different controllers.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1
x 10

−6

Time in [s]

E
xp

an
si

on
s

va
lv

e
ar

ea
 in

 [m
²]

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1
x 10

−6

Time in [s]

E
xp

an
si

on
s

va
lv

e
ar

ea
 in

 [m
²]

NMPC
PI (normal)
PI (aggressive)

Figure 13. Expansion valve area during scenario (transient heat-up and temperature step) with different controllers.

Fig. 10). The compressor frequency and expansion valve
reach their upper bounds faster and, subsequently, stabi-
lize the system to a steady-state far more rapidly with
NMPC (cf. Fig. 11 and Fig. 13). The predictive character
of NMPC taking into account the system’s thermal inertia
can be identified on the basis of the compressor frequency
already being decreased at a temperature well below 20°C.
Fig. 12 depicts the effect of the rather weak ”tracking”
weighting for the superheating temperature in the NMPC

objective function and the corresponding soft-constraint to
ensure a lower operational bound of 4 K (cf. §5.1). Super-
heating value fluctuations are acceptable unlike violations
of the operational limits, which are prevented here by the
NMPC approach. On the basis of Tab. 1, showing criteria
for controller performance as overshoot, settling time and
rising time, we can eventually state, that NMPC combines
the fastest and most efficient way to heat up the cabin tem-
perature to its set value.

Nonlinear Model Predictive Control of a Thermal Management System for Electrified Vehicles using FMI

262 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132255

NMPC PI (norm.) PI (aggr.)

Rising time [s] 78.2 162.7 80.4
Settling time [s] 95 194.6 173.1
Overshoot [%] 0.4 1.25 10.50

Table 1. The NMPC controller’s characteristics during transient
heat-up significantly outperform PI control.

Reaction to Disturbances At t = 600 s the controllers
can be compared when dealing with a disturbance, here,
an ambient temperature step of +5°C. On the basis of
Fig. 10, we conclude that the NMPC shows the best be-
havior, with a very small amplitude and a very short time
interval before the steady state is reached again. This is
not due to the predictive character of NMPC, as the tem-
perature change is not known in advance. The NMPC
controller gets the information about a temperature change
along with the measured state vector at t = 600 s. Again,
the weak weighting of the superheating value can be ob-
served in Fig. 12, as the superheating value is affected by
the disturbance in the case of the NMPC-controller.

CPU Time The computations were performed on a
workstation using a single core of an Intel Xeon CPU
at 3.5 GHz. To guarantee real-time feasibility for future
application in a vehicle, it is necessary that the duration
of feedback and prepare phase is shorter than the chosen
sampling time (1 s here). If this can be ensured, the
feedback phase duration is the time delay between the
measurement of the system state and the availability of
new values for the manipulated variables. Naturally,
a short duration is essential to make sure the applied
feedback relies on up-to-date system state information.

Fig. 14 shows a graph of the CPU time consumed by
both phases. The real–time feasibility limit is indicated by
a dotted red line and mostly not exceeded in the scenario.
However, three CPU time peaks within the transient heat-
up phase and the abrupt temperature change phase still vi-
olate the limit. The peak at the beginning is due to a cold
start of the NMPC controller. Since we start stationarily
this peak could be avoided by the execution of sufficiently
many SQP iterations before a respective warm-start of the
NMPC controller. An investigation of the remaining peak-
ing behavior must yet be carried out, i.e. whether it orig-
inates from the particular model implementation or is a
general property of the system. In future work, the latter
could be adressed algorithmically by introducing adaptive
relinearization into the NMPC schemes using, e.g., multi-
level schemes (Bock et al., 2005; Kirches et al., 2012) or
mixed-level schemes (Frasch et al., 2012). Fig. 15 shows
a graph of the CPU time consumed by the feedback phase
only. It is in the order of 0.5−2 milliseconds, which is a
near instantaneous response on the measured system state
relative to the system dynamics time scale. The feedback
phase CPU time rises only very mildly during transient
phases, and remains satisfyingly low throughout.

0 200 400 600 800 1000
0

1

2

3

4

T
im

e
pe

r
tim

e
st

ep
 in

 [s
]

Time step #
0 200 400 600 800 1000

0

1

2

3

4

T
im

e
pe

r
tim

e
st

ep
 in

 [s
]

Time step #

Figure 14. CPU time in seconds per NMPC iteration, consumed
by all three phases and including FMU evaluation calls during
the preparation phase. Measured time refers to an integration
tolerance of 10−5.

0 200 400 600 800 1000
0

0.5

1

1.5

2

T
im

e
pe

r
tim

e
st

ep
 in

 [m
s]

Time step #
0 200 400 600 800 1000

0

0.5

1

1.5

2

T
im

e
pe

r
tim

e
st

ep
 in

 [m
s]

Time step #

Figure 15. CPU Time in milliseconds per NMPC iteration con-
sumed by the feedback phase only.

6 Conclusion & Outlook
The article discusses the development of an NMPC setup
for a thermal management system of electrified vehicles.
Compared to conventional PI control, several advantages
concerning the transient heat-up and in reaction to dis-
turbances were noted. The NMPC reaches the set-point
value and settles considerably faster, nearly without any
overshoot. This indicates an overall high degree of energy
efficiency. Also, NMPC reacted faster on external distur-
bances that were not known in advance. A further benefit
is the safe operating mode, as each state variable of the
system can be constrained and constraints remained satis-
fied throughout all experiments. In the context of the heat
pump application, the superheating value could be kept
at a safe distance from the dew line in every operating
point. The only observed drawback was the comparably
high development effort that was necessary for developing
the model and deploying NMPC for the system at hand.

The Functional Mockup Interface turned out be a con-
venient way to export a previously developed Modelica
model and to use it within the optimizer. To use the
developed Modelica simulation model also for optimal
control, though, several adaptations concerning smooth-
ness assumptions were necessary. Although the opti-
mizer could not be given access to the whole differential-
algebraic equation (DAE) system due to intrinsic limits of
the current version 2.0 of the FMI standard, the derivative-
based optimization was found to work satisfactorily for
the model at hand. A direct implementation of the DAE
system in MUSCOD still promises a significant future in-
crease in performance and numerical stability. Finally, we
expected a higher impact of using analytic Jacobians pro-
vided to the optimizer by the FMU. Without insight into
the auto-generated source code from which the FMU was

Session 5D: Control Systems II

DOI
10.3384/ecp17132255

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

263

compiled, we could not rigorously answer the question of
why the analytic Jacobian provided by the FMU is about
twice as slow as the comparably simple one-sided finite
difference approximation method we used in conjunction
with MUSCOD.

Outlook. This article focused on controlling the cabin
temperature through the use of NMPC. In a further step,
the temperatures of cabin and battery will be tracked in
parallel and the temperature of the electric components
of the powertrain will be restricted to a realistic thermal
range. The evaluation of the complete system can then be
carried out on the basis of driving cycles.

Right now the NMPC controller still receives the entire
measured state vector from the simulation. This is not re-
alistic after deploying the controller to the final hardware
application, as only a subset of the system state can be
measured in reality. Thus, an observer will be employed
to estimate the states that are not physically measurable.

In a second step, the hardware application will be tar-
geted, where the whole developed thermal management
system in an electric vehicle is controlled by the NMPC.
The optimization must prove real-time feasibility to guar-
antee a solution within the defined time interval under all
circumstances. The direct implementation of the DAE
system in MUSCOD might prove to be essential to this
end.

Acknowledgements. The authors acknowledge support by
DFG Graduate School 220 and the Institutional Strategy of Hei-
delberg University funded by the German Excellence Initia-
tive, and by the German Federal Ministry of Education and Re-
search program “Mathematics for Innovations in Industry and
Service 2013–2016”, grant no 05M2013-GOSSIP. This publica-
tion was also written in the framework of the Profilregion Mo-
bilitätssysteme Karlsruhe, which is funded by the Ministry of
Science, Research and the Arts and the Ministry of Economic
Affairs, Labour and Housing in Baden-Württemberg and as a na-
tional High Performance Center by the Fraunhofer-Gesellschaft.
The authors are grateful to the TILMedia team at TLK-Thermo
GmbH in Braunschweig for kindly providing access to a spe-
cialized version that supplies derivatives.

References
A. Afram and F. Janabi-Sharifi. Theory and applications of

HVAC control systems: A review of model predictive con-
trol (MPC). Building and Environment, 72:343–355, 2014.

J. Albersmeyer. Adjoint based algorithms and numerical meth-
ods for sensitivity generation and optimization of large scale
dynamic systems. PhD thesis, Heidelberg University, 2010.

I. Bauer, H.G. Bock, and J.P. Schlöder. DAESOL – a BDF-code
for the numerical solution of differential algebraic equations.
Internal report, IWR, SFB 359, Heidelberg University, 1999.

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauss,
H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro, T. Neid-
hold1, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf.
The functional mockup interface for tool independent ex-
change of simulation models. 8th Int. Modelica Conf., 2011.

H.G. Bock and K.J. Plitt. A Multiple Shooting algorithm for
direct solution of optimal control problems. In Proceedings
of the 9th IFAC World Congress, pages 242–247, Budapest,
1984. Pergamon Press.

H.G. Bock, M. Diehl, P. Kühl, E. Kostina, J.P. Schlöder, and
L. Wirsching. Numerical Methods for Efficient and Fast Non-
linear Model Predictive Control. In R. Findeisen, F. Allgöwer,
and L. T. Biegler, editors, Assessment and future directions of
Nonlinear Model Predictive Control, volume 358 of LNCIS,
pages 163–179. Springer, 2005.

J. Bonilla, S. Dormido, and F. E. Cellier. Switching moving
boundary models for two-phase flow evaporators and con-
densers. Communications in Nonlinear Science and Numeri-
cal Simulation, 20:743–768, 2015.

L. del Re, F. Allgöwer, L. Glielmo, C. Guardiola, and I. Kol-
manovsky. Automotive Model Predictive Control. Springer,
2010.

M. Diehl. Real-Time Optimization for Large Scale Nonlinear
Processes. PhD thesis, Universität Heidelberg, 2001.

H. Esen, T. Tashiro, D. Bernardini, and A. Bemporad. Cabin
heat thermal management in hybrid vehicles using model pre-
dictive control. 22nd Med. Conf. Contr. Autom. (MED), 2014.

T. Fischer, F. Götz, L. Berg, H.-P. Kollmeier, and F. Gauterin.
Model-based development of a holistic thermal management
system for an electric car with a high temperature fuel cell
range extender. 11th Int. Modelica Conference, 2015.

R. Franke. Formulation of dynamic optimization problems us-
ing modelica and their efficient solution. 2nd International
Modelica Conference, pages 315–323, 2002.

J.V. Frasch, L. Wirsching, S. Sager, and H.G. Bock. Mixed-
Level Iteration Schemes for Nonlinear Model Predictive Con-
trol. In Proc. IFAC Conf. on NMPC, 2012.

M. Gräber, C. Kirches, D. Scharff, and W. Tegethoff. Using
functional mock-up units for nonlinear model predictive con-
trol. 9th International Modelica Conference, 2012.

J.M. Jensen and H. Tummescheit. Moving boundary models for
dynamic simulations of two-phase flows. 2nd International
Modelica Conference, pages 235–244, 2002.

A.Y. Karnik, A. Fuxman, P. Bonkoski, M. Jankovic, and
J. Pekar. Vehicle powertrain thermal management system us-
ing model predictive control. SAE International, 2016.

C. Kirches. Fast Numerical Methods for Mixed-Integer Nonlin-
ear Model-Predictive Control. In H.G. Bock, W. Hackbusch,
M. Luskin, and R. Rannacher, editors, Advances in Numeri-
cal Mathematics. Springer Vieweg, Wiesbaden, July 2011.

C. Kirches, L. Wirsching, H.G. Bock, and J.P. Schlöder. Effi-
cient Direct Multiple Shooting for Nonlinear Model Predic-
tive Control on Long Horizons. J. Proc. Contr., 22(3):540–
550, 2012.

C. Kirches, H.G. Bock, J.P. Schlöder, and S. Sager. Mixed-
integer NMPC for predictive cruise control of heavy-duty
trucks. In European Control Conference, pages 4118–4123,
Zurich, Switzerland, July 17-19 2013.

D.B. Leineweber, I. Bauer, A.A.S. Schäfer, H.G. Bock, and J.P.
Schlöder. An Efficient Multiple Shooting Based Reduced
SQP Strategy for Large-Scale Dynamic Process Optimization
(Parts I and II). Comp. Chem. Eng., 27:157–174, 2003.

J. Nocedal and S.J. Wright. Numerical Optimization. Springer
Verlag, Berlin Heidelberg New York, second edition, 2006.

Nonlinear Model Predictive Control of a Thermal Management System for Electrified Vehicles using FMI

264 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132255

Defining and Solving Hybrid Optimal Control Problems with
Higher Index DAEs

Radosław Pytlak1 Damian Suski2 Tomasz Tarnawski3 Tomasz Zawadzki4

1Faculty of Mathematics and Information Science, Warsaw University of Technology, Poland,
r.pytlak@mini.pw.edu.pl

2Institute of Automatic Control and Robotics, Warsaw University of Technology, Poland,
{d.suski,t.zawadzki}@mchtr.pw.edu.pl

3Department of Quantitative Methods and Information Technology, Kozminski University, Poland,
ttarnawski@kozminski.edu.pl

4Research and Academic Computer Network (NASK), Poland,
tomasz.zawadzki@nask.pl

Abstract
The paper deals with optimal control problems defined
for hybrid systems described by higher index DAEs. We
present a prototype solution that supports the whole pro-
cess from defining such problem to solving it and pre-
senting results. Problem’s definition is done with Dy-
namic Optimization Modeling Language (DOML) which
is based directly on Modelica. The proposed numerical
procedure for solving the problems of interest has the fol-
lowing features: 1) it is based on the appropriately defined
adjoint equations formulated for the discretized equations
being the result of the numerical integration of system
equations by an implicit Runge–Kutta method; 2) initial-
ization for higher index DAEs is performed with the help
of Pantelides’ algorithm; 3) it does not require the sys-
tem to be transformed to ODEs (through differentiation of
some algebraic equations).

The paper presents numerical examples related to hy-
brid systems described by index three DAEs, showing the
validity of the proposed approach. All software compo-
nents needed to carry out the computations, i.e. the code
editor, compiler, numerical libraries and GUI for present-
ing results are prepared as parts of a combined platform:
Interactive Dynamic Optimization Server (IDOS).
Keywords: hybrid systems, optimal control problems,
higher index DAEs

1 Introduction
The paper presents recent development of solver function-
ality implemented within DOML (Dynamic Optimization
Modeling Language) environment and deployed as part
of the IDOS (Interactive Dynamic Optimization Server,
described in (Pytlak et al., 2014), see also (Pytlak et al.,
2013)) infrastructure. It uses a numerical procedure based
on control vector parameterization and RADAU5 together
with event (discrete state transition) handling and is capa-
ble of solving optimal control problems for hybrid, high-
index DAEs.

The DOML language (introduced in (Pytlak et al.,
2014)) was devised an as extension of Modelica towards
defining optimal control problems for systems described
with Modelica language – quite analogically to Optimica
(proposed earlier, in (Åkesson, 2007), see also (Åkesson,
2008)). In fact, the DOML compiler environment is heav-
ily based on the open source Modelica (and Optimica)
compiler environment JModelica.org (see e.g. (Åkesson
et al., 2009)). During the efforts of adapting Optim-
ica for the purpose of deploying it within IDOS en-
vironment a conclusion was reached to redesign some
of its optimization-related constructs, as its original de-
sign brought in some troublesome limitations (details can
be found e.g. in (Pytlak et al., 2013) and (Tarnawski
and Pytlak, 2014)). To avoid confusion with Optimica,
we then chose to refer to the language as DOML. Al-
though the framework is (eventually) intended to be fully
compatible with Modelica, the current development ef-
forts are focused strictly on building prototype, proof-of-
concept implementations of advanced optimization algo-
rithms. Therefore, ensuring DOML’s wide and flawless
compatibility with Modelica syntax (and MSL models in
particular) has to wait for its turn (still, being based on
JModelica.org environment, DOML is in the position to
enjoy a fair deal of compatibility inherited ’in the pack-
age’). Up to this point several different optimization algo-
rithms and solver libraries have already been implemented
(see Table 1 in (Pytlak et al., 2014)): e.g. solvers for op-
timal control problems with ODEs based on a’priori dis-
cretization of system equations (HQP package), solvers
that use adjoint equations and do not require a’priori dis-
cretization of equations, solvers based on multiple shoot-
ing methods, solvers for control problems with integer val-
ued controls which use BONMIN package, solvers that
use integration procedures from SUNDIALS package and
IPOPT as the optimization engine.

The new algorithm implementation presented here is
designed to solve optimal control problems defined by hy-
brid systems, i.e. systems with mixed discrete-continuous

DOI
10.3384/ecp17132265

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

265

dynamics (van der Schaft and Schumacher, 2000), whose
dynamics are described with high-index DAEs. It must be
noted, that even separately each of these categories poses
nontrivial difficulties for optimization and even for simu-
lation alone. In particular:

• higher index DAE systems need the procedure for
the automatic consistent initialization, the integration
procedure for higher index DAEs and the optimiza-
tion solver equipped with the procedure for evalu-
ating gradients of functionals defining optimization
problems

• hybrid systems require the procedure for the accu-
rate location of discrete transition times, the integra-
tion procedure with an automatic handling of discrete
dynamics an the optimization solver equipped with
the procedure for evaluating gradients of optimiza-
tion problem functionals, which is dedicated for a
hybrid system dynamics.

The authors are not aware of any implementations (other
then the one introduced in (Pytlak, 2011)) of a dynamic
optimization algorithm capable of reliably solving high-
index DAE problems without an application of the in-
dex reduction procedure. Similarly, the authors are not
aware of an established and widely-used implementation
of a dynamic optimization algorithm applicable to hybrid
systems. In particular, the optimization algorithms im-
plemented in environments featuring Optimica (JModel-
ica.org, OpenModelica) cover the problems described by
ODEs (or DAEs with the help of the index reduction) but
not hybrid systems.

The paper is organized as follows. In section 2 we out-
line the features of DOML and in particular the language
constructs used to express the problems of interest. They
are then used in section 3 to define two simple exemplary
problems used to test and illustrate capabilities of the im-
plemented solver. Trajectories obtained by solving these
problems are also presented. The following two sections
are devoted to formal description and analysis of the al-
gorithm. First, in section 4, a formal definition of hybrid
optimal control problem is laid out (and used to formally
re-define the example problems). Then, based on that, sec-
tion 5 discusses the most important mathematical and im-
plementational details of the proposed optimization pro-
cedure. The paper is wrapped up with short concluding
remarks.

2 Hybrid optimal control problem
definition in DOML

The provisions of DOML that differentiate it against Op-
timica were already described in earlier works (e.g.: (Pyt-
lak et al., 2014), (Tarnawski and Pytlak, 2014) or (Pytlak
et al., 2013)). To avoid excessive repetition, here they are
only listed very briefly:

• new keywords, minimize and maximize were in-
troduced making it possible to have meaningfully
named optimized parameters with the direction of
optimization chosen by the user. It also became pos-
sible to specify multicriteria optimization problems.

• annotation(solver) was used to allow the user to
specify the algorithm to be used to solve the given
problem, along with its runtime settings. A pre-
liminary procedure of choosing the most appropriate
solver, based on elements detected in the problems’s
definition, was also implemented.

• a mechanism for labeling equations and constraints
was introduced, by means of which the adjoint vari-
ables (for equations) and Lagrange multipliers (for
constraints) could be referred to. Implementation of
some solvers required that functionality.

• decision variable’s InitialGuess attribute was re-
defined with continuous variability, so that it became
possible for initial guess to be defined as a signal
changing over time. This was developed particularly
with ’chaining of solvers’ in mind: an approximate
solver could be run first, then the solution obtained
could be used to warm-start another solver – a more
exact one, yet also more fussy with respect to the
starting point.

For the most part, these earlier provisions were well
geared for formally defining the optimal control problems
of interest. In the case of hybrid systems, however, we
found it necessary to devise specific syntactic constructs
to fully express the system’s dynamics. The resulting
‘canonical form’ description of a hybrid system is struc-
tured around:

• singular enumeration type variable whose values
range over possible discrete states of the system;

• compound if elseif statement containing equa-
tions defining the dynamics specific for each state;

• embedded when clauses specifying transition
guards—conditions for exiting the current state and
the new state reached with the transition;

• optional reinit operator used to define any poten-
tial discontinuous behavior upon a change–of–state
event.

In result, the description of a hybrid system may take the
form along the lines drawn on Listing 1. Please note, that
the presented code is meant as a mere example and does
not necessarily reflect sensible dynamics of any actual sys-
tem.

In a general case the state-transition conditions (guards)
between a pair of states do not have to be the same for both
directions. One good example, when this is certainly not
the case, is hysteresis (in the example shown: between

Defining and Solving Hybrid Optimal Control Problems with Higher Index DAEs

266 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132265

Listing 1. Example of DOML code defining a hybrid system

optimization Hybrid_ex(startTime = 0.0,
finalTime = 1.0)

minimize Real objective = x3(finalTime);
... // decl’s of vars (x) and inputs (u)

type Q = enumeration(A, B, C);
discrete Q q(start = Q.A); // the state

equation
... // equations common to all states

if q == Q.A then
der(x1) = -x1 + x2 + 2*u;
when x1 < -1 then //transition A->B

q = Q.B;
end when;

elseif q == Q.B then
der(x1) = -2*x1 +x2 + u;
when x1 > 1 then //transition B->A

q = Q.A;
end when;

else // q == Q.C
der(x1) = -x2 + u;
when x2 < 0 then //bounce-back C->C

q = Q.C;
reinit(x3, -x3);

elsewhen x2 > 10 then //transition C->A
q = Q.A;

end when;
end if;

end Hybrid_ex;

states A and B). In addition, with the proposed construct,
it is possible to define transition from a state onto itself
(in the example: happens in C) which is applicable for
instance in the case of a ball bouncing off a wall, back
into the realm of the same dynamics, but with it’s velocity
(abruptly) altered (hence the reinit placed in the exam-
ple).

3 Examples
Below, we present the results of applying the presented
algorithm to solving two optimal control problems based
on hybrid systems. They have been previously discussed
in (Pytlak and Suski, 2017), but here we show results for
different versions of these problems. Please note, that
the purpose of these examples is purely illustrative within
the discussion of capabilities of the implemented solver
and they do not necessarily represent sensible problems of
real engineering importance or application. Also, as noted
earlier, the algorithm’s implementation is at the stage of
proof-of-concept and has only been tested on cases with
limited complexity, where the whole problem is defined
in one stand-alone input file. Defining optimization prob-
lems through models constructed with MSL components
was not tested (however, the compiler is build on top of
the JModelica.org compiler, which itself provides a sub-
stantial MSL support).

Below, we define the exemplary optimal control prob-
lems solely be means of DOML code. In the following

section, after introducing the necessary formalism, we re-
state them in a mathematically formal way.

Example 1. It is an optimal control problem of a non-
standard pendulum described by DAEs with index three
(van der Schaft and Schumacher, 2000), in Cartesian co-
ordinates x1 and x2. On the vertical axis there is a fixed pin
interfering with pendulum’s string and effectively halving
its length when x1 ≥ 0. For x1 ≤ 0 the pendulum swings
with its original length. There is no jump in differential
state variables during state transition. The control variable
u represents force applied horizontally to the pendulum’s
end (constrained above by 0.3, in either direction). The
objective of the control is to cause the system to reach
such final state in which the pendulum’s position x1(t f) is
as close as possible to the neutral point, while its velocity
component v2(t f) is equal to 0.06. The DOML definition
of the problem is presented in Listing 2.

After 10 iterations optimality conditions were satisfied
with accuracy 10−6 while equality constraint v2(t f)= 0.06
with accuracy 10−7. The obtained optimal trajectories are
given in Figure 2 while the optimal control in Figure 1 –
as it turns out, it exhibits a relatively complex switching
structure.

0 0.5 1 1.5 2 2.5 3
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

time

co
nt

ro
ls

u

Figure 1. The pendulum example—optimal control.

Example 2. The second example is the popular bounc-
ing ball problem discussed in several papers e.g. (van der
Schaft and Schumacher, 2000). The ball bounces off the
fixed surface level at x1 = 0 with the opposite velocity (as-
suming no energy loss, i.e. the coefficient of restitution
is 1). The system has only one discrete state. The con-
trol variable u is a force applied vertically to the ball (with
the constraint that it cannot exceed the value of 2.5, either
upwards or downwards). The objective is to end up (at
t f = 1) with the ball being at the height of 0.5 and having
minimum velocity (in terms of its absolute value). The
DOML script of the problem is presented in Listing 3.

Applying the SQP code resulted, after 23 iterations, in
an approximate optimal solution given in Figure 3. The

Session 5D: Control Systems II

DOI
10.3384/ecp17132265

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

267

package Pendulum

optimization Pendulum_opt(startTime = 0,
finalTime = 3.0)

minimize Real obj = x1(finalTime)^2;

type states =
enumeration(short, normal);

discrete states State;
parameter Real p = 0.5;
... // decl’s of vars (x1, x2, ... L)
input Real u1(min=-0.3, max=0.3,

initialGuess=0.0);

initial equation
if x1 >= 0.0 then

State = states.normal;
else

State = states.short;
end if;

equation
der(x1) = v1;
der(x2) = v2;
der(v1) = w1;
der(v2) = w2;

if State == states.normal then
0 = w1+x1*L-u1;
0 = w2+1.0+x2*L;
0 = x1*x1+x2*x2-1.0;
when x1 < 0.0 then

State = states.short;
end when;

else
0 = w1+x1*L/p-u1;
0 = w2+1.0+(x2+1.0-p)*L/p;
0 = x1*x1+(x2+1.0-p)*(x2+1.0-p)-p*p;
when x1 > 0.0 then

State = states.normal;
end when;

end if;

constraint
c1: v2(finalTime) = 0.06;

end Pendulum_opt;

end Pendulum;

Listing 2. The DOML file of the pendulum problem.

package Bouncing
optimization Bouncing_opt (startTime =

0.0, finalTime = 1.0)

minimize Real obj = x2(finalTime)^2;

type states = enumeration(normal);
discrete states State;

parameter Real c = 5.0;
Real x1(start = 1.0);
Real x2(start = 0.0);

input Real u(min=-2.5,max=2.5,
initialGuess=0.001);

initial equation
State = states.normal;

equation
der(x1) = x2;
der(x2) = -c + u;

if State == states.normal then
when x1 < 0.0 then

State = states.normal;
reinit(x2, -pre(x2));

end when;
else

State = states.normal;
end if;

constraint
c1: x1(finalTime) = 0.5;

end Bouncing_opt;

end Bouncing;

Listing 3. The DOML file of the bouncing ball problem.

Defining and Solving Hybrid Optimal Control Problems with Higher Index DAEs

268 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132265

0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

time

tr
aj

ec
to

rie
s

x1
x2
v1
v2

Figure 2. The pendulum example—optimal trajectories.

0 0.2 0.4 0.6 0.8 1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

co
nt

ro
ls

u

Figure 3. The bouncing ball example—optimal control.

optimality conditions and equality constraint x1(t f) = 0.5
were satisfied with accuracy 10−6. Some of the final tra-
jectories are illustrated in Figure 4. At final time the ball is
at the required height, and has a relatively small velocity,
|x2(t f)| ≈ 0.3.

4 Formal discussion of hybrid systems
Hybrid systems are systems with mixed discrete-
continuous dynamics (van der Schaft and Schumacher,
2000). In this work we use the formal definition of a hy-
brid system based on the one given in (Suski and Pytlak,
2016), which is similar to many other definitions given in
the literature e.g. (Lygeros et al., 1999), (van der Schaft
and Schumacher, 2000), (Shaikh, 2004). We restrict our
analysis to systems with autonomous transitions.

A hybrid system H is a tuple

H = (Q,U ,I ,F ,T ,G ,J) (1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

time

tr
aj

ec
to

rie
s

x1
x2

Figure 4. The bouncing ball example—optimal trajectories.

where

• Q is a finite set of discrete states. Its elements are
denoted by q.

• U is a set of admissible controls. The elements of
U are measurable functions u : I→U , where I can
be any closed interval of R and U is a fixed subset of
Rm.

• I is a function which assigns to every discrete state
q a set

I (q)=
{

x ∈ Rn : ψq(x)≤ 0
}
, ψq :Rn→Rnψq (2)

such that as long as a hybrid systems is in a dis-
crete state q the continuous state trajectory x stays
in I (q). We therefore say that I (q) is an invariant
set for a discrete state q.

• F is a function which assigns to every discrete state
q a function Fq : Rn×I (q)×U → Rn such that in a
discrete state q the continuous state evolves accord-
ing to a differential-algebraic equation

Fq(ẋ,x,u) = 0. (3)

• T is a subset of Q×Q, which collects all pairs of
discrete states (q,q′) such that the transition from a
state q to a state q′ is possible.

• G assigns to each pair (q,q′) ∈ T a subset of I (q)
boundary such that when a continuous state trajec-
tory is about to leave I (q) through its boundary
∂I (q) at a point xt ∈ G (q,q′) ⊂ ∂I (q) a discrete
state changes from q to q′. We call such an event a
transition and G plays a role of a transition guard.

• J assigns to each pair (q,q′) ∈ T a function χqq′ :
G (q,q′) → I (q′) such that when a discrete state

Session 5D: Control Systems II

DOI
10.3384/ecp17132265

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

269

changes from q to q′ at a transition time instant tt
then a continuous state undergoes a jump according
to

x(t+t) = χqq′(x(t
−
t)). (4)

Having the definition of hybrid systems we can for-
mally state the optimal control problem with hybrid sys-
tem as:

min
u

φ(x(t f)) (5)

subject to the constraints:

h1
i (x(t f)) = 0, i ∈ E (6)

h2
j(x(t f)) ≤ 0, j ∈ I (7)

u(t) ∈ Ω a.e. t ∈ T. (8)

where the continuous dynamics of a hybrid systems is de-
scribed by a system of higher index differential–algebraic
equations (DAEs)

Fq(ẋ,x,u, t) = 0 a.e. t ∈ T = [0, t f] (9)

which depends on the actual discrete state q.
We assume that u(t) ∈ Rm, x(t) ∈ Rn, I, E are finite

sets of indices and Ω is a convex bounded subset of Rm.
A more general problem with parameters as decision vari-
ables, with an unspecified time horizon and with the state
constraints could also be considered but for the simplicity
of presentation we analyze the problem stated above.

We also assume that a solution to system (9) exists and
is unique for any u ∈U where

U = {u ∈L m
1 [T] | u(t) ∈Ω a.e. on T} , (10)

and any consistent initial condition x(0).
Example Problems restated

Having defined the above one can transcribe the earlier
examples in a mathematically formal way. The hybrid op-
timal control problem from the first example (pendulum)
may be stated as follows:

min
u∈U

[
x1(t f)

2] (11)

subject to the constraints

v2(t f)−0.06 = 0 (12)

and

ẋ1 = v1 (13)
ẋ2 = v2 (14)
v̇1 = w1 (15)
v̇2 = w2 (16)
0 = w1 + x1L/p−u (17)
0 = w2 +1+(x2 +1− p)L/p (18)
0 = x2

1 +(x2 +1− p)2− p2 (19)

with

U =
{

u ∈L 1
1 [0, t f] | −0.3≤ u(t)≤ 0.3 a.e. on [0, t f]

}
and t f = 3.0. The parameter p satisfies p = 1 for x1 ≤
0 and p = 0.5 for x1 ≥ 0. The hybrid system has
therefore two discrete states q1 and q2 with invariant
sets: I (q1) = {(x1,x2,v1,v2,w1,w2,L) ∈ R7 : x1 ≤ 0},
I (q2) = {(x1,x2,v1,v2,w1,w2,L) ∈R7 : x1 ≥ 0}.

In turn, the optimal control problem given as the second
example (bouncing ball) can be formally defined as: The
optimal control problem transcribed formally is as follows

min
u∈U

[
x2(t f)

2] (20)

subject to the constraints

x1(t f)−0.5 = 0 (21)

and

ẋ1 = x2 (22)
ẋ2 = −5+u (23)

with

U =
{

u ∈L 1
1 [0, t f] | −2.5≤ u(t)≤ 2.5 a.e. on [0, t f]

}
.

and t f = 1.0. The jump function is given by

J (x(t−t)) =

[
x1(t+t)
x2(t+t)

]
=

[
x1(t−t)
−x2(t−t)

]
. (24)

The system has only one discrete state q with invariant
set defined by I (q) = {x ∈R2 : x1 ≥ 0}.

5 Numerical procedure
The utilized numerical procedure for solving hybrid opti-
mal control problems include the mechanisms for

• numerical integration of system equations (3) be-
tween transitions

• proper handling of transitions—precise location of
transition times and application of state jumps

• the calculation of adjoint variables for the evalua-
tions of gradients of functionals defining the prob-
lem.

The numerical procedure for solving optimal control
problems described by higher index DAEs was introduced
in (Pytlak, 2011). For the completeness of a presenta-
tion the essential ingredients of the procedure are also dis-
cussed here.

Suppose that we want to integrate numerically the set
of differential–algebraic equations

F(ẋ,x,u) = 0 (25)

Defining and Solving Hybrid Optimal Control Problems with Higher Index DAEs

270 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132265

by an implicit Runge–Kutta method. If we denote by x(k)
the value of x calculated at the kth integration step (at a
time tk), then the next value x(k+1) is evaluated by solv-
ing the set of nonlinear equations

F(ẋi(k+1),x(k)+h(k)
s

∑
j=1

ai jẋ j(k+1),u(k)) = 0, (26)

x(k+1)− x(k)−h(k)
s

∑
i=1

biẋi(k+1) = 0, (27)

where coefficients ai j, bi depend on a Runge–Kutta
method.

In order to define state equations of the discrete time
system (26)–(27) we introduce the state vector X(k):

X(k) =

ẋ1(k)

...
ẋs(k)
x(k)

 , (28)

then equations (26)–(27) become

F̃(X(k+1),X(k),u(k)) = 0. (29)

System (29) is fully implicit and, under some nonsingu-
larity assumption, can be expressed as explicit. If the Jaco-
bian of F̃ with respect to X(k+1), denoted by F̃X+ , exists
and is nonsingular for all k = 0, . . . ,N− 1, then from the
Implicit Function Theorem there exists unique function ϕ

such that

X(k+1) = ϕ(X(k),u(k)) (30)

and

F̃(ϕ(X(k),u(k)),X(k),u(k)) = 0 (31)

for k = 0, . . . ,N−1.
Under differentiability assumptions imposed on F̃ the

function ϕ is differentiable with respect to X(k) and u(k)
and we have

ϕX (k) =−
[
F̃X+(k)

]−1 F̃X (k) (32)

ϕu(k) =−
[
F̃X+(k)

]−1 F̃u(k). (33)

where F̃X+(k), F̃X (k), F̃u(k) are evaluated at a point
(X(k+1),X(k),u(k)) and ϕX (k), ϕu(k) are evaluated at
(X(k),u(k)).

If we consider the function

F̂0(u) = φ(Xu(N)) (34)

then its gradient can be calculated by referring to adjoint
equations for the functional (34) and the system (30).

The adjoint equations for the functional (34) and the
system (30) are considered, for example, in (Pytlak,
1999):

p(N) = φX (Xu(N))T (35)
p(k) = ϕX (k)T p(k+1), (36)

for k = 0, . . . ,N−1. The adjoint variables p are the means
for the gradient evaluation according to the formula

F̂0
u(k)(u) = ϕu(k)T p(k+1). (37)

Using (32)–(33), the adjoint equations (36) and the for-
mula (37) can be expressed without the knowledge of ϕ:

p(k) = −F̃X (k)T [F̃X+(k)
]−T p(k+1) (38)

F̂0
u(k)(u) = −F̃u(k)T [F̃X+(k)

]−T p(k+1). (39)

Eventually we have the viable formula for the gradient
of F̂0(u) provided that matrices F̃X+(k) are nonsingular.

For special (but widely used) forms of higher index
DAEs the matrices F̃X+(k) are nonsingular provided that
h(k) are sufficiently small. For example in (Hairer et al.,
1989) it is shown that the statement holds for DAEs in the
Hessenberg form up to an index three and the RADAU
IIA integration scheme. Therefore, for many higher index
DAEs we have a valid technique for computing gradients
of F̂0(u) (and other functions involved in an optimal con-
trol problem).

For the numerical integration, our software utilizes
the RADAU5 code, which implements the RADAU IIA
scheme with number of stages s = 3. The coefficients
of a method and its good numerical properties are de-
scribed in (Hairer et al., 1989). The numerical integra-
tion of DAEs will succeed if initial states are consistent.
The initialization problem is solved in two steps. In the
first step, the system of equations, required for the consis-
tent initialization, is formed. This step is carried out with
the help of Pantelides’ graph based procedure (Pantelides,
1988) together with symbolic differentiation implemented
within JModelica.org compiler. In the second step the sys-
tem of equations is solved with the help of IPOPT solver
(Wachter and Biegler, 2006). The consistent initialization
procedure is called at the initial time and at points at which
control functions exhibit jumps.

RADAU5 code requires the preliminary analysis of
higher index DAEs: the user has to identify variables
which have so–called index 1, index 2 and index 3 prop-
erty. These indices can be established during the consis-
tent initialization process—in our approach that informa-
tion is passed from the procedure which implements the
Pantelides’ algorithm into the integration procedure. As
a result the user of our package does not have to specify
indices of equations variables in the DOML script.

In hybrid systems, one needs a procedure, which locates
the transition times. To complete this task, our procedure
uses subroutines drchek.f and droots.f (Hiebert
and Shampine, 1980). The subroutine drchek.f does
the preliminary check on the presence of a transition point.
Next, the subroutine droots.f is called to locate the
root with the specified accuracy. The root finding prob-
lem is solved with the help of the interpolation procedure
which uses Hermite polynomials.

Session 5D: Control Systems II

DOI
10.3384/ecp17132265

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

271

Between transitions, the adjoint equations are solved
with the help of a formula (36), the same as for non–hybrid
systems. However, the situation at a transition time is dif-
ferent. Let us denote the system equations before transi-
tion as

X(k+1) = ϕ
1(X(k),u(k),h(k)) (40)

and the system equations after transition as

X(k+1) = ϕ
2(X(k),u(k),h(k)). (41)

In the above equations the dependence of system equa-
tions on h(k) is explicitly stated. The reason for that is the
following. The step sizes nearby a transition step kt are
not taken freely, but they are taken to satisfy the transition
condition

ψ(X−(kt)) = 0 (42)

where X−(kt) denotes the state vector before jump. The
value of a state after jump is determined by the equation

X+(kt) = χ(X−(kt)). (43)

Now to calculate the adjoint variables at a transition the
following linear system of equations needs to be solved
for variables p(kt) and π

p(kt)+π (ψX (kt))
T = (χX (kt))

T (
ϕ

2
X (kt)

)T
p(kt +1) (44)

p(kt)
T

ϕ
1
h (kt −1) = p(kt +1)T

ϕ
2
h (kt). (45)

The partial derivative ϕh(k) is calculated with the formula

ϕh(k) =−
[
F̃X+(k)

]−1 F̃h(k) (46)

analogical to formulas (32)-(33). The formulae (44)–(45)
are derived in (Pytlak and Suski, 2017).

To solve the optimal control problem, we replace con-
trol functions by their piecewise constant approximations
and follow the optimization procedure outlined below.
Optimization Procedure

1. Choose initial control u0 and set the iterations num-
ber: k = 0.

2. For the control uk, integrate system equations by call-
ing consistent initialization procedure when neces-
sary. Calculate the cost function and evaluate all con-
straint functions. Evaluate the adjoint equations for
each function defining the optimal control problem
and on that basis calculate the gradients of all func-
tions involved in optimal control problem.

3. Perform the optimization step. If optimality condi-
tions are satisfied with the assumed accuracy then
STOP. Otherwise evaluate uk+1, increase k by one
and go to Step 2).

In our code the main optimization loop is handled by
the SQP code described in (Pytlak, 1999). The optimiza-
tion procedure requires solving QP subproblems at each
iteration. The interior point method described in (Gertz
and Wright, 2003) is used for that purpose.

6 Conclusions
The paper presents the most recent advancement in the
DOML-IDOS environment, where a number of optimiza-
tion algorithms can be used to solve optimal control prob-
lems specified in a language directly derived from Mod-
elica (and Optimica). The latest numerical procedure, de-
scribed here, implements an advanced algorithm for solv-
ing hybrid optimal control problems with higher index
DAEs. The procedure is based on the RADAU5 program
which is the implementation of an implicit Runge–Kutta
method. The procedure uses variable stepsizes in order to
locate precisely switching points. The procedure is based
on the adjoint equations associated with the discretized
equations being the result of system equations integration
and does not require the transformation of higher index
DAEs to ODEs by performing differentiations of some
system equations.

So far, the development focus was placed strictly on
implementing proof-of-concept, prototype solutions based
on most recent dynamic optimization algorithms while en-
suring wide Modelica compatibility, environment robust-
ness, more graceful error handling, etc. have been put on
hold. The authors are well aware of the need to devote
more attention to those lagging issues and indeed intend
to do so.

References
J. Åkesson. Tools and Languages for Optimization of Large-

Scale Systems. PhD thesis, Department of Automatic Control,
Lund University, Lund, Sweden, 2007.

J. Åkesson. Optimica–an extension of Modelica supporting dy-
namic optimization. In Proceedings of the 6th Modelica Con-
ference, Bielefeld, Germany, March 2008. Modelica Associ-
ation.

J. Åkesson, M. Gäfvert, and H. Tummescheit. JModelica—an
open source platform for optimization of Modelica models.
In Proceedings of MATHMOD 2009 - 6th Vienna Interna-
tional Conference on Mathematical Modelling, Vienna, Aus-
tria, February 2009. TU Wien.

E. M. Gertz and S. J. Wright. Object-oriented software for
quadratic programming. ACM Transactions on Mathemati-
cal Software, (29):58–81, 2003.

E. Hairer, Ch. Lubich, and M. Roche. The numerical solution
of differential-algebraic equations by Runge–Kutta methods.
Lecture Notes in Mathematics, 1409:56–225, 1989.

K. L. Hiebert and L. F. Shampine. Implicitly defined output
points for solutions of ode-s. Technical report, United States
Department of Energy, Sandia Laboratories, 1980.

J. Lygeros, K. H. Johansson, S. Sastry, and M. Egerstedt. On the
existence of executions of hybrid automata. In Proceedings of
the 38th IEEE CDC, pages 2249–2254, Phoenix, AZ; USA,
December 1999. IEEE.

Defining and Solving Hybrid Optimal Control Problems with Higher Index DAEs

272 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132265

C. C. Pantelides. The consistent initialization of differential-
algebraic systems. SIAM Journal on Scientific and Statistical
Computing, 9(2):213–231, 1988. doi:10.1137/0909014.

R. Pytlak. Numerical Methods for Optimal Control Problems
with State Constraints. Lecture Notes in Mathematics 1707.
Springer Berlin Heidelberg, 1999. ISBN 9783540662143.

R. Pytlak. Numerical procedure for optimal control of higher
index DAEs. Discrete Contin. Dyn. Syst., 29(2):647–
670, 2011. ISSN 1078-0947; 0133-0189; 1553-5231/e.
doi:10.3934/dcds.2011.29.647.

R. Pytlak and D. Suski. On solving hybrid opti-
mal control problems with higher index DAEs.
Optimization Methods and Software, 2017.
doi:http://dx.doi.org/10.1080/10556788.2017.1288730.

R. Pytlak, J. Błaszczyk, A. Karbowski, K. Krawczyk, and
T. Tarnawski. Solvers chaining in the IDOS server for dy-
namic optimization. In Proceedings of 52nd IEEE CDC,
pages 7119–7124, Florence; Italy, 2013. IEEE. ISBN 978-
1-4673-5714-2. URL http://dblp.uni-trier.de/
db/conf/cdc/cdc2013.html#PytlakBKKT13.

R. Pytlak, T. Tarnawski, B. Fajdek, and M. Stachura.
Interactive Dynamic Optimization Server – connecting
one modelling language with many solvers. Opti-
mization Methods and Software, 29(5):1118–1138, 2014.
doi:10.1080/10556788.2013.799159.

M. S. Shaikh. Optimal Control of Hybrid Systems: Theory and
Algorithms. PhD thesis, McGill University, Montreal, Que.,
Canada, 2004. URL http://digitool.library.
mcgill.ca/R/?func=dbin-jump-full&
object_id=85095&local_base=GEN01-MCG02.
AAINR06340.

D. Suski and R. Pytlak. The weak maximum principle for hybrid
systems. In Proceedings of the of the 24th IEEE MED, pages
338–343, Athens; Greece, 2016. IEEE.

T. Tarnawski and R. Pytlak. DOML - a compiler environment
for dynamic optimization supporting multiple solvers. In
Proceedings of the 10th International Modelica Conference,
pages 1095–1104, Lund; Sweden, 2014. Linköping Univer-
sity Electronic Press.

A. J. van der Schaft and J. M. Schumacher. An Introduction to
Hybrid Dynamical Systems. Lecture Notes in Control and In-
formation Sciences. Springer, 2000. ISBN 9781852332334.

A. Wachter and L. T. Biegler. On the implementation of an in-
terior point line search flter algorithm for large scale nonlin-
ear programming. Mathematical Programming, (106):25–57,
2006.

Session 5D: Control Systems II

DOI
10.3384/ecp17132265

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

273

274 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Large Scale Training through Spoken Tutorials to Promote and use
OpenModelica

Kannan M. Moudgalya1 Bhargava Nemmaru1 Kaushik Datta1 Priyam Nayak1 Rahul Jain1

Peter Fritzson2 Adrian Pop2

1Dept. of Chemical Engineering, Indian Institute of Technology Bombay, India,
kannan@iitb.ac.in,{bnemmaru,kaushikdatta18,nayak.priyam22,rahjain1}@gmail.com

2Dept. Computer and Information Sciences, Linköping University, Sweden,
{peter.fritzson,adrian.pop}@liu.se

Abstract
The step-by-step self-teaching approach through audio-
video tutorials, known as Spoken Tutorials, has been very
successful. About 3.4 million students in India have taken
at least one course during the past 6-year period, of which
1.6 million students have attended the rapidly expanding
course programme during 2016. This programme has now
been expanded by a newly developed course in Model-
ing and Simulation with Modelica using the OpenModel-
ica open source tool, primarily via the OMEdit graphical
user interface. The spoken tutorial programme is exclu-
sively based on free and open source software. This paper
gives an introduction to the spoken tutorial approach and
presents the recently developed spoken tutorial series for
Modelica using OpenModelica. Feedback of participants
shows that this series is an effective tool for self-learning
of OpenModelica. The paper also presents a new web
version that generalises the interactive DrModelica course
material, OMWebbook: it enables students to learn Mod-
elica, do text-based modeling exercises, and run simula-
tions without needing to install a Modelica tool. OMWeb-
book is also planned to be covered in a future update to
the spoken tutorial course on Modelica.
Keywords: Spoken Tutorial, tutorial, Modelica, Open-
Modelica, teaching, self learning, modelling, simulation

1 Introduction
Modelling and simulation is the most cost effective way
for a developing country like India to become a developed
one. For example, the warning issued by the Indian Space
Research Organisation (ISRO) saved 10,000 lives recently
(Laxman, 2016). It is well known that satellites help locate
arable land, help predict locations in seas with fish popu-
lation, etc. India’s advances in the satellite technology are
rooted in modelling and simulation. ISRO’s interplanetary
missions are said to be most cost and time effective, one
of the reasons being the extensive use of simulation (Eco-
nomicTimes, 2013). Improving the modelling and simu-
lation ethos amongst the academics can help derive such
benefits in other sectors also.

Free and open source software (FOSS) is equally im-

portant to a developing country like India. Use of pro-
prietary software results in an outgo of $ 1 billion every
year, in education and police sectors alone (De, 2009).
This precious foreign exchange can be more usefully spent
in priority sectors like poverty alleviation and infrastruc-
ture development. Because of this, the Indian govern-
ment has made the use of open source software manda-
tory, whenever it is of comparable capability to commer-
cial software for the tasks at hand (Govt. of India, 2015).
As OpenModelica implements the complete Modelica lan-
guage (Modelica-Association, 2012) and is an open source
implementation, we have selected it to promote the mod-
elling and simulation culture in India. The award win-
ning Spoken Tutorial method is selected for this promo-
tion (Google, 2015; QS&Wharton, 2015).

This paper is organised as follows. We begin with a
brief explanation of the Spoken Tutorial methodology in
sections 2 and 3. We list the Spoken Tutorials created on
OpenModelica in section 4. We then explain in section
5 how to use these tutorials for effective learning without
experts. In section 6, we explain the cloud environment
OMWebbook In the final section, we conclude the paper
with a discussion on future work.

2 Spoken Tutorials
A Spoken Tutorial is a ten minute long audio-video tuto-
rial, created using the Screencast technology. It is well
known that the optimal time for a video tutorial is about 9
minutes (Guo, 2013).

Here we use the tutorial concept in a slightly different
way from a conventional 2-3 hour lecture-based tutorial.
Spoken Tutorial is a smaller modular piece of active learn-
ing: A typical student following such an audio-video tu-
torial is expected to pause/replay the video and reproduce
every command. To enable this, all the files used in the
video are also seamlessly made available to the learner. As
the software covered is open source, the student can down-
load it, and practise the tutorial side-by-side. There are
also exercises to perform. A beginner could easily spend
half an hour to practise a 10 minute Spoken Tutorial, while
an advanced learner may complete it in less time.

Spoken Tutorials are created to explain general IT con-

DOI
10.3384/ecp17132275

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

275

cepts. Although only a small amount of information may
be covered in ten minutes, one can cover advanced topics
as well through a series of tutorials. The following factors
distinguish this methodology:

1. Spoken Tutorials are created for self learning. We
write the script before making the video. The script
has to be certified as understandable by a beginner,
before it is taken up for recording.

2. Spoken Tutorials are released through Creative Com-
mons Attribution Share Alike (CC-BY-SA) license
from our website (Spoken-Tutorial-Project, 2017b).

3. Spoken Tutorials are created on open source software
only. As a result, anyone who wants to learn using
Spoken Tutorial, can download and practise with the
corresponding software.

4. We make available all the code, data files, etc., that
are required in a tutorial, see Figure 6. This allows
the learner to reproduce all the commands shown in
the tutorial. This also allows a learner to start learn-
ing from any tutorial, obviating the need to go in a
particular sequence.

5. We use the side-by-side method of learning through
Spoken Tutorials. A schematic of the arrangement
is given in Figure 7. This arrangement reduces the
cognitive overload of learners (Moudgalya, 2014).

6. We dub the spoken part of Spoken Tutorials into all
22 official languages of India. For this, we time the
script, which needs to be done only once. The fact
that the video is in English helps from the employ-
ment perspective of our students. We have dubbed
some of our tutorials also into some languages of
the Middle East, South East Asia, Latin America and
Africa. As our tutorials are available under the CC-
BY-SA license, these are available to everyone.

7. We have about 800 tutorials made into English, cov-
ering about 40 topics, such as, C, C++, Java, Python,
PHP, Perl, Ruby, Scilab, LATEX, LibreOffice and
DWSIM. We have about 5,600 dubbed tutorials. This
is the largest collection of IT training material in In-
dian languages.

3 Large Scale Training with Spoken
Tutorials

We now briefly explain the way we have used Spoken Tu-
torials to promote IT literacy:

1. We initially offered 2 hour free training to college
students and faculty, to be done outside college
hours. As Spoken Tutorials are created for self learn-
ing, presence of an expert is not necessary. Any inter-
ested person could organise a training session, using
the resources at the college.

2. As it was difficult to find free slots, we mapped Spo-
ken Tutorials to lab courses and encouraged learn-
ing during lab hours. As they do not have access to
good teachers, most students in India find this a valu-
able resource that helps them understand the subject,
score well in exams and get jobs.

3. We convinced university authorities, curriculum
boards and syllabus committees to use Spoken Tu-
torials officially in their lab courses. More than 100
universities, each of which has about 50 to 500 af-
filiating colleges, have accepted the Spoken Tuto-
rial methodologies, and have sent circulars recom-
mending the use. At present, there are about 20,000
semester long lab courses that officially use Spoken
Tutorials.

4. We now insist that we work only with colleges that
agree to train ALL their students through Spoken Tu-
torials. This and the previous point have helped us
train a really large number of students in the first full
year of implementation, which is 2016, see Figure 1.
We have trained a total of 2.8 million people in the
past five years, reaching 1.6 million in 2016 alone.
200,000 people have already enrolled for our train-
ing during the first 20 days of this calendar year.

5. We provide online tests and certificates to college
students who pass them. These are offered free of
cost, thanks to the funding from our government.

6. Our website (Spoken-Tutorial-Project, 2017b) also
receives a large number of visitors. In Figure 2, we
present the statistics of visitors to our web page. It
should be noted that most of our learners using the
offline learning material, created using the facility
described in Figure 4, which has increased the num-
ber of learners 50 times, as reported in Figure 2.

7. The web statistics are good from the view of other
parameters as well. For example, the average
time one spends on our web page (Spoken-Tutorial-
Project, 2017b) is about 10 minutes and the bounce
rate is about 30%, as can be seen from Figure 3.

We can use the procedure presented in this section to teach
and thereby promoting OpenModelica and the Modelica
language.

4 OpenModelica Spoken Tutorials
We created ten Spoken Tutorials on OpenModelica, as
shown in Table 1. In this Table, we have listed the title
of these tutorials and their learning objectives. The aver-
age time of these tutorials is about 13 minutes, with the
minimum of 8 minutes and a maximum of 15 minutes.
Although these are the first set of tutorials we created on
OpenModelica, we have numbered them from 4, because
of reasons to be explained next.

Large Scale Training through Spoken Tutorials to Promote and use OpenModelica

276 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132275

2,011 2,012 2,013 2,014 2,015 2,016

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

Number of students/teachers trained in their colleges/schools

Figure 1. Growth of students/teachers trained. Our insistence
that every student should be trained on at least one topic, and
mapping to course content, have resulted in a large growth in
2016. The total number trained until now is about 3 million.

Figure 2. Growth of visits to ST website (Spoken-Tutorial-
Project, 2017b). This can be obtained by visiting (StatCounter)
and choosing Yearly data

In a recently held workshop (FOSSEE-Team, 2017), all
the participants were asked to self-learn OpenModelica
using Spoken Tutorials. We received the following feed-
back from the participants about the use of Spoken Tuto-
rials:

• ... the detailed step-by-step descriptions made it easy
to learn the basics of OpenModelica.

• Is is good for beginners. I suggest you to showcase
more application use cases for the advanced use.

• ... very good , we have learned much from spoken
tutorial.

• Spoken Tutorials are easy to Understand.

Figure 3. Analysis of visitor statistics of Spoken Tutorial, given
by SimilarWeb (Team)

Table 1. Summary of Spoken Tutorials on OpenModelica

No. Name Learning Objectives
4 Developing

an equa-
tion based
model

Create a new Modelica class, vari-
ables, parameters and equations.
Assign initial, minimum and max-
imum values. Simulate model and
see results.

5 Control
flow and
event
handling

Explain if-else statements, time
and state events, when statement,
and reinit function.

6 Functions
and types

Define functions, data types, input
and output variables, assignment
statements, and the algorithm sec-
tion. Evaluate a polynomial.

7 Arrays in
Modelica

Define vectors, vector indexing,
array variables, for and while
loops, and nested for loop.

8 Array func-
tions and
operations

Explain OMShell, array construc-
tion function and perform arith-
metic operations on vectors and
matrices.

9 Modelica
Packages

Create a package of classes, refer-
ence classes in a package, import
statement, and using Modelica li-
brary.

10 Annotations
in Modelica

Specify an annotation and define
a record. Explain through exper-
iment, model and documentation
annotations.

11 Icon and
diagram
views

Specify icon and diagram views
of a class, insert a polygon and
an ellipse in icon/diagram view.
Introduce coordinate system, grid
and components. Explain origin
and extent concepts, and line and
fill styles.

12 Component
oriented
modelling

Instantiate classes. Define com-
ponent orientation, acausal con-
nectors, resistors, sources and the
ground. Connecting classes and
pins.

13 Block
component
modelling

Define blocks and connect them.
Use MISO blocks and Modelica
libraries. Define RealInput and
RealOutput connectors. Instanti-
ate sum and product functions.

• ... up to some extent this tutorial make learning eas-
ier but we should make some more basic tutorial on
OpenModelica.

• In my opinion side by side tutorials are the best way
to start learning a new software. In order to master
anything it will take a lot of practice of course but

Session 6: Poster Session

DOI
10.3384/ecp17132275

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

277

Table 2. Summary of New Spoken Tutorials on OpenModelica

No. Name Learning Objectives
1 Introduction

to OMEdit
Introduction to OM, OMEdit,
opening a class from libraries
browser, simulating it and see-
ing the results in plots. Explain
through a heat transfer example in
thermal library.

2 Examples
through
OMEdit

Expose learners to models from
electrical and mechanics libraries,
using rectifier and double pendu-
lum classes. Simulate and see the
results in plots.

3 OM Con-
nectors

Train how to compose exist-
ing objects to create a new cir-
cuit. Concept of connectors intro-
duced. Explain through resistor,
capacitor, inductor, voltage source
and ground.

having the basics right makes practice a lot easier.

• Tutorials are excellent. If you could include tuto-
rials on popular extensions available on Modelica,
it would be a great help. For example, the device
drivers library.

Tutorials in Table 1 were created as per the pedagogy
we use in classes: teach the underlying language first. But
this is not necessarily the best way when it is offered for
self learning. Students who depend on commercial sim-
ulators are used to the plug and play method of learning,
which is possible in OpenModelica if one uses the pre-
defined models that come with the distribution. This will
also reduce the fear of first time users.

To address the above issue, we created two more tutori-
als. The first one explains how heat transfer modelling can
be done. The second tutorial is concerned with examples
from Electrical Engineering and Mechanical Engineering.
These two tutorials are created for the absolute beginners,
who would like to learn how to use the already available
models.

We created one more tutorial to explain how to connect
predefined models. Such a facility is generally available
in commercial simulators. Introduction to this capability
right at the beginning increases the value of the simulator
in the opinion of the learner. In this tutorial, we show how
to connect the preexisting blocks to build a new model.
We now ask new learners to practise these tutorials, before
starting with the ones in the previous section.

These new tutorials are listed in Table 2. Although cre-
ated later, they are numbered from 1, as we recommend
these to be practised first, before proceeding to the ones
listed in Table 1.

5 Method to Use OpenModelica Spo-
ken Tutorials

We now explain how to use OpenModelica Spoken Tutori-
als. One should remember that our method should be such
that any volunteer can conduct these workshops. As vol-
unteers may not know answers to questions the learners
may have, we insist on only reproducing what is shown
in Spoken Tutorials: the learner does not know anything,
so why not first do the things suggested in the tutorial?
The pros and cons of this approach are summarised in
(Moudgalya, 2011). We also offer a timed forum that
will help the learner to go through the answers of previ-
ous questions and to ask new questions (Spoken-Tutorial-
Project, 2017a).

The first thing to do is to create an offline version using
the create the cdcontent utility, as shown in Fig-
ure 4. Of course, this has to be done only by the organiser
of the workshop. This will create a zip file, which has to
be unzipped and copied on to every computer thereafter.
We now summarise the recommended way to use Spoken
Tutorials to conduct an OpenModelica self-learning work-
shop:

1. Open the file index.html using Firefox or
Chrome. Internet Explorer may not work correctly.
One gets the page as shown in Figure 5. From the url
inside the red box in this figure, one can see that the
learning content comes from the file system.

2. Listen to the side by side spoken tutorial that
appears on this page. This tutorial explains how the
learner has to use this method. After that, one has
to Select Foss Category and then Select
Language and then Submit - these options are en-
closed in a green box in Figure 5.

3. The learner has to learn all the tutorials in the result-
ing play list one by one. From the play list, one can
select any tutorial. If one scrolls down, one can see
if any code file comes with that tutorial. In Figure 6,
one can see where the code files are available.

4. Figure 7 shows how to open the Spoken Tutorial and
the OpenModelica software side by side. Using the
side-by-side method (Moudgalya, 2014), the learner
has to reproduce every command described in the tu-
torial. The learner has to do the assignments also.
As a result, the learner ends up spending a lot more
time, even though the tutorial itself may only be of
ten minute duration.

5. Using the method explained above, one has to learn
learn all Spoken Tutorials in the play list.

The above given explanation is for the offline user. The
same procedure will work for online use of Spoken Tuto-
rials.

Large Scale Training through Spoken Tutorials to Promote and use OpenModelica

278 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132275

In the six month time since we created Spoken Tuto-
rials under discussion, we have trained more than 5,000
people on OpenModelica. As this is achieved through the
self learning of already created Spoken Tutorials, there is
a potential to train many more.

6 Cloud Environment OMWebbook
to Ease Learning of OpenModelica

DrModelica (Lengquist-Sandelin et al., 2003) is an in-
teractive electronic document for learning Modelica text-
based modeling and simulation using the OpenModelica
tool OMNotebook. It is structured like a book, with chap-
ters, sections, model examples, exercises, formulae, and
figures (Asghar et al., 2011). The recent versions of Dr-
Modelica contain most of the model examples in (Fritz-
son 2014) in an editable and executable form, including
plots of simulated models. DrModelica is intended for
self-learning and includes exercises with solutions, where
the solutions are temporarily hidden while the student is
working on a problem. Thus, it is extremely useful to
everyone, and especially to the beginning learners of the
Modelica language and the OpenModelica tool.

Recently we have developed a web-based ver-
sion of OMNotebook, called OMWebbook (http:
//omwebbook.openmodelica.org/) which enables
editing models, running simulations, and doing plots in a
web-page (Figure 8). The appearance is very similar to
the OMNotebook. Thus, the students need not install any
Modelica tool on their computer. They do not even need a
computer, the exercises can be done using a phone or pad.
OMWebbook communicates with a server that performs
the actual simulation and plots. Naturally, those who do
not have bandwidth to access the Internet can use OM-
Notebook.

OMNotebook, and also OMWebbook, have recently
been enhanced with support for typesetting Mathemati-
cal formulae using LATEX commands (Asghar et al., 2011).
These commands are associated with a formulae cell (Fig-
ure 9) but can be hidden (Figure 10) when editing is not

needed. Figure 10 shows a small part of a chemical en-
gineering course book in OMNotebook and OMWebbook
with some formulae that have been typeset using this ap-
proach.

We propose to develop Spoken Tutorials on DrMod-
elica, OMNotebook and OMWebbook in the near future.
This will help beginners to quickly learn how to use these
powerful tools and hence will further ease the learning of
OpenModelica. Given that modelling and simulation are
advanced topics for most students in India, we need all the
tools to make them accessible.

7 Conclusions and Future Work
In this work, we have outlined a procedure to improve
the modelling and simulation ethos in India and elsewhere
through Spoken Tutorial enabled self-learning of Open-
Modelica. Based on the user feedback, we are in the
process of increasing the offering of Spoken Tutorials on
other OpenModelica topics. Through this effort, the pow-
erful modelling paradigm of Modelica is expected to reach
many people in India.

In the companion paper presented by our group in this
conference (Jain et al., 2017), we have explained how the
features of OpenModelica have been extended to make it
useful to chemical engineers. We seek such contributors
in other domains too. We hope to promote the use of the
Modelica language and the OpenModelica tool with spe-
cific focus on different domains of application.

We also seek collaborators who would want to make
available this important technology in their countries.

Acknowledgements
This work has been supported by Swedish Vinnova gov-
ernmental agency and the Indian DST governmental
agency in the Indo-Swedish RTISIM project, and by the
National Mission on Education through ICT, Ministry of
Human Resource Development, through the Spoken Tuto-
rial project. The OpenModelica development is supported
by the Open Source Modelica Consortium.

Session 6: Poster Session

DOI
10.3384/ecp17132275

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

279

Figure 4. Creating a zip file of all tutorials for offline use, using the cdcontent facility

Figure 5. Unzipped content, opened in Firefox or Chrome. Internet Explorer may not work correctly. The URL inside the red box
points to a file. One has to first listen to the side-by-side method tutorial. After that, one selects the FOSS, then the language, such
as English, and then Submit. This will give a play list. One can then open any of the tutorials and practise side by side, as shown
in 7

Large Scale Training through Spoken Tutorials to Promote and use OpenModelica

280 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132275

Figure 6. In the selected tutorial, one has to scroll down to locate the code files. Its location is indicated by the red oval in the
above figure. Code files help the learner reproduce every command.

Figure 7. Side-by-side method. On the left hand side, we have the spoken tutorial, developing an equation based model. On the
right hand side, OMEdit is displayed. The code file that came with the tutorial is opened in OMEdit.

Session 6: Poster Session

DOI
10.3384/ecp17132275

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

281

Figure 8. Example using OMWebbook on the simple HelloWorld model in DrModelica

Large Scale Training through Spoken Tutorials to Promote and use OpenModelica

282 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132275

Figure 9. Type-setting mathematical formulae in OMNotebook using LATEX commands

Figure 10. Example of finished typesetting of mathematical formulae in OMNotebook and OMWebbook

Session 6: Poster Session

DOI
10.3384/ecp17132275

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

283

References
A. Asghar, S. Tariq, M. Torabzadeh-Tari, P. Fritzson, A. Pop,

M. Sjölund, P. Vasaiely, and W. Schamai. An Open Source
Modelica Graphic Editor Integrated with Electronic Note-
books and Interactive Simulation . In Proc. of the 8th Interna-
tional Modelica Conference 2011, pages 739–747, Linköping
university, Sweden, 2011.

R. De. Economic impact of free and open source
software - a study in india. Technical Report
http://www.iimb.ernet.in/~rahulde/
RD_FOSSRep2009.pdf, IIM Bangalore, 2009.

EconomicTimes. Why isro’s mars mission is the cheap-
est. http://economictimes.indiatimes.com/
slideshows/science-technology/why-
isros-mars-mission-is-the-cheapest/
harness-software-work-fast/slideshow/
24982272.cms, 31 Oct. 2013.

FOSSEE-Team. Openmodelica workshop. http://
fossee.in/workshop/om/, 4-5 Jan. 2017.

Google. Google mooc focused research awards.
https://research.googleblog.com/2015/
03/announcing-google-mooc-focused-
research.html, March 2015. Last seen on 22 Jan.
2017.

Govt. of India. Policy on adoption of open source
software for govt. of india. Gazette Notifica-
tion, http://www.indianemployees.com/
gazette-notifications/details/policy-
on-adoption-of-open-source-software-for-
govt-of-india/, 2015. English notification is given
after that in Hindi. Last seen on 22 Jan. 2017.

P. Guo. Optimal Video Length for Student Engage-
ment. See https://www .edx.org/blog/optimal-
video-length-student-engagement, 2013. Last
seen on 3 April 2017.

R. Jain, K. M. Moudgalya, P. Fritzson, and A. Pop. Development
of a Thermodynamic Engine in OpenModelica. In 12th Int.
Modelica Conf., Prague, 2017. Modleica Association.

S. Laxman. Cyclone Vardah: ISRO satellites saved
10,000 lives in Tamil Nadu. Times of India,

http://timesofindia.indiatimes.com/india/
cyclone-vardah-isro-satellites-saved-
10000-lives-in-tamil-nadu/articleshow/
55992320.cms, 17 December 2016. Last seen on 3 April
2017.

EL. Lengquist-Sandelin, S. Monemar, P. Fritzson, and P. Bunus.
DrModelica - An Interactive Tutoring Environment for Mod-
elica. In Proceedings of the 3rd International Modelica Con-
ference, Linköping, Sweden, 3-4 Nov. 2003.

Modelica-Association. Modelica: A unified object-oriented lan-
guage for physical systems modeling, language specification
version 3.3. http://www.modelica.org/, May 2012.

K. M. Moudgalya. LATEX Training through Spoken Tutorials.
TUGboat, 32(3):251–257, 2011.

K. M. Moudgalya. Pedagogical and Organisational Issues in
the Campaign for IT Literacy Through Spoken Tutorials. In
R. Huang, Kinshuk, and N.-S. Chen, editors, The new devel-
opment of technology enhanced learning, chapter 13, pages
223–244. Springer-Verlag, Berlin Heidelberg, 2014.

QS&Wharton. Reimagine education 2015: Spo-
ken Tutorial is Placed First in the Nurtur-
ing Employability Award Category. http:
//application.reimagine-education.com/
the-winners-individual/2015/132/
2193b0ae3841f24da1464d4b6b70ee0f/Indian+
Institute+of+Technology+Bombay%22, Dec.
2015.

Spoken-Tutorial-Project. Online forum. See http://
forums.spoken-tutorial.org/, 2017a. Last seen on
3 April 2017.

Spoken-Tutorial-Project. Official web page. See http://
spoken-tutorial.org/, 2017b. Last seen on 3 April
2017.

StatCounter. Summary log. http://statcounter.com/
p5528933/summary/?account_id=
2904483&login_id=5&code=
9f03e451b379437c7356d2529c726a7a&guest_login=
1. Last seen on 12 Dec. 2016.

Similar Web Team. Get insights for any website or app. https:
//www.similarweb.com/. Last seen on 12 Dec. 2016.

Large Scale Training through Spoken Tutorials to Promote and use OpenModelica

284 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132275

EMOTH
The E-Mobility Library of OTH Regensburg

Alexander Grimm, B.Eng.1 Prof. Anton Haumer2
1OTH Regensburg, Germany, alexander.grimm@st.oth-regensburg.de

2OTH Regensburg, Germany, anton.haumer@oth-regensburg.de

Abstract
The importance of E-Mobility is rapidly increasing, not
only for private vehicle traffic but also for public
transport. In and around Regensburg, Germany there
are a lot of automotive companies. Therefore
E-Mobility is an important topic in the curriculum of
several courses of study at the East-Bavarian Technical
University of Applied Sciences Regensburg (OTH).

One Master of Applied Research student at OTH has
chosen the topic to develop an open-source simulation
tool for electric vehicles – the EMOTH Library – based
on Modelica and to refine several aspects of the library
during the one and a half year of the master course.

After one semester, the basic version of the library is
available and will be presented in this paper.

Keywords: e-mobility, electric vehicle, modular
vehicle model, energy consumption, real driving cycle,
driving performance.

1 Introduction
The City of Regensburg decided to purchase

E-buses to serve the old part of the town to decrease
emissions and noise pollution in this area visited by
many tourists per year. Moreover, the City of
Regensburg maintains an E-Mobility Cluster to provide
a platform for collaboration between local automotive
companies and educational institutions. One project of
this cluster is allowed to utilize one of the above
mentioned buses for field tests of newly developed
components, also offering the possibility to gather
measurement data during real driving cycles.
OTH Regensburg joined that cluster and plans to
provide an open-source simulation tool based on
Modelica to review new components of the electrical
drive train in an early stage of development:
the EMOTH-Library. This project also permits to
validate simulation results against measurements
during real driving cycles.

Of course there are several simulation tools for
electric vehicles available, also based on Modelica, but
we found only commercial available libraries. The
drawback of commercial tools is the invest hurdle for
the cluster partners and the fact that it might be not that

easy to take components out from a commercial library
and improve them to match the specific needs.

The library is based on Modelica and the
VehicleInterfaces Library offered by the Modelica
Association ([1], [2]). Following the structure and the
templates of the VehicleInterfaces Library has the
advantage that components can easily be exchanged
without having any troubles with the interface
definition. A big advantage of the VehicleInterfaces
Library is the fact that there are one-dimensional
rotational and translational mechanical connectors
predefined in the templates as well as three-
dimensional mechanical connectors. In the basic
version, only one-dimensional effects have been taken
into account. During the remaining two semesters of
the master course, the basic models available now have
to be refined to meet certain requirements, e.g. to
enable changing the vehicle’s mass at bus stops due to
exchange of passengers.

2 Structure and Components of the Library

Figure 1 Structure of the EMOTH Library

DOI
10.3384/ecp17132285

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

285

Figure 2 Components used in a complete model

Figure 1 depicts the structure of the EMOTH
Library, Figure 2 shows a complete model with all
components described in the following sections.

2.1 Chassis

The central component is the chassis (here a car
with 2 axles) containing:

 the mass of the car including passengers
 the four wheels with their inertia
 the driving resistances
 connectors of the four half axles
 measurements feeding relevant signals to

the bus
According to literature (e.g. [3], [4], [5]) the driving

resistances consist of:
 drag resistance according to (1), dependent

on relative speed of vehicle with respect to
surrounding air,

 rolling resistance dependent on sine of
inclination angle ߛ according to (2),

 inclination resistance according to (3)
dependent on cosine of inclination angle ߛ.

ܨ ൌ ܿௐߩܣ
ሺݒ െ ሻଶݒ

2
 (1)

ோܨ ൌ ܿோ݉݃ cosሺߛሻ (2)

ூܨ ൌ ݉݃ sinሺߛሻ (3)
 ܿௐ … coefficient of drag resistance
	 A		 …	 front	cross	section	of	vehicle	
	 ρ	 …	 density	of	air	
	 v	 …	 vehicle	speed	
	 v	 …	 longitudinal	wind	speed	
	 ܿோ	 …	 coefficient of rolling resistance	
	 ݉	 …	 total	vehicle	mass	
	 ݃	 …	 gravitational	constant	

The wheels are taken as ideal wheels from
Modelica.Mechanics.Rotational, but can easily be
exchanged against more sophisticated models.

Since energy consumption is one of the most
important aspects of the planned investigations, a one
dimensional model of the mass and the rotating wheels
is implemented, taking only longitudinal acceleration
and velocity into account.

2.2 Brakes

In the first version, the brakes are built with the
brake model from Modelica.Mechanics.Rotational.
A simple controller distributes the brake signal to left
and right wheel at front and rear axle. Each brake
produces its own braking torque respectively force,
according to the parameterization which allows to
specify the braking force distribution between front
and rear axle.

Driver assistance functions like antiskid braking can
be implemented in a more sophisticated controller.

2.3 Drive Line

The drive line model contains the gear box, either
with fixed ratio or with gear selection by the driver
environment, and a simple model of the differential.

2.4 Electric Drive

The electric drive represents the motor, the power
electronics and control. Since a correct parameterized
current controlled drive can be represented by a second
order block (see [6]), the desired torque is calculated
from the throttle signal (in the range 0...1), taking field
weakening into account. Throttle signal = 1 is
interpreted as maximum torque available at the actual
speed. Maximum torque depends on break-down
torque of the motor and maximum current of the power
electronics. The actual torque is fed to the motor’s
inertia and the flange, which is connected to the drive
line.

Taking losses respectively efficiency of the motor
and the power electronics into account, an ideal power
converter draws the corresponding current from the DC
power connection, taking actual DC voltage into
account.

This simplified generic drive model ensures a
maximum of simulation performance and can be easily
improved by using more sophisticated models of
motor, power electronics and control.

2.5 Energy Storage

In the first version, the battery is simplified as
constant DC voltage and an inner resistance. However,
the calculation of relevant signals – especially the state
of charge (SOC) – is already implemented. A more
sophisticated battery model, taking into account the
SOC – dependent no-load voltage and the transient
behavior of the batteries terminal voltage as an answer

EMOTH The EMobility Library of OTH Regensburg

286 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132285

to non-constant DC currents, is planned to be
implemented in a following development phase.

2.6 Electrical Accessories

Electrical accessories, especially heating and
cooling, have significant impact on energy
consumption of an electric vehicle. In order to obtain
realistic simulation results for the batteries state of
charge, the power consumption of the accessories can
be defined either constant or by a signal input from
measurements over a real driving cycle.

2.7 Range Extender

Range extenders are common practice to increase
range without increasing the batteries capacity which
in turn means rising mass. In most cases they are a
small combustion engine driven at an optimal point of
operation, which drives an electric generator charging
the battery.

The implemented range extender allows to specify
constant charging power and state of charge limits for
switching the range extender on and off.

2.8 Track

The track model defines the inclination and the road
surface with respect to actual position of the vehicle
along the track, either given by a constant value or
interpolated from a table. The user has the choice how
to extrapolate the table data if the vehicle’s position
leaves the range of the table definition:

 Hold the first / last point
 Extrapolation using the last two points
 Periodic repetition
 Extrapolation triggers an error.

Periodic repetition allows to define a closed loop,
where the vehicle drives as many rounds as desired.

To be able to check the definition of inclination,
especially on a closed loop track, the calculation of
actual altitude is included. Longitudinal position and
velocity of the vehicle is defined along the inclined
track.

Additionally, longitudinal wind speed can be given
either as a constant or by an input signal from an
external table, containing measured data.

2.9 Driver Environment

The driver environment provides the signals that a
driver could read from a dashboard to the driver
interface. To have a maximum of flexibility, either a
throttle and brake model (section 2.10) or a driver
model (section 2.11) following the desired driving
cycle can be connected to the driver interface.

The throttle and brake commands read from the
driver interface are fed to the recuperation controller.
The recuperation controller decides upon active
braking using the electric drive and charging the
battery (recuperation), or using the mechanical brake

system, or to distribute desired braking force between
the two alternatives. The user can switch off
recuperation.

The first implementation of the recuperation strategy
is a very simple one:

 if recuperation is not switched off and
 if the batteries SOC is not above an upper

limit and
 vehicle speed is above a lower limit

throttle and brake command (torque demand < 0
means braking) are fed to the electric drive, otherwise
throttle signal is sent to the electric drive and brake
signal is sent to the mechanical brake system.

2.10 Throttle and Brake

To be able to perform simple experiments, a throttle
and brake block has been implemented. Like a human
driver, the user can command throttle and brake
separately. The commands can be given either by
constants or by signal inputs. Additionally, the user can
demand to move either forwards or backwards along
the defined track (section 2.8).

2.11 Driver

The driver model tries to mimic a human driver. A
human driver will watch the environment and the state
of the vehicle. The decision somehow is based on a
preview of the environment. To take that into account,
the driver reads from the driving cycle the reference
speed and a preview of the future reference speed. The
preview time can be chosen to define the driver’s
behavior.

Based on his decision, the driver will make his mind
of accelerating or braking the vehicle, with some delay
representing the human response time. This is modeled
by a PI-controller, fed by the difference of preview
reference speed and a prediction of actual speed:

߳௩ሺݐሻ ൌ ݐோ൫ݒ ൯ݐ െ ൫ݒሺݐሻ ܽሺݐሻ ∙ ൯ (4)ݐ

2.12 Driving Cycle

The driving cycle is defined with table data as
reference speed versus time. The user is able to define
his own driving cycle, or choose one of the following
predefined driving cycles:

 UDC urban driving cycle
 EUDC extra-urban driving cycle
 NEDC new European driving cycle

If simulation shall last longer than the time span
defined by the driving cycle, one of the following
choices can be taken:

 Hold the first / last point
 Extrapolation using the last two points
 Periodic repetition
 Extrapolation triggers an error.

The user can decide whether to terminate the
simulation after a specified number of repetitions of the

Session 6: Poster Session

DOI
10.3384/ecp17132285

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

287

driving cycle, or to drive until another termination
condition is met, e.g. empty battery (SOC below
minimum SOC).

2.13 Optional Thermal Connectors

All components have optional thermal connectors
that can be switched on or off with the Boolean
parameter includeHeatPort. In case includeHeatPort =
true, the user has to connect an external thermal model
representing the thermal behavior of the complete
vehicle. This allows to develop and investigate the
thermal management system.

Components with optional thermal connector:
 brake system
 drive line
 electric drive (motor and power electronics)
 battery (energy storage)

It has been decided that the chassis model has no
thermal connector because the energy to overcome
inclination resistance is converted rather to potential
energy than to thermal energy; energy consumption
due to drag resistance and rolling resistance is
dissipated to heat, but the heat is generated at the
exterior envelope of the vehicle and is most likely not
taken into account for thermal management.

However, the power consumptions of driving
resistances are fed as signals to the bus, allowing to
analyze the power sinks of the biggest influence on
energy consumption.

2.14 Bus Concept

According to the concept, all components
communicate via their own sub-bus. All sub-buses are
collected in the central control bus. This concept eases
the distribution of signals through the whole vehicle
architecture.

For the communication between the driver and the
driver environment, a separate bus called driver
interface is implemented.

2.15 Parameterization of the Models

As shown in Figure 1, the parameterization is
managed in a flexible way by records:

 vehicleData
 inclinationData and rollingResistanceData
 driveData
 batteryData

VehicleData not only contains vehicle parameters
like mass, front cross section, wheel radius and inertia,
but also the parameters of the driveline and the brakes.

InclinationData and rollingResistaneData define
inclination and rollingResistance with respect to the
position along the track. The user can give constant
values or a table definition.

DriveData summarizes the parameters of the motor,
the power electronics and the control.

BatteryData gathers the parameters of the energy
storage.

The modular concept allows to define independently
a track with inclination and road surface, a vehicle and
to try different designs of the drive and / or the battery.

3 Simulation Results
For testing the library components, the parameters

summarized in Table 1 have been estimated. The drive
parameters are shown in Table 2, the parameters of the
battery in Table 3.

Table 1. Vehicle parameters

Vehicle mass 1500 ݇݃
Desired
acceleration/deceleration

5
݉
ଶݏ

Front brake : Rear brake force 50: 50
Front cross section 2 ݉ଶ

Drag coefficient 0,5
Wheel radius 0,3 ݉
Wheel inertia 0.25	݇݃ ∙ ݉ଶ

Gear ratio 1: 5
Gear efficiency 85 %
Efficiency of differential 95 %

Table 2. Drive parameters

Base speed 4500 rpm
Nominal torque 250 Nm
Efficiency 90 %
Breakdown torque 1000 Nm
Maximum torque 500 Nm
Substitute time constant 5 ms
Inertia 0.1 kg ∙ mଶ

Table 3. Battery parameters

Nominal DC voltage 400 ܸ
Inner resistance 50 ݉Ω
Nominal Charge 100 ܣ ∙ ݄
Minimum SOC 0.1

For the first test, the rolling resistance coefficient

was set as ܿோ ൌ 0.02 and inclination of the track was
set to 0. The electrical accessories have been estimated
with a constant power consumption of 5000	ܹ, and a
range extender with a constant power generation of
6000	ܹ. The range extender is started if SOC falls
below 40% and is stopped if SOC rises above 80%.
Recuperation is chosen for braking if SOC falls below
98%.

The driving cycle has been chosen to meet the
NEDC (New European Driving Cycle) shown in
Figure 3. Additionally, Figure 3 shows the actual
vehicle speed which proves that the vehicle can follow
the desired driving cycle nearly perfect.

EMOTH The EMobility Library of OTH Regensburg

288 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132285

Figure 3 NEDC New European Driving Cycle

The DC power consumption during one cycle is
shown in Figure 4, the development of the state of
charge in Figure 5. Note that the range extender is not
yet started during that cycle since SOC is high enough.

Figure 4 DC power consumption during NEDC

Figure 5 SOC during NEDC

On a notebook with Intel Core i7 processor at

2.3 GHz, 8 GB RAM, Windows 7 64 bit, using
Dymola 2017 FD01 64 bit the simulation of the 1180 s
cycle took 6 s which shows pretty good performance.

Subsequently, the NEDC was repeated until the
battery was exhausted. Figure 6 shows that the range
extender gets started at 7021.3 s when SOC falls below
0.4, the battery is discharged slower than before.
In Figure 7 the vehicle position is depicted. It can be
seen that the battery is exhausted after 14096 s
reaching 131.25 km.

Figure 6 SOC during repeated NEDC

Figure 7 Vehicle position during repeated NEDC

The third experiment investigates acceleration and
maximum speed with the chosen electric drive by
setting a reference speed rising from standstill to

250	

 in 1 s. Of course, the vehicle cannot follow

this reference speed but requires maximum torque from
the drive. Figure 8 proves that a maximum speed of

slightly above 225	

 can be achieved. Acceleration

from standstill to 100	

 takes approximately 6.8 s.

Of course the drive may not be operated continuously
at maximum torque, a thermal protection function
would reduce throttle signal to avoid overheating of the
motor and the motor electronics.

Figure 9 reveals both limits of field weakening:
 During the first phase, torque of the motor remains
constant, and DC power consumption rises linearly
with speed. After exceeding the first limit, DC power
consumption remains constant with respect to speed as
torque is lowered reciprocal to speed. When the

Session 6: Poster Session

DOI
10.3384/ecp17132285

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

289

reference torque exceeds breakdown torque of the
motor dependent on speed, torque has to be reduced
more than reciprocal to speed and DC power
consumption is reduced, too.

Of course driving with maximum torque
respectively maximum power, Figure 10 confirms that
the battery gets discharged much quicker than in the
previous example.

Figure 8 Maximum acceleration and maximum speed

Figure 9 Maximum DC power

Figure 10 SOC at maximum torque / power

4 Conclusions and Outlook
During the first semester of the three semester

Master of Applied Research course the EMOTH
Library based on the Modelica Vehicle Interfaces
Library has been developed. The library shall provide a
flexible framework for longitudinal simulations of
electric vehicles to investigate energy consumption
during a defined driving cycle including accessories
and range extenders as well as the ability of the vehicle
to follow the desired driving cycle with prescribed
acceleration and deceleration.

For the project members of the E-Mobility Cluster
Regensburg it is possible to test new components in an
early design stage in the context of the full vehicle.

Up to now, full vehicle models based on the
components of the library with estimated but realistic
vehicle parameters have been tested successfully with
Dymola 2017 FD01. Since the library is conformant to
the Modelica Language Specification, it should be
possible to run the examples in other Modelica tools,
too. In a first test using OpenModelica 1.11 beta 3 the
model translates but during simulation errors occur
which have to be investigated.

During the following two semesters it is planned to
gather the necessary parameters of both the E-bus
“EMIL” of Regensburg as well as the E-Smart
designed by the Faculty of Electrical Engineering and
Information Technology of OTH Regensburg. With
these parameters, the results of simulations following
real driving cycles shall be validated against
measurements. Furthermore, several components of the
library shall be refined and improved, such as the
electric drive and the battery / energy storage.

It is planned to make the library public available
under the Modelica License 2.

References
[1] VehicleInterfaces on the Modelica website:

https://www.modelica.org/libraries
(visited 2017-01-21)

[2] Michael Tiller, Paul Bowles, Mike Dempsey:
Development of a Vehicle Modeling Architecture
in Modelica, 3rd International Modelica Conference
2003, Linköping.

[3] D.Schramm, M.Hiller and R.Bardini:
Modellbildung und Simulation der Dynamik von
Kraftfahrzeugen, Springer 2013.

[4] M.Mitschke and H.Wallentowitz, Dynamik der
Kraftfahrzeuge, Springer 2014.

[5] S.Breuer and A.Röhrbach-Kerl, Mechanik des
bewegten Fahrzeuges, Springer-Vieweg 2015

[6] D.Schröder, Elektrische Antriebe: Regelung von
Antriebssystemen, Springer 2009.

EMOTH The EMobility Library of OTH Regensburg

290 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132285

Simulating a Variable-structure Model of an Electric Vehicle for
Battery Life Estimation Using Modelica/Dymola and Python

Moritz Stüber1

1University of Applied Sciences Vorarlberg, Austria

Abstract
A variable-structure model (VSM) of a battery electric ve-
hicle used for simulating the ageing of the battery pack is
presented. The operating principle of the software used to
simulate the models is described and a brief summary of
the state of science and technology regarding the simula-
tion of VSMs is given. By comparing the performance of
the VSM to a conventional model, it is found that the sim-
ulation time does not necessarily decrease when replacing
a model with a variable-structure version. However, the
VSM has advantages regarding the handling of the result
files and the possibility to analyse the results.
Keywords: Variable-structure Model, VSM, Modelica,
Dymola, Simulation

1 Introduction
In recent years, the use of electrified or electric power
trains in passenger cars has gained renewed research in-
terest. However, most currently available battery electric
vehicles (BEVs) have a rather low driving range caused
by the low energy density of the battery pack in compari-
son to conventional fuel. The battery pack is not only the
single most expensive part of the BEV, but also subject to
significant degradation. Consequently, car manufacturers
have to simulate the state of health (SOH) of the battery
for two main reasons: on the one hand, it has to be made
sure that a vehicle still meets the requirements when the
battery has aged. On the other hand, it is necessary to esti-
mate possible warranty costs caused by battery packs that
reach the end of their life ahead of time.

With age, the capacity of the battery decreases and
the impedance increases. Since this affects the electrical
quantities within the vehicle, there should be no separa-
tion between the model used for simulating the driving be-
haviour and the ageing model. Instead, the model should
combine electric, mechanical and thermal models and thus
be capable of calculating feedback effects. Due to the fact
that the battery life has to be simulated for 8 to 15 years,
simulating this complex model takes a substantial amount
of time. Therefore, a speed-up of the simulation is desir-
able.

Vehicles are idle for the majority of their life. During
this time, the complexity of the model used for simula-
tion can be much lower than during driving. Implement-
ing this change in the level of detail of the model leads to

a so-called variable-structure model (VSM). Simulating a
VSM is potentially faster and/or more accurate than a con-
ventional simulation, but VSMs are not yet supported by
commonly used modeling languages and simulation envi-
ronments.

In this paper, the results of investigating the question
“Does the simulation time of the ageing process of a bat-
tery used in electric vehicles decrease if the system is
systematically modeled as a variable-structure model?”
(Stüber 2016) are presented.

In order to answer this question, four steps were taken.
First, a conventional model capable of estimating the bat-
tery life of a BEV was assembled using Modelica/Dymola.
Then, a variable-structure version of this model was im-
plemented and a software capable of simulating the VSM
using Dymola’s Python interface was written. Last, a se-
ries of simulations was performed in order to investigate
the influence of the model and solver settings on the time
needed to execute the simulation.

In the next section, a brief introduction to the modeling
and simulation of variable-structure models is given.

2 Variable-structure Models
In the context of modeling and simulation, variable-
structure models are models that consist of several sets
of equations describing the same physical system. Each
set of equations is called a “mode” of the model; exactly
one mode is active at all times during the simulation. The
changes between the modes are denoted “transitions”. For
each mode, the transitions define which mode becomes ac-
tive next, the condition ci for changing and information i j
on how to initialize the next mode (Mehlhase 2015, chap-
ter 3.2)—compare Figure 1.

A B C

cA ⇒ iB

iA ⇐ cB1

init

cB2 ⇒ iC1

cB3 ⇒ iC2

Figure 1. Graphical representation of a VSM with three modes
A, B and C

DOI
10.3384/ecp17132291

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

291

As the name suggests, variable-structure models exhibit
varying structural properties, which can either refer to the
properties of a real system or to the properties of the sys-
tem of equations used to mathematically describe it.

In variable-structure systems (VSSs), the change in
structure is a property of the physical system. Failure
situations like breaking mechanical or electrical connec-
tions or so-called agent-based systems represent examples
of VSSs.

On the other hand, in variable-structure models
(VSMs), the change in structure is a result of abstraction;
in other words the result of creating a model of a system.
For example, if detailed information about the switching
process is not relevant for an experiment, ideal switches
are used. Since ideal switches can attach or detach whole
parts of a model, a change in the structure of the under-
lying set of equations occurs: variables and relations can
change and the system of equations can grow or shrink in
size.

Variable-structure models can be used to implement
changes in the behaviour or the required level of de-
tail of the system under investigation. Components can
be added and removed during the simulation. This is
necessary for simulating agent-based systems or chang-
ing the discretization of a model by changing the num-
ber of identical components; as well as for implementing
ideal switches, breaking connections or limiters, leading
to the dynamic addition or removal of parts of the model
(Mehlhase 2015, chapter 4; Zimmer 2010, chapter 1.2).
Furthermore, changing the solver and the solver settings
during a simulation is possible when simulating VSMs.

Despite the multitude of use cases for VSMs, only very
few simulation environments support their definition and
execution. According to Zimmer (2010, chapter 1.3),
there are two main reasons for this: first, current modeling
languages lack the expressiveness required to accurately
define the structural variability. Second, it is technically
very challenging to simulate the resulting models.

Three different concepts have been developed for im-
plementing a simulation engine that can handle variable-
structure models: maximal state-space, hybrid decompo-
sition and dynamic causalization.

• In a maximal state-space, “state events switch on and
off algebraic conditions, which freeze certain states
for certain periods” (Breitenecker 2008, page 9). The
maximal state-space-model is static and can there-
fore be simulated using conventional tools.

• In contrast, when using the hybrid decomposition-
approach, the VSM is split into its modes, which
have a static structure and can be executed sequen-
tially. The order of execution is controlled at a met-
alevel, either within the simulation environment or
externally.

• The most flexible, but also the most challenging
approach from a technical point of view, is called

dynamic causalization. Here, the model is re-
causalized if necessary, which is impossible when
using the usual translation–compilation–execution
sequence.

Because structural changes always cause events and
VSMs thus represent a generalization of hybrid models,
modeling languages that support them need to provide a
generalized way to define events in order to achieve the
required expressiveness.

The most recent, Modelica-based1 attempts to imple-
ment a modeling language and a corresponding simulation
environment that support the simulation of VSMs are Sol,
DySMo and MoVasE as well as an unreleased prototype
of Dymola.

Sol Sol (Zimmer 2010) is an experimental language
which is intended to serve as a proof of concept for
simulating variable-structure models using dynamic
causalization. Conditional index changes as well as
the local definition of modes within components are
supported. Sol therefore allows the modeling and
simulation of “almost arbitrary structural changes”
in a truly object-oriented manner (Zimmer 2013),
but the proposed language constructs and simulation
techniques have not been integrated into commonly
used languages and tools yet.

Dymola Elmqvist, Mattsson, and Otter (2014) presented
an approach to simulate VSMs in Dymola. It rep-
resents an extension to the capabilities of the syn-
chronous state machines defined in Modelica 3.3 and
was implemented in a prototype version of Dymola
2015. Instead of defining additional language ele-
ments, the semantics of the existing language was
extended.

Using this approach, a large, but limited class of
VSMs could be simulated. Because it is not nec-
essary to process the model definition using an in-
terpreter, like in Sol, the simulation is significantly
faster. However, variable-structure models with
varying index could not be simulated. This possi-
bility was added later by extending the Pantelides al-
gorithm (Mattsson, Otter, and Elmqvist 2015), but it
has not been added to the official version of Dymola
yet.

DySMo (Dynamic Structure Modeling) is a Python
application that allows the simulation of VSMs
(Mehlhase 2015, chapter 7). Each mode is repre-
sented by an executable model with static structure
that terminates if the condition for a transition is trig-
gered. Upon termination, a variable is set that defines

1Tools that support VSMs to a certain degree, but rely on different
modeling concepts have been developed outside the context of simu-
lating physical systems, for example Hydra (functional programming),
JAMES (systems biology) and ANYLOGIC (large-scale agent-based sys-
tems). They are not suited for simulating the BEV model and thus not
considered further.

Simulating a Variable-structure Model of an Electric Vehicle for Battery Life Estimation Using
Modelica/Dymola and Python

292 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132291

the cause for the transition. DySMo then reads and
stores the results, initializes the next mode depending
on the cause for the transition and starts the next sim-
ulation. All modes and transitions have to be main-
tained manually.

MoVasE Esperon, Mehlhase, and Karbe (2015) propose
a methodology to append structural changes to exist-
ing models by externally defining conditional com-
ponent exchanges. The tool MoVasE (Modelica
Variable-structure Editor) implements the proposed
solution. The aim of MoVasE is to provide a platform
for facilitating the investigation of VSM-design. In
contrast to DySMo, MoVasE does not require the
user to create and maintain all modes manually. By
defining the structural variability through conditional
component exchanges, many modes can be created
and maintained. However, the flexibility of this ap-
proach is still limited with regard to the dynamic ad-
dition and removal of components.

In conclusion, the approaches taken by Sol and Dymola
solve the most important technical problems, but they have
not been integrated into standard languages and tools yet.
Therefore, script-based approaches (DySMo, MoVasE)
are necessary for studying the benefits and drawbacks of
using variable-structure models.

Three levels of complexity can be distinguished when
creating VSMs: in the simplest case, the modes are de-
fined on the highest level of the model, as shown in Fig-
ure 1. Second, individual components of the model can
exhibit modes. In the most complex case, the modes are a
result of the addition and removal of components, like in
agent-based systems.

From the point of view of the simulation engine, a
variable-structure model always consists of modes defined
at the highest level of the model, which is called the fac-
torized version of a VSM (Mehlhase 2015, chapter 5.1.2).
Depending on the tool used for simulation, it might be
necessary to manually create the factorized version of the
VSM. Additionally, it has to be made sure that the VSM
is valid. This includes avoiding chattering or unphysi-
cal transitions and unphysical factorized modes. A set
of guidelines that is intended to help with the creation of
valid VSMs was formulated by Mehlhase, Esperon, and
Karbe (2015).

In addition to many small examples that were used
to verify a certain language/tool (Zimmer 2010, chap-
ter 11; Mehlhase 2015, chapter 8), several examples
of the successful application of variable-structure mod-
els for solving real-world problems have been published
(Krüger, Mehlhase, and Schmitz 2012; Mehlhase, Es-
peron, Bergmann, et al. 2014; Möckel, Mehlhase, and
Nytsch-Geusen 2015). In these examples, a significant re-
duction of the overall time needed to simulate the system
could be achieved due to a big difference in the complexity
of the modes and a low number (≤ 40) of mode switches.

So far, no attempt to use a VSM of a BEV for estimating
its battery life has been published. In the next section, the
models used by the author are described, followed by a de-
scription of the observed advantages and disadvantages.

3 Implementation
In order to assess the usefulness of using a VSM of a
BEV for battery life estimation, both a conventional and
a variable-structure model were assembled and simulated.
Implementing the components used for assembling the
models was not part of this work; they are part of the
commercial Electrified Powertrains Library and the Bat-
tery Library developed by Dassault Systèmes2.

The conventional model consists of nine main compo-
nents: the driving cycle, the driver model, a control unit,
the models of the energy supply, the electric power train,
the auxiliary loads, the chassis and the environment, as
well as the charger model. In contrast, the VSM has two
global modes that reflect the “operating modes” of the ve-
hicle (Figure 2). The model that represents the “driving”
mode does not contain the charger and its control logic,
while the model that represents the “idle” mode only con-
tains the battery model, the charger model and the envi-
ronment model.

The inputs of both models are the desired speed of the
vehicle, the time frames the charger is plugged in, and the
ambient temperature over time. The VSM additionally has
a schedule for switching between modes based on the driv-
ing behaviour. All inputs are loaded from externally stored
files which are generated using a script. The script allows
the convenient definition of usage scenarios and ensures
that the resulting profiles are consistent.

The system of differential algebraic equations (DAEs)
of mode “idle” has 915 scalar unknowns and equations
and 25 continuous time states. Mode “driving” consists
of 3062 scalar unknowns and equations and has 29 con-
tinuous time states; the conventional model of the BEV
has 3219 scalar unknowns and equations and 38 continu-
ous time states. Since the system of ordinary differential
equations (ODEs) that needs to be integrated differs only
slightly, it can be expected that the speed-up is small, but
noticeable. It would be straightforward to use more com-
plex models of the power train during driving because a
template is used that allows the simple exchange of mod-
els. This would likely increase the performance gain of the
VSM compared to a conventional model, but also increase
the overall simulation time in both cases.

The VSM is simulated using a software written in
Python that allows the definition and simulation of VSMs
with globally defined modes using Modelica and Dymola.
The software is comparable to DySMo and described in
section 6.

2http://org-www.3ds.com/products-services/
catia/products/dymola/industry-solutions/

Session 6: Poster Session

DOI
10.3384/ecp17132291

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

293

Idle Driving

1

2

0

Figure 2. Variable-structure model of the BEV

0 1 2 3 4 5 6
0

50

100

150

V
el

oc
ity

/k
m

h−
1

0 1 2 3 4 5 6

350

400

450

V
pa

ck
/V

0 1 2 3 4 5 6
0

0.2
0.4
0.6
0.8

1

Time / h

SO
C

/1

0 1 2 3 4 5 6
−200

−100

0

Time / h

I p
ac

k
/A

Figure 3. Selected results of the experiment used for model validation

4 Simulation Results
The parameters of the models were chosen with the inten-
tion to reflect typical values for BEVs. The models were
checked for plausibility by simulating a short driving cy-
cle followed by charging. The driving phase starts after
15 min standstill and takes approximately 70 min. During
this time, a distance of 103 km is covered and the battery is
discharged from 90 % state of charge (SOC) to 10 % SOC,
which corresponds to a total consumed energy of approx-
imately 16.2 kWh. About half an hour after the driving
cycle is completed (at t = 2h), the charger is plugged in.
In Figure 3, selected results of the simulation can be seen.
There is no noticeable difference between the results of
the conventional simulation and the results of the VSM.

Knowing that the models are properly parameterized,
a simulation of the SOH spanning several years could be
performed. Two usage profiles were created, which are
shown in Figure 4 and Figure 5. Both span a week and
are used repeatedly if longer scenarios are needed. In the

first scenario, the battery is always charged fully, whereas
in the second profile, the SOC only varies from approxi-
mately 60 % to 40 %.

0 1 2 3 4 5 6 7
0

50

100

150

Time / days

V
el

oc
ity

/k
m

h−
1

Figure 4. Demanding usage scenario: desired velocity. When
using this driving cycle, 658 km are driven per week; the yearly
mileage amounts to 34238 km.

The higher usage and the storage at higher SOC should
result in faster ageing of the battery in the first scenario.

Simulating a Variable-structure Model of an Electric Vehicle for Battery Life Estimation Using
Modelica/Dymola and Python

294 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132291

0 1 2 3 4 5 6 7
0

50

100

150

Time / days

V
el

oc
ity

/k
m

h−
1

Figure 5. Relaxed usage scenario: desired velocity. When us-
ing this driving cycle, 289 km are driven per week; the yearly
mileage amounts to 15040 km.

The simulation results are shown in Figure 6.

0 2 4 6 8 10 12
0.85

0.9

0.95

1

Time / years

SO
H

/1

Relaxed; Ref.
Relaxed; VSM
Demanding; Ref.
Demanding; VSM

Figure 6. State of health of the battery

For the assessment of the battery’s ageing behaviour,
the models were simulated until the SOH falls below 0.85.
This value was chosen because a compromise between the
time needed for simulation and the length of the calculated
trajectory had to be found and a ∆SOH of 0.15 is regarded
meaningful. Moreover, in this case, more data does not
mean more information because all input and model pa-
rameters are estimated values anyway.

There is no significant difference between the result of
the conventional model and the VSM: the relative error is
in the range of ±0.02%.

5 Advantages and Disadvantages of
the Variable-structure Model

In Figure 7 and Figure 8, the elapsed CPU time during a
2-week simulation of the BEV model using the “relaxed”
driving cycle (Figure 5) is shown. The CPU time com-
prises the time needed for initializing the system(s) of
equations and the time needed for integration. The same
solver settings are used for both the conventional and the
variable-structure model.

In both figures, the difference between driving and
standing can be seen clearly due to the step wise increase
of the elapsed time resembling a staircase. This is the re-
sult of using a solver with variable step size: during driv-
ing, only a small step size can be used due to the dynamic

0 2 4 6 8 10 12 14
0

50

100

150

Time / days

C
PU

tim
e

/s

conventional model
variable-structure model

Figure 7. CPU time; dense output enabled

0 2 4 6 8 10 12 14
0

50

100

150

Time / days

C
PU

tim
e

/s

conventional model
variable-structure model

Figure 8. CPU time; dense output disabled

changes of the state variables. In contrast, the step size
can be greatly increased when the vehicle is idle.

There is a significant difference in the elapsed time de-
pending on whether dense output is enabled or not. If
dense output is enabled, the conventional model takes
longer to calculate, depending on the size of the output
interval. The effect is especially noticeable during the idle
phases because during this phase, the necessary step size
calculated by the step size control algorithm is usually big-
ger than the desired output interval.

However, when dense output is disabled, the con-
ventional simulation becomes faster than the variable-
structure model. A reason for this is that each system of
equations (mode) needs to be initialized.

In Figure 9, a more detailed account of how much time
is spent on which part of the simulation is given. On the
right hand side, two pie charts visualize the data listed
in the table on the left. The area of the pie charts cor-
responds to the total duration of the simulation, whereas
the slices denote the time spent on the initialization of the
systems of equations, the integration itself and the post-
processing of the data. Additionally, time is needed for
writing the result files and “consumed” by the operating
system for other processes. There is a striking differ-
ence between the conventional and the variable-structure
model: in the former, the integration takes 99.9 % of the
time, but only 52.2 % of the time needed for simulating
the latter is actually spent on the integration. Therefore,
the VSM takes longer to simulate, even though the inte-
gration finishes 0.5 h earlier. A large, unnecessary part
of the overhead is caused by Dymola’s Python interface:
since the simulateExtendedModel()-command only

Session 6: Poster Session

DOI
10.3384/ecp17132291

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

295

Task Reference VSM

Initial Compilation 4.5 s 7.4 s
Initialization 1.3 s 1.0 h
Integration 7.7 h 7.2 h
Recompilation — 5.6 h
Reading .mat-files ≈ 0.0s 19.3 s
Post-processing ≈ 0.0s 1.2 h

Total Duration 7.7 h 15.1 h

Initialization
Integration

Recompilation
Post-processing

7.7 h

1.0 h

7.2 h
5.6 h

1.2 h

Figure 9. Comparison reference model–VSM: time measurements for a simulation of the demanding scenario for 3 years. In the
variable-structure model, 5304 mode switches were performed.

supports passing real numbers for initialization, modifiers
have to be used for passing the necessary vectors and at-
tributes. This causes a recompilation of the model at each
mode switch. By finding a workaround for this, the overall
simulation time of the VSM could be reduced drastically.
A further reduction could be achieved by improving the
implementation of post-processing.

When working with VSMs, besides the restriction to
use the same model for all phases, also the restrictions
to use the same settings and result files for all phases no
longer exist. Therefore, the question “Does it make sense
to use a variable-structure model of a BEV for estimating
its battery life?” may still be answered with “yes”, even if
the time needed to calculate the output trajectory does not
decrease very much.

One problem that arises when estimating the battery life
using a full vehicle model is the size of the result file,
which depends on the settings for dense output and the
length of the simulation. In order to limit the amount of
data stored in the result file, the output interval needs to be
set to a constant, high value (for example 24 h when simu-
lating 15 years). Additionally, it is necessary to select the
set of variables that has to be stored in advance, for exam-
ple by using Dymola’s __Dymola_selections-annota-
tion. This means that all detailed information calculated
during the course of the simulation is irretrievably lost and
not available for analysis. When simulating a VSM, this
problem is much less likely to occur as every mode has
its own result file and the individual simulation times are
much shorter3. Moreover, it is possible to store the results
in a high resolution when the vehicle is driving and in a
low resolution otherwise. Therefore, it becomes possible
to perform a detailed analysis of the driving behaviour at
the end of the battery’s life.

3Strictly speaking, the memory limitations could also be avoided by
implementing the possibility to split up result files when performing a
conventional simulation in Dymola.

6 PyVSM

In this section, the software used for implementing and
simulating the VSM of the BEV is described. It is
called PyVSM and supports the simulation of factorized
variable-structure models using Dymola’s Python inter-
face. PyVSM is intellectual property of Dassault Sys-
tèmes Deutschland GmbH.

The basic idea of PyVSM is to use Dymola for simu-
lating the modes and Python for switching between them.
Therefore, it is required that each mode of the factorized
VSM is a complete Modelica model that can be simulated
using Dymola. Modes, transitions and solver settings of
the VSM are defined using JSON-files. When a condi-
tion of a transition becomes true, the simulation of the cur-
rently active mode terminates and the initialization of the
next mode is initiated by PyVSM based on the results of
the previous mode.

In Figure 10, the processing steps taken to simulate a
VSM in PyVSM are shown in more detail. First, the
JSON-file used for the definition of the VSM is read.
Then, for each mode, a directory used during simulation is
created and the Dymola-interface is instantiated with the
working directory set to the previously created folder. The
actual simulation of the VSM starts by executing the initial
transition in order to set the initial values for the simula-
tion. The active mode is set according to the definition of
the transition and the simulation is started. Upon termi-
nation, the relevant results are loaded to PyVSM, includ-
ing the variable transitionID. Its value corresponds to
the numerical identifier of the transition that has to be exe-
cuted next. If and only if it is 0, the end of the simulation is
reached. After this, the individual results of each mode are
concatenated and post-processed. This includes the calcu-
lation of characteristic values such as the time needed for
initialization or the step size and the resampling of the data
to the specified interval length. Last, the post-processed
data is saved and plots are generated if desired.

Simulating a Variable-structure Model of an Electric Vehicle for Battery Life Estimation Using
Modelica/Dymola and Python

296 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132291

Load JSON files

Prepare directories
Open Dymola instances

Execute transition

Simulate active mode
Load results

Post-process data

transitionID = 0

Export data
Generate plots

transitionID 6= 0

Figure 10. UML-activity diagram of PyVSM

PyVSM is implemented in Python using object-
oriented programming techniques. It is capable of sim-
ulating factorized variable-structure models using Model-
ica/Dymola, but, being a prototype, misses advanced fea-
tures such as automatic validity checks of the input files
or a graphical user interface. Additionally, externally con-
trolling the simulation via Dymola’s Python interface gen-
erates an overhead. Nonetheless, PyVSM provides mod-
elers with the possibility to simulate models that would be
difficult or even impossible to implement in a conventional
simulation environment in a straightforward manner.

7 Conclusion
A variable-structure model (VSM) of a BEV was imple-
mented with the aim of making the simulation of the bat-
tery ageing faster by switching between a complex model
used when the vehicle is driving and a simpler model used
when the vehicle is idle. Since VSMs are not yet sup-
ported by Modelica/Dymola, a software had to be written
that provides means to define the structural variability and
performs the mode switches.

When simulating the variable-structure BEV model, it

is found that while the CPU time needed for integra-
tion decreases, thus matching the expectations, the overall
simulation time increases due to overhead generated by
switching between models. This is caused by the proper-
ties of the model on the one hand (low difference in the
complexity of the modes, many (> 5300) mode switches)
and the implementation of the software used for simula-
tion on the other hand. The overhead comprises the ex-
cess time needed for compiling, initializing the systems
of equations, reading the result files and post-processing
them as well as the unnecessary recompilation of the
modes at all transitions. Nonetheless, the VSM allows
a more detailed analysis of the simulation result due to
memory limitations occurring when using a conventional
model.

Acknowledgements
This work was supervised by Markus Andres, who con-
tributed by discussing results and giving helpful advice on
plans for further work. Marco Keßler and Markus Andres
proofread the manuscript. Further help regarding the used
battery models and the experiment set-up was provided by
Lukas Rohr. The project was carried out during a paid in-
ternship at Dassault Systèmes Deutschland GmbH.

References
Breitenecker, Felix (2008). “Development of Simulation

Software – from Simple ODE Modelling to Structural
Dynamic Systems”. In: Proceedings of the 22nd Euro-
pean Conference on Modelling and Simulation (ECMS
2008). DOI: 10.7148/2008-0005-0022.

Elmqvist, Hilding, Sven Erik Mattsson, and Martin
Otter (2014). “Modelica extensions for Multi-Mode
DAE systems”. In: Proceedings of the 10th Inter-
national Modelica Conference. DOI: 10 . 3384 /
ecp14096183.

Esperon, Daniel Gomez, Alexandra Mehlhase, and
Thomas Karbe (2015). “Appending Variable-structure
to Modelica Models (WIP)”. In: Proceedings of the
Conference on Summer Computer Simulation. Sum-
merSim ’15. Chicago, Illinois: Society for Computer
Simulation International.

Krüger, Imke, Alexandra Mehlhase, and Gerhard Schmitz
(2012). “Variable Structure Modeling for Vehicle Re-
frigeration Applications”. In: Proceedings of the 9th
International Modelica Conference. DOI: 10.3384/
ecp12076927.

Mattsson, Sven Erik, Martin Otter, and Hilding Elmqvist
(2015). “Multi-Mode DAE Systems with Varying In-
dex”. In: Proceedings of the 11th International Model-
ica Conference. DOI: 10.3384/ecp1511889.

Mehlhase, Alexandra (2015). “Konzepte für die Mod-
ellierung und Simulation strukturvariabler Modelle”.
PhD thesis. Technische Universität Berlin, Fakultät IV
– Elektrotechnik und Informatik. DOI: 10.14279/
depositonce-4514.

Session 6: Poster Session

DOI
10.3384/ecp17132291

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

297

Mehlhase, Alexandra, Daniel Gomez Esperon, Julien
Bergmann, et al. (2014). “An example of beneficial
use of variable-structure modeling to enhance an ex-
isting rocket model”. In: Proceedings of the 10th In-
ternational Modelica Conference. DOI: 10 . 3384 /
ECP14096707.

Mehlhase, Alexandra, Daniel Gomez Esperon, and
Thomas Karbe (2015). “Challenges when Creat-
ing Variable-structure Models”. In: Proceedings
of the 5th International Conference on Simula-
tion and Modeling Methodologies, Technologies
and Applications, pp. 101–110. DOI: 10 . 5220 /
0005521601010110.

Möckel, Jens, Alexandra Mehlhase, and Christoph
Nytsch-Geusen (2015). “Exploiting Variable-structure
Models in the Context of Building Simulations within
Modelica”. In: Proceedings of BS2015. International
Building Performance Simulation Association. URL:
https : / / www . researchgate . net /
publication/301229350.

Stüber, Moritz (2016). “Simulating a Variable-structure
Model of an Electric Vehicle for Battery Life Estima-
tion Using Modelica/Dymola and Python”. Master’s
Thesis. University of Applied Sciences Vorarlberg.

Zimmer, Dirk (2010). “Equation-Based Modeling of
Variable-Structure Systems”. PhD thesis. Swiss Fed-
eral Institute of Technology, Zürich. DOI: 10.3929/
ethz-a-006053740.

– (2013). “A new framework for the simulation of
equation-based models with variable structure”. In:
SIMULATION 89.8, pp. 935–963. DOI: 10.1177/
0037549713484077.

Simulating a Variable-structure Model of an Electric Vehicle for Battery Life Estimation Using
Modelica/Dymola and Python

298 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132291

Model Reduction Techniques Applied to a Physical Vehicle

Model for HiL Testing

R. Gillot* S. Gallagher** A. Picarelli* M. Dempsey*

*Claytex Services Ltd. Edmund House, Rugby Road, Leamington Spa, CV32 6EL
{romain.gillot, alessandro.picarelli, mike.dempsey} @claytex.com

**Ford Motor Company Ltd, Dunton Technical Centre, SS15 6EE
sgalla20@ford.com

Abstract

To build a full vehicle model entirely based on physical

equations is a challenge (Dempsey M., 2006). To have

this model to run fast enough so that it is suitable for

Hardware-in-the-Loop testing is even more challenging.

The level of detail in the physical representation of the

vehicle can always be increased at the cost of simulation

time. Even if the performance of the hardware is

constantly improving, we still have to compromise.

As part of the MORSE (MOdel based Real-time

Systems Engineering) project, model reduction

techniques are developed and applied to a vehicle

model. The results in terms of accuracy and simulation

speed are then investigated.

Keywords: vehicle model, model reduction, real-time

simulation, Hardware-in-the-Loop testing

1. Introduction

MORSE (MOdel based Real-time Systems

Engineering) is a 2-year project in collaboration with

Ford and AVL, co-funded through InnovateUK’s

Towards Zero Prototyping competition. The aim of the

project is to develop predictive engine and vehicle

models enabling virtual calibration of driveability

control features and validation of On Board Diagnostics

(OBD) fault paths. In order to satisfy these

requirements, we need physical models with a high level

of detail. We need, for example, a clutch with a detailed

friction model, a gear set with torque reactions, a

differential with force and torque reactions, compliant

drive shafts, Pacejka tyre model, linear engine mounts,

detailed suspensions, a crank angle resolved engine

model. We use these models for Software-in-the-Loop

(SiL) and Hardware-in-the-Loop (HiL) testing. Whilst

simulation time is not a major concern for SiL, the

models do have to run in real time and with no overruns

to be used in the HiL environment. This is why we need

model reduction techniques that will help us simplify

our models to improve simulation speed while matching

the behaviour of the full model. The idea is to have two

different models for two applications: the fully detailed

model for SiL testing and a reduced version,

automatically generated and parameterized from the

first one in order to match its results, for HiL testing. In

this paper, we present the full vehicle model and its

associated level of detail. Then we introduce the model

reduction techniques and show how they are applied to

each subsystem. The subsystems and their reduced

equivalents are tested and the results compared. Finally

the full vehicle model as well as the reduced vehicle

model are run over a series of Tip-In/Tip-Out

manoeuvres in the HiL environment and the trade-off

between accuracy and simulation performance is

investigated.

2. The Vehicle Model

Figure 1. Detailed view of the vehicle model with all the

subsystems.

In order to perform the driveability analysis, a certain

level of detail is required in the vehicle model.

We require a mounts model using linear springs and

dampers to constrain the motion in the three directions

(x, y, z) as well as a transmission model with a clutch

based on coulomb friction with a reliable handling of the

stuck phase and a gear set that models the gears, gear

Engine

Transmission

Mounts
Driveline

Brakes

Suspensions

DOI
10.3384/ecp17132299

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

299

meshes and mesh losses and takes into account the

torque reactions.

In the driveline, the drive shafts need to be compliant

and to include backlash. The differential, in the same

manner as the gear set, models the gear contact and

considers the torque reactions.

The suspensions have a vertical degree of freedom (fore-

aft motion can be included) and use a linear spring and

damper (other spring and damper models are available

if required).

Another critical component in driveability studies is the

modelling of tyres; our models thus utilize the Pacejka

slip model since it is the most commonly used model to

investigate tyre dynamics.

The engine is not studied in this paper and sits outside

of the vehicle model, a torque source coupled to a

flywheel are used to transmit the torque from the engine

to the transmission.

3. Model Reduction

a. Transmission

The physical gear set (Figure 2) is a multibody model

(Dempsey M., 2009) that uses physical representations

of gears, shafts, bearings and synchronizers. Gear

engagement is achieved through translational mechanics

flanges (in green in the Figure 2) providing a clamp load

to the left or right flanges on the synchronizer dependant

on the sign of the clamp force.

Figure 2. Physical gear set model (1: Translational flange,

2: Bearing, 3: Gear, 4: Shaft, 5: Synchronizer).

This is how the model reduction tool works internally:

The physical gear set is run on a test rig (Figure 3) in 1st

gear. The speed source ramps up from 0 to 6000 rpm. A

load is attached to the gear set. The experiment is

repeated several times, varying the load each time (from

30 to 360 N.m). The transmission is thus run over a

range of speeds and loads.

This procedure is repeated for all the remaining gears.

We now have a loss map for the transmission for all the

operating points. This data is stored in a set of data

records (one for each gear) through an automated

procedure.

Figure 3. Gear set test rig (1: Shift mechanism, 2: Speed

source, 3: Gear set, 4: Load).

The function then extends the reduced gear set model

from the PTDynamics library (Figure 4) and populates

the lumped losses component with the data records we

just created. This lumped losses component interpolates

the tables in the data records to give the losses

depending on gear, speed and load.

The inertia of the whole physical gear set for each gear

is also calculated. The reduced gear set has a lumped

inertia component that will be populated with the data

we just derived.

Figure 4. Reduced gear set model (1: Input shaft lumped

inertia, 2: Clutch, 3: Lumped losses, 4: Ideal variator, 5:

Output shaft lumped inertia).

The gear ratio is applied using an ideal variator which

means there is a first order transfer function between the

ratio input and the applied ratio. A clutch (item no. 2 in

the Figure 4) is used in this model since the ideal variator

does not give good results when in neutral.

𝜔𝑎 = 𝜔𝑏 ∗ 𝑟𝑎𝑡𝑖𝑜

0 = 𝜏𝑎 ∗ 𝑟𝑎𝑡𝑖𝑜 + 𝜏𝑏

Where 𝜔𝑎 is the angular velocity at flange_a (input

flange), 𝜏𝑎 is the torque at flange_a and ratio is the gear

ratio. When in neutral gear, the equations become:

1
2

3

4 5

1

3

2
4

1

3
4

2
5

Model Reduction Techniques Applied to a Physical Vehicle Model for HiL Testing

300 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132299

𝜔𝑎 = 0

0 = 𝜏𝑏

The first equation forces the angular velocity at the input

flange of the gear set to be zero and as a consequence

the angular velocity of all the components rigidly

connected to it, including the engine, to also be zero.

The clutch in this gear set is always engaged except in

neutral. The equation in the variator sets the angular

velocity at the output flange of the clutch to zero but the

input flange is free to rotate as the clutch is disengaged.

Let us run a fully detailed 6-speed gear set and its

reduced version we derived using the model reduction

function and compare the results. To do so, we run the

models in all the gears, feeding in a torque of 80 N.m

(see Figure 5).

Figure 5. Test rig gear and torque inputs.

We can now have a look at the torque at the input and

output of the two gear sets with different levels of detail:

Figure 6. Input and output torque of a 6-speed gear set and

its reduced equivalent.

The results of the reduced model match very well those

of the full gear set, there is only a small discrepancy at

around 3s. This is because in the table of lumped losses

that we got using the function, the torque ranges only up

to 350 N.m. The torque being outside of this range at the

beginning of the test, Dymola has to extrapolate from

the table of losses which leads to a small inaccuracy.

The torque range will be extended in future work.

Figure 7. Input and output shaft speed of a 6-speed gear

set and its reduced equivalent.

The speed curves match well too. The speed of the

reduced gear set is slightly overestimated though. This

comes from the inaccuracy in the torque curve at the

beginning of the simulation (see Figure 6) which

therefore calculates an acceleration that is too big. The

relative error in angular velocity then gets carried until

the end of the simulation but its magnitude does not

increase.

The test lasts for 40s and the solver used is Radau II –

order 5 stiff with a tolerance of 1e-5, this solver will be

used to test all the subsystems in the following

paragraphs. The improvements in terms of simulation

performance are shown in the following table:

 Full gear set
Reduced gear

set

Simulation time

(s)
4.33 0.95

State events 204 36

Jacobian-

evaluations
302 155

Most of the events happen during gearshift (see figure 8

below) so the savings in simulation time depend a lot on

0 10 20 30 40

0

20

40

60

80

-1

0

1

2

3

4

5

6

7

Torque Input (N.m) Gear number

0 10 20 30 40
-100

-50

0

50

100

150

200

Reduced gear set Input torque (N.m) Gear set Input torque (N.m)

0 10 20 30 40
-800

-600

-400

-200

0

200

Reduced gear set Output torque (N.m) Gear set Output torque (N.m)

0 10 20 30 40

0

40

80

120

160

200

Reduced gear set Input speed (rad/s) Gear set Input speed (rad/s)

0 10 20 30 40
-20

0

20

40

60

80

100

120

Reduced gear set Output speed (rad/s) Gear set Ouput speed (rad/s)

Session 6: Poster Session

DOI
10.3384/ecp17132299

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

301

the type of test we run (i.e. how frequently we change

gear).

Figure 8. Correlation between number of events and

gearshift.

We presented in this section a model reduction tool

which is automatic, creates a reduced model that gives

very similar results to the full model and runs faster. The

new model is however a one-dimensional rotational

model which is then not suited for studies where force

or torque reactions are of prime importance.

b. Driveline

Here we take advantage of the fact that we are, in the

scope of the MORSE project, only performing straight-

line manoeuvres. The results we get on the left side of

the car (wheel angular velocity, suspension’s spring

force and position, driveshaft torque etc.) are thus very

similar to the ones on the right-hand side, allowing some

simplifications. We can use ideal force and torque

sources to replace the physical actuators (translational

and rotational springs and dampers) on one side of the

vehicle. We arbitrarily chose to reduce the components

on the right side. In the case of the driveline, we then

reduce the right driveshaft, and keep the left one

unchanged.

The differential required adaptation since it now only

needs to transfer torque to one driveshaft. A standard

open differential would transfer all the torque coming

from the transmission to the right driveshaft as there is

no load on it. This new model splits the torque

independently of what is connected to its flanges. This

approximation works because we only test the vehicle

in a straight line and we assume that the road is ideal

(i.e. uniform friction coefficient, no bumps or holes).

Figure 9. Driveline model with a complete left-hand side

driveshaft (bottom) and a reduced right-hand side

driveshaft (top).

Figure 10. Reduced driveshaft using force and torque

sources.

The reduced driveshaft uses ideal force and torque

sources to replicate the behaviour of the other non-

reduced driveshaft. The inputs to these force and torque

sources are set to the sensed values in the non-reduced

driveshaft.

We can switch between the full and reduced driveline

by just double-clicking on the driveline subsystem at the

vehicle level (see figure 1) and choosing between the

two models. There is a Boolean parameter that is used

to conditionally enable or disable components. The

reduced model’s parameters are linked to the parameters

from the full one so we do not need extra

parameterization when switching between models.

We test the reduced driveline with a trapezoidal torque

input and observe the torque and angular velocity at the

wheel hubs:

0 10 20 30 40

-50

0

50

100

150

200

250

-1

0

1

2

3

4

5

6

7

Number of events Gear number

Torque

source

Force

source

Mass

Bearing

Model Reduction Techniques Applied to a Physical Vehicle Model for HiL Testing

302 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132299

Figure 11. Angular velocity (top plot) and torque (bottom

plot) at both front wheel hubs.

The results match perfectly. The benefits in terms of

simulation speed and number of events are not shown in

this section since the driveline itself is a subsystem that

runs relatively quickly. The results will be investigated

when testing the full vehicle model.

c. Suspensions

In this paper, we consider a one degree of freedom

independent suspension with anti-roll bar. An optional

steering connection can be used but we leave the model

empty here since we only want to run the vehicle in a

straight line. This empty steering model holds the

steering frame in a fixed position. The linear anti-roll bar

model uses the difference in z-heights to calculate a roll

angle and apply a reaction torque.

Figure 12. Front suspension model. The left linkage

(bottom) is a physical suspension model while the right one

(top) is reduced.

The left suspension is kept physical while the right one

is reduced.

Figure 13. Physical suspension with spring and damper (1)

and its reduced equivalent using a force source (2).

The suspension model only allows a vertical degree of

freedom. It uses a linear spring and a linear damper. The

fast oscillations that can happen when running this

model are computationally very expensive.

In the reduced suspension model, the spring and damper

are replaced by an ideal force source fed with the force

value read at the full suspension model’s flange. The rest

of the model, which is not computationally very

intensive, is kept identical between the left and right side

of the vehicle.

We test the suspensions on a test bed with a trapezoidal

position input at both hubs.

In this ideal experiment, where the desired behaviour of

the suspensions is exactly similar on both sides, the

results of the reduced model match perfectly those of the

full model. When tested in a vehicle, the forces and

torques applied to the left and right suspension hubs will

be slightly different, even during a straight-line

manoeuvre (the effective rolling radius is never equal in

all the wheels, the repartition of the vehicle mass is

never perfect, etc.). The reduced model will ignore these

differences and produce the exact same results on both

sides. The inaccuracies being extremely small, they are

completely acceptable for the applications targeted in

the MORSE project.

0 2 4 6 8 10

0

20

40

60

Left hub angular velocity (rad/s) Right hub angular velocity (rad/s)

0 2 4 6 8 10

-0.015

-0.010

-0.005

0.000

0.005

0.010

Left hub torque (N.m) Right hub torque (N.m)

1

2

Session 6: Poster Session

DOI
10.3384/ecp17132299

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

303

Figure 14. Suspension’s hub vertical position (top graph)

and vertical force (bottom graph) for both the complete and

reduced model.

d. Wheels

The wheels are reduced in the same way, a force and a

torque actuator are used to account for the tyre dynamics

in the front left and rear right wheels.

Once again we have to point out that in reality, each one

of the tyres would behave slightly differently, even in a

straight line. The reduced model ignores these

differences and replicates exactly on the right side of the

car what happens on the left side.

The reduced wheel model is not presented in detail in

this paper since it is generated following the idea as the

drive shafts and the suspensions.

4. Results

a. In Dymola

Hardware specifications: computer with Windows 10,

processor is Intel® Core™ i7-4790K @ 4.00 GHz

Quad-core.

In this section, we run a vehicle with several levels of

model reduction on a series of Tip-in/Tip-out

manoeuvres in 2nd gear. The levels of model reduction

are as follows: Level 1: Full vehicle model. Level 2:

Vehicle with reduced transmission only. Level 3:

Vehicle with reduced transmission and reduced

driveline. Level 4: Vehicle with reduced transmission,

reduced driveline and reduced chassis (suspensions and

wheels). Level 5: Vehicle with reduced transmission,

reduced driveline and reduced chassis and only allowing

longitudinal motion.

It is important to note that the interface of all the vehicle

models is the same as they need to be able to dialog with

the ECU without missing information. The simple

vehicle model is thus capable of sending and receiving

the same signals as the most detailed one.

The model is run first in Dymola. The simulation lasts

for 56s. The solver settings are: Step size = 0.0005s,

tolerance=1e-5, inline integration method = implicit

Euler. This has indeed proven to be the quickest inline

integration method for our application. The step size has

been calculated to be the biggest time step that gives

correct results when running the crank angle resolved

engine model, which is the subsystem that requires the

smallest sample rate.

The conditions of the tests are different from the

conditions of the tests of the individual subsystems since

we wanted to run the vehicle on a real manoeuvre like

Tip-In, Tip-Out.

Figure 15. Engine speed. Blue: Level 1, Red: Level 2,

Green: Level 3, Magenta: Level 4, Black: Level 5.

The maximum error in engine speed for each level of

reduction is respectively: 1.24%, 2.69%, 2.68% and

3.05%.

The biggest error occurs at around 7s when we engage

the clutch after engaging 1st gear (i.e. at pull-away when

the vehicle starts moving). The magnitude of the error

after that moment does not increase, it remains constant

until the end of the simulation.

Figure 16. Vehicle speed. Blue: Level 1, Red: Level 2,

Green: Level 3, Magenta: Level 4, Black: Level 5.

0 5 10 15 20

-0.02

0.00

0.02

0.04

0.06

Full model vertical position (m) Reduced model vertical position (m)

0 5 10 15 20

0

1000

2000

3000

4000

Full model vertical force (N) Reduced model vertical force (N)

0 10 20 30 40 50 60

0

1000

2000

3000

4000

5000

6000

0 10 20 30 40 50 60
-2

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60

0 10 20 30 40 50 60

6000

5000

4000

3000

2000

1000

0

[r
p

m
]

20

16

12

8

4

0

[m
/s

]

Model Reduction Techniques Applied to a Physical Vehicle Model for HiL Testing

304 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132299

0 10 20 30 40 50

0 10 20 30 40 50 60

The maximum error in vehicle speed for each level of

reduction is respectively: 1.01%, 2.41%, 2.40% and

2.60%.

We see a slightly negative vehicle speed at the

beginning of the experiment, when the engine is idling

and the vehicle is in neutral. This is attributable to the

Pacejka tyre model which is inaccurate at very low

vehicle speeds.

Figure 17. Vehicle acceleration. Blue: Level 1, Red: Level

2, Green: Level 3, Magenta: Level 4, Black: Level 5.

The acceleration plot shows good correlation between

the models. There are oscillations at the beginning due

to non-optimal initialisation and during clutch

engagement at 7s.

In the table below, a time overrun happens when a time

step in Dymola lasts longer than the corresponding

amount of time in real life. For example, if we choose a

step size of 0.5 ms, it should take less than 0.5 ms for

the hardware to perform all the calculation before

moving to the next step. Otherwise, all the equations do

not have time to be solved before the next step and the

results cannot be trusted anymore so this has to be

avoided.

Simulation performance summary:

 Simulation

time (s)

Number of

events

Overruns

Level 1

(Full

model)

62.2 46 >50

Level 2 42.5 26 >50

Level 3 36.2 28 >50

Level 4 33.8 27 >50

Level 5

(Fully

reduced

model)

16 16 12

We can see from the table above that each level of

reduction improves the simulation time. The number of

overruns of the first four models is quite high and even

though it seems to decrease when we reduce the model,

it remains too high for the model to be tested in HiL.

b. In Hardware-in-the-Loop

Hardware specifications: dSPACE DS1005 PPC with 4

cores available.

The simplest and the most detailed vehicle models are

run on the HiL rig with a step size of 0.0005 s. Due to

time constraints, we only tested two vehicle models in

HiL, the most detailed one and a reduced one.

The most detailed vehicle is the full vehicle model (i.e.

the Level 1 vehicle in the last section).

The simplest vehicle is essentially the fully reduced

vehicle (i.e. the Level 5 vehicle in the last section) with

an elasto-plastic based friction model to reduce the

number of events and thus the number of time overruns.

We could see indeed that if the Level 5 vehicle was

running very fast in Dymola it still generated a few

overruns. The elasto-plastic clutch uses a single state

and defines the friction in a continuous way without

introducing events (Dupont P., 2002).

Figure 18. Most detailed vehicle’s turnaround time (ms)

(blue) and target step size (red).

Maximum turnaround time: 7.4 ms

Minimum turnaround time: 0.28 ms

Number of overruns: 55

This very detailed vehicle model is on average too slow

on the current hardware and cannot achieve real-time

performance. It also generates a high number of

overruns.

Figure 19. Simplest vehicle’s turnaround time (ms) (blue)

and target step size (red).

0 10 20 30 40 50 60

-4

-3

-2

-1

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60

6

4

2

0

-2

-4

[m
/s

2
]

6.5

5.5

4.5

3.5

2.5

1.5

0.5

1.1

0.9

0.7

0.5

0.3

0.1

Session 6: Poster Session

DOI
10.3384/ecp17132299

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

305

0 10 20 30 40 50

Maximum turnaround time: 1.18 ms

Minimum turnaround time: 0.096 ms

Number of overruns: 1

This simplified vehicle model is achieving real-time

performance and generates only one overrun. The cause

of the overrun is under investigation.

A comparison of the key variables is not very relevant

here since, due to the high number of overruns, the

results of the most complex model are rapidly drifting.

However, despite these inaccuracies, the results are still

matching well. The manoeuvre starts at time=0s, what

happens before this time can be ignored.

Figure 20. Reduced vehicle’s engine speed (rpm) for

single core (blue) and multicore (red) implementation.

The results are slightly different from what we got in

Dymola because of a change in vehicle parameterisation

(tyre and aerodynamic drag have been increased in the

vehicle tested in Dymola, hence smaller vehicle speeds).

Due to time constraints, a second test of the model in the

HiL environment has unfortunately not been possible.

The point here is not to compare the results between

Dymola and HiL but rather to compare the results of the

different vehicles.

The multicore capability will also be investigated in

more detail in future work; it does not show a real

benefit here since the controller we used is the software

version and thus is not very CPU demanding. The crank

angle resolved engine model has been, as part of this

project, split into three sub models (Gallagher S., 2016):

the mechanics part (included in the vehicle model), the

combustion part (one for each cylinder) and the air path.

We thus have 5 s-functions for the engine and vehicle to

run and 4 cores available. Along with these models are

the driver model and the CAN buses that also have to be

run on these 4 cores. At the time of writing of this paper,

it was still undecided how the repartition between the

cores would be done.

5. Conclusion and Future work

Model reduction techniques for all the vehicle

subsystems have been implemented and tested. The

accuracy of the results is satisfying and the improvement

in performance significant. The level of detail in the

chassis and driveline has been maintained the same as in

the full models. While the reduced transmission has lost

the 3D capability, it still outputs the correct speed and

torque for all operating points. However, the fully

detailed model is still very much needed. It is important

to be able to model a vehicle with a physical

representation and a high level of detail to accurately

predict the vehicle behaviour to then be able to calibrate

the reduced model.

A series of assumptions and simplifications have of

course had to be made. The main one is that the results

would be the same on the left and right hand sides of the

vehicle since we test it in a straight line. This assumption

is acceptable in the MORSE project as the small

inaccuracies are acceptable. Moreover, we thought it

was more interesting to compromise on the left/right

discrepancy but to keep the same level of detail in the

model rather than reducing the capability of the

subsystems to maintain the models physical on both

vehicle sides which is not of prime importance in a

straight-line test.

More testing needs to be done in the Hardware-in-the-

Loop environment: we need for example to test the

vehicle over other manoeuvres than Tip-in/Tip-out, to

include the detailed Dymola engine model and to

explore further the multicore capability.

The reduced models (except the gear set) are multi-body

and could be simplified further to one-dimensional

subsystems if needed in order to still be able to achieve

real-time performance once we will have integrated the

Dymola engine in the vehicle.

References

Gallagher S. et al. (2016) Model-based Real-time Systems

Engineering, Loughborough, England, Powertrain Modelling

and Control Conference.

Dempsey M. et al. (2006) Coordinated automotive libraries

for vehicle system modelling, Vienna, Austria, Proceedings of

the 5th International Modelica Conference.

Dempsey M. et al. (2009) Investigating the Multibody

Dynamics of the Complete Powertrain System, Como, Italy,

Proceedings of the 7th Modelica Conference.

Dupont P. et al. (2002) Single State Elasto-Plastic Friction

Models, IEEE Transactions of Automatic Control.

Model Reduction Techniques Applied to a Physical Vehicle Model for HiL Testing

306 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132299

Towards Virtual Validation of ECU Software using FMI

Lars Mikelsons1 Roland Samlaus1

1Robert Bosch GmbH

Abstract
Connected, Automated, Electrified. These three trends in
the automotive industry require rethinking of the use of
simulation respectively models. The use of models for
evaluation of new concepts or stimulating the unit-under-
test (in HiL testing), already firmly rooted in the develop-
ment process of software functions, will not be sufficient
to realize visions like autonomous driving or update-over-
the-air. One key enabler for such technologies is virtual
validation, i.e. the validation or release of software func-
tions in a pure virtual setup. That is, simulation is not only
a tool to shorten the development cycle, but one of the
key technologies to release future software functions, e.g.
highly automated or autonomous driving. In this contribu-
tion a feasibility study for the validation of FMI-based vir-
tual ECUs (vECUs) in a co-simulation setup is presented.
Thereby, the powertrain and the vECU are represented by
FMUs, while the tool CarMaker is used for vehicle dy-
namics. On the base of the gained experience require-
ments for the FMI standard are formulated that would al-
low to go for virtual validation of future software func-
tions. Keywords: FMI, virtual validation, ECU, vECU,
autonomous driving

1 Introduction
The use of models and simulation is firmly rooted in the
development process of automotive software as well as
hardware components. However, in the development of
software functions typically simulation is mostly used to
evaluate new concepts or to stimulate the unit-under-test,
e.g. HiL in testing. More precisely, the model of a a soft-
ware or hardware component is typically used during de-
velopment (Junghanns et al., 2014). Models and simula-
tion are rarely used for virtual validation, i.e. validation
or even release of a software function in a pure virtual
setup. There exist examples where software validation
was done virtually, e.g. ESC homologation (Holzmann
et al., 2012). However, the validation of ECU software is
mostly performed using real prototypes. In fact, although
in many cases models are exchanged between OEMs and
suppliers, it is not a standard workflow to use them for
the application of software functions. While for "‘old
fashioned"’ software functions not using existing mod-
els may lead to a more costs, not using models is not an
options when it comes to concepts like autonomous driv-
ing or update-over-the-air. According to (Wachenfeld and
Winner, 2015) and (Winner et al., 2010), following ba-

sic statistics, between 100 million and 5 billion kilometers
of test driving are required in order to ensure that soft-
ware for autonomous driving is at least as save as a human
driver. Note that, the test procedure has to be repeated af-
ter every single update or modification. Clearly, it is not
possible to use real prototypes for those test drives due to
required time and costs (Google states that its 20 self driv-
ing cars drive 16.000 kilometers per week (goo, 2015)).
The same argumentation holds for update-over-the-air ex-
cept that typically the problem arises from the number of
variants and configurations that need to be tested. Thus,
here virtual validation has to be employed. Typically, for
technologies like autonomous driving one has to couple
models from different domains (xDomain vehicle simu-
lation), e.g. powertrain, vehicle dynamics or powernet.
One approach for xDomain vehicle simulation is to use
Modelica in order to model all involved domians in the
same tool respectively language. Though, in big compa-
nies the models for the different domains are generated
in different business units that prefer different simulation
tools (best suited for their specific problems). Hence, co-
simulation is typically the way to go. Designing such a
co-simulation setup for virtual validation leads to several
challenges. Typical questions that arise are

• What is the required level of detail for my models?

• How do I parametrize my models?

• How to validate a model?

• How big is the discretization error?

• How big is the coupling error?

• How can I integrate the software code into the simu-
lation?

• Which portions of the ECU code do I have to inte-
grate (where to cut)?

In this contribution only the last two questions are focused.
In fact, this contribution presents a feasibility study for in-
tegrating ECU code as an FMU into a co-simulation setup.
Thus it shows a possibility to integrate ECU code (in-
cluding the formulation of further requirements on FMI)
and discusses the problem of identifying the portion of
the software stack required for a specific validation task.
Note that, the used software function is part of a function
for highly automated driving (HAD). Future work aims
at treating this HAD function as sketched in this paper.

DOI
10.3384/ecp17132307

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

307

In industry there are different meanings for vECU. Some
people just mean cross-compiled application code, others
mean ECU code running on a virtual OS and last but not
least a vECU can also include virtual hardware. In sec-
tion 2 a brief overview is given and the used approach for
the vECU used in section 3 is described. In section 3 the
co-simulation setup and generated results are discussed.
Starting from a yaw rate controller implemented in AS-
CET a vECU is generated. This vECU, is then integrated
in a co-simulation setup consisting of Model.CONNECT
from AVL as a co-simulation middleware, an FMU con-
taining a powertrain model generated with GT Suite from
Gamma Technologies and CarMaker from IPG for vehicle
dynamics simulation. Moreover, required additional fea-
tures in the used tools and standards are discussed. The
paper closes with a summary and an outlook.

2 Virtual ECUs
Virtual ECUs (vECU) aim at running target ECU code on
standard x86 systems by virtualization. This section in-
troduces use cases for virtual ECUs supporting the ECU
developer in creating software with higher quality faster
then with regular development processes. The basic soft-
ware architecture for ECUs is explained and it is distin-
guished between three types of virtual ECUs that differ in
the extent of the re-used target code. Finally the virtual
ECU used in the feasibility study is presented.

2.1 The AUTOSAR software architecture
The AUTOSAR (Automotive Open System Architecture)
standard defines an architecture (see figure 1) for embed-
ded software on ECUs. The idea is to "‘cooperate on stan-
dards - compete on implementation"’. AUTOSAR sys-
tems can be divided in six main components (see 1):

1. Application Software (ASW) is the software imple-
menting the unique features of an ECU, e.g., the be-
havior of the electronic stability program (ESP) or
HAD functions.

2. Runtime Environment (RTE) is the communica-
tion layer which distributes the signals directly be-
tween ASW components or using the base soft-
ware’s (BSW) communication stack. The idea of
AUTOSAR ASW components is that they can be dis-
tributed freely on different ECUs. The RTE will then
either dispatch the data from one component directly
to another component, if they are deployed on the
same ECU, or the data is send via the communica-
tion stack in the base software.

3. Base Software (BSW) is software that provides ba-
sic functionality of an ECU. Typical software com-
ponents are communication stacks such as CAN, au-
tomotive ethernet, or flexray. Other examples are
memory access and diagnosis functions. The extent
of the used base software on an ECU depends on the

Figure 1. The AUTOSAR software architecture

use-case, e.g., ECUs for wipers need less functional-
ity than engine control units.

4. Operating System (OS) is a real-time system that
is responsible for executing code at the right time
and with a defined maximum duration. There-
fore, runnables that contain the executable code, are
scheduled using scheduling tables. The runnables are
assigned to recurring tasks of a defined maximum
duration. For simulation it is often desired to accel-
erate the execution of code. Therefore the tasks are
executed as fast as possible. Furthermore, the OS is
responsible for handling interrupts, e.g., when data is
received from a sensor. This pauses the execution of
runnables until the interrupt has been handled.

5. Microcontroller Abstraction Layer (MCAL) is the
driver layer and specific for the used ECU hardware.
This should be the single software component which
is hardware dependent. For simulation on x86 sys-
tems the MCAL layer has to be exchanged.

6. Complex Device Drivers (CDD) contain special
code which is not commonly used and this not part
of the AUTOASR specification, e.g., drivers for mag-
netic valves.

2.2 Categories of virtual vECUs
vECUs can roughly be classified into three categories:

1. vECUs that contain only the ASW and RTE (and op-
tionally an OS). This aims at quick testing of basic
functions of the ASW without using base software
components like communication. If the ASW code is
AUTOSAR compatible, vECUs for this use case can
be easily created since there are no hardware specific
parts. However, no realistic estimation of the execu-
tion behavior on real ECUs can be derived with this
kind of vECUs.

Towards Virtual Validation of ECU Software using FMI

308 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132307

Figure 2. Use cases for vECUs

2. vECUs that consists of ASW, RTE, BSW, OS and a
virtual MCAL (for x86 systems). A more realistic
behavior of the real ECU can be simulated with this
kind of vECU. The scheduling of tasks is considered
and the functionality of the BSW can be tested. As
an example rest-bus simulation can be performed to
mock additional ECUs in the network to test for cor-
rect reaction of the simulated vECU.

3. If a more realistic behavior of the vECU is desired,
virtual hardware can be used. All software compo-
nents of the real ECU can be re-used, including the
target MCAL layer. The MCAL is used with detailed
hardware models which simulate real timing behav-
ior. Another benefit is the ability to perform fault
injection which can be problematic when done with
real hardware since the injected faults could cause
damage to the devices. A drawback of using hard-
ware models is reduced simulation speed since the
models are usually highly detailed.

2.3 Use cases for virtual ECUs
Virtual ECUs can be used for faster test of application
software. Based on the vECU category used, BSW func-
tionality and timing behavior can also be considered. Typ-
ical use-cases for vECUs are displayed in figure 2.

The XCP protocol is used by tools like ETAS INCA
to measure and calibrate parameters of the ECU software,
e.g. to optimize the gasoline injection for a certain en-
gine type. This can also be done virtually with vECUs.
Test APIs allow for automatic testing of the ECU soft-
ware. Examples for commonly used testing tools are
TPT and ECU-TEST. It is also possible to write custom
tests with arbitrary programming languages like Java. The
vECU can be exported as an FMU or S-Function for co-
simulation with physical and plant models. Virtual busses
(CAN, LIN, ...) can be connected to virtual ECUs using
the MCAL layer. This allows to analyze messages on the
busses and to perform rest-bus simulation with tools like
CANoe or Busmaster to simulate additional ECUs in a
network.

2.4 vECU for feasibility study
For the feasibility study a category 1 vECU has been
used. The vECU consists of an OS, the RTE and appli-
cation software. The application software has been gen-
erated as AUTOSAR 4 compatible code from an ASCET
model. Based on the application’s AUTOSAR description
the RTE has been generated. No BSW or MCAL has been
integrated at this point. This will be done as a next step
in order to send messages via CAN. This will enable to
investigate how a software function can be deployed on
more than one ECU.

2.5 vECU tool evaluation
Several tools of different vendors including ETAS ,
QTronic, Dassault, dSPACE and Mentor Graphics have
been evaluated for the creation of vECUs at Bosch. For
this contribution ETAS EVE is used since it is best suited
for the use case presented here (e.g. best integration into
the existing ECU build tool chain).

3 Feasibility study
In this section it is shown how FMI is used to integrate
and finally validate a software function in a co-simulation
setup. The vision is to validate HAD functions or software
for autonomous driving in the future. In this contribution,
not a complete function consisting of e.g. object recog-
nition, trajectory generation and follow-up control is used
but only the lateral control since the goal is demonstrate
the use of FMI to integrate ECU software into a simulation
for virtual validation (and not to investigate the numerical
properties).
In section 3.1 the co-simulation architecture is described,
while 3.2 gives a brief overview on the used models and
simulation results. In section 3.3 further requirements on
the FMI standard and the used tools are derived.

3.1 Co-Simulation Architecture
In order to setup a co-simulation one of the first things to
do is to define the integration platform, i.e. the tool that
executes the master algorithm. In some cases, especially
when not all involved tools offer an FMI export, it may
be the case that there is not one defined master algorithm.
Moreover, direct tool couplings (that do not rely on FMI)
written by different tool vendors tend to have different nu-
merical properties and to produce out-of-sync signals. An
approach to face those issues is to a co-simulation middle-
ware, that does not contain a model but only serves as a
master and coordinator. Consequently, the co-simulation
has a clean architecture with tool couplings that are con-
sistent with each other(see figure 3). Moreover, it is eas-
ily extendable and typically offers more options to con-
figure the co-simulation than simulation tools do. There
exist several open-source (e.g. PyFMI) as well commer-
cial (e.g. TISC from TLK Thermo, Cosimate from Chi-
asTek or Silver from QTronic that also includes vECU
generation) co-simulation middlewares. In this contribu-

Session 6: Poster Session

DOI
10.3384/ecp17132307

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

309

Figure 3. Co-simulation architecture with typical vehicle do-
mains using a co-simulation middleware (purple rectangle)

tion Model.CONNECT from AVL is used.

3.2 Co-Simulation Setup
As already described above the co-simulation consists of
the following participants (see figure 4)

• CarMaker from IPG: Vehicle dynamics and driver
model for longitudinal control

• FMU: Powertrain model generated from GT Suite
from Gamma Technologies (see ??)

• FMU: vECU generated with EVE from ETAS GmbH

Throughout this section it is assumed that the software un-
der consideration can be validated by using the ISO dou-
ble lane change as maneuver. The software shall be val-
idated if the deviation in the yaw rate is rate is not big-
ger than 0.021/s and the deviation in the position in the
y-direction is not bigger than 30cm. The vehicle model
(and accordingly the software function) is parametrized
according to a luxury car, however details are neglected
here. Advanced co-simulation algorithms were not used,
i.e. the models communicate using a parallel scheme us-
ing zero order hold extrapolation. It is expected that this
has to be changed when using a more complex powertrain
model and a more complex software function. Input for
the software function is the actual yaw rate, the desired
yaw rate, the vehicle velocity and the steering angle. Note
that, the desired yaw rate is read from a table, that will be
replaced by a trajectory generator in the future.
Figure 5 indicate the the simulation result lies within the
specified error bounds. In fact the maximal error in the
yaw rate is 0.0151/s and 29.8cm in the y-direction of
the position of the vehicle. Thus (under the assumptions
stated above), the software function can be judged as val-
idated.

3.3 Derived Requirements for Tools and Inter-
faces

While it can be seen from the previous section that a vir-
tual validation of ECU software using FMI is possible in

Figure 4. Setup of the co-simulation (screenshot from
Model.CONNECT from AVL) with two FMUs (vECU from
ETAS EVE and powertrain from GT Suite) and CarMaker

principle, there are some issues that prevent or will (in the
case of more complex functions) prevent FMI from being
suited for that use case. Beside issues described in (Link
et al., 2015) the following requirements were derived:

• For complex software functions lots of physical sig-
nals have to be connected to the vECU. Thus, FMI
should support vectors for easier workflows and bet-
ter models (w.r.t. clarity).

• When it comes to software functions that are dis-
tributed over multiple ECUs, signals have to be ex-
changed between them. In many cases these sig-
nals are not just scalars or vectors (see above), but
structs. A typical example is the ADASIS protocol
(Ress et al., 2008) that is used to transmit the e-
horizon from an e-horizon provider to an e-horizon
reconstructor. Thus, in order to use FMI for vECUs
it should support structs.

• In cases where not only the functionality, but also
the timing shall be validated the communication has
also to be modelled, e.g. using virtual CAN. Cur-
rently, the user (FMU generator and/or integrator)
has to care about the communication between FMUs
(at least for virtual busses etc.). In future versions it
would be desirable to have the communication mean
as part of FMI. Note, that this will be the case for the
Advanced Co-Simulation Interface (ACI) (Krammer
et al.).

Beside the requirements on FMI there are also some issues
on the tool side. Among these are

• According to the list above tools (simulation tools
and co-simulation middlewares) should support vec-
tors and structs.

• When more complex models are used and especially
in cases where numerically demanding couplings are
in place it is desirable to use a master algorithm that

Towards Virtual Validation of ECU Software using FMI

310 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132307

Figure 5. Variables used for validation including error bounds
for the double lane change including error bound

can iterate, i.e. repeat macro steps. This is currently
not supported by the used vECU, but will be sup-
ported in the future. However, many simulation tools
do not support this (optional) FMI feature. This situ-
ation should be changed.

• Tool: If common open source implementations of
virtual MCALs would reduce development overhead
and enable switching between different vECU tools.

4 Summary & Outlook
This paper presents a feasibility study for the use of FMI
for the validation of future ECU software. Besides a brief
overview over the concept of vECUs different use cases
for the use of vECUs are considered. For a functional val-
idation (without timing) it is shown that the integration of
ECU Code into a co-simulation works in principle. How-
ever, for more complex functions than the yaw rate con-
troller used here, some issues arise that were collected in
section 3.
In future work a more complex (HAD) function will be
used. Consequently, more complex models have to be
used. Moreover, it is desired to do also timing investiga-

Figure 6. Screenshot showing the double lane change maneuver
in CarMaker

tions. Thus, virtual CAN will be used for signal exchange.
Therefore, the vECU has to include the communication
stack. Last but not least an interface to connect calibration
software (e.g. INCA from ETAS) will be created.

References
Google self-driving car project monthly report. August 2015.

Henning Holzmann, Karl Michael Hahn, Jonathan Webb, and
Oliver Mies. Simulation-based esc homologation for passen-
ger cars. ATZ worldwide, 114(9):40–43, 2012.

Andreas Junghanns, Jakob Mauss, and Michael Seibt. Faster
development of autosar compliant ecus through simulation.
ERTS-2014, Toulouse, 2014.

Martin Krammer, Nadja Marko, and Martin Benedikt. Interfac-
ing real-time systems for advanced co-simulation - the acosar
approach.

Kilian Link, Leo Gall, Monika Mühlbauer, and Stephanie
Gallardo-Yances. Experience with industrial in-house appli-
cation of fmi. In Proceedings of the 11th International Mod-
elica Conference, Versailles, France, September 21-23, 2015,
number 118, pages 17–22. Linköping University Electronic
Press, 2015.

Christian Ress, Dirk Balzer, Alexander Bracht, Sinisa
Durekovic, and Jan Löwenau. Adasis protocol for advanced
in-vehicle applications. In 15th World Congress on Intelligent
Transport Systems, page 7, 2008.

Walther Wachenfeld and Hermann Winner. Die freigabe des
autonomen fahrens. In Autonomes Fahren, pages 439–464.
Springer, 2015.

H. Winner, G. Wolf, and A. Weitzel. Freigabefalle des au-
tonomen fahrens/the approval trap of autonomous driving.
VDI-Berichte, (2106), 2010.

Session 6: Poster Session

DOI
10.3384/ecp17132307

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

311

312 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Parameter Estimation based on FMI

Rüdiger Kampfmann Danny Mösch Nils Menager

Bosch Rexroth AG, Lohr am Main, Germany
{ruediger.kampfmann, fixed-term.danny.moesch, nils.menager}@boschrexroth.de

Abstract
In order to stay competitive the requirements on machin-
ery in the producing industry have enormously increased.
Within the automation industry these demands, like higher
throughput or better energy efficiency, result in increasing
complexity of the installed plants. Additionally, Indus-
try 4.0 and the Internet of Things continuously increase
the amount of software. Using model-based development
methods is one approach to deal with this complexity. But
model-based methods can also be utilized during the op-
erational phase of a plant in order to generate additional
value for the plant operator. Introducing smart services
based on the usage of physical models enables new control
and diagnosis features, e.g. the utilization of inverse plant
models for feedforward control or comparing the output of
a model with measurements of the plant in order to prove
for correct behavior. For all these services the accuracy of
the considered models is crucial. With an inexact model
neither the future behavior can be foreseen nor the control
quality can be improved. The used models don’t have to
be built up from scratch, existing models already created
for sizing can be reused. However, these models cannot
be used directly. First a reparametrization is necessary,
because effects like friction or manufacturing tolerances
cannot be taken into account correctly during sizing. For
this special kind of problem dedicated optimization algo-
rithms are available for parameter estimation, which take
randomly distributed measurement errors and the special
structure of this problem class into account.
In this paper a work flow for parameter estimation based
on open source tools is presented, in which the considered
models are provided as Functional Mock-up Unit. After-
wards the performance of this work flow is demonstrated
on a real industrial problem: A three arm Delta Robot.
Keywords: Parameter Estimation, Levenberg-Marquardt
Algorithm, FMI, Least Squares Optimization, Log-
likelihood Method

1 Outline
The paper is structured as follows. First the considered
optimization problem is derived from an approach based
on probability theory. Afterwards suitable algorithms for
this problem class are discussed with a special focus on
the Levenberg-Marquardt algorithm, which is used in this
contribution. Then the used software tools are presented:
The Functional Mock-up Interface for the description of

the dynamic systems and the software library Ceres for
the solution of the underlying optimization problem. Af-
terwards the whole architecture of the used toolchain is
presented. Finally this toolchain is applied to a real prob-
lem.

2 Mathematical Background
In this contribution it is assumed that the simulation model
of a real plant is described in the following way:

ẋ(t) = f(t,x(t),u(t),p) (1)
y(t,p) = g(t,x(t),p) (2)

x(tstart) = x0 (3)

The dynamic system consists of a set of ordinary differ-
ential equations (1), a set of algebraic equations (2) and
an initial condition (3). The time interval T = [tstart, tend]
is considered. The functions x : T → Rnx , y : T ×Rnp →
Rny , u : T → Rnu denote the states, the outputs and the
inputs, respectively. The vector p ∈Rnp represents the pa-
rameters. Additionally,

f : T ×Rnx ×Rnu ×Rnp → Rnx ,

g : T ×Rnx ×Rnp → Rny ,

nx,nu,np,ny ∈ N.

The input u from the real plant is assumed to be known
exactly over the whole interval, whereas ηηη i denotes the
measured output vector of the real plant at time ti for
i = 1, . . . ,nt . The most obvious approach for parame-
ter estimation is just to minimize some norm ‖·‖q with
q ∈ [1,∞) or q = ∞ of the deviation between the measured
and the simulated outputs by varying the parameters p, i. e.

argmin
p∈Rnp

nt

∑
i=1
‖ηηη i−y(ti,p)‖q

q

or

argmin
p∈Rnp

nt

∑
i=1
‖ηηη i−y(ti,p)‖∞,

respectively. That q = 2 is a reasonable choice is going
to be the result of the following subsections. Therefore a
little bit of probability theory has to be consulted.
Ensuing from (Krengel, 1988) the maximum-likelihood
approach is introduced first. In the next subsection the idea
is used to formulate the underlying optimization problem
which is the foundation of the presented process of param-
eter estimation.

DOI
10.3384/ecp17132313

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

313

2.1 Maximum Likelihood Approach
Let X∈Rn be a random vector with independent and iden-
tically distributed components and concrete realizations
x ∈ Rn of X. Each component Xi has the density func-
tion ν(·|p) = ν(xi|p), which depends on a parameter set
p. It describes the probability of xi given the parameters
p. Since they are independent, the joint density can be
written as

ν(x|p) =
n

∏
i=1

ν(xi|p).

To formulate the optimization problem the likelihood
function L(·|x) = L(p|x) is defined as

L(p|x) := ν(x|p),

which is now a function of the parameters p given the data
x. L(·|x) is not a proper probability density function, since
its integral over all parameters is not necessarily equal to
1. Therefore, it also should not be considered a conditional
probability density function, which might be supposed by
the vertical bar.
Thus, it is obvious to choose the optimization problem

argmax
p∈Rnp

L(p|x)

to get the maximum likelihood estimator pML which
makes the sample data x most likely. In some cases it will
simplify the optimization process if the Log-likelihood
function lnL(p|x) is chosen instead of L(p|x) as will be
seen later. In fact, it does not make a difference whether
choosing L(p|x) or lnL(p|x), since the logarithm is a
monotonic function that does not influence the maximum.

2.2 The Underlying Optimization Problem
Each measured data vector ηηη i at time ti can be expressed
as the real output y(ti,p∗) with the exact but naturally un-
known parameter set p∗ plus a measurement error εεε i, i. e.

ηηη i = y(ti,p∗)+ εεε i. (4)

It is assumed that the measurement errors εεε i are sta-
tistically independent and underly a certain distribution.
The most common assumption is to choose a normal dis-
tributed error vector εεε i with statistically independent com-
ponents, known (diagonal) covariance matrix ΣΣΣi and ex-
pectation E(εεε i) = 0, i. e.

εεε i ∼ N(0,ΣΣΣi) with ΣΣΣi = diag
(
σσσ

2
i,1, . . . ,σσσ

2
i,n
)
. (5)

In an applied sense that means that the measurements ηηη i
do not influence each other and the errors εεε i do not contain
a systematic error.
With these requirements the density function

ν(εεε i, j) =
1√

2πσσσ i, j
exp

(
−

εεε2
i, j

2σσσ2
i, j

)

for each measurement error εεε i, j is obtained. Since the εεε i, j
are statistically independent for all j and for all i, too, it
holds

ν(εεε) =
nt

∏
i=1

ν(εεε i)

=
nt

∏
i=1

ny

∏
j=1

ν(εεε i, j)

=
nt

∏
i=1

ny

∏
j=1

1√
2πσσσ i, j

exp

(
−

nt

∑
k=1

ny

∑
l=1

εεε2
k,l

2σσσ2
k,l

)
, (6)

where εεε =
(
εεε1 . . . εεεn

)
. Because of (4) we also get ηηη i∼

N(y(ti,p∗),ΣΣΣi) and thus

ν(ηηη i, j) =
1√

2πσσσ i, j
exp

(
−
(ηηη i, j−y j(ti,p∗))2

2σσσ2
i, j

)
.

For the same reason as in (6) and with ηηη =
(
ηηη1 . . . ηηηn

)
this leads to the conditional density function

ν(ηηη |p) =
nt

∏
i=1

ny

∏
j=1

1√
2πσσσ i, j

exp

(
−
(ηηη i, j−y j(ti,p))2

2σσσ2
i, j

)
.

The Log-likelihood function is then defined by

lnL(p|ηηη) =−
ntny

2
ln2π−

nt

∑
i=1

ny

∑
j=1

lnσσσ i, j

− 1
2

nt

∑
i=1

ny

∑
j=1

(ηηη i, j−y j(ti,p))2

σσσ2
i, j

.

Since the first and the second term are constant they can
be omitted from the optimization.
Finally, the whole constrained nonlinear optimization
problem can be formulated:

argmin
p∈Rnp

1
2

nt

∑
i=1
‖ΣΣΣ−1

i (ηηη i−y(ti,p))‖2
2 (7a)

subject to

ẋ(t) = f(t,x(t),u(t),p), (7b)
y(t,p) = g(t,x(t),p) (7c)

x(tstart) = x0 (7d)

observing the box constraints

plower ≤ p≤ pupper (7e)

given

u(ti) with ti ∈ [tstart, tend] for i = 1, . . . ,nt

and related measured outputs ηηη i. The result is the parame-
ter set pML which is the most likely for the given measured
output values. It should be noted again that it is impor-
tant for the chosen approach to have measurement errors
following (5). The method is not reasonable for different
distributions, although others can be established.

Parameter Estimation based on FMI

314 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132313

3 Optimization Algorithms
Eliminating the ODE constraints (7b)-(7d) through nu-
merical integration from (7a) yields a common nonlinear
optimization problem. For this kind of problem a cou-
ple of different algorithms for the efficient solution exist.
Some algorithms exploit derivative information and some
do not. The derivative-free optimization algorithms have
the advantage that they obviously do not require deriva-
tives with respect to the varied optimization variables,
which may be costly to compute. Another advantage
is that under certain circumstances global convergence
is achieved, neglecting limited computational time and
rounding errors. In (Gedda et al., 2012) a tool chain for
parameter estimation with FMI and derivative-free meth-
ods already has been presented. Nevertheless, derivative-
free optimization algorithms show very poor convergence
speed.
However, optimization algorithms, which use derivatives
of the objective function, have also distinct advantages.
The main benefit is the fast convergence rate. These meth-
ods compute iteratively starting from an initial guess a de-
scent direction and thus reduce the objective function in
every step until a certain stop criterion is reached. The bet-
ter the initial guess the faster the convergence speed. The
disadvantages of these methods are on the one hand that
the problem has to be sufficiently smooth and that deriva-
tives have to be computed and on the other hand that these
methods may get stuck in a local minimum, if the initial
guess is too bad. The last disadvantage can be overcome
with multi start-ups, i.e. run several optimization from dif-
ferent initial guesses (see (Raue et al., 2013) for more in-
formation). For the purposes of this contribution, whereas
existing models from the sizing should be reused, good
initial guesses are known, because rough parameter sets
are already needed for correct dimensioning. Thus stuck-
ing in local minimum is not a problem at all. The consid-
ered models are also sufficiently smooth with respect to
the parameters. Also in (Raue et al., 2013) a benchmark of
different algorithms was conducted to an estimation prob-
lem from systems biology, demonstrating the slow con-
vergence speed of derivative-free optimization algorithms
compared to the ones which rely on derivatives. Since
good initial guesses are known and the fast convergence
speed the demonstrated toolchain is based on derivative
based optimization algorithms.

3.1 Levenberg-Marquardt Algorithm
The investigated optimization problem (7a) has a special
structure. It is a nonlinear least squares problem. This
kind of problem is widely spread in scientific and engi-
neering areas. Thus structure exploiting optimization al-
gorithms have been developed, which solve this problems
efficiently. The Levenberg-Marquardt algorithm is one of
these algorithms and is used within this contribution. It
can be seen as a conjunction of the Gauss-Newton method
together with the idea of Trust-Region approaches.

To give a short overview (Björck, 1996), some abbrevia-
tions are introduced first:

hi(p) := ΣΣΣ
−1
i (ηηη i−y(ti,p))

H(p) :=
nt

∑
i=1
‖ΣΣΣ−1

i (ηηη i−y(ti,p)‖2
2

y′i(p) :=
∂y(ti,p)

∂p

Therein denotes y′i the Jacobian matrix of y at time ti with
respect to p. The Gauss-Newton method solves the lin-
earized least squares problem

argmin
∆p∈Rnp

1
2

nt

∑
i=1
‖ΣΣΣ−1

i (hi(pk)−y′i(pk)∆pk)‖2
2

in each iteration step k to get a new approximation

pk+1 = pk +∆pk

of the exact parameter set p∗.
It is the idea of the Levenberg-Marquardt algorithm to add
a regularization term to the linearized objective function,

argmin
∆p∈Rnp

1
2

nt

∑
i=1
‖ΣΣΣ−1

i (hi(pk)−y′i(pk)∆pk)‖2
2 +

λk

2
‖∆pk‖2

2.

With the regularization the problem has always a solution
even with rank deficient Jacobians y′i. The parameter λk
also controls the step length ‖∆pk‖2 as well as the direc-
tion ∆pk. It can be observed (Marquardt, 1963) that for a
large λk the direction is almost a gradient step with only
small step size, whereas a small λk leads to a direction
close to a Gauss-Newton step. Therefore it is reasonable
to choose a small λk near the actual minimum where the
linearized problem is a rather good approximation. Hence,
choosing λk is a significant task in each iteration to reach a
preferably fast convergence rate. There are different ways
to update the parameter λk. A central role plays the ratio
between actual reduction and (by the linearized problem)
predicted reduction

ψk(∆pk) =
H(pk)−H(pk +∆pk)

H(pk)−∑
nt
i=1‖ΣΣΣ

−1
i (hi(pk)−y′i(pk)∆pk)‖2

2
,

whose value decides whether pk will be updated or not and
how λk will be changed.

4 Functional Mock-up Interface
The Functional Mock-up Interface (FMI) is a tool inde-
pendent standard to support model exchange between dif-
ferent simulation environments (Blochwitz et al., 2011). A
model which is shared via FMI is referred to as Functional
Mock-up Unit (FMU). An FMU consists of a XML-File,
describing the whole model variables and parameters, and
a compiled library containing the model equations and ad-
ditionally required functions, i.e. functions for initializa-
tion or data exchange. The models are described as hybrid

Session 6: Poster Session

DOI
10.3384/ecp17132313

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

315

ODEs supporting state and time events. The FMI stan-
dard supports two modes to share these models. On the
one hand there is Model Exchange, whose models are de-
scribed in a form similar to the equations 1 and 2, and on
the other hand the Co-Simulation mode, which delivers
the FMU additionally with its own integrated ODE solver.
In this contribution the Co-Simulation mode is used due
to the fact that no extra ODE solver is required for simu-
lating an FMU. The models considered in the estimation
procedure are built up in a simulation environment and
exported as FMU. In 7.2 an example is described. For the
optimization derivatives with respect to the parameters are
required. With the actual standard 2.0 of the FMI, only
derivatives with respect to inputs and states are supported
(Blochwitz et al., 2012). Hence finite differences are used.
As far as the authors know, parameter sensitivities are cur-
rently considered by the FMI steering committee.

5 Ceres Solver
For the solution of the nonlinear least squares problem
(7a), (7e) the Ceres Solver (Agarwal et al.) is utilized.
The Ceres Solver is an open source C++ library for solv-
ing large optimization problems. Beneath general uncon-
strained optimization problems it was developed to solve
nonlinear least squares problems with bound constraints.
There are several reasons why the Ceres Solver was cho-
sen. The solver is published under the New BSD license,
so there are almost no license restrictions for commercial
use. In addtion to the Levenberg-Marquardt Algorithm 3.1
this software library is equipped with other state of the art
algorithms and has reached a certain maturity since it is
used in commercial applications for more than four years
and still has an active community.
Furthermore the library is developed in C++ and has al-
ready been migrated to Android and iOS. Hence an mi-
gration to Bosch Rexroth embedded systems should be
possible with little effort. Ceres can compute the required
derivatives of the objective function by finite differences
or the user can provide them. Because the actual FMI
version is not supporting parameter derivatives, they are
computed by Ceres via finite differences. With upcom-
ing features of the next FMI version, this can be easily
adapted. Ceres is one of the few libraries which is also
capable to derive covariance estimations for the solution.
Hence, confidence intervals for the computed parameters
can be computed directly.
Within Ceres a problem class needs to be implemented
which corresponds to the desired residual function (7a).
The model to be investigated and the measured data have
to be provided therefor. An additional class method han-
dles possible solver options and is responsible for the ac-
tual optimization.

6 Structure of the Tool Chain
Figure 1 shows the structure of the parameter estimation
toolchain. The stimulation of the real plant and the real

Figure 1. Structure of parameter estimation toolchain

measured outputs have to be provided as CSV-file. The
whole estimating procedure is configured by a configura-
tion file. In this file the desired model, the parameters to
estimate and the paths of the CSV-files are denoted. Also
an initial guess and the variances for each measurement
noise have to be stated. Additionally, upper and lower
bounds for the parameters can be specified. Within Ceres
a problem class was defined which takes the configuration
file and manages the whole parameter estimation proce-
dure. This problem class directly interfaces the FMU. No
additional library for calling the FMU functions is used.
An evaluation of the residual function implies a simula-
tion of the FMU. In every step the inputs are written to
the FMU. Thereafter, the residual function is built up by
comparing the measured outputs with the outputs of the
FMU. Hence the whole simulation is triggered by Ceres.
The derivatives of the residual function with respect to the
parameters are computed directly by Ceres via finite dif-
ferences which corresponds to multiple simulation runs.
Ceres then conducts the chosen optimization algorithm by
varying the parameters. Subsequently, an a posteriori eval-
uation of the covariance matrix of the estimated parame-
ters can be conducted. Out of this matrix confidence inter-
vals for each parameters can be derived directly. For the
import of the FMU into Ceres an own light weight frame-
work was implemented.

7 Application of the Tool Chain
In this section the capability of the toolchain is demon-
strated on a Delta Robot. This type of robot was devel-
oped in the 1980s (Clavel, 1988) and is widely used for
pick and place applications. It is built up out of parallel
bars and has 3 degrees of freedom for translational manip-
ulation and one for manipulating the orientation. Hence it
has to be driven by 4 motors. Since the robot should move
as fast as possible, knowing the exact dynamic behavior is
advantageous, i. e. an accurate model can be exploited for
feedforward control in order to enhance the dynamic be-
havior. The dynamic of the robot is mainly influenced by
frictional effects and mass parameters. The mass parame-
ters underly a certain manufacturing tolerance and the fric-
tion is hard to be known beforehand. Therefore, estimat-
ing these parameters is a good use case for the toolchain.

Parameter Estimation based on FMI

316 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132313

7.1 Real Set-up of the Robot

Figure 2. Real delta robot

Figure 2 shows the investigated robot. The kinematic
is manufactured by Autonox24 and is driven by 4 Rexroth
synchronous motors. Three MSK040B-0600 for the trans-
lational movement and one MS2N03-B0BYN for the ori-
entation axis are used. The movement of the robot is con-
trolled by a Rexroth IndraControl VPB 40.3 industrial PC.
No special trajectories were considered. The robot just ex-
ecutes a usual pick and place cycle and the motor torque is
measured via actual motor current. Through the recorded
motor torques the parameters of the robot should be iden-
tified. Since the dynamics of the orientation axis is well
known, no measurements for this axis have been taken into
account.

7.2 Delta Robot Model
The physical model of the robot was built up in the mod-
eling language Modelica using Dymola. The mechanical
model consists of Modelica Standard Library (MSL) com-
ponents. Mainly joints and body components from the
multi body library are used.

7.3 Real Set-up of the Robot
Figure 3 shows the animation of the MSL components
within Dymola. All parallel bars were considered. No
simplifications of the mechanical structure were made.
Additionally the drive train of each axis was modeled in
the way that motor and gear inertia, gear efficiency and
Coloumb and viscous friction are considered. Therefore
own Modelica components were added to standard rota-
tional mechanics components. As input of the model the
position, velocity and acceleration of each axis were used.
The resulting motor torques were declared as output. It
is assumed that the inertia and friction properties of all 3

Figure 3. Animation of the multi body model

considered axes are equal. Hence, the following parame-
ters should be identified:

• Mass of lower arm

• Mass of upper arm

• Mass of base plate

• Motor and gear inertia

• Gear efficiency

• Parameter for Coloumb friction

• Parameter for viscous friction

The model was exported as an FMU 2.0 for Co-Simulation
containing the CVODE solver (Hindmarsh et al., 2005).

7.4 Estimation of Parameters
For the measurement the robot moves the usual pick and
place cycle at four different speeds. 6250 time points were
considered. The complete cycle lasts 62.278 seconds. For
each of the three axes the position, velocity, acceleration
and torque were recorded. For the identification procedure
Ceres compares the measured motor torque with the one
resulting from the FMU.
Table 1 shows the results of the parameter estimation pro-
cedure. The residual of the objective function (7a) was
reduced significantly from 2.12×106 to 1.25×106. The
computed parameter sets especially the friction and gear
efficiency parameter seem reasonable. Also the computed
confidence intervals, i. e. the intervals in which the real
parameters are located with a probability of β = 0.95, im-
ply that the computed estimations are reliable. Unfortu-
nately it is not possible to validate the estimation results
by scaling the components, because the robot cannot be
disassambled.

Session 6: Poster Session

DOI
10.3384/ecp17132313

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

317

Parameter Unit Initial Value Estimated Value Confidence Interval β = 0.95

Mass of lower arm [kg] 0.1 0.08 ±0.00350
Mass of upper arm [kg] 1.5 1.74 ±0.0211
Mass of base plate [kg] 0.87 1.1 ±0.0212
Motor and gear inertia [kgm2] 0.000144 0.000155 ±2.65×10−6

Gear Efficiency [1] 1.0 0.907 ±0.0136
Coloumb Friction [Nm] 0.12 0.105 ±0.00158
Viscous Friction [Nmsrad−1] 0.001 0.00128 ±1.92×10−5

Table 1. Parameter estimation results

Figure 4. Results for arm 1

Figure 5. Results for arm 2

Figure 4 to 6 show a section of the results for each axes.
With the estimated parameters the accuracy of the model
has been improved significantly.

8 Summary and Outlook
A tool chain for parameter estimation with a state of the art
Open Source software library and the Functional Mock-
up has been presented. The capabilities of this tool chain
were demonstrated on a real industrial robot. The results
are very promising such that this approach should be pur-
sued. On the one hand a migration of the whole tool chain
to embedded systems seems meaningful. For example the
estimation procedure can be used for auto calibration of
feedforward controllers using inverse models.
On the other hand with Industry 4.0 and the Internet
of Things new use cases occur. The intelligent plants
equipped with sensors record all their data. With these

Figure 6. Results for arm 3

measurements and the presented tool chain parameter es-
timations could be conducted automatically. Upon these
well known parameters and accurate models new smart
services for diagnosis or control purposes can be enabled.

References
Sameer Agarwal, Keir Mierle, et al. Ceres solver. http://
ceres-solver.org.

Åke Björck. Numerical methods for least squares problems.
SIAM, 1996.

Torsten Blochwitz, Martin Otter, Martin Arnold, Constanze
Bausch, H Elmqvist, A Junghanns, J Mauß, M Monteiro,
T Neidhold, D Neumerkel, et al. The functional mockup
interface for tool independent exchange of simulation mod-
els. In Proceedings of the 8th International Modelica Con-
ference; March 20th-22nd; Technical Univeristy; Dresden;
Germany, number 063, pages 105–114. Linköping University
Electronic Press, 2011.

Torsten Blochwitz, Martin Otter, Johan Akesson, Martin Arnold,
Christoph Clauss, Hilding Elmqvist, Markus Friedrich, An-
dreas Junghanns, Jakob Mauss, Dietmar Neumerkel, et al.
Functional mockup interface 2.0: The standard for tool in-
dependent exchange of simulation models. In Proceedings
of the 9th International MODELICA Conference; September
3-5; 2012; Munich; Germany, number 076, pages 173–184.
Linköping University Electronic Press, 2012.

Reymond Clavel. A fast robot with parallel geometry. In Proc.
Int. Symposium on Industrial Robots, pages 91–100, 1988.

Parameter Estimation based on FMI

318 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132313

Sofia Gedda, Christian Andersson, Johan Åkesson, and Ste-
fan Diehl. Derivative-free parameter optimization of func-
tional mock-up units. In Proceedings of the 9th Interna-
tional MODELICA Conference; September 3-5; 2012; Mu-
nich; Germany, number 076, pages 819–828. Linköping Uni-
versity Electronic Press, 2012.

Alan C Hindmarsh, Peter N Brown, Keith E Grant, Steven L
Lee, Radu Serban, Dan E Shumaker, and Carol S Woodward.
Sundials: Suite of nonlinear and differential/algebraic equa-
tion solvers. ACM Transactions on Mathematical Software
(TOMS), 31(3):363–396, 2005.

Ulrich Krengel. Einführung in die Wahrscheinlichkeitstheorie
und Statistik, volume 8. Springer, 1988.

Donald W Marquardt. An algorithm for least-squares estimation
of nonlinear parameters. Journal of the society for Industrial
and Applied Mathematics, 11(2):431–441, 1963.

A. Raue, M. Schilling, J. Bachmann, A. Matteson, M. Schelke,
D. Kaschek, S. Hug, C. Kreutz, B. D. Harms, F. J. Theis,
U. Klingmüller, and J. Timmer. Lessons learned from quan-
titative dynamical modeling in systems biology. PLoS ONE,
8(9):e74335, Sept. 2013. doi:10.1371/journal.pone.0074335.

Session 6: Poster Session

DOI
10.3384/ecp17132313

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

319

320 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Generic FMI-compliant Simulation Tool Coupling

Edmund Widl1 Wolfgang Müller2

1Center for Energy, AIT Austrian Institute of Technology, Austria, edmund.widl@ait.ac.at
2Institute of Analysis and Scientific Computing, TU Wien, Austria, wolfgang.mueller@student.tuwien.ac.at

Abstract
The Functional Mock-up Interface (FMI) specification pro-
vides a simple yet effective definition for co-simulation
APIs. Even though the number of simulation tools sup-
porting the export of Functional Mock-up Units (FMU) is
growing steadily, there is a considerable number of well-
established tools that do not. This paper addresses this
issue by introducing a generic and adaptable way of cou-
pling established simulation tools in an FMI-compliant
manner. The proposed concept has been implemented as
part of the FMI++ library, which is used as basis for FMI-
compliant wrappers for the TRNSYS simulation tool and
the MATLAB environment. These examples demonstrate
the potential of the proposed approach to include well-
established simulation tools with minimal effort. This not
only enables researchers and engineers to include a diverse
range of tools more easily into their work flow, but is also
an incentive for tool developers to provide FMI-compliant
wrappers.

Keywords: FMI for Co-Simulation, tool coupling, front-
end/back-end concept, TRNSYS, MATLAB

1 Introduction
The list of simulation tools offering FMI (Blochwitz et al.,
2011) support is rapidly growing1, demonstrating the fea-
sibility of the approach and underlining the importance of
such a specification for Co-Simulation (CS) and Model
Exchange (ME). However, many established simulation
tools do not yet offer APIs for co-simulation, let alone one
that follows the FMI specifications. This paper explores
a generic approach that facilitates the integration of FMU
CS export functionalities for such tools.

The proposed approach uses a front-end that is exposed
to the master algorithm as FMI component, and an appropri-
ately linked back-end that is used by the slave application.
Due to its design this approach can not only be used by
tool developers who have access to the (possibly closed)
source code of the core application but also by users who
have only limited access to or knowledge of the underlying
application layers. The only requirement is the possibility
for users to provide custom objects based on C/C++ code
(or languages with adequate bindings to C/C++) that can
be embedded within and exchange data with the simulation
environment.

1See https://fmi-standard.org/tools/.

2 The FMI-compliant front-end/back-
end concept

The basic concept comprises two components: The front-
end component to be used by the simulation master and the
back-end component to be used by the slave application.
Between these two components a proper data management
has to be established that is responsible for the communi-
cation and data exchange between both ends. The corre-
sponding interfaces are tailored to suit the requirements of
the FMI specification. They implement the necessary func-
tionality required for a master-slave concept, i.e., synchro-
nization mechanisms and exchange of data. See Figure 1
for a schematic view of this concept.

2.1 Front-end component
The front-end component is the actual gateway for a master
algorithm to communicate and exchange data with an ex-
ternal simulation application. Its interface (see Figure 2) is
designed such that it can be easily used as an FMI compo-
nent (FMI model type fmiComponent), implementing
functionalities close to the requirements of the FMI speci-
fication, for instance functions initializeSlave(...),
doStep(...)or setReal(...). The front-end is responsi-
ble for the following tasks:

2.1.1 Information retrieval

The front-end component parses the FMI model descrip-
tion and stores the relevant information. This includes
general simulator attributes (e.g., executable name, event
handling capabilities) as well as specific model informa-
tion (e.g., simulator-specific input files, variable names and
types, input/output relations).

2.1.2 Variable initialization

Once the model description information is retrieved, the
memory for the variables has to be allocated. This is done
with the help of the dedicated data management (see Sec-
tion 2.3 below).

2.1.3 Variable handling

The front-end has to manage the mapping between the
model specific variable names and the associated value
references according to the FMI specification. The latter
are used to refer to and access the variables through the FMI
API. In addition, the front-end has to ensure during runtime
that variables are accessed properly, e.g., prohibiting write
requests for output variables.

DOI
10.3384/ecp17132321

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

321

F
M

I m
as

te
r

al
g

o
ri

th
m

FMU

ex
te

rn
a

l s
im

u
la

ti
o

n
 t

o
o

l

FMI adapter

front-end back-end
data

manager

FMU

FMU

FMU

Figure 1. Schematics of the FMU CS export using the front-end/back-end concept: A simulation tool couples via an internal
component to the back-end. The co-simulation master algorithm uses an instance of the front-end as FMI component. Synchronization
and data exchange between the two ends is handled via a dedicated data manager.

Figure 2. UML diagram of the most important features of the
front-end and back-end components and the classes responsible
for their data management (via shared memory in this specific
case). The function arguments are not shown due to space con-
straints.

2.1.4 Application handling

The front-end is responsible for starting the external simu-
lation application. It also has to establish a synchronized
communication and data exchange, which is again done
with the help of the dedicated data management (see Sec-
tion 2.3 below)

2.2 Back-end component and FMI adapter
The back-end component functions as counterpart to the
front-end component and is intended to be incorporated
within the slave application as part of a dedicated simu-

lation component, referred to as the FMI adapter (see
Figure 1). The back-end interface is designed to make the
connection with the front-end as simple as possible, focus-
ing on synchronization and data exchange (see Figure 2).
The adapter has to carry out the following tasks with the
help of the back-end:

2.2.1 Information retrieval

The adapter has to be a part of the model that is loaded in
the external simulator. As such is has to be able to retrieve
and store information about the model it is embedded in
at run-time, most importantly the names and types of the
inputs and outputs that should be shared within the co-
simulation.

2.2.2 Establishing the data exchange

Once the names and types of all inputs and outputs are
known, the adapter has to connect to the front-end and
establish the synchronized data exchange. This is done
with the help of the back-end component, which retrieves
pointers to automatically synchronized variables via the
dedicated data management (see Section 2.3 below).

2.2.3 Data exchange during simulation

The adapter has to be designed such that it knows at which
points of the simulation is has to send/receive data to/from
the front-end. Using the previously retrieved pointers it can
read/write data with the help of the back-end component.

2.3 Data management
The data manager is the crucial link between the front-
end and the back-end and handles all issues regarding
Inter-Process Communication (IPC). It is split in two in-
stances (see Figure 2), implementing the purely abstract
interface definitions provided by IPCMaster and IPC-
Slave, which are intended to be used by the front-end
and the back-end, respectively.

2.3.1 Data handling

Both interfaces are primarily designed for handling FMI
scalar variables (XML type fmiScalarVariable),

Generic FMI-compliant Simulation Tool Coupling

322 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132321

Listing 1. Implementation of function fmiDoStep(...) according to the FMI 1.0 specification.

1 f m i S t a t u s fmiDoStep (fmiComponent c , fmiRea l c u r r e n t C o m m u n i c a t i o n P o i n t ,
2 fmiRea l c o m m u n i c a t i o n S t e p S i z e , fmiBoolean newStep)
3 {
4 FMIComponentFrontEnd∗ f e = s t a t i c _ c a s t <FMIComponentFrontEnd ∗>(c) ;
5
6 re turn fe−> doStep (c u r r e n t C o m m u n i c a t i o n P o i n t , c o m m u n i c a t i o n S t e p S i z e , newStep) ;
7 }

i.e., variables that are associated not only to a value rep-
resented by a basic data type (e.g., fmiReal) but also
to model-related attributes (e.g., name, value reference or
causality). The corresponding functionality is provided via
createScalars(...) and retrieveScalars(...).

In addition, the data manager allows to handle and
access data with functions createVariable(...) and
retrieveVariable(...) for internal communication
between both ends (e.g., size of next time step, boolean
flag for rejecting the next step).

2.3.2 Synchronization

Since the data exchange between both ends has to be syn-
chronized, the data manager is not only responsible for
allocating memory. It also has to have a way to control
the access to the data, in order to prevent non-deterministic
behavior.

This is realized via the functions waitForSlave()
and signalToSlave() for the front-end and the func-
tions waitForMaster() and signalToMaster()
for the back-end. In both cases, variables that were in-
stantiated via the data manager should not be read or writ-
ten unless the blocking functions waitForSlave() or
waitForMaster() return. Likewise, once a component
is done reading or writing data, it is required to signal
this via signalToSlave() or signalToMaster(),
respectively, and wait again.

2.3.3 Flexibility

The abstract interfaces IPCMaster and IPCSlave have
been designed such that the actual data transfer and syn-
chronization can be achieved in various ways. For instance,
shared memory access or communication via local or net-
work sockets is feasible. In principle, this mechanism could
even be used to build web applications.

3 Implementation
The above concept has been implemented for the FMI CS
specification version 1.0 and version 2.0 as part of the
FMI++ library2. The FMI++ library is an open-source
software toolbox written in C++ that provides high-level
functionality for handling FMUs. As such it intends to
bridge the gap between the basic FMI specification and
typical requirements of simulation tools. While some of

2Available at http://fmipp.sourceforge.net/.

the functionality offered by the FMI++ library for import-
ing FMUs is comparable to what it is available in other
software libraries (such as the FMU SDK3 or the FMI Li-
brary4), the implementation of the concept for generic tool
coupling as explained above is unique.

A data manager has been implemented that uses shared
memory access to share data, including semaphores for the
synchronization of both ends, relying on features provided
by the Boost5 library collection. In this case, both ends
of the data management can physically access the same
data. If the co-simulation master and the external appli-
cation were executed on different machines (distributed
simulation environment) both ends would have to allocate
their own memory and keep their contents synchronized,
e.g., by means of the Message Passing Interface (MPI Fo-
rum, 2009).

The implementation of the front-end, the back-end and
the data management are generic, i.e., it is independent of
the external application. FMI adapter implementations ob-
viously depend strongly on the designated application, even
though reasonably sophisticated simulation environments
should offer the possibility to design it model-independent.
Bindings for the generic back-end implementation to FMI
adapters in other languages than C/C++ can be automatedly
created with the help of the SWIG tool (Beazley, 2003).

In addition, a thin layer implementing all functions ac-
cording to the FMI specification is needed, which calls the
corresponding front-end component functions, see lines 4
and 5 of the code snippet in Listing 1 for an example. Since
version 1.0 of the FMI specification defines the model name
(FMI model description attribute modelIdentifier)
as a prefix to all functions in the final shared library, this
thin layer has to be recompiled for each individual exported
model. However, this does not require any changes in the
source code, as the actual functionality remains unaltered.

4 Examples
The concept explained above is very flexible and can be
used within a broad context of applications. For developing
an FMI adapter, only three requirements need to be satisfied
by any tool:

3Available at http://www.qtronic.de/en/fmusdk.html.
4Available at http://www.fmi-library.org/.
5Available at http://www.boost.org/.

Session 6: Poster Session

DOI
10.3384/ecp17132321

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

323

• Modularity: The targeted tool has to offer a mecha-
nism for including user-defined code (including the
possibility to access memory), in order to define an
FMI adapter.

• Execution control: User-defined code has to be able to
impact the tool’s execution. This can be achieved ei-
ther actively (e.g., by accessing methods that directly
control the execution) or passively (e.g., by halting
the execution through a blocking function).

• Language compatibility: The language of the user-
defined code has to be compatible or have bindings to
an existing front-end/back-end implementation.

In the following, this is demonstrated for two distinct tools.

4.1 TRNSYS FMI adapter
4.1.1 Implementation

TRNSYS (Klein et al., 1976) is a popular and well estab-
lished thermal building and system simulation environment
that comes with a validated components library. It uses
instances of so-called types to model the individual com-
ponents of a building or a system. Unfortunately, it does
not provide an API that allows to use it as a slave appli-
cation within a co-simulation. However, TRNSYS fulfills
all the prerequisites to use the above discussed concept to
implement an FMI adapter that overcomes this limitation:

• Modularity: In addition to providing a rich library
of validated types, TRNSYS also offers the possibil-
ity to include user-defined types. Since TRNSYS is
based on Fortran, these types are not object-oriented
components in a strict sense but follow a sufficiently
similar design pattern based on specialized function
calls.6

• Execution control: The overall simulation execution
is steered by the TRNSYS core, which calls the indi-
vidual instances of the types included within a model.
During these calls the instances are told at which stage
the simulation currently is, especially whether it is the
initialization phase, a standard call during a time step
or the last call of a time step. This information can be
used by TRNSYS types to take actions accordingly.

• Language compatibility: Due to the TRNSYS simu-
lation core being implemented in Fortran, user-
defined types can be implemented using C/C++. Even
though the ability of Fortran programs to call com-
piled C/C++ functions is limited, for the task at hand
all conditions are met to establish sufficient interoper-
ability.

6 Basically, every TRNSYS type is implemented as a function. Indi-
vidual simulation components based on the same type are handled via the
same function call, using a unique ID and appropriate memory storage
utilities that allow to differentiate between the instances.

Figure 3. Schematic view of the functionality of the TRNSYS
FMI adapter type in dependence on the simulation step.

Figure 4. Example of a simple TRNSYS model containing
blocks of Type6139 for FMU export.

Therefore the implementation of the front-end and back-
end concept discussed in Section 3 can be used to de-
velop a TRNSYS type that acts as FMI adapter. Fig-
ure 3 depicts the internal use of the back-end component
within this type and its interaction with the simulation mas-
ter. Please note that inputs to the TRNSYS FMI adapter
type are the FMU’s outputs and vice versa. Due to the
strict fixed step size simulation paradigm of TRNSYS the
adapter enforces time steps accordingly using the back-
end component’s enforceTimeStep(...) function. The
front-end handles this information accordingly and rejects
calls of doStep(...) in case they do not conform. The
model description flag canHandleVariableCommu-
nicationStepSize is set accordingly.

This FMI adapter has been implemented on top of the
FMI++ library and is available online7. The provided FMI
adapter – referred to as Type6139 – can be included within
a TRNSYS model like any other type, with ordinary inputs
and outputs coming from and going to other types. In
addition, the names of the input and output variables have
to be provided (as part of the Special Cards in the type’s
Proforma) according to the definition that is also used in
the model description. Apart from the additional input and
output block of this type, TRNSYS models are constructed
in the usual way. Given such a model, an FMU can be
generated with the help of a dedicated Python script.

4.1.2 Example application

The example uses a simple thermal model from TRNSYS
(see Figure 4) that implements the following first order

7Available at http://trnsys-fmu.sourceforge.net/.

Generic FMI-compliant Simulation Tool Coupling

324 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132321

tRNSYS_Room_Plant_fmu

FMI 1.0 CS Import

const

k=21.0

addadd

+
-1

+1

hysteresis

-0.5 0.5

booleanToReal

B
R

Figure 5. Dymola model.

0 2 4 6 8 10 12
20.2

20.4

20.6

20.8

21.0

21.2

21.4

21.6

simulation time in h

Figure 6. Example TRNSYS FMU output.

ODE:

Ṫroom =

{
−Qloss if heater is off,
Qheater −Qloss if heater is on.

(1)

Troom is the room air temperature, Qloss the difference be-
tween losses to the environment and inner loads, and Qheater
is the power of the heating unit. Both Qloss and Qheater are
normalized w.r.t. the thermal capacity of the room air. The
model was exported as an FMU with one input variable
(associated to the on/off signal of the heater, called con-
trol_signal) and one output variable (associated to
the room temperature, called room_temperature).

To test its functionality, the FMU was used as a
plant model in a simple closed-loop control system im-
plemented in Dymola, see Figure 5. Depending on
the room temperature provided by FMU output variable
room_temperature, the controller turns the room’s
heating on or off by setting the FMU input variable con-
trol_signal to either 0 or 1. More precisely, the model
implements a hysteresis controller that turns the heater on
as soon as the room temperature falls below 20.5 ◦C and
turns it off when it exceeds 21.5◦C.

Figure 6 shows the results of the simulated Dymola
model. Depicted is the room temperature as computed by
TRNSYS, which is kept within 21.0 ◦C ± 0.5 ◦C by the
Dymola controller. Due to the fixed simulation step size
of 15 minutes, the switching of the controller state does

not happen at the exact edges of the controller’s dead-band
(i.e., at 20.5 ◦C and 21.5 ◦C). Please be aware that this is
not a shortcoming of the FMU itself, but due to TRNSYS’s
restriction to fixed simulation time steps. Such simulation
artifacts are unavoidable in fixed-step co-simulation and
have to be taken into account by the modeler (e.g., by
choosing an adequate simulation step size).

4.2 MATLAB FMI adapter
4.2.1 Implementation
Despite the popularity and widespread use of the numerical
computing environment MATLAB, there is so far only com-
parably little support within the context of FMI. The Mode-
lon FMI Toolbox8 and the FMI Kit for Simulink9 offer the
export of Simulink models as FMUs for Model Exchange,
but so far there is no tool available that allows to provide
MATLAB’s full functionality via an FMI-compliant co-
simulation interface. In the following, a description is
given of how the proposed front-end/back-end concept can
be utilized to solve this issue.

• Modularity: Since MATLAB is a multi-purpose,
multi-paradigm computing and programming envi-
ronment, there are potentially many possible ways
to implement an FMI adapter. Within the context of
this work, an object-oriented approach has been cho-
sen that relies on a base class called FMIAdapter,
which provides the full functionality of the FMI
adapter. In order to utilize its functionality, the ab-
stract methods init(...) and doStep(...) have to
be implemented by a derived class.

• Execution control: In contrast to Simulink, MATLAB
defines itself no general notion of time. With the pro-
posed concept, calls to the FMU’s doStep(...) func-
tion are associated to a call to method doStep(...)
of class FMIAdapter (or rather the class derived
from it). For such a function call, the current com-
munication point and communication step size are
provided as input arguments.

• Language compatibility: MATLAB provides many
ways for interfacing. Within the context of this work,
the SWIG tool has been used to create S-Function
bindings to a generic back-end implementation in
C++ that can be called from within MATLAB. Even
though these bindings can be used directly from MAT-
LAB scripts, it is recommended to utilize their func-
tionality through class FMIAdapter.

The MATLAB FMI adapter has been implemented on
top of the FMI++ library (for Windows with 32-bit MAT-
LAB) and is available online10. As mentioned above, it
requires to implement the abstract methods init(...) and

8Available at http://www.modelon.com/.
9Available at http://www.3ds.com/.

10Available at http://matlab-fmu.sourceforge.net/.

Session 6: Poster Session

DOI
10.3384/ecp17132321

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

325

Listing 2. MATLAB implementation of the FMI adapter for a simple on/off controller.

1 c l a s s d e f S i m p l e C o n t r o l l e r < f m i p p u t i l s . F M I A d a p t e r
2
3 methods
4
5 f u n c t i o n i n i t (o b j , c u r r e n t C o m m u n i c a t i o n P o i n t)
6 o b j . d e f i n e R e a l I n p u t s ({ ’T ’ }) ;
7 o b j . d e f i n e R e a l O u t p u t s ({ ’ P h e a t ’ }) ;
8 end
9

10 f u n c t i o n doStep (o b j , c u r r e n t C o m m u n i c a t i o n P o i n t , c o m m u n i c a t i o n S t e p S i z e)
11 r e a l I n p u t V a l u e s = o b j . g e t R e a l I n p u t V a l u e s () ;
12 T = r e a l I n p u t V a l u e s (1) ;
13 i f (T >= 90)
14 o b j . s e t R e a l O u t p u t V a l u e s (0) ;
15 e l s e i f (T <= 80)
16 o b j . s e t R e a l O u t p u t V a l u e s (1 e3) ;
17 end
18 end
19
20 end
21
22 end

heatCapacitor

de
gC

prescribedHeatFlow

testController_fmu

FMI 1.0 CS Import

fixedHeatFlow

Figure 7. Example Modelica thermal system model.

doStep(...) of class FMIAdapter with the help of an
inherited class, see for instance the example code in List-
ing 2.

Method init(...) is intended to initialize input and
output variables needed for co-simulation. For instance,
input and output variables of type fmiReal can be initial-
ized with the help of methods defineRealInputs(...)
and defineRealOutputs(...), whose input arguments
are cell arrays containing the associated variable names.
Method doStep(...) is called at every simulation step
(as requested by the master algorithm). During such a
call, methods getRealInputValues() and setRe-
alOutputValues(...) can be used to get input and set
output values for instance.

Since the init(...) and doStep(...) methods may
contain any MATLAB-compliant code, virtually any MAT-

th
er

m
al

 m
as

s
te

m
pe

ra
tu

re
 in

 °
C

0 2 4 6 8 10 12

80

82

84

86

88

90

simulation time in h

Figure 8. Example Dymola output.

LAB functionality can be made available with the help of
this concept. In order to create an FMU from such an imple-
mentation, the dedicated script createFMU.m has to be
called from within MATLAB. Its inputs arguments are only
the intended FMI model identifier of the FMU and the path
to the class file implementing the FMI adapter. Additional
MATLAB files may also be specified, e.g., containing data
or further function definitions.

It is also noteworthy that an FMI adapter’s functional-
ity can be tested and debugged directly from within MAT-
LAB. Unless explicitly activated, instances of FMI adapters
do not try to connect to a back-end component. In this
state, the input (output) variables defined by calling the
init(...)method can be set before (read after) a call to
the doStep(...)method from within MATLAB with a set
of dedicated methods.

Generic FMI-compliant Simulation Tool Coupling

326 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132321

4.2.2 Example application
This example uses a simple on/off controller implemented
in MATLAB, to control a thermal system implemented
in Modelica. The Modelica model consists of a thermal
mass that is connected to a constant negative heat flow
(heat sink) and a heater, see Figure 7. The underlying equa-
tions of this model are analogous to the previous example,
cf. Equation 1. The temperature of the thermal mass is sent
as input to the controller, which can set the heater’s power
output. The MATLAB implementation of the controller
is shown in Listing 2. Method init(...)defines in line 6
an input variable called T, associated to the temperature of
the thermal mass, and in line 7 an output variable called
Pheat, which controls the heater’s power output. Method
doStep(...) retrieves the value of previously defined in-
put variable (lines 11 and 12) and sets the values of the
previously defined output variables according to its simple
internal logic (lines 14 and 16, respectively).

To test its functionality, the MATLAB controller was
exported as FMU and imported into the Modelica model.
Figure 8 shows the simulation results. Shown is the temper-
ature of the thermal mass as computed by Dymola, which
is kept within the range specified by the controller imple-
mentation.

5 Conclusion and Outlook
This work presented a generic approach for FMI-compliant
tool coupling for a broad spectrum of tools. The approach
is based on the concept of a generic front-end and back-
end, with the front-end being directly accessed by a master
algorithm as an FMI component. The back-end, which
is synchronized to the front-end via a data manager, is
associated to the coupled tool. The tool itself interacts with
the back-end via a dedicated FMI adapter.

The proposed concept has been implemented as part
of the FMI++ library according to the Functional Mock-
up Interface version 1.0 specification and adapted to two

distinct tools, TRNSYS and MATLAB. In both examples
the same front-end, data manager and back-end have been
used, with customized FMI adapters to meet the require-
ments of the specific tools. With the help of two simple
co-simulation setups the functionality of both approaches
has been shown.

Future work will comprise the extension of the FMI++
implementation to support optional functionality, e.g., han-
dling of input derivatives.

Acknowledgments
Part of this work emerged from the Annex 60 project, an
international project conducted under the umbrella of the
International Energy Agency (IEA) within the Energy in
Buildings and Communities (EBC) Programme. Annex 60
develops and demonstrates a new generation of computa-
tional tools for building and community energy systems
based on Modelica and the Functional Mock-up Interface
standard.

References
D.M. Beazley. Automated scientific software scripting with

SWIG. Future Generation Computer Systems, 19(5):599 –
609, 2003.

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß,
H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro, T. Neid-
hold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf. The
Functional Mockup Interface for Tool independent Exchange
of Simulation Models. In Proceedings of the 8th International
Modelica Conference, 2011.

S. A. Klein, J. A. Duffie, and W. A. Beckman. TRNSYS: A
transient simulation program. ASHRAE Transactions, 82:623
– 633, 1976.

The MPI Forum. MPI: A Message-Passing Interface Standard.
Technical Report Version 2.2, Sept. 2009. URL http://
www.mpiforum.org/.

Session 6: Poster Session

DOI
10.3384/ecp17132321

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

327

328 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

FMI and IP Protection of Models: A Survey of Use Cases and

Support in the Standard

Erik Durling* Elias Palmkvist Maria Henningsson*
*Modelon AB, Sweden, Corresponding author: erik.durling@modelon.com

Abstract
FMI is increasingly being adopted as a standard for

exchanging simulation models within and between

organizations. Such models often represent significant

investments for the model creator. There is thus a large

interest in protecting intellectual property while

collaborating and sharing simulation models in the form

of FMUs. This paper presents a collection of use cases

and issues related to IP protection of model contents,

that have been identified in interviews with industrial

representatives. The requirements in each use case are

described, along with an investigation of how well the

use cases can be managed within the current version of

the FMI standard, including a proposed extension of the

standard.

Keywords: FMI, IP protection, model exchange

1 Introduction

The promise of major benefits in model-based systems

engineering and virtual development lies in reusing

models in different contexts. To develop, parameterize,

validate, and maintain models represent a significant

investment, and to maximize the return the models need

to be utilized as much as possible.

FMI is becoming the de facto industry standard for

exchanging models between different tools. Two main

directions in the FMI domain is currently integration and

democratization. Integration means software, processes,

and standards for co-simulation of multiple models from

different tools or different organization.

Democratization means effort to spread the usage of

advanced simulation models for experts using expert

tools to much larger groups of engineers to use for

design space exploration, boundary conditions for other

systems, or software development and testing.

Both these directions involve exposing models that

often represent significant investments and contain

sensitive data to a larger user base within and outside of

the original organization. The question about protecting

IP (Intellectual Property) is often raised in discussions

about exchanging models between partners with

commercial interests.

Although there exist solutions and best practices for

sharing models with existing technologies, FMI is still a

new standard, and there is a general need for knowledge

about applying similar solutions with FMI (Köhler et al.

2016). One of the arguments for using FMI is that it

allows protecting the internal contents of models. But it

is important for the part sharing a model to understand

what is exposed, and what measures that can be taken to

protect what should not be shared.

The purpose of this study has been to make an

inventory of use cases and concerns related to IP

protection of FMUs, and to evaluate to what extent this

is supported by the current standard. This overview can

be of interest for users who need to understand the risks

and mechanisms for exposing and protecting the content

of their models.

The study also intends to raise the need for a

standardized way of managing IP protection

mechanisms of FMUs, or at least to provide information

to the model importer about embedded mechanisms to

restrict execution of the model.

The paper starts by outlining how the listed use cases

were elicited. The list of use cases is presented in

Section 3. An evaluation of how well the use cases are

supported by the current (2.0) FMI standard is found in

Section 4.

2 Methodology

The study was carried out in two phases. During the first

phase, information was gathered about the needs that

exist for protecting IP when sharing models within the

general area of model based systems engineering.

Interviews were carried out with 16 engineers at

Modelon and Volvo Car Group, with experience of

sharing models within automotive, energy and

aerospace industries. The interviews were typically with

a single person at a time, and lasted in the range of 30 to

60 minutes. To obtain unbiased information, open

questions were asked to let the stakeholder present their

own view of the issues they found important. The

questions concerned exchanging models in general, and

not specific to the FMI standard.

In addition to the interviews, an anonymous online

survey was sent out to additional external stakeholders.

The purpose of this survey was mainly to obtain an

impression of the importance and priorities among the
identified use-cases. The survey also included specific

DOI
10.3384/ecp17132329

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

329

questions to identify experience and concerns specific to

the FMI standard.

During the second phase, the FMI-standard was

evaluated in terms of each of the use cases that had been

identified. The following questions were considered

when evaluating the standard:

 Is the use case relevant to be considered within the

scope of the standard?

 Is there any support for the use case within the

standard?

 Are there any obstacles or gaps within the standard

that prevents solutions for the use case from being

implemented?

3 Use Cases: Needs for Protecting IP

When Sharing Models

This section describes the different use-cases that have

been identified in this study, following a short summary

of the roles involved.

The question of IP protection is typically considered

when models are to be shared between different

organizations with commercial interests. The purpose is

to protect valuable or sensitive knowledge or data from

being accessed by someone who is not trusted. The need

for protection generally comes from the part sharing

(exporting) the model, but there are issues related to this

that may affect the receiver (importer) of the model.

A common scenario is that a component supplier

delivers a component model to an OEM (Original

Equipment Manufactory). This component model is

integrated by the OEM as part of a system model. The

opposite also occur, where the OEM supplies a system

model, to let the supplier test their component as part of

a system environment.

There are also situations where there is a need to

protect models that are shared inside the same

organization. Reasons for this can be to maintain control

over what models are being used in the organization.

Another reason can be to prevent potential leaks by

limiting access to sensitive information. This situation

could also apply during projects with external partners,

where the information is not secret to the people in the

project, but there is a need to protect the information

from being shared outside the project.

In general, the main concerns regard export of

models. This mainly covers two main issues: hiding the

model content, and controlling who can use the model.

But protecting the models can also lead to challenges for

the receiver of the model, in terms of usability, that need

to be considered.

3.1 Use Case 1: Protect Model Contents

The basic use case is that the part who shares a model

would like to hide what is inside from the receiver. The

sharing part needs to export the model in such a way that

the contents are protected. There are a number of aspects

that may be valuable or sensitive and needed to be

protected.

3.1.1 Model Structure

There is often a need to protect the structure or design

of the model. This consists of equations and algorithms

that describe the relationship between inputs and

outputs.

The model may be implemented using unique

methods for describing the specific component.

Examples of this could be algorithms, or representations

of equations, or clever ways to select dynamic states.

This can make the model design valuable in itself.

The model could also represent unique knowledge

about the component that is modeled, and could reveal

sensitive information about the actual component design

and properties.

Some models might be created to support multiple

application. In this case, information about the other

types of application that is supported might be sensitive.

It could be that the receiver should only have access to

information that concerns their specific application.

3.1.2 Internal Variables

Internal variables (or ”signals”) may reveal sensitive

information about the inner workings of a model, and

could facilitate reverse engineering.

The names of the internal variables could also be

sensitive and reveal information about the model

structure and design, or ways to apply the model that the

receiver should not be aware of.

3.1.3 Parameters

Values of internal design parameters, boundary

conditions and start values, may reveal information that

would not be available to a user of the actual component

or system that the model represents. This data may be

the result of expensive research, and considered

valuable knowhow that a supplier is reluctant to share.

Parameter names may also reveal information about

model structure, in the same way as internal variables. It

could also be that the parameter values are only sensitive

with a specific parameter name. Generic parameter

names may not reveal any useful IP.

3.1.4 Black Box or Grey Box

The simplest approach is to hide everything inside the

model (black box), which may be sufficient in some

cases. However, in many cases it is necessary to expose

parts of the model contents (grey box), in order to make

the model usable. In this case, the exporter typically

would like to expose only the sub-set of the content that

is necessary for the receiver to have access to.

For example, exposing part of the model structure or

internal variables could aid in simulation debugging.

And some parameters may need to be tweaked in order

to use the same model for multiple scenarios.

FMI and IP protection of models: A survey of use cases and support in the standard

330 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132329

3.1.5 External Dependencies

A model could contain external dependencies, for

example parameter files or additional model libraries.

These parts could contain IP that may not be covered by

the protection applied to the main model, and may

require specific consideration.

3.1.6 Reverse Engineering

Sharing a model always comes with a risk of reverse

engineering, either of the model itself or the component

that the model represents. The only way to be

completely protected against this is to not share any

model. The required level of protection against this

depends on the value of the model contents and the risk

of the contents being revealed. A common strategy of

handling this is to make sure that the cost of reverse

engineering is higher than the value of the contents.

3.2 Use Case 2: Limit Access to Users

A common scenario is that only a set of expected users

should have access to a model, for example to maintain

control or prevent reverse engineering. A model could

contain information that should not fall into the wrong

hands, or be used for applications other than the

exporter’s intention.

3.2.1 Limit Access to Specific User(s)

There are many scenarios where a model is only meant

to be shared with a limited number of users, or different

users should have different level of accessibility to the

model. It is common that the right to use a model is

given to a single organization by a partner. In sensitive

cases, some models may even be restricted to specific

groups within an organization, to minimize the risk that

it ends up in the hands of the wrong people, for example

a competitor. There are also commercial scenarios. For

example, a model library may be sold for use on a single

computer only.

Models exported from some tools may be restricted

to users who have a license for the exporting tool. Such

limitations may represent a big obstacle for some

scenarios of model sharing. It may not be feasible for

users integrating models from many different sources to

have a license for all the tools. This could also be a

problem when an exported model need to be deployed

to a large group of end-users, since the licensing fee

would become unreasonable. Some OEMs have also

expressed concerns that licensing solutions on exported

models could lead to vendor lock-in.

3.2.2 Limit the Model Over Time

There are also scenarios where one would like to limit

the model access to a specific time frame. A reason

could be that the model could contain information or be

used for applications that is only relevant during a

limited time, and the use of the model may even be

contracted between the two partners. This could for

example be during the course of a specific project, or

during a trial period of a commercial model library.

Having a time limitation on a model could also be a

benefit when it is being developed and need to be

maintained over time, since it reduces the risk that an

old version of the model is used.

The time frame could differ depending on the use

case, from a couple of days for a sales demonstration, a

few months between model release versions, or during a

project that last for years.

3.2.3 Information About the Protection

Models with limited access pose a challenge from the

model receiver’s perspective. Without sufficient

information about what type of protection is applied,

debugging could be difficult when the user or the

importing tool should identify that the model is not

working due to this protection.

This is especially important for a user working with

aggregates of models from multiple model suppliers,

where there may be number of different types of access

limitations that need to be managed. The workflow for

these users are improved if it is possible to easily

understand how each model is restricted and what is

required for getting access to it.

3.3 Use Case 3: Provide Information to the

Model Importer

When parts of a model are hidden, or protected, there is

an increased need for information to keep the model

useful.

3.3.1 Documentation

For a model with hidden contents, the user must rely on

the documentation for information on how to use the

model and what results to expect. It can be crucial to

understand what aspects of the physical systems are

modeled and at what degree of accuracy, especially

when integrating the model as part of a larger system, or

to understand simulation results. This could dictate what

parts are needed outside the model and how to interpret

the interface. It may also be difficult to determine what

range of operating conditions the model is valid for,

since it likely is not obvious what simplifications or

assumptions have been made. In general, it is important

that both parts have agreed on the interface of the model

inputs and outputs.

3.3.2 Debugging

It can be very challenging to debug a model without

knowledge about how it is constructed, without the

ability to measure internal variables or to get usable

error messages. This can be a challenge also when using

the model as part of a larger system. The user may have

to rely on support from the model supplier for solving

the issues. This could also pose a challenge for OEMs

that need to be able to trace issues found in simulation

Session 6: Poster Session

DOI
10.3384/ecp17132329

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

331

results back to the source model, many years after the

results were produced.

3.3.3 Network Dependencies

Some protection solutions may require the model to

communicate with remote network resources, for

example to gain access to using the model or to

exchange results with a simulation server. Information

about these dependencies and adequate error messages

can be important for helping the user identify any issues

related to this.

3.4 Use Case 4: Binary Platform Support

and Source Code

There is a conflict between protecting a model from

reverse engineering while at the same time allowing the

model to be used on multiple platforms (different

operating systems or processor hardware). Exporting a

model in a compiled binary format is a common way to

protect the sensitive content. However, this will limit the

model to the specific platform that the binary is

compiled for. To support multiple platforms, the

solution is often to export the model as code (commonly

C-code) and let the receiver compile the model on the

specific platform. While binary export is often

considered sufficient protection against reverse

engineering, c-code is generally not considered

sufficient, since this is more easily interpreted by a

human. Solutions for this could place requirements both

on the exporting and importing tools.

It is important to note however, that the content of a

binary also can be interpreted, while the effort to do so

is generally much higher than doing this for higher level

source code.

3.5 Knowledge Need

A general need for knowledge about the IP-risks specific

to FMI was identified during this survey. When

exporting a protected model that contains IP, it is

important for the exporter to understand what is exposed

when the model is exported, and what risks may need to

be avoided. This will help making correct decisions

about what measures need to be taken, but is also

necessary for the exporter to feel trust in the solution

used.

It is worth noting that new technologies have a start-

up phase in general, where potential users will be

naturally skeptical before information about the

technology is widely known, and best practices have

been established.

It may also be important also for people that are only

working indirectly with models understand how the

risks are handled. For example, a lack of knowledge

about the technology could represent an obstacle in and

negotiations about sharing models between partners. A
wider acceptance may be needed among all affected

parts of an organization before it is regarded as safe.

3.6 Use Case 5: Authentication

Authentication concerns the need to ensure the integrity

of a model. This question is not mainly about hiding

content, but instead of protecting it from being changed.

Although, it is sometimes discussed in relation to IP

protection, since the challenges is somewhat related.

Some of the common needs are:

 Verifying that the model comes from the expected

source.

 Verify that the model has not been altered after it

was exported. This could be important in order to

provide reliable support as a model supplier, or

when the model is deployed in safety critical

systems.

 Verify that the model is compatible with some

external dependencies, for example that the specific

version of a model is used together with the

corresponding version of parameter data.

Authentication plays a role both as a sanity check to

avoid mistakes, but also as a means of protecting against

intentional intrusion.

4 Support for Protecting IP Within

the FMI Standard

This section describes how and to what degree the use

cases described in Section 3 are supported by the FMI-

standard. Some examples are used to demonstrate how

the standard supports certain use cases.

4.1 The Content of an FMU

An implementation following the FMI-standard is

called an FMU. This section describes what parts of a

model is exposed when being packaged as an FMU. An

FMU is a zip-file, with a certain file structure, that

contains the following parts:

 The model description XML-file:

Contains meta information about the model that will

be exposed to the simulation tool and user.

 Binaries:

This is the actual implementation of the model,

compiled for a specific (or multiple) target platform.

This binary exposes the standard FMI API

functions, for reading and writing variables and

performing simulation time steps.

 Source code:

C-source code for the model can be provided as an

alternative, or in addition, to a model binary.

 Additional data/resources:

This could be data stored in any format as a resource

in the FMU. This would typically be parameter data.

It is also possible for an FMU to access external

resources outside of the FMU itself.

FMI and IP protection of models: A survey of use cases and support in the standard

332 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132329

The FMI standard specifies the format of the model

description XML-file, the API function interface of the

binaries or source code, and the structure of the zip-file.

The FMI-standard allows two different type of

models, one that contains a solver to simulate the model

(Co-Simulation or CS-FMU) and one that requires an

external solver to simulate (Model-Exchange or ME-

FMU). The functions and exposed content differ

somewhat between the two FMU flavors.

4.1.1 Content in the Model Description XML File

The model description XML-file contains necessary

meta information to the user and simulation tool, in

order to make the model useful.

The information required to be included is the type of

FMU, name of the model, and a GUID (Global Unique

Identifier).

In addition to this, XML-file is required to contain

tags for model variables and model structure, which will

contain a set of variables that are exposed. But there is

no requirement from the standard that all model content,

in terms of variable names or values, should be exposed

in the model description XML-file.

In practice, at least the top level input and output

variables are exposed. The model description could also

contain references to all, or a subset, of the internal

model variables and parameters. But it is up to the

exporting tool whether all variables should be exposed,

or none (black box) or a sub-set (grey box), and also

what names to give the variables.

For the exporting user, it could be very helpful to get

clear information from the exporting tool about what

variables are exposed. Although this information is

available in the xml-file, it can be very impractical to

obtain the information by reading the file directly,

especially for large models.

The variables defined in the model description file is

a mapping between variable names and variable

references. The variable reference (a number) is used to

access the variable value with the FMI function calls in

the binary or source. It is possible to include variables in

the binary/source, that can be accessed by reference (a

number), without having any mapping to a variable

name in the model description file. This allows for

“secret” variables. This also allows for defining

“anonymous” variable names, that do not reveal any

sensitive information about what the variables represent.

In order to avoid algebraic loops when using the

FMU as part of a system, it could be necessary to

provide a list of outputs and the variables that the

outputs depend on to the importing tool.

Additional information can be included in the model

description file that is typically not sensitive, like the

exporting tool or experiment settings.

4.1.2 FMU Binaries

The FMU binaries typically represents a compiled

implementation of the whole model. As discussed in

Section 3.4, compiling a model as a binary is commonly

considered sufficient protection of the model

implementation. It is however up to the exporting tool

to ensure that what is stored in the binary is not exposed

in an open way.

An FMI binary is only required to expose the FMI

API functions. These will provide access to values of at

least the variables defined in the model description file.

For an ME FMU, it will also be possible to access the

values of each of the internal (continuous time) state

variables, their derivatives, and any event indicators.

But the names of such internal state variables will not be

exposed.

The FMI-standard provides support for logging, so

that the FMU can generate messages for warnings and

errors to the simulation environment. The message

generated from the FMU, using the logging interface,

could depend on hardcoded messages that might include

internal model information (like variable names and

values) that is not exposed in the model description

XML-file. The standard allows using variable

references when logging, which will avoid exposure of

hidden names, but could still expose hidden value

references and their values. It is up to the exporting tool

to ensure that such internal messages are not exposing

sensitive model content.

One way to support multiple platforms is to include

multiple binaries in the same FMU. This may be an

option if it is not possible to provide source code for the

model (as described in section 4.1.3). This requires that

the exporting tool is able to compile or package binaries

supported by all different platforms. FMUs for multiple

platforms could be supported through cross-compilation

or with tools for merging multiple binaries into the same

FMU. Note that the model description needs to match

all of the binaries (including the GUID).

In some cases, the FMU binary just represents an FMI

gateway, as an interface to an external application or

interface (like another simulation tool or network

sockets).

4.1.3 FMU Source Code

An FMU could include the source code for the model,

in addition to, or instead of, the binaries. This is a way

to allow the model to be compiled to a general target

platform, to avoid supplying a binary for each platform

where the FMU is to be used. Many suppliers are

however reluctant to provide source code for their

models, since this exposes the implementations of the

models in a more open way than compiled binaries do.

Depending on how the code has been generated, this

may expose algorithms, parameters, and model

equations that represent valuable IP.

A common way to deal with this is to apply code

obfuscation, which makes the code very difficult to read.
The effort of reverse-engineering would be similar to a

compiled binary.

Session 6: Poster Session

DOI
10.3384/ecp17132329

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

333

4.1.4 External Data in an FMU

An FMU may contain additional resources. This would

typically be parameter files. This means that even if

internal model parameters are not exposed through the

FMI interface and model description, parameter data

could still be openly readable through these resource

files. To avoid exposing sensitive data, it could be

necessary to apply encryption or some form of

obfuscation of these resources.

An FMU can contain external dependencies for example

to facilitate parameterization. The standard allows the

FMU to contain additional data such as files with data

tables. But the FMU is also allowed to access and use

external files not included in the actual FMU.

The FMI-standard only specifies the communication

interface between the model and the simulation tool.

Access to external data is not covered by the standard.

Handling of external data files needs to be considered

separately, to avoid unintentional exposure of sensitive

data.

4.2 Limit Access to the FMU

The purpose of limiting the access to the FMU is either

to restrict the usage of the model or restrict the access to

the content in the FMU. Reasons to protect the FMU is

discussed in section 3.2.

There is nothing included in the FMI standard that

either specifies or restricts how to limit the access to the

model binary or source code. This means that it is

possible to include any protection mechanism in the

source code or binaries of the FMU.

4.2.1 Examples of Access Protection

Common examples of protection that could be applied

are:

 Server Solutions: Only share access to the interface.

The model content is protected on the server. The

user can only access the FMI function calls. This

type of solution will effectively protect the model

files from unintended distribution and reverse

engineering.

 Encryption: The main reason for encryption is to

prevent the wrong user from accessing the model. In

general, the model is exposed once it has been

decrypted. There are many variations of workflows

and encryption solutions, for example licensing of

the decryption and password protected zip-file.

 Licenses: This can be applied to ensure that the

model can only be used for a certain time, or to

restrict the model to only be used by a given group

of people. This licensing protection would be

integrated into the binaries and will thus not protect

the content of the XML-file.

 Limitation over time: The binaries can be generated
to only work during a restricted timeframe. This is a

way to protect the model from being executed. But

it does not protect the content of the model

description XML-file.

4.2.2 Information About Applied Protection

In section 3.3, the importance of the available

information to the recipient is discussed. The FMI

standard does not specify a way to provide information

to the model receiver about the type of protection

applied or requirements for accessing the model. It is up

to the exporter to inform the receiver, either in or outside

the FMU. The standard also does not define any

requirements or interfaces for protecting the access to an

FMU.

The model description xml of FMI 2.0 may contain

an optional flag that describes information about the

intellectual property licensing. This provides

information about how the FMU may be used, but not

how it is protected in terms of technical licensing.

One proposal is to extend the standard with

information about the type of technical licensing that is

applied to an FMU. This could be added in the form of

new attributes in the model description XML:

"protection-type" and "protection-trigger", and an

additional function in the header file

"fmi2checkProtection". The "protection-type" attribute

should contain information about what type of

protection the FMU has, like "license-file", "time" etc.

The "protection-trigger" contains information about

how the protection is triggered, like "instantiation",

"initialization", "2017-01-01" (for protection over time).

To check if the FMU can be used at the current state, the

function fmi2checkProtection can be called to perform

a "validation check".

4.3 Authentication

Use cases concerning authentication were discussed in

section 3.6. Authentication is not covered specifically in

the current standard. However, implementation of

authentication solutions in the model (binaries/sources)

does not necessarily require any specific support from

the standard. Two examples are given to demonstrate

how the use cases can be implemented without specific

support from the standard:

 Verify the source of the FMU: To verify that the

FMU comes from the correct source, the checksum

of the FMU could be digitally signed by the

exporter, and provided in addition to the FMU. The

signed checksum could then be used by importing

tool to verify the integrity of the FMU.

 Verify that the XML has not been altered: The

modelDescription.xml is most likely part of an

FMU to be altered. It would be possible to include a

function in the model binary that calculates and

verifies the hash of the XML, and prevents the

model from running if this is different from

expected.

FMI and IP protection of models: A survey of use cases and support in the standard

334 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132329

5 Conclusions

We have presented a survey of common use cases and

concerns regarding IP protection when sharing models,

and we have discussed to what extent this can be

addressed within the current FMI standard.

The most common use cases concern export of

models, mainly in terms of having control and

information of what is exposed of the model content, as

well as limiting access to unintended users. But there are

aspects of this that also affect the importer, mainly in

terms of usability and platform support.

Furthermore, a general need for knowledge

dissemination was identified, regarding the risks and

mechanisms of protecting the model content, specific to

the FMI standard. One purpose of this article has been

to address this need.

No obstacles were identified within the standard. All

of the use cases described can be managed within the

standard. Tools that export FMUs are free to include any

conceivable solution for restricting the execution of the

binaries, and are free to exclude all sensitive information

from the model description file.

A risk for the model exporter is that sensitive

information may be exposed in unintended ways, like

through the logger, or through external dependencies

not controlled by the standard at all.

For most use cases, it is more a question of support

by the tool rather than support by the standard. The

amount of information that is exposed depends a lot on

the tool and specific export settings.

This leaves much freedom for tool vendors and model

exporters, which can translate to challenges for model

importers. The lack of standardized ways of imposing IP

protection on models can make it difficult to deal with a

multitude of different licensing or encryption

mechanisms. Without a standardized interface it is hard

to troubleshoot issues related to licensing issues. We

therefore propose for a future version of the FMI

standard to add an optional flag in the model description

XML scheme to provide information about embedded

protection that will limit execution.

Acknowledgements

This study was carried out within the research project

Second Road Phase 2, coordinated by Volvo Cars

Corporation and funded through the Swedish research

agency VINNOVA. Time and input from all

interviewees is gratefully acknowledged.

References

FMI for Model Exchange and Co-Simulation, Version 2.0:

https://www.fmi-standard.org/

Köhler J., Heinkel H.-M., Mai P., Krasser J., Deppe M.,

Nagasawa M. Modelica-Association-Project “System

Structure and Parameterization” – Early Insights. The First

Japanese Modelica Conferences, May 23-24, Tokyo, Japan,

2016. doi: 10.3384/ecp1612435

Köhler J., King J., Kübler M. Simulation of Complete Systems

at ZF using Modelica Standards, The First Japanese

Modelica Conferences, May 23-24, Tokyo, Japan, 2016.

doi: 10.3384/ecp1612424

“Smart Systems Engineering” project of the iViP Association:

http://www.prostep.org/en/projects/smart-systems-

engineering.html

Session 6: Poster Session

DOI
10.3384/ecp17132329

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

335

336 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Model-based virtual sensors by means of Modelica and FMI

M. González1,2 O. Salgado1 J. Croes2,3 B. Pluymers2,3 W. Desmet2,3

1IK4-Ikerlan Technology Research Center, Control and Monitoring Area, Spain
2KU Leuven, Department of Mechanical Engineering, Belgium

3Member of Flanders Make, Belgium

Abstract
This paper presents an application case for the estimation
of forces using Modelica and the FMI. For that purpose
model-based virtual sensors are used. These techniques
are presented and the development of the virtual sensor for
Modelica and the FMI is discussed. The work has been
done in Python where the package pyFMI is used with
models exported with the FMI 2.0 for model exchange.
The technique is used for the estimation of forces and the
friction coefficient in a vertical transportation system. The
model of this test bench is explained and the results of the
estimation of forces and the friction coefficient are dis-
cussed. These estimations provide a valuable tool for the
condition monitoring of guiding systems.
Keywords: FMI, virtual sensors, pyFMI, Extended
Kalman Filter

1 Introduction
The condition of the guiding system influences signifi-
cantly the riding quality and performance of transporta-
tion systems such as railways or elevators. The proper
design and the correct maintenance of the guides is there-
fore of high importance. Both the design and monitoring
of the guiding system require an accurate assessment of
the loading condition. However the direct measurement
of forces is not feasible, as a dedicated sensor is too costly
and intrusive. Virtual sensors are an attractive option to
overcome these difficulties.

Virtual sensors process available measurements to esti-
mate other variables of interest that cannot be measured.
Mainly two virtual sensor approaches are suggested in the
literature: data-driven methods and model-based methods.
Data-driven methods use a machine learning perspective
to recognize patterns in the behavior of the system. These
methods require previous observations of the system in or-
der to learn the different states and conditions of the as-
set. A review of data driven virtual sensors can be found
in (Kadlec et al., 2011). Some common approaches in-
clude developing autoregressive models of the system as
in (Samara et al., 2013), using artificial neural networks
((Bizon et al., 2014),(Gonzaga et al., 2009)) or using mov-
ing window methods as in (Liu et al., 2009). The required
data training may be a handicap in systems where data
cannot be acquired continuously or in which faulty condi-
tions cannot be measured.

On the other hand model-based methods combine
physics-based models and measurements of the system
by means of estimation algorithms. The model provides
knowledge of the dynamics of the system, which in com-
bination with off-the-shelf sensors can be used to estimate
variables of interest otherwise difficult to measure. These
approaches are valuable tool in several applications such
as control techniques, condition monitoring or model up-
dating (Isermann, 2005).

The performance of these techniques depends on the
capability of the model to accurately represent the physics
of the system (Isermann, 2005). In addition a great mod-
eling flexibility and simplicity is required to avoid errors
and speed up the process. Using Modelica has thus a
great added value in the development of model-based vir-
tual sensors. The acausal nature of Modelica allows ef-
ficiently modeling heterogeneous systems reusing already
developed and tested models. However, it doesn’t allow
the user to manipulate the solution at each time step, as
required by estimation algorithms. In order to use Model-
ica for state estimation the models have to be exported and
manipulated at each time step (Brembeck et al., 2011).

Several modeling environments include model ex-
change capabilities. However, they are usually developed
ad-hoc to interface with one particular tool in a certain
context. Therefore they are commonly limited to certain
tools and are version dependent. The Functional Mock-
up Interface (FMI) is a tool independent standard that can
efficiently solve this. Furthermore the FMI 2.0 includes
some features that aid the development of state estimation
algorithms (e.g. directional derivatives).

The combination of Modelica with other programming
languages by means of the FMI provides thus a suitable
approach for the implementation of model-based virtual
sensors. The main focus of the FMI is simulation, but it
has already been applied for estimation. For instance in
(Brembeck et al., 2011) and (Brembeck et al., 2014) is
used to implement nonlinear state observers within Dy-
mola. In (Bonvini et al., 2014) an Unscented Kalman Fil-
ter (UKF) is implemented in Python using the FMI 1.0 for
model exchange and is used for Fault Detection and Di-
agnosis. In this paper the FMI 2.0 for model exchange
is used to develop an Extended Kalman Filter (EKF) for
state and parameter estimation in Python. The suitability
of Modelica and FMI for state estimation is tested with a
highly nonlinear model which includes events, rotations

DOI
10.3384/ecp17132337

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

337

and friction.
The rest of the paper is organized as follows. Section 2

gives an overview of Model-based virtual sensors and ex-
plains the algorithms used in the current application. Sec-
tion 3 explains how these algorithms are implemented us-
ing pyFMI with the FMI 2.0 for Model exchange. Section
4 describes the proposed application case along with the
proposed model, a test bench of a vertical transportation
system where contact and friction forces are estimated.
The results of these estimations are shown in section 5.
The final conclusions and the future work are drawn in
section 6.

2 Model-based virtual sensor ap-
proaches

The core of model-based virtual sensors consists on the
use of state estimation algorithms. These algorithms use
the difference between the real measurements and the pre-
diction of a physics-based model to correct the output
of the model. The most common state estimation al-
gorithms are the Luenberger observer (LO), the sliding
mode observer (SMO) and the Bayesian estimators. LO
and SMO are simpler to implement than Bayesian estima-
tors but under noisy measurement conditions the Bayesian
algorithms are proved to perform better (Zhang et al.,
2009),(Esteban et al., 2016). Thus the presented work is
focused only on Bayesian estimators.

2.1 Kalman Filter
The Kalman Filter (KF) is the optimal linear estimation
filter (Simon, 2006). In the case of Gaussian noise, it pro-
vides the maximum a posteriori estimate with the smallest
achievable covariance. With non Gaussian noise, it is op-
timal in giving the minimal mean square error. It is the
most widely used Bayesian estimator and has been suc-
cessfully used in a number of applications (Simon, 2006).
The KF uses a linear model defined in state space form as
the one shown in equation 1. In the stochastic Bayesian
derivation of the KF, both the process and measurement
equations are assumed to be disturbed by zero mean white
Gaussian noise (w and v in equation 1) of covariance Q
and R respectively. The states are assumed to be Gaussian
variables with a covariance P and mean the state estima-
tion (x̂∼ N(x̂,P)).

ẋ = f (x,u, t)+w
y = h(x,u, t)+ v

(1)

The most common formulation of the KF requires the dy-
namic system of equation 1 to be described in a discrete
form of equation 2, where for a linear model the matri-
ces F,G and H are constant. Generally the discretization
of a state space model assumes a zero-order hold for the
input u and continuous integration for the noise v. As ex-
plained in (Simon, 2006) the discretization involves the
computation of the integral of a matrix exponential or any

equivalent discretization such as Euler or Runge-Kutta.

xk = Fk−1.xk−1 +Gk−1.uk−1 +wk−1

yk = Hk.xk + vk
(2)

The KF algorithm is shown in figure 1. In each k-time
step the system model is evaluated and compared against
measured data. This is done in two steps: prediction and
update. In the prediction step an a-priori estimation of
the states mean and covariance is obtained from the sys-
tem’s model. In the update step this a priori estimation is
corrected using the system’s output. This estimation pro-
cess is done recursively: all the prior information is sum-
marized in the initial mean and covariance of each step
(x̂+0 ,P

+
0). Therefore the computational effort in each time

step is the same regardless the number of measurements.

Figure 1. Kalman Filter algorithm

Despite being widely used, the KF is limited to linear
systems, which also makes the joint estimation of states
and parameters not applicable (Simon, 2006). Several
suitable extensions of the KF to non-linear systems, such
as the EKF or the UKF can be found in (Simon, 2006). As
the current system is highly nonlinear (events, rotations)
the well known Extended Kalman Filter is used instead.

2.2 Extended Kalman Filter (EKF)
The EKF is the most widely used extension of the KF for
nonlinear systems and for the joint estimation of states and
parameters. If the model of equation 1 is nonlinear the
Fk−1 and Hk−1 matrices of equation 2 are no longer con-
stant, but change at each K-step instead. Then the EKF
linearizes and discretizes the model around the KF esti-
mate, propagating a linear approximation of the covari-
ance (Simon, 2006). The standard KF shown in figure 1 is
then applied at this linearized point. As the estimation is
based on the linearization of the system a small step size
is required if the system is highly nonlinear. On the other
hand, the ease of implementation and the reduced compu-
tational cost of the EKF make it an attractive option for
the estimation of states in nonlinear systems.

Model-based virtual sensors by means of Modelica and FMI

338 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132337

2.3 Parameter identification and Virtual Sen-
sors

State estimation algorithms can be augmented to estimate
not only the states of the system but unknown parame-
ters too. Based on the continuous state-space system rep-
resentation, an augmented version of the system can be
obtained if the unknown parameters are included in the
states vector (equation 3) and their directional derivatives
are included in the system matrices (equation 4). Then a
random walk model is used for the unknown parameters:
they are assumed to remain constant except for an additive
noise (Naets et al., 2015) (equation 5). The discretization
of these matrices can later be done in the same way as for
the non-augmented model.

xaug =

[
x
p

]
(3)

A∗ =
[

∂ f
∂x

∂ f
∂p

0 0

]
(4)

ṗ(t) = 0+wp(t) (5)

The joint estimation of parameters makes the system non-
linear. Once defined in the proper way, this augmented
vector can be estimated by means of the EKF or any other
nonlinear filter.

Once all the states and parameters of the model are
known, we can use the model to obtain some other vari-
ables of interest (i.e. a virtual sensor). This is a post-
processing step in which the model is evaluated in the es-
timated set of states, parameters and inputs and the vari-
ables of interest are treated as another model output. By
means of the estimated state covariance the degree of un-
certainty of the virtual sensors can be estimated as well
(equation 6).

PV S =
∂ f (x,u)

∂V S
.Px.

∂ f (x,u)
∂V S

(6)

3 State and parameter estimation
with Modelica and FMI 2.0 for
model exchange

This section explains the implementation of an Extended
Kalman Filter that uses physics-based models developed
in Modelica and exported by means of the FMI 2.0. The
model used for this work is developed in OpenModelica
as it provides a powerful model editor that facilitates the
development of models and has the advantage of being an
open-source tool. The posterior translation of the Model-
ica models to FMUs is done by means of JModelica.org.
This tool provides full functionality to export models for
model exchange with the FMI 2.0, including the possibil-
ity of requesting directional derivatives. The possibility of

requesting directional derivatives is particularly useful in
the development of the EKF as they are more reliable than
numerical derivatives.

There are several FMI libraries aimed at programming
languages suitable for the development of state estimation
algorithms. In this work pyFMI is used, which has the
advantage of being open-source. Thus the presented Ex-
tended Kalman Filter is written in Python. In addition to
pyFMI, which allows the simulation of FMUs, Python of-
fers several other scientific computing packages that aid
the development of custom made algorithms and applica-
tions (e.g. Numpy, Scipy, Matplotlib).

To make models compatible with the EKF, the inputs
of the filter also have to be defined as inputs in the model,
while the measurements of the system have to be defined
as model outputs. Estimated parameters are simply de-
fined as parameters, and the newly estimated value of the
parameter is set in the model at the beginning of each step.
In addition, care must be taken when modeling, so that the
states of the model agree with the expected ones during
the whole estimation.

As explained in section 2.1, the first step of the
Kalman Filter requires the prediction of the model x−k+1 =

f (x+k ,uk,k). To get this prediction the model is initialized
with the states and parameters estimated in the previous
step and is simulated from the current step to the next one.
In addition to setting the new states and parameters, in
models with events these have to be updated after setting
states and parameters. To reduce the computational time
the results are handled in memory.

For the second step of the filter the EKF requires the
matrices of the system in state space form, i.e. the system
has to be linearized before it can be used with the estima-
tion algorithm. To achieve this the FMI functionality of
obtaining the directional derivatives of the system is used.
This function is directly implemented in pyFMI and thus
obtaining the system matrices is straightforward:

A,B,C,D = model.get_state_space_representation()

The same is not true for the directional derivatives of
the parameters, required for the estimation of parame-
ters along with states (section 2.3). As the FMI does
not provide directional derivatives for model parameters,
these derivatives are computed numerically according to
the symmetric difference quotation shown in equation 7.

ḟ (x) =
f (x+h)− f (x−h)

2h

∣∣∣∣
h→0

(7)

4 Application for the estimation of
forces in guiding systems

The proposed application case is the guiding system of a
vertical transportation system. T-shaped guiding rails are
used to minimize horizontal motion ensuring travel in a
uniform vertical direction (Janovskỳ, 1999). Inappropriate

Session 6: Poster Session

DOI
10.3384/ecp17132337

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

339

installation of these guides and their surface roughness are
the main causes of vibration in the car frame (Janovskỳ,
1999). These guides are usually composed of several rail
segments aligned together. The proper alignment is, how-
ever, extremely difficult, and in general out of plane or
out of angle misalignment are common. Such deviations
increase the contact forces and induce abrupt forces in the
car frame at the rail segment joints, reducing the ride qual-
ity and efficiency of the system.

The interaction between the car frame and the guiding
system is given in four discrete contact points, by means of
so-called sliding shoes. These sliding shoes are U-shaped
polymeric pads that grab the guide rail’s web. The contact
forces of the guiding system are applied in these shoes
both in x and y axis. Forces in x axis may be in the pos-
itive or negative direction, whereas forces in y axis are
only directed towards the car-frame. A scaled test bench
of a vertical transportation system available at IK4-Ikerlan
is used to validate the methodology. This test bench is a
useful tool to study the behavior of such system’s using
sensors not available in real installations. Additionally
it allows us to study the effect of defects that we could
not put in a real installation. The test bench is a scaled
’rucksack’ type rigid car frame, traveling in vertical direc-
tion and constrained horizontally by two T-shaped guiding
rails (see figure 2). The system has 12 states correspond-
ing to the 6 degrees of freedom of this car frame (x, y, z,
roll, pitch and yaw). Without loss of generality, the driv-
ing force (T) is assumed to be known and acts as a system
input. In the scaled test bench under study this force is
measured with a load cell attached to the driving cable
(see figure 2). The numbering followed in this paper for
the four contact points is shown in figure 2. The current
system has a maximum travel length of 1.8 meters, a nom-
inal velocity of 0.4 m

s , nominal acceleration of 0.3 m
s2 and a

nominal jerk of 1 m
s3

4.1 System’s model

Models available in the vertical transportation literature
are mainly focused on the assessment of the vertical dy-
namic of elevators (Isasa, 2010). However vertical dy-
namics are affected by the friction forces, which are di-
rectly related to the rail forces acting on the horizontal
plane. Horizontal and vertical dynamics are therefore cou-
pled and should be assessed as a whole. As a first step
this paper studies the possibility of using the horizontal
dynamics to assess the condition of the guiding system,
opening the way to studying the system as a whole. The
Modelica Standard Library is used to model the described
system. The inertial properties of the cabin given in table
1 are obtained from its CAD model. The contact stiffness
can be obtained from classical structural analysis, assum-
ing the guide as a flexible beam with flexible supports.
The actual stiffness will thus be a function of the vertical
position of the cabin. However, in order to simplify the
estimation we use a constant stiffness for the whole guide.

Figure 2. Described system and relevant parameters

Table 1. Model parameters, positions measured from car’s floor
coordinate system

PARAMETER DESCRIPTION UNITS VALUE

M car f rame′s mass [Kg] 14.287
I11, I22, I33 Car f rame′s inertias [Kg.m2] 0.28,0.38,0.20

Kx,Ky contact sti f f ness [N/m] 600000
Dx,Dy contact damping [N/(m/s)] 10

ClearanceY sliding shoe clearance [m] 0.0
r0

1 position o f shoe 1 [m] (−0.085,−0.124,0.297)
r0

2 position o f shoe 2 [m] (−0.085,−0.124,0.067)
r0

3 position o f shoe 3 [m] (−0.085,0.124,0.297)
r0

4 position o f shoe 4 [m] (−0.085,0.124,0.067)
r0

c.g car f rame′s C.G [m] (−0.0923,0.0043,0.08824)
r0

T position o f cable [m] (−0.085,0.0,0.435)

4.1.1 Car frame
Due to the low contact forces and the high stiffness of the
car frame, the latest can be modeled as a rigid body. The
movement of the body is represented in the coordinate sys-
tem (C.S) attached to the floor of the car frame, as it is the
location where the required sensors are installed. The ro-
tation is constraint far away from the Gimbal lock position
due to the guide rails and consequently Quaternion repre-
sentation is not required. Hence rotations of the car frame
are represented using Euler angles (α , β and γ).

4.1.2 Guiding rails: contact and friction model
The sliding shoes are the interface between the car frame
and the guiding rails. As such, the forces imposed by the
guide rail system on the car frame will be applied via the
sliding shoes. The sliding shoes grab the guiding rail’s
web, contacting it in three flanges. Contact in these three
flanges at the same time is highly unlikely and commonly
only one or two of the flanges of the sliding shoe are in
contact with the rail. From figure 3 it can be seen that
movement of the shoe in the x direction will always result
in a force opposite to the movement. Thus, for modeling
purposes, contact in x axis can be assumed to behave as

Model-based virtual sensors by means of Modelica and FMI

340 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132337

a spring-damper system. Movement of the sliding shoe in
the y axis will depend on the direction of movement. Thus
contact in y direction is modeled with a modelica standard
ElastoGap model. The direction of the guides web is also
taken into account in the actuated prismatic in order to
make the model more general.

Figure 3. Model of the guiding rail

In this application high displacements between the slid-
ing shoes and the guiding rails are expected. The friction
behavior at small displacements is not relevant and the
use of dynamic friction models such as Bouc-wen, LuGre
or Dahl is not required. A coulomb friction model is used
instead. In order to simplify the mathematics of the state
estimation algorithm, instead of using an event driven
friction element from the Modelica Standard Library
the friction is added with a MSL Multibody World-
Force model. The value of this force the absolute value
of the contact forces times a user given friction coefficient.

Froz_sup.force =mu_eq *(abs(
contactx_sup.f)+abs(contacty_sup.f)
)*{0, 0, 1};

The advantage of this approach is its simplicity. Avoid-
ing events simplifies greatly the estimation, as the Jaco-
bians of the system change more smoothly. On the other
hand, this simplification requires that the direction of the
force has to be specified at each simulation, and the di-
rection of the force when the car is stopped is a-priori un-
known. Physically the value of the friction coefficient is
greater than zero, however we directly include the direc-
tion of the force in this parameter. Therefore, a negative
value of this parameter just indicates that the direction of
the friction force will be negative. With this approach we
can find out the direction of the force in the estimation
phase.

5 Estimation results
In this section the results of the application of model-based
virtual sensors for the evaluation of forces in guiding rails
is presented. The estimation approach from section 2.2 is
applied to the described system. The measurements used
for the EKF are the lateral and vertical accelerations and
the vertical position of the car. These measurements are
taken with a triaxial piezoelectric accelerometer (lateral
acceleration), with a DC response accelerometer (vertical
acceleration) and with a draw-wire encoder (cabin posi-
tion). The accelerometers are located in the coordinate
system at the center of the car as depicted in figure 2. Ta-
ble 2 shows the assumed measurement noise matrix R (de-
fined in section 2.1).

The measurement of the lateral acceleration provides
information of the dynamic change of the contact forces,
induced by the roughness and defects of the guiding rails.
In addition the model provides information regarding the
dynamic behavior of the car and the order of magnitude
of the forces. However, the misalignment of the guiding
rail results in a DC component of the contact forces which
cannot be estimated, as neither the lateral acceleration nor
the model have information on that regard. This misalign-
ment affects the vertical dynamics of the system, as fric-
tion increases with it. Therefore, we are able to account
for this effect within the friction coefficient µ . Addition-
ally, the friction coefficient of each sliding shoe has a sig-
nificant variability, as it depends on several factors such
as, frequency of use of the system, lubrication and tem-
perature. Consequently this parameter is estimated jointly
with the states of the system as explained in section 2.3.
This parameter contains thus information both on the ac-
tual coulomb coefficient and on the misalignment of the
guiding system. In contrast to what happens in the actual
system, where each sliding shoe has a different friction
coefficient, here only one equivalent friction coefficient is
assumed for all the contacts (µeq).

The parameters of the filter’s design are shown in table
2. The P and Q matrices shown in the table include the
covariance of the states and unknown parameter of the
system. The last term of these matrices is the covariance
of the unknown friction coefficient (µeq). Table 2 also
shows the initial value of the states of the system in the
following order: cabin.body1.phi[1], cabin.body1.phi[2],
cabin.body1.phi[3], cabin.body1.phi_d[1],
cabin.body1.phi_d[2], cabin.body1.phi_d[3],
cabin.body1.r_0[1], cabin.body1.r_0[2],
cabin.body1.r_0[3], cabin.body1.v_0[1],
cabin.body1.v_0[2], cabin.body1.v_0[3] and the ini-
tial expected value of the friction coefficient mueq.

In this application the estimated Virtual sensors and
comparison variables have a significant noise. For visu-
alization purposes a smoothing has been performed.

Figure 4 shows the parameter estimated along the po-
sition of the cabin. The gray area around the estimated
µeq is the 99.7% (3σ) confidence interval of the value of

Session 6: Poster Session

DOI
10.3384/ecp17132337

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

341

Table 2. Design parameters of the filter

PARAMETER VALUE

States α [rad], β [rad] ,γ [rad], α̇ [rad/s], β̇ [rad/s] ,γ̇
[rad/s], x [m] , y [m] , z [m],ẋ [m/s] , ẏ [m/s], ż [m/s]

Measurements z [m], ẍ [m/s2], ÿ [m/s2],z̈ [m/s2]

P diag([1e-09 , 1e-09, 1e-09 , 2e-09, 2e-09 , 2e-09,
1e-09 , 1e-09, 1e-09, 1e-09 , 1e-09 , 1e-09, 1.5e-06])

Q diag([0e+00 , 0e+00 , 0e+00 , 1e-03, 1e-03 , 1e-03 ,
0e+00 , 0e+00, 0e+00 , 1e-05 , 1e-05 , 1e-05, 5.0])

R diag([1e-08 , 1e-16 , 1e-16 , 1e-16])

x_initial [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.12, 0.0, 0.0, 0.0]

Fs [Hz] 1652

µeq0 [−] 0.2

this parameter. This confidence interval comes from the
co-variance estimated for this parameter. As explained in
section 4, this parameter includes information regarding
the actual friction coefficient of coulomb and regarding
the misalignment of the guiding rails. The negative sign
of the estimated parameter is not related to the physical
meaning of the friction coefficient, but to the direction of
the friction force instead. In addition to the friction coeffi-

Figure 4. Estimated friction coefficient and the estimated 99.7%
confidence interval of the estimation

cient, the contact forces also provide information regard-
ing the condition of the guiding system. More exactly,
they provide information regarding sharp differences in
the position of the guide rails. Such dynamic changes will

be due to sharp changes of guiding rail segment or imper-
fections on the rail. These defects induce abrupt forces in
the sliding shoes that have a negative impact on the riding
quality. Figure 5 shows the estimated contact forces in X
and Y directions along with the 99.7% confidence interval
(light gray for X direction and light blue for Y direction.
As expected, the variance of the estimated forces is rel-
atively high. This is mainly because the model and the
measurements do not provide information regarding the
DC component of this forces.

Figure 5. Estimated contact forces. In black the forces in X
direction and 99.7% confidence interval, in blue forces in Y di-
rection and 99.7% confidence interval.

Finally figure 6 shows the comparison between the esti-
mated friction force and the measured one. The estimated
friction force is computed from the sum of the friction
forces in each sliding shoe as explained in section 4.1.2.
The measured one is the direct subtraction of the cable’s
tension and cabin acceleration.

Figure 6. Comparison of estimated and measured friction force

The guiding system is not the most common source of
failure but it is one of the most critical systems. Failure in
guiding rails leads to large down times of the whole sys-
tem and it is difficult to evaluate its condition. It is compli-
cated thus to assess both the alignment and the smoothness

Model-based virtual sensors by means of Modelica and FMI

342 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132337

of the guides, as required to ensure comfort and energy ef-
ficiency. Different condition monitoring alternatives are
suggested in the literature for guiding rails. In general vi-
bration data processing is used to assess the condition of
the guides (Wan et al., 2015). However these methods re-
quire well trained data which in may be difficult to obtain.
Model-based virtual sensors, on the other hand, provide a
suitable approach to monitor the condition of system using
off-the-shelf sensors and without training data. The trade
off is that an accurate model of the system is required.
Nevertheless it was shown that Modelica and the FMI sim-
plify the development of model-based virtual sensors.

The presented estimations provide a useful indicator of
the condition of the guiding system. Changes in the fric-
tion coefficient indicate misalignment and abrupt changes
in the forces indicate local damages in the guides. For
instance the estimation from figure 4 shows a significant
deviation in the friction coefficient when the cabin is at
0.6m. This deviation indicates thus a misalignment of the
guides at that position. Additionally, the abrupt change of
the contact forces at 0.9m indicates a local defect in the
web of the rail. However, further work is required to de-
velop a methodology to set a threshold for the value of
these variables. Once the threshold is defined we can use
this to assess the condition of the system, aiding the align-
ment of the guides and finding early damage in the rails.

6 Conclusions
An EKF with parameter identification capabilities has
been developed in Python using the package pyFMI and
models exported with the FMI 2.0 for model exchange.
Modelica and FMI are very useful to cope with the com-
plexities arising from the use of Model-based virtual sen-
sor with complex systems. The combination of these tools
reduces modeling effort and simplifies the implementa-
tion of the virtual sensor. As an example of the efficiency
of this combination the estimation of forces in a vertical
transportation system scaled test bench is presented. The
EKF is used to simultaneously estimate states and param-
eters in a scaled vertical transportation system test bench.
Additionally the forces acting on the guiding system are
estimated. This estimations provide a mean to assess the
condition of the guiding system. This approach opens the
way to condition based maintenance strategies for guid-
ing systems. Such maintenance schemes can improve rid-
ing quality, safety and efficiency of vertical transportation
systems, fulfilling thus the requirements of modern smart
systems. Future steps in the investigation include:

• Assessment of the estimated variables and parame-
ters: a theoretical optimal value of the friction coef-
ficient and of the contact forces should be used to set
a threshold that aids assessing the condition of the
guides.

• In this work the tension in the cable has been used as
input of the system. Even though off-the-shelf sen-

sors exist for that purpose it would be better to use
just sensors available in the system or easier to use,
such as the input of the controller and the currents in
the machine. To achieve this the model of the sys-
tem has to be extended to include not only the cabin
of the test bench, but the controller, the electric ma-
chine, the pulley, the cable and the counterweight as
well. The model will be extended to include all the
parts of the system. The electric machine and control
systems will be included in the estimation.

• As the system grows in complexity, the use of other
state estimation algorithms such as the Unscented
Kalman Filter or the Moving Horizon Estimator will
be explored. Finally the estimation will be used to
monitor the condition of the system.

7 Acknowledgments
The authors gratefully acknowledge the European Com-
mission for its support of the Marie-Sklodowska Curie
program through the ITN ANTARES project (GA
606817) and the support from the KU Leuven research
fund.

References
K. Bizon, G. Continillo, S. Lombardi, E. Mancaruso, and B.M.

Vaglieco. Ann-based virtual sensor for on-line prediction of
in-cylinder pressure in a diesel engine. In 24th European
Symposium on Computer Aided Process Engineering, vol-
ume 33 of Computer Aided Chemical Engineering, pages 763
– 768. Elsevier, 2014. doi:http://dx.doi.org/10.1016/B978-0-
444-63456-6.50128-9.

M. Bonvini, M. Wetter, and M. Sohn. An fmi-based framework
for state and parameter estimation. In Proceedings of the 10
th International Modelica Conference; March 10-12; 2014;
Lund; Sweden, number 096, pages 647–656. Linköping Uni-
versity Electronic Press, 2014.

J. Brembeck, M. Otter, and D. Zimmer. Nonlinear observers
based on the functional mockup interface with applications
to electric vehicles. In Proceedings of the 8th Interna-
tional Modelica Conference; March 20th-22nd; Technical
Univeristy; Dresden; Germany, number 63, pages 474–483.
Linköping University Electronic Press, 2011.

J. Brembeck, A. Pfeiffer, M. Fleps-Dezasse, M. Otter, K. Wern-
ersson, and H. Elmqvist. Nonlinear state estimation with an
extended fmi 2.0 co-simulation interface. In Proceedings of
the 10th International Modelica Conference-Lund, Sweden-
Mar 10-12, 2014, volume 96, pages 53–62. Linköping Uni-
versity Electronic Press, 2014.

E. Esteban, O. Salgado, A. Iturrospe, and I. Isasa.
Model-based approach for elevator performance es-
timation. Mechanical Systems and Signal Process-
ing, 68-69:125 – 137, 2016. ISSN 0888-3270.
doi:http://dx.doi.org/10.1016/j.ymssp.2015.07.005. URL
http://www.sciencedirect.com/science/
article/pii/S0888327015003246.

Session 6: Poster Session

DOI
10.3384/ecp17132337

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

343

JCB Gonzaga, L.A.C. Meleiro, C Kiang, and R. Maciel Filho.
Ann-based soft-sensor for real-time process monitoring and
control of an industrial polymerization process. Computers
& Chemical Engineering, 33(1):43–49, 2009.

I. Isasa. Model validation applied to locally nonlinear lift struc-
tures. PhD thesis, Mondragon Unibertsitatea, 2010.

R. Isermann. Model-based fault-detection and diag-
nosis status and applications. Annual Reviews in
Control, 29(1):71 – 85, 2005. ISSN 1367-5788.
doi:http://dx.doi.org/10.1016/j.arcontrol.2004.12.002. URL
//www.sciencedirect.com/science/article/
pii/S1367578805000052.

L. Janovskỳ. Elevator mechanical design. Elevator World Inc,
1999.

P. Kadlec, R. Grbić, and B. Gabrys. Review of adaptation mech-
anisms for data-driven soft sensors. Computers & chemical
engineering, 35(1):1–24, 2011.

Xueqin Liu, Uwe Kruger, Tim Littler, Lei Xie, and Shuqing
Wang. Moving window kernel pca for adaptive monitoring
of nonlinear processes. Chemometrics and intelligent labo-
ratory systems, 96(2):132–143, 2009.

F. Naets, J. Croes, and W. Desmet. An online coupled
state/input/parameter estimation approach for structural
dynamics. Computer Methods in Applied Mechanics and
Engineering, 283:1167 – 1188, 2015. ISSN 0045-7825.
doi:http://dx.doi.org/10.1016/j.cma.2014.08.010. URL
http://www.sciencedirect.com/science/
article/pii/S0045782514002795.

P. Samara, J. Sakellariou, G. Fouskitakis, J. Hios, and S. Fassois.
Aircraft virtual sensor design via a time-dependent functional
pooling narx methodology. Aerospace Science and Technol-
ogy, 29(1):114–124, 2013.

D. Simon. Optimal state estimation: Kalman, H infinity, and
nonlinear approaches. John Wiley & Sons, 2006.

Z. Wan, S. Yi, K. Li, R. Tao, M. Gou, X. Li, and S. Guo. Diag-
nosis of elevator faults with ls-svm based on optimization by
k-cv. Journal of Electrical and Computer Engineering, 2015:
70, 2015.

Y. Zhang, Z. Zhao, T. Lu, L. Yuan, W. Xu, and J. Zhu. A compar-
ative study of luenberger observer, sliding mode observer and
extended kalman filter for sensorless vector control of induc-
tion motor drives. In 2009 IEEE Energy Conversion Congress
and Exposition, pages 2466–2473. IEEE, 2009.

Model-based virtual sensors by means of Modelica and FMI

344 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132337

Dymola-JADE Co-Simulation for Agent-Based Control in Office
Spaces

Ana Constantin1 Artur Löwen2 Ferdinanda Ponci2 Kristian Huchtemann1 Dirk Müller1

1Institute for Energy Efficient Buildings and Indoor Climate, RWTH Aachen University, Germany, {aconstantin,
khuchtemann, dmueller}@eonerc.rwth-aachen.de

2Institute for Automation of Complex Power Systems, RWTH Aachen University, Germany, {aloewen,
fponci}@eonerc.rwth-aachen.de

Abstract
This paper presents an application of coupling Modelica
under Dymola and JADE to test novel agent-based con-
trol for office spaces. The office space with a coupled en-
ergy system and weather boundary conditions are modeled
in Dymola. The agent platform is programmed in JADE,
where the agents communicate with each other to control
the technical equipment used to deliver thermal energy to
the room. Heating experiments, run for a one room sce-
nario, using a radiator, show better system reaction to the
comfort desires of the user compared to a control with a
thermostatic valve, while having similar energy consump-
tion. While the agents run in real time, the simulation
in Dymola runs faster. We focus on the particularities of
the connection for co-simulation to insure smooth trans-
ferability of the experiments from simulation to a field
test, where the energy system as well as the agent plat-
form would be running in real time.
Keywords: agent-based control, JADE, co-simulation

1 Introduction
The energy saving potential of buildings is estimated
to be around 30% (IEA, 2015b) with the proper poli-
cies and technologies compared to continuing the cur-
rent business-as-usual scenario, which accounts for over
30% of total final energy consumption for all sectors of
the economy (IEA, 2015a). One of these novel technolo-
gies being currently researched are multi-agent systems
(MAS), used for building energy and comfort manage-
ment (BECM) (Shaikh et al., 2014).

An agent can be defined as an entity that perceives its
environment through sensors and according to a goal func-
tion acts upon its environment through actuators (Russell
and Norvig, 2003). For applications of indoor climati-
zation agents of this type could be embedded on energy
generation, distribution or delivery equipment (e.g. heat
pump, circulating pump or valve on a heat exchanger).
Through negotiation, for example over the cost of energy
supplied to the room, the agents can strive to find optimal
solutions for the trade-off between thermal energy and in-
door comfort. As all novel technologies MAS applica-
tions are first tested on a simulation level. According to

the state of the art (Labeodan et al., 2015) we chose JADE
for the programming of the agents. JADE is a Java based
software framework which is complaint with the specifi-
cations of the Foundation for Intelligent Physical Agents
(FIPA). The simulation setups containing the models for
the building, technical equipment as well as the boundary
conditions for the weather are done using Modelica under
the simulation environment Dymola. Dymola and JADE
are connected in a Co-Simulation by using a TCP/IP inter-
face.

We present in this paper the methodology for building
our simulation tests with a focus on the particularities of
setting up the co-simulation. We describe the use case we
are using, information on how the agent platform works
and how the models are built and the communication with
the models takes place. Afterwards, exemplary results for
a one room scenario are presented and discussed. The pa-
per closes with a conclusions section.

2 Method
The first steps in our work for developing MAS for BECM
was to develop an ontology and by focusing on the appli-
cation on non-residential buildings adding a data model.
However, this is not within the scope of the paper and
further details will be skipped. The data models for the
energy equipment were built based on the data generally
available in manufacturer data sheets, to insure a wide ap-
plicability of the methodology to devices of the same type
but by different manufacturers. To develop a coherent con-
trol strategy we used a use case base approach. We de-
veloped use cases for one and two room scenarios, with
different type of users or for plug-in of a new component.
For exemplary purposes we focus on a one room use case
in this paper.

2.1 Use Case
We consider an office room, with one user. The user is also
an owner of the office, so his / her comfort desires will be
taken into consideration. The room is supplied with ther-
mal energy by a system consisting of a pump and a heat
pump, which deliver energy to a radiator. The energy can
be increased either by increasing the supply temperature
of the heating fluid (action of the heat pump) or by in-

DOI
10.3384/ecp17132345

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

345

creasing the volume flow through the radiator (action of
the pump). These two actions do influence one another.
In this paper we only focus on heating the room. Figure 1
presents the agents involved in the one room use case.

The following agents act in this use case:

• the personal comfort agent (ComfortAgent): receives
from the person working in the room the function for
preferred room temperature as a function of outside
air temperature, as well as the productivity function
as a function of the room air temperature. The agent
calculates the set temperature for maximum produc-
tivity and the comfort curve, which gives the costs
of comfort increases and the savings of comfort de-
creases.

• the heat pump agent (EnergySupplyHeatPump
Agent): has knowledge of the current operation point
of the heat pump and the corresponding energy costs.

• the pump agent (EnergySupplyPumpAgent): knows
the current operation point of the circulating pump
and the corresponding energy costs.

• the room agent (RoomAgent): monitors the current
room air temperature against the desired temperature
and stars a negotiation between comfort and energy
supply agents if the room temperature has to change

• sensor and actuator agents: temperature sensors
(room air, outside air, supply and return of the
medium trough the radiator) and the actuator on the
valve of the radiator.

We present the steps of the use case when using the
control strategy "relaxation of comfort costs", meaning the
costs for the user’s productivity loss because of decreased
comfort are taken into account against the costs for energy
supply to the room. While the energy costs are calculated
according to the price of the extra energy supplied to the
room, the comfort costs are calculated according to (Sep-
paenen et al., 2006).

1. The room agent monitors the room temperature, re-
ceived from the sensor, against the desired room tem-
perature, received from the comfort agent (1). If the
room air temperature lies outside a tolerance interval
around the desired temperature a call for proposal
(CFP) is sent to the relevant energy supply agents
that are connected to the supply circuit of the room
and might produce this energy: heat pump and pump
(2). Additionally a request for the comfort costs is
sent to the comfort agent (1*).

2. The energy supply agents send their costs and the
amount of energy they can provide for the room (3).

3. The room agent compares the costs for supplying the
energy against the comfort costs of the user. The op-
tion with the lowest costs is executed: either energy

is supplied (if the comfort costs are lower than the
costs for suppling the energy), or not.

4. If energy has to be provided to the room, the room
agent sends a request to the energy supply agent with
the lowest costs (4): this might be just one agent or
both agents, if one agent cannot supply all the energy
on its own. If the pump is chosen, it will send a re-
quest to the valve (4*). Once the action is executed,
the valve sends a confirmation back to the pump (4*).

5. The energy supply agents send messages to the room
agent on how the command was executed (5): suc-
cess or failure.

6. The room agent informs the comfort agent on how
the action for improving the room conditions was ex-
ecuted (6).

2.2 Agent platform
We used the Java based programming language JADE
(Java Agent DEvelopment Framework) to develop the
agents. The decision for JADE was made based on its
implementation of the FIPA specifications. The base com-
ponent of a typical agent platform is the agent, with each
agent having a unique name. Agents execute tasks and in-
teract with each other through the exchange of messages.
They are located on a platform, which provides them with
basic services such as message delivery.

In this application we decided to attach agents to every
system component: technical equipment, actuators and
sensors. In this way we diverged from the given defini-
tion for an agent, as a sensor in itself cannot act upon its
environment. However, the state of the art in agent sys-
tems for building energy management (see for example
(Dibley et al., 2012)) have agents responsible for sensors
(reading and sending values). For a first implementation
we decided on having agents for each sensor to enable a
closer look at the communication flow between such com-
ponents.

The agents communicate with each other and with the
attached devices. The agents have different roles to play
and according to their goals the corresponding actions
can be grouped into so called behaviors. Exemplary we
present here the behaviors of an agent attached to a circu-
lating pump. The EnergySupplyAgentPump connects to a
pump device to receive information on the device’s current
state, answers to a CFP, receives and executes requests to
change the operation point of the device:

• HandleSensorDataSubscription: receives and han-
dles the notifications from the sensor agents the
pump agent subscribed to: supply and return tem-
perature sensors for the rooms on the same supply
circuit as the pump.

• EnergySupplyContractNetResponder: handles in-
coming CFPs, by sending a proposal, to handle

Dymola-JADE Co-Simulation for Agent-Based Control in Office Spaces

346 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132345

RoomAgent

ComfortAgent

EnergySupply
PumpAgent

EnergySupply
HeatPumpAgent

Temperature sensors
• Air temperature
• Outside air
• Flow to room
• Return from room

Actuators
• Valve heating

1

1* / 6

2 / 4

2 / 4
3 / 5

3 / 5

4*

Figure 1. Agents involved in a one room use case.

accepted proposals through HandleAcceptProposal
and to handle rejected proposals.

• HandleAcceptProposal: handles the acceptance of
the proposal, that was requested and accepted by the
room agent. It starts the InitiateRequestToValveAc-
tuator behavior to send a request to the valve agent,
which communicates with the valve device to control
the volume flow, if the pump does not allow to set the
volume flow directly.

• InitiateRequestToValveActuator: this behavior is ini-
tiated by HandleAcceptProposal to send a request to
the valve agent as previously detailed.

It is important to understand, that as long as the behav-
iors are not connected to each other, meaning a behavior is
started from another behavior, that they are running in par-
allel. An agent attached to a pump can at the same time
process messages received from a temperature sensor as
well as a CFP received from a room agent.

2.3 Modeling
The simulation models were developed using blocks from
the Modelica Standard Library, the open-access library of
the Institute for Energy Efficient Buildings and Indoor Cli-
mate (EBC), AixLib, and an institute internal Modelica
library for components for energy systems.

The following models were used and/or developed:

• Technical equipment: heat pump, boiler, circulating
pump, radiator

• Building: room with walls, windows and doors

• Internal gains from persons present in the rooms

• Boundary conditions, mainly weather

The models available in the EBC libraries for the tech-
nical equipment were until now a heterogeneous aggre-
gation of all the elements needed to the describe a real
component, including the physical phenomenon in the de-
vice along with control dedicated blocks. We decided to
split the models from the controllable pieces of technical
equipment into three sub-models (see Figure 2):

• physical model: describes the physical component
of the device on which the energy transformation is
taking place, along with the energy sources which
support this transformation. For example for a boiler
model the physical model includes a water volume, a
hydraulic resistance and an energy source for the gas
flame.

• internal control: describes the way in which energy
flows are directed at the physical components. This
control mechanisms are a proprietary part of the de-
vice, and the user has no influence on them. In
the boiler example this is a PI controller which con-
trols the thermal output of the gas burner in order to
achieve a given supply temperature. The efficiency
of the energy transformation in burning the gas is
also taken into account.

• external control: describes the control strategy that
the user sets for the device. Continuing with the
boiler example, this is the algorithm for choosing a
set temperature for the volume flow: it might be con-
stant, it might be given by a heating curve (state of
the art), it might also include a night and a day mode.

The arrows in Figure 2 describe the flow of information
between the three blocks, comprising set and measured
values.

We are partial to this modeling approach, as it gives a
good overview of the model and what it can do, and it

Session 6: Poster Session

DOI
10.3384/ecp17132345

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

347

leads to the re-usability of the sub-models. By using the
replaceable model functionality in Modelica the external
control block can be changed between simulations, so all
other elements stay the same in the model. As such the
probability of making a mistake when setting up identical
setups with different control strategies is very low. The ex-
ternal control as such can be programmed in Modelica or
in another software. In the latter case the external control
block contains the Dymola implementation of the inter-
face between the two softwares.

2.4 Simulation setup
The office space has a floor area of 19 m2, with a height of
3 m and a large window area of 8 m2. The construction is
well insulated: Uwall = 0.2 W

m2·K and Uwindow = 1.2 W
m2·K .

The office has one outer wall and the boundary conditions
at the other five inner walls are set as adiabatic. The en-
ergy delivery system to the room is a radiator, equipped
with a valve for volume flow control. The energy distribu-
tion system consists of a circulating pump and the energy
generation system is a heat pump.

The reference system, for comparison evaluation of the
control strategy is build the same way, with the exception
that the control of energy flow to the room is done by a
thermostatic valve.

For the weather data we used the test reference year,
TRY 05, for the area of Aachen provided by the German
meteorological service (DWD).

3 Co-Simulation
3.1 TCP/IP Communication
We decided on using a TCP/IP communication between
Dymola and JADE, as routines for TCP/IP communication
have been developed in previous projects for both Dymola
and JADE. Furthermore in the planned field test one com-
munication possibility between agents and devices is via
TCP/IP, which means that only few modifications have to
be carried out for moving the testing from simulation to a

External control

Internal control

Physical model

Figure 2. Modeling approach for a piece of controllable techni-
cal equipment

field test.
Details on a first version of the routines for the TCP/IP

communication can be found in (Schneider et al., 2015).
As set up parameters the routines only need an IP-address
and a port.

Dymola does not build a socket on its own, but can
communicate with an open socket. The socket is build in
JADE. We extended the routines by allowing for several
different TCP/IP channels to be built and used in one sim-
ulation. Additionally, we changed the state of the receiv-
ing routine for a socket from blocking to non-blocking.
In this way messages can be sent to Dymola only when a
command has to be executed. The rest of the time Dymola
listens on the socket for a given amount of time and if no
message is received it proceeds with the simulation. This
is also important for the transferability of the testing from
a simulation to a field test, where commands are send only
when needed.

We wanted to have a standardized content for the mes-
sages being sent between Dymola and JADE. For this we
decided on using the Java Script Object Notation (JSON)
standard (ECMA, 2013). Figure 3 shows the structure of
an object in JSON. The extra overhead to the communica-
tion by the fact that the messages are human readable is
not an issue to our applications, were a handful of values
are exchanged every couple of minutes. A further advan-
tage of the standard is that it offered us an easy way of
integrating the data model, which is also built using tuples
of label, type and value.

2 © Ecma International 2013

null U+006E U+0075 U+006C U+006C

Insignificant whitespace is allowed before or after any token. The whitespace characters are: character
tabulation (U+0009), line feed (U+000A), carriage return (U+000D), and space (U+0020). Whitespace is not
allowed within any token, except that space is allowed in strings.

5 JSON Values

A JSON value can be an object, array, number, string, true, false, or null.

array

object

value

number

false

null

string

true

Figure 1 — value

6 Objects

An object structure is represented as a pair of curly bracket tokens surrounding zero or more name/value pairs.
A name is a string. A single colon token follows each name, separating the name from the value. A single
comma token separates a value from a following name.

{ : }valuestring

object

,

Figure 2 — object

Figure 3. Object structure according to JSON standard (ECMA,
2013)

For a circulating pump the message sent by the device
to the JADE agent looks like this:

{deviceId: pump1, building: Build1, supplyCircuitId:
SC1, room: None, vFlow: 5.3239e-005, head: 0.49068,
isOn: 1, mode: 1, health: 1, control: 1, end: false}

The building, supplyCircuitId and room parameters de-
scribe the position of the device in the energy system.

The values for volume flow (vFlow) and head describe
the current operation point of the pump. The values are
in SI units, as well as the algorithms inside the agents are
in SI units to make the flow of information between sim-
ulation and agent platform as lean as possible. We firmly
believe that when communication between two softwares
takes place, all measured or calculated values have to be
provided in SI for transparency. Changes from SI to other
units should be done in the software themselves if needed.

The values for isOn, mode, health and control describe
the status and settings of the pump, according to the data
model.

Dymola-JADE Co-Simulation for Agent-Based Control in Office Spaces

348 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132345

The end parameter is used to signal the end of the sim-
ulation and triggers a shutdown of the agent platform in
JADE.

3.2 Real time vs simulation time

The agent platform runs in real time, while the simulation
can run in real time or the time it normally takes to run the
simulation which we call "simulation time". Depending
on the complexity of the model the simulation time can be
quite different, from a few seconds to a few minutes for a
whole simulation day. The advantage of having Dymola
run in "simulation time" is that more experiments can be
done in a shorter period of time.

Dymola communicates with JADE at discrete time in-
tervals, set in the discrete blocks by the parameter sam-
ple rate. The challenge when running a co-simulation lies
matching the dynamics of the controller with the ones of
the controlled system. For us it meant identifying an ad-
equate length of the time interval such that the response
time from JADE to Dymola, for example in the case of
a CFP which leads to a command to Dymola, should be
reasonable. We define reasonable as 5 minutes time in the
simulation, from the moment an uncomfortable tempera-
ture has been identified and the moment the an agent has
received a command to act in this case.

The communication rhythm, i.e. the sample rate, be-
tween Dymola and JADE influences the simulation-time
two fold:

• the shorter the time interval for communicating, the
longer the simulation, as sampling leads to events
and the TCP/IP interface is programmed using algo-
rithms which both slow down the simulation

• the commands from JADE can arrive more quickly,
at the very next communication step, which can
sometimes lead to an over-reaction in the system. For
example if the temperature didn’t have time to be in-
fluenced by the latest agent actions and already the
room agent is initiating a new CFP

Our method of finding an adequate sampling rate is
trial-and-error based and has to be executed for each simu-
lation model in part, as increased model complexity leads
to increased CPU time. It requires a series of simulations
using the same model and different values for the sam-
pling rate. For each simulation the time in the simulation
between registering an uncomfortable temperature and a
subsequent agent action is measured and compared to the
reasonable time frame. Additionally when waiting for an
action confirmation (meaning set point change) from the
simulation, we assume the set point of the device should
change between two samples. As such the timeout for an
agent waiting for confirmation from the device should be
at least 2.5 the sample time translated in simulation time.

4 Results and discussion
We present exemplary results for a one room use case,
done using the described simulation setup with a room
(R1) where the agent based control is implemented. As
a reference case we use a second room (R2) where a ther-
mostatic valve controls the temperature in the room, con-
sidered to be state-of-the art for room temperature control.
Both rooms are connected to the same supply circuit thus
a change in the supply temperature of the heat pump af-
fects both rooms. Changes in the opening of the valves
only affect the room in question.The users are assumed
to be present over the whole duration of the simulation.
As such the room agents are continuously monitoring the
room conditions against the preferences expressed by the
comfort agents.

We present a simulation for a heating scenario, done
over the first three days of January.

Expected results:

• we expect the valve to open when the room temper-
ature needs to increase, and the supply temperature
from the heat pump to drop when the room tempera-
ture needs to decrease

• we expect the valve in room R1 to open almost fully
during the test, as the costs of the pump are lower
than the costs of the heat pump

• we expect the value of the supply temperature to de-
crease under the value for a control strategy based
on a heating curve (in this case around 45◦C), as the
volume supply through the pump increases

Achieved results
Figure 4 presents the air temperature and valve opening

for each room, along with the supply temperature of the
heat pump. We observe that the results are as expected.
The supply temperature of the heat pump increases when
the room temperature needs to increase, only when the
valve is fully opened and as such no further action is pos-
sible from the valve.

The set temperature of 20◦C is given for both rooms.
The evolutions of the room air temperatures are similar.
However the valve openings are quite different, on ac-
count of the different control strategies. The thermostatic
valve has a proportional term of 1 K, which means the
valve fully closes once the room air temperature is 1 K
above the set temperature (comfort requirement R2). If
the room air temperature is lower than the set temperature
the valve can, depending on the type of valve, open fully
only when the difference between set and current tempera-
tures is around 5 K, which explains why the valve doesn’t
open more and the temperature drops below the set tem-
perature. The MAS holds the room temperature in an in-
terval of +/− 0.5 K around the set temperature. This is
the comfort preference of the user, as variations of this
degree are considered unnoticeable by the user (comfort
requirement R1). In the case of the user in R2, the drop

Session 6: Poster Session

DOI
10.3384/ecp17132345

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

349

0 10 20 30 40 50 60 70
17

18

19

20

21

22
T
e
m

p
e
ra

tu
re

 i
n
 ◦

C

Tis_R1

Tis_R2

Tset_R1

Tset_R2

0 10 20 30 40 50 60 70
25

30

35

40

45

50

T
e
m

p
e
ra

tu
re

 i
n
 ◦

C Supply temperature HP

0 10 20 30 40 50 60 70
Hour of year

0.0

0.2

0.4

0.6

0.8

1.0 Valve opening_R1

Valve opening_R2

Figure 4. Air temperature, supply temperature of heat pump (HP) and valve opening for room 1 (R1) and room 2 (R2) in a heating
experiment

below the set temperature is considered a violation of the
comfort requirement.

Key performance indicators (KPI) relating to energy
consumption and comfort for the two rooms are presented
in table 1. While the energy consumption is 3% higher
for room R1 than room R2, the discomfort, as calculated
according to the different comfort requirements, is a lot
lower, 97% less than for room R2. However using a com-
mon comfort criterion for both rooms, like the Predicted
Mean Vote (PMV) according to (Fanger, 1970) the com-
fort levels in both rooms are more similar. The energy de-
livery to the room is similar while having different valve
openings, because in the case of room 2 the temperature
difference between supply and return for the radiator is
higher. If both rooms had different energy generation sys-
tems, the costs for the energy generation would have been
higher for room 2.

Table 1. KPI One Room Use Case

Room KPI Value Unit

R1 Energy Consumption 20.2 kWh
R2 Energy Consumption 19.5 kWh
R1 Lost comfort 0.6 K ·h
R2 Lost comfort 18 K ·h

5 Conclusions
We presented in this paper the realization of a co-
simulation between Dymola and JADE, for implementing

an agent based control for an office space. The building,
boundary conditions and the technical equipment with the
exception of the control strategy are modeled in Dymola.
The multi-agent system containing the control strategy for
the system is setup in JADE.

The communication between Dymola and JADE is
done using a TCP/IP connection. Measured values de-
scribing the current state of the simulation, including tem-
peratures and operation points of the technical equipment,
are sent to JADE with a fixed sample rate. Commands
from the agents in JADE are sent to Dymola over non-
blocking sockets at the next available communication step.
Care has to be taken when setting up the sample rate and
the timeout for action confirmations from the simulation
as the agents are running in real-time and the simulation
can run faster.

We exemplified our concept with a simulation for a one
room scenario, using a second room controlled by a ther-
mostatic valve as a reference case. While the energy con-
sumption and comfort are similar the agent system reacts
better to temperature changes and can lead to lower en-
ergy costs. Future work will focus on experiments with
multiple room as well as a field test.

References
Michael Dibley, Haijiang Li, Yacine Rezgui, and John Miles.

An ontology framework for intelligent sensor-based build-
ing monitoring. Automation in Construction, 28:1–14, 2012.
ISSN 09265805. doi:10.1016/j.autcon.2012.05.018.

ECMA. Ecma-404: The json data interchange format, 10 2013.

Dymola-JADE Co-Simulation for Agent-Based Control in Office Spaces

350 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132345

URL http://www.ecma-international.org/
publications/files/ECMA-ST/ECMA-404.pdf.

P.O. Fanger. Thermal Comfort. Danish Technical Press, 1970.

IEA. Building energy performance metrics: Supporting energy
efficiency progress in major economies. Technical report, In-
ternational Energy Agency, 2015a.

IEA. Energy technology perspectives 2015. Technical report,
International Energy Agency, 2015b.

T. Labeodan, K Aduda, G. Boxem, and W. Zeiler. On the ap-
plication of multi-agent systems in buildings for improved
building operations, performance and smart grid interaction
a survey. Renewable and Sustainable Energy Reviews, 50:
1405–1414, 2015.

Stuart J. Russell and Peter Norvig. Artificial intelligence A mod-
ern approach. Prentice Hall/Pearson Education, 2003.

Georg Ferdinand Schneider, Jens Oppermann, Ana Constantin,
Rita Streblow, and Dirk Mueller. Hardware-in-the-loop-
simulation of a building energy and control system to inves-
tigate circulating pump control using modelica. In The 11th
International Modelica Conference, 2015.

Olli Seppaenen, William Fisk, and QH Lei. Effect of tempera-
ture on task performance in offfice environment. Technical re-
port, Ernest Orlando Lawrence Berkley National Laboraory,
2006.

P. H. Shaikh, N. B. M. Nor, P. Nallagownden, I. Elamvazuthi,
and T. Ibrahim. A review on optimized control systems for
building energy and comfort management of smart sustain-
able buildings. Renewable and Sustainable Energy Reviews,
34:409–429, 2014.

Session 6: Poster Session

DOI
10.3384/ecp17132345

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

351

352 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Failure Modes of Tearing and a Novel Robust Approach

Ali Baharev Arnold Neumaier Hermann Schichl

Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
ali.baharev@gmail.com

Abstract
State-of-the-art Modelica implementations may fail in var-
ious ways when tearing is turned on: Completely incor-
rect results are returned without a warning, or the software
fails with an obscure error message, or it hangs for several
minutes although the problem is solvable in milliseconds
without tearing. We give three detailed examples and an
in-depth discussion why such failures are inherent in tear-
ing and cannot be fixed within the traditional approach.

Without compromising the advantages of tearing, these
issues are resolved for the first time with staircase sam-
pling. This is a non-tearing method capable of robustly
finding all well-separated solutions of sparse systems of
nonlinear equations without any initial guesses. Its ro-
bustness is demonstrated on the steady-state simulation of
a particularly challenging distillation column. This col-
umn has three solutions, one of which is missed by most
methods, including problem-specific tearing methods. All
three solutions are found with staircase sampling.
Keywords: decomposition methods, diakoptics, large-
scale systems of equations, numerical instability, sparse
matrices, staircase sampling

1 Introduction
Definitions. Traditional tearing, cf. (Elmqvist, 1978;
Elmqvist and Otter, 1994; Mattsson et al., 1999; Carpan-
zano, 2000; Cellier and Kofman, 2006; Täuber et al.,
2014), is the representation of a sparse system of nonlinear
equations

f (x) = 0, where f : Rn 7→ Rn, (1)

in a permuted form where most of the variables can be
computed sequentially once a small auxiliary system has
been solved. More specifically, given permutation matri-
ces P and Q such that after the transformation[

g
h

]
= P f ,

[
y
z

]
= Qx, (2)

gi(y,z) = 0 can be rewritten in the equivalent explicit form

yi = g̃i(y1:i−1,z) (3)

using appropriate symbolic transformations. Here the
shorthand p:q is used for the index set p, p+1, . . . ,q where

p≤ q. Equation (3) implies that the sparsity pattern of the
Jacobian of P f is

J =

[
A B
C D

]
, where A is lower triangular, (4)

J is therefore bordered lower triangular. We will use the
abbreviation BLTF which stands for bordered lower trian-
gular form. We refer to a particular choice of P,Q,g,h,y,
and z satisfying equations (3) and (4) as an ordering.
Given an ordering, the system of equations f (x) = 0 can
be written as

g(y,z) = 0
h(y,z) = 0. (5)

The requirement (3) that gi(y,z) = 0 can be made explicit
in yi essentially means that we can obtain y from z by a
nonlinear triangular solve. Substituting the result y = ḡ(z)
into h yields h(ḡ(z),z) = 0 or

r(z) = 0. (6)

That is, the original nonlinear system (1) is reduced to the
(usually much) smaller system r(z) = 0. A commonly
used objective is to find an ordering that minimizes the
border width d := dimz of J. For a given z, we call the
value of r(z) the residual vector or simply the residual.
Advanced tearing methods. There are other, more so-
phisticated variants of tearing, summarized in Table 1.
These try to reduce the size of the final system (6) by re-
laxing the requirements of (3) (by allowing implicit equa-
tions for example) and/or allowing A in (4) to have a form
other than lower triangular. These enhancements share
that the computation of y for a given z only involves fast
and numerically stable algorithms such as solving implicit
univariate equations or small systems of equations. An-
other recent approach tries to balance between minimiz-
ing the border width and preserving the sparsity during the
elimination (Magnusson and Åkesson, 2017). The reader
is referred to (Baharev et al., 2017a) for an in-depth dis-
cussion of the variations on tearing. To keep the examples
short and simple, we only discuss the failure modes of tra-
ditional tearing in the present paper.

Importance: initializing and solving DAE systems.
The problem of solving nonlinear systems of equations
arises in the daily engineering practice, e.g., when consis-
tent initial values for differential algebraic equation (DAE)
systems are sought (Pantelides, 1988; Unger et al., 1995),

DOI
10.3384/ecp17132353

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

353

Table 1. The sparsity pattern of the Jacobian in the different variants of tearing, classified by the largest subproblem size and the
level of subproblem nesting. The present paper discusses the failure modes of traditional tearing only.

Largest Maximum level of subproblem nesting
subproblem 1 `

univariate equations bordered lower triangular —only (traditional tearing)

k× k systems bordered block lower triangular nested bordered block lower triangular
of equations (tearing with diagonal blocks) (hierarchical tearing)

or when solving steady-state models of technical systems.
A steady-state solution can be used as a consistent initial
set of the DAE system (Kröner et al., 1997). Tearing usu-
ally also helps to speed up the solution process of DAE
systems thanks to the reduced problem size (Elmqvist,
1978; Elmqvist and Otter, 1994; Mattsson et al., 1999;
Carpanzano, 2000; Cellier and Kofman, 2006).

Even though mature equation-based component-
oriented modeling environments are available, e.g.,
Modelica (Mattsson et al., 1998; Tiller, 2001; Fritzson,
2004) for multi-domain modeling of heterogeneous com-
plex technical systems, and gPROMS, ASCEND (Piela
et al., 1991) and EMSO (de P. Soares and Secchi,
2003) for chemical process modeling, simulation and
optimization, etc., the steady-state initialization is still
not satisfactorily resolved in the general case. Often,
steady-state initialization failures can only be resolved
in very cumbersome ways, requiring user-provided good
initial values for the variables (Vieira and Jr, 2001;
Bachmann et al., 2007; Sielemann and Schmitz, 2011;
Sielemann et al., 2013; Ochel and Bachmann, 2013).

2 Demonstrative examples
Here we show the behavior of the latest release of Dymola
(Version 2017 FD01 (32-bit), 2016-10-11) and OpenMod-
elica (v1.11.0 (64-bit); February 6, 2017) on three exam-
ples. Examples 1 and 2 demonstrate that applying tearing
can lead to completely incorrect results or to initialization
failure. However, correct results are obtained for both ex-
amples when tearing is turned off. Example 3 is about per-
formance: It shows that tearing can slow down the solu-
tion process drastically. Dymola can easily hang for min-
utes on problems that are otherwise solvable in millisec-
onds without tearing. The causes are discussed in Sec-
tion 3. The examples trigger failure only if the tearing is
performed according to the specified ordering. The Mod-
elica source files are available in the GitHub repository of
the (Online Supplement).

Example 1: The residual is overly sensitive to the
changes in the tear variable. We solve the following
20×20 linear system in a Newton step:

xi−1 +10xi + xi+1 = 1.2 i = 1:20, (7)

where x0 := 0.1 and x21 := 0.1 to keep the formulas sim-
ple. The only tear variable is x1; the residual is given by
the last equation (i = 20). The exact solution is xi = 0.1
for i= 1:20. Both Dymola and OpenModelica return com-
pletely incorrect results, for example, x20 = 32.03 and
x20 = 85.82, respectively, but claim that the simulation
was successful.

Example 2: The residual is insensitive to the changes in
the tear variable. We solve the following 20×20 linear
system in a Newton step:

xi−1 + xi +15xi+1 = 17 i = 1:20, (8)

where x0 := 1 and x21 := 1 to keep the formulas simple.
The only tear variable is x1; the residual is given by the
last equation (i = 20). The exact solution is xi = 1 for
i = 1 : 20. Dymola fails with an unhelpful error message,
and does not return any result. OpenModelica emits some
confusing intermediate warnings and reports at the end
of the computations that “simulation process finished suc-
cessfully”. But it returns incorrect results; for example, x1
still equals the initial guess, as if nothing had happened.

Example 3: Unacceptable border width, leading to
very poor performance. We solve the following N×N
linear system in a Newton step:

N

∑
i=1

xi = N (9)

xi + xN = 2 i = 1 : N−1, (10)

and we assume that the only variable that can be elimi-
nated is xN from equation (9); this can be due to the non-
linearities of the original problem (whose Newton step we
see here). All other variables are tear variables, and all
other equations are residuals. For N = 300, the problem is
solved by Dymola in 74 seconds and by OpenModelica in
37 seconds. As we argue in Sec. 3.3, the problem is solv-
able in milliseconds: For N = 300 (the largest dimension
permitted in the free trial version we used), the AMPL
modeling environment (Fourer et al., 2003) is faster than
Dymola and OpenModelica by factors of more than 1200
and 600, respectively. The performance of the Modelica
implementations rapidly deteriorates as the problem size
increases: For N = 500, Dymola hangs for more than 6
minutes, and OpenModelica takes more than 1.5 minutes.

Failure Modes of Tearing and a Novel Robust Approach

354 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132353

The examples are intentionally chosen to be easy. In
challenging real-life examples, like the one in Sec. 5.3, it
is hard to identify and understand the reasons of the fail-
ures, because different failure modes usually occur simul-
taneously and interact with each other. However, the sim-
plicity of the present examples allows us to gain (in Sec-
tion 3) important insights into the reasons why tearing fails
or causes very poor performance. The examples were cho-
sen to demonstrate the reasons in isolation, one at a time.
This is also the reason why we picked linear examples;
they should be regarded as the linear system solved in a
Newton step.

3 In-depth discussion of the examples
Pathological input problems are ignored throughout this
paper, for example when the system (1) has conflicting
equations and as a consequence it is infeasible, when (1)
is singular, when it is poorly scaled, or when the prob-
lem has a huge number of solutions, etc. While these
edge cases are interesting and important, a non-tearing
approach can fail in these cases too, and therefore such
failures are not specific to tearing. Throughout this pa-
per we only focus on those failure modes that are specific
to tearing: We assume that the input problem (1) is fea-
sible and properly scaled, has at most a small number of
real solutions, and that these solutions can be found with
an appropriate non-tearing approach using 64-bit floating-
point arithmetic. Traditional tearing can fail even if all
these assumptions are met.

3.1 Example 1: uncontrollable residual
The residual can become practically uncontrollable be-
cause it depends too sensitively on the tear variables. To
see this we consider the system

xi−1 +10xi + xi+1 = 1.2 for i = 1:20 (11)

where x0 := 0.1 and x21 := 0.1 to keep the formulas sim-
ple. The exact solution is xi = 0.1 for i = 1:20. The co-
efficient matrix of the system (11) is a strictly diagonally
dominant tridiagonal matrix (cf. Fig. 1 top), hence solv-
ing (11) with Gaussian elimination produces excellent re-
sults even without pivoting (Golub and van Loan (1996,
Ch 3.4.10)). As it was demonstrated in Section 2, tradi-
tional tearing fails on this easy problem.

We order the coefficient matrix of (11) into BLTF with
minimal border width by moving x1 to the border, see on
the bottom of Fig. 1. Given an initial guess for x1, the
formula for the forward substitution along the diagonal is:

xi+1 =−xi−1−10xi +1.2 for i = 1:19, (12)

and the residual r := −x19 − 10x20 + 1.1 is a univariate
function of x1, that is, we have to solve the univariate equa-
tion r(x1) = 0 for x1. Because of the factor 10 in (12), the
error in our guess for x1 is multiplied roughly by a fac-
tor of 10 in each step of the elimination according to (12).
There are 19 steps in (12), meaning that the error in x1 will

be magnified roughly by a factor of 1019 till we compute
the residual. This has catastrophic consequences. There
is no machine representable number for x1 such that after
eliminating all the other variables according to (12) r is
sufficiently close to zero: The two closest 64-bit floating-
point numbers enclosing 0.1 give approximately 85.82
and −101.03 for x20, respectively, due to the roughly 1019

factor magnifying the error in x1. In other words, (11) is
literally unsolvable in 64-bit floating-point arithmetic with
traditional tearing, whereas solving it with Gaussian elim-
ination is numerically stable even without pivoting. The
failure is not due to a single ill-conditioned elimination
step but the sequence of well-conditioned steps becoming
ill-conditioned when they are chained together as in (12).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1

Figure 1. Top: The sparsity pattern of the coefficient matrix of
problem (11). Black entries correspond to 10, gray entries to 1.
Bottom: The same matrix ordered to bordered lower triangular
form. The leading lower triangular submatrix, surrounded by
dashed lines, is singular to working precision in 64-bit floating
point arithmetic.

Session 6: Poster Session

DOI
10.3384/ecp17132353

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

355

A similar behavior in the nonlinear case makes the
problem practically unsolvable with iterative solvers, even
if the original problem is easy to solve without tearing.
Distillation columns are real-life examples where such
failures happen, c.f. Doherty et al. (2008).

For those familiar with linear algebra: The condition
number estimate of the coefficient matrix of (11) is 1.5
(symmetric, strictly diagonally dominant tridiagonal ma-
trix), whereas the condition number estimate of the lead-
ing lower triangular matrix of the BLTF is 9 ·1016, mean-
ing that it is singular to working precision in 64-bit float-
ing point arithmetic. See also Golub and van Loan (1996,
Ch 3.3, and 3.5.4).

3.2 Example 2: insensitive residual
It can also happen that the residual shows practically no
response to changes in the tear variables. Such an example
is the following:

xi−1 + xi +15xi+1 = 17 i = 1:20, (13)

where x0 := 1 and x21 := 1 to keep the formulas simple. It
is easy to see that the solution is xi = 1 (i = 1 : 20). Solv-
ing (13) with a non-tearing approach is not a challenge.

Making x1 the only tear variable, and moving it to the
border makes the resulting BLTF have minimal border
width, see Fig. 2. Given an initial guess for x1, the for-
mula for the forward substitution along the diagonal is:

xi+1 =
1

15
(−xi−1− xi +17) for i = 1:19, (14)

and the residual

r :=−x19− x20 +2 (15)

is a univariate function of x1, that is, we have to solve the
univariate equation

r(x1) = 0 (16)

for x1. As it can be seen from (14), the error in our esti-
mate for x1 is divided roughly by a factor of 15 in each step
of the recursion, that is, the error attenuates in an expo-
nential rate. As a consequence, we get r = 0.0000000000
(with 10 decimals) for both x1 = −1 and x1 = 3. This is
unacceptable, since x1 and many of the eliminated vari-
ables are still very far from the solution. The reason of the
failure is that the value of r(x1) provides no information
about the desired update of x1: The final equation (16) is
satisfied even with grossly erroneous x1 values.

In the nonlinear case, similar issues can lead to failures
of the tearing approach. Distillation columns are again
real-life examples where such failures happen. In fact, dis-
tillation columns are difficult for tearing methods because
one part of the column can magnify the error in the tear
variables with exponential rate (similarly to (12)), while
the remaining part attenuates it with an exponential rate
(similarly to (14)). This in turn can trigger two failure

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1

Figure 2. Top: The sparsity pattern of the coefficient matrix of
problem (13). Black entries correspond to 15, gray entries to 1.
Bottom: The same matrix ordered to bordered lower triangular
form.

modes of tearing at the same time: the one described in
this section, and the one from the previous section.

As already stated, (13) is not a challenging problem;
it is just that traditional tearing fails. For those familiar
with linear algebra: Although problem (13) is mildly ill-
conditioned, the condition number estimate is 7 ·1011, one
can still get the result with several accurate significant dig-
its in 64-bit floating point arithmetic (Golub and van Loan
(1996, Ch 3.3, and 3.5.4)).

3.3 Example 3: unacceptably wide border
Wide border due to tearing incautiously. The pri-
mary motivation behind tearing is to speed up the solution
process (Dymola User Manual, Ch. 8.8.2, pp. 433-434).
However, tearing can significantly hurt performance, es-
pecially if it is applied without any caution; Example 3

Failure Modes of Tearing and a Novel Robust Approach

356 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132353

at equations (9) and (10) in Sec. 2 is just one example of
that. Here the problem is that the border width is propor-
tional to the size of the original problem. In case of Dy-
mola, it slows down the model generation and compilation
drastically; for N = 500, the software hangs for more than
6 minutes. OpenModelica hangs for issues that are most
likely independent of tearing, but we failed to track down
the exact causes.

In comparison, solving the instance N = 300 with
AMPL takes only 61 milliseconds, although AMPL ad-
equately performs all relevant tasks, namely:
(i) reading and parsing the model file written in the AMPL
modeling language,
(ii) instantiating the model,
(iii) flattening,
(iv) compiling the C code,
(v) generating binary opcodes for the virtual AMPL stack
machine,
(vi) launching the external solver and executing the code
to compute the solution, and
(vii) writing back the results for the modeling environ-
ment.
AMPL and the Modelica implementations have to go
through basically the same steps during the solution pro-
cess of Example 3; the computational work to be done is
essentially the same for each modeling environment.

For those familiar with linear algebra: The problem
here is that tearing results in catastrophic fill-in (Duff
et al., 1986, Ch. 7). AMPL and the solver it in-
vokes, IPOPT (Wächter and Biegler, 2006) with MA27
from (HSL, 2017), avoid this by not perform tearing, and
by using proper sparse data structures and sparse linear al-
gebra. As far as we can tell, the state-of-the-art Modelica
implementations seem to perform O(n2) or more opera-
tions, and this can hurt performance already on relatively
small problems. See also (Duff et al., 1986, Ch. 5.8) re-
garding the so-called O(n2) traps.

Wide border due to trying to create a maxi-
mum-weight diagonal. Let A denote the coefficient ma-
trix of (11). The reason why tearing failed in Section 3.1
is that the largest entries of A became off-diagonal after A
was ordered to BLTF, and the elimination happened along
the diagonal. The straightforward attempt to fix this is
to mimic complete pivoting (Golub and van Loan (1996,
Ch. 3.4.8)): We order A into BLTF but instead of hav-
ing a minimal border width, our objective is to have a
maximum-weight diagonal on the lower triangular part.
Indeed, such approaches were proposed in the past, see for
example Westerberg and Edie (1971a,b) and Gupta et al.
(1974).

Although creating a maximum-weight diagonal miti-
gates the issue of uncontrollable residual, it can easily
lead to the opposite problem, to the issue of the insensi-
tive residual: The example of Sec. 3.2 has a maximum-
weight diagonal and tearing fails on that easy problem.
Also, compare Fig. 1 with Fig. 2 where the subdiagonal

became maximum-weight. In short, creating a maximum-
weight diagonal can turn one failure mode to another.

However, there is another issue that creating a BLTF
with maximum-weight diagonal can also cause: It can
produce a BLTF whose border width is proportional to the
size of the input matrix, whereas if we minimized the bor-
der width, the border width would be a small constant,
independent of the problem size. Table 2 and Figure 3
show examples of such disastrous cases. Since the final
system (6) is dense, this means that tearing turns (in the
course of the elimination) a sparse problem into a dense
problem whose size is proportional to the original prob-
lem. Such dense problems become intolerably expensive
to solve as their size grows.

4 Failing due to a single elimination
step

In the previous section we discussed failure modes where
a sequence of eliminations led to the failure. In this sec-
tion we show additional examples where tearing fails due
to a single elimination step, because it leads to an unde-
fined operation (Sec. 4.1) or to a floating-point exception
(Sec. 4.2), or it is multivalued (Sec. 4.3). We comment on
the usual workaround as seen in the state-of-the-art Mod-
elica environments, and propose a novel and better alter-
native in Sec. 4.4.

4.1 Undefined elimination step
For the sake of demonstration let us assume that in an
elimination step in (3) we want to eliminate x3 from

x1− x2x3 = 0, (17)

so we rearrange (17) as

x3 :=
x1

x2
. (18)

However, this symbolic transformation is invalid if x2 = 0.
If x2 happens to be 0 during the iteration in the tear vari-
ables, eliminating x3 according to (18) would lead to di-
vision by zero, whereas the original equation (17) does
not suffer from this issue. It is not only division that is
problematic: Another example of this kind of failure is a
negative argument to the logarithm function during the it-
eration in the tear variables (when working over the set of
real numbers). In general, arguments outside the domain
of the functions involved lead to failure of traditional tear-
ing.

4.2 Floating-point exception in an elimination
step

Floating-point exceptions can easily occur in systems in-
volving an exponential. For example, let the tear variables
be x41 := 440 and x43 := 0.0, and the elimination steps are:

x42 := exp(x41 +273.15)
x44 := x42x43.

(19)

Session 6: Poster Session

DOI
10.3384/ecp17132353

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

357

Table 2. Unacceptably wide border when the matrix is ordered to BLTF with maximum-weight diagonal on the lower triangular
part.

Matrix Minimal border Border width with Pattern in

width max-weight diagonal Figure (3)

Tridiagonal 1 1
2 n top row

Pentadiagonal 2 2
3 n (not shown)

Arrowhead 1 n−1 bottom row

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1

3

5

7

9

11

13

15

17

19

18

16

14

12

10

8

6

4

2

1 3 5 7 9 11 13 15 17 19 18 16 14 12 10 8 6 4 2

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8 9 10

10

9

8

7

6

5

4

3

2

1

10 9 8 7 6 5 4 3 2 1

Figure 3. The left column shows the input matrices, the right column the corresponding matrices ordered to BLTF with maximum-
weight diagonal; black entries correspond to 10, gray entries to 1. The tridiagonal matrix of size n will have a border width n

2 (top
row). In the worst case, when the optimal ordering is the arrowhead matrix (bottom row), the border width is n−1.

Failure Modes of Tearing and a Novel Robust Approach

358 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132353

Unlike previously, the elimination steps are mathemati-
cally sound here. However, in 64-bit floating-point arith-
metic we get: x42 = inf and x44 = nan, where inf and
nan stand for infinity and not a number, see (IEEE 754).
The eliminations cannot be continued as x42 does not have
any correct significant digits, and x44 is not a number. Un-
fortunately, similar failures are not at all uncommon in
practice, especially with thermodynamic models.

Getting a floating-point exception due to a single elim-
ination step is an extreme case. More common is that the
error in the tear variables is amplified during a sequence
of elimination steps, as already discussed in Sections 3.1,
and this leads to an interaction between failure modes by
triggering a floating-point exception. For example, let us
assume that x41 is not a tear variable, but an eliminated
one, and the sequence of eliminations leading up to x41
yields the value 440 for x41 due to amplification of the er-
ror in the tear variables. This is similar to Example 1 of
Sec. 3.1 where the value of x20 was three orders of mag-
nitude off compared to the true value. In Example 1 it
was the residual that became uncontrollable, here it is a
floating-point exception that causes the ultimate failure.

4.3 Multivalued elimination step
In the equation

x2
1 +2x1x2−1 = 0, (20)

the elimination of x1 requires to solve this equation for x1.
However, there are two possibilities to perform this:

x1 =−x2 +
√

x2
2 +1 and x1 =−x2−

√
x2

2 +1. (21)

To continue the remaining eliminations, we would have to
know which solution for x1 will remain feasible, or con-
tinue with both possibilities for x1. If we ignore the fact
that the elimination step is multivalued, we either risk los-
ing solutions, or we risk that we continue with that value
for x1 that becomes infeasible in later eliminations. This
failure mode is simply ignored in state-of-the-art Model-
ica implementations, for example, “[the solver] hopefully
returns the solution closest to the guess value” (Dymola
User Manual, Ch. 8.9.2, p. 442); the emphasis is ours. If
we want to find all well-separated solutions of a nonlinear
system of equations, the kind of applications discussed in
(Baharev et al., 2016), this is unacceptable.

4.4 Avoiding floating-point exceptions, unde-
fined and multivalued elimination steps

The commonly seen workaround in state-of-the-art Mod-
elica tools to avoid undefined and multivalued elimina-
tion steps is to chose only linearly appearing variables
with non-zero coefficients as tear variables. Although this
workaround is easy to implement, it is also overly lim-
iting in the choice of the tear variables. This can lead
to a BLTF with unacceptably wide border and eventually
to very poor performance, because it excludes variables

that are perfectly eligible to become a tear variable. The
same holds for disallowing division by variables in an at-
tempt to avoid undefined elimination steps and floating-
point exceptions. As for multivalued eliminations, it is
left to chance whether a feasible solution is found or not,
see Sec. 4.3.

It is moderately easy to avoid single elimination steps
that can potentially become problematic depending on the
actual values of the variables involved: In Baharev et al.
(2017b) we proposed a novel pre-processing technique
based on interval arithmetic for recognizing single-step
eliminations that are guaranteed to be single-valued and
numerically well-behaved, irrespective of the actual value
of the variables involved. (Of course, it does not prevent a
sequence of eliminations from becoming ill-conditioned.)
Our approach offers more flexibility in the choice of tear
variables than the common workaround, and it does that
without risking any numerically troublesome operation.
The increased flexibility in the choice of the tears can help
to reduce the border width of the BLTF significantly. As
for multivalued elimination steps, nothing is left to chance
in our approach. For those familiar with linear algebra:
Our method is, in some sense, a nonlinear extension of
threshold pivoting (Duff et al., 1986, Ch. 4.4).

5 A novel robust approach
Staircase sampling was inspired by (Baharev and Neu-
maier, 2014), and proposed in (Baharev et al., 2016) to
mitigate all of the issues listed in Sections 3 and 4. A de-
tailed presentation of this method is outside the scope of
this paper; here we only sketch the basic idea.

The subsystem
g(y,z) = 0 (22)

in (5) is an underdetermined system of equations; it has
infinitely many solutions per our assumptions in the first
paragraph of Section 3. The aim of staircase sampling is
to find a small set of points such that every solution of (22)
is close to one of the points in this set. We call this small
set of points the sample: It is an approximation to a sam-
ple from the infinitely many solutions of (22). The sam-
ple is built up incrementally, similarly to the usual tearing
approach. Staircase sampling requires finite and reason-
able lower and upper bounds on all of the variables; this is
needed to allow an adequate sampling of the search space.

Staircase sampling starts with an entire set of val-
ues for z (a scattered set of points between the variable
bounds), and not just with a single value for z as in the
usual tearing approach. The algorithm then proceeds sim-
ilarly to the common tearing algorithms, and it performs
eliminations. A minor difference compared to (3) is that
staircase sampling solves small nonlinear systems in the
elimination steps, that is, it performs block elimination.
The fundamental difference is that after each block elimi-
nation step, the points are redistributed, and a subvector of
y is recomputed as necessary. The goal of this redistribu-
tion algorithm is to improve the spatial distribution of the

Session 6: Poster Session

DOI
10.3384/ecp17132353

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

359

points between the variable bounds: It discards points that
are too close, and it inserts new points where the search
space has become deserted. The details of the redistri-
bution algorithm are discussed in (Baharev et al., 2016).
Staircase sampling returns a set of scattered points, sat-
isfying (22) fairly well. In the current implementation,
those points are chosen that violate (5) the least, and they
are used as a starting point for large-scale sparse solvers
that target solving (1) directly. In the future, interpolation
and extrapolation on the complete set of scattered points
will be used to find starting points that approximately sat-
isfy (1).

5.1 How staircase sampling resolves the fail-
ure modes of traditional tearing

We now compare staircase sampling to traditional tearing
from the point of view of the the failure modes; the items
are enumerated in the same order as in Sections 3 and 4.

1. As shown in Sections 3.1 and 3.2, the error in our ini-
tial estimate for z can grow or attenuate exponentially
even in simple cases, ultimately leading to the failure
of traditional tearing. Staircase sampling breaks this
exponential change in the redistribution step; the er-
ror accumulation in an exponential rate is not possi-
ble.

2. As a consequence of the previous point, we can min-
imize the border width in our ordering algorithm
without having to worry about the exponential er-
ror growth rate during the eliminations. An exact
ordering algorithm to minimize the border width is
given in (Baharev et al., 2017b). Furthermore, stair-
case sampling works on so-called staircase triangular
matrices, and those matrices allow more flexibility in
the orderings than the BLTFs do.

3. A single block elimination step can also fail, how-
ever, this is usually not an issue. Staircase sampling
works with a set of points, losing some of them is
typically not a problem: New points are inserted af-
ter each block elimination step in the redistribution
algorithm, which makes up for the lost points.

4. Staircase sampling builds up a set of solution vec-
tors, not just a single solution vector at a time as in
traditional tearing. As a consequence, multivalued
elimination steps are handled naturally.

5.2 A note on plotting vectors in 2 dimensions
Here we explain how the starting points and solution vec-
tors will be plotted in the next section. We first select a
subset of the variables according to an appropriate rule;
for example, we select the methanol composition in each
device of the system that we are simulating. Let us as-
sume that we have selected a 20-dimensional subset. We
then draw each 20-dimensional vector as a curve in 2 di-
mensions by connecting the points (xi, i) (i = 1:20) with

adjacent indices, as shown in Fig. 4. The connecting lines
have no meaning, but allow us to plot without ambiguity
several vectors in one figure.

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

In
d
ex

i

−1 0 1 2 3
Value of xi

20
19
18
17
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1

In
d
ex

i

−1 0 1 2 3
Value of xi

Figure 4. Top: Plotting the 20-dimensional vector x in 2 dimen-
sions by placing a dot at (xi, i) for i = 1:20. Bottom: To indicate
that the dots belong to the same vector, we connect the neigh-
boring points with linear lines, and we may omit the dots. The
connecting lines have no meaning, but allow us to plot without
ambiguity several vectors in one figure.

5.3 Demonstration test case
The robustness of staircase sampling is demonstrated on a
particularly challenging distillation column. The model
and its parameters correspond to the Auto model (Güt-
tinger et al., 1997). The problem has three steady-state
solutions: two stable steady-state branches and an unsta-
ble branch. Both the inside-out procedure (Boston and
Sullivan, 1974) and the simultaneous correction procedure
(Naphthali and Sandholm, 1971) were reported to miss the
unstable steady-state solution, see (Vadapalli and Seader,
2001) and (Kannan et al., 2005). However, all steady-state
branches were computed either with the AUTO software

Failure Modes of Tearing and a Novel Robust Approach

360 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132353

0.0 0.2 0.4 0.6 0.8 1.0
Liquid phase mole fraction of methanol

20

15

10

5

1
S
ta
ge

in
d
ex

Figure 5. The three steady-state solutions (dashed gray lines)
and those generated starting points (solid black lines) that are the
closest to them. The gradient-based solver IPOPT converges to
the nearest solution when started from the corresponding starting
point.

package (Doedel et al., 1995) or with an appropriate con-
tinuation method (Güttinger et al., 1997; Vadapalli and
Seader, 2001; Kannan et al., 2005). The initial estimates
were carefully chosen with the ∞/∞ analysis (Bekiaris
et al., 1993; Güttinger and Morari, 1996), and special at-
tention was paid to the turning points and branch switch-
ing.

Our goal with staircase sampling was to find all solu-
tions automatically, without any initial estimates, without
relying on any domain-specific knowledge, and without
any human interaction. This goal was achieved: All three
steady-state solutions are found when IPOPT (Wächter
and Biegler, 2006) is run from the starting points gener-
ated with staircase sampling. Figure 5 shows the three
steady-state solutions of a 20-stage column and those
starting points that are the closest to them; see also
Sec. 5.2 as to how the solution vectors are plotted. For
a more detailed discussion of this example, and for other
examples see (Baharev et al., 2016).

Despite these promising results, the practical applica-
bility and limitations of staircase sampling are yet to be
explored, and a benchmark suite with real-world problems
would be needed for that.

Acknowledgement
The research was funded by the Austrian Science Fund
(FWF): P27891-N32. Support by the Austrian Research
Promotion Agency (FFG) under project numbers 846920
and 853930 is thankfully acknowledged.

References
B. Bachmann, P. Aronßon, and P. Fritzson. Robust initial-

ization of differential algebraic equations. In 1st Interna-
tional Workshop on Equation-Based Object-Oriented Model-

ing Languages and Tools (Berlin; Germany; July 30; 2007),
Linköping Electronic Conference Proceedings, pages 151–
163. Linköping University Electronic Press; Linköpings uni-
versitet, 2007.

A. Baharev, H. Schichl, and A. Neumaier. Decomposition meth-
ods for solving nonlinear systems of equations. Submit-
ted, 2017a. URL http://reliablecomputing.eu/
baharev_tearing_survey.pdf.

A. Baharev, H. Schichl, and A. Neumaier. Order-
ing matrices to bordered lower triangular form with
minimal border width. Submitted, 2017b. URL
http://reliablecomputing.eu/baharev_
tearing_exact_algorithm.pdf.

Ali Baharev and Arnold Neumaier. A globally convergent
method for finding all steady-state solutions of distillation
columns. AIChE J., 60:410–414, 2014.

Ali Baharev, Ferenc Domes, and Arnold Neumaier. A robust ap-
proach for finding all well-separated solutions of sparse sys-
tems of nonlinear equations. Numerical Algorithms, pages
1–27, 2016. doi:10.1007/s11075-016-0249-x. URL https:
//doi.org/10.1007/s11075-016-0249-x.

N. Bekiaris, G. A. Meski, C. M. Radu, and M. Morari. Multi-
ple steady states in homogeneous azeotropic distillation. Ind.
Eng. Chem. Res., 32:2023–2038, 1993.

J. F. Boston and S. L. Sullivan. A new class of solution methods
for multicomponent, multistage separation processes. Can. J.
Chem. Eng., 52:52–63, 1974.

Emanuele Carpanzano. Order reduction of general nonlinear
DAE systems by automatic tearing. Mathematical and Com-
puter Modelling of Dynamical Systems, 6(2):145–168, 2000.

François E Cellier and Ernesto Kofman. Continuous system sim-
ulation. Springer Science & Business Media, 2006.

R. de P. Soares and A. R. Secchi. EMSO: A new environment for
modelling, simulation and optimisation. In Computer Aided
Chemical Engineering, volume 14, pages 947–952. Elsevier,
2003.

E. J. Doedel, X. J. Wang, and T. F. Fairgrieve. AUTO94: Soft-
ware for continuation and bifurcation problems in ordinary
differential equations. Technical Report CRPC-95-1, Center
for Research on Parallel Computing, California Institute of
Technology, Pasadena CA 91125, 1995.

M. F. Doherty, Z. T. Fidkowski, M. F. Malone, and R. Taylor.
Perry’s Chemical Engineers’ Handbook, chapter 13, page 33.
McGraw-Hill Professional, 8th edition, 2008.

I. S. Duff, A. M. Erisman, and J. K. Reid. Direct Methods for
Sparse Matrices. Clarendon Press, Oxford, 1986.

Dymola User Manual. Volume 2. Dymola 2017 FD01, Dassault
Systèmes AB, 2016.

H. Elmqvist and M. Otter. Methods for tearing systems of equa-
tions in object-oriented modeling. In Proceedings ESM’94,
European Simulation Multiconference, Barcelona, Spain,
June 1–3, pages 326–332, 1994.

Session 6: Poster Session

DOI
10.3384/ecp17132353

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

361

Hilding Elmqvist. A Structured Model Language for Large Con-
tinuous Systems. PhD thesis, Department of Automatic Con-
trol, Lund University, Sweden, May 1978.

Robert Fourer, David M. Gay, and Brian Wilson Kernighan.
AMPL: A Modeling Language for Mathematical Program-
ming. Brooks/Cole USA, 2003.

Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1. Wiley-IEEE Press, 2004.

G. H. Golub and C. F. van Loan. Matrix Computations. The
Johns Hopkins University Press, Baltimore, USA, 3rd edi-
tion, 1996.

gPROMS. Process Systems Enterprise Limited, gPROMS.
https://www.psenterprise.com, 2017. [Online;
accessed 21-Jan-2017].

Prem K. Gupta, Arthur W. Westerberg, John E. Hendry, and
Richard R. Hughes. Assigning output variables to equations
using linear programming. AIChE Journal, 20(2):397–399,
1974.

T. E. Güttinger and M. Morari. Comments on “multiple steady
states in homogeneous azeotropic distillation”. Ind. Eng.
Chem. Res., 35:2816–2816, 1996.

T. E. Güttinger, C. Dorn, and M. Morari. Experimental study of
multiple steady states in homogeneous azeotropic distillation.
Ind. Eng. Chem. Res., 36:794–802, 1997.

HSL. A collection of Fortran codes for large scale scientific
computation., 2017. URL http://www.hsl.rl.ac.
uk.

IEEE 754. IEEE standard for floating-point arith-
metic. IEEE Std 754-2008, pages 1–70, Aug 2008.
doi:10.1109/IEEESTD.2008.4610935.

A. Kannan, M. R. Joshi, G. R. Reddy, and D. M. Shah. Multiple-
steady-states identification in homogeneous azeotropic distil-
lation using a process simulator. Ind. Eng. Chem. Res., 44:
4386–4399, 2005.

A. Kröner, W. Marquardt, and E.D. Gilles. Getting around con-
sistent initialization of DAE systems? Computers & Chemi-
cal Engineering, 21(2):145–158, 1997.

F. Magnusson and J. Åkesson. Symbolic elimination
in dynamic optimization based on block-triangular or-
dering. Optimization Methods and Software, 2017.
doi:10.1080/10556788.2016.1270944. Published online: 17
Jan 2017.

S. Mattsson, H. Elmqvist, and M. Otter. Physical system mod-
eling with Modelica. Control. Eng. Pract., 6:501–510, 1998.

S. E. Mattsson, M. Otter, and H. Elmqvist. Modelica hybrid
modeling and efficient simulation. In Decision and Con-
trol, 1999. Proceedings of the 38th IEEE Conference on, vol-
ume 4, pages 3502–3507, 1999.

L. M. Naphthali and D. P. Sandholm. Multicomponent sepa-
ration calculations by linearization. AIChE J., 17:148–153,
1971.

L. A. Ochel and B. Bachmann. Initialization of equation-
based hybrid models within OpenModelica. In 5th Interna-
tional Workshop on Equation-Based Object-Oriented Model-
ing Languages and Tools (University of Nottingham; Notting-
ham, UK; April 19, 2013), Linköping Electronic Conference
Proceedings, pages 97–103. Linköping University Electronic
Press; Linköpings universitet, 2013.

Online Supplement, 2017. URL https://github.com/
baharev/failure-modes-of-tearing.

C. C. Pantelides. The consistent initialization of differential-
algebraic systems. SIAM Journal on Scientific and Statistical
Computing, 9(2):213–231, 1988.

P. C. Piela, T. G. Epperly, K. M. Westerberg, and A. W. West-
erberg. ASCEND: An object-oriented computer environment
for modeling and analysis: The modeling language. Comput-
ers & Chemical Engineering, 15(1):53–72, 1991.

M. Sielemann and G. Schmitz. A quantitative metric for robust-
ness of nonlinear algebraic equation solvers. Mathematics
and Computers in Simulation, 81(12):2673–2687, 2011.

M. Sielemann, F. Casella, and M. Otter. Robustness of declar-
ative modeling languages: Improvements via probability-one
homotopy. Simulation Modelling Practice and Theory, 38:
38–57, 2013.

P. Täuber, L. Ochel, W. Braun, and B. Bachmann. Practical
realization and adaptation of Cellier’s tearing method. In
Proceedings of the 6th International Workshop on Equation-
Based Object-Oriented Modeling Languages and Tools,
pages 11–19, New York, NY, USA, 2014. ACM.

M. Tiller. Introduction to physical modeling with Modelica.
Springer Science & Business Media, 2001.

J. Unger, A. Kröner, and W. Marquardt. Structural analysis of
differential-algebraic equation systems — theory and appli-
cations. Computers & Chemical Engineering, 19(8):867–
882, 1995.

A. Vadapalli and J. D. Seader. A generalized framework for
computing bifurcation diagrams using process simulation
programs. Comput. Chem. Eng., 25:445–464, 2001.

R.C. Vieira and E.C. Biscaia Jr. Direct methods for consistent
initialization of DAE systems. Computers & Chemical Engi-
neering, 25(9–10):1299–1311, 2001.

A. Wächter and L. T. Biegler. On the implementation of an
interior-point filter line-search algorithm for large-scale non-
linear programming. Mathematical Programming, 106:25–
57, 2006.

A. W. Westerberg and F. C. Edie. Computer-aided design, Part 1
Enhancing Convergence Properties by the Choice of Out-
put Variable Assignments in the Solution of Sparse Equation
Sets. The Chemical Engineering Journal, 2:9–16, 1971a.

A. W. Westerberg and F. C. Edie. Computer-Aided Design,
Part 2 An approach to convergence and tearing in the solution
of sparse equation sets. Chem. Eng. J., 2(1):17–25, 1971b.

Failure Modes of Tearing and a Novel Robust Approach

362 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132353

Towards Adjoint and Directional Derivatives in FMI utilizing
ADOL-C within OpenModelica

Willi Braun1 Kshitij Kulshreshtha2 Rüdiger Franke3 Andrea Walther2 Bernhard Bachmann1

1FH Bielefeld University of Applied Science, {wbraun,bernhard.bachmann}@fh-bielefeld.de
2Universität Paderborn, kshitij@math.upb.de,andrea.walther@uni-paderborn.de

3ABB AG, Mannheim, ruediger.franke@de.abb.com

Abstract
Algorithmic differentiation has proven to be an efficient
method for evaluating derivative information for imple-
mentations of mathematical functions. In the context of
the Functional Mockup Interface (FMI) the reverse mode
of algorithmic differentiation shows immense promise.

FMI is increasingly used for model-based applications,
such as parameter estimation or optimal control. The pa-
per motivates the exploitation of algorithmic differentia-
tion and proposes an extension of FMI for the evaluation
of adjoint directional derivatives.

Attempts to interface algorithmic differentiation li-
braries with Modelica tools have been made. Instead of
generating code for the target language which is instru-
mented with algorithmic differentiation library API and
then compiled, in this new approach the intermediate rep-
resentation used by the library is generated directly. This
avoids compilation of the target language that often takes a
large fraction of the overall simulation time. It also avoids
model execution in order to create such an internal rep-
resentation at runtime. The initial results are presented
here.
Keywords: OpenModelica, ADOL-C, Derivatives, Jaco-
bian

1 Introduction
Algorithmic differentiation (Griewank and Walther, 2008)
is a technique to compute derivatives of functions ex-
pressed as computer programs efficiently, and accurately
upto machine precision (Griewank et al., 2012). Ruge
et al. (2014) first investigated the use of the algorith-
mic differentiation tool ADOL-C (Walther and Griewank,
2012) in conjunction with OpenModelica (Fritzson et al.,
2006). ADOL-C is designed for the C++ programming
language and uses operator overloading to create an inter-
nal representation of the computation, called a trace, when
a program instrumented with the datatype adouble is exe-
cuted. In Ruge et al. (2014) such instrumented code writ-
ten in C++ was generated in addition to the usual model
code for the C-Runtime and was compiled and linked with
the ADOL-C library in addition to the C-Runtime Library
of OpenModelica.

In this work we endeavoured to generate the trace for

the use by the ADOL-C library to compute derivatives di-
rectly from within the OpenModelica compiler. Since the
compiler has all the required information about the com-
putation of the model it can present this information in the
manner we need, without having to generate C++ code
and executing it. On the other hand the ADOL-C library
did not have any other mechanism for creation the inter-
nal data structures associated with a trace, other than ex-
ecuting C++ code instrumented with the datatype adouble.
The challenge was therefore two-fold: firstly to teach the
ADOL-C library to accept a trace in another format, and
secondly to generate this format from the OpenModelica
compiler while processing the model.

This paper is organized as follows: Section 2 outlines
the motivation for the exploitation of algorithmic differ-
entiation in FMI. Further more it presents a proposal for
an extension of FMI offering the evaluation of adjoint di-
rectional derivatives. The needed details of algorithmic
differentiation as well as the implementation of ADOL-C
are described in section 3. Whereas section 4 focuses on
the implementation work in OpenModelica. Finally, the
first results are shown in section 5.

2 Adjoint directional derivatives in
FMI

FMI emerged as a new standard resulting from the ITEA2
project MODELISAR, in 2010. The standard is a response
to the industrial need to connect different environments for
modeling, simulation and control system design. Com-
monly, different tools are used for different applications,
whereas simulation analysis at the system integration level
requires tools to be connected. FMI provides the means to
perform such integrated simulation analysis.

FMI specifies an XML format for model interface in-
formation and a C API for model execution. The XML
format, specified by an XML schema, contains informa-
tion about model variables, including names, units and
types, as well as model meta data. The C API, on the other
hand, contains C functions for data management, e.g., set-
ting and retrieving parameter values, and evaluation of the
model equations. The implementation of the C API may
be provided in source code format, or more commonly as
a compiled dynamically linked library.

DOI
10.3384/ecp17132363

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

363

Starting from version 2.0, the Functional Mock-up In-
terface (FMI) is well suited to hook Modelica models to
numerical solvers for model-based applications, such as
parameter estimation or optimal control (Franke et al.,
2015). This way numerical routines can focus on the solu-
tion process, while FMI abstracts implementation details
of the model. It is likely that such applications of FMI will
increase. FMI should provide appropriate model deriva-
tives.

Consider the solution of a least squares problem for pa-
rameter estimation as example. A general model has the
form

vunknown = h(vknown,vrest), (1)

h : RnKnown ×RnRest → RnUnknown.

The task is to obtain nKnown parameters such that a sum
of squared residuals for nUnknown model outputs y and
k = 1, . . . ,K given data points yk is minimized:

R =
K

∑
k=1

‖yk −h(vknown,vrest,k)‖2 → min
vknown

. (2)

The solution must fulfill the necessary condition

∂R
∂vknown

= zeros(nKnown) = (3)

−2
K

∑
k=1

[
yk −h(vknown,vrest,k)

] ∂h(vknown,vrest,k)

∂vknown
.

The solution process, for instance applying Newton’s
method, involves the successive computation of (3), in-
cluding model derivatives.

The existing API of FMI 2.0 provides the function
fmi2GetDirectionalDerivative to obtain a column of the Jaco-

bian matrix ∂h(vknown,vrest)/∂vknown or a linear combina-
tion of columns of the Jacobian matrix. One computation
of directional derivatives gives:

∆vunknown =
∂h(vknown,vrest)

∂vknown
∆vknown. (4)

The signature of the API function is:

f m i S t a t u s f m i 2 G e t D i r e c t i o n a l D e r i v a t i v e (
fmiComponent c ,
c o n s t f m i 2 V a l u e R e f e r e n c e vUnknown_ref [] ,
s i z e _ t nUnknown ,
c o n s t f m i 2 V a l u e R e f e r e n c e vKnown_ref [] ,
s i z e _ t nKnown ,
c o n s t fmi2Rea l dvKnown [] ,
fmi2Rea l dvUnknown [])

The computation of (3) requires K × nKnown calls to
fmi2GetDirectionalDerivative . This is inefficient if multiple

parameters shall be estimated (nKnown > 1).
This is why the FMI interface should be extended with

a new function fmi2GetAdjointDerivative , along with a ca-
pability flag providesAdjointDerivatives . The new function

computes:

∆vknown =

(
∂h(vknown,vrest)

∂vknown

)T

∆vunknown. (5)

It has the signature:

f m i S t a t u s f m i 2 G e t A d j o i n t D e r i v a t i v e (
fmi2Component c ,
c o n s t f m i 2 V a l u e R e f e r e n c e vUnknown_ref [] ,
s i z e _ t nUnknown ,
c o n s t f m i 2 V a l u e R e f e r e n c e vKnown_ref [] ,
s i z e _ t nKnown ,
c o n s t fmi2Rea l dvUnknown [] ,
fmi2Rea l dvKnown [])

The new function allows to obtain one row of the Jaco-
bian matrix, or a linear combination of rows of the Ja-
cobian matrix, with only one model evaluation in reverse
mode of algorithmic differentiation. The computation of
(3) becomes significantly more efficient. Only K calls to
fmi2GetAdjointDerivative are needed, one call for each data
point k and arbitray numbers of nKnown parameters or
nUnknown model outputs, when passing the values of the
residuals as seeds

∆vunknown,k = yk −h(vknown,vrest,k). (6)

3 Algorithmic differentiation using
ADOL-C

In order to apply algorithmic differentiation (AD) on a
program we model the program structure as a sequence of
instructions, which perform specific mathematical func-
tions. This is called an evaluation procedure in Griewank
and Walther (2008). The evaluation procedure can be then
evaluated forwards or reverse to compute the derivatives
in the so called forward mode and reverse mode of AD.
Griewank and Walther (2008, Chapter 3 and 4) describe
this process in great detail and give bounds on the com-
pexity and memory requirements. The main import of the
complexity analysis is that the reverse mode is very well
suited to compute gradient vectors for functions in much
less complexity than they can be computed otherwise, ei-
ther numerically or symbolically. The same applies to
computing rows of the Jacobian matrix.

ADOL-C implements the AD process by overloading
the operators and mathematical functions in the C++ pro-
gramming language for a special datatype adouble. Such
supported operations are called elementary operations.
Each of these overloaded operators and functions when
executed records the elementary operation currently be-
ing performed, the locations of the operands in work-
ing memory, and the locations of the results in working
memory. This record is created normally on runtime,
when a program, instrumented with the ADOL-C headers,
datatypes and some instructions on when to begin and end
the recording, is executed. ADOL-C is then able to use
this record, called a trace, to evaluate function values, first

Towards Adjoint and Directional Derivatives in FMI utilizing ADOL-C within OpenModelica

364 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132363

and higher order derivatives in forward and reverse mode
at any given point of evaluation. The trace can be made
persistent even after the program has terminated. Tradi-
tionally this trace is stored in binary format as raw data
in three different files, one for the list of operations, one
for the list of operand locations, and one for storing any
constant values that might occur. The organisation of the
trace is as follows. For each operation a character to rep-
resent it is stored. Based on what the operation actually is,
it will requires a number of operands, which are stored as
unsigned integer locations inside a data buffer, followed
by the location, where the result of the operation will be
stored. In some operations a constant may be involved,
this value is stored as is.

In the work of Ruge et al. (2014) the Modelica mod-
els were translated into C++ code instrumented with the
ADOL-C headers and datatypes, using a mechanism sim-
ilar to the generation of C code for the model in Open-
Modelica. The drawback was that compilation linking and
one-time execution of this C++ code was quite slow due
to the use of operator overloading, compared to the gen-
erated C code. It was suggested, that since OpenModelica
was already analysing the model in great detail, could we
not create the trace of the model directly instead of gener-
ating C++ code.

/ / d e f i n e i n d e p e n d e n t
{ op : a s s i g n _ i n d l o c : 0 }
{ op : a s s i g n _ i n d l o c : 1 }
/ / o p e r a t i o n s
{ op : mul t_d_a l o c : 0 l o c : 4 v a l :−0 .25 }
{ op : d i v _ a _ a l o c : 1 l o c : 0 l o c : 5 }
{ op : p l u s _ a _ a l o c : 4 l o c : 5 l o c : 6 }
{ op : p l u s _ d _ a l o c : 6 l o c : 3 v a l : 3 . 0 }
{ op : log_op l o c : 0 l o c : 4 }
{ op : mul t_d_a l o c : 4 l o c : 5 v a l :−3 .0 }
{ op : p l u s _ a _ a l o c : 1 l o c : 5 l o c : 2 }
/ / d e f i n e d e p e n p e n d e n t
{ op : a s s i g n _ d e p l o c : 2 }
{ op : a s s i g n _ d e p l o c : 3 }
/ / d e a t h _ n o t
{ op : d e a t h _ n o t l o c : 0 l o c : 8 }

Figure 1. An example of a texual trace for ADOL-C

OpenModelica is able to generate textual information
rather than binary. Therefore the first step required for
creating a trace directly was to allow a textual represen-
tation of the trace and that ADOL-C understands such a
textual representation. A simple ASCII representation of
the operations, locations and constants was devised with
some delimiters to make parsing easier. Each elemen-
tary operation supported by ADOL-C is given a textual
name stored with the keyword "op:". The locations of
all the operands inside the work buffer in decimal nota-
tion follow this and then the location of the result in the
work buffer, each of these using the keyword "loc:". At
the end any required constant for the particular operation
is given in decimal floating point notation using the key-

word "val:". Braces separate one such record from an-
other. This textual representation is a natural extension of
the binary representation for ADOL-C traces, which has
long been a part of the ADOL-C public API. An ADOL-C
driver function can now be used to convert any traditional
binary trace to this textual representation and store it in a
file. This format will be made a part of the public API of
ADOL-C in the next feature release. An example of a file
containing such a textual trace is shown in Figure 1.

A driver was added to ADOL-C to be able to read and
parse a text file in ASCII notation with the above infor-
mation using regular expressions to match the format de-
scribed above and convert it to the traditional binary nota-
tion at runtime. Anything not matching the defined regular
expressions is considered a comment and ignored.

4 Generation of Operation Lists
In the first step of the compilation process in Modelica
tool, a model is transformed by the front-end into a flat
representation, consisting essentially of lists of variables,
functions, equations and algorithms. In this phase, a basic
structural analysis of the differential-algebraic equations
(DAE) is performed to detect the states and discrete vari-
ables and eliminate alias variables. The basic step of a
Modelica compiler is to causalize the DAE and transform
into ordinary differential equations (ODE). Then the target
code is generated from the optimized system in order to
perform the simulation. For the simulation the generated
code needs to be compiled by the target language compiler
and linked with the simulation runtime library. The default
target language of the OpenModelica Compiler (OMC) is
C and the GNU C compiler is used as default C com-
piler. In order to generate operation lists by OMC, which
are readable by ADOL-C, the code generation module of
OMC has been extended by a new target, the ADOL-C tar-
get. Basically the operation lists are generated by travers-
ing the equation expressions and for every mathematical
operation creating the corresponding ADOL-C operation.
This is straight forward for assignments thus the OMC
has transformed all equations into assignments due to the
causalization. The implicit equations of the strong con-
nected components require special treatment (Griewank
and Walther, 2008). Furthermore, the OpenModelica sim-
ulation runtime is linked with the ADOL-C library in order
to enable the usage of the ADOL-C capability during the
simulation process. At the current status of the implemen-
tation we evaluate the sparse Jacobian for the integration
process. One main advantage over the former approach is
that the compilation of the target language can be avoided
by processing the operation lists directly.

5 First Results
The first results to test the performance of the approach
presented here are based on benchmark models from the
ScalableTestSuite library (Casella, 2015). In the current
implementation status the sparse jacobian evaluation used

Session 6: Poster Session

DOI
10.3384/ecp17132363

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

365

by the time integration method ida is used for evalua-
tion. In the tables 1 and 2 all numbers are produced
by using the model ScalableTestSuite.Elementary.SimpleODE.
Models.CascadedFirstOrder.

Table 1. Evaluation time of the Jacobian. Compare OMC sym-
bolic vs. ADOL-C

N ADOL-C OM Symbolic
100 0.000480442 0.000156783
200 0.000830835 0.000413299
400 0.00157551 0.000952923
800 0.00294508 0.00209405
1600 0.00676732 0.00536921
3200 0.0141433 0.012003
6400 0.0390204 0.0310391
12800 0.0771545 0.0756394
25600 0.1532143 0.1621433

In table 1 the time of one Jacobian evaluation is stated,
calculated by totalTime

N , where totalTime is the time that
is needed to evaluate the Jacobian over the entire simu-
lation horizon and N is the number of evaluations done.
One can see that the evaluation time for the given model
is quite equal between the generated symbolic Jacobian by
OMC and the evaluation by ADOL-C. Note that ADOL-C
is performing additional work (e.g. memory allocation
and colouring) in the first call.

Table 2. Generation performance of Jacobian. Compare OMC
symbolic vs. ADOL-C

ADOL-C OM Symbolic
N generate read generate compile

100 0.00046 0.01475 0.015
200 0.00089 0.02879 0.032
400 0.00178 0.05794 0.059
800 0.00372 0.11320 0.119 0.03
1600 0.00860 0.22766 0.244 0.14
3200 0.01749 0.45620 0.523 0.38
6400 0.03702 0.91150 1.229 0.48
12800 0.07571 1.82352 2.569 1.01
25600 0.15910 3.60362 5.459 1.65

The performance of generating the appropriate Jaco-
bian is stated in table 2. These timings are divided in two
stages. For ADOL-C it is time for the generation of the
operation list, and the time to read them at runtime. For
the symbolic Jacobian generated by OMC it is the genera-
tion of directional derivative code and the additional time
to compile the generated C code. This result shows the
linear complexity of the new approach presented in this
paper.

6 Conclusion and Future work
This paper presents a new approach to generate a model
evaluation trace for algorithmic differentiation, where no

compilation of the model code is needed any more. The
advantage of this approach is not only good performance,
moreover it gives access to a feature-rich AD tool (e.g.
higher-derivative, reverse mode). Furthermore, an exten-
sion of FMI involving adjoint derivatives is proposed and
motivated by optimization-based applications, where such
derivatives are mandatory. The implementation of this ex-
tension can be achieved by the approach described here.
However, this requires some more implementation work,
since the current implementation does not yet support all
Modelica language features. The most important and chal-
lenging aspect is the treatment of implicit equations. In fu-
ture the authors will continue working on supporting more
language features with the approach described. Further,
the here proposed FMI extension will be implemented and
demonstrated with a complex example.

7 Acknowledgments
The presented work is part of the PARADOM project, that
is funded by the Federal Ministry of Education and Re-
search (BMBF) under the support code 01IH15002.

References
F. Casella. Simulation of large-scale models in Mod-

elica: State of the art and future perspectives. In
P. Fritzson and H. Elmqvist, editors, Proceedings 11th

International Modelica Conference, pages 459–468, Ver-
sailles, France, Sep 21–23 2015. The Modelica Association.
doi:10.3384/ecp15118459.

R. Franke, M. Walther, N. Worschech, W. Braun, and B. Bach-
mann. Model-based control with FMI and a C++ runtime for
Modelica. In Proceedings of the 11th International Modelica
Conference. Modelica Association, Paris, France, Sep. 2015.

P. Fritzson, P. Aronsson, H. Lundvall, K. Nyström, A. Pop,
L. Saldamli, and D. Broman. Openmodelica - a free
open-source environment for system modeling, simulation,
and teaching. In Computer Aided Control System De-
sign, 2006 IEEE International Conference on Control Ap-
plications, 2006 IEEE International Symposium on Intel-
ligent Control, 2006 IEEE, pages 1588 –1595, oct. 2006.
doi:10.1109/CACSD-CCA-ISIC.2006.4776878.

A. Griewank and A. Walther. Principles and Techniques of Al-
gorithmic Differentiation, Second Edition. SIAM, 2008.

A. Griewank, K. Kulshreshtha, and A. Walther. On the numer-
ical stability of algorithmic differentiation. Computing, 94
(2-4):125–149, 2012.

V. Ruge, W. Braun, B. Bachmann, A. Walther, and K. Kul-
shreshtha. Efficient implementation of collocation meth-
ods for optimization using openmodelica and ADOL-C. In
H. Tummescheit and K.-E. Årzén, editors, Proceedings of the
10th Modelica Conference, pages 1017–1025, Lund, Sweden,
2014. Modelica Assiciation and Lund University Electronic
Press. doi:10.3384/ECP140961017.

A. Walther and A. Griewank. Getting started with ADOL-C. In
U. Naumann and O. Schenk, editors, Combinatorial Scientific
Computing, pages 181–202. Chapman-Hall, 2012.

Towards Adjoint and Directional Derivatives in FMI utilizing ADOL-C within OpenModelica

366 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132363

PDEModelica and Breathing in an Avalanche

Jan Šilar*+, Filip Ježek#, Jiří Kofránek+

+ Institute of Pathological physiology, First Faculty of Medicine, Charles University, Prague, Czech republic
Department of Cybernetics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
* Corresponding Author Institute of Pathological physiology, U nemocnice 5, Praha 2 128 00, Czech Republic,
jansilar@jansilar.cz

Abstract

This paper presents an updated version of Modelica
language extension for partial differential equations
(PDE) called PDEModelica and implementation of its
support in OpenModelica. This support is limited to
1-dimensional problems and the first and second partial
derivatives. PDEModelica is introduced by a string
equation model and later by a real life model of
respiration during a snow burial. This model describes
CO2 advection and diffusion in snow described by
advection-diffusion PDE.

PDEModelica, PDE, avalanche survival

Introduction
PDEModelica is a Modelica language extension for
partial differential equations (PDE). It was designed by
Levon Saldamli (Saldamli, 2006). This original
extension is currently not supported by any tool. We
focused on a subset of this extension for 1-dimensional
models only and introduced several changes and
enhancements. Support for the renewed extension has
been implemented in OpenModelica. We present the
extension using a simple string equation model at first
and then a real-life problem of modelling respiration
during a snow burial.

In the past four decades, avalanches were responsible for
around 100 deaths annually in the European Alps only
(Techel et al., 2016). When a victim is buried by an
avalanche he or she repetitively inspires previously
expired air as the motion of air in snow is restricted. The
body metabolism consumes O2 and produces CO2 and
thus the concentration of O2 decreases and the
concentration of CO2 increases in the inspired and
expired air. The concentrations of O2 and CO2 are
partially restored by diffusion. But this process is not
fast enough and if the victim is not rescued within
approximately 15 minutes he or she may die of

asphyxiation, i.e. a lack of oxygen supply to the cells.
Asphyxia could be caused by a variety of situations,
including excess of CO2. More than 75 % of deaths in an
avalanche are caused by asphyxia (McIntosh et al.,
2007). However the content of oxygen in snow should
satisfy the body needs – Radwin (Radwin et al., 2001)
proved, that volunteers buried in snow with the removal
of the expired gas did not have any problems even after
an hour long burial. In contrast, no removal resulted in
serious hypercapnia (i.e. an excessive amount of carbon
dioxide in blood) within 10 minutes. In this paper, we
focus on modeling of CO2 diffusion only, as the O2 is
then a very similar problem.

Modeling task

It is assumed, that a potential cavity around the mouth
and the nose significantly increase the chance of
survival. Roubík et al. carried out an experiment (Roubík
et al., 2015) where the volunteers were breathing
through a tube whose end opened into a cavity in snow
of various volumes. They proved that the size of the
cavity has a significant impact on the concentration of
O2 and CO2 in the inspired and expired air. There are at
least two possible mechanisms causing this effect. First,
the small cavity has a small surface of the air-snow
boundary and so the resistance for the air flux is high.
This causes an increase in the work of breathing, an
increase in the metabolism rate and thus an increase in
O2 consumption and CO2 production. Second, the
expired air is mixed with more fresh air in the cavity and
then the inspired air is also more fresh. Both
mechanisms probably take place in the process. The
question is which one dominates. We were asked to help
with the investigation using a model.

DOI
10.3384/ecp17132367

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

367

Methods

PDEModelica

Let us introduce all new language elements of
PDEModelica on the advection equation model:

1 model advection "advection equation"
2 parameter Real pi =

Modelica.Constants.pi;
3 parameter DomainLineSegment1D omega(L =

1, N = 100);
4 field Real u(domain= omega);
5 initial equation
6 u = sin(2*pi *omega.x);
7 equation
8 der(u) + pder(u, x) = 0 indomain omega;
9 u = 0 indomain omega.left;
10 u = extrapolateField(u)

indomain omega.right;
11end advection;

● The Domain omega represents the geometrical
domain where the PDE holds. The domain is
defined using the built-in record
DomainLineSegment1D (line 3). This
record contains among others L – the length of
the domain, N – the number of grid points, x –
the coordinate variable and the regions left,
right and interior, representing the left
and right boundaries and the interior of the
domain.

● The field variable u is defined using a new
keyword field (line 4). The domain is a
mandatory attribute to specify the domain of
the field.

● The indomain operator specifies where the
equation containing the field variable holds. It
is utilised in the initial conditions (IC) of the
fields, in the PDE and in the boundary
conditions (BC). The syntax is

equation indomain domain.region
If the .region is omitted, .interior is the
default.

● The IC of the field variable u is written using
an expression containing the coordinate
variable omega.x. (line 6).

● The PDE contains a partial space derivative
written using the pder operator (line 8). Also
the second derivative is allowed (not in this
example), the syntax is e.g. pder(u,x,x). It
is not necessary to write e.g. omega.x in
pder, even though x is a member of omega.

● The BC is on line 9. The current limitation is
that BCs may be written only in terms of
variables that are spatially differentiated.

● All fields that are spatially differentiated must
have at each boundary either BC or
extrapolation. This extrapolation should be
done automatically by the compiler, but this has
not been implemented yet. The current
workaround is the usage of the
extrapolateField() operator directly in
the model.

Comparison to the original version of
PDEModlica
Our extension is restricted to 1-dimensional models
only. This allows much simpler domain definition using
the built-in DomainLineSegment1D record
compared to the original extension which enables
arbitrary geometry domain definition in multiple
dimensions.

pder() is used instead of der() for partial
derivatives. A shortcut to leave out the full qualification
of the x coordinate is established. This was probably
intended in the original extension also, but was not
explicitly mentioned.

indomain is used instead of in as it is suggested in
(Fritzson, 2015) because in is already utilized in for
loops. indomain is mandatory not only in the BCs but
also in the ICs and the PDEs here.

Field literals are written as expressions containing the
coordinate variable x and thus the special syntax for the
field literal constructor of the original extension was
suppressed.

Solution process

The PDEs are solved using the method of lines (MOL)
(Schiesser, 2012): during flattening of the model, the
fields are replaced by arrays and the space derivatives

PDEModelica and Breathing in an Avalanche

368 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132367

are replaced by finite differences (currently only the
central difference is implemented)

and thus the PDEs are converted into a system of ODEs.
This resulting system may be written in standard
Modelica and is solved by current OpenModelica
solvers. The combination of the central space difference
with an implicit Euler time solver results in a
backward-time centered-space (BTCS) scheme which is
a common finite difference method. The usage of the
trapezoid time solver results in the Crank-Nicolson
method (Strikwerda, 2004). Other time solvers may be
also successful, even though the resulting methods were
not investigated. A selection of a proper time solver is
important.

It is also substantial to select a proper time step, so that
the Courant–Friedrichs–Lewy (CFL) condition (Courant
et al., 1967) is fulfilled.

To enable PDEModelica in OpenModelica, the compiler
flag --grammar=PDEModelica must be set.

The features for the plotting fields (arrays) have not been
implemented in OpenModelica yet. We use Octave to
load the result file and plot the desired variables.

Model of breathing in snow

For the first stages of the research, the problem is
simplified into a gas flow to and from a spherical
snowball (see Figure 1). Due to small pressure
differences, the gas is modeled as incompressible. The
only significant pressure difference could occur at the
boundary between the cavity and the snow, but Roubík
et al. (Roubík et al., 2015) did experience only small
pressure differences.

The snow is a porous material, formed by ice and air.
The CO2 could flow and diffuse across the snow through
the air gaps. Given the ice density (916 kg/m3) and the
density of snow (100 - 400 kg/m3) the snow consists of
at least 55 % of air. Therefore, the air could penetrate
through the snow and mix with the air captured within
the snow. For simplification, we exclude the solubility in

ice and possible melted water. The gas has a volumetric
concentration of CO2, the O2 is omitted, but it follows
the same principles. The gas transport in snow is
modeled using the advection-diffusion equation.

Figure 1 – Model schematics. The organism is
producing CO2 in a constant rate and it is concentrating
in the lungs. The lungs expire to and inspire from a
cavity, in which the air is ideally mixed. The air flux is
given. The partial concentration of CO2 in the cavity is
drained by advection and diffusion through the snow.
The dead volume in the airways is omitted.

Advection-diffusion equation and its
formulation in PDEModelica

The advection-diffusion equation assuming the
incompressible gas flow is

where c is the concentration, u is the velocity of
advection and D is a diffusion coefficient. We express
this equation in the spherical coordinates. As our
problem is spherically symmetrical, all derivatives
except the derivatives in a radial direction are equal to
zero. Then we obtain

,

.

Session 6: Poster Session

DOI
10.3384/ecp17132367

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

369

 where r is the radius and q is a volumetric flow given by
the lungs. This equation contains two partial derivatives.
Using the principles described in the paragraphs above,
the formulation of the advection-diffusion equation in
PDEmodelica is written in the Code listing 1. The full
model of CO2 breathing is available online . 1

model sb1m
 (...)
 Real C_CS "concentration on cavity-snow
interface";
 DomainLineSegment1D omega(L = 0.5, N =
100, x0 = R_C) "x is actually r, center on
the left";
 field Real C_S(domain = omega)
"concentration of CO2 in snow";
(...)
//Left BC during exhalation, extrapolation
during inhalation
 C_S = if exhale then C_CS else
extrapolateField(C_S) indomain omega.left;
//The advection-diffusion equation
 der(C_S) + (q / (4 * pi * omega.x ^ 2)

- 2 * D_S / omega.x) * pder(C_S, x)
 - D_S * pder(C_S, x, x) = 0

indomain omega;
end sb1m;
Code listing 1: the advection-diffusion equation
formulation in PDEModelica. New language elements
are highlighted in purple.

Note, that the boundary conditions are switched with
extrapolation every breathing cycle as the flux direction
changes. This demonstrates the acausality of the
proposed approach.

Results
In the presented model, we use the arbitrary parameter
values to demonstrate the principles of CO2 distribution.
The exact identification of the values is a subject of
additional research. However, the resulting trends are
consistent with expectation and plausibility personally
confirmed by the authors of (Roubík et al., 2015).

1 https://github.com/jansilar/snowbreathing/

Figure 2 Concentration (fraction) in the cavity C_C (the
Cavity volume 1 L) is changing between the inhale and
the exhale.

Figure 3: Average concentration C_C (average over 4
full breathing periods) in the snow cavity in time for
various cavity sizes (V_C) at 15min.

The CO2 concentration in the cavity rises with each
expiration (Figure 2) and is rising towards an
equilibrium. However, when the concentration of CO2 is
about 2 % the victim feels respiratory stimulation (here
approx. 200s), at 6 % starts mental confusion (approx.
400s), followed by unconsciousness at 10% (approx.
800s) and later by death.

In Figure 3 we investigate the influence of the cavity
size - the larger cavity, the longer the subject could
survive (i.e. the lower cavity CO2 concentration). If the
volume of the cavity is smaller than 1L, CO2
concentration does not change significantly. The size of
the cavity has a huge impact from 1 to 5 L, but then the
response becomes nearly linear. Unfortunately, the CO2
concentration remains at unsatisfactory high levels.

PDEModelica and Breathing in an Avalanche

370 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132367

Figure 4 The concentration gradient dependable on the
radius of the snowball during the first exhale (a half of
breath period), the cavity volume 1 L.

Figure 5 The concentration gradient dependable on the
radius of the snowball during a longer periods, at the
end of the breath period (i.e. after the exhale), the cavity
volume 1 L.

We can see advection and diffusion of CO2 into snow
during the first breath out close to the cavity (Figure 4).
Thanks to the r2 attenuation of advection velocity, the
CO2 concentration is virtually zero within a few
centimeters of the snow. Note that for long time periods
the CO2 proceeds further. Despite, the concentration is
negligible in around 50 cm as the distribution volume
grows rapidly with the radius (Figure 5).

Solution process performance
The model was translated and simulated several times
with a different number of grid points. The trapezoid
solver was used. The time step was chosen
proportionally to the space step. The stop time (model
time) was 5 minutes. The translation and simulation time
and the size of the model binary file are in Table 1.

N Step Trans Simul Size

50 0.02 3,5 8,2 252

100 0.01 4,9 13,7 418

200 0.005 5,5 39,2 759

500 0.002 12,2 224,9 1843

Table 1 Performance comparison: N – number of grid
points, step – the time step (s), trans – the time of
translation (s), simul – the time of simulation (s), size –
the size of the model binary (kB).

The simulation time increase substantially with
increasing number of grid points. The results seem
satisfying even for the simulation using 100 grid points
(plotted). On the other hand this results were not verified
by comparison with a different PDE simulation tool.

Discussion

The snow-breathing model
A mathematical model could help to study the
countermeasures to avoid asphyxiation. This work
supports the usage of devices for CO2 removal and
explains the underlying processes with the goal to
contribute to their construction. Some CO2 removal
devices already exists, including a tube device to divert
the CO2-rich exhale (Margid et al., 1998), but additional
data are needed to prove their efficiency.

Changes in the human metabolism as a consequence of
the increasing hypercapnia and hypoxia during the snow
burial are not included in the model. Thus the presented
model cannot describe the real process of breathing into
snow. Development of the full model that includes the
human physiology as well is the aim of the subsequent
work. The current model has been greatly simplified by
omitting oxygen, dead space in airways, solubility of
CO2 in other body compartments and in water contained
in snow and also rising breath work, which produces
more CO2. Thanks to Modelica implementation, it is
planned to connect it directly with the most extensive
open model of human physiology, the Physiomodel
(Mateják and Kofránek, 2015).

The current parameters of the model are set arbitrarily
and are not confirmed by the measurements. Therefore,
the results may be taken as demonstrative only.

Session 6: Poster Session

DOI
10.3384/ecp17132367

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

371

Alternative to PDEModelica
Instead of the presented solution, some other methods of
using the PDEs in Modelica exists. One could make a
usage of creating the PDEs in some other tool and then
import them via FMI (Stavåker and Fritzson, 2014). For
seamless Modelica integration, a dedicated library
PDELib (Dshabarow et al., 2007) was developed.
However, as it is not maintained, the examples are not
working in the recent OpenModelica and Dymola
versions.

We could have employed a manual PDE discretization
and thus converting the PDEs into an ODE or DAE
system. However using the manual discretization is in
conflict with Modelica declarative philosophy. Utilising
the language extension the modeller may focus on the
model itself rather than its numerical solution. Any
model written using the extension is more
understandable and maintainable compared to using the
manual discretization.

Conclusion
The presented model of breathing while buried in an
avalanche has several limitations. The main purpose of
this contribution was to demonstrate the ability of
PDEModelica to solve PDE models. This enhancement
is documented on the advection equation and then the
advection-diffusion equation modelling breathing in
snow after the avalanche burial. PDEModelica was able
to successfully express these example models and the
extended OpenModelica was able to solve them.
Nevertheless the project is not finished and more work
should be done. Automatic extrapolation on boundaries
must be implemented. Both PDEModelica language
extension and its implementation in OpenModelica have
to be yet tested thoroughly on several different models
and by comparison of results with reference PDE
simulation tools.

References

Courant, R., Friedrichs, K., Lewy, H., 1967. On the Partial
Difference Equations of Mathematical Physics. IBM J.
Res. Dev. 11, 215–234.

Dshabarow, F., Cellier, F.E., Zimmer, D., Dshabarow, F.,
Com, C., Ch, I.E., 2007. Support for Dymola in the
modeling and simulation of physical systems with
distributed parameters. In: Proceedings of the 6th
International Modelica Conference. pp. 683–690.

Fritzson, P., 2015. Principles of Object-Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical

Approach. John Wiley & Sons.
Margid, J., Beidleman, N., Harmston, C., 1998. O2 and CO2

levels with the Black Diamond AvaLung during human
snow burials lasting up to one hour. Proceedings of the.

Mateják, M., Kofránek, J., 2015. Physiomodel - an integrative
physiology in Modelica. In: 2015 37th Annual
International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC).
ieeexplore.ieee.org, pp. 1464–1467.

McIntosh, S.E., Grissom, C.K., Olivares, C.R., Kim, H.S.,
Tremper, B., 2007. Cause of death in avalanche fatalities.
Wilderness Environ. Med. 18, 293–297.

Radwin, M.I., Grissom, C.K., Scholand, M.B., Harmston,
C.H., 2001. Normal oxygenation and ventilation during
snow burial by the exclusion of exhaled carbon dioxide.
Wilderness Environ. Med. 12, 256–262.

Roubík, K., Sieger, L., Sykora, K., 2015. Work of Breathing
into Snow in the Presence versus Absence of an Artificial
Air Pocket Affects Hypoxia and Hypercapnia of a Victim
Covered with Avalanche Snow: A Randomized Double
Blind Crossover Study. PLoS One 10, e0144332.

Saldamli, L., 2006. PDEModelica A High-Level Language for
Modeling with Partial Differential Equations (PhD
Thesis.). Linkopings universitet.

Schiesser, W.E., 2012. The Numerical Method of Lines:
Integration of Partial Differential Equations. Elsevier.

Stavåker, K., Fritzson, P. et al, 2014. PDE Modeling With
Modelica Via FMI Import Of Hiflow3 C++ Components
With Parallel Multi-core Simulations. Proceedings of the
55th Scandinavian Conference on Simulation and
Modeling.

Strikwerda, J.C., 2004. Finite Difference Schemes and Partial
Differential Equations. SIAM.

Techel, F., Jarry, F., Kronthaler, G., Mitterer, S., Nairz, P.,
Pavšek, M., Valt, M., Darms, G., 2016. Avalanche
fatalities in the European Alps: long-term trends and
statistics. Geogr. Helv. 71, 147–159.

PDEModelica and Breathing in an Avalanche

372 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132367

Multirotor Aerial Vehicle modeling in Modelica

Muhamed Kuric1 Nedim Osmic1 Adnan Tahirovic1

1Department of Automatic Control and Electronics
Faculty of Electrical Engineering

University of Sarajevo
Zmaja od Bosne bb, 71000 Sarajevo, Bosnia and Herzegovina

{muhamed.kuric, nedim.osmic, adnan.tahirovic}@etf.unsa.ba

Abstract
This paper presents a generalized Multirotor Aerial Ve-
hicle (MAV) modeling framework which includes rigid
body dynamics, gyroscopic effect and motor dynamics.
We illustrate how this model can be used to derive any
MAV platform constructed with an arbitrary number of ro-
tors by using the quadrotor case as an example. Based on
this result, we design the first Modelica-based MAV sim-
ulator. We validate the proposed design by using a simple
altitude and attitude stabilization control system through a
Modelica simulation setup.
Keywords: Multirotor Aerial Vehicle, Modeling, Modelica

1 Introduction
Technological advancements in recent years, including the
miniaturization in battery, sensor and actuation technolo-
gies, as well as the availability of low cost high perfor-
mance computing boards have enabled the genesis of in-
telligent autonomous flying machines. The most popular
class of this machines are the so-called Multirotor Aerial
Vehicles (MAVs) which represent motorized rotorcrafts
that have favourable dynamical properties and can achieve
small geometries. MAVs and especially the quadrotor
configuration are now the de facto standard research plat-
forms for aerial robotics with many potential applica-
tions including search and rescue in indoor and outdoor
environments (Tomic et al., 2012), precision agriculture
(Zhang and Kovacs, 2012), aerial construction (Lindsey
et al., 2011; Willmann et al., 2012), inspection and mainte-
nance (Mellinger et al., 2011; Jimenez-Cano et al., 2013),
environmental monitoring (Alexis et al., 2009), explo-
ration and mapping (Fraundorfer et al., 2012), aerial trans-
portation (Michael et al., 2011; Mellinger et al., 2013) and
swarming (Kushleyev et al., 2013).

Due to this growing interest, there have emerged mul-
tiple MAV simulation platforms mainly in MATLAB and
ROS with notable examples being (Bresciani, 2008) and
(Furrer et al., 2016), respectively. Both provide simula-
tion for MAV dynamics (with the former covering only
the quadrotor case) and sensors, and the latter having a
less user-friendly interface via pure code and configura-
tion. To the best of our knowledge, there are no existing
MAV simulation platforms within the Modelica commu-

nity.
Our paper gives a simple way of deriving a proper dy-

namical model for a MAV constructed with an arbitrary
number of rotors by using a generalized MAV model.
Based on this paradigm, we also present a Modelica simu-
lator that can be used for multirotor aerial vehicles. To the
best of the authors’ knowledge, this is the first Modelica-
based MAV simulator available within the Modelica com-
munity.

The remainder of the paper is organized as follows.
Section 2 describes how generalized MAV dynamics can
be derived and how an appropriate dynamical model can
be extracted for a quadrotor based MAV. In Section 3, we
describe necessary classes to design the Modelica-based
simulator for MAVs, while in Section 4, we validate the
results throughout a simple altitude and attitude stabiliza-
tion control system. Concluding remarks are presented in
Section 5.

2 MAV dynamics
A large number of papers address MAV modeling putting
the focus mostly on the quadrotor case. Noteworthy clas-
sical contributions include (Altug et al., 2002), (Hamel
et al., 2002), (Pounds et al., 2002) and (Bouabdallah et al.,
2004a). More recent examples of very detailed quadro-
tor and octorotor modeling are presented in (Bangura and
Mahony, 2012) and (Osmic et al., 2016), respectively. To
the best of our knowledge, one of the most complete work
regarding MAVs can be found in (Mahony et al., 2012),
where the authors have derived MAV dynamics, included
advanced state estimation, control and motion planning al-
gorithms and therefore provided full system autonomy.

In this section, we will describe the dynamical model
of the quadrotor, which is frequently considered to be
the standard research platform for MAVs due to its sim-
ple construction and purposeful functionality. We use the
results and nomenclature from (Osmic et al., 2016) and
show that only minor changes are necessary to apply the
final octocopter model presented in (Osmic et al., 2016) to
any MAV, including also the quadrotor case.

2.1 MAV rigid body dynamics
In order to model the dynamics of any mobile robot it is
common to define two frames of reference. A body fixed

DOI
10.3384/ecp17132373

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

373

frame {o} is attached to the robots center of mass and all
sensory data is measured with respect to this frame, while
a ground fixed frame {g} is used to define workspace goals
in a intuitive and user-friendly manner. The body fixed
and ground fixed frame represent right-handed Cartesian
coordinate systems and are usually referred to as the local
and global coordinate system, respectively.

Workspace goals can be defined in terms of global po-
sition coordinates x, y and z and orientation coordinates φ ,
θ and ψ (see Fig. 1), where positive directions of φ , θ

and ψ are chosen according to the right-hand rule. There-
fore, the position vector x = [x y z]T and the orientation
vector Ψ = [φ θ ψ]T can completely determine the ve-
hicle’s location in the workspace. As shown in Fig. 2,
the local coordinates are described by the linear velocities
u, v and w and the angular velocities P, Q, R. The posi-
tive directions of the angular velocities P, Q and R are also
chosen according to the right-hand rule and therefore coin-
cide with the positive directions of φ , θ and ψ . Both linear
and angular velocity coordinates can also be expressed in
compact vector form as vvv = [u v w]T and PPP = [P Q R]T ,
respectively.

Forces and torques which act on a MAV are shown in
Fig. 3. The thrust T is a force that acts towards the positive
direction of the Z axis of the local coordinate system {o},
while the force G represents the gravitational force acting
towards the negative direction of the ZB axis of the global
coordinate system {g}. τx, τy and τz represent the torques
that move the vehicle around the X , Y and Z axes of the lo-
cal coordinate system, respectively, and can be compactly
denoted as τττ = [τx τy τz]

T . Their positive direction is also
chosen to coincide with the positive directions of the an-
gular velocities P, Q and R.

We can now describe the rigid body dynamics of any

Figure 1. Global coordinates

MAV in accordance to the results presented in (Osmic
et al., 2016). The kinematic model of the linear motion
is given as

ẋ̇ẋx =RRR(φ ,θ ,ψ)vvv, (1)

where RRR(φ ,θ ,ψ) is the total rotation matrix which for the
ZYX Euler convention has the form

RRR(φ ,θ ,ψ) = R(Z,ψ)R(Y,θ)R(X ,φ)
cψ cθ cψ sθ sφ − sψ cφ cψ sθ cφ + sψ sφ

sψ cθ sψ sθ sφ + cψ cφ sψ sθ cφ − cψ sφ

−sθ cθ sφ cθ cφ

 , (2)

and the elementary rotation matrices R(Z,ψ), R(Y,θ) and
R(X ,φ) are defined as

R(X ,φ) =

1 0 0

0 cφ −sφ

0 sφ cφ

 , (3)

R(Y,θ) =

cθ 0 sθ

0 1 0

−sθ 0 cθ

 , (4)

R(Z,ψ) =

cψ −sψ 0

sψ cψ 0

0 0 1

 . (5)

The kinematic model of the angulator motion can be de-
scribed by

Ψ̇̇Ψ̇Ψ =RRR−1
A (φ ,θ ,ψ)PPP, (6)

where the matrix RRR−1
A (φ ,θ ,ψ) for the ZYX Euler conven-

tion is

RRR−1
A (φ ,θ ,ψ) =

1 sφ tθ cφ tθ

0 cφ −sφ

0 sφ

cθ

cφ

cθ

 . (7)

Figure 2. Local coordinates

Multirotor Aerial Vehicle modeling in Modelica

374 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132373

The dynamic model of the linear motion can be repre-
sented by the following equation

v̇̇v̇v =

0

0
T

mo

+g

sθ

−sφ cθ

−cφ cθ

−SSSvvv, (8)

where mo is the total mass of the MAV and the matrix SSS is
formed as

SSS =

0 −R Q

R 0 −P

−Q P 0

 . (9)

Finally, the dynamic model of the angular motion can be
catched with

Ṗ̇ṖP = JJJ−1 (τττ−SSSJJJPPP) , (10)

where JJJ is a 3×3 matrix representing the inertia tensor of
the MAV.

2.2 Quadrotor modeling
To tailor the previously derived MAV model to the quadro-
tor case we need to derive the inertia tensor JJJ, and define
the thrust T and the torque vector τττ . Since all of these
quantities depend on the MAV’s geometry, we consider
a quadrotor case shown in Fig. 4 along with its simpli-
fied geometry illustrated in Fig. 5, where the length of
the four arms is l, a hardware support plate is modeled as
solid sphere of mass M having a radius r, and the four mo-
tors constructed with fixed pitch propellers are modelled
as particles with mass m.

The axes of the local coordinate system, as shown in
Fig. 4, represent principal axes of inertia, where the inertia

Figure 3. Forces and torques acting on the system

tensor matrix has the diagonal form

JJJ =

Ixx 0 0

0 Iyy 0

0 0 Izz

 , (11)

and Ixx, Iyy, Izz being the moments of inertia around the X ,
Y and Z axes of the local coordinate system, respectively.
These components can be derived via the Huygens-Steiner
theorem (Morin, 2008) as

Ixx = Iyy =
2Mr2

5
+2ml2 (12)

Figure 4. Quadrotor geometry

Figure 5. Quadrotor simplified geometry

Session 6: Poster Session

DOI
10.3384/ecp17132373

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

375

and

Izz =
2Mr2

5
+4ml2. (13)

In order to derive the thrust T and the τx and τy com-
ponents of the torque vector τττ , we will consider the rotor
forces acting on the quadrotor system as depicted in Fig.
6. Thus T , τx and τy are given as follows

T = F1 +F2 +F3 +F4, (14)

τx = l (F1−F3) , (15)

τy = l (F4−F2) . (16)

In accordance to the work presented in (Mahony et al.,
2012), the rotor forces Fi (i = 1..4) can be approximated
as

Fi = bΩ
2
i (i = 1..4), (17)

where b
[

Ns2

rad2

]
is the rotor thrust constant and Ωi

[rad
s

]
is

the angular velocity of the i-th rotor. Combining eqs. (14),
(15), (16) and (17) yields

T = b
(
Ω

2
1 +Ω

2
2 +Ω

2
3 +Ω

2
4
)
, (18)

τx = bl
(
Ω

2
1−Ω

2
3
)

(19)

and
τx = bl

(
Ω

2
4−Ω

2
2
)
. (20)

The torque τz is a consequence of Newton’s third law and
can be formed as

τz =−M1 +M2−M3 +M4, (21)

where Mi (i = 1..4) is the counter induced torque of the
i-th rotor. According to (Mahony et al., 2012) the counter
torque can approximated as

Mi = dΩ
2
i (i = 1..4), (22)

where d
[

Nms2

rad2

]
is the rotor drag constant. Combining

equations (21) and (22) yields

τz = d
(
−Ω

2
1 +Ω

2
2−Ω

2
3 +Ω

2
4
)
. (23)

X
Y

Z

Figure 6. Rotor forces acting on the quadrotor system

Finally, we can represent the system actuation via matrix
equation T

τττ

=AAAΩsΩsΩs, (24)

where AAA is the actuation matrix

AAA =

b b b b

bl 0 −bl 0

0 −bl 0 bl

−d d −d d

 , (25)

and ΩsΩsΩs is the squared rotor velocity vector defined as

ΩsΩsΩs =
[
Ω2

1 Ω2
2 Ω2

3 Ω2
4

]T
. (26)

It is evident from this result that any MAV can be mod-
elled by choosing the appropriate inertia tensor JJJ and ac-
tuation matrix AAA as parameters, and picking the squared
rotor velocity vector ΩsΩsΩs of the right size as a system input.
For any MAV constructed with n≥ 4 rotors, the actuation
matrix has the dimension 4× n and the squared rotor ve-
locity vector ΩsΩsΩs has the length n.

Moreover, we can include the gyroscopic effect in the
dynamic model of the angular motion given by eq. (10) as

Ṗ̇ṖP = JJJ−1

τττ−SSSJJJPPP−SSS

0

0

IzzmWg

 , (27)

where Izzm is the rotor moment of inertia and Wg is the
gyroscopic term given as

Wg =−Ω1 +Ω2−Ω3 +Ω4 (28)

for the quadrotor case. In order to generalize the gyro-
scopic term for any MAV configuration, it is more appro-
priate to choose the rotor velocity vector ΩΩΩ

ΩΩΩ =
[
Ω1 Ω2 Ω3 Ω4

]T
(29)

as system input and express the gyroscopic term as

Wg = sign(AzAzAz)ΩΩΩ, (30)

where AzAzAz is the fourth row of the actuation matrix AAA, while
the squared rotor velocity vector ΩΩΩs can easily be com-
puted by calculating the element-wise square of the vector
ΩΩΩ.

Multirotor Aerial Vehicle modeling in Modelica

376 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132373

2.3 Motor dynamics
Each rotor of a quadrotor MAV is driven by a DC motor.
Therefore, in order to obtain a precise MAV model, it is in-
evitable to include the motor dynamics to address effects
like motor response time, saturation and power consump-
tion. In accordance to the work presented in (Osmic et al.,
2016), a simplified model can be used for this purpose
which is given by

IzzmΩ̇i +
KmKe

R
Ωi =

Km

R
vi− τli, i = 1..4, (31)

where Km
[Nm

A

]
is the mechanical motor constant, Ke

[V s
rad

]
being the electrical motor constant, R denotes the arma-
ture resistance, vi is the armature voltage, with τli being
the load torque of the i-th motor. The load torque is the
aerodynamic drag which can be computed as

τli = dΩ
2
i , i = 1..4. (32)

The input voltage of each motor is saturated by the follow-
ing box constraint

0≤ vi ≤ vmax, i = 1..4 (33)

where vmax is the maximum armature voltage, and con-
sequently the angular velocity of each rotor is also box
constrained by

0≤Ωi ≤Ωmax, i = 1..4, (34)

where Ωmax is the maximum angular velocity which can
be easily computed from the stationary state of the motor
dynamic model given by (31).

Finally, the rotor moment of inertia Izzm can be approx-
imately calculated as

Izzm =
mpl2

p

12
, (35)

where mp is the mass and lp being the length of the rotor.

3 Modelica design
In order to provide a greater end-user utilization, we de-
signed the following Modelica blocks / classes:

• MavBase

• MavSimple

• MavFull

The MaveBase block, as shown in Fig. 7, is the simplest
and it models the rigid body dynamics including the gyro-
scopic effect covered with eqs. (1), (6), (8) and (27). Its
inputs are the generalized forces acting on the system and
the outputs are the global coordinates of the system and its
derivations.

The MavSimple block, as shown in Fig. 8, extends the
MavBase block with the actuation model given by eq. (24)

MavBaseT

τττ

Wg

ẋ̇ẋx

xxx

ΨΨΨ

Ψ̇̇Ψ̇Ψ

Figure 7. MavBase block

MavSimple

MavBaseActuation T

τττ

Wg

ẋ̇ẋx

xxx

ΨΨΨ

Ψ̇̇Ψ̇Ψ

ΩΩΩ

Figure 8. MavSimple block

MavFull

MavSimple
Motor

Dynamics
ΩΩΩ

ẋ̇ẋx

xxx

ΨΨΨ

Ψ̇̇Ψ̇Ψ

ΩΩΩ

vvv

Figure 9. MavFull block

with the input being the angular velocity vector ΩΩΩ and the
outputs being the global coordinates of the system and its
derivations.

Finally, the MavFull block, as shown in figure 9, pro-
vides the greatest level of detail. It extends the MavSimple
block and adds the motor dynamics (31) to the model. The
block input is the motor voltage vector vvv with the outputs
being the global coordinates of the system and its deriva-
tions, as well as the angular velocity vector ΩΩΩ. The angu-
lar velocity vector as system output is necessary to provide
motor level control possibilities.

The parameters of the blocks are given in Table 1, 2
and 3, and their default values match the AscTec Pelican
quadrotor (AscTec, 2016).

Table 1. MavFull block parameters

Parameter Value Unit Description

R 0.1107 Ω Resistance

Km 0.01 Nm
A Motor size constant

Ke 0.01 V s
rad Motor velocity constant

vmax 11.1 V Maximum voltage

Ω0 569.3572 rad
sec Initial angular velocity

Session 6: Poster Session

DOI
10.3384/ecp17132373

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

377

Table 2. MavBase block parameters

Parameter Value Unit Description

mo 1.32 kg MAV total mass

JJJ

0.0128 0 0

0 0.0128 0

0 0 0.0239

 kgm2 Inertia tensor

Izzm 4.3011 ·10−5 kgm2 Rotor moment of inertia

Table 3. MavSimple block parameters

Parameter Value Unit Description

n 4 Input size

b 9.9865 ·10−6 Ns2

rad2 Aerodynamic thrust constant

d 1.5978 ·10−7 Nms2

rad2 Aerodynamic drag constant

AAA

b b b b

0.211 ·b 0 −0.211 ·b 0

0 −0.211 ·b 0 0.211 ·b

−d d −d d

 Actuation matrix

0 1 2 3 4 5
0

0.5

1

1.5

t[s]

zref[m]

z[m]

0 1 2 3 4 5

0

0.1

0.2

0.3

t[s]

φref[rad]
φ [rad]

0 1 2 3 4 5

0

0.1

0.2

0.3

t[s]

θref[rad]
θ [rad]

0 1 2 3 4 5

0

0.1

0.2

0.3

t[s]

ψref[rad]
ψ[rad]

Figure 10. Altitude and attitude control simulation results

Multirotor Aerial Vehicle modeling in Modelica

378 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132373

4 Simulation results
A simple altitude and attitude control system was designed
in order to validate the designed classes. Altitude and
attitude control simulation results are presented in Fig.
10. We notice that the system states have been stabilized
within 1 second and that only very minor overshoots are
present in the altitude z and the pitch θ .

The simulation example shows that the control results
are very satisfactory, in particular the system suffers only
a minor loss in altitude during the challenging reference
orientation maneuver, which can be considered excellent
control behaviour. Additionally, the simulation results
are very similar to those obtained in (Bouabdallah et al.,
2004b) and (Osmic et al., 2016) which suggests that the
model derivation in this paper is correct.

5 Conclusion
This paper described how a generalized MAV modeling
framework can be used to obtain any MAV model. A
quadrotor based MAV was presented as an example, and
the final model was formed by using its rigid body dy-
namics, the gyroscopic effect that influences the vehicles
motion, and appropriate motor dynamics. To model the
dynamics of any given MAV platform, it was shown that is
only required to choose adequate parameter values, which
correspond to the vehicle of interest, and inject them into
the generalized MAV model.

Based on the presented generalized MAV model deriva-
tion, we have designed the following Modelica classes:
MavBase, MavSimple and MavFull. MavBase represents
the rigid body dynamics of the MAV including the gyro-
scopic effect. MavSimple extends the MavBase class and
adds system actuation, while MavFull extends MavSimple
with motor dynamics. These classes can be used to simu-
late the dynamic behaviour of any MAV within Modelica
to any required level of detail, and thus providing simi-
lar functionalities as the Gazebo simulator RotorS (Furrer
et al., 2016) which is frequently used for this purposes, but
with a more user friendly interface.

Finally, we have validated the designed Modelica sim-
ulator through a simple altitude and attitude stabilization
control system. Namely, we have obtained very similar
control results like those currently present in the state of
the art, which suggests that the generalized model derived
and the MAV simulator designed in this paper are correct.

References
K Alexis, G Nikolakopoulos, A Tzes, and L Dritsas. Coordi-

nation of helicopter UAVs for aerial forest-fire surveillance.
In Applications of intelligent control to engineering systems,
pages 169–193. Springer, 2009.

Erdinc Altug, James P Ostrowski, and Robert Mahony. Control
of a quadrotor helicopter using visual feedback. In Robotics
and Automation, 2002. Proceedings. ICRA’02. IEEE Inter-
national Conference on, volume 1, pages 72–77. IEEE, 2002.
doi:10.1109/ROBOT.2002.1013341.

AscTec. Ascending technologies, gmbh, 2016. URL http:
//www.asctec.de/.

Moses Bangura and Robert Mahony. Nonlinear dynamic mod-
eling for high performance control of a quadrotor. In Aus-
tralasian conference on robotics and automation, pages 1–10,
2012.

Samir Bouabdallah, Pierpaolo Murrieri, and Roland Siegwart.
Design and control of an indoor micro quadrotor. In Robotics
and Automation, 2004. Proceedings. ICRA’04. 2004 IEEE
International Conference on, volume 5, pages 4393–4398.
IEEE, 2004a. doi:10.1109/ROBOT.2004.1302409.

Samir Bouabdallah, Andre Noth, and Roland Siegwart. PID vs
LQ control techniques applied to an indoor micro quadrotor.
In Intelligent Robots and Systems, 2004.(IROS 2004). Pro-
ceedings. 2004 IEEE/RSJ International Conference on, vol-
ume 3, pages 2451–2456. IEEE, 2004b.

Tammaso Bresciani. Modelling, identification and control of a
quadrotor helicopter. MSc Theses, 2008.

Friedrich Fraundorfer, Lionel Heng, Dominik Honegger,
Gim Hee Lee, Lorenz Meier, Petri Tanskanen, and Marc
Pollefeys. Vision-based autonomous mapping and explo-
ration using a quadrotor MAV. In Intelligent Robots and Sys-
tems (IROS), 2012 IEEE/RSJ International Conference on,
pages 4557–4564. IEEE, 2012.

Fadri Furrer, Michael Burri, Markus Achtelik, and Roland Sieg-
wart. RotorS-A Modular Gazebo MAV Simulator Frame-
work. In Robot Operating System (ROS), pages 595–625.
Springer, 2016.

Tarek Hamel, Robert Mahony, Rogelio Lozano, and James Os-
trowski. Dynamic modelling and configuration stabilization
for an x4-flyer. IFAC Proceedings Volumes, 35(1):217–222,
2002. doi:10.3182/20020721-6-ES-1901.00848.

AE Jimenez-Cano, Jesús Martin, Guillermo Heredia, Aníbal
Ollero, and R Cano. Control of an aerial robot with multi-link
arm for assembly tasks. In Robotics and Automation (ICRA),
2013 IEEE International Conference on, pages 4916–4921.
IEEE, 2013.

Alex Kushleyev, Daniel Mellinger, Caitlin Powers, and Vijay
Kumar. Towards a swarm of agile micro quadrotors. Au-
tonomous Robots, 35(4):287–300, 2013.

Quentin Lindsey, Daniel Mellinger, and Vijay Kumar. Construc-
tion of cubic structures with quadrotor teams. Proc. Robotics:
Science & Systems VII, 2011.

Robert Mahony, Vijay Kumar, and Peter Corke. Multirotor aerial
vehicles: Modeling, estimation, and control of quadrotor.
IEEE robotics & automation magazine, 19(3):20–32, 2012.
doi:10.1109/MRA.2012.2206474.

Daniel Mellinger, Quentin Lindsey, Michael Shomin, and Vijay
Kumar. Design, modeling, estimation and control for aerial
grasping and manipulation. In Intelligent Robots and Systems
(IROS), 2011 IEEE/RSJ International Conference on, pages
2668–2673. IEEE, 2011.

Session 6: Poster Session

DOI
10.3384/ecp17132373

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

379

Daniel Mellinger, Michael Shomin, Nathan Michael, and Vi-
jay Kumar. Cooperative grasping and transport using mul-
tiple quadrotors. In Distributed autonomous robotic systems,
pages 545–558. Springer, 2013.

Nathan Michael, Jonathan Fink, and Vijay Kumar. Coopera-
tive manipulation and transportation with aerial robots. Au-
tonomous Robots, 30(1):73–86, 2011.

David Morin. Introduction to classical mechanics: with prob-
lems and solutions. Cambridge University Press, 2008.

Nedim Osmic, Muhamed Kuric, and Ivan Petrovic. Detailed
octorotor modeling and PD control. In Systems, Man, and
Cybernetics (SMC), 2016 IEEE International Conference on,
pages 2182–2189, 2016.

Paul Pounds, Robert Mahony, Peter Hynes, and Jonathan M
Roberts. Design of a four-rotor aerial robot. In Proceedings
of the 2002 Australasian Conference on Robotics and Au-
tomation (ACRA 2002), pages 145–150. Australian Robotics
& Automation Association, 2002.

Teodor Tomic, Korbinian Schmid, Philipp Lutz, Andreas
Domel, Michael Kassecker, Elmar Mair, Iris Lynne Grixa,
Felix Ruess, Michael Suppa, and Darius Burschka. Toward
a fully autonomous UAV: Research platform for indoor and
outdoor urban search and rescue. IEEE robotics & automa-
tion magazine, 19(3):46–56, 2012.

Jan Willmann, Federico Augugliaro, Thomas Cadalbert, Raf-
faello D’Andrea, Fabio Gramazio, and Matthias Kohler.
Aerial robotic construction towards a new field of architec-
tural research. International journal of architectural comput-
ing, 10(3):439–459, 2012.

Chunhua Zhang and John M Kovacs. The application of small
unmanned aerial systems for precision agriculture: a review.
Precision agriculture, 13(6):693–712, 2012.

Multirotor Aerial Vehicle modeling in Modelica

380 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132373

Rotating Machinery Library for Diagnosis

Tatsuro Ishibashi1 Bing Han2 Tadao Kawai3
1Meidensha Corporation, Japan, ishibashi-tat@mb.meidensha.co.jp

2, 3Department of Mechanical & Physical Engineering, Osaka City University, Japan,
{han,kawai}@mech.eng.osaka-cu.ac.jp

Abstract
This paper presents our new rotating machinery library.

Diagnosing the complex system accurately based on

stochastic method requires an enormous amount of data,

both with and without faults. Acquiring operation data

with all kinds of faults for each components is very hard

and costly. To generate data for rotating machinery

diagnosis, we developed rotating machinery library

using Modelica. It provides the basic components such

as rotor, shaft, bearing, coupling, housing and support.

Its component models are implemented on basis of rotor

dynamics theory. This library makes it possible

accessing rotating machinery operation data with

various faults such as unbalanced rotor, shaft bending

and ball bearing faults. To validate our models, we

compared both Modelica simulation and experiment

with a rotor kit as a test case.

Keywords: Rotating Machinery, Vibration, Diagnosis

1 Introduction

Preventive maintenance has been the main stay of

industry for a long time. Recently, IoT (Internet of

Things) and Industry4.0 have become very popular to

manage and control a system such as manufacturing

system. These have naturally increased the focus on

Condition-Based Maintenance (CBM). IoT makes it

possible monitoring the system state on time and

accumulating a large amount of data. So many sensors

and sensor network are attached to each component of a

system for the purpose of data acquisition. By collecting

and analyzing these acquired data, it makes feasible to

manage a system efficiently or detect problem in a

system with high accuracy at early stage.

Although this concept is very important, there are

many difficulties in measurement. It is not always

possible that we attach sensors where we would like to

measure. Neither is it possible that we measure

significant features of a system due to the lack of sensors.

By stochastic approach such as machine learning, fault

detection of complex system accurately requires an

enormous amount of data, both with and without faults

to determine the threshold of signal amplitude. As a

method of grasping the operating states with faults, it is

conceivable to collect operation data by embedding the

damaged part into the actual machine or continuing to

operate it until it gets damaged. If the equipment is large,

the lifetime is long, or the equipment is expensive, it is

difficult to accumulate data. Rotating machinery

equipment apply to the above. IoT will help us collect

and acquire data. Still, accumulating data with all kinds

of faults for each components is very hard and costly. It

is desirable to analyze the state when faults occur in the

rotating machinery. Some simple fault cases are

schematized and modeled. It is possible to generate data

of rotating machinery equipment with faults such as

unbalanced rotor, shaft bending, ball bearing faults and

misalignment of coupling by simulation.

Modelica is an object-oriented, declarative, multi-

domain modeling language for component-oriented

modeling of complex systems. It is a powerful tool

which simulates a complex physical system. Almost all

design parameters such as shape and rigidity are easily

set to a model and a variable behavior of a certain

component in a system is easily obtained. By building

Modelica cyber system, we can also obtain physical

quantities and features of components which are

inaccessible in a real physical system. A model-based

diagnosis and design approach including fault mode

with Modelica has recently reported (Klenk et al, 2014;

Minhas et al, 2014).

Hence, we focus on developing rotating machinery

library based on well-established rotor dynamics theory

using Modelica. It provides the basic components such

as rotor, shaft, bearing, coupling, housing and support.

Our final goal is generation of training data including

unmeasurable quantities for diagnosis by statistical

classification algorithms.

To validate our models, we compared both Modelica

simulation and experiment with a rotor kit as a test case.

We calibrated the fault related parameter embedded in

Modelica model so that simulation results were in good

agreement with the experiment. Data acquisition from

physical system was done through COMEDI (COntrol

and MEasurement Device Interface for Linux / RTAI).

The followings show our new rotating machinery

library, the example of generated data from this library

and validation of this library with a rotor kit as a test

case.

DOI
10.3384/ecp17132381

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

381

2 Rotating Machinery Library

Generally, a rotating machinery system has many

problems. Static and dynamic unbalance of a rotor, a

bend of a shaft, rigidity of housing, damaged ball

bearing. These failures are included in our rotating

machinery library for the diagnosis. Specifications of a

motor, a coupling, a shaft, a rotor and bearings are

decided at design process and set as parameters of the

model. Each component shown in Figure 1 is built based

on well-established rotor dynamics theory (Ishida

Yamamoto, 2012; Matsushita et al, 2017).

The basic flange has 5 DOF (degree of freedom),

consisting of 4 DOF (two dimensional deflection and

slope) for transverse vibration of the rotor system and 1

DOF (angle) for torsional vibration, neglecting axial

vibration. Figure 2 descripts the flange. The

followings are 10 flange variables. 5 potential

variables are

𝑢𝑥 : Deflection of horizontal direction,

𝑢𝑦 : Deflection of vertical direction,

𝑖𝑥 : Deflection angle of horizontal direction,

𝑖𝑦 : Deflection angle of vertical direction,

𝜃 : Rotational angle.

Corresponding flow variables are

𝐹𝑥 : Force of horizontal direction,

𝐹𝑦 : Force of vertical direction,

𝑀𝑥 : Moment of horizontal direction,

𝑀𝑦 : Moment of vertical direction,

𝑇 : Rotational Torque.

2.1 Rotor

In our library, the rotor is considered as a single mass in

the form of a point mass, a rigid disc or a long rigid shaft.

The rotor model is followed as 4 DOF Jeffcott rotor

model. The forces and moments are given from next

component through connector. The static unbalance

model equations are following.

𝑚𝑢�̈� − 𝑚𝑒𝜃2̇ cos(𝜃 + 𝑒0) − 𝑚𝑒�̈� sin(𝜃 + 𝑒0)
= 𝐹𝑥

(1)

𝑚𝑢�̈� − 𝑚𝑒𝜃2̇ sin(𝜃 + 𝑒0) + 𝑚𝑒�̈� cos(𝜃 + 𝑒0)

+𝑚𝑔
= 𝐹𝑦

(2)

The dynamic unbalance model equations are following.

𝐼𝑑𝑖�̈� + 𝐼𝑝�̇�𝑖�̇� − (𝐼𝑑 − 𝐼𝑝)𝜏𝜃2̇ cos(𝜃 + 𝜏0)

= 𝑀𝑥
(3)

𝐼𝑑𝑖�̈� − 𝐼𝑝�̇�𝑖�̇� − (𝐼𝑑 − 𝐼𝑝)𝜏𝜃2̇ sin(𝜃 + 𝜏0)

= 𝑀𝑦
(4)

Also, dynamic load torque effect is considered.

Figure 1. An example of a rotating machinery system. The upper figure describes our new library components of Modelica

cyber system. The lower figure is corresponding physical system (The image is designed by CAD tool).

Rotating Machinery Library for Diagnosis

382 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132381

𝐼𝑝�̈� = 𝐹𝑥𝑒 sin(𝜃 + 𝑒0) − 𝐹𝑦𝑒 cos(𝜃 + 𝑒0) + 𝑇 (5)

Figure 2. Flow variables of flange.

Here,

̇ : Time-derivative operator (i.e.
𝑑

𝑑𝑡
),

𝑚 : Rotor mass,

𝑒 : Eccentricity,

𝑒0 : Initial phase of eccentricity,

𝜏 : Slope of dynamic unbalance,

𝜏0 : Initial phase of dynamic unbalance,

𝐼𝑑 : Diametral moment of inertia,

𝐼𝑝 : Polar moment of inertia.

2.2 Shaft

The shaft is considered as flexible (elastic) shaft. It is a

linear elastic beam, uniform loading. The force and

deflection relationships between two flanges follow.

𝐸𝐼 (
𝑖𝑏𝑥

𝑖𝑏𝑦
) =

𝐿2

2
(

𝐹𝑎𝑥

𝐹𝑎𝑦
) + 𝐿 (

𝑀𝑎𝑥

𝑀𝑎𝑦
) + 𝐸𝐼 (

𝑖𝑎𝑥

𝑖𝑎𝑦
)

 + (
0

−
𝑚𝑔𝐿2

6

)

(6)

𝐸𝐼 (
𝑢𝑏𝑥

𝑢𝑏𝑦
) =

𝐿2

6
(

𝐹𝑎𝑥

𝐹𝑎𝑦
) +

𝐿

2
(

𝑀𝑎𝑥

𝑀𝑎𝑦
) + 𝐸𝐼𝐿 (

𝑖𝑎𝑥

𝑖𝑎𝑦
)

+𝐸𝐼 (
𝑢𝑎𝑥

𝑢𝑎𝑦
) + (

0

−
𝑚𝑔𝐿3

24

)

(7)

Here,

𝑚 : Shaft mass,

𝐿 : Shaft length,

𝐸 : Young’s modulus,

𝐼 : Second moment of area,

𝑔 : Constant of gravitation,

Subscript a is left flange, and b is right flange.

2.3 Bearing

Bearing models have deflection rigidities in series and

deflection angle rigidities in parallel . The bearing

models also have damping factor. In addition to the

above model, a bearing damage models on inner and

outer ring are modeled by applying impulsive force.

Bearing force relationships is following.

(
𝐹𝑥

𝐹𝑦
) = 𝑘 (

∆𝑢𝑥

∆𝑢𝑦
) + 𝑐 (

𝑑∆𝑢𝑥

𝑑𝑡
𝑑∆𝑢𝑦

𝑑𝑡

) + 𝐹𝑛𝑃 (
cos𝜑
sin𝜑) (8)

Here,

𝑘 : Spring constant of bearing force,

𝑐 : Damping constant of bearing force,

∆𝒖 = 𝒖𝒄 − (𝒖𝒂 + 𝒖𝒃)/2 : Difference of deflection,

𝐹𝑛 : Quantity of impulsive force due to ball and ring

collision,

 𝑃 : If collision occurs, 𝑃 = 1, otherwise 0,

𝜑 : Impulsive force angle.

Subscript c is housing or support flange.

We calculate the quantity of collision force using Hertz

contact theory. Collision event is written by when

statement.

Following is outer ring case.

𝐹𝑛 = 1.143𝑚0.6𝐾0.4𝑣1.2 (9)

𝑣 =
𝐷 + 𝑑

2
𝜔1sin𝜃𝑑 (10)

𝑡 = 3.128𝑚0.4𝐾−0.4𝑣−0.2 (11)

Here,

𝐷 : Diameter of inner ring,

𝑑 : Diameter of ball,

𝑣 : Ball collision speed,

𝑍 : Number of balls,

𝜔 : Rotational speed.

𝜔1 : Ball orbital motion rotational speed,

𝑡 : Contact time,

𝜃𝑑 : Collision angle.

𝐾: Proportional constant of force.

𝐾 is determined by elastic moduli and Poisson’s ratio.

𝜔1 =
𝐷

2(𝐷 + 𝑑)
𝜔 (12)

From relationships above, characteristic frequency of

outer and inner ring collision events are described by

ball orbital motion rotational speed.

𝑓𝑜𝑢𝑡𝑒𝑟 =
𝑍𝜔1

2π
 (13)

𝑓𝑖𝑛𝑛𝑒𝑟 =
𝑍(𝜔 − 𝜔1)

2π
 (14)

2.4 Coupling

Coupling models have both offset and angular

misalignment. The deflections relationships between

two flanges follow.

𝒖𝒃 − 𝒖𝒂 = 𝑒(cos(𝜃 + 𝑒0) sin(𝜃 + 𝑒0)) (15)

𝒊𝒃 − 𝒊𝒂 = 𝑎(cos(𝜃 + 𝑎0) sin(𝜃 + 𝑎0)) (16)

Here,

𝑒 : Offset misalignment length,

Session 6: Poster Session

DOI
10.3384/ecp17132381

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

383

𝑒0 : Initial phase of offset misalignment,

𝑎 : Angular misalignment length,

𝑎0 : Initial phase of angular misalignment.

Coupling models also have deflection rigidities.

2.5 Housing

Housing model is spring damper against deflection. It

dosen’t have deflection angle rigidities.

2.6 Support

Support models have simple support, rigid support and

free end. Simple support follows the condition that

deflections and moments are zero. Rigid support follows

the condition that deflections and deflection angles are

zero. Free end follows the condition that forces and

moments are zero.

2.7 Motor

Motor models are extended from
Modelica.Electrical.Machines.BasicMachine

s to be compatible with our library flange.

3 Generation of data with fault

Ball bearing in rotating machinery is very frequently

damaged during operation. Inner and outer rings in

bearing can be damaged due to over load, corrosion,

improper lubrication and installation. Over load or weak

lubrication causes friction. As a result of friction,

temperature increases, so that oil lost its properties. Also,

current flows on bearings, because of voltage difference

between stator and rotor does. Oil acts as a dielectric

material in condenser. These faults produce small

particles in bearing.

Using our library, we generated outer and inner ring

damaged ball bearing vibration case data in addition to

static unbalance respectively. Figure 3 and 4 are

simulation results respectively.

By building Modelica cyber system with the other

faults refered in previous section, we can obtain time

series data with some faults from Dymola simulation.

Using these simulation generated data for training

dataset after analysing and signal processing

experimental measured data, it is possible making

system fault detection algorithm based on machine

learning theory (Figure 5). In case of the damaged ball

bearing, envelope processing of bearing eigen frequency

is required. Our final goal is generation of training data

including unmeasurable quantities for diagnosis by

statistical classification algorithms.

8.988 8.995 9.002

-0.0005

0.0000

0.0005

a
m

p
lit

u
d

e
(m

/s
e

c
)

time(sec)

Figure 3. Outer ring fault with static unbalance.

8.99 9.00 9.01

-0.0004

0.0000

0.0004

a
m

p
lit

u
d

e
(m

/s
)

time(sec)

Figure 4. Inner ring fault with static unbalance.

Figure 5. Diagnosis method using simulation data as

training dataset.

4 Model Validation

4.1 Experimental setup

To validate our models, we built a rotor kit physical

system shown in Figure 6. Vertical and horizontal

deflection of a rotor were measured by two laser

Rotating Machinery Library for Diagnosis

384 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132381

displacement sensors (IL-030 KEYENCE).

Figure 6. Rotor kit physical system.

Figure 7. Parameters of Modelica cyber system.

We built Modelica cyber system based on our new

library in Section 2 (Figure 1 and Figure 7). The

parameters of Modelica cyber system are shown in

Table 1. The parameters were determined by

specifications of each component except bearing. The

bearing support was neither simple support nor rigid

support. It had some rigidity against the bending of the

shaft. We determined the bearing model parameters of
the deflection angle rigidity and damping from the

preliminary impulse experiment.

To acquire data from the physical system to Dymola,

we used National Instruments A/D and D/A Converter,

Modelica_DeviceDrivers, Modelica_Synchronous and

COMEDI (COntrol and MEasurement Device Interface

for Linux / RTAI) (Ferretti et al, 2005). The OS was

openSUSE Leap 42.1. The motor was AC Servomotor

(NX410AA-1 Oriental motor). The input signal voltage

driving motor was controlled through COMEDI. Figure

8 shows the rotor kit measurement and control system

we built.

Figure 8. Rotor kit measurement and control system.

We tested the response of this system by applying step

input to both physical system and Modelica cyber

system. Figure 9 shows the response of motor speed and

the rotor horizontal displacement vibration against the

input voltage. A bit difference between experiment

(physical system) and simulation (Modelica cyber
system) was observed due to input signal overshooting

in physical system.

Table 1. Parameters of Modelica cyber system.

Shaft Bearing

Length L [mm] 500 Width L2 [mm] 15

Shaft diameter D1 [mm] 6 Damping constant [N. m. s/rad] 0.053

length L1 [mm] 50 Rigidity [N. m/rad] 23

Shaft diameter D2 [mm] 8 Coupling

Length L3 [mm] 180 Rigidity [N/m] 650

Length L5 [mm] 50 Motor

Young’s modulus [Pa] 2.06x109 Torque [N. m] 0.4

Density [kg/m3] 8000 Voltage [V] 24

Rotor Rotating speed [rpm] 2500

Diameter D4 [mm] 80

Width L4 [mm] 62

Young’s modulus [Pa] 2.06x109

Density [kg/m3] 8000

Session 6: Poster Session

DOI
10.3384/ecp17132381

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

385

Figure 9. The step response of simulation and experiment.

Input voltage, rotational speed and deflection versus time.

We also tested the ramp response of both systems. We

rose the rotation speed up to 2500 rpm over the first

critical speed 1600 rpm. Figure 10 shows the result. The

deflection beating over 1600 rpm is due to equation (5)

dynamic load torque effect of unbalance. By varying

parameters of both eccentricity and bend of shaft, the

responses of motor speed and horizontal vibration

between simulation and experiment had little

differences. By varying the bend of shaft value, we

found the simulation became well-consistent with

experiment.

Figure 10. The ramp response of both system. Rotational

speed and horizontal deflection versus time. (a) Simulation

(Modelica cyber system). (b) Experiment (physical

system).

4.2 Correlation to Physical Test

We calibrated the fault related parameter, as we found

the bend of shaft had strongly correlated with the

physical system. We preprocessed both simulation and

experiment data by high pass filter at cutoff frequency

𝑓𝑐 = 0.4 Hz, envelope signal processing and low pass

filter at cutoff frequency 𝑓𝑐 = 10 Hz. High pass filter

was used to remove offset. Low pass filter was used to

smooth the envelope curve. We optimized the bend of

the shaft parameter by using Optimization Library (DLR,

2016). We used Integrated Squared Deviation as

Criteria function and Pure Random Search algorithm for

optimization.

𝐸 = ∫{𝑢1(𝑡) − 𝑢2(𝑡)}2𝑑𝑡 (17)

Here,

𝑢1(𝑡) : Envelope processed simulation data.

𝑢2(𝑡) : Envelope processed experiment data.

Figure 11-13 show the result of the bend of the shaft

optimization. The evaluation function dicreased during

iteration (Figure 11). The envelope curve had changed

after optimization (Figure 12). The bend of shaft value

became 0.01 mm, as initial value was zero. By setting

this value as parameter for simulation model of

Modelica, the simulation envelope curve became well

consistent with experiment (Figure 13).

To validate the static unbalance model, we added a

screw on the rotor and made static unbalance at the

eccentricity 𝑒 = 0.05 mm. By setting the bend of the

shaft parameter 0.01 mm and optimizing the eccentricity

as above, the eccentricity parameter became 𝑒 = 4.87 ×
10−2 mm. We were able to estimate the eccentricity

value from our library and Optimization library. Figure

14 shows the envelope curves of both the eccentricity

parameter optimized simulation and experiment. We

were able to generate the unbalanced rotor vibration data

consistent with the physical system. Using Modelica

cyber system, we can access the unmeasurable physical

quantitities such as bearing load under operation.

Simulating this kind of complex physical system is very

hard by coding with Simulink. The more detailed

simulation by the FEM (Finite Element Method) takes

much time. Using Modelica, we can simulate and

generate data very easily in a reasonable amount of

calculation time

Rotating Machinery Library for Diagnosis

386 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132381

Figure 11. Evaluation function against optimization

iteration.

Figure 12. Envelope curve change by optimization. (a)

Before optimization. (b) After optimization. Red line

shows envelope of deflection signal.

Figure 13. Comparison between simulation after the

bend of the shaft optimization and experiment.

Figure 14. Comparison between the eccentricity

optimized simulation (setting the optimized bend of the

shaft parameter) and experiment with static unbalance.

5 Conclusions

This paper described Rotating Machinery Library we

had developed based on rotor dynamics theory. This

library generates rotating machinery system operation

data with some faults. We validated our models by

comparing both Modelica simulation and experiment

with a rotor kit as a test case.

Further developments will focus on not only

mechanical components, but also electrical components

failures in rotating machinery system. Also, we will

develop diagnosis methodology for identifying faults by

stochastic and physical model based approach.

Acknowledgements
We gratefully thank Dr. Gao at Modelon KK, Japan for

technical advices of developing library.

References

COMEDI Control and Measurement Interface

http://www.comedi.org/

DLR, Optimization Library for Dymola Version 2.2.2 Tutorial,

2016.

Gianni Ferretti, Marco Gritti, Gianantonio Magnani,

Gianpaolo Rizzi and Paolo Rocco. Real-Time Simulation of

Modelica Models under Linux / RTAI. Proceedings of the

4th Modelica Conference 2005, pp. 359-365 Hamburg,

Germany.

Yukio Ishida and Toshio Yamamoto, Linear and Nonlinear

Rotordynamics: A Modern Treatment with Applications,

2nd Edition, Wiley-VCH, 2012.

Matthew Klenk, Johan de Kleer, Daniel G. Bobrow and Bill

Janssen Using Modelica Models for Qualitative Reasoning.

Proceedings of the 10th International Modelica Conference

pp. 205-211, Lund, Sweden. doi: 10.3384/ecp14096205

Raj Minhas, Johan de Kleer, Ion Matei, Bhaskar Saha, Bill

Janssen, Daniel G. Bobrow and Tolga Kurtoglu. Using

Fault Augmented Modelica Models for Diagnostics.

Proceedings of the 10th International Modelica Conference

2014, pp. 437-445, Lund, Sweden. doi:

10.3384/ecp14096437

Osami Matsushita, Masato Tanaka, Hiroshi Kanki, Masao

Kobayashi and Patrick Keogh Vibrations of Rotating

Machinery Springer Japan, 2017. doi: 10.1007/978-4-431-

55456-1

Session 6: Poster Session

DOI
10.3384/ecp17132381

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

387

388 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Modelling and Simulation of the passive Structure of a
5-Axis-Milling Machine with rigid and flexible bodies for

evaluating the static and dynamic behaviour

Michael Schneider, B.Eng.1 Prof. Anton Haumer1 Dipl.-Ing. Rupert Köckeis2

1Faculty of Electrical Engineering and Information Technology , OTH Regensburg, 93053 Regensburg,
michael.schneider@st.oth-regensburg.de, anton.haumer@oth-regensburg.de

2Department of Electrical Engineering, MAX STREICHER GmbH & Co. KG aA , 94469 Deggendorf,
rupert.koeckeis@streicher.de

Abstract
Most of the mechanical simulations for industrial usage
are done by finite element (FE-) analysis. Milling ma-
chines are mechatronic systems, combining electrical, me-
chanical and control components for machining certain
materials. Modelica provides a powerful and strong tool
to simulate different physical areas in one model. For this
usage a mechanical model of a 5-Axis-Milling Machine
is implemented with rigid and flexible bodies. Specific
attention will be paid to which components can be mod-
elled as rigid bodies without significant deviation in accor-
dance to the real behaviour of the machine. Two classes
of implementing flexible bodies in multi body systems are
given by the Flexible Bodies Library, advantages and dis-
advantages of both classes will be evaluated. At the end
a comparision of the static and dynamic behaviour of the
passive structure of the model in contrast to a FE-analysis
is given.
Keywords: milling machine, flexible body, multibody sys-
tem, clay modelling

1 Introduction
High Speed Cutting (HSC) Machines are present in dif-
ferent technical areas today. The automotive sector uses
HSC-Machines for editing clay models of vehicles to im-
prove the design and the aerodynamic behaviour. For this
usage high performance and very high precision is re-
quired. The validation of mechanical improvements on
existing machines is expensive and time consuming. On
the other hand FE-Models can not describe the whole
mechatronic system, because the exact influence of the
electrical drive train in mechanic models is described in-
sufficiently. For this reason a multyphysical model with
an electrical, a mechanical and a control system model
has to be created. The mechanical model should describe
the behaviour of the passive structure in a good approxi-
mation. A time efficient model of the machine consisting
of rigid and flexible parts without major deviations is de-
veloped. During the modelling process several modelling
issues have to be solved with particular models.

2 Structure of the Machine

Figure 1 shows a front view of the milling machine with
its axis designation and its initial frame in the top right
corner. Machine constructions where all linear movement

x

y

z

C

B

Initial frame:

y-axis

z-axis

b-axis
c-axis

clay
milling tool

compound slide

adapter plate

Rail

Tool Center Point (TCP)

Figure 1. Structure of the milling Machine

axes are facing the milling tool side are called travelling
column machines. The considered machine has a horizon-
tal tool spindle, the end of the milling tool is called "Tool
Center Point" (TCP). The three main axes (x-, y- and z-
axis) realize linear movements in the cartesian space, two
minor axis (b- and c-axis) enable rocking and rolling mo-
tions of the TCP. All of the three linear movements are
equipped with linear guides for stiff transition between
the movable and the fixed part of the machine. A com-
pound slide enables movements in y- and z-direction. At
the end of the y-axis a milling head is mounted. The linear
axes are driven by short stator linear motors, the rocking
and the rolling movement is achieved by synchronous mo-
tors. An additional synchronous motor drives the milling
tool with a very high speed to reduce the cutting force at
the TCP. A classification of the different mechanical ma-
chine parts is useful. Components with small measure-
ments and high rigidity compared to large machine parts
are called "secondary machine parts", large components
with low rigidity are called "main machine parts".

DOI
10.3384/ecp17132389

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

389

3 Modelling of the secondary machine
parts

3.1 Linear guidances at machine tools
Linear guidances are used to achieve relative movements
between fixed and movable parts of machine tools and ex-
pose high static, dynamic and thermal stiffness. Further-
more they should show very high dynamical accuracy and
low wear running. A classification in two components is
usual, a guide carriage mounted at the movable part of the
machine and a guide rail at the fixed machine part. The
whole carriage-rail system has flexibility in three direc-
tions and could therefore deform as a result of a pulling,
compressive or a shear force. Modelling this component
with flexible elements would terminate in long simulation
times due to the incidence of this component in the whole
structure. For the purpose of simplification this compo-
nent could be modeled with rigid bodies if the flexible
transition between carriage and rail is modeled in an other
more handable way(Queins, 2005, p. 50). But to represent
the flexibility of the whole carriage-rail system, that has a
significant influence on the static and dynamic behaviour
of the structure, a possible replacement for a flexible body
model of the carriage-rail system is given at Figure 2. The

Front view of a flexible
body with three DOF due

to a compressive force

δ δ

F F

F

starrer Körper
Front view of the flexible
body replacement due to

a compressive force

Figure 2. Replacement for a flexible body system by a rigid
body system for a carriage-rail component

values of the spring stiffnesses can be calculated through
a linearization of the spring charactersistic curve of the
carriage-rail system. This curves show a progressive or a
degressive characteristic of the carriage-rail system but in
a good approximation it can be linearized at the operating
point(Queins, 2005, p. 50). The spring characteristic can
be assumed as linear subsequently to the large stiffness of
the carriage-rail system compared to other more flexible
machine components.

3.2 Model of the adapter plate and the com-
pound slide

The adapter plate connects the moving part of the machine
with the machine base also called "rail". This connec-
tion is obtained by a linear recirculating roller bearing,
which is especially used for longitudinal guides that pro-
vides high stiffnes of guidance systems. The adapter plate
consists of two linear guidance systems with four guide
carriages that are mounted at a mechanical cast compo-
nent. Two guide rails are mounted on the rail, together
these components build the adapter plate. To reduce the
calculation effort the mechanical cast component is mod-
eled with a rigid body due to the larger flexibility of the
carriage-rail system. Values of the spring stiffness of a
whole carriage-rail system is extracted out of Data Sheets
of the linear guidance manufacturer. Figure 3 depicts the
model of the adapter plate with the four carriage-rail tran-
sitions. The usage of two spatial separated guide units

Figure 3. Model and animation of the adapter plate with four
carriage-rail transitions

causes a distribution of the mechanical load and there-
fore an improved damping behaviour. The geometrical
dimensions of the guide carriage and the spring stiffness
will be presented to the carriage-rail transition models.
Therefore this model especially characterises the transi-
tion between the fixed and the movable part of the ma-
chine, deformations of the components realizing this tran-
sition are neglected(Hoffmann, 2008). With the help of a
compound slide, travel motions in y- and z-direction can
be realised. Each of the two axis motions is equipped with
two four-row linear recirculating ball bearings, where any
of them consists of two carriage guides and one guide rail.
The carriage rail system, which realises the z-motion is
mounted at the back side of a steel plate in the same way
as the adapter plate. A reverse arrangement, where the
carriage-guides are mounted at the fixed part of the ma-
chine, which is the compound slide, provides movements
in the y-direction. The carriage rails are fixed at the back
side of the y-cantilever over the wohle dimension of the
component. In the same way as the adapter plate is mod-
eled, the compound slide will be modeled. Based on the
assumption that the shift between the fixed and the mov-
able parts is more flexible than the self deformation of the
steel plate, only the carriage-rail systems are modeled flex-
ibly. Figure 4 depicts the structure of the compound slide

Modelling and Simulation of the passive Structure of a 5-Axis-Milling Machine with rigid and flexible bodies
for evaluating the static and dynamic behaviour

390 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132389

model with the eight carriage-rail transitions splitted into
the different axis movements and the related 3D-model of
the component. The animation of the component depicts

Figure 4. Model and animation of the compound slide with
eight carriage-rail transitions splitted into the different axis
movements

the reversal arrangement of the different linear guide sys-
tems. It makes no difference whether the carriage-rail shift
between the y-cantilever and the compound slide is mod-
eled at the slide itself or at the horizontal cantilever. In
order to the same reasons as discussed at the adapter plate,
only the flexibility of the transitions is modeled, the steel
plate is assumed to be rigid.

3.3 Modelling of the Milling Head
The milling head is mounted at the end of the y-cantilever,
it consists of eight parts. All of these parts are used to
achieve rotary movements of the milling tool, which is
mounted at the end of the component. Different connec-
tion flanges combine the rotary axes mechanically with
each other. In comparision with the secondary and espe-
cially with the main machine parts the dimensions of the
structural elements of the milling head are small. As a re-
sult of this assumption and as the milling head only acts
as a load at the end of the y-cantilever the components can
be modeled rigidly. In Figure 5 the model and the ani-
mation of the milling head is illustrated. The rotary mo-
tions of the different axes are implemented by components
of the Modelica.Mechanics.Multibody.Joints li-

Figure 5. Model and animation of the milling head with rigid
bodies

brary. Different parameters of the rigid components, such
as the mass or geometric dimensions, are defined by de-
sign data of the milling head.

4 Modeling of the main machine parts
4.1 Modeling of the Y-Cantilever
The initial situation at the y-cantilever can be described as
follows, the cantilever is connected to the compound slide
by the linear guides as described in section 3.2. It per-
forms movements in the YZ-plane due to external forces
caused by a linear direct drive. These forces, the con-
nected milling head together with gravitational forces are
leading to deformations of the canteliver and therefore to
relative movements of the TCP with respect to the inital
frame. For this reasons the y-cantilever has to be mod-
eled with flexible bodies, and therefore the usage of the
FlexibleBodies library is necessary. Choosing bound-
ary conditions with respect to this situation would lead to
the following conditions. In Figure 6 above, the initial sit-
uation with three choosen boundary conditions (red num-
bers) is depicted. The boundary conditions can be chosen

1 2 3

1 2 3 4

cantilever (initial situation)

deformed structure

cantilever (substitude model)

Figure 6. Inital situation of the y-cantilever and substituted
model

free at point 1 and 3 and as movable support at number
2 because of the parallel guidance at the compound slide.
The base class of a beam from the FlexibleBodies li-
brary enforces the user to choose boundary conditions for
each deformation type at the endings of the beam to get
correct results(Dr.-Ing. Andreas Heckmann et al., 2016).
It is not possible to choose boundary conditions at cer-
tain points within the length of the beam. Choosing the
base class of a beam model with two boundary condi-
tions for each deformation type would therefore lead to
large errors due to neglecting the third boundary condi-
tion. Furthermore the point, where the beam is movably
supported changes during the milling process. In order
to minimize the realtive error of the y-cantilever model a
substitude model (Figure 6 bottom) has to be created. The
model is splitted into three parts, where two parts consists
of flexible beams (Figure 6 black) and one part is a rigid

Session 6: Poster Session

DOI
10.3384/ecp17132389

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

391

body (Figure 6 blue). The whole y-cantilever is divided at
the center in two flexible beams of equal length. A rigid
body, which describes the rigid clamping of the beam at
the compound slide, is inserted between the flexible bod-
ies. The division of the flexible structure and the inser-
tion of a rigid body leads to a system where four bound-
ary conditions have to be chosen but the conditions where
the flexible beams are connected to the rigid body have
to be clearly chosen as clamped. In order to align bound-
ary conditions with the degrees of freedom of the joints,
to which the beam is attached no condition should bound
the elastic y-motion of the node attatched at the attach-
ment frame(Heckmann, 2010). Because of the joint that
realizes the y-motion of the beam, at point 1 no bound-
ary condition is chosen for any type of deformation and
the condition for point 4 is free. The restricition of this
model is, that only small movements of the y-cantilever
can be considered otherwise this model leads to massive
errors. However the position of the y-cantilever can be
assumed to be constant during the milling process of one
part of a vehicle such as the side or the front surface. In
addition to this problem parameters such as the cross sec-
tion, the modulus of elasticity or the density can not be
chosen easily. Taking a closer look at the cross section in
Figure 7 of the flexible structures in the substituted model
illustrates this fact. The entire beam consists of two parts,

{0,0} {0.183,0}

{0.1515,-0.125}{0.0315,-0.125}

First coordinate

se
co

n
d

 c
o

o
rd

in
at

e

a = 0.183 m

c = 0.12 m

h
 =

 0
.1

2
5

m

reference point (Start)

reference point (n)

troughput direction

Hydropol-filling

cast part

Figure 7. Cross section of the y-cantilever with geometrical
moments of inertia

an empty cast part and a special vibration reducing mate-
rial which is inserted there. The materials have different
modulus of elasticity E and different densities ρ , for this
reason a fictitious material has to be developed, consider-
ing the shares Vf of both materials. The material constants
of the fictitious material can be calculated in the following
way(Gross et al., 2014, p. 279-286).

Vf =
Acast

A f ill
(1)

ρbeam =Vf ·ρcast +(1−Vf) ·ρ f ill (2)
Ebeam =Vf ·Ecast +(1−Vf) ·E f ill (3)

Small movements of the y-cantilever are permissible but
to consider the additional extension of the second beam,
if it is moving towards the milling head, an additional line
force has to be applied. This additive force has to be ap-
plied over the whole second beam and is depending on
the covered distance towards the milling tool. The whole
model of the y-cantilever with the additional line force act-
ing as a point load and the animation of the component is
depicted in Figure 8. In order to reduce dynamic flexi-

Figure 8. Model and animation of the y-cantilever with an ad-
ditional line load

bility, steel ribs are welded over the whole length of the
beam. This mechanical design detail could not be consid-
ered by the base class of a flexible beam without a sub-
division of the y-cantilever model in several subsections
and therefore a higher computational effort. Because of
the new development of different machine parts, no real
measurements are done on this components till yet. For
this reason an independent validation of the y-cantilever
model with the aid of real measurements is not possible.

4.2 Modelling of the Z-Tower
The second main machine part that shows high static and
dynamic flexible behaviour is the z-tower. Due to the spe-
cial geometry of this part, a simple beam model would not
describe the behaviour. Therefore the second base class
of the FlexibleBodies library, the ModalBody class is
used to get more accurate results. A finite element model
of the z-tower is reduced in two steps, in order to achieve a
reduction of the number of degrees of freedom. The result
of this reduction is a modal representation of the compo-
nent with 221 degrees of freedom. This modal representa-
tion is stored in a standard input data file, that is the input
for the ModalBody class either than for other multi-body
simulation programs like SIMPACK. The second input file
for the ModalBody provides informations of the geometri-

Modelling and Simulation of the passive Structure of a 5-Axis-Milling Machine with rigid and flexible bodies
for evaluating the static and dynamic behaviour

392 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132389

cal shape of the considered body by a wavefront file. This
file offers the user a 3D-view of the considered eg. the de-
formated component(Andreas Heckmann et al., p.88-94).
In order to combine the movement of the compound slide
and therefore the y-cantilever over the whole length of the
tower the usage of the extended base class MovingLoad is
suitable. It provides a connector, which allows it to attach
moving forces/bodies/systems to the flexible structure. It
is also possible to control this movement by a flange but
additional parameter need to define this movement(Dr.-
Ing. Andreas Heckmann et al., 2016). Shape functions
are used for defining deformations and calculating forces
acting on the ModalBody, this shape functions are only
known at certain points, specified by the Nodes parameter
vector. This makes interpolation necessary and one re-
quirement for the ModalBody especially it needs enough
points in the vector to make this interpolation stable. The
load is only connected to the right guide rail that is close
to the milling head and the TCP. Six Simulation nodes out
of 36 on this guide rail provide a stable interpolation. An-
other problem is to keep small the wavefront file, that pro-
vides a 3D-view of the z-tower otherwise the internal an-
imation of Dymola will crash. The initial object file of
the z-tower provided a mesh with 30095 elements. Af-
ter applying a quadratic edge collapse decimaton filter a
reduction to 1700 elements provides a stable animation.
Figure 9 depicts the reduced animation file of the z-tower
with the six simulaton nodes.

simulation node 77710
coordinates {65,118.83,2859}

simulation node 82440
coordinates {65,118.83,1900}

simulation node 84378
coordinates {65,118.83,1501}

simulation node 87098
coordinates {65,118.83,941}

simulation node 89818
coordinates {65,118.83,381}

simulation node 91474
coordinates {65,118.83,58.89}

right guidance rail

Figure 9. Reduced animation of the z-tower with used simual-
tion nodes and their coordinates

5 Static and dynamic investigations
The basis of the static and dynamic investigations are the
presented secondary machine parts in section 3 and the
main machine parts in section 4. Together they build
a multibody model with flexible and rigid bodies of the
milling machine.

5.1 Static investigations

The static behaviour of the multibody model will be com-
pared with the results of a finite element simulation in or-
der to evaluate the multibody model in contrast to a me-
chanic specific simulation tool. The results of the finite
element simulation are also not validated but they will
match the real static behaviour of the machine close due to
the integration of specific construction details out of CAD-
constructions. Both simulations are done without any load
at the end of the y-cantilever. To evaluate the static be-
haviour of the model a constant force in one direction is
applied at the end of the y-cantilever to get static shifts in
all three translational directions. This constant force will
be achieved through a step function with a short delay time
to provide that the whole structure is in a steady state. The
y-cantilever will therefore be in an unstable position at the
highest point at the z-tower and fully extended. The area
in which the substitute model of the y-cantilever is valid
is left and only the magnitudes of the static shifts can be
rated. After five seconds to get the structure in a steady
state, a constant force of F = 10 N is applied at the end
of the y-cantilever and after 0,35 s the structure comes al-
ready to a steady state. If the relative movement at the

4.8256 4.8956 4.9656 5.0356 5.1056 5.1756 5.2456 5.3156 5.3856

Time [s]

2.7382401

2.7382431

2.7382461

2.7382491

2.7382521

2.7382551

2.7382581

2.7382611

2.7382641

2.7382671

2.7382701

2.7382731

2.7382761

2.7382785

re
la

tiv
e

sh
ift

 a
t t

he
 e

nd
 o

f t
he

 y
-c

an
til

ev
er

 in
 z

-d
ire

ct
io

n
[m

]

Relative shift in z-direction

z-position at the end of the y-cantilever

z
1

z
2

Figure 10. Relative shift at the end of the y-cantilever in z-
direction

end of the y-cantilever is divided by the applied force the
relative shift Vz in z-direction can be calculated.

Vz =
z2 − z1

F
=

1.5974 ·10−5 m
10 N

= 1.5974 ·10−3 mm
N

(4)

Session 6: Poster Session

DOI
10.3384/ecp17132389

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

393

In the same way as shown above the relative shifts in y-
and x-direction can be calculated.

Vy =
y2 − y1

F
=

1.0729 ·10−5 m
10 N

= 1.0729 ·10−3 mm
N

(5)

Vx =
x2 − x1

F
=

5.9605 ·10−6 m
10 N

= 5.9605 ·10−4 mm
N

(6)

Comparing the results of the multibody simulation to the
finite element solutions it can be stated that in a good ap-
proximation they are convergent. Deviations can be justi-
fied by the neglection of the flexibility of the guidance sys-
tem, the disregardence of the ribs in the y-cantilever and
the desertion of the scope of the y-cantilever. Regarding
the magnitudes of the static shifts it can be said that they
are absolutely convergent to the finite element solution.

5.2 Dynamic investigations
Positioning movements will encourage oscillations of the
whole structure and therefore also vibrations of the TCP.
This oscilations will also lead to positioning errors dur-
ing the milling process. To have a closer look at a posi-
tioning movement the y-cantilever will be in a stable po-
sition in the centre of the traverse range of the z-tower. A
simple ramp function will increase the x-position of the
structure till reaching a final value. The substitude model
of the y-cantilever is therefore in position that is within
the validity range. The ramp starts at position x = 0 m
at 0.5 s and increases this position till reaching the final
value of x = 1 m at 1.5 s. Figure 11 depicts the dynami-
cal behaviour during the positioning process. The simula-

structural vibrations

before force transmission t=0 s

+Δ T
after force transmissiont=0 s

x-axis

positioning movement

z-tower

milling tool

machine bed

Figure 11. Dynamical behaviour during the positioning move-
ments

tion results in Figure 12 are showing absolutely the same
behaviour of the structure. After reaching the final posi-
tion an overshoot relative to the desired position could be
determined. The envelope of this overshoot is an expo-
nential function which indicates a strong viscose damping
behaviour of the structure(Hoffmann, 2008).

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

Time [s]

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

P
o

si
ti

o
n
 o

f
th

e
T

C
P

 [
m

]

Tracking profile in x-direction

position of the TCP

target position of the TCP

1.4822 1.5222 1.5622 1.6022 1.6422 1.6822 1.7222 1.7622
1.5458

1.5478

1.5498

1.5518

1.5538

1.5558

1.5578

1.5598

1.5618

Figure 12. Tracking profile in x-direction

6 Conclusion and outlook
The mechanical model of the 5-axis-milling machine de-
picts the static and dynamic behaviour very accurate. The
simplifications made during the modeling process have
only marginal influences on the result. For modeling flex-
ible bodies within multibody structures the FlexibleBod-
ies library is a very accurate tool. The base classes Beam
and ModalBody offers the user different methods of im-
plementing those flexible structures. The beam class is
only useful for describing simple beam models, complex
geometries or designs are difficult to model with this class.
An extension of the beam base class, where the user is
able to define more than two boundary conditions and
make the position of these boundary conditions time de-
pendent would therefore be a relief. The amount of us-
able boundary conditions is limited to three, implement-
ing other boundary conditions such as "movable clamped"
would make the modeling of problems, such as the mov-
able cantilever, easier without FE-pre-processing. In order
to model such beam structures and defining input datas
such as boundary conditions or the number of the required
eigenmodes for getting correct results, a very deep theoret-
ical background is needed. If the user only wants to imple-
ment existing models derived out of a finite element anal-
ysis the ModalBody class offers a very powerful tool for
implementing those structures. In the next step, models
of the drive trains that move the different axes will be de-
veloped. In combination with this drive models the whole
behaviour of the mechatronic system can be observed and
compared to the real system. After this validation of the
model the trajectory guidance will be improved by chang-
ing the control strategy of the drive trains.

References
Andreas Heckmann, Martin Otter, Stefan Dietz, and José

Díaz López. The DLR FlexibleBodies library to model
large motions of beams an of flexible bodies exported
from finite element programs. In Proceedings of the
5th International Modelica Conference, pages 85–95.
URL https://www.modelica.org/events/

Modelling and Simulation of the passive Structure of a 5-Axis-Milling Machine with rigid and flexible bodies
for evaluating the static and dynamic behaviour

394 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132389

modelica2006/Proceedings/proceedings/
Proceedings2006_Vol1.pdf.

Dr.-Ing. Andreas Heckmann, Prof. Dr.-Ing. Martin Otter, Martin
Leitner, Jakub Tobolar, and Stefan Hartweg. FlexibleBod-
ies: Library to model large motions of flexible beams, anular
plates and of flexible bodies exported from finite element pro-
grams, 2016. Version 2.2.

Dietmar Gross, Werner Hauger, Jörg Schröder, and Wolfgang A.
Wall. Technische Mechanik 2: Elastostatik. Springer-
Lehrbuch. Springer Vieweg, Berlin, 12., aktual. aufl. edi-
tion, 2014. ISBN 978-3-642-40965-3. doi:10.1007/978-3-
642-40966-0. URL http://dx.doi.org/10.1007/
978-3-642-40966-0.

Andreas Heckmann. On the choice of boundary conditions
for mode shapes in flexible multibody systems. Multibody
System Dynamics, 23(2):141–163, 2010. ISSN 1384-5640.
doi:10.1007/s11044-009-9177-z.

Frank Hoffmann. Optimierung der dynamischen Bahnge-
nauigkeit von Werkzeugmaschinen mit der Mehrkörpersimu-
lation: Zugl.: Aachen, Techn. Hochsch., Diss., 2008, volume
2008,8 of Ergebnisse aus der Produktionstechnik Werkzeug-
maschinen. Apprimus-Verl., Aachen, 2008. ISBN 978-3-
940565-12-9.

Marcus Queins. Simulation des dynamischen Verhaltens von
Werkzeugmaschinen mit Hilfe flexibler Mehrkörpermodelle:
Zugl.: Aachen, Techn. Hochsch., Diss., 2005, volume
2005,12 of Berichte aus der Produktionstechnik. Shaker,
Aachen, 2005. ISBN 3-8322-4224-4.

Session 6: Poster Session

DOI
10.3384/ecp17132389

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

395

396 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Modeling and Simulation on Environmental and Thermal Control

System of Manned Spacecraft

Sun Lefeng1 Jin Jian1 Chen Liping 2 Liu Wei 2 Huang Lei2 Zhou Fanli 2 Liu Qi2
1China Academy of Space Technology, Beijing, China,

sunlefeng@hotmail.com, jinjian0331@126.com
2Suzhou Tongyuan Software & Control Technology Co., Suzhou, China,

{chenlp, liuw,huangl, zhoufl, liuq}@tongyuan.cc

Abstract
In order to support crew resides, key air environment

parameters of manned spacecraft should be controlled

within index range by environmental and thermal con-

trol system. In this paper a model of manned spacecraft

environmental and thermal control system in Modelica

language is developed. Using this simulation model, we

analyze air environment parameters varying trend as

the crew metabolic level variation. The results show

that crew metabolic level could influence air environ-

ment parameters dramatically. Furthermore, air envi-

ronment parameters should be analyzed comprehen-

sively due to important affection of air temperature to

oxygen partial pressure, carbon dioxide partial pressure

and relative humidity. The work in this paper is helpful

to provide a new method for analysis of environmental

and thermal control system of manned spacecraft.

Keywords: manned spacecraft, Modelica, MWorks;

temperature/humidity control, carbon dioxide removal,
oxygen pressure control

1 Introduction

Environmental and thermal control system is a system

to guarantee a good life and thermal environment and

the key technology to realize manned spaceflight [1].

The current commonly used analysis method is to es-

tablish a pressurized cabin simulation model using

CFD (computational fluid dynamics) [2-6]. The method

is used to analyze the temperature and humidity, partial

pressure of oxygen, etc. Using this design method has

the following shortcomings:

1) In the program design, the designer is con-

cerned with the system level indicators .CFD software

is good at equipment level analysis, not suitable for

system level analysis;

2) CFD software is not suitable for system level

analysis so that it is difficult to analyze the interrela-

tionship between each parameter of the system;

On the contrary, Modelica is an object-oriented

modeling and simulation language. Modelica is good at

system level analysis. With Modelica, we can establish

mathematical models of each component and an inte-

gral model of the entire environmental and thermal

control system. The paper has the following objectives:

1) Establish a model of manned spacecraft envi-

ronmental and thermal control system in Modelica lan-

guage;

2) Analyze the interrelationship of key parame-

ters of manned spacecraft environmental and thermal

control system.

3) Analyze the influence of the change of key pa-

rameters on the system.

2 System Descriptions

In this paper, the cabin environment is assumed to be

insulated from the outside. Schematic diagram of envi-

ronmental and thermal control system is shown below.

cold

plate

heat

exchanger

temperature

control valve

air

condenser

radiator

outer

loop

low temperature

inner loop

medium temperature

inner loop

low temperature

inner loop pump

temperature

control valve
medium temperature

inner loop pump

outer loop

pump

cold

plate

cold

plate

oxygen

bottle

nitrogen

bottle
carbon

dioxide purification

fan

carbon

dioxide purification

condensate

tank

separator

temperature and

humidity control

fan

valve valve

cabin

heat

exchanger

crew

temperature

control valve

Figure 1 Environment and thermal control system

2.1 Constitute of Environmental and

Thermal Control System

Environmental and thermal control system includes:

DOI
10.3384/ecp17132397

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

397

1) Cabin pressure control system: cabin is

equipped with high pressure oxygen bottle. When par-

tial pressure of oxygen bellows the lower limit, oxygen

bottle begins to supply oxygen until partial pressure of

oxygen reaches the higher limit.

2) Carbon dioxide purification system: cabin is

equipped with non-regenerative cabin dioxide purifica-

tion tank and fan. Fan extracts air from the cabin to

purification tank. When carbon dioxide partial pressure

reaches the higher limit, a new purification tank will be

automatically replaced.

3) Temperature and humidity control system:

cabin is equipped with air condenser, moisture separa-

tor. Air condenser provides the cold source for the tem-

perature control loop; Fan extracts air from the cabin to

air condenser; Water and gas mixture which is collect-

ed by the air condenser enters moisture separator to

separate. The separated water enters water tank and the

separated air returns to the cabin.

4) Low temperature inner loop control system:

low temperature inner loop is equipped with pump,

heat exchanger and temperature control valve. The

speed of pump is a parameter which is set before simu-

lation. Temperature control valve opening is controlled

by the PID controller which is set a temperature control

point.

5) Medium temperature inner loop control system:

medium temperature inner loop is equipped with pump,

heat exchanger and temperature control valve.

6) Outer loop control system: heat collected by

the low temperature inner loop control system and me-

dium temperature inner loop control system is trans-

ferred to the outer loop through heat exchanger. Outer

loop collects heat load of the cabin and equipment and

exhausts to the space through radiator.

2.2 Metabolic Level of Astronaut

The metabolic level of astronaut changes with the dif-

ferent forms of activities. Referring to the international

space station, this paper takes into account four meta-

bolic levels:

1) Sleeping: Metabolic heat production is 80W.

The rate of oxygen consumption is 0.0202kg/h. Car-

bon dioxide output rate is 0.023kg/h;

2) Resting: Metabolic heat production is 100W.

The rate of oxygen consumption is 0.0252kg/h. Car-

bon dioxide output rate is 0.029kg/h;

3) Mild activity: Metabolic heat production is

170W. The rate of oxygen consumption is

0.0432kg/h. Carbon dioxide output rate is 0.049kg/h;

4) Moderate activity: Metabolic heat produc-

tion is 240W. The rate of oxygen consumption is

0.0606kg/h. Carbon dioxide output rate is 0.069kg/h;

Resting

Active state

Sleeping Mild activity Moderate activity

metabolic heat

production(W)

rate of oxygen

consumption/1
0000(kg/h)

 carbon dioxide

output

rate/10000(kg/h)

80 202 230
252 290100

432 490170

606 690240

Metabolic

level

 Figure 2 Metabolic level of astronaut at different active

state

2.3 Astronaut Schedule

This paper assumes there are three astronauts in the

cabin and they are always at the same level of metabo-

lism. Astronaut schedule in a day is arranged as follows:

Sleeping is 7 hours. Resting is 4 hours. Moder-

ate activity is 2 hours. Mild activity is 11 hours. Sched-

ule is in accordance with the above order.

Resting

Time(h)
70 11 13 24

Sleeping

Mild

activity

Moderate

activity

Active
State

Figure 3 Crew’s active state diagram in a day

2.4 Indicator of Air Environment

Indicators of air environment refer to International

Space Station [7]. We can see it as follows:

Table 1 The goal of each air environment indicator

Goal Request

temperature 20～26 ℃

relative humidi-

ty
30%～70%

partial pressure

of oxygen

19000 ～ 22000

Pa

partial pressure

of carbon diox-

ide

≤700 Pa

Modeling and Simulation on Environmental and Thermal Control System of Manned Spacecraft

398 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132397

3 Models

We use MWorks as a basic platform for modeling and

simulating the environmental and thermal control sys-

tem of manned spacecraft [8].

3.1 Interface Design

Interfaces for physical component models must be

physically able to connect components. Environmental

and thermal control system involves two areas of heat

and fluid so that its interfaces are heat and fluid inter-

faces which are shown in table 2. There are two basic

types of variables for Modelica interfaces, which are

flow variables and potential variables. Interfaces con-

nection comply with the general theory of Kirchhoff’s

law, namely the sum of flow variables is zero and the

potential variables are equal when interfaces connect to

each other. In order to meet the needs of thermal fluid

system modeling, Modelica has added a new interface

variable which is stream variable.

Table 2 Interface types and variables in interfaces

Interface type Variable Variable type

fluid interface

pressure
potential varia-

ble

mass flow rate flow variable

mass ratio stream variable

specific

enthalpy
stream variable

thermal inter-

face

temperature
potential varia-

ble

heat flow flow variable

3.2 Medium Models

Medium models are obtained by expansion and special-

ization from standard medium of Modelica standard

library. Medium models and component models can be

decoupled when independent medium models are de-

signed. Medium models are defined as replaceable

models. Component models can select medium model

by redeclaration. A medium model is a model package

which is made up of four parts:

1) Constants, which contain the name of medium

and molar mass, etc.

2) Attribute models, which mainly include state

equation and other thermodynamic equation.

3) Functions, which calculate property parameters

in different states.

4) Types, which apply to the thermodynamic var-

iables.

3.3 Component Models

A component model is a restricted category of Modeli-

ca which can include parameters, variables, nested clas-

ses, equations and algorithms. A component model is

established using a bottom-up approach, inherits base

class model, declare subcomponent model and interface

and add variables and equations. Component models

correspond to the system basic physical components

such as pipe, valve, fan, heat exchanger, etc. Compo-

nent models are fully functional models which can be

directly instantiated and used. Main equations of the

major components are described as follows:

3.3.1 Cabin

The cabin interacts with the outside world can be ab-

stracted thermal and fluid interfaces. The main equa-

tions of a cabin is shown as follows:

1) Mass conservation is calculated by the using

the following equation:

 , , ,

j

in in j out out j lf j

dm
w x w x w

dt
 (1)

Where
jm denotes the mass of the J kind ingredi-

ent; inw denotes air mass which flow in the cabin;

,in jx denotes mass percentage of the J kind ingredi-

ent which flow in the cabin; outw denotes air mass

which flow out the cabin;
,out jx denotes mass per-

centage of the J kind ingredient which flow out the

cabin; ,lf jw denotes mass percentage of the J kind

ingredient metabolized by Astronaut.

2) Energy passed to the bulkhead is calculated

by using the following equation:

 wall
wall

dU
q

dt
 (2)

Where wallU denotes internal energy of bulkhead;

wallq denotes total heat passed to the bulkhead.

3) Energy passed to air of the cabin is calculat-

ed by using the following equation:

 air
in in out out air

dU
w h w h q

dt
 (3)

Where airU denotes internal energy of air in the

cabin; inh denotes enthalpy of air which flow in the

cabin; outh denotes enthalpy of air which flow out

the cabin; airq denotes total heat added to air.

Session 6: Poster Session

DOI
10.3384/ecp17132397

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

399

3.3.2 Crew

The crew interacts with the outside world can be ab-

stracted thermal and fluid interfaces. The main equa-

tions of a crew is shown as follows:

1) Metabolism is calculated by the using the

following equation:

 ()W = Q Qact bas (4)

 Q Q Qact shiv (5)

Where W denotes mechanical force of every crew;

 denotes mechanical efficiency; Qact denotes met-

abolic activity of crew; Qbas denotes basal metabolic

activity of crew; Qshiv denotes heat generated by

muscle tremors.

2) Breathing is calculated by using the follow-

ing equation:

 2
60000 247.35 (0.23 0.77)

Q
m =O

RQ

 (6)

 2
2 2

2

MWCO
m = RQ mCO O

MWO

 (7)

Where RQ denotes respiratory coefficient; 2MWCO

is molar mass of carbon dioxide; 2MWO denotes mo-

lar mass of oxygen.

Through inheriting interfaces and adding parame-

ters, variables and equations, we can establish the

crew Modelica model.

3.3.3 Carbon Dioxide Purification

The carbon dioxide purification interacts with the out-

side world can be abstracted thermal and fluid interfac-

es. The main equations of a carbon dioxide purification

is shown as follows:
1) Total amount of carbon diox-

ide purification control of a purification tank is cal-

culated by using the following equation:

2CO load LiOH,0M x m (8)

Where loadx denotes mass of carbon dioxide puri-

fied per kg in the initial state; LiOH,0m denotes mass

per purification tank.

2) Carbon dioxide purification rate control is

calculated by using the following equation:

2

0.9185 1
0.9185

load
CO LiOH,0

x
w ar m

a

 (9)

Where r denotes chemical reaction rate of carbon

dioxide.

3) Water production rate control is calculated

by using the following equation:

 0.9185 1
0.9185

2

2

2

H Oload

H O LiOH,0

CO

MWx
w ar m

a MW

 (10)

Where
2H OMW denotes molecular weight of water;

2COMW denotes molecular weight of carbon dioxide.

4) Mass conservation is calculated by using the

following equation:

,

,

2 2

2

in Z in,CO CO

out,CO

out Z

w x - w
x =

w
 (11)

,

,

2 2

2

in Z in,H O H O

out,H O

out Z

w x +w
x =

w
 (12)

Where
2out,COx denotes mass percentage of carbon

dioxide in the air which flows out purifica-

tion tank;
2out,H Ox denotes mass percentage of water

in the air which flows out purification tank;
,in Zw

denotes mass flow rate of air which flows in purifi-

cation tank; ,out Zw denotes mass flow rate of air

which flows out purification tank;
2in ,COx denotes

mass percentage of carbon dioxide in the air which

flows in purification tank;
2in ,H Ox denotes mass per-

centage of water in the air which flows in purifica-

tion tank.

5) Momentum conservation is calculated by us-

ing the following equation:

, ,

,

refin Z in Z

ref

ref ref in Z

w w
p p

w w

 (13)

Where p denotes pressure difference of air which

flows through purification tank; refp denotes refer-

ence pressure difference of air which flows through

purification tank; refw denotes reference mass flow

rate of air which flows in purification tank; ,in Z

denotes density of air which flows in purifica-

tion tank; ref denotes reference density of air

which flows in purification tank.

6) Energy conservation is calculated by using

the following equation:

, , , ,in Z in Z out Z out Z reacbed

bed bed

w h - w h +qdT
=

dt M Cp
 (14)

Modeling and Simulation on Environmental and Thermal Control System of Manned Spacecraft

400 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132397

Where bedT denotes temperature of purifica-

tion tank;
,in Zh denotes enthalpy of air which flows

in purification tank;
,out Zh denotes enthalpy of air

which flows out purification tank; reacq denotes heat

generated by the chemical reaction; bedM denotes

total mass of purification tank; bedCp denotes specif-

ic heat of purification tank.

3.3.4 Air Condenser

The air condenser interacts with the outside world can

be abstracted thermal and fluid interfaces. The main

equations of an air condenser is shown as follows:

1) Mass conservation of air side is calculated

by using the following equation:

 air,in air,out drainw = w +w (15)

Where air,inw denotes mass flow rate of air which

flows in air condenser; air,outw denotes mass flow

rate of air which flows out air condenser; drainw de-

notes mass flow rate of gas and liquid mixture which

flows in moisture separator.

2) Liquid flow control is calculated by using

the following equation:

 drain,liquid slurper slurper,liq air,inw = x w (16)

Where drain,liquidw denotes mass flow rate of liquid

which flows in moisture separator; slurper denotes

separation efficiency; slurper,liqx denotes mass ratio of

liquid in mixture.

3) Heat exchange control is calculated by using

the following equation:

 ex hex air cold air,in cold,inq = e min C ,C T -T (17)

Where exq denotes total heat exchange; hexe de-

notes heat exchange efficiency; airC denotes heat

capacity in the gas side; coldC denotes heat capacity

in the liquid side; air,inT denotes inlet temperature in

the gas side; cold,inT denotes inlet temperature in the

liquid side.

3.3.5 Pump

The pump interacts with the outside world can be ab-

stracted thermal and fluid interfaces. The main equa-

tions of a pump is shown as follows:

1) Energy is calculated by using the following

equation:

 in in outout

fluid dry dry

w h - h qdT
=

dt Cp V M Cp

 (18)

Where outT denotes outlet temperature of working

fluid; inh denotes inlet enthalpy of working fluid;

outh denotes outlet enthalpy of working fluid; q de-

notes power delivered to fluid;
fluidCp denotes spe-

cific heat capacity of the fluid; denotes density of

working fluid; V denotes volume of fluid;
dryM

denotes mass of solid wall;
dryCp denotes specific

heat capacity of solid wall.

2) Hydraulic efficiency is calculated by using

the following equation:

g TDH Q

W

 (19)

Where denotes hydraulic efficiency of pump;

TDH denotes total dynamic head of pump; Q de-

notes volume flow rate; W denotes braking power.

3.3.6 Fan

The fun interacts with the outside world can be ab-

stracted thermal and fluid interfaces. The main equa-

tions of a fun is shown as follows:

1) Energy is calculated by using the following

equation:

 in in outout

dry dry

w h - h qdT
=

dt M Cp

 (20)

Where outT denotes outlet temperature of working

fluid; inh denotes inlet enthalpy of working fluid;

outh denotes outlet enthalpy of working fluid; q de-

notes power delivered to fluid; dryM denotes mass

of solid wall; dryCp denotes specific heat capacity of

solid wall.

2) Hydraulic efficiency is calculated by using

the following equation:

g TDH Q

W

 (21)

Where denotes hydraulic efficiency of fan;

TDH denotes total dynamic head of fan; Q denotes

volume flow rate; W denotes braking power.

3.4 Subsystem Models

Through inheriting component models, we establish

cabin pressure control system, carbon dioxide purifica-
tion system, temperature and humidity control system,

fluid loop system which includes low temperature inner

Session 6: Poster Session

DOI
10.3384/ecp17132397

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

401

loop, medium temperature inner loop and outer loop.

These subsystem models are shown as follows:

Figure 4 Cabin pressure control system

Figure 5 Carbon dioxide purification system

Figure 6 Temperature and humidity control system

Figure 7 Fluid loop system

3.5 System Model

Through inheriting subsystem models, the model of

environmental and thermal control system is estab-

lished as follows:

Figure 8 Model of environmental and thermal control

system based on Modelica

4 Simulations and Analysis

This paper analyzes the key parameters of the air envi-

ronment of the cabin in a day. The simulation parame-

ter settings are shown in table 3. The results are shown

in figure 9 to figure 16.

Table 3 Simulation parameter settings

Component name Parameter name Values

cabin

air volume in cabin 100 m^3

cabin inner wall

area
600 m^2

carbon diox-

ide purification

Mass of carbon

dioxide purifying

agent per box

2kg

carbon diox-

ide purification fan
speed 150rad/s

air condenser
thermal

conductivity
350W/K

separator speed 150rad/s

temperature and

humidity control fan
speed 32rad/s

low temperature

inner loop pump
speed 150rad/s

medium tempera-

ture inner loop

pump

speed 50rad/s

Modeling and Simulation on Environmental and Thermal Control System of Manned Spacecraft

402 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132397

Figure 9 Air temperature

Air temperature in the cabin changes with the varia-

tion of crew metabolism (Figure 9). The abscissa is

time and its unit is hour. The ordinate is temperature

and its unit is centigrade. When crews are sleeping, air

temperature is about 21.5 centigrade; From fourth to

twelfth hours, air temperature increases slightly; At

twelfth hours, when crews are in moderate activity, air

temperature increases rapidly and reaches 27.7 centi-

grade at the highest point, beyond the upper limit of the

index; At fourteenth hours, when crews are in mild ac-

tivity, air temperature decreases rapidly; At twenty-first

hours, oxygen partial pressure reaches the lower limit,

cabin begins to fill oxygen so that air temperature in-

creases; At twenty-second hours, because the oxygen

partial pressure reaches the higher limit, cabin stops

filling oxygen so that air temperature decreases.

In summary, during a day, when the crew is in mod-

erate activity, the air temperature is outside the normal

range.

Figure 10 Relative humidity

Relative humidity of air is directly related to meta-

bolic level of crew and air temperature (Figure 10). The

abscissa is time and its unit is hour. The ordinate is

relative humidity. When crews are sleeping, relative

humidity of air remains at around 38%; At fourteenth

hours, when crews are in moderate activity, although

the crew metabolic wet increases, temperature increases

rapidly so that relative humidity of air decreases; At

twenty-first hours, because the oxygen partial pressure

reaches the lower limit, cabin begins to fill oxygen so

that air temperature increases. Relative humidity of air

decreases; At twenty-second hours, because the oxygen

partial pressure reaches the higher limit, cabin stops to

fill oxygen so that air temperature decreases. Relative

humidity of air increases.

In summary, air temperature has a greater impact to

relative humidity than metabolic level of crew. Relative

humidity of air is in the normal range in a day.

 Figure 11 Oxygen partial pressure

The partial pressure of oxygen has a relationship to

crew oxygen consumption rate, cycle of supplying gas,

air temperature, etc (Figure 11). The abscissa is time

and its unit is hour. The ordinate is the partial pressure

of oxygen and its unit is Pa. When crews are sleeping

and resting, oxygen partial pressure decreases slowly;

At twelfth hours, when crews are in moderate activity,

although the crew metabolism strengthen and oxygen

consumption increases, temperature increases rapidly

so that oxygen partial pressure increases; At fourteenth

hours, when crews are in mild activity, although crew

metabolism decline and oxygen consumption decreases,

air temperature decreases rapidly so that oxygen partial

pressure decreases; At twenty-first hours, because the

oxygen partial pressure reaches the lower limit, cabin

begins to fill oxygen so that oxygen partial pressure

increases; At twenty-second hours, because the oxygen

partial pressure reaches the higher limit, cabin stops to

fill oxygen so that oxygen partial pressure decreases.

In summary, oxygen partial pressure is in the normal

range in a day.

Session 6: Poster Session

DOI
10.3384/ecp17132397

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

403

Figure 12 Carbon dioxide partial pressure

Carbon dioxide partial pressure changes with the

change of crew metabolism (Figure 12). The abscissa is

time and its unit is hour. The ordinate is the partial

pressure of oxygen and its unit is Pa. We suppose the

initial carbon dioxide partial pressure is 0 .When crews

are sleeping or resting, carbon dioxide partial pressure

increases; At twelfth hours, when crews are in moder-

ate activity, crew metabolism strengthen and more car-

bon dioxide is generated, carbon dioxide partial pres-

sure increases fast; At fourteenth hours, when crews are

in mild activity, crew metabolism decline and less car-

bon dioxide is generated, carbon dioxide partial pres-

sure increases slowly.

In summary, carbon dioxide partial pressure is in the

normal range in a day.

In the case of the above model parameters, the air

temperature beyond the normal range in a day. The air

temperature is controlled by the condensing dryer, and

the fluid flow into the condensing dryer is controlled by

the temperature and humidity control fan. In the case of

other parameters unchanged, we increase the tempera-

ture and humidity control fan speed to 40 rad/s and ob-

serve the change of air environmental parameters.

Figure 13 Air temperature at 40 rad/s of fan speed

Figure 14 Relative humidity at 40 rad/s of fan speed

Figure 15 Oxygen partial pressure at 40 rad/s of fan speed

Figure 16 Carbon dioxide partial pressure at 40 rad/s of

fan speed

In summary, in a day, air temperature, air relative

humidity, oxygen and carbon dioxide partial pressure

are in the range of indicators.

5 Conclusions

In this paper a model of manned spacecraft environ-

mental and thermal control system in Modelica lan-

guage is developed based on the professional

knowledge. Using this simulation model, air environ-

ment parameters varying trend as the crew metabolic

level variation has been analyzed. Draw the conclusion

as follows:

1) Crew metabolic level could influence air envi-

ronment parameters dramatically.

2) Air environment parameters should be ana-

lyzed comprehensively due to important affection of air

temperature to oxygen partial pressure, carbon dioxide

partial pressure and relative humidity.

3) The simulation of the environmental and ther-

mal control system can be carried out by modifying the

key parameters of the components, which greatly re-

duces the workload of the test and the working time of

the engineer.

Modeling and Simulation on Environmental and Thermal Control System of Manned Spacecraft

404 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132397

References

[1] Lin Guiping, Wang Puxiu. Manned space life sup-

port technology [M].Beijing: Beijing University of

Aeronautics and Astronautics press, 2006:37-147.

[2] Cheng Wenlong, Zhao Rui, Huang Jiarong, et al.

Numerical simulation of flow heat transfer and hu-

midity distribution in pressured cabins of an inde-

pendent flight manned spacecraft[J]. Journal of As-

tronautics, 2009, 30(6): 2410-2416.

[3] Fu Shiming, Xu Xiaoping, Li Jindong, et al. Carbon

dioxide accumulation of space station crew quarters

[M]. Journal of Beijing University of Aeronautics

and Astronautics, 2007, 33(5):523-526(in Chinese).

[4] Ji Chaoyue, Liang Xingang, Ren Jianxun. Numeri-

cal study of crew carbon dioxide discharge in pres-

surized cabin of space station[C]. The fifth space

thermal physics conference, Chinese Astronautical

Society, 2000.9. Huangshan, 147-150.

[5] Zhong Qi, Liu Qiang, etc. A numerical investigation

on heat transfer and flow in a pressurized cabin of

spacecraft [J]. Journal of Astronautics, 2002,

23(5):44-48(in Chinese).

[6] Huang Jiarong, Fan Hanlin. Steady numerical simu-

lation for the humidity distribution in manned

spacecraft habitation cabin [J]. Journal of Astro-

nautics, 2005, 26(3):349-353(in Chinese).

[7] Wieland P O. Living together in space: The design

and operation of the life support systems on the In-

ternational Space Station. NASA/TM1998-

206956[R].

[8] Yu Tao, Zeng Qingliang. Multi_domain simula-

tion based on the modeling language Modelica [J].

Journal of Shandong University of Science and

Technology, 2005, 24 (4):13-16.

Session 6: Poster Session

DOI
10.3384/ecp17132397

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

405

406 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Modeling and simulation of a complex ThermoSysPro model with

OpenModelica

Dynamic Modeling of a combined cycle power plant

El Hefni Baligh1 Bouskela Daniel1
1EDF R&D STEP, Electricité de France, {baligh.el-hefni, daniel.bouskela}@edf.fr

Abstract
ThermoSysPro (TSP) is a generic library for the

modeling and simulation of power plants and other

kinds of energy systems. TSP library is developed by

EDF and released under open source license. The library

features multi-domain modeling such as thermal-

hydraulics, neutronics, combustion, solar radiation,

instrumentation and control.

Numerous organizations and individuals worldwide

now use TSP. Until recently, the TSP library could be

used only under Dymola for the modeling and

simulation of complex power plants. But now, with the

latest version of OpenModelica (OM), we can simulate

complex models of power plants with complex

scenarios.

To be able to use TSP under OM, some adaptations

have been applied to our models, essentially the method

used to make inverse computation.

The objective of this work is to evaluate the

potentiality, capability and efficiency of using

OpenModelica tools to perform dynamic studies of

power plants. A combined cycle power plant has been

chosen as a representative test case of the complexity of

this type of study.

The paper describes the dynamic model of a

combined cycle power plant, whose objective is to study

a step variation load from 100% to 50% and a full gas

turbine trip, using OM software. Also, the structure of

the model, the parameterization data, the results of

simulation runs, the difficulties encountered using OM

and the comparison between Dymola and OM are

presented.

Keywords: Modelica; OpenModelica; ThermoSysPro;
thermal-hydraulics; combined cycle power plant;

dynamic modeling; inverse problems.

1 Introduction

Modeling and simulation play a key role in the design

phase and performance optimization of complex energy

processes. They also play a significant role in the future
for power plant maintenance and operation.

ThermoSysPro is a generic library for the modeling

and simulation of power plants and other kinds of

energy systems. ThermoSysPro library is developed by

EDF and released under open source license.

The foundations of the library are based on first

physical principles: mass, energy, and momentum

conservation equations, up-to-date pressure losses and

heat exchange correlations, and validated fluid

properties functions. The correlations account for the

non-linear behavior of the phenomena of interest. They

cover all water/steam phases, oil, molten salt and all flue

gas compositions. The granularity of the modeling may

be freely chosen. Some correlations are given by default

since they correspond to the most frequent use-cases,

but they can be freely modified by the user if needed.

This includes the choice of the pressure drop or heat

transfer correlations. Special attention is given to the

handling of two-phase flow, as two-phase flow is a

common phenomenon in power plants.

The library components are written in such a way that

there are no hidden or unphysical equations, that

components are independent from each other and to

ensure as much as possible upward and downward

compatibility across tools and library versions. This is

particularly important in order to control the impact of

component, library or tool modifications on the existing

models.

This library is aimed at providing the most frequently

used model components for the 0D-1D static and

dynamic modeling of thermodynamic systems, mainly

for power plants, but also for other types of energy

systems such as industrial processes, energy conversion

systems, buildings etc. It involves disciplines such as

thermal-hydraulics, combustion, neutronics and solar

radiation.

The ambition of the library is to cover all the phases

of the plant lifecycle, from basic design to plant

operation. This includes for instance system sizing,

verification and validation of the instrumentation and

control system, system diagnostics and plant

monitoring. To that end, the library will be linked in the

future to systems engineering via the modeling of
systems properties, and to the process measurements via

data reconciliation and data assimilation.

DOI
10.3384/ecp17132407

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

407

The library may be downloaded freely together with

the OpenModelica software from

https://openmodelica.org/download/download-

windows.

Several test-cases were developed to validate the

library in order to cover the full spectrum of use-cases

for power plant modeling:

 Dynamic model of a 1300 MWe nuclear power

plant covering the primary and secondary loops,

 Dynamic model of steam generators for sodium

fast reactor (David F., Souyri A. and Marchais G,

2009)

 Static and dynamic models of a biomass plant (El

Hefni B. and Péchiné B, 2009),

 Physics/neutronics model in Modelica for a tool,

to assist the operator, to control the power plant

for infrequent transients and to establish a

strategy of optimal operating procedure (El Hefni

B., 2011),

 Dynamic model of a concentrated solar power

plant (El Hefni B., 2013),

 Dynamic multi-configuration model of a 145

MWe concentrated solar power plant with the

ThermoSysPro library (tower receiver, molten

salt storage and steam generator)’, (El Hefni B.,

Soler R., 2014),

 Dynamic simulation of a 1MWe CSP tower plant

with two-level thermal storage implemented with

control system (S.J. Liua et al., 2014),

 Dynamic simulation and experimental validation

of Open Air Receiver and Thermal Energy

Storage systems in solar thermal power plant

(Qing Li et al., 2015).

The objective of this paper is to show the potentiality,

capability and efficiency of OpenModelica tools to

perform dynamic studies using complex models such as

the combined cycle power plant model.

In order to challenge the dynamic simulation

capabilities of the library, a step load variation from

100% to 50% and a turbine trip (sudden stopping of the

gas turbine) were simulated.

2 How to use OpenModelica for

inverse problems (model inversion)

As the initial state of the simulation is in general

defined by the observable outputs of the system (e.g. the

nominal power output, the pressure inside the boiler,

etc.), it is necessary to solve an inverse problem to

compute the initial state. Moreover, it is necessary to

start the simulation from a stationary (or steady) state in

order to avoid the numerical difficulties which arise

when the system is started out of equilibrium

(oscillations, stiffness …).

The inverse problem basically consists in setting

(fixing) a state variable of the model to a known

measurement value to compute by model inversion the

value of a parameter or a boundary condition.

Modelica allows to express inverse problems, which

is a powerful feature for computing operation points,

which are defined by their observable outputs, and for

system sizing, to compute parameterised characteristics.

To implement the inverse problem under Dymola, it

is enough simply to fix the value of the state variable

and declared it to (fixed = true) and released the

parameter to be computed and declared it as (fixed =

false). However, this method is incompatible with

OpenModelica (no standard Modelica language).

Here is a simple example to illustrate the deference

between Dymola and OM for the implementation of the

reverse problem (standard Modelica language).

Furthermore, for the demonstration we use a simple

model to calculate the pressure drop in a tube, so:

QQ
KPP oi

iP is the fluid pressure at the singularity inlet (Pa) , oP

is the fluid pressure at the singularity outlet (Pa), Q is

the fluid mass flow rate (kg/s), K is the

friction pressure loss coefficient (m-4) and is the

average density of the fluid (kg/m3).

As the above equation is implemented in a TSP

component model called SingularPressureLoss, this

model component is used to illustrate inverse

calculation. The model uses the following component

models (see Figure 1):

 SingularPressureLoss model,

 SourceP model,

 SinkP model.

Figure 1. TestSingularPressureLoss model (test-

case).

The equation above makes it possible to calculate the

flow rate of the fluid through the tube, provided that the

pressure drop in the tube, the coefficient of the pressure

drop and the fluid density are known (parameters).

The model inversion (calibration) consists in setting

the mass flow rate of the fluid through the tube (Q) and

the friction pressure loss coefficient of the pipe (K) can

be computed. To express this inverse problem with

Dymola, it suffices to write: [Q (fixed = true, start =

500)] and [K (fixed=false, start=100] in the parameters

P0= 3e5 Pa P0= 1e5 Pa

Modeling and simulation of complex ThermoSysPro model with OpenModelica - Dynamic Modeling of a
combined cycle power plant

408 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132407

windows of the SingularPressureLoss model (see

Figure 2).

Figure 2. Data for the SingularPressureLoss model.

On the other hand, to express this inverse problem

with OpenModelica (also valid for Dymola), it is

necessary to write: [Q (fixed = true, start = 500)] and

K = K_pipe in the parameters windows of the

SingularPressureLoss model (see Figure 3).

 Also, the parameter K_pipe (new intermediary

parameter), must be created (declared) in the main

model, with [K_pipe (fixed=false, start =1.e2)], see

Table 1.

Figure 3. Data for the SingularPressureLoss model.

Table 1. The declaration of the K_pipe in the main

model.

model TestSingularPressureLoss
 parameter Real K_pipe (fixed=false,start=1.e2)

"Pressure loss coefficient";

equation

3 Combined cycle power plant model

The power plant model is a complete model of a real

combined cycle power plant:

Gas Turbine (GT): Nominal power: 2*226 MW,

Steam Generator (HRSG): Thermal power: 2*360

MW,

Steam Turbine: Nominal power: 277 MW,

Condenser:

Thermal power: 428 MW.

Outlet water temperature: 305 K

Vacuum pressure: 6100 Pa.

3.1 Model description

Currently, two models are used: one to simulate the

power generator step reduction load (see Figure 4), the

other to simulate the full GT trip (see Figure 5). In the

model used to simulate the GT trip, the gas turbine is

replaced by a boundary condition.

The model contains two main parts: the water/steam

cycle and the flue gases subsystem. Only one train is

modelled, so identical behavior is assumed for each

HRSG and for each gas turbine.

HRSG model:

The model consists of 16 heat exchangers (3

evaporators, 6 economizers, 7 super-heaters), 3

evaporating loops (low, intermediate and high pressure),

3 drums, 3 steam turbine stages (HP, IP and LP), 3

pumps, 9 valves, several pressure drops, several mixers,

several collectors, 1 condenser, 1 generator, several

sensors, sources, sinks and the control system limited to

the drums level control.

 An important feature of this model is that the

thermodynamic cycle is completely closed through the

condenser. This is something difficult to achieve,

because of the difficulty of finding the numerical

balance of large closed loops.

The list of components used for the development of the

HRSG model is given in Table 2.

Table 2. Library components used in the HRSG

model.

Type Model name in the library

Condenser DynamicCondenser

Drum DynamicDrum

Generator Generator

Heat

exchanger

DynamicExchangerWaterSteamFlue

Gases

=

DynamicTwoPhaseFlowPipe

ExchangerFlueGasesMetal

HeatExchangerWall

Pipe LumpedStraightPipe

Pump StaticCentrifugalPump

Steam

turbine

StodolaTurbine

Valve ControlValve

Session 6: Poster Session

DOI
10.3384/ecp17132407

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

409

Water

mixer

VolumeB, VolumeC

Water

splitter

VolumeA, VolumeD

Heat Exchanger:
Based on first principles mass, momentum and

energy balance equations, the following phenomena are

represented:

 Transverse heat transfer,

 Mass accumulation,

 Thermal inertia,

 Gravity,

 Pressure drop within local flow rate.

Drum and Condenser:

Based on first principles mass and energy balance

equations for water and steam, the following

phenomena are represented:

 Drum level and swell and shrink phenomenon,

 Heat exchange between the steam/water and the

wall,

 Heat exchange between the outside wall and the

external medium.

Steam turbine:

Based on an ellipse law and an isentropic efficiency.

Pump:
Based on the characteristics curves.

Pressure drop in pipes:

Proportional to the dynamic pressure ± the static

pressure.

Mixer/splitter:
Based on the mass and energy balances for the fluid.

GT model:

The model consists of 1 compressor, 1 gas turbine, 1

combustion chamber, sources, sinks and 1 air humidity

model.

The list of component models used for the

development of the GT model is given in Table 3.

Table 3. Library components used in the GT model.

Type Model name in the library

Air humidity AirHumidity

Compressor GTCompressor

Gas turbine CombutionTurbine

Combustion

chamber

GTCombustionChamber

Gas turbine:

Based on correlations for the characteristic.

Compressor:

Based on correlations for the characteristic.

Combustion chamber:

Based on first principles mass, momentum and

energy balance equations. The pressure loss in the

combustion chamber is taken into account.

The “CombinedCyclePowerPlant” model contains

673 component models, generating 10802 variables,

257 differentiated variables, 2752 equations and 1855

nontrivial equations.

3.2 Data implemented in the model

All geometrical data were provided to the model

(pipes and exchangers lengths and diameters, heat

transfer surfaces of exchangers, volumes …).

The plant characteristics are given below.

Gas Turbine (GT)

Compressor compression rate: 14

Steam Generator (HRSG)

HRSG with 3 levels of pressure.

High pressure circuit at nominal power: 127 bar

Intermediate pressure circuit at nominal power: 27 bar

Low pressure circuit at nominal power: 5.0 bar

Steam Turbine
High pressure at nominal power: 124.5 bar, 815 K

Intermediate pressure at nominal power: 25.5 bar, 801K

Low pressure at nominal power: 4.8 bar, 532 K

Condenser

Steam flow rate: 194 kg/s

Water temperature at the inlet: 306 K

3.3 Model calibration

The calibration phase consists in setting the

maximum number of thermodynamic variables to

known measurement values taken from on-site sensors

for 100% load. This method ensures that all needed

performance parameters and size characteristics can be

computed. The variables imposed in the model are:

 Pressure at the outlet of the pumps,

 Pressure at the inlet of the steam turbines,

 Specific enthalpy at the inlet of the steam turbines,

 Liquid level in drums and in condenser,

 Overall heat exchangers coefficients,

 Isentropic efficiency of the compressor,

 Exhaust temperature of the gas turbine,

 …

The main computed performance parameters are:

 The characteristics of the pumps,

 The ellipse law coefficients of the steam turbines,

 The isentropic efficiencies of the turbines,

 The CV of the valves and the valves positions

(openings).

Modeling and simulation of complex ThermoSysPro model with OpenModelica - Dynamic Modeling of a
combined cycle power plant

410 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132407

 Heat exchangers fouling coefficients,

 Nominal isentropic efficiency of the compressor,

 Nominal isentropic efficiency of the gas turbine,

 …

3.4 Simulation scenarios

For simulation runs, two scenarios were selected. The

first scenario is a power generator step reduction from

100 to 50% load:

 Initial state (combined cycle): 100 % load

 Final state (combined cycle): 50% load (800 s

slope).

The second scenario is a full GT trip (sudden

stopping of the gas turbine):

 Initial state (GT exhaust): 894 K, 607 kg/s

 Final state (GT exhaust): 423 K, 50 kg/s (600 s

slope).

3.5 Simulation

Simulation runs were done using Dymola 2017 and

OpenModelica 1.11.0. The simulation of the scenarios

were mostly successful. However, some difficulties

were encountered when simulating large transients,

mainly stemming from the large size of the model:

 Poor debugging facility,

 Large number of values to be manually provided by

the user for the iteration variables, for the two tools.

In particular, it has been observed that, the two tools

cannot calculate the initial states, when all iterations

variables are not set close to their solution values.

3.6 Simulation results

The model is able to compute:

 The air excess,

 The distribution of water and steam mass flow rates,

 The thermal power of heat exchangers,

 The electrical power provided by the generator,

 The pressure temperature and specific enthalpy

distribution across the network,

 The drums levels and the condenser level,

 The performance parameters of all the equipments,

 The global efficiencies of the water/steam cycle and

gas turbine.

The results of the simulation runs are given in Figure

6 and Figure 7. They are consistent with the engineer’s

expertise. The comparison between simulation

results and GE (General Electric) results

(FOUQUET L, 2004) for 100 % load and 50 % load,

have shown that the Simulation results are very close
to the GE values (Design results).

The computational time is faster than real time.

3.7 Comparison between Dymola and

OpenModelica

The simulation results of OM are very close to the

simulation results of Dymola. The simulation time with

OM is between 15% and 60% times slower than the

simulation time with Dymola, depending on the

scenario and the tolerance (see Table 4).

Table 4. Simulation time.

However, OM is still 20 times faster than real time in

the worst case.

4 Conclusion

A dynamic and rather large model of a combined

cycle power plant has been developed to validate the

ThermoSysPro library. This model comprises the flue

gas side and the full thermo-dynamic water/steam cycle

closed through the condenser. Two difficult transients

were simulated with Dymola 2017and OpenModelica

1.11.0: a step reduction load of the power generator and

a full gas turbine trip. The results are mostly consistent

with the engineer’s expertise.

Despite of some simulation difficulties because of the

lack of debugging tools for Modelica models, this work

shows that the library is complete and robust enough for

the modelling and simulation of complex power plants

with the two software.

The simulation results of OM are very close to the

simulation results of Dymola. The simulation time with

OM is slower than simulation time with Dymola, but

still 20 times faster than real time.

This work shows that OpenModelica software is very

satisfying for thermo-hydraulic modelling and

simulation.

Acknowledgements

This work was partially supported by the OPENCPS

project.

References

David F., Souyri A. and Marchais G., ‘Modeling Steam

Generators for Sodium Fast Reactors with Modelica’,

Modelica 2009 conference proceedings.

El Hefni B. and Péchiné B., ‘Model driven optimization of

biomass CHP plant design’, Mathmod conference 2009,

Vienna, Austria.

Simulation time (s)

Dymola 2017 OpenModelica1.11.0

Tolérance=0,001 Tolérance=0,0001 Tolérance=0,001 Tolérance=0,0001

Variation de charge

(simulation 2500 s)

58 73 75 84

Trip TAC

(simulation 10000 s)

174 310 240 492

Session 6: Poster Session

DOI
10.3384/ecp17132407

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

411

El Hefni B. ‘Dynamic modeling of concentrated solar

power plants with the ThermoSysPro Library (Parabolic

Trough collectors, Fresnel reflector and Solar-Hybrid)’,

SolarPaces 2013, Elsevier’s Energy Procedia,

El Hefni B., ‘Modèle physique/neutronique en Modelica

d’un outil d’aide au pilotage du transitoire sensible de montée

en puissance à 3%Pn/h après rechargement. Maquettage d’un

outil d’aide au pilotage sous Excel/VB’, LMCS 2011.

El Hefni B. and Soler R. ‘Dynamic multi-configuration

model of a 145 MWe concentrated solar power plant with the

ThermoSysPro library (tower receiver, molten salt storage and

steam generator)’, SolarPaces 2014, Elsevier’s Energy

Procedia.

Qing Li，Fengwu Bai，Bei Yang，Baligh El Hefni and

Sijie Liu, ‘Dynamic simulation and experimental validation of

Open Air Receiver and Thermal Energy Storage systems in

solar thermal power plant’, SWC 2015 en Koré 2015.

Liua S.J., Faille D., Fouquet M., El Hefni B., Wangc Y.,

Zhang J.B., Wang Z.F.,.Chen G.F and Soler R., ‘Dynamic

simulation of a 1 MWe CSP tower plant with two-level

thermal storage implemented with control system’,

SolarPaces 2014, Elsevier’s Energy Procedia.

El Hefni B., Bouskela D. Lebreton G., ‘Dynamic

modelling of a combined cycle power plant with

ThermoSysPro’, MODELICA 2011 conference.

FOUQUET L, EDF Pôle Industrie, CNET:

Y.PM.X.000.PPPP.00.X.0872: PhuMy2.2: Overall plant

operation description, 2004.

Figure 4. Model of the combined cycle power plant used for the power generator step reduction load.

Figure 5. Model of the combined cycle power plant used for the full GT trip.

Modeling and simulation of complex ThermoSysPro model with OpenModelica - Dynamic Modeling of a
combined cycle power plant

412 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132407

Figure 6. Power generator step reduction simulation (-50%): natural gas mass flow rate, air mass flow rate, excess air

temperature at the inlet of the combustion turbine, exhaust temperature (gas turbine), mechanical power of the combustion

turbine, mechanical power produced by each steam turbine, generator power, HRSG temperature at the outlet, steam mass

flow rate produced in each drum, the drums pressure, and the drums level.

Session 6: Poster Session

DOI
10.3384/ecp17132407

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

413

Figure 7. Gas turbine trip simulation: flue gases temperature at the inlet of the HRSG, flue gases mass flow rate at the inlet

of the HRSG, generator power, the drums pressure, steam mass flow rate produced in each drum, thermal power produced

in each heat exchanger (Evaporators HP, IP, LP and economizers HP, IP, LP), and steam mass flow rate in each steam

turbine.

Modeling and simulation of complex ThermoSysPro model with OpenModelica - Dynamic Modeling of a
combined cycle power plant

414 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132407

A Power-Based Model of a Heating Station for District Heating

(DH) System Applications

Abdulrahman Dahash Annette Steingrube Mehmet Elci

Fraunhofer-Institute for Solar Energy Systems, Heidenhofstraße 2, 79110 Freiburg im Breisgau, Germany

{adahash, asteingr, melci}@ise.fraunhofer.de

Abstract

District Heating (DH) systems are often seen as a good

practical approach to meet the local heat demand of the

districts due to its ability to provide affordable and low

carbon energy to the consumers. Yet, under today’s

regulations to renovate the buildings into more energy-

efficient ones, the local heat demand is decreasing.

Therefore, the operation of DH systems is also affected

by the changing heat demand profile, which might lead

to less profit for the operators of DH systems. Thus, the

operators of DH systems strive for an optimal

operation at which the heat demand is met and the

profits are maximized. Due to the fact that these

systems are complex-physical systems, therefore it is

difficult to conduct any experimental investigation on

them in order to examine the optimal operation.

Accordingly, it is crucial to create fundamental models

to investigate the optimal operation of such systems. In

this paper, a power-based model is built to represent

the heating station as part of a DH system. Then, the

model is validated using real data from an existing

heating station in Freiburg, Germany. The validation

results reveal that the goodness-of-fit for the model is

held to be good enough to test it for operational

optimization cases.

Keywords: Modelica, Dymola, Dynamic Modeling,
Heating Station, District Heating System, Power-Based

Model, Optimization.

1 Introduction

District heating (DH) is considered a promising

technology to improve the energy efficiency of the

space heating systems in buildings (i.e. residential,

commercial and industrial) (Olsthoorn et al., 2016).

Thus, a greater interest in installing DH systems has

arisen in many countries such as European countries,

China and Russia. (Jie et al., 2015). DH systems have

many advantages, for instance, an optimum use of fuel

and thereby limitation of pollution (Benonysson et al.,

1995).

Generally, a DH system is represented by

transmission networks employed to supply heat from
supply side (i.e. generation site) directly and/or

indirectly to demand side (i.e. end users) to meet their

space heating and domestic hot water (DHW) demand

as shown in Figure 1.

Supply side

Demand side

T
ra

n
sm

is
si

o
n

n
et

w
o

rk

Fuel

Fuel

Cold water

Hot water

Heating

Station

Pipeline

System
Consumers

Figure 1: Generic block diagram of a district heating

system

Often, DH can be coupled either with centralized

heating stations and/or distributed heating units. Thus,

numerous kinds of heat generation technologies

(boilers, cogeneration plants, heat pumps, etc.) and

energy sources (fossil fuels, renewable energies, etc.)

can be adopted (Joelsson et al., 2008).

In Germany, combined heat and power (CHP)

based DH systems are often seen as a key solution to

meet the local heat demand in buildings and, therefore,

these CHP units are frequently heat-driven (Elci et al.,

2015). This operation mode compared to electricity-

driven mode is often seen as the most economical and

ecological option and therefore preferred by most

operators of distributed energy systems due to the

utilization of produced heat to meet the local heat

demand and, therefore, no heat is wasted (Shipley et

al., 2008) (Bracco et al., 2013). While the produced

heat is utilized, the generated electricity is fed into the

national power grid either at a fixed tariff, or at a

variable tariff that is depending on the electricity price

at the European Energy Exchange (EEX). However,

because of the refurbishment of buildings to be more

energy-efficient, there is a significant change in the

heat demand profile of the buildings. Accordingly, this

changing profile of the heat demand has a major

impact on the operation of CHP units in DH system,

DOI
10.3384/ecp17132415

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

415

creating the first challenge in this field by disrupting

the viable heat-driven regime mode.

Moreover, a CHP-based DH system can help the

power grid to work smoothly by generating electricity

when the renewables share in the grid is low due to

calm-dark weather (e.g. low solar irradiation) (Kelly et

al., 2009). Thus, another challenge has arisen in the

field of DH systems, especially in cases when the heat

demand is low in the buildings, the storage system is

full and it is necessary to operate the heating station to

overcome the fluctuations from renewables.

Considering these challenges (continuous changing

heat demand and renewables fluctuations), the

performance of DH systems (CHP-based) in different

operation regimes has to be examined, in order to

achieve optimal operation in which the system

responds quickly to deviations in electricity prices and

distributes the load among the heat sources in the

system, so that the highest possible financial gain is

achieved while simultaneously the heat demand is fully

met. It is surely challenging to achieve this

optimization unless fundamental models are built to

help in investigating the performance of energy

systems under different circumstances.

In this paper, the authors present an approach for

modeling of heating stations for DH system

applications. The presented model is a power-based

model and, therefore, it shows the amount of energy

flow between the different generation technologies in

the heating station (supply side). The advantages of

this modeling approach are less simulation time, better

understanding of the energy flow influence on the

heating station’s operation and assistance in developing

power-based control strategies for achieving optimal

operation. Whereas the limitation is that the thermo-

hydraulic aspects (e.g. pressure, flow rates) are

neglected.

2 Methodology

2.1 Case Study

As case study, a district in the city of Freiburg in

the south of Germany was used. This district is called

(Weingarten) and was built in the 1960s and has 9,000

inhabitants. The western part of Weingarten has a

population of 5,800 and an area of 0.3 km2, with a

gross floor area of about 271,240 m². The gross floor

area comprises: 16-floor residential tower block

buildings, 8-floor and 4-floor blocks of flats and non-

residential buildings. Under current regulations

regarding comfort, energy efficiency and modern

building technology, the buildings in the western part

have to be renovated to match current requirements.

This refurbishment works contains modernizing the

district’s buildings, renew Weingarten’s energy supply

system and operate it optimally. Figure 2 shows a site

plan about the refurbishment area in Weingarten

district in which the red colored buildings are the

targeted buildings for refurbishment.

Figure 2: Site plan of the refurbishment area: the planned

to be renovated buildings are colored red (Foschung für

die Energieeffiziente Stadt, 2016)

The heat supply is delivered by a central heating

station that supplies heat to two districts (i.e.

Rieselfeld, Weingarten) via a DH network as shown in

Figure 3 below. In the heating station, the annual heat

generation is 67,400 MWh/a, and maximum heat

output is 26,000 kW and, therefore, 6 gas-fired CHP

units are installed and the operation of them is mainly

heat-driven. Consequently, two CHP units are

operating almost continuously year-round to meet the

baseload. The six CHP units produce a total electrical

power of 7,200 kWel and a heat output of

approximately 9,600 kWth. The CHP modules attain an

average of 5,650 full load hours yearly. Hence, over 75

% of the annual amount of heat produced comes from

CHP units, while the remainder is generated by peak

boilers. Also, in order to achieve smooth operation of

the CHP units, there are two heat storage systems with

a total capacity of 360 m3. They help in meeting the

demand over short periods. Additionally, three gas-

fired boilers each with 9.3 MW are employed for peak

loads.

Due to the fact that CHP units can produce both

heat and electricity, the electricity from the six CHP

units is fed into the power grid while the heat produced

is used to cover the heat demand.

A Power-Based Model of a Heating Station for District Heating (DH) System Applications

416 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132415

2.2 Modeling of the Heating Station

The model represents the real heating station in

which an equivalent boiler component is used to

represent the three peak boilers. Also, the CHP units

are modeled to show the amount of energy flow while

the storage system is modeled as stratification water

storage. The modeling allows the different temperature

segments to be shown within the storage system. In this

work, the Modelica standard library (MSL) for basic

components (e.g. prescribed heat flow, sensors and

etc.), while buildings library is used for thermo-

hydraulic components (e.g. flow sources/sinks, storage

etc.).

2.2.1 Consumer

This component represents the demand side to

which the heat shall be supplied. Therefore, it has two

ports, one of which is an output signal for heat demand

and the other an input signal for heat supply. The

Consumer component is afterwards connected with the

first controller in the heating station (1st CHP

controller) and is backwards connected with the heat

supply collectors using the different technologies.

Also, the heat demand profile is read from a text file

that is implemented in component

(Heat_Demand_Profile) as seen in the left part of

Figure 4.

This component plays a major role in the instant

energy balance. For example, if the heat demand is

higher than the heat supply it signals negative energy
flow as seen in the gain component in Figure 4. Then

the signal is translated in order to operate the heating

station and therefore:

�̇�demand = �̇�Supply (1)

Also, Figure 4 shows that there is a water source (a

pump) implemented in the consumer model, the

function of this component is to provide water with a

predefined mass flowrate and temperature. Then the

supplied water gets a signal of the required heat

demand with a negative sign and a signal of the

supplied heat simultaneously in order to inspect the

energy balance and to fulfill it.

Figure 4: Structure of consumer component

2.2.2 Heat Sources

2.2.2.1 CHP unit

The CHP unit has a Boolean input that works as an
on/off button, and an output that gives the amount of

heat produced by this unit.

Figure 3: Top view of the Weingarten and Rieselfeld district with the central heating station and DH network

(Bachmaier et al., 2015)

Session 6: Poster Session

DOI
10.3384/ecp17132415

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

417

For the sake of simplicity in the modeling of CHP

units, the following assumptions are made:

1. The response time of the components is included in

the model. In reality, all the mechanical or electrical

equipment has a certain response time (Smit, 2006).

However, in this model, the response time is

approximated to 1800 seconds for the entire CHP

and it is given in the delay component that receives

and sends Boolean signals as shown in Figure 5.

2. CHP units do not run at partial loads, they run only

at full loads. When the CHP units run at partial

loads, the thermal and electrical efficiency of the

CHP units are different than the nominal values.

Hence, only full load operation is considered as it is

also valid in the actual system, Weingarten heating

station.

�̇�CHP = {
1.5 MW

0
 (2)

3. The system is not modeled as a closed loop,

meaning that the supply and return temperature of

the water or steam in the system is not controlled.

This assumption is made to reduce the run time of

the simulation.

Figure 5: Structure of CHP unit component

2.2.2.2 Hot Water Storage

The main storage component has 2 ports which are

input signals; one represents the amount of heat

charging while the other is the amount of heat

discharged.

Figure 6 shows the structure of the storage

component. Obviously, the charging and discharging

ports are connected to the water tank. As the heat flow

direction is crucial to the discharging process, therefore

the discharge value is provided as a negative value.

The water tank component representing the storage

tank itself was largely built and developed by

Lawrence Berkeley National Laboratory (LBNL) and

can be found in the buildings library (Wetter, 2016).

Figure 6: Structure of storage model

The water tank, which is cylindrical in shape, loses

heat to the environment due to heat transfer

mechanisms arising through the walls of the tank

because of the different temperatures. Thus, it is

essential to obtain the optimal storage volume by

reducing the Surface Area (SA) to its acceptable

minimum value and increase the storage volume to the

maximum value. Therefore, it is assumed that the tank

height is twice its radius, to achieve the minimum SA

and maximum volume (Dearling et al., 2006):

𝑉 = 2𝜋 ∙ 𝑟2 ∙ ℎ (3)

𝑆𝐴 = 2𝜋 ∙ 𝑟2 + 2𝜋 ∙ 𝑟 ∙ ℎ (4)

ℎ = 2𝑟 → 𝑚𝑎𝑥 𝑉 𝑎𝑛𝑑 𝑚𝑖𝑛 𝑆𝐴 (5)

Due to technical restrictions regarding storage, it is

decided to set the minimum temperature in the storage

system (maximum temperature at last segment) to

70°C and the maximum supply temperature from the

storage is set to 100°C. According to which the thermal

storage capacity can be obtained by the following

equation:

𝐸 = 𝑚 ∫ 𝑐𝑝(𝑇) ∙ d𝑇 = 𝑚 ∙ 𝑐�̅�(𝑇) ∙ Δ𝑇

𝑇2

𝑇1

 (6)

This restriction plays a key role in reducing heat

losses from the tank. Heat losses are calculated within

the model, taking into account the ambient temperature

as Figure 6 shows. Ambient temperatures are given as

a measurement and implemented in the system in order

to show the real behavior of the storage system.

Moreover, “TSen_Lower" component is the

temperature sensor for indicating the temperature at

lower segment of the tank while “TSen_Upper” is used

as an indicator for CHP units to decide whether storage
can be discharged or not.

The thermal conductance of the tank is important as

it influences the heat losses from the tank. Thus, it is

A Power-Based Model of a Heating Station for District Heating (DH) System Applications

418 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132415

calculated in such a way that the influence of the

storage medium is excluded. This assumption is true

because the impact of the storage medium on the

thermal conductivity of the tank is very small.

Therefore, the conductance is calculated as below:

𝐺 =
𝑘

𝐿
∙ 𝑆𝐴 (7)

The insulation layers of the tank are made of

polystyrene which has a thermal conductivity of 0.03

W/m.K with a thickness of 0.1 m (Terry et al., 2012).

Hence, the conductance is automatically calculated as a

function of the storage surface area for any given

storage volume.

2.2.2.3 Boiler

The boiler component has only two ports, one an

input and the other an output. These ports determine

the required demand and the supply from the boiler.

Figure 7 shows the configuration of the boiler in

Dymola. The boiler input is clearly seen by the port

“u” which is the remaining demand, and “y” represents

the boiler output. Also, the boiler input is the

remaining heat demand after all CHP units run and the

storage capacity is discharged.

2.2.3 Central Controlling

2.2.3.1 CHP Controller

Similar to the real heating station, the bottom

segment temperature for storage is set to 70°C and the

upper one is set to 100°C. Moreover, for each CHP

unit, an individual CHP controller is installed in the

system. In this controller, the heat demand and the

storage temperatures (upper and bottom) are

simultaneously checked. From Figure 8, it can be

clearly seen that there are 3 cases to run the CHP unit,

which are:

1. Power case (a): if the heat demand is higher than

the nominal CHP’s heat output and the temperature

of the bottom segment is higher than 70°C, then the

CHP unit runs.

2. Power case (b): if the heat demand is higher than

nominal CHP’s heat output and the temperature of

the bottom segment is lower than 70°C, then the

CHP unit runs.

3. Power case (c): the CHP unit runs, when the

following conditions are all true:

i. The heat demand is lower than nominal CHP’s

heat output, and

ii. The heat demand is higher than 95 % of the

CHP’s heat output (equals 1.425 MW), and

iii. The upper storage temperature is lower than

95°C.

Regarding power case (a), as the storage

temperature is equal to or higher than 70°C, this means

the storage can be discharged. On the contrary, if the

storage temperature is less than the set bottom

temperature (70°C), this means the energy stored in the

storage system cannot be used and, therefore, power

case (b) is activated to supply the heat directly to the

consumers. While power case (c) is activated in order

to cover the heat demand that is higher than 1.425 MW

and the remaining of the heat output charges the

storage.

Moreover, if the heat demand (or the remaining

heat demand for CHP 2-6) is less than 1.425 MW or

the upper storage temperature is higher than 95°C, then

the corresponding CHP unit turns off. Moreover, if the

bottom storage temperature is set to a constant value

(i.e. 70°C), then a strange behavior for CHP units is

seen because the CHP unit starts ramping up and down

between 0 and the maximum heat output in order to

maintain the storage temperature at the exact-desired

level. This results in some problems with the modeling.

This problem is seen in winter season because the heat

demand is high, therefore the storage cannot be

charged, and so the temperature cannot be kept above

the minimum level. However, keeping the temperature

right at a specific temperature is not necessary for the

model. Nevertheless, obtaining accurate results for

validation is of importance. In order to avoid such

problems in modeling, the minimum temperature shall

be set in a specific range, so instead of taking a fixed

minimum temperature of 70°C, it is taken between

68°C and 70°C. For this reason, a “hysteresis”

component from Modelica standard library (MSL)

itself is implemented to solve the above mentioned

problem.

Figure 7: Structure of boiler component

Session 6: Poster Session

DOI
10.3384/ecp17132415

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

419

2.2.3.2 Storage Controller

This controller plays a secondary role in the energy

balance of the entire heating station next to the

consumer component, since it gives a signal to

discharge or charge the storage system. It has 3 input

signals and a single output signal. One of the input

signals is the storage system temperature at the bottom

of the storage tank. Based on the temperature, a

decision is made as to whether the storage system can

be discharged.

However, if the temperature of storage’s bottom is

higher than 70°C, this sends a true signal to the switch

component to discharge the storage system to cover the

remaining demand. Otherwise the output “y” equals

zero when the temperature is less than 70°C. The

remaining demand is given by the following equation:

�̇�storage = �̇�demand − ∑ �̇�CHP,𝑖

6

𝑖=1

 (8)

Occasionally, the storage system cannot be

discharged because the last segment temperature is less

than that allowed for discharging, and therefore the

remaining heat demand proceeds to the next controller,

which is the boiler controller that runs the boiler in

order to meet the required amount of heat.

Figure 8: CHP controller flowchart implemented for each chp unit

Yes

(a)

No

No

(b)

(c)

No

Yes

Yes

Yes

No

Demand

(remaining demand)

Storage bottom

temperature (Tbottom)

Demand >

CHP output?
Tbottom 70 °C

CHP off

Or

Calculate the

remaining

demand

Next heat

source

CHP on

Storage upper

temperature (Tupper)

Demand > 95 %

CHP output?

Tupper 95 °C

Or

Storage can be discharged

Or

A Power-Based Model of a Heating Station for District Heating (DH) System Applications

420 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132415

2.2.3.3 Boiler Controller

The boiler controller is a simple unit which

computes how much heat demand remains after the

total output of the CHP units and the discharged

capacity of the storage system as Figure 10 shows.

Next, it gives an output signal to run the boiler in a

partial mode to meet the remaining heat demand, thus:

0 ≤ �̇�boiler ≤ 27.9 MW (9)

Here, the remaining demand is computed as below:

 �̇�boiler = �̇�demand − ∑ �̇�CHP,𝑖 − �̇�storage

6

𝑖=1

 (10)

The term �̇�storage refers to the usable heat in the

storage system. Therefore, the usable temperature lies

between 70°C and 100°C.

Figure 10: Structure of boiler controller

3 Validation

It is held that models with coefficient of

determination, R2 ≥ 0.7 and coefficient of variation of
root mean square error (CV-RMSE) ≤ 7% are

arbitrarily deemed to be “good” models (Reddy et al.,

1997). Whilst models with CV-RMSE less than 5%

can be considered excellent models, those with less

than 10% can be considered good models, those with

less than 20% can be taken as mediocre models, and

those greater than 20% are considered poor models

(Balci, 1998). However, the constraints that are set in

this article for the evaluation of the goodness-of-fit for

the model are: R2 ≥ 0.7 and CV-RMSE ≤ 15%. Then it

can be said that the model is held to be good.

In validation process, the data sets of the CHP units

(both simulated and monitored) are required for

validation purposes. This is because the variation

between them is important as they are the first heat

source that runs in order to meet the heat demand, and

they are therefore the most influential parameters, with

any disruption in their output having an impact on the

other energy systems.

First, the model is visually validated for 9 days of

January as a representation of winter season (high heat

demand period) as Figure 11 shows.

Figure 11: CHP heat output for 9 days of January 2016

7

8

9

10

1 4 7 10

C
H

P
 h

ea
t

o
u

tp
u

t
in

 (
M

W
)

Day of January 2016

Measured
Simulation

Yes

No

Bottom storage

temperature

Remaining Demand

(Demand)

Discharge storage

Bottom storage

temperature 70°C?

Next heat

source

Storage cannot be

discharged

 Figure 9: Storage controller flowchart

Session 6: Poster Session

DOI
10.3384/ecp17132415

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

421

Then numerical validation is performed and the

results are as below:

The result of CV-RMSE = 2 % indicates that only

this percentage of the real data is not explained by the

model.

As the measured data are available for other periods, it

is more obvious to validate another period of winter

season and, therefore; another 6 days of February

(from 5th to 11th of February) are taken to examine the

creditability of the model for winter season as shown in

Figure 12.

Figure 12: CHP heat output for 6 days of February 2016

The numerical validation results are:

𝑅2 = 0.85

𝐶𝑉 − 𝑅𝑀𝑆𝐸 = 2 %

These results confirm again that the model has a

goodness-of-fit in the representation of the actual

system and can be used to develop and test control

strategies for the heating station. Nevertheless, an

uncertainty analysis is crucial after the development in

order to investigate the uncertainty percentage in the

model for the developments.

Regarding summer season (relatively low heat

demand compared to winter), a time series of 7 days

out of April 2016 is chosen to evaluate the goodness-

of-fit for the model and it is shown in Figure 13. The

numerical results are as follows:

Figure 13: CHP heat output for 7 days of April 2016

For this time period, the R2 value of 0.87 (1 ≥ 0.87

≥ 0.7) indicates that the model can represent the real

heating station with a good approximation of its real

behavior.

As spoken earlier, due to the availability of

measured data from the heating station for other

periods, it is worthwhile to validate another time series

from summer season. Thus, a time series of 5 days is

taken from 9th to 14th May 2016 as Figure 14 shows.

Figure 14: CHP heat output for 5 days of May 2016

Visually, the matching between both series is held

to be “good” enough, thus proceeding to numerical

validation:

The result of R2 confirms again the goodness-of-fit

for the model. While a CV-RMSE value of 7 %

indicates that the dispersion of the simulated and real

data around the mean of the real data is quite low, and
it is therefore clearer that the mathematical model fits

the real heating station to a high degree.

7

8

9

10

5 6 7 8 9 10 11

C
H

P
 h

ea
t

o
u

tp
u

t
in

 (
M

W
)

Day of February 2016

Measured
Simulation

0

1

2

3

4

5

6

7

8

9

10

6 7 8 9 10 11 12 13

C
H

P
 h

ea
t

o
u

tp
u

t
in

 (
M

W
)

Day of April 2016

Measured
Simulation

0

1

2

3

4

5

6

7

8

9 10 11 12 13 14

C
H

P
 h

ea
t

o
u

tp
u

t
in

 (
M

W
)

Day of May 2016

Measured
Simulation

𝑅2 = 0.84

𝐶𝑉 − 𝑅𝑀𝑆𝐸 = 2 %

𝑅2 = 0.87

𝐶𝑉 − 𝑅𝑀𝑆𝐸 = 7 %

𝑅2 = 0.84

𝐶𝑉 − 𝑅𝑀𝑆𝐸 = 7 %

A Power-Based Model of a Heating Station for District Heating (DH) System Applications

422 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132415

4 Discussion and Remarks

The model constructed represents a particularly

complex energy-supply system that comprises different

energy sources and therefore there is a challenge in

terms of energy system modelling and accurate

prediction. Any given energy system is characterized

by multiple parameters including material properties,

casing temperatures and mechanical efficiency of the

corresponding energy sources. In addition, there are

equipment maintenance schedules, mechanical

damage, HVAC and plant operation, real climate and

many other parameters to consider. All together, these

represent diverse sources for the uncertainty in the

model. However, this does not mean that the model

cannot fit the actual physical systems to an acceptable

degree, but it does lead to a basic requirement to point

out the sources of uncertainty.

The various sources of uncertainty in the model can

be classified as follows:

1. Specification uncertainty: this kind of uncertainty

refers to the physical errors that can arise from

incomplete or inaccurate specifications for the

complex physical model or process. It may also

involve excluding some physical equations or

properties, such as the geometry and material

properties of the CHP units, boiler and storage

system, and the fluctuating efficiency of the CHP

units which is taken as constant in the model.

2. Modelling uncertainty: this arises due to the

simplifications and assumptions about the complex

physical state. It may also involve the exclusion of

some energy systems due to their small effect on

the model compared to the effort that is required in

order to implement them in the model. An example

is the exclusion of the CHP casing temperature

which has an impact on total CHP efficiency.

Moreover, due to the fact that the simulation results

are discrete values while the real data are

continuous as shown in Figures 11, 12, 13 and 14,

this also has an impact on the creditability of the

model.

3. Operation uncertainty: this involves external

conditions that cannot be integrated into the model

constructed because they are unexpected. This is

mainly seen in case of damage or other unforeseen

effects on the energy conversion chain or system.

For instance, the mechanical damage that can occur

in the pump or turbocharger of each CHP unit is

always unexpected and cannot be predicted.

5 Conclusion

This paper presents the modeling process of heating

stations for DH system applications using

Modelica/Dymola to build a power-based model and
then validate it with real data from an existing heating

station (Weingarten). Validation results reveal that the

goodness-of-fit for the model is considered to be good

enough, which permits employing this model for

further research work to perform investigations for

operational optimization. Furthermore, in (Dahash,

2016), the model is tested for some operational

optimization methods and it shows good applicability

to be used for power-based optimization methods.

Also, it is worthwhile to clarify that this paper

(mainly validation results) does not confirm the

applicability of the model with the shown controllers

for any existing heating station. It simply reveals that

the representation of a specific heating station is held

to be good and then it states the sources of

uncertainties in the model. Moreover, in order to look

for other heating stations, their control strategies

should be implemented and adjusted accordingly in the

model.

Acknowledgements

This work is part of the project Weingarten 2020

Monitoring funded by the BMWi (Federal Ministry for

Economic Affairs and Energy, Project No.:

O3ET2364A). Our thanks go to the operator of

Weingarten heating station, Badenova WärmePlus, for

the cooperation in the project.

The model described in this article is built as a part of a

master thesis supervised by Prof. Dr-Ing. Peter

Treffinger and, therefore, the authors wish to thank him

for his continuous support.

Nomenclature

References

Bachmaier,A., Narmsara, S., Eggers, J. Bleicke and

Herkel, S., 2015. Spatial Distribution of Thermal

Energy Storage Systems in Urban Areas Connected to

District Heating for Grid Balancing. Energy Procedia,

Issue 73, pp. 3-11.

Symbol Description Unit

𝐶𝑉
− 𝑅𝑀𝑆𝐸

Coefficient of variation for

root mean square error
[-]

𝐺 Conductance [W/K]

ℎ Height of the storage tank [m]

𝑘 Thermal conductivity [W/m.K]

𝐿 Thickness of the insulation [m]

�̇� Heat flow rate [kW]

𝑟 Radius of the storage tank [m]

𝑅2 Coefficient of determination [-]

𝑆𝐴 Surface area [m2]

𝑉 Volume of the storage tank [m3]

Session 6: Poster Session

DOI
10.3384/ecp17132415

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

423

Balci, O., 1998. Verification, Validation, and Testing.

In: J. Banks, ed. Handbook of Simulation: Principles,

Methodology, Advances, Applications, and Practice.

New York: John Wiley & Sons, pp. 335-393.

Benonysson, A., Bøhm, B. and Ravn, H.F., 1995.

Operational optimization in a district heating system.

Energy Conversion and Management, May, 36(5), pp.

297-314.

Braccoa, S., Denticib, G., and Sirib, S., 2013.

Economic and environmental optimization model for

the design and the operation of a combined heat and

power distributed generation system in an urban area.

Energy, Volume 55, pp. 1014-1024.

Dahash, A., 2016. A Comparative Study of Modeling
Approaches for District Heating Systems, Master

thesis, Offenburg-University of Applied Sciences,

Offenburg, Germany.

Dearling, C. and Erdman, W.,, 2006. Minimize the

Surface Area of a Cylinder . In: Principles of

Mathematics 9. 1st ed. Canada: McGraw-Hill, p. 640.

Elci, M., Oliva, A., Herkel, S., Klein, K. and Ripka,

A.,, 2015. Grid-interactivity of a Solar Combined Heat

and Power District Heating System. Energy Procedia,

5 June, Volume 70, pp. 560-567.

Foschung für die Energieeffiziente Stadt, 2016.

Projekt: Modellhafte Stadtquartierssanierung Freiburg

Weingarten-West. [Online]

Available at: http://www.eneff-

stadt.info/de/pilotprojekte/projekt/details/modellhafte-

stadtquartierssanierung-freiburg-weingarten-west/

Jie, P., Neng, Z. and Deying L., 2015. Operation

optimization of existing district heating systems.

Applied Thermal Engineering, 6 January, Volume 78,

pp. 278-288.

Joelsson, A. and Gustavsson L., 2008. District heating

and energy efficiency in detached houses of differing

size. Applied Energy, May.pp. 126-134.

Kelly, S. and Pollitt, M., 2009. Making Combined Heat
and Power District Heating (CHP-DH) networks in the

United Kingdom economically viable: a comparative
approach, s.l.: University of Cambridge.

Nicola Terry, N., Palmer, J. and Cooper, I., 2012.

State-of-the-Art Review: Insulation and Thermal
Storage Materials, Cambridge, UK: Eclipse Research

Consultants.

Olsthoorn, D., Haghighat, F. and Mirzaei, P.A., 2016.

Integration of storage and renewable energy into

district heating systems: A review of modelling and

optimization. Solar Energy, 15 October, Volume 136,

pp. 49-64.

Reddy, T. A., Saman, N. F., Claridge, D. E., Haberl, J.

S., Turner, W. E. and Chalifoux, A. T., 1997.

Baselining Methodology for Facility-Level Monthly

Energy Use-Part 1: Theoretical Aspects.

Shipley, A., Hampson, A., Hedman, B., Garland, P.,

and Bautista, P., 2008. Combined Heat and Power,
Effective Energy Solutions for a Sustainable Future,

s.l.: Oak Ridge National Laboratory (ORNL).

Smit, R., 2006. Power Quality and Utilisation Guide,
s.l.: Copper Development Association.

Wetter, M., 2016. Modelica Library for Building
Energy and Control Systems. [Online]

Available at:

https://simulationresearch.lbl.gov/modelica

[Accessed 14 August 2016].

A Power-Based Model of a Heating Station for District Heating (DH) System Applications

424 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132415

Model Based Design of a Split Carrier Wheel Suspension for
Light-weight Vehicles

Jakub Tobolář1 Daniel Baumgartner1 Yutaka Hirano2 Tilman Bünte1 Michael Fleps-Dezasse1

Jonathan Brembeck1

1German Aerospace Center (DLR), Institute of System Dynamics and Control, Wessling,
{Daniel.Baumgartner, Jakub.Tobolar}@DLR.de

2Toyota Motor Corporation, Future Project Division, Shizuoka, Japan,
Yutaka_Hirano@mail.toyota.co.jp

Abstract
Applying light-weight construction methods to the design
of future electric vehicles results in weight reduction of
both the vehicle body and the chassis. However, the po-
tential for percental reduction of the sprung mass is larger
compared to that of the unsprung mass. Consequently, un-
favorable consequences on the compromise, which always
needs to be found between road contact and road hold-
ing, can arise. This requires additional arrangements in
order to reach the performance of a state-of-the-art con-
ventional vehicle. This paper presents a possible design
solution. The wheel carrier is split into two parts, thus
enabling to tune the frequency response correspondingly
to reference vehicles. Besides the technical solution the
Modelica modeling of the proposed suspension system as
well as a vehicle dynamics and ride comfort assessment
are presented.
Keywords: split wheel carrier, vehicle suspension, un-
sprung mass, small electric vehicle, three mass system

1 Introduction
Recently, to contribute to lower carbon dioxide emissions,
the development of light-weight electric vehicles (LEV)
has become more and more active in the automotive sec-
tor. These LEVs usually consume less energy in compari-
son to conventional vehicles. Though, because the sprung
mass of those vehicles tends to be reduced relatively more
than the unsprung mass of the suspension, the ratio of
sprung mass to unsprung mass is directed toward lower
values compared to those of conventional vehicles. This
means that the resonance frequency of the sprung mass be-
comes closer to the resonance frequency of the unsprung
mass which results in possible reduction of the ride com-
fort.

Furthermore, the resonance peaks associated with the
sprung mass and the unsprung one are shifted to higher
frequencies compared to those of conventional vehicles
because of reduced masses of both parts. These phe-
nomena arises when the resonance frequency of the un-
sprung mass becomes close to the drive shaft twisting

mode. Thus, possibly a resonance excitation of the un-
sprung mass and the drive train can occur induced by ad-
verse propelling torques.

To prevent abovementioned problems, it is necessary
to shift the resonance frequency of the unsprung mass to
lower / higher values and also to reduce the magnitude
peak of the vertical acceleration frequency response asso-
ciated with the unsprung mass. However, as shortly dis-
cussed in the next section, it is theoretically proven that
the resonance frequency and the magnitude peak of the un-
sprung mass cannot be influenced by adjusting spring and
damper coefficients of the conventional suspension which
constitutes a two mass system of the unsprung mass and
the sprung one.

To solve this design conflict, the idea of a three mass
suspension system is introduced. In Section 2 of this pa-
per, theoretical analysis of the effect of a three mass sus-
pension is analyzed at first. A technical solution of the
mechanical structure of the three mass system is described
in Section 3. Actual effects of the three mass system are fi-
nally investigated by simulations using a Modelica model
(presented in Section 4) of the proposed suspension to-
gether with an advanced multi-body vehicle model in Sec-
tion 5. Section 6 provides a conclusion of the investiga-
tions results.

2 Basic Idea of the Three Mass Sus-
pension System

Figure 1 (left) shows a schematic quarter car of a conven-
tional "two mass suspension system". Here, mb denotes
the mass of the sprung mass (representing a quarter of the
car body) and mw is the mass of the unsprung mass com-
posed of the wheel and its carrier block. Figure 2 shows a
set of Bode magnitude plots from the acceleration of road
excitation to the sprung mass acceleration of this two mass
system. The parameter varied between the set of plots is
the suspension spring stiffness cbw in the upper chart and
damping dbw in the lower one. It can be concluded that
the resonance peak associated with the sprung mass mode
(second peak in the gain plot) can be changed neither by
varying the spring stiffness, nor by variation of the damp-

DOI
10.3384/ecp17132425

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

425

(car body)

(wheel)

(car body)

(wheel)

(additional
mass)

mb

mw

cbw dbw

ct dt

mb

mw

cba dba

ct dt

ma

caw daw

Figure 1. Schematic quarter car models of a conventional two
mass suspension system (left) and of the three mass system
(right).

ing of the suspension. This corresponds to the fundamen-
tal investigations of invariance properties of a two mass
suspension system presented e.g. in (Hedrick and But-
suen, 1990) or (Savaresi et al., 2010), which emphasize
that the sprung mass acceleration near to the wheel reso-
nance frequency is invariant regarding body spring stiff-
ness cbw and body damping dbw. To overcome this fun-
damental restriction, the serial three mass suspension sys-
tem as shown in Figure 1 (right) is introduced. In this
solution, the unsprung mass of the wheel carrier is divided
into two parts being insulated by an additional spring and
damping elements (caw and daw, respectively) from each
other. A detailed theoretical comparison of three mass sys-
tems with classical two mass systems highlighting the ad-
vantages of three mass systems is given in (Ryba, 1974a)
and (Ryba, 1974b).

Figure 3 shows a Bode magnitude plot comparison of
the two mass system with a set of plots for the three mass
system when changing the spring stiffness (caw) of the ad-
ditional spring element. Here, the spring stiffness of the
additional spring was set relative to the vertical tire stiff-
ness ct using a factor k as

caw = k · ct . (1)

It is shown by Figure 3 that by selecting a proper value
of the gain coefficient k such as k = 1.0, it is possible to
shift the frequency of the mode related to the unsprung
mass and also to reduce the magnitude of the resonance
peak. After this encouraging preliminary result it was de-
cided to design a mechanic realization of such a three mass
suspension with split carrier which will be presented and
discussed in the following section.

3 Technical Solution
The possible technical solution of the three mass system
was developed assuming a small LEV with state-of-the-art
double wishbone front and rear suspensions.

increasing stiffness cbw

ve
rt

ic
al

ac
ce

l.
m

ag
ni

tu
de

100 101

increasing damping dbw

frequency f [Hz]

ve
rt

ic
al

ac
ce

l.
m

ag
ni

tu
de

Figure 2. Bode magnitude plots from the acceleration of road
excitation to the sprung mass acceleration of the two mass sus-
pension system with varying spring stiffness (above) and varying
damping (below).

The solution described below consists in splitting the
wheel carrier into two parts – the wheel hub and the car-
rier itself – guided and suspended to each other. Thus, the
lower part of the unsprung part (mw) consists of a wheel,
a tire, a brake disc and a carrier which supports the wheel
hub bearing and the brake caliper. The upper part of the
split unsprung mass (ma) incorporates parts connecting
suspension linkage mounts and the rest of the hub car-
rier. A mechanism to limit the relative motion between mw
and ma has also to be considered. An additional spring el-
ement (caw) is assumed as a rubber bushing element or
combination of a bushing element and a supplementary
spring element.

Several technical solutions were examined to realize
abovementioned arrangement. Finally, the solution with
linear sliding mechanism, see Figure 4, was chosen. It
consists of two sealed linear sliding bearings (light grey
parts in Figure 4) connected firmly with the wheel hub
(purple) and guided through the supporting wheel carrier
structure (beige). This design resembles a mechanism
of a conventional telescopic fork as utilized for motorcy-
cle front suspension; see (Stoffregen, 2012). The advan-
tages are a simple, sealed and long-time proven design and
availability of standardized parts thus enabling relatively
cheap production and assembly. Moreover, such a design
offers high stiffness against external forces and torques.
Consequently, the wheel attitude changes under common

Model Based Design of a Split Carrier Wheel Suspension for Light-weight Vehicles

426 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132425

100 101

increasing k

frequency f [Hz]

ve
rt

ic
al

ac
ce

l.
m

ag
ni

tu
de

k = 0.25
k = 0.50
k = 0.75
k = 1.00
k = 2.00

Figure 3. Bode magnitude plots of the three mass suspension
system (using varying factor k according to equation (1)) com-
pared to the conventional two mass suspension (marked with
dashed magenta line).

operating loads can be minimized, as proven by vehicle
dynamic tests, see Section 5.3. For the investigated LEV,
this technical solution was applied for both the front and
the rear suspension, the latter being of the driven axle.

The wheel carrier support structure is depicted in more
detail in Figure 5. It consists of support tubes with inte-
grated sliding bearings (part D in Figure 5, yellow) and a
rubber sealing (part E, green/black/orange). The wheel
hub (purple) together with the brake’s caliper (not de-
picted in Figure 5) is attached to immersion tubes in order
to provide vertical deflection only between the parts of the
wheel carrier.

The vertical motion of the split wheel carrier is sus-
pended and damped by a rubber bushing element (part A
in Figure 5, dark grey) together with support coil springs
(part C, red/orange) housed within one of the tubes (light
grey). The load springs are supported by threaded head
caps (part F, light red) for easy exchange and adjust-
ment of the spring preload. A non-linear damping device
(part B, pink) can be optionally installed in one of the im-
mersion tubes in order to improve the damping behavior
(if unsatisfactory) of the main bushing element.

Particular attention was given to the design of the sus-
pension elements – the coil spring and the rubber bush-
ing. To achieve consistent behavior of the suspension over
a wide range of excitation frequencies – stimulated e.g.
by road irregularities, the effect of the dynamic stiffen-
ing of the rubber has to be minimized, see e.g. (Mitschke
and Wallentowitz, 2014). The parallel arrangement of the
bushing and the springs enables shifting of the high por-
tion of stiffness caw onto the coil spring, thus holding over
90 % of the total value. The remaining stiffness realized
by the bushing is then relatively low, additionally result-
ing in low damping daw and reasonably compromised dy-
namic stiffening.

Figure 4. Technical solution of the split wheel carrier with slid-
ing bearings in the context of a front right double wishbone sus-
pension.

4 Modelica Model
To facilitate a simulative assessment the technical solu-
tion of the suspension presented in the previous section
was modeled using Modelica. Using such a model, anal-
yses on a multi-body quarter car model were performed,
see Sections 5.1 and 5.2. Additionally, the suspensions
were used within a total vehicle model for vehicle dynam-
ics and driving comfort assessment, as documented in Sec-
tions 5.2 and 5.3.

In order to promote easy interoperability with the var-
ious existing automotive Modelica libraries, the created
Modelica package containing all the models was con-
sequently based upon the VehicleInterfaces base classes,
see (Dempsey et al., 2006). The VehicleInterfaces library
focuses on standardizing the assemblies interface defini-
tions without presupposing a standard vehicle model ar-
chitecture. Hence, the same assembly models can be
reused in different model architectures.

The idea of template assembly models and
parametrized models was introduced as also utilized
in the PowerTrain library from DLR, see e.g. (Schweiger
et al., 2005). Various parametrized models of realistic
assemblies are thus inherited from template models which
reflect different structure and level of model’s detail. This
facilitates redeclaration of the particular model within the
overall vehicle models or virtual test rigs depending on
the simulation purpose to be fulfilled.

The majority of virtual test rigs and maneuver scenar-
ios as well as a couple of components and template models
needed to model and evaluate the suspension concept had
already been predefined within a DLR proprietary Model-
ica library for vehicle dynamics.

The multi-body models of a) the conventional two mass
reference suspension (see model structure depicted in Fig-

Session 7A: Automotive III

DOI
10.3384/ecp17132425

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

427

Figure 5. Cross-section view of the front right wheel carrier and
components.

Table 1. Relevant masses of reference vehicle (2M) and of ve-
hicle with proposed suspension solution (3M).

Value [kg]
Parameter 2M 3M

Total weight incl. driver of 75 kg 850 872
Front sprung mass mb 191 189
Front unsprung mass mw 26 23
Front add. unsprung mass ma N.A. 11
Rear sprung mass mb 178 175
Rear unsprung mass mw 29 23
Rear add. unsprung mass ma N.A. 15

ure 6) and b) the proposed split wheel carrier design (its
structure is shown in Figure 7) incorporate all relevant
mass parameters as well as the nonlinearity of the force
elements. In both cases the models are parameterized
according to the considered small LEV. The particular
masses are listed in Table 1 for the conventional reference
vehicle in comparison with the vehicle with split wheel
carrier. A multi-body model of the latter is visualized in
Figure 8.

For elastic wishbone mounts, a simplification was
adopted in that the orthogonal deformations depend pro-
portionally only on the corresponding action forces, thus δx

δy
δz

=

 fx/cx
fy/cy
fz/cz

 , (2)

and, correspondingly, for rotations. Such a mounting was
additionally used to connect the toe control link of the rear
suspension. For simplicity, the main bushing mounted be-
tween the wheel hub and the wheel carrier was modelled

wheelOrientation

sp
rin

g
D

am
pe

r

f_
no

m

carrierBody

bodyCaliper

ar
m

U
pp

er

ar
m

Lo
w

er

jointUniversalA1 jointSphericalA3

a
b

n=
rS

te
e

r

jo
in

tS
te

e
rin

gA
xi

s

jointUniversalToe

bu
sh

in
g

To
eR

od

6
di

re
ct

io
ns

Li
ne

ar

fixA1toA3

fixA1toAX
b

fixA1toSTR

fix
To

eR
od

fix
To

eR
od

C

frameChassis

frameWheel

Figure 6. Modelica structure of the conventional rear suspen-
sion.

wheelOrientation

sp
rin

g
D

am
pe

r

f_
no

m

ar
m

U
pp

er

ar
m

Lo
w

er

twoMassLinear

jointUniversalA1 jointSphericalA3

a
b

n=
rS

te
e

r

jo
in

tS
te

e
rin

gA
xi

s

jointUniversalToe

bu
sh

in
g

To
eR

od

6
di

re
ct

io
ns

Li
ne

ar

fixA1toA3

fixA1toAXfixA1toSTR

fix
To

eR
od

fix
To

eR
od

C

bodyCaliper

frameChassis

frameWheel

ba

jointPrismaticZ
n={0,0,1}

bo
dy
1

bo
dy
2

bushing

fixSpringA fixSpringB

fixJointA fixJointB

springDamper

visCylinderToA visCylinderToB

CAD
carrierCAD

frame_a frame_b

Figure 7. Modelica structure of the split wheel carrier rear sus-
pension (above) and the split carrier submodel (below).

Model Based Design of a Split Carrier Wheel Suspension for Light-weight Vehicles

428 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132425

Figure 8. Visualization of the multi-body model of presented
front suspension with split wheel carrier.

on the same principle. This is reasonable for low dynamic
stiffening as explained in the previous section.

The vehicle body was modeled as a rigid structure with
an extra mass of 75 kg at the location of a driver’s hip joint.
A linear spring-damper element was used to represent the
vertical force/deflection of the tire. Additionally, the hor-
izontal tire forces were modeled using the Pacejka Magic
Formula (Pacejka, 2002) to assess the vehicle dynamics
behavior.

In the following, the model of the vehicle of the two
mass configuration and parametrization (2M in Table 1) is
called reference vehicle or simply reference.

5 Simulation Results
For the proposed split wheel carrier suspension the ride
comfort and tire/road contact were assessed simulating
both the quarter car and the full vehicle model. Addi-
tionally, vehicle dynamics were evaluated utilizing the full
vehicle model only.

5.1 Verification of the Technical Solution
For the first verification of the eligibility of the tech-
nical design, the frequency response analysis according
to (Bünte, 2011) was performed on the nonlinear quar-
ter car multi-body models with a) the reference suspen-
sion and b) the proposed one. The vertical excitation
from 0.5 Hz to 30 Hz was considered, together with the
frequency-dependent decrease of the amplitude in order to
reproduce the amplitude progression of the road class D
from (ISO 8608). Thus, the time excitation conditions
were similar to those applied for linear system analysis
depicted in Figures 2 and 3.

The comparison of time domain simulation results is
done in Figure 9. The multi-body models prove the reduc-
tion of the second resonance peak by the three-mass sys-
tem up to frequencies about 20 Hz. Above this frequency,
the third resonance peak of the proposed suspension be-
comes significant which increases the response amplitude

100 101

ve
rt

ic
al

ac
ce

l.
m

ag
ni

tu
de

reference
proposed suspension

Figure 9. Frequency response of nonlinear quarter-car multi-
body models.

compared to the reference vehicle. In summary, this proof
of concept confirmed the preliminary assessment as dis-
cussed in Section 2.

5.2 Comfort Assessment
For ride comfort and tire/road contact assessment, a time
domain simulation of the vehicle placed on a virtual four
post rig was performed. The post excitation conforms to
the road class D according to (ISO 8608) driven at con-
stant velocity of 70 km/h. The road irregularities are gen-
erated by means of a colored noise signal matching a given
power spectral density (PSD). For the generation of such a
signal in Modelica, the AdvancedNoise library (Klöckner
et al., 2015) was utilized

For the full vehicle model, the vertical excitation signals
for the left and right track were generated independent of
each other, i.e. using uncorrelated signals. The excitation
signals for the rear wheels were delayed by the ratio of
wheel base and speed against the respective front wheels
running ahead. The excitation signal together with its PSD
are shown in Figure 10.

The generation of the excitation using a noise gen-
erator from the AdvancedNoise library has the advan-
tage of a high quality stochastic signal. In contrast, this
way of signal generation is computationally expensive and
slows down simulation speed. Using DASSL as numerical
solver on a quad-core personal computer the full vehicle
simulation on average runs 50 times slower than real time.
Therefore, we restricted the simulation time for the full
vehicle simulation to 100 s which corresponds to a track
length of 1944 m. For the less expensive quarter car sim-
ulations, the simulation time of 200 s was applied in order
to reach a more significant assessment.

The evaluation with the quarter car model used the fol-
lowing criteria:

• RMS f z: root mean square of vertical tire load,

• RMSaz: root mean square of body vertical accelera-
tion,

Session 7A: Automotive III

DOI
10.3384/ecp17132425

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

429

50 100 150 200
−2

−1

0

1

2

·10−2

time [s]

po
si

tio
n

z
[m

]

ISO 8608 road class D

10−1 100 101 102
10−13

10−10

10−7

10−4

frequency [1/m]

P
SD

z
[m

3]

Figure 10. Exemplary road excitation signal used for vertical
displacement of virtual post rig (above) and its power spectral
density (PSD, below).

• Kges1 combined assessment criterion according
to (Hennecke, 1995) for the time window of 10 s and

• Kges2 similar to Kges1 but for the total time of mea-
surement.

For the full vehicle model, the following criteria were
additionally evaluated:

• RMSpitch: root mean square of body pitch angular
acceleration,

• RMSroll : root mean square of body roll angular ac-
celeration.

The collectivity of criteria evaluated by simulations is
shown in Table 2 and Table 3.

Supplementary to these concluding values, Figure 11
depicts the signals of the combined comfort assessment
criteria Kges1 and Kges2 from simulations on the virtual
quarter car test rig. These criteria show the improvement
for the proposed suspension (plotted in red) against the
reference vehicle (blue). For tire/road contact, the im-
provement of about 17 % is reached – as indicated by
RMS f z in Table 2. This trend is even more evident for
the full vehicle simulation, see Table 3. Here, the comfort
improvement is about 25 % and the road contact improve-
ment is up to about 38 %. These results are achieved by

Table 2. Resulting comfort assessment criteria values for quarter
car simulations with a simulation time of 200 s.

Refe- Proposed Difference
Criteria Unit rence suspension [%]

RMS f z N 112.50 93.30 -17.07
RMSaz m/s2 0.47 0.43 -7.89
Kges1 – 9.13 8.50 -6.96
Kges2 – 8.59 7.97 -7.24

Table 3. Resulting comfort assessment criteria values for full
vehicle simulations with a simulation time of 100 s.

Refe- Proposed Difference
Criteria Unit rence suspension [%]

RMS f z N 702.9 433.2 -38.37
RMSaz m/s2 1.450 0.963 -33.59
RMSpitch rad/s2 2.005 1.430 -28.68
RMSroll rad/s2 4.707 3.462 -26.45
Kges1 – 32.670 24.412 -25.28
Kges2 – 34.260 26.135 -23.72

virtue of the proposed split wheel carrier system while us-
ing a preliminary parametrization.

5.3 Vehicle Dynamics Assessment

To achieve an evaluation of the proposed suspension con-
cept also in terms of vehicle dynamics, two standard driv-
ing maneuvers were simulated: a) quasi steady state cor-
nering on a circle with a radius of 40 m while slowly
increasing the vehicle speed and b) steering angle sine
sweep at a constant speed of 80 km/h. For a) the neces-
sary steering wheel angle δH to keep the vehicle on the
circle was recorded and the resulting self-steering gradient
SSG was computed. During b) the magnitude ay,gain and
phase angle ay,phase of the lateral acceleration frequency
response were recorded and assessed.

The evaluation of the recorded criteria of both vehi-
cles indicated just negligible difference for both maneu-
vers, i.e. the suggested technical solution of the proposed
suspension has negligible influence on the lateral vehicle
dynamics. This is particularly reached due to the suffi-
cient stiffness of the mechanism when exposed to lateral
and longitudinal forces and torques. Consequently, only
marginal changes in the wheel attitude can be observed in
most cases, as demonstrated in some extent in Figure 12
for a toe angle change under lateral force load, and in Fig-
ure 13 for a track change under variable vertical load. Both
Figures result from the suspension elastokinematics anal-
ysis.

Concluding from the two simulated maneuvers, the ve-
hicle equipped with the proposed suspension appears to
have also a good driving behavior.

Model Based Design of a Split Carrier Wheel Suspension for Light-weight Vehicles

430 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132425

0

2

4

6

8

K
ge

s1
[−

]

reference
proposed suspension

50 100 150
0

2

4

6

8

time [s]

K
ge

s2
[−

]

reference
proposed suspension

Figure 11. Comfort assessment criteria signals from quarter car
simulations: Kges1 for time window of 10 s above and Kges1 for
the total simulation time (200 s) below.

6 Conclusions
A suspension design solution was proposed to compensate
for unfavorable effects on ride comfort and tire/road con-
tact in the context of light-weight electric vehicles. The
suggested mechanical design introduces the separation of
the wheel hub from the wheel carrier allowing for a ver-
tical relative movement between both parts by means of a
prismatic joint. The realization utilizes two linear sliding
bearings which house the auxiliary suspension elements –
a design resembling a motorcycle front fork.

A comprehensive investigation on the influence of such
suspension design on the ride comfort and tire/road con-
tact was done. Simulation results show that the ride com-
fort can be improved significantly while there is negligible
influence on the vehicle dynamics. The relative deflection
in the prismatic joint introduced into the split wheel car-
rier is bounded to a few millimeters when the system is
operated under common driving conditions.

Acknowledgements
The authors would like to thank Mr. Uwe Bleck for shar-
ing his expertise on vehicle suspensions and vehicle dy-
namics.

References
T. Bünte. Recording of model frequency responses and describ-

ing functions in modelica. In The 8th International Mod-

−2000 −1000 0 1000 2000

−0.2

0

0.2

lateral force fy [N]

to
e

an
gl

e
δ

v
[◦
]

reference
proposed suspension

Figure 12. Change of the wheel toe angle of rear suspension
under lateral load.

−2000 −1000 0 1000 2000

−10

0

vertical force d fz [N]

tr
ac

k
dy

W
[m

m
]

reference
proposed suspension

Figure 13. Change of the wheel track of rear suspension under
vertical load change.

elica Conference, Dresden, Germany, 2011. URL http:
//elib.dlr.de/68920/.

M. Dempsey, M. Gäfvert, P. Harman, Ch. Kral, M. Otter, and
Treffinger P. Coordinated automotive libraries for vehicle
system modelling. In The 5th International Modelica Con-
ference, Vienna, Austria, 2006.

J. K. Hedrick and T. Butsuen. Invariant properties of automotive
suspensions. Journal of Automobile Engineering, pages 21–
27, 1990.

D. Hennecke. On the Assessment of the Riding Comfort of
Passenger Cars under Transient Excitation. PhD thesis, TU
Braunschweig, Düsseldorf: VDI Verlag, 1995. In German.

ISO 8608. Mechanical vibration – road surface profiles – report-
ing of measured data, 1995.

A. Klöckner, A. Knoblach, and A. Heckmann. How to shape
noise spectra for continuous system simulation. In The
11th International Modelica Conference, pages 411–418,
Paris, France, 2015. Linköping University Electronic Press,

Session 7A: Automotive III

DOI
10.3384/ecp17132425

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

431

Linköpings Universitet. URL http://elib.dlr.de/
98408/.

M. Mitschke and H. Wallentowitz. Dynamics of Motor Vehicles.
Springer Vieweg, 5 edition, 2014. ISBN 978-3-658-05068-9.
In German.

H. B. Pacejka. Tyre and Vehicle Dynamics. Elsevier Ltd, Oxford,
2002.

D. Ryba. Improvements in dynamic characteristics of automo-
bile suspension systems part 1: Two-mass systems. Vehicle
System Dynamics, pages 17–46, 1974a.

D. Ryba. Improvements in dynamic characteristics of automo-
bile suspension systems part 2: Three-mass systems. Vehicle
System Dynamics, pages 55–98, 1974b.

S. M. Savaresi, C. Poussot-Vassal, C. Spelta, O. Sename, and
L. Dugard. Semi-active suspension control design for vehi-
cles. Butterworth-Heinemann/Elsevier, 2010.

Ch. Schweiger, M. Dempsey, and M. Otter. The PowerTrain Li-
brary: New Concepts and New Fields of Application. In The
4th International Modelica Conference, Hamburg–Harburg,
Germany, 2005.

J. Stoffregen. Motorcycle technology. Springer Vieweg, 2012.
ISBN 978-3-8348-1716-7. In German, DOI 10.1007/978-3-
8348-2180-5.

Model Based Design of a Split Carrier Wheel Suspension for Light-weight Vehicles

432 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132425

Development of hierarchical commercial vehicle model for

target cascading suspension design process

Kwang-chan Ko
1

 Jong-chan Park
1

 Dae-oh Kang
2

 Jae-hun Jo
3

Min-su Hyun
3

Seung-jin Heo
3

1
Hyundai Motor corporation, Korea, {kcko, impactpack}@hyundai.com

2
Institute of Vehicle Engineering, Korea, bigfive@ivh.com

3
School of Automotive Engineering, Kookmin University, Korea, {bluenice8,slay,sjheo}@kookmin.ac.kr

Abstract

This paper presents the development of

framework and an industrial application of

commercial vehicle suspension & steering system

design based on the target cascading. This

framework consists of 3 main modules, those are

modeling, solving, and post-process module. Excel

GUI is employed in order to give straightforward

simulation way to the end users who are not

familiar with vehicle dynamics simulation. End

users are allowed to handle modeling parameters

using Excel to build up models in the easy way.

Key feature of solving module is that the

simulation is conducted automatically with just

selecting one of predefined scenario. The last

module whose object is to calculate Ride and

Handling performance index, is the post-process

module.

A pilot study is applied to the practical issue to

see the benefits of the framework, and design

decision is made from the application results. This

application study shows remarkable benefits not

just in terms of Ride and Handling performance,

but also in terms of solving cost. 15% of improved

performance is produced regarding Ride and

Handling, and 50% of development time is saved.

It means that the framework allow to avoid time-

consuming process to achieve required target in

the vehicle development process.

Keywords: Vehicle Dynamics, Target Cascadin

g, Commercial Vehicle, Hierarchical Model,

Suspension and Steering, Ride and Handling

1. Introduction

The framework development is explained from

section 2 to section 4. Section 2 contains the way

of modeling and testing on the main sub-systems,

and section 3 covers performance index calculator.

Figure 1. Overview of Frame Work

Section 4 is about the Excel interface development

in order to give convenience to the end user. The

optimization study is conducted to figure out the

benefits of the developed framework in the section

5.

2. Library Establishment of Vehicle

Dynamics

The main sub-systems of vehicle dynamics library

consist of suspension, body, cab, and tire. For

application to the target cascading process, each

sub-system consists of geometrical and physical

model.

2.1 Suspension and Steering system

2.1.1 Suspension Modeling

Full range of HMC commercial vehicle

suspension types are modeled by using both

Tubular Elastic Kinematic Suspension (TEKS)

and Multi body Dynamics. TEKS use lookup table

to specify suspension geometry, so TEKS model

has to reflect the unique issue about commercial

vehicle suspension. For instance, commercial

vehicles have the suspension models of dependent

type and independent type, the big difference

between those suspension types is the roll motion.

Generally in case of dependent suspension, left

and the right movement is coupled in roll motion

but the other is not.

DOI
10.3384/ecp17132433

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

433

The number of suspension types using in

commercial vehicles are quite large, for efficient

approach, object-oriented methodology is taken

into the Multi body dynamic modeling. Figure 2.1

shows the modeling results.

Figure 2.1 Multi Body Dynamic model

Force element of physical model was modeled

from the functional equation that has the design

variables as its factors. The parts developed by the

method above are leaf spring, coil spring, air

spring, stabilizer bar, etc. Table 2.1 show some

examples of force elements.

Table 2.1 Leaf Spring Model

Leaf Spring

Design

equation

𝒄𝒇 =
𝑬𝒏𝒘𝒉𝟑

𝟐𝑲𝒍𝟑

𝑲 =
𝟑𝒏

𝟐𝒏 + 𝒏_

𝒏_ = 𝒏 − 𝟏

parameter

𝐸 ∶ modulus elasticity

𝑛 ∶ number of leaf
𝑤 ∶ Leaf Width

ℎ ∶ Leaf thickness

𝐾 ∶ Defection Factor

𝑙 ∶ Leaf length

𝑛_ ∶ Modified number

We generate code of these functional equations in

Modelica language like Figure 2.2.

Figure 2.2. Leaf Spring Model (Modelica)

2.1.2 Steering Modeling

Once steering system is modeled. Rack&Pinion

steering is modeled for the independent suspension

and Pitman-Arm steering is modeled for the

dependent suspension.

Table 2.2 Rack&Pinion, Pitman Arm Model

2.1.3 Validation

Suspension models are validated by K&C

experiment. Figure 2.3 show the comparison

results of the established suspension system

models of independent type and dependent type

with the test data. From the comparison, we reach

the conclusion that the established models have

reliability.

Development of hierarchal commercial vehicle model for target cascading suspension design process

434 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132433

Figure 2.3. Parallel wheel travel

2.2 Cab, Frame & body Model

3 types of Cabin mounting are used by HMC

commercial vehicles are built up in the library as

shown in table 2.3

Table 2.3 Cab Mounting library

Lumped mass, C.G location, and moment of

inertia are main input parameters in case of body

model, but realistically bending and torsion can

occur due to the long length of frame in the

commercial vehicles, so bending stiffness and

torsion stiffness to the lumped mass model are

reflected.

2.3. Tire model

Pacejka 02 Tire are employed for tire library. In

order to create reliable tire model, all the

parameter that required for the Pacejka 02 are

measured. Figure 2.4 is the description about one

of the tire data.

Figure 2.4. Pacejka 02 tire model

3. Post Processor

3.1 Performance Index of R&H

The higher priority way to set up quantified R&H

performance Index is from analysing statistical

relationship between subjective feeling evaluation

and objective measurement data, but a lot more

valid sample data are demanded for the statistical

relationship analysis. Realistically it is not easy to

collect enough valid sample data due to many

reasons. Instead of those preliminary researches, 3

benchmarking vehicles are chosen and measured

to set up R&H performance indexes in this stage.

(1) Test / simulation modes, measurement methods

are established after 3 benchmarking vehicles are

chosen with considering weight, wheelbase, and

steering, suspension type. The specifications of 3

benchmarking vehicles are shown in Table 3.1.

Table 3.1 Specification of Benchmarking Vehicles

 On-Centre Weave, Steady-State Cornering, Step

Steer, Pulling Stability, Bumpy Ride are selected

for test modes. Generally too many test /

simulation modes cause a lot of solving cost in the

optimization process, so test / simulation modes

must be minimized.

 (2) The 31 quantified indexes for R&H

performance indexes are calculated using

measurement data of benchmarking vehicles.

Understeer gradient which decide cornering

stability and Steering R2 value which decide

cornering linearity are shown in Fig. 1 as examples

Session 7A: Automotive III

DOI
10.3384/ecp17132433

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

435

of graphic calculation.

Figure 3.1. Steady-State Cornering Test

(3) The 31 quantified indexes are divided into 9

groups for mapping which represent subjective

feeling. Those 9 groups consist of 3 controllability

fields (Roll Control, Response Level, Cornering

Controllability), 3 Stability fields (Understeer

Balance, Response Velocity, Directional Stability),

and 2 Steering Feel fields (Steering Sensitivity,

Pulling), 1 Ride Comfort field (Bumpy Ride). Fig.

3.2 is example of the mapping results regarding

Stability fields.

Figure 3.2. Stability Feeling Matching Map

(4) 31 indexes are taken into design of experiment

(D.O.E) Screening to figure out the relationship

between individual indexes of those 31. Finally

24 indexes are selected after D.O.E Screening

except 7 indexes which have repeated performance

meaning by other indexes. The screening results

are shown in Fig 3.3.

Figure 3.3. D.O.E Correlation of VPI

Table 3.2 Description of 24 Indexes

3.2 Post-Processor

To automate the performance index developed at

3.1, post-processor was developed by using

Matlab. The data used for the inputs in post-

processor comes from Dymola as mat-file form.

Figure 3.4 is GUI of the post-processor.

Figure 3.4. Performance index calculation program

4. Modeling tool based on Excel.

 Pre-processing GUI is built based on Excel to

give end users convenience. Like Figure 4.1, pre-

processing is performed by inputting the model

data first, and goes through the process that links

the cells data inputted with the parameters on

Modelica.

Figure 4.1. Parameter linking based on Excel

Cabin Property

Load Mass

Frame

Data Linking Data Import

Development of hierarchal commercial vehicle model for target cascading suspension design process

436 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132433

Linking on Excel and Modelica parameters was

processed by using the external data library which

is one out of Modelica share libraries. Excel GUI

is divided The constituted GUI is shown on Figure

4.2.

Figure 4.2. Excel GUI

5. Application

To review the validity of the simulation framework

that was developed earlier, ride and handling

performance simulation was conducted.

5.1 Ride performance test

5.1.1 Model explanation

Four-post test for the ride evaluation method are

simulated, so the mulit body dynamics truck

model waw combined with four-post test rig, and

formed them as the test environment. The

constituted truck chassis model was shown on

Figure 5.1, and the four-post test environment was

indicated on Figure 5.2.

Figure 5.1. Truck Chassis Model

Figure 5.2. Four-Post Test Environment

5.1.2 Explanation on the evaluation method.

ISO C-Class road profile is used for the input of

four-post test, and selected the vertical

acceleration of body as performance index.

5.1.3 Comparison analysis of the results

As shown at Figure 5.3, the test results showed

little error (RMS error: - %) in time domain.

.

Figure 5.3. Four-Post Test Result Vertical

Acceleration

Likewise, the gradient of PSD in frequency

domain of Figure 5.4 was ilustraed with high

accuracy as well.

Figure 5.4. PSD

5.2 Handling performance test

5.2.1 Model explanation

CRC (Constant Radius Cornering) and step-steer

maneuvers were taken into simulation to evaluate

not just steady state condition but also transient

condition response. The truck chassis model that

used in ride test is linked with the steering

Session 7A: Automotive III

DOI
10.3384/ecp17132433

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

437

controller which controls the vehicle to drive in a

steady curvature, and the velocity controller which

controls to drive as the speed allowed. The step-

steer test environment was established through

combination of the steering actuator that controls

to steer towards the allowed steering wheel angle

and the velocity controller which controls to drive

in steady speed shown as Figure 5.6.

.

Figure 5.5. Step Steer Test Environment

5.2.2 Comparison analysis of the results

Figure 5.6 showed the gradient of steering wheel

angle-lateral acceleration of CRC, and it proves

that this model predicts the steady state condition

response of the truck in high accuracy. The

performance index was estimated with little error

as well.

Figure 5.6. Understeer Gradient

Figure 5.7 showed the gradient of lateral

acceleration of step-steer and yaw rate, and it

proves that this model predicts the transient

condition response in high accuracy. The

performance index selected earlier was calculated

with little error as well.

Figure 5.7. Lateral Acceleration, Yawrate

5.3. Application of Target Cascading

Design

5.3.1 Formulation of design matters

For the application examples, RMS of body

vertical acceleration, which is the ride

performance index as the objective functions, is

chosen, together with the parameters of air spring

as the design variables. The matter was defined to

find the design variable value to minimize the

objective functions.

5.3.2 System level design

In system level, RMS of body vertical acceleration

is extracted, and air spring property (F-D gradient)

can be optimized through genetic algorithm in

Optimization Library of Modelon. Genetic

algorithm is a probability search algorithm, and it

is favorable to the treatment for discrete variables,

not influenced from the continuity and

differentiability of functions, etc. which consist of

the matters, and able to search globally. The

formulation of design matters is the same as

follows.

Development of hierarchal commercial vehicle model for target cascading suspension design process

438 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132433

Minimize (𝑥) = √
𝑥1+𝑥2+𝑥3+⋯+𝑥𝑛

𝑛
 ,

𝑥𝑖(𝑖 = 1: 𝑛) = Body vertical acceleration,

𝑛 = Number of data.

Subject to 0.8𝑦𝑏𝑎𝑠𝑒 < 𝑦𝑏𝑎𝑠𝑒 < 1.2𝑦𝑏𝑎𝑠𝑒

,𝑦𝑏𝑎𝑠𝑒 = Air spring characteristic data of base

model

 Figure 5.8 shows the change of performance

index, and Figure 5.9 indicates the property of the

optimized design variables.

RMS (𝑚/𝑠2)

Base 1.8410

Optimized 1.4912

Figure 5.8. Performance Index Variation

Figure 5.9. Optimization

5.3.3 Sub-system level design

In sub-system level, optimal value of parameters

that can embody the optimized air spring derived

from system-level through genetic algorithm is

selected. The formulation of the optimized design

is the same as follows.

Minimize (𝑥) = ∑ (𝑥𝑠,𝑖 − 𝑥𝑠𝑠,𝑖)
2𝑛

𝑖=1 ,

𝑥𝑠,𝑖 = System-level air spring data,

𝑥𝑠𝑠,𝑖 = Subsystem-level air spring data,

𝑛 = Number of data

Subject to 0.8 ∗ 𝑦𝑏𝑎𝑠𝑒 < 𝑦𝑏𝑎𝑠𝑒 < 1.2 ∗ 𝑦𝑏𝑎𝑠𝑒

, 𝑦𝑏𝑎𝑠𝑒 = Air spring parameters of base model

Figure 5.10 shows the comparison results between

the property of air spring realized through the

optimal parameters and the property of air spring

derived from system-level, and we can see that the

property value is embodied with little error.

Figure 5.10. Comparison of Air Spring Property

Table 5.3 is one that compares the design variables

of base model and the design variable values of the

optimal model.

Table 5.1 Comparison of Air Spring Property

 Base Optimal

Nominal Preload

Force
20000 N 20000N

Polytropic

Coefficient
1.38 1.317

Effective Area

with Respect to

Volume

0.077m^3 0.09343m^3

Effective Area

with Respect to

Load

0.07315m^3 0.0555m^3

Constant Pressure

Spring Rate
1000000N/m 1000000N/m

Session 7A: Automotive III

DOI
10.3384/ecp17132433

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

439

6. Result

Through this study, we developed the

interpretation of hierarchical structure and the

design model through object-oriented modeling

method. The merits of constituted hierarchical

structure model are as follows. Firstly, both

behavior model and physical model can be

interpreted at one platform. Secondly, design

objectives and design variables that are

indispensable for target cascading can be shared

without separate treatment of data. Thirdly, it is

easy for users, if necessary, to modify the model

since the model has been established through

object-oriented modeling method. And, to enhance

design efficiency, we raised efficiency by

developing design process through linking with

pre-processor (Excel), model (Dymola), post-

processor (matlab). To test the effectiveness on

this, we applied the established framework to the

suspension system design matters that were

considered to improve the performance of R&H.

From the result of design, we verified that

performance improved by 15%, and the time for

design decreased more than 50% as well. These

results proved that the developed framework is

suitable for the suspension system design process

of target cascading.

Reference

Kang, Ph.D: Robust Design Optimization Process Deve

lopment for Suspension System by using Target Casca

ding Method, Kookmin University, 2010.

J. Rauh: Virtual Development of Ride and Handling Ch

aracteristics for Advanced Passenger Cars, J. Rauh, Vehi

cle System Dynamics, vol. 40, no. 1-3, pp. 135-155,

2003.

Development of hierarchal commercial vehicle model for target cascading suspension design process

440 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132433

Model Based Analysis of Shimmy in a Racing Bicycle

Nicolò Tomiati1 Gianantonio Magnani1 Bruno Scaglioni1 Gianni Ferretti1

1Politecnico Di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria DEIB
Via Ponzio 34/5, 20133 Milano, Italy,

{gianantonio.magnani,bruno.scaglioni,gianni.ferretti}@polimi.it,
nicola.tomiati@mail.polimi.it

Abstract
In this paper we are presenting a model of a racing bicycle,
developed in Modelica language within the Dymola envi-
ronment. The main purpose is to investigate the dynamic
response of the bicycle and its modes of vibration, refer-
ring in particular to shimmy. This phenomenon occurs at
high speeds and consists of sudden oscillations of the front
assembly around the steering axis. Lateral accelerations
on the horizontal tube of the frame can reach 5-10 g with
a frequency that varies between 5-10 Hz. Even if it is
quite uncommon, shimmy is a topic of great relevance, be-
cause it may be extremely dangerous for the rider. Thanks
to this model, we can show that the main elements which
contribute to the rise of the oscillations are the lateral com-
pliance of the frame and the tyres’ deformation.
Keywords: bicycle, shimmy, flexible multibody systems

1 Introduction
This paper will present a multibody model of a racing bi-
cycle developed in Modelica, within the Dymola environ-
ment. The main purpose of this work is to investigate in
depth the dynamic response of the bicycle and its modes,
referring in particular to shimmy.

Any two-wheeled vehicle is subject, during its move-
ment, to three modes of vibration: capsize, weave and
wobble. The first two are always present; the third one
occurs occasionally.

If the capsize mode is unstable, the bicycle follows a
spiral path with increasing values of the roll angle that
leads it to a lateral fall.

The weave mode consists, instead, in an oscillatory mo-
tion of the rear frame about the yaw axis together with os-
cillations about the roll axis. In this case, the frequency is
of 1-2 Hz.

Finally, the wobble mode (which is often referred to
as shimmy) is an oscillatory motion of the front assem-
bly with respect to the steering axis. When it occurs, lat-
eral accelerations on the horizontal tube of the frame can
reach 5-10 g with a frequency that varies between 5-10 Hz
(Magnani, Ceriani, and Papadopoulos 2013). This phe-
nomenon is therefore very violent, unexpected and can
lead to dramatic consequences, particularly if the rider
does not know it and is not able to handle it. Fortunately,
it does not occur so frequently and it is difficult that it can

lead to a fall, although this is the sensation perceived by
the cyclist. Usually, this happens at high speed, such as
the one that can be reached along a downhill road. The
phenomenon is well known among cyclists and bicycle
manufacturers. It is a topic of great relevance because it is
not still clear what are the main causes that lead to these
vibrations.

Thanks to experimental activities (Magnani, Ceriani,
and Papadopoulos 2013) and by using numerical mod-
els (Plöchl et al. 2012; Klinger et al. 2014; Limebeer and
Sharp 2006), the lateral compliance of the frame and the
tyres’ deformation have been found to be two essential
contributors to the wobble mode. One of the goals of this
article is to understand in detail what are the causes or fac-
tors that excite these vibrations, referring in particular to a
racing bicycle.

The paper is organised as follows. Section 2 gives an
overview of the overall bicycle model, describing all the
components in detail. Section 3 explains how the elements
are connected to each other and what assumptions have
been made before running the simulations. In Section 4
simulation results are presented. Two different versions of
the model will be analysed. At the end, in Section 5 the
conclusions and some possible practical advice that may
be helpful to the rider to damp out the shimmy oscillations
are discussed.

2 Bicycle Model
The multibody model presented in this work is
based (for some components) on the Modelica
MotorcycleDynamics package, which is described
in detail in (Donida, Ferretti, Savaresi, Schiavo, et al.
2006; Donida, Ferretti, Savaresi, and Tanelli 2008). This
library, in turn, was developed by VehicleDynamics,
which shares basically the same structure (Andreasson
2003).

The following step is to run simulations to study its dy-
namic behaviour. Our attention has been focused on a rac-
ing bicycle, which is described in more detail in (Klinger
et al. 2014). Whenever possible, therefore, data reported
in that article has been used in order to make the model as
compliant as possible to the real behaviour.

The main components of the model are:

• the rear frame;

DOI
10.3384/ecp17132441

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

441

!

Figure 1. Rider block diagram in Dymola with the four interfaces to connect it to the other components. Four spring-damper
elements have been introduced to model the compliance of the constraints between rider’s hands-handlebar, feet-pedals and pelvis-
saddle.

• the front assembly, which includes handlebar, stem
and fork;

• the cyclist;

• the front and rear wheels;

• the road.

2.1 Rear Frame
The first component is modelled by a BodyShape element,
i.e. a single rigid body characterised by centre frame, mass
and inertia tensor. In order to associate to this body the
true shape of the frame, we have used a CAD model. Sec-
ondly, we have added the saddle, which is connected to
the rear frame with a Revolute joint. This type of connec-
tion allows the rotations around an axis passing through
the saddle tube. In this way, it is possible to consider the
compliance of the constraint between the saddle and the
frame.

The rear frame model presents four interfaces that allow
connecting this component with the rider (including the
saddle and pedals), with the front assembly (through the
steering axis) and with the rear wheel (at the hub).

2.2 Front Assembly
The front assembly has also been modelled as a rigid body
with its inertia tensor and whose mass is concentrated in a
single point. It consists of the fork, whose true shape has
been defined in a CAD model, the stem and the handlebar.
Four interfaces characterise this component; in fact, the
front assembly can be connected with the rear frame, with

the front wheel at the hub, and with the cyclist at the two
contact points on the handlebar.

2.3 Cyclist
The third component of the model is the rider. It has
been modelled as a multibody system obtained by the
connection of solid geometric elements having different
shapes. In particular, Cylindrical elements have been
used to model limbs (i.e. arms, forearms, thighs and
legs) while Rectangular parallelepipeds for the torso, the
pelvis, hands and feet. In regards to the head, a Body ele-
ment has been chosen, which is characterised by mass and
inertia tensor. It is visualised by a cylinder and by a sphere
that has its centre at the centre of mass.

To model the human articulations two types of joints
have been used, chosen depending on the possible relative
movements between the parts connected. Spherical joints
prevent all the translations but enable the rotations about
three mutually orthogonal axes. On the other hand, Rev-
olute joints prevent all the translations and the rotations
about two axes. Therefore, they leave only one degree of
freedom (a rotation about an axis). It is important to notice
that a Spherical joint can be obtained by connecting to one
another three Revolute joints, specifying for these objects
three orthogonally axes of rotation (as has been done with
the elbows).

To make the model more realistic, elements made up of
a spring and a damper in parallel have been added: in this
way it is also possible to take into account the contribu-
tion of stiffness and damping of human muscles. Figure 1
shows the rider block diagram in Dymola. Four interfaces

Model Based Analysis of Shimmy in a Racing Bicycle

442 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132441

Figure 2. Tyre definitions: side-slip angle α is defined as the
angle between the wheel centre plane and the direction of the
forward velocity V . Camber angle γ is defined as the angle be-
tween the wheel centre plane and the vertical axis z of the road.
Fx is the longitudinal force, Fy is the lateral force and Fz is the
normal force. Mx is the overturning torque and Mz is the aligning
torque. Positive values are shown. The left figure is a top view
while the right one is a rear view.

have been included in the model. In so doing, the rider
can be connected to the front assembly and to the rear
frame. Two spring-damper elements have been added to
cyclist’s hands and the upper part of the front assembly to
model his grip on the handlebar. The same has been done
for the connection between rider’s feet and bicycle pedals.
Lastly, a spring-damper element has also been added be-
tween the cyclist’s pelvis and the saddle in order to model
the compliance of the sitting position (the rider, in fact, is
not rigidly attached to the saddle).

In order to verify that the behaviour of the model was
compatible with a rider’s real movements, different simu-
lations have been performed (for example, by simulating
a turning manoeuvre or the execution of a curved trajec-
tory).

2.4 Wheel Model
Wheels are modelled as rigid bodies with their mass con-
centrated in the hub. Afterwards, a torus model has been
used to associate the real tyre shape to the wheel. The
front and rear wheels have the same dimensions (i.e. the
same radius), but different mass and inertial properties.

2.5 Tyres and Wheel-Road Interaction
As already mentioned in the Introduction, to highlight the
wobble mode it is necessary to consider tyres’ deforma-
tion.

The tyre allows the contact between the rigid part of the
wheel (i.e. the hub) and the road surface. At the same
time, it ensures adherence to the asphalt and generates
distributed forces and torques within the contact region.
In the following, it will be assumed that these forces and
torques are instead concentrated and applied at the sin-
gle contact point that represents the interaction between
wheel and road surface. In order to compute these forces,
four reference frames are needed, as explained in (Donida,
Ferretti, Savaresi, Schiavo, et al. 2006). Figure 2 shows

Figure 3. Qualitative trend of the lateral force Fy and aligning
torque Mz as a function of the side-slip α and camber γ angles.

the sign convention adopted in this work.
As can be seen, α is the side-slip angle, which is defined

as the angle between the forward velocity V and the wheel
centre plane; γ is instead the camber angle, defined as the
angle between the vertical axis z of the road and the wheel
centre plane.

The following step is the determination of contact
forces and torques. As stated in (Pacejka 2006), there are
different relations between forces and angles. For our pur-
poses, a linear relation has been chosen to describe tyres
behaviour. Moreover, the model has taken into account the
tyres’ dynamic, i.e. the delay in the deformation due to the
elasticity properties of the material. The tyre, in fact, does
not respond immediately when it is rolled from the stand-
still under a slip angle. It is necessary some time before
the lateral force Fy approaches the stationary value. The
same is true for the aligning torque Mz.

The longitudinal force Fx, which can represent both
traction and braking forces, is defined as:

Fx =CFκ κ, (1)

where κ is the longitudinal wheel slip.
On the other hand, the lateral force Fy is the sum of two

terms:
Fy =CFα α ′+CFγ γ ′. (2)

The aligning torque Mz also depends on both the side-slip
angle α ′ and the camber angle γ ′, according to this equa-
tion:

Mz =−CMα α ′+CMγ γ ′. (3)

The side-slip angle α ′ in (2) and (3) differs from α be-
cause of the delay in the tyre response after the deforma-
tion. The same is true for the camber angle γ ′. These dy-
namics have been modelled by two first-order differential
equations, i.e.:

σα
Vx

α̇ ′+α ′ = α, (4)

σγ

Vx
γ̇ ′+ γ ′ = γ, (5)

Session 7A: Automotive III

DOI
10.3384/ecp17132441

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

443

where Vx is the longitudinal component of the forward
velocity. The characterising parameter, called relaxation
length σ , is similar to a time constant except that it has
units of length rather than time. The relaxation length is a
tyre characteristic that can be determined experimentally
(Limebeer and Sharp 2006).

Finally, the overturning torque Mx has been also con-
sidered, defined as:

Mx =CMxγ. (6)

To further improve the model, two saturation limits with
respect to the lateral force Fy and the aligning torque Mz
have been introduced. This means that, at high values of
side-slip and camber angles, this force and torque are con-
stant (see Figure 3). In this way, the trend of the curve is
very similar to the one that can be obtained by applying
the Pacejka’s magic formula described in (Pacejka 1993).
The linear approximation is valid only for small values of
the two angles.

The stiffness coefficients inside equations (1)-(6) de-
pend on the vertical force Fz transmitted on the ground at
the contact point between tyre and road surface. Dymola
computes its value at any given time (typically, in fact,
the vertical force Fz is not constant during the movement)
and this operation allows to compute all the stiffness co-
efficients. When contact forces and torques are known, a
balance is carried out at the hub, i.e. the point where the
wheel is connected to the other components of the bicycle.

2.6 Road
The road surface has been modelled through
the Environments package of the
MotorcycleDynamics library.

This package allows the user to select the road slope
(level, uphill or downhill road) and its characteristics (dry
asphalt, wet and so on). To run the simulations it has been
chosen to work with a dry road, having a slope such as
the bicycle forward speed increases linearly from 10 m/s
to 20 m/s in 40 seconds (see Figure 4). From the results of
the experimental activity described in (Magnani, Ceriani,
and Papadopoulos 2013), it is shown that shimmy appears
in this speed interval. The quote z = f (x,y) of the road
surface is defined by the equations:

z =
{

0 if x < 0
−0.035k(x)x if x ≥ 0 , (7)

where x is the position along the longitudinal direction,
while:

k(x) =
arctan

(
10x+ π

2

)
π

. (8)

Equation (8) is necessary to avoid discontinuities on the
road surface, i.e. it guarantees an appropriate connection
when the road slope changes.

Figure 4. Road surface.

3 Model Assembly
Figure 5 shows the connections between the different
models.

In more detail, the rider is connected to the rear frame
and to the front assembly, including the saddle, the pedals
and the two contact points on the handlebar. The front
wheel is attached to the hub of the front assembly with a
Revolute joint. This element simulates the behaviour of
the ball-bearing. Similarly, the rear wheel is attached to
the bicycle main frame.

Lastly, it is necessary to connect to one another the front
assembly and the rear frame. Once again, a Revolute joint
has been used: it introduces the rotation δ of the steering
axis. As previously mentioned, there is another key ele-
ment that is essential to trigger the wobble mode. This is
the lateral compliance of the frame and it can be modelled
by a second Revolute joint that allows the rotations of the
front assembly around the β -axis (see Figure 6).

This axis is in the plane of symmetry of the vehicle
and it is perpendicular to the steering axis, as suggested in
(Klinger et al. 2014). The flexibility is lumped at the steer-
ing head. The user can set the values of stiffness kβ and
damping cβ coefficients that represent the structural prop-
erties of the frame. Figure 7 shows the three-dimensional
representation of the rider-bicycle model. As can be seen,
the cyclist assumes the typical position for riding a racing
bicycle, with his upper body in a bent-forward position
and his hands firmly attached to the handlebar.

Some other simplifying assumptions are also needed.
The gravity force acts on each component, and the aero-
dynamic drag force1 has been neglected, assuming that the
contribution related to this force is balanced by the compo-
nent of the weight that appears when the bicycle is mov-
ing on a downhill road. Moreover, it has been assumed
that the aerodynamic force does not change the vertical
forces Fz acting on the wheels’ contact points. Actually,
the lift force reduces the vertical load on both front and

1The aerodynamic force can be divided into two components: drag
force, which is directed along the longitudinal axis, and lift force, which
is directed along the vertical axis.

Model Based Analysis of Shimmy in a Racing Bicycle

444 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132441

!

Figure 5. Model assembly that highlights the connections between components. A Revolute joint with a spring-damper element
has been added to model the frame lateral compliance (β -axis).

Figure 6. This figure shows the steering axis δ , the axis β that
is necessary to model the frame lateral compliance, roll (φ̇) and
yaw (ψ̇) angular velocities, the camber angle γ and the side-slip
angle α . Positive values are shown.

!

Figure 7. Three-dimensional representation of the racing bicy-
cle model.

Session 7A: Automotive III

DOI
10.3384/ecp17132441

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

445

0 5 10 15 20 25 30 35 40

Time [s]

-8

-6

-4

-2

0

2

4

6

8

A
n
g
u
la

r
v
e
lo

c
it
y
 [
d
e
g
/s

]

Roll

Yaw

Figure 8. Roll and yaw angular velocities of the bicycle rear
frame when kβ → ∞ (rigid frame).

rear tyres, while the drag force increases the rear vertical
load and decreases the front one.

4 Simulation Results
The aim of the simulations is to study the model dynamic
response after the application of suitable perturbations,
trying to point out the wobble mode. For this reason, an
impulsive torque disturbance has been chosen. It is ap-
plied on the steering axis when the forward speed is equal
to vs = 13 m/s.

4.1 Rigid Frame Model
The first scenario considered is characterised by a rigid
version of the bicycle model. It can be obtained by setting
the frame stiffness coefficient kβ → ∞. After the torque
application, the steering axis is subject to oscillations that
initially increase in amplitude and then decrease up to be-
ing completely damped. However, their frequency is ap-
proximately equal to 1 Hz, a value much smaller than 5-
10 Hz that characterises the wobble mode. Although other
simulations have been carried out by changing the type of
the perturbation and some model parameters, we have not
been able to trigger the shimmy using the bicycle model
with a rigid frame. Figure 8 shows, instead, the rear frame
roll and yaw angular velocities.

The oscillation trend is the same that characterises the
steering axis response, i.e. with oscillations that initially
increase and then disappear after a few seconds. As can
be noticed, the two signals have a phase difference of 90◦:
when the roll angular velocity is zero, the yaw rate reaches
its maximum (or minimum). This trend perfectly de-
scribes the weave mode. More specifically, supposing the
rider to be sitting on the saddle, when a counter-clockwise
torque is applied to the steering axis δ , the bicycle initially
rotates counter-clockwise about the yaw axis z and then
clockwise about the longitudinal axis x (see Figure 6)2.

2This movement is consistent with the so-called countersteering: for
example, to perform a right curve at high speed, what is being done
is slightly push the handlebar as if you were to turn in the opposite
direction (i.e. to the left). The bicycle responds by leaning correctly in

12 13 14 15 16 17 18 19 20 21 22

Time [s]

-4

-3

-2

-1

0

1

2

3

4

S
te

e
ri
n
g
 a

x
is

 r
o
ta

ti
o
n
 [
d
e
g
]

Figure 9. Zoom of the steering rotation response for the lumped
flexibility frame model.

The oscillations related to the weave mode are damped
because the weave eigenvalue computed on the linearized
model passes through the imaginary axis, i.e. from the in-
stability region of the complex plane (the right half-plane)
to the stability area (the left half-plane). If this does not
occur, the oscillations are different (not damped) and they
lead to a fall of the bicycle.

4.2 Lumped Flexibility Frame Model
Simulations have been repeated considering the lateral
compliance of the frame (hereinafter referred to as lumped
flexibility frame model). A zoom of the steering axis re-
sponse after the torque disturbance application is shown in
Figure 9.

As can be seen, the model response to the distur-
bance consists of low-frequency oscillations with small
amplitude (some tenths of a degree) together with high-
frequency oscillations. Steering rotation reaches in a few
seconds an amplitude of some degrees. Thanks to the sat-
uration imposed to the lateral force Fy and to the aligning
torque Mz, the oscillations do not diverge but their ampli-
tude is limited in time. The initial behaviour of the steer-
ing rotation of the lumped flexibility frame model is very
similar to the one that characterises the rigid version of the
bicycle. This means that the degree of freedom which rep-
resents the lateral compliance β is, therefore, essential for
the high-frequency contribution in the system response.
Figure 10 shows the spectrograms related to roll and yaw
angular velocities3.

As in the previous simulations, by applying the torque
disturbance the weave mode is excited. Its frequency
is now fweave = 0,98 Hz. This mode is also stable:
after a few seconds, in fact, the oscillations disappear
because they are damped. When it happens, only the
high-frequency oscillations remain in the system response.
They represent the wobble mode. As can be seen from
Figure 10, these oscillations are characterised by a fre-

the curve direction (Åström, Klein, and Lennartsson 2005).
3A spectrogram is a visual representation of the spectrum of frequen-

cies in a signal as it varies with time.

Model Based Analysis of Shimmy in a Racing Bicycle

446 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132441

Roll angular velocity

5 10 15 20 25 30 35

Time [s]

0

2

4

6

8

10

F
re

q
u
e
n
c
y
 [
H

z
]

-100

-80

-60

-40

-20

0

20

P
o
w

e
r

(d
B

)

Yaw angular velocity

5 10 15 20 25 30 35

Time [s]

0

2

4

6

8

10

F
re

q
u
e
n
c
y
 [
H

z
]

-100

-80

-60

-40

-20

0

20

P
o
w

e
r

(d
B

)

Figure 10. Spectrograms of roll and yaw angular velocities for
the flexible bicycle. As can be noticed, the wobble frequency is
independent with respect to the forward speed.

quency equal to fwobble = 5,43 Hz. In the experimental
activity described in (Magnani, Ceriani, and Papadopou-
los 2013) it is reported that the frequency of shimmy
for this particular racing bicycle is 7,5 Hz. This value
is higher than the one obtained by the lumped flexibil-
ity frame model. By running other simulations, it was
noted that the wobble frequency fwobble changes varying
the value of the parameter related to the frame stiffness,
i.e. kβ . The same result can be achieved by changing the
parameters of the spring-damper combination that models
the rider’s hand grip on the handlebar.

In (Magnani, Ceriani, and Papadopoulos 2013) it is said
that the wobble frequency seems to be independent with
respect to the bicycle’s forward speed: this important re-
sult has been obtained also through the Dymola model (see
again Figure 10).

5 Concluding Remarks
This work presented the development of a racing bicycle
model in Modelica language. The model has been built
trying to make it as compliant as possible to the real be-
haviour. For this reason, attention has been focused on the
rider and on the wheel-road interaction.

By running simulations with the rigid model (without
the frame lateral compliance), the only vibrational mode
that has been excited is the weave mode. It has been nec-
essary to modify the model by introducing an additional
degree of freedom to highlight the wobble mode. This
shows that it is necessary to consider both the frame lat-
eral compliance and the tyres’ deformation (also by taking
into account their dynamic behaviour) to trigger the high-
frequency oscillations characterising the shimmy.

The wobble mode appears when the forces and torques
that arise at the contact point of the front wheel are larger
than the value needed to guarantee the longitudinal align-
ment. In this case, the wheel begins to oscillate about the
steering axis at a frequency that is too high to be counter-
acted by the cyclist. The use of a simple linear relation
between forces and angles, as stated in equations (1)-(6),

is not sufficient. In fact, if the relation is linear, the os-
cillations are still present in the system response, but they
are not limited in amplitude. As a consequence, both the
rider and the bicycle fall in a few seconds. By adding in-
stead a saturation at high angle values, the amplitude of
the oscillations will remain limited in time.

Finally, some practical tips to be applied if the shimmy
occurs are discussed. Overall, there is no way to stop a
violent shimmy. These tips, however, are strongly recom-
mended because they can contribute significantly to limit
the amplitude of the oscillations. The first tip is the rider
to assume an upright posture to increase the aerodynamic
drag, thus promoting a deceleration of the bicycle. It is
also suggested to tighten the horizontal tube of the rear
frame with the legs, increasing in this way the structural
stiffness. If necessary, gently use the rear brake. Usually,
the oscillations are not divergent so it is difficult that they
can lead to a fall, although this is the sensation perceived
by the rider during the occurrence of the phenomenon.

References
Andreasson, J. (2003). “Vehicle Dynamics Library”. In:

Proceedings of the 3rd International Modelica Confer-
ence.

Åström, K. J., R. E. Klein, and A. Lennartsson (2005).
“Bicycle dynamics and control”. In: IEEE Control Sys-
tems Magazine 25.4, pp. 26–47.

Donida, F., G. Ferretti, S. M. Savaresi, F. Schiavo, and M.
Tanelli (2006). “Motorcycle Dynamics Library in Mod-
elica”. In: Proceedings of 5th International Modelica
Conference. Vienna, Austria, pp. 157–166.

Donida, F., G. Ferretti, S. M. Savaresi, and M. Tanelli
(2008). “Object-oriented modelling and simulation of
a motorcycle”. In: Mathematical and Computer Mod-
elling of Dynamical Systems 14.2, pp. 79–100.

Klinger, F., J. Nusime, J. Edelmann, and M. Plöchl (2014).
“Wobble of a racing bicycle with a rider hands on and
hands off the handlebar”. In: Vehicle System Dynamics
52.

Limebeer, D. J. N. and R. S. Sharp (2006). “Bicycle, mo-
torcycles, and models”. In: IEEE Control Systems Mag-
azine.

Magnani, G., N. M. Ceriani, and J. Papadopoulos (2013).
“On-road measurements of high speed bicycle shimmy,
and comparison to structural resonance”. In: 2013 IEEE
International Conference on Mechatronics, pp. 400–
405.

Pacejka, H. B. (1993). “The Magic Formula tire model”.
In: Vehicle System Dynamics (supplement) 21, pp. 1–
18.

– (2006). Tire and Vehicle Dynamics. Ed. by Elsevier Ltd.
second edition. Chap. chapter 4.

Plöchl, M., J. Edelmann, B. Angrosch, and C. Ott (2012).
“On the wobble mode of a bicycle”. In: Vehicle System
Dynamics 50.3, pp. 415–429.

Session 7A: Automotive III

DOI
10.3384/ecp17132441

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

447

448 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Optimization-friendly thermodynamic properties of water and

steam

Marcus Åberg1 Johan Windahl2 Håkan Runvik2 Fredrik Magnusson1
1Department of Automatic Control, Lund University, Sweden, {marcus.aberg@gmail.com,

fredrik.magnusson@control.lth}
2Modelon AB, Ideon Science Park, Lund, Sweden, {johan.windahl@modelon.com, hakan.runvik@modelon.com}

Abstract

This paper describes the development of an

optimization-friendly thermodynamic property model

of water and steam that covers liquid, vapor, 2-phase

as well as the super-critical region. All equations are at

least twice continuously differentiable with respect to

all model variables and can be used in dynamic

optimization problems solved by efficient derivative-

based algorithms. The accuracy has been verified

against the industry standard IAPWS IF97 and

performance and robustness have been tested by

solving a trajectory optimization problem where the

start-up time of a gas power plant has been minimized

while satisfying constraints on temperature gradients,

pressure and flows. Simulations of various plant

models have also been performed to verify and

benchmark the implementation. The results show that

the new media can be used in both solving dynamic

optimization and simulation problems yielding reliable

results. The new media has been integrated into

Modelon’s Thermal Power library 1.13. This article is

built upon the work in (Åberg, 2016).

Keywords: Dynamic optimization, Thermodynamic

properties, Power plant start-up, ThermalPower
library, WaterIF97, Optimica, JModelica.org

1 Introduction

During the last decade, optimization of large scale

dynamical systems has become more common in both

the industry as well as in academia (Magnusson, 2016).

There are several interesting areas and applications

where optimization can be used, e.g. to improve

efficiency and economical aspects in energy

applications. Examples where Modelica models have

been used include start-up of power plants (Casella,

Donida, & Åkesson, 2011), (Runvik, 2014), (Parini,

2015), production planning of district heating

networks (Velut, et al., 2014) and power plant load

scheduling (Kumar & Mathur, 2014). Modelica is well

suited to describe the behavior of dynamical models

and thereby also suitable to be used in the context of

optimization.

Even if the usage is more common today, the use of

dynamic optimization is still not widely spread among

the engineering community as compared to simulation.

There are several factors that have been limiting the

deployment:

 Modelica does not support formulation of

optimization problems. However, it can

easily be formulated using the Modelica

extension Optimica (Åkesson, 2008) or using

custom annotations (Zimmer, Otter,

Elmqvist, & Kurzbach, 2014)

 It is more challenging to create optimization

models versus simulation models. Solving

efficiently large-scale dynamical

optimization problems requires the model

equations to be at least twice continuously

differentiable. In the general case when

solving non-convex dynamic optimization

problems good initial guess values,

appropriate model dynamics and as well as

good numerical properties are required to

find the optimal solution (Nocedel & Wright,

2006)

 Modelica libraries such as the Modelica

standard library have been designed for

simulation and not optimization. The lack of

libraries for optimization is usually a stopper

as creating robust models is a large effort and

requires an understanding of numerical

aspects.

This work targets the last issue and is intended as

a first step to bridge the gap between simulation

and optimization of thermo-fluid systems. We do

so by implementing an optimization-friendly

water and steam property model that fulfills a

generic media interface.

Modelica is object oriented and supports design

of interfaces and classes. This allows a library

designer to create models of various fidelity and

assumptions. Users can then change between

classes that fulfill the constraining interface.
Examples include switching to a media of lower

fidelity that is less computationally demanding

DOI
10.3384/ecp17132449

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

449

for e.g. real-time applications or to a model

suitable for optimization.

The choice of focus on water and steam properties

is due to its large usage in power and heat

applications. Traditional electricity-generation

sources such as coal, nuclear and natural

combined gas plants are based on a steam-cycle.

Other applications are hydro power plants and

heating and cooling distribution networks.

2 Background

The availability of a Modelica implementation of the

industry standard of water and steam properties IF97

(Wagner, et al., 2000) helped to spread the usage of the

Modelica technology to the energy and power sector

(Windahl, et al., 2014). But the high accuracy

implementation Modelica.Media.WaterIF97 is

targeting the usage of simulation and not optimization.

The main issues with using

Modelica.Media.WaterIF97 for optimization are:

 limited support of first order and no support

of second order partial derivatives of

thermodynamic properties

 discontinuous first order partial derivatives

at the phase borders between liquid and

steam

 discontinuous first order partial derivatives

at the region boundaries. IF97 is divided

into 5 regions that have their own

implementation (Wagner, et al., 2000)

Figure 1 Density (upper) and its partial derivative with

respect to specific enthalpy at constant pressure as a

function of specific enthalpy. At h=1250 kJ/kg is the

bubble saturation line for water which introduces a

discontinuity in the partial derivative.

The lack of support of derivatives is an implementation

issue. Modelon.Media.WaterIF97, a similar

implementation, has support for first order derivatives.

But the discontinuity at the phase regions, as illustrated

in Figure 1, is a fundamental limitation. The formation

or depletion of a phase is a strong non-linear process

and needs to be approximated to be twice continuously

differentiable. The models in this work are

implemented to be compatible with JModelica.org's

dynamic optimization framework (Magnusson &

Åkesson, 2015). This framework uses CasADi

(Andersson, 2013), to efficiently compute sparse first

and second order derivatives using algorithmic

differentiation (Griewank & Walther, 2008).

2.1 Previous work

To the authors knowledge there is no published work

related to dynamic optimization of energy and power

systems that focus on a generic media implementation.

(Velut, et al., 2014) and (Runvik, 2014) mention the

use of “smooth media model functions” but don’t go

into any detail. (Casella, Donida, & Åkesson, 2011)

use simplifications such as incompressible fluids with

constant heat capacity for non-saturated liquid and

steam. (Parini, 2015) approximates the subcooled

liquid as incompressible fluid and describe the

superheated vapor using a cubic equation of state but

does not describe any accuracy or region of validity.

(Windahl, et al., 2014) investigate requirements for a

new media interface, mentioning the benefit of an

interface that supports analytic calculations of the

Hessian but don’t go any further. (Schulze, 2014)

focuses on numerically efficient implementation but

does so from a simulation perspective. This is also the

focus of the guideline on the fast calculation of steam

and water properties with the spline-based table look-

up method (International Association for the Properties

of Water and Steam, 2015)). The latter uses quadratic

splines that are continuously differentiable once and

therefore not suitable for dynamic optimization.

This article is built upon the work in (Åberg, 2016). To

this publication the media implementation has been

updated with some minor modifications that have

made the model more numerically efficient compared

to the implementation used in that thesis. Therefore the

results in this article have been updated too.

3 Implementation

The approach chosen was to approximate the

thermodynamical functions with polynomials over

different operating regions in the p-h, p-s, p-T and d-T

plane. These approximations are then connected via

smooth step functions from one region to another. In
that way, the functions are twice continuously

differentiable over the whole working regime.

Optimization-friendly thermodynamic properties of water and steam

450 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132449

Polynomial approximation over different regions has

the main advantage that it is smooth over the defined

region. The main challenge here is to find a way to

accurately and smoothly connect the different regions.

In this implementation step functions are used to make

a smooth transition between the regions. These can be

defined so that the functions are twice continuously

differentiable and the smoothness requirement hence is

fulfilled.

The functions that were implemented can be divided

into 1D and 2D-functions. 1D-functions describe the

saturated behavior in the two-phase region. Saturation

temperature, bubble and dew enthalpy are quantities

that can be calculated directly from the pressure. The

2D-functions take two independent state properties

(Thorade & Saadat, 2013) and calculate

thermodynamic properties and a few partial

derivatives.

The methods of least squares are used to fit a univariate

or bivariate polynomial to the specified data set. The

maximum order of the polynomials was set to 𝑘 = 9

on following form.

𝑝(𝑥1, 𝑥2) = ∑ ∑ 𝑏𝑖𝑗𝑥1
𝑖 𝑥2

𝑗

𝑘

𝑗=0

𝑘

𝑖=0

𝑝(𝑥) = ∑ 𝑏𝑖𝑥𝑖

𝑘

𝑖=0

If weights are used in the least-squares regression,

certain data points can be given a greater importance

in the fitting process. This is used to give points closer

to the phase border a greater weight in the fit. Making

the residual smaller close to the border allows for a

smoother transition between the different phases.

3.1 Regions

The regions are referred to as liquid, vapor and two-

phase region. The liquid and vapor regions are divided

into sub- and super-critical areas. The region of a

certain point is decided by its p and h values. Figure 2

shows the phase diagram in the p-h plane with all of

the regions.

Figure 2 Phase diagram of water, saturation lines are

drawn with approximated functions. Regions are divided

into super- and sub-critical for both liquid and vapour.

Furthermore, it was noticed later in the process that

accurate media calls were needed for very low

pressures. Thus, a super low pressure region was added

to the functions.

3.2 The smooth step function

The method used for making a smooth transition

between regions is via a smooth step function S. The

idea is to multiply the polynomial defining the function

over a certain region with a function so that the

function assumes the polynomial fit’s value within the

region and goes to zero outside this specific region.

The desired properties of 𝑆 are

𝐒(𝐱) = {
𝟎, 𝐱 ≤ 𝟎
𝐱, 𝟎 ≤ 𝐱 ≤ 𝟏
𝟏, 𝟏 ≤ 𝐱

The right- and left borders of the step has been chosen

to 1 and 0 for easy implementation and the scaling can

be done when calling the function by scaling the input

parameter.

Since the overall goal with this implementation is to

make the media implementation twice continuously

differentiable the step function must also be so.

Session 7B: Thermodynamic Systems

DOI
10.3384/ecp17132449

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

451

Figure 3 Smooth step function with its first and second

derivative.

For this purpose, a generic 5th order polynomial can be

used. If the boundary conditions on the derivatives and

the function are applied the following solution is

found.

𝐒(𝐱) = {

𝟎, 𝐱 ≤ 𝟎

𝟔𝐱𝟓 − 𝟏𝟓𝐱𝟒 + 𝟏𝟎𝐱𝟑, 𝟎 ≤ 𝐱 ≤ 𝟏
𝟏, 𝟏 ≤ 𝐱

3.3 The approximating polynomials

The data needed for making the polynomial fits was

extracted from Modelica.Media.WaterIF97.

The grid in the p-h plane that was used for data

extraction was 100x100 points and linear along the h-

axis with range [1.0e5, 4.0e6] (J/kg). A logarithmic

scale was used for the p-axis with approximately the

range [7.6e4, 3.0e7] (Pa).

For 2D-functions that use d, T and s as inputs, the

response data from IF97 for constructing the functions

that calculates these properties from p and h were used

instead. This was done since it is hard to construct a

grid that does not contain points outside of the domain

of definition for these properties.

It is of extra importance that the polynomial fits have

high accuracy close to the borders to other regions,

since they are to be connected to another polynomial

function there. Big differences in the values of the

different surfaces close to the border will lead to a

”leap” in the function value at the border. Even though

the step function smoothes this leap out and makes sure

the function is continuous it is of extra importance that

this difference is made as small as possible since the
model is to be used in optimization algorithms which

can get stuck at inconsistencies like this. The approach

used for handling this problem is to give data points at

the borders between different regions a higher weight

to make the linear regression generate polynomials

which are accurate at the border. However this might

cause ”overshoots” in the rest of the region if the

border points are weighted too much. This method was

therefore used only when this phenomenon did not

cause relatively large residuals inside the considered

region.

Furthermore, weighting is used to make the least-

square algorithm minimize the relative errors instead

of absolute. Since some of the approximated functions

range largely in value, data points which have small

response reference values (close to zero) will get very

large relative errors if weighting is not performed.

3.4 Accuracy of implemented media

functions

Since 18 functions have been implemented, only a few

important examples will be accounted for in this

section.

3.4.1 Temperature

The temperature function is shown in Figure 4 and has

a maximum relative error of around 0.8% as seen in

Figure 5. The red line in the figure represents the phase

border. The relative error is calculated as the

percentage difference between the implemented

approximation and IAPWS IF97.

Figure 4 The approximated temperature function.

Optimization-friendly thermodynamic properties of water and steam

452 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132449

Figure 5 Contour plot of relative errors of the

approximated temperature function.

There are a couple of interesting things to note from

the relative error plot. At low pressures and high

specific enthalpies there is a distinct drop in the relative

error. This is because a new region was added for sub-

1 bar pressures in the vapor region to get higher

accuracy at components such as condensers which

operate at very low pressures. Another thing to note is

that the highest relative error is located after the phase

border at the vapor side. The coefficients here have

been weighted in a way to be consistent with the

saturated properties at the phase border. This weighting

might cause this bulge as the least squares-algorithm

prioritizes minimizing the error at the border instead of

inside the region but with the benefit of better

consistency at the phase border.

3.4.2 Density

The density function and the corresponding relative

errors can be viewed in Figure 6 and 7, respectively.

As can be seen, there is a "spike" in the relative error

around the critical point, which is due the connection

of the three regions, and the value there is an

interpolation between the function approximations in

all three regions.

Figure 6 The approximated density function.

Figure 7 Contour plot of relative errors of the

approximated density function

The same behavior at low pressures in the vapor region

can be seen in the relative error plot as in the

temperature function due to the same reasons, that is,

an added region at low pressures. The spike in relative

errors is due to the fact that 3 regions meet at the

critical point. If the density function is compared with

the temperature function, which has a similar point, it

can be seen that the temperature function is rather flat

at the critical point where the density is rather steep.

4 Optimization benchmarking case:

Start-up of a Heat Recovery

Steam Generator (HRSG)

For testing the implementation in optimization

applications, a model describing a start-up phase of a

heat recovery steam generator (HRSG) has been

chosen.

4.1 Description of the HRSG model

The model used in this thesis has been built upon a

model developed for a tutorial, for further information

and material from this tutorial please see (Larsson,

2015). A similar model and optimization problem is

investigated thoroughly in a master thesis previously

written in cooperation with Modelon (Runvik, 2014).

Session 7B: Thermodynamic Systems

DOI
10.3384/ecp17132449

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

453

Figure 8 Model diagram view of the system used in the

optimization.

The main working components of the model are a

series of heat exchangers transferring heat from a flue

gas source to the water medium until the steam reaches

a desired working state. The flue gas is led into an

evaporator where the water is evaporated into steam. A

feedback loop connected to the evaporator keeps the

water level in the evaporator on a constant level. From

here, the steam goes through two superheaters where

the steam pressure and temperature increase to reach

the desired working levels. After superheater 2 the

steam is collected in a superheater header, where in

reality the pipes are collected and the steam can be

redirected into a turbine step. There is also a wall

model connected to the header. One of the main issues

with the start-up phase of the power plant is the

exposure of thermal stresses in the components, and

thus this has to be modelled. The wall models allows

for the modelling of these stresses. There is a valve

located after the header which can be used to control

the temperature and pressure inside the header. When

the steam has reached high enough temperature and

pressure it can instead of going through the control

valve, be redirected into a turbine step. To maximize

energy output of the plant, the steam is thereafter led

into a reheater step. After going through the reheater

header it could once again be led through another

turbine step. Again, a control valve is added to be able

to control the pressure and the temperature inside the

header.

The controllable inputs of the model are the firing

power of the gas source and the opening of the valves

located after superheater 2 and the reheater header.

These inputs can be used to control the pressure and

temperature inside the headers and consequently can

be used to limit the thermal stresses inside the header

walls. As can be seen in Figure 8 integrator steps are

added to the control inputs. This was done to be able to

put constraints on the rate of change of the optimizing

input signals.

4.2 Optimization problem formulation

The aim of the start-up is to take the plant from the

initial operating point to another operating point as fast

as possible without violating the problem constraints.

The preferred properties of this process to reach this

point are:

 Control the system from the initial operating

point to a point where the steam in the plant

has high enough quality to be redirected to

turbines.

 The thermal stresses inside the header walls

should be limited to extend the lifespan of the

components.

 The controllable inputs have rate of change

constraints which must be obeyed.

The optimal control problem defined over the time

interval [0, 𝑡𝑓] is stated as

min ∫ wTSH2(TSH2 − TSH2ref)
2

𝑡𝑓

0

+ wpSH2(pSH2 − pSH2ref)
2

+ wpRH(pRH − pRHref)
2

+ wSH2v�̇�𝑆𝐻2𝑣
2 + wRHv�̇�𝑅𝐻𝑣

2

+ wb�̇�𝑏
2 dt

subject to

 𝑚𝑜𝑑𝑒𝑙 𝑒𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠

𝑑𝑇𝑆𝐻2 < 𝑑𝑇𝑆𝐻2
𝑚𝑎𝑥

𝑑𝑇𝑅𝐻 < 𝑑𝑇𝑅𝐻
𝑚𝑎𝑥

|�̇�𝑆𝐻2𝑣| < �̇�𝑆𝐻2𝑣
𝑚𝑎𝑥

|�̇�𝑅𝐻𝑣| < �̇�𝑅𝐻𝑣
𝑚𝑎𝑥

|�̇�𝑏| < �̇�𝑏
𝑚𝑎𝑥

The first three terms of the objective function

correspond to the penalties on temperature and

pressure deviations from the desired values inside the

heat exchangers (same as in the headers). TSH2 and

pSH2 are the temperature and pressure inside

superheater 2 (TSH2ref and pSH2ref the desired values),

pRH the pressure inside the reheater. 𝑤 are the

corresponding weights. The last three terms represent

the derivatives of the control inputs, �̇�𝑅𝐻𝑣 is the

reheater valve signal, �̇�𝑆𝐻2𝑣 the superheater 2 signal

and �̇�𝑏 the boiler control signal.

The model equations are the equations that describe the

dynamics of the system. 𝑑𝑇𝑆𝐻2 is the thermal gradient

in the superheater 2 header wall and 𝑑𝑇𝑅𝐻 is its

counterpart in the reheater header wall. The last three

Optimization-friendly thermodynamic properties of water and steam

454 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132449

constraints put upper and lower limits on the

derivatives of the three control signals.

4.3 Optimization

A direct collocation method (Magnusson & Åkesson,

2015) is used for solving the optimization problem.

The time horizon is divided into 12 elements, using 4

collocation points in each element. The element grid

points are located so that they are closer together in the

first part of the time horizon, to better capture the

transient behavior at the beginning of the start-up. 3/4

of the elements are in the first 3/8 of the time horizon

and 1/4 in the last 5/8.

Optimization statistics are summarized in Table 1. The

optimization model has 8 continuous time states and

85 algebraic variables. This model is translated into a

non-linear program with 5184 variables.

Table 1 Optimization statistics

DAE model

Number of states 8

Number of algebraic variables 85

NLP model

Total number of variables 5184

Solution statistics

CPU-time in IPOPT (s) 1.45

CPU-time in NLP function evaluations (s) 1.56

Solution time (s) 3.11

4.4 Verification through simulation

To verify the result the optimized signals were

extracted and used in a simulation experiment using

Water-IF97 media functions. The trajectories for these

simulations are displayed in Figures 9 and 10 alongside

the trajectory from the optimization.

Figure 9 Temperature and pressure signals from

optimization (solid) and simulation (dotted). In

simulation, the optimal input signals are used as input,

and the medium is modeled with Water IF97

thermodynamic property functions.

Figure 10 Metal wall temperature gradient signals from

optimization (solid) and simulation (dotted). The dashed

line represents the maximal allowed wall stress.

The simulation results match the optimized trajectory

well, which indicates two things. Firstly, it indicates

that the time discretization of the optimization model

is sufficient to capture the dynamics of the model.

Secondly, it indicates that the implemented media

functions give very similar results to the IF97

functions.

5 Dynamic simulation

To verify that the media model can also handle

industrial relevant dynamic simulation use cases, it

was tested with large dynamic simulation examples in

the Thermal Power Library. These tests expose the

media implementation over various properties and

under different operating conditions. As throughout

this article, the Water-IF97 media implementation will

be used as the reference medium.

Three use cases were set up:

1. Coal fired 400 MW electrical super-critical

steam cycle that operates at a maximum

pressure of 300 bar and 580 C. The model

consists of 5683 equations and 193 continuous

time states.

2. Heat recovery steam generator (HRSG) that

operates at a pressure around 84 bar and in a

temperature interval of 175-500 C. The model

consists of 1616 equations and 39 continuous

time states. In comparison with the

optimization test case, this model includes

more dynamics and describes the considered

system more thoroughly.

3. Nuclear steam generator system that operates

at a maximum pressure of 70bar and 285 C.

The model consists of 6708 equations and 147

continuous time states.

Session 7B: Thermodynamic Systems

DOI
10.3384/ecp17132449

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

455

Figure 11 Model diagram view over the HRSG-model

(test case 2)

The test cases were simulated on a standard laptop (Dell

Latitude E7470, Intel i7-6600U) using the Modelica

simulation tool Dymola 2017 with the solver Dassl and a

tolerance of 1e-5.

5.1 Result

The result is summarized in the tables below. Using

the new media implementation, a speed-up of up to

40% can be achieved in an industrial relevant large-

scale power plant simulation. The difference in result

of selected important variables is below 0.6% in use

case 1 and 2 and 2.9% in use case 3, however it may

be larger for certain intermediate pressure variables.

The larger deviation in use case 3 is mainly due to a

deviation in the isentropic efficiency calculation at the

last turbine stage. This may be improved by dividing

the specific entropy polynomial into regions at lower

pressure in a similar way as was done with the density

function. If trajectories from the simulations are

compared, the results seem to match well as can be

seen in Figure 11, showing the total power transferred

from the exhaust gas to the steam through all three heat

exchanger stages in use case 2.

The CPU-time is a combination of the computational

effort that is required to do one integrator step and the

number of steps. Even if a media implementation is

faster the CPU-time of a simulation may increase due

to an increase of the number of integrator steps. This

may happen if the implementation contains variations

due to the use of e.g. higher order polynomials or

transitions between computational regions. The F-

evaluations describe the number of function

evaluations of all system equations. They are used in

the integration process to evaluate derivatives and

calculate numerical system Jacobians. Dassl use the

Jacobian in its internal solver process (Petzold, 1982).

Table 2 Simulation statistics use case 1 (super-critical

power plant simulated 25000s).

 Optimization

media

WaterIF97

(reference)

Simulation statistics

CPU-time (s): 24.5 34.6

Solver steps 825 862

F-evaluations 7310 8857

Jacobian-evaluations 125 158

Steady-state results

Generated power 405.8 MW 408.2 MW

Condenser temperature 297.64K 297.60

Table 3 Simulation statistics use case 2 (HRSG

simulated 200s).

 Optimization

media

WaterIF97

(reference)

Simulation statistics

CPU-time (s): 7.98 8.38

Solver steps 320 296

F-evaluations 3819 3412

Jacobian-evaluations 105 94

Steady-state results

Total heat transfer 286.8 MW 287.1 MW

Steam outlet flow 10.69 kg/s 10.75 kg/s

Gas exhaust temperature 554.3K 554K

Table 4 Simulation statistics use case 3 (nuclear plant

simulated 25000s).

 Optimization

media

WaterIF97

(reference)

Simulation statistics

CPU-time (s): 12.9 18.3

Solver steps 1112 1044

F-evaluations 14150 16048

Jacobian-evaluations 448 392

Steady-state results

Generated power 432 MW 420 MW

Condenser temperature 33.67 C 33.37 C

Optimization-friendly thermodynamic properties of water and steam

456 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132449

Figure 12 Total power transfer from exhaust gas to steam

in use case 3.

6 Conclusions

Efficient optimization-friendly properties of water and

steam covering sub-critical and super-critical regions

have been implemented in Modelon’s Modelica

Thermal Power library 1.13. The new medium can

bridge the gap between simulation and optimization

and was tested against industrial relevant thermo-fluid

systems. It was shown in the optimization

benchmarking case that the implemented media

functions could be used to provide results that coincide

well with IF97 simulation results using the resulting

optimal control inputs. This shows that the

implementation suggested in this article can yield

reliable results.

The simulation benchmarking test cases aimed at

comparing the accuracy and performance of the new

implementation with the existing Water-IF97 media

implementation. The results from these simulations

show that there are some slight deviations in the results

between the implementations. However, the dynamics

of the system are captured accurately and the relative

errors are small. The largest deviations are observed at

rapid transients. That there are deviations is expected

as the implementation approximates the Water-IF97

standard. The question is whether these differences are

small enough to yield acceptable results and in the

tested simulation models this seems to be the case for

a majority of the use cases. Comparing the simulation

statistics of the large plant use cases shows that the new

implementation is up to 40% faster.

6.1 Future work and possible

improvements

It is desirable that the media is accurate at the phase

borders. The length of the smoothing interval impacts
the derivatives of the functions in the implementation.

A smaller delta makes the transition between the

polynomials go faster and hence making the function

"less smooth" even though the implementation in

theoretical sense still is twice continuously

differentiable. However, making this parameter too big

will instead decrease the accuracy in a larger region

around the region borders.

When modelling thermodynamic properties, there are

many natural laws to consider, which might not totally

be satisfied by the approximations made as there is no

check on whether such relations are fulfilled. An

example of this is that by nature the density must

increase with increased pressure if the temperature is

kept constant. Iterative solvers that use gradients based

on the function approximations might be affected if

there are inconsistencies in such relations.

Furthermore, the choice of functional form in the least

squares approximations might be investigated. There

might be better forms of functions to represent the

functions. In (Aute & Radermacher, 2014) the use of

Chebyshev Rational polynomials is proposed for fast

evaluation of thermodynamic properties. The use of

different functional forms might be a way of making

the implementation faster and more accurate.

For easy implementation of similar models describing

the thermodynamic properties of other media than

water, it is desirable to standardize the implementation.

Ideally the whole work-flow would be automated so

that the only thing that would have to be provided to

create a new media model is the tables containing the

thermodynamic property data. This has however been

hard to achieve, as the many different functions that

have been approximated have different shapes and

appearances making it hard to construct an automated

form for all these functions. It has been necessary to

make specialized forms and adaptations for many of

the functions to achieve good accuracy.

7 Acknowledgements

Fredrik Magnusson acknowledges support from the

LCCC Linnaeus Center and eLLIIT Excellence

Center at Lund University.

8 References

Andersson, J. (2013). A general-purpose software

framework for dynamic optimization. Ph.

D. thesis. Faculty of Engineering, KU

Leuven, Leuven, Belgium.

Aute, V., & Radermacher, R. (2014). Standardized

polynomials for fast evaluation of

refrigerant thermophyiscal properties.

International Refrigeration and Air

Conditioning Conference at Purdue.

Purdue, Indiana.

Session 7B: Thermodynamic Systems

DOI
10.3384/ecp17132449

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

457

Casella, F., Donida, F., & Åkesson, J. (2011).

Object-Oriented Modeling and Optimal

Control: A Case Study in Power Plant

Start-Up. 18th IFAC World Congress.

Griewank, A., & Walther, A. (2008). Evaluating

Derivatives: Principles and Techniques of

Algorithmic Differentiation, second

edition. ISBN: 978-0-89871-659-7.

International Association for the Properties of

Water and Steam. (2015). Guideline on the

Fast Calculation of Steam and Water

Properties with the Spline-Based Table

Look-Up Method (SBTL) .

Kretzschmar, H.-J., & Wagner, W. (2008).

International Steam Tables. [electronic

resource] : Properties of Water and Steam

Based on the Industrial Formulation

IAPWS-IF97. Berlin, Heidelberg: Springer-

Verlag Berlin Heidelberg.

Kumar, S., & Mathur, T. (2014). Dynamic Load

Scheduling of Optimization of Power

Plants. Advanced Control of INdustrial

Processes (AdCONIP). Hiroshima

University, Hiroshima, Japan.

Larsson, P.-O. (2015, October). Report from the

modelon tutorial at the 2015 modelica

conference. Retrieved from

http://www.modelon.com/blog/articles/rep

ort-from-the-modelon-tutorial-at-the-2015-

modelica-conference/

Magnusson, F. (2016). Numerical and symboolic

methods for dynamic optimization. PhD

thesis, Lund University, Department of

Automatic Control, Lund, Sweden.

Magnusson, F., & Åkesson, J. (2015). Dynamic

Optimization in JModelica.org. Processes,

3(2), 471-496.

Nocedel, J., & Wright, S. (2006). Numerical

Optimization. New York, NY: Springer

New York.

Parini, P. (2015). Object Oriented Modeling and

Dynamic optimization of energy systems

with application to combined-cycle power

plant start-up. Msc thesis, Politechnico di

Milano, Milano.

Petzold, L. R. (1982). A Description of DASSL: A

Differential Algebraic System Solver.

Presented at IMACS World Congress,

Montreal, Canada, August 8-1 3, 1982.

Runvik, H. (2014). Modelling and start-up

optimization of a coal-fired power plant.

Master's thesis, Lund University,

Department of Automatic Control, Lund.

Schulze, C. (2014). A Contribution to Numerically

Efficient Modeling of Thermodynamic

Systems. PhD thesis, Technische

Universität Braunschweig, Fakultät für

Maschinenbau.

Thorade, M., & Saadat, A. (2013). Partial

derivatives of thermodynamic state

properties for dynamic. Environmental

Earth Sciences, 70, 8, 3497‐3503.

Wagner, W., Cooper, J., Dittmann, A., Kijima, J.,

Kretzschmar, H.-J., Kruse, A., . . .

Trübenbach, J. (2000). The IAPWS

Industrial Formulation 1997 for the

Thermodynamic propertiies of Water and

Steam. J. Eng. Gas Turbines Power 122,

150-182.

Velut, S., Larsson, P.-O., Runvik, H., Funqvist, J.,

Bohlin, M., Nilsson, A., & Modarrez

Razavi, S. (2014). Production Planning for

Distributed District Heating Networks.

11th International Modelica 2015

Conference. Versailles, France.

Windahl, J., Prölss, K., Bosmans, M.,

Tummescheit, H., van Es, E., &

Sewgobind, A. (2014).

MultiComponentMultiPhase - A fraework

for thermodynamics in Modelica.

Proceedings of the 11th International

Modelica Conference. Versailles, France.

Zimmer, D., Otter, M., Elmqvist, H., & Kurzbach,

G. (2014). Custom Annotations: Handling

Meta-Information in Modelica.

Proceedings of the 10th International

Modelica 2014 Conference. Lund, Sweden.

Åberg, M. (2016). Optimisation-friendly modelling

of thermodynamic properties of media.

Master's thesis, Lund University,

Department of Automatic Control, Lund.

Retrieved from http://lup.lub.lu.se/student-

papers/record/8888181

Åkesson, J. (2008). Optimica - An Extension of

Modelica Supporting Dynamic

Optimization. Proceedings of the 8th

International Modelica 2008 Conference.

Bielefeld, Germany.

Optimization-friendly thermodynamic properties of water and steam

458 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132449

Modeling of a Thermosiphon to Recharge a Phase Change Material
Based Thermal Battery for a Portable Air Conditioning Device

Rohit Dhumane Jiazhen Ling Vikrant Aute Reinhard Radermacher

Center for Environmental Energy Engineering, University of Maryland, College Park, 4164 Glenn L. Martin Hall
Bldg., MD 20742, USA

{dhumane,jiazhen,vikrant,raderm}@umd.edu

Abstract
Closed loop two phase thermosiphons have a broad range
of applications due to their simplicity, reliability, low cost
and the ability to dissipate high heat fluxes from minimal
temperature differences. The present study focuses on one
thermosiphon operation which solidifies a phase change
material (PCM) based thermal battery for a portable air
conditioner called Roving Comforter (RoCo). RoCo uses
vapor compression cycle (VCC) to deliver cooling and
stores the heat released from the condenser into a com-
pact phase change material (PCM) based thermal battery.
Before its next cooling operation, the PCM needs to be
re-solidified. This is achieved by the thermosiphon, which
operates within the same refrigerant circuitry with the help
of a pair of valves. The molten PCM which acts as heat
source affects the dynamics of the thermosiphon which in
turn affects the solidification process. Thus the dynamics
of both the PCM and thermosiphon are coupled. For ac-
curate transient modeling of this process, the PCM model
considers the solidification over a temperature range, vari-
able effects of conduction and natural convection during
the phase change and variable amounts of heat release
at different temperatures within the temperature range of
phase change. The paper discusses component modeling
for this transient operation of thermosiphon and its valida-
tion with experimental data.
Keywords: Thermosiphon, Thermosyphon, Phase Change
Materials

1 Introduction
A thermosiphon is an energy transfer device capable of
transferring heat from a heat source to a heat sink over
a relatively long distance, without the use of active con-
trol instrumentation and any mechanically moving parts
such as pumps (Dobson and Ruppersberg, 2007). Ther-
mosiphons are used in diverse applications like cooling
of electronic components, light water reactors, solar wa-
ter heating systems, geothermal systems, and thermoelec-
tric refrigeration systems due to simple designs, simple
operating principles and high heat transport capabilities
(Franco and Filippeschi, 2011). Lack of moving com-
ponent for pumping refrigerant also leads to higher reli-
ability of the system. Thermosiphons may operate with

single phase fluid or two phase fluid, may consist of a
co-current or counter-current flow (Haider et al., 2002)
and have open or closed loops (Benne and Homan, 2009).
The counter-current thermosiphons are also referred to as
heat pipes. Industrial applications typically involve the
co-current thermosiphons and the term thermosiphon used
henceforth in this paper, will refer to these co-current ther-
mosiphons.

A closed-loop two-phase thermosiphon consists of a
closed circuit of refrigerant tube filled with a working fluid
(referred to as refrigerant in this paper) and oriented in a
vertical plane. The refrigerant evaporates in the lower por-
tion of the loop (called evaporator) due to a heat input.
The resultant vapor then travels upwards through a verti-
cal tube called as the riser to reach the condenser, where
it rejects its latent heat. The condenser is located verti-
cally above the evaporator and the condensed refrigerant
from its outlet trickles down into the evaporator by gravity
through the downcomer tube. The cycle repeats until the
heat source is exhausted.

The current study is motivated by a need to understand
the dynamics of a thermosiphon used to recharge the ther-
mal battery of a portable air conditioning device called
Roving Comforter (RoCo) (Du et al., 2016). The dynamic
model is expected to aid the improvement of design and
development of controls. A brief description of RoCo is
given in the next section.

2 System Details
Traditional HVAC (Heating, Ventilation and Air Condi-
tioning) systems consume significant amounts of energy
to maintain a uniform temperature in the buildings within
a narrow range, neither of which is necessary for deliv-
ering comfort (Hoyt et al., 2015). Personal condition-
ing systems like RoCo provide an opportunity to save the
building energy by relaxing the building thermostat set-
tings without compromising occupant thermal comfort.

RoCo uses vapor compression cycle (VCC) to deliver
cooling for building occupants and stores the waste heat
from the condenser in a compact PCM based thermal bat-
tery. The schematic of the two modes of operation of
RoCo is shown in Figure 1. When the PCM is molten,
the VCC operation is terminated. Due to the poor ther-
mal conductivity of PCM, the molten PCM cannot solid-

DOI
10.3384/ecp17132459

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

459

Figure 1. Schematic of two modes of operation of RoCo with
the thermal battery marked in grey box

ify by itself within a reasonable time duration by reject-
ing heat to ambient air. Consequently, to enable a faster
recharge of the thermal battery (i.e. PCM solidification),
a thermosiphon is used. The thermosiphon operation is
ideal in this situation because of its high rate of heat dissi-
pation even from relatively small temperature differences
between the heat source and the heat sink. The refrigerant
circuitry is designed to enable a single direction flow of
refrigerant. By operating a pair of valves, the refrigerant
circuit switches from VCC circuit to thermosiphon circuit.

The PCM selected for the current application is
paraffin-based, with the midpoint of its solidification tem-
perature range at 35°C. The temperature choice is based
on a trade-off between two opposing factors. The temper-
ature should be high enough so that the PCM does not so-
lidify at typical room temperatures (< 26°C). At the same
time, the temperature should also be low enough so that
the condenser temperature for VCC operation is not very
high. Higher condenser temperature leads to poor coeffi-
cient of performance (COP). Thus, a very narrow range of
temperature range is applicable for the solidification tem-
perature of PCM in RoCo. Paraffin based PCM is chosen
because as a class paraffin is safe, reliable, predictable,
less expensive and non-corrosive. It melts and freezes re-
peatedly without phase segregation and consequent degra-
dation of its latent heat of fusion (Sharma et al., 2009). It
crystallizes with little or no supercooling (Sharma et al.,
2009). The only major disadvantage of paraffin based
PCM is its low thermal conductivity. To address this issue,
the thermal battery consists of helical coils of refrigerant
tubing enclosed within PCM volume (See Figure 2). This
arrangement enables higher surface area of heat transfer
and better reach within the PCM volume.

Figure 2. The thermal battery of RoCo in the experimental setup
(Du et al., 2016)

3 Model Development
The system model for the thermosiphon consists of several
components which are shown in Figure 3. The evaporator
(See Figure 2) consists of four symmetric refrigerant cir-
cuits and to save computational effort, only one of them
is modeled. The splitter and mixer components are
used to scale the dynamic behavior of a single refriger-
ant circuit to the complete evaporator. The splitter di-
vides refrigerant mass flow rates equally into four, while
the mixer combines them. The refrigerant then flows into
the riser, condenser, refrigerant tube and downcomer be-
fore flowing back to the evaporator. The refrigerant tube is
a non-adiabatic flow passage for the refrigerant. The PCM
blocks are connected to a tube control volume, which is a
simple model of circular wall for pipes. The tube control
volume component is also used to model the pcm con-
tainer. Finally, the heat losses by natural convection and
radiation from the pcm container to the ambient are incor-
porated. Detailed description of the component models is
provided in this section.

3.1 Phase Change Material
Recall that the PCM Heat Exchanger (PCM-HX) consists
of helical refrigerant tubes surrounded by PCM. The PCM
solidification is a complex phenomenon due to the fact that
the solid-liquid boundary moves depending on the rate of
heat transfer and hence its position with time forms part
of the solution (Zalba et al., 2003). The rate of heat trans-
fer varies progressively during the phase change due to
the varying effects of conduction and natural convection
which depends on the state of PCM. Thus, the dynamics
of PCM and thermosiphon are coupled. The helical nature
of the refrigerant tube further increases the complexity by
making the problem three-dimensional.

Modeling of a Thermosiphon to Recharge Phase Change Material Based Thermal Battery for a Portable Air
Conditioning Device

460 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132459

pCMCapacitor

C

pC
M
C
onductor

Condenser

RH

duration=0
Tair

duration=0
mdot

duration=0

Splitter

Mixer

convection

Gc

fixedTemperature

T=299.35

K

const

k=0.2322

bodyRadiation

Gr=0.073215

condenser

riser

evaporator cv

tube cv

pcm conductor

pcm capacitor

pcm container

refrigerant tube

downcomer

air inlet
boundary
conditions

Heat losses from PCM
container to surroundings

Figure 3. Schematic of System Model for Thermosiphon.

The model used in the current work is a trade-off for ac-
curacy, complexity and usability. The PCM block is taken
as a lumped control volume to eliminate the modeling of
momentum equation for the molten PCM flow from natu-
ral convection. Two components are used to model PCM:
PCMConductor to model the rate of heat transfer from the
PCM and PCMCapacitor to model the PCM heat storage.

3.1.1 PCM Capacitor
The PCM-HX is the heat source for the thermosiphon and
consequently dictates its dynamics. Very accurate descrip-
tion of its solidification is required. The energy equation
applied to PCM control volume gives rise to:

mpcm
dh
dt

= Q̇ (1)

where, mpcm [kg] is the mass of PCM, h [Jkg−1] is the
specific enthalpy, t [s] is the time and Q̇ [W] is the rate of
heat transfer.

The enthalpy method by Voller (1990) is used to model
the energy equation. This method requires an input
of enthalpy-temperature function of PCM solidification
which is created using data from DSC readings of the
PCM. This ensures accurate temperature prediction of the
PCM state during solidification. The benefit of the en-
thalpy method is that it allows calculations on a fixed
grid with implicit treatment of the phase change boundary.

Modelica.Blocks.Sources.CombiTable1D block is
used for input of enthalpy-temperature profile.

The enthalpy-temperature profile is calculated as shown
in equation (2)

h(T) =

∫ TA

T csdT, solid∫ TA
TB

c(T)dT, two phase
h f g +

∫ TB
T cLdT, liquid

(2)

h f g [Jkg−1] is the latent heat of melting, the PCM melts
from temperature TA [K] to TB [K], cs [Jkg−1 K−1], c(T)
[Jkg−1 K−1] and cL [Jkg−1 K−1] are specific heat capaci-
ties of PCM in the respective phases.

The melt fraction (λ) of PCM is calculated from its en-
thalpy by the following equation:

λ = max(0,min(1,
h
hl
)) (3)

where hl [Jkg−1] is the enthalpy at the point where the
PCM just turns liquid. The equation is simplified because
of the fact that the enthalpy scale is defined as zero for the
point where the PCM starts to melt. The melt fraction is
made available for the PCM capacitor block through the
RealOutput interface.

Session 7B: Thermodynamic Systems

DOI
10.3384/ecp17132459

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

461

3.1.2 PCM Conductor

The PCM Conductor block captures the variable effects
of conduction and natural convection during the solidifi-
cation of PCM. It calculates heat transfer coefficient as a
function of melt fraction.

PCM Conductor block connects the re-
frigerant control volume of the condenser
to the PCM Capacitor block. It extends
Modelica.Thermal.HeatTransfer.Interfaces.
Element1D block and provides for the heat flow, which
is calculated using CombiTable1D fitted function for
heat transfer coefficient as a function of melt fraction.
The RealInput interface is used to obtain melt fraction
input from PCM Capacitor.

Table 1 contains the anchor points given to the Com-
biTable block used as input for the normalized heat trans-
fer coefficient as a function of melt fraction. The con-
stant value used to multiply the normalized function to
obtain heat transfer coefficient (HTC) is 116 Wm2 K−1.
These numbers are obtained by matching the condenser
pressure from simulation to the experiment since there are
no correlations to capture the behavior in literature. Pal
and Joshi (2001) discuss the heat transfer variation in the
four regimes captured by Table 1. The initial heat trans-
fer occurs in a conduction dominated regime. Then there
is a reduction in heat transfer coefficient with the appear-
ance of small melt layer because the velocity of the liquid
PCM due to buoyancy force is small. The melting then
progresses to a convection dominated regime where the
velocity of liquid PCM increases causing a higher rate of
heat transfer. Finally, the magnitude of velocity decreases
as the temperature in the molten PCM becomes more uni-
form with time due to natural convection stirring, leading
to decreased buoyancy force for convection.

Table 1. Input table for PCM Conductor block.

Melt Fraction Normalized HTC

0 1
0.2 0.9
0.4 1
0.7 0.9
1 0.8

3.1.3 PCM-HX Refrigerant Control Volume

The PCM is modeled using a lumped control volume (CV)
and accordingly a lumped control volume on the refriger-
ant side is required. These two CVs are connected using
Modelica.Thermal.HeatTransfer.Interfaces.
HeatPort interface.

The liquid refrigerant from the downcomer reaches
the bottom header of the PCM-HX (See Figure 2).
Then it absorbs heat from the PCM, vaporizes and
rises up into the riser. The flow of refriger-
ant into and out from the CV, is modeled using

Modelica.Fluid.Interfaces.FluidPort interface.
To define the state of refrigerant inside the lumped con-

trol volume two properties are required. The average den-
sity, ρavg [kgm−3] for the two phase refrigerant can be
obtained as shown below:

Vtot =Vv +Vl (4)
m = ρvVv +ρlVl (5)

ρavg =
m

Vtot
(6)

V [m3] refers to the volume of the refrigerant, m [kg]
its mass. The subscripts v and l refer to vapor and liquid
phases while tot stands for total.

The pressure of the refrigerant is the average of the
pressure at its inlet and outlet fluid ports.A medium record
for the refrigerant is created and these thermodynamic
properties are set to determine its state.

medium.d = rho_avg;
medium.p = 0.5*(port_a.p+port_b.p);

The net pressure drop between the inlet and outlet ports
is assumed to equal to the gravitational head offered by
the refrigerant column.

The evaporator CV consists of liquid refrigerant with
vapor escaping from the top after absorbing heat from the
surrounding PCM. If the flow were to reverse, liquid re-
frigerant will leave out from the inlet port. Thus the stream
variable of enthalpy in the fluid connectors are equated to
the enthalpies of saturated liquid and vapor.

port_a.h_outflow = h_f;
port_b.h_outflow = h_g;

The heat flow term of the HeatPort is calculated by mul-
tiplying heat transfer coefficient by the product of surface
area and temperature difference between HeatPort temper-
ature and medium temperature.

heatPort.Q_flow = htc * A * (heatPort.T -
medium.T);

The two phase heat transfer coefficient for the refrig-
erant inside the helical coils is calculated first by using
Schmidt (1967) correlation to obtain single phase liquid
only heat transfer coefficient which is then used in Shah
Chart correlation (Shah, 1982).

Finally, the mass and energy balance equations are writ-
ten down and state transformations applied to update the
values of pressure and enthalpy of the refrigerant CV. This
approach is pretty standard in two phase refrigerant sys-
tem and is discussed in Tummescheit et al. (2000). The
equations for energy, however, involve stream connector
variations as described in Franke et al. (2009).

3.2 Condenser
The condenser in the system is a standard air to refriger-
ant heat exchanger. It is modeled using the heat exchanger
developed by Qiao et al. (2015). The model neglects grav-
itational pressure drops. Thus, it can be visualized as if

Modeling of a Thermosiphon to Recharge Phase Change Material Based Thermal Battery for a Portable Air
Conditioning Device

462 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132459

it is placed in a horizontal plane as opposed to vertical
in the real case. However, the height of the condenser is
small compared to the riser and gravitational effects can
hence be ignored for model simplicity. The refrigerant
side heat transfer coefficients for two phase flow are cal-
culated using Shah (2016) correlation. The airside heat
transfer coefficient is calculated using (Wang et al., 2000)
correlation.

3.3 Riser
Recall that the riser is that portion of the refrigerant cir-
cuit where the refrigerant vapor rises from the evaporator
into the condenser. The timescale over which its dynam-
ics evolves is much faster than the heat exchangers. As a
result, it is modeled as what is described as Flow Model
in literature (Tummescheit et al., 2000). Only the momen-
tum equation is used in the model and the mass and energy
storage in the control volume are ignored. The momentum
equation for riser contains balances for the pressure force,
frictional force and gravitational force as shown in Equa-
tion 7 in which Lt [m] is the length of the riser, dṁ

dt [kgs−2]
is the rate of change of refrigerant mass flow rate, A [m2]
is the cross-section area for refrigerant flow in the tube,
pin [Pa] and pout [Pa] are inlet and outlet pressures, f is
friction factor, S [m] is the perimeter of the flow section of
the tube, ρ [kgm−3] is refrigerant density and g [ms−2] is
the acceleration due to gravity.

Lt
dṁ
dt

= A(pin − pout)−
1
2

ṁ2

ρA2 f SLt +AρgLt (7)

The friction factor equation incorporates laminar and
turbulent flow regimes by merging Hagen-Poiseuille and
Blasius equations. Both these equations are taken from
Bergman and Incropera (2011).

3.4 Downcomer
The model for downcomer is similar to that of riser except
for the momentum equation in which the direction of grav-
itational effects are reversed. The momentum equation for
downcomer is shown in Equation 8.

Lt
dṁ
dt

= A(pin − pout)−
1
2

ṁ2

ρA2 f SLt −AρgLt (8)

3.5 Heat Losses
The PCM loses heat by natural convection and radiation
with the surroundings. The heat loss by these modes are
about 15-20% of the heat removed by the thermosiphon.
For accurate prediction of solidification time, it is neces-
sary to include these heat losses.

The PCM is contained in a PVC container. A simple
Tube model of circular wall with one-dimensional
heat conduction and capacitance lumped at arithmetic
mean temperature is used. The equations for this
model can be found in Modelica.Fluids.Examples.

25

30

35

40

45

50

0 100 200 300 400 500

T
em

p
er

at
u

re
 [
°C

]

Time [min]

Expt_axis Expt_wall Sim_PCM

Figure 4. Comparison of PCM temperature prediction with ex-
perimental data

HeatExchanger.BaseClasses.WallConstProps.
The Tube model has two HeatPort interfaces, one
of which is connected to the PCM Capacitor
block. The second HeatPort is connected to a
Modelica.Thermal.HeatTransfer.Sources.
FixedTemperature block which
has surrounding temperature, via
Modelica.Thermal.HeatTransfer.Components.
Convection and Modelica.Thermal.HeatTransfer.
Components.BodyRadiation blocks to model the heat
losses.

The heat transfer coefficient by convection from the
container walls is obtained using Churchill and Chu
(1975) correlation for natural convection for vertical
plates. Radiation is calculated by taking a value of emis-
sivity ε = 0.9 for the material. The container is assumed
to be a convex body in a large enclosure. The heat transfer
coefficient from the top surface of the container is calcu-
lated using Lloyd and Moran (1974) correlation. However,
this value is negligible in comparison to the net heat loss
and omitted from the simulation.

4 Results and Discussion
Figure 3 shows the thermosiphon model with all the com-
ponents described in the previous section. The boundary
conditions and initial state points are provided using the
experimental results from Du et al. (2016).

Figure 4 shows a comparison of PCM temperatures
from the experiment with the model. There are two points
from the experiment with subscripts axis and wall. The
subscript axis refers to temperature probe near the PCM
container wall while the subscript axis refers to tempera-
ture probe at the axis of the helical coil. The dotted line
in the Figure 4 shows the lumped PCM temperature from
the model. As can be observed, the overall prediction is
good until roughly 430 minutes. The results deviate sig-
nificantly from this point. This deviation can be attributed
to the assumption of the adiabatic riser. In the experiment,
there is heat loss from the refrigerant vapor as it passes
through the riser leading to its condensation. The heat ab-
sorption from PCM drops significantly when the PCM is

Session 7B: Thermodynamic Systems

DOI
10.3384/ecp17132459

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

463

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500

M
el

t
F

ra
ct

io
n

 [
-]

Time [min]

Figure 5. Percentage of PCM Molten with time

solidified. The model predicts a small rate of the mass
flow rate at this point, but in reality there is no mass flow
rate. The refrigerant vapor rises up but gets condensed and
falls back down. This phenomenon is not captured by the
model.

The recharge time calculated by the model is 489 min-
utes when the PCM fully solidifies (See Figure 5). How-
ever, 94% percent of PCM is solidified at the 400 minute
mark. For a good overall cycle COP for RoCo, the ther-
mosiphon can be operated for only 400 minutes and VCC
operation started at this point.

Figure 6 shows the temperatures on the airside of the
condenser. The prediction of air outlet temperature is
slightly lower in the initial 20 minute interval. This can
be attributed to the receiver present in the circuit which is
filled with hot liquid refrigerant. For the setup, the receiver
is sized in such a way that the downcomer is completely
filled with liquid refrigerant. This results in larger thermal
mass of refrigerant to be cooled.

5 Conclusions
A fully transient model for two phase closed loop ther-
mosiphon is developed from first principles and used to
study the dynamics of a thermosiphon used to recharge
the thermal battery of a portable air conditioner. Equa-
tions to model various components of the thermosiphon

25

26

27

28

29

30

0 100 200 300 400 500

T
em

p
er

at
u

re
 [
°C

]

Time [min]

Expt_in Expt_out Sim_out Sim_in

Figure 6. Comparison of air inlet and outlet temperatures at the
condenser

are discussed. The heat source of the thermosiphon is fi-
nite and the coupled dynamics is successfully predicted by
the model. It is observed that solidifying 94% of PCM is
better than full solidification for better system COP. The
model is expected to be an invaluable tool in designing
the future versions of the portable air conditioning device
with different requirements.

6 Acknowledgment
This research was supported by the Advanced Research
Projects Agency - Energy (ARPA-E) with Award Number
DE-AR0000530. We thank the members of Center for En-
vironmental Energy Engineering (CEEE) and team mem-
bers of the Roving Comforter Project for their support.

References
K S Benne and K O Homan. Transient Behavior

of Thermosyphon-Coupled Sensible Storage with Con-
stant Temperature Heat Addition. Numerical Heat
Transfer, Part A: Applications, 55(2):101–123, 2009.
doi:10.1080/10407780802552062.

Theodore L Bergman and Frank P Incropera. Introduction to
heat transfer. John Wiley and Sons, Chichester, New York, 6
edition, 2011. ISBN 978-0470-50196-2.

Stuart W Churchill and Humbert HS Chu. Correlating equa-
tions for laminar and turbulent free convection from a verti-
cal plate. International journal of heat and mass transfer, 18
(11):1323–1329, 1975. doi:10.1016/0017-9310(75)90243-4.

R T Dobson and J C Ruppersberg. Flow and heat transfer in a
closed loop thermosyphon. Part I—Theoretical simulation. J.
Energy South. Afr, 18:32–40, 2007.

Yilin Du, Jan Muehlbauer, Jiazhen Ling, Vikrant Aute, Yunho
Hwang, and Reinhard Radermacher. Rechargeable Personal
Air Conditioning Device. In ASME 2016 10th Interna-
tional Conference on Energy Sustainability collocated with
the ASME 2016 Power Conference and the ASME 2016 14th
International Conference on Fuel Cell Science, Engineering
and Technology. American Society of Mechanical Engineers,
2016. doi:10.1115/ES2016-59253.

Alessandro Franco and Sauro Filippeschi. Closed Loop Two-
Phase Thermosyphon of Small Dimensions: a Review of the
Experimental Results. Microgravity Science and Technology,
24(3):165–179, 2011. doi:10.1007/s12217-011-9281-6.

Rüdiger Franke, Francesco Casella, Martin Otter, Michael Siele-
mann, Hilding Elmqvist, Sven Erik Mattson, and Hans Ols-
son. Stream Connectors – An Extension of Modelica for
Device-Oriented Modeling of Convective Transport Phenom-
ena. 43:108–121, 2009. doi:10.3384/ecp09430078.

S I Haider, Yogendra K Joshi, and Wataru Nakayama. A nat-
ural circulation model of the closed loop, two-phase ther-
mosyphon for electronics cooling. Journal of heat transfer,
124(5):881–890, 2002. doi:10.1115/1.1482404.

Modeling of a Thermosiphon to Recharge Phase Change Material Based Thermal Battery for a Portable Air
Conditioning Device

464 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132459

Tyler Hoyt, Edward Arens, and Hui Zhang. Extend-
ing air temperature setpoints: Simulated energy sav-
ings and design considerations for new and retrofit build-
ings. Building and Environment, 88:89–96, 2015.
doi:10.1016/j.buildenv.2014.09.010.

JR Lloyd and WR Moran. Natural convection adjacent to hori-
zontal surface of various planforms. Journal of Heat Transfer,
96(4):443–447, 1974. doi:10.1115/1.3450224.

Debabrata Pal and Yogendra K Joshi. Melting in a side heated
tall enclosure by a uniformly dissipating heat source. Inter-
national Journal of Heat and Mass Transfer, 44(2):375–387,
2001. ISSN 0017-9310. doi:10.1016/S0017-9310(00)00116-
2.

Hongtao Qiao, Vikrant Aute, and Reinhard Raderma-
cher. Transient modeling of a flash tank vapor injec-
tion heat pump system–part I: model development. In-
ternational journal of refrigeration, 49:169–182, 2015.
doi:10.1016/j.ijrefrig.2014.06.019.

Eckehard F Schmidt. Wärmeübergang und Druckverlust in
rohrschlangen. Chemie Ingenieur Technik, 39(13):781–789,
1967. doi:10.1002/cite.330391302.

M M Shah. Chart correlation for saturated boiling heat transfer:
equations and further study. ASHRAE Trans.;(United States),
88(CONF-820112-), 1982.

Mirza M Shah. Comprehensive correlations for heat transfer
during condensation in conventional and mini/micro channels
in all orientations. International journal of refrigeration, 67:
22–41, 2016. doi:10.1016/j.ijrefrig.2016.03.014.

Atul Sharma, V V Tyagi, C R Chen, and D Buddhi. Review
on thermal energy storage with phase change materials and
applications. Renewable and Sustainable Energy Reviews, 13
(2):318–345, 2009. doi:10.1016/j.rser.2007.10.005.

Hubertus Tummescheit, Jonas Eborn, and Falko Wagner. Devel-
opment of a Modelica base library for modeling of thermo-
hydraulic systems. In Modelica Workshop 2000 Proceedings,
pages 41–51, 2000.

V R Voller. Fast implicit finite-difference method for
the analysis of phase change problems. Numerical
Heat Transfer, 17(2):155–169, 1990. ISSN 1040-7790.
doi:10.1080/10407799008961737.

Chi-Chuan Wang, Kuan-Yu Chi, and Chun-Jung Chang. Heat
transfer and friction characteristics of plain fin-and-tube
heat exchangers, part II: Correlation. International Jour-
nal of heat and mass transfer, 43(15):2693–2700, 2000.
doi:10.1016/s0017-9310(99)00333-6.

Belen Zalba, Jose Ma Marin, Luisa F Cabeza, and Har-
ald Mehling. Review on thermal energy storage with
phase change: materials, heat transfer analysis and applica-
tions. Applied thermal engineering, 23(3):251–283, 2003.
doi:10.1016/S1359-4311(02)00192-8.

Session 7B: Thermodynamic Systems

DOI
10.3384/ecp17132459

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

465

466 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Extended Modelica Model for Heat Transfer of Two-Phase Flows
in Pipes Considering Various Flow Patterns

Timm Hoppe1 Friedrich Gottelt1 Stefan Wischhusen1

1XRG Simulation GmbH, Harburger Schlossstr. 6-12, 21079 Hamburg Germany,
{hoppe,gottelt,wischhusen}@xrg-simulation.de

Abstract
Boiling in vertical and horizontal pipes is a complex pro-
cess defining transient and static performance of various
technical applications. This work presents an extended
heat transfer model which takes the complete boiling pro-
cess into account. Models from the literature for the differ-
ent boiling regimes are evaluated with respect to accuracy
and suitability for system simulation application. A set
of sub-models for each of the existing boiling phenomena
is implemented and applied to the global boiling model.
Special attention is paid to smooth transition between the
sub-models and to numerical efficient solutions with re-
spect to the consideration of the boiling crisis. The simu-
lation results show good accordance with literature data.
Keywords: boiling model, heat transfer, two phase flow,
pipe flow, evaporation, critical heat flux, boiling crisis,
subcooled boiling, saturated boiling, flow pattern, Fluid-
Dissipation, ClaRa

1 Introduction
The heat transfer from an evaporator wall to a flowing
two-phase fluid is called flow boiling. During flow boil-
ing three different regimes can be identified. The first one
is the subcooled boiling regime. The bulk of the fluid is
still subcooled but bubbles can already form in the wall
layer, are cooled by the surrounding liquid and thus en-
hance the heat transfer. It is followed by the saturated
boiling regime in which the wall is predominantly cov-
ered by the liquid phase. Bubbles are formed there, leave
the wall and exchange heat and mass with the surround-
ing liquid at saturation temperature. The critical heat flux
marks the beginning of the post critical heat flux regime,
where the gas phase becomes the dominating phase in the
wall layer. In all of these regimes the slope of the pipe
plays an important role. For example, a vertical pipe has a
distinct point at which the regime changes from saturated
boiling to the post critical heat flux regime. In a horizontal
pipe there is a gradually transition, as the top of the pipe
may be already covered by steam, while the bottom of the
pipe is still cooled by liquid.

During flow boiling of fluid flows high heat fluxes can
be transferred at low temperature differences. Flow boil-
ing occurs in many industrial applications, such as thermal
power plants, air conditioning or heat exchangers in the

process industry. Exact knowledge about the two-phase
heat transfer and pressure loss is important to determine
behaviour of these applications. However, it is quite com-
mon to reduce the boiling process to the saturated boil-
ing regime in system simulation, although several boiling
regimes can be identified which require specific models.
This assumption neglects important effects like the criti-
cal heat flux at which the heat transfer coefficient drops
by magnitudes.

An industrial example where it is important to include
this effect are different kinds of thermal power plants like
conventional coal fired steam generators, solar steam gen-
erators, natural circulation heat recovery steam generators
or nuclear steam generators.

In coal fired once-through steam generators the critical
boiling state occurs during normal operation at the end of
the evaporator. In normal operation the mass flow rate is
high enough to sustain a sufficient cooling of the pipes, see
(Brinkmeier, 2015). However, in abnormal working con-
ditions, e.g. maldistribution of mass flow between parallel
pipes or failure of feed water supply systems the mass flow
rate may be significantly lower than during nominal oper-
ation. A detailed calculation of the heat transfer is needed
to determine the wall temperatures in this abnormal situa-
tions.

2 State of the Art of Two-phase Heat
Transfer Modelling

2.1 Literature Review
The actual steam quality of the flow is described by the
local vapour mass fraction defined by the ratio of vapour
mass flow ṁvap to total mass flow ṁ:

xact =
ṁvap

ṁ
(1)

If thermodynamic equilibrium is assumed the steam qual-
ity can as well be defined by the local specific enthalpy
h, the specific enthalpy at bubble point h′ and the specific
evaporation enthalpy ∆hV :

xeq ≡ x =
h−h′

∆hV
(2)

The thermodynamic equilibrium steam quality is used in
the further course of the paper and will be referred to as

DOI
10.3384/ecp17132467

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

467

x. In the subcooled area it can also be negative. The
overall boiling process with the different boiling regimes
is displayed schematically for a horizontal pipe in Figure
1. Two different heating situations are shown, one with
a high heat flux resulting in a nucleate boiling dominated
flow and one with a low heat flux resulting in a convec-
tive boiling dominated flow. The circumferential averaged
heat transfer coefficient is plotted against the actual steam
quality and the steam quality assuming thermodynamic
equilibrium.

1-Phase
Flow

1-Phase
Flow

Subcooled
Boiling

Saturated
Boiling

Post-chf
Boiling

Figure 1. Schematic circumferential averaged heat transfer co-
efficient for an evaporating flow in a horizontal pipe with a high
heat flux (nucleate boiling dominated) and a low heat flux (con-
vective boiling dominated), according to (Steiner, 2002), flow
regime descriptions refer to nucleate boiling dominated flow

Subcooled Boiling
Bubble formation starts in the wall layer of the current
already at bulk enthalpies below the bubble enthalpy, i.e.
x < 0. These bubbles deteriorate as they move to the sub-
cooled core of the flow, thus enhancing the heat transfer
coefficient. This is known as subcooled boiling, see Fig-
ure 1 for a schematic behaviour of the heat transfer coeffi-
cient in the subcooled boiling regime of a nucleate boiling
dominated flow.

In general the literature on subcooled boiling is sparse
compared to other boiling regimes. A comparison of
several subcooled boiling models was done by Spindler
(K. Spindler, 1990), the model proposed in the VDI heat
atlas (Schröder, 2002) shows the least error in prediction
of the measurements. At the end of the subcooled boiling
regime at a steam quality x = 0 the VDI model is by con-
struction equivalent to the saturated boiling heat transfer
model for a vertical pipe from the VDI heat atlas. There-
fore, a smooth transition to the following boiling regime
is ensured.

Saturated Boiling
In the saturated boiling regime two different boiling
modes can be observed. This is convective boiling on the
one hand and nucleate boiling on the other hand. Con-
vective boiling describes the convective process between
the wall and the liquid phase, whereas nucleate boiling de-
scribes the heat transfer induced by formation, growth and

departure of the bubbles. In horizontal pipes a stratifica-
tion of the fluid can occur, depending on the present flow
pattern. As the upper pipe wall is partly dry, i.e. only cov-
ered by the gaseous phase, the circumferential heat trans-
fer coefficient is lower compared to flow patterns which
cover the wall completely with the liquid phase.

All relevant saturated boiling models are a function of
the convective boiling heat transfer coefficient, basically
calculated with convective one phase heat transfer corre-
lations and the nucleate boiling heat transfer coefficient,
basically calculated with pool boiling heat transfer corre-
lations. A simple addition of the coefficients is done by
the Chen model (Chen, 1966). He introduced a boiling
surpression factor and a two phase multiplier to fit pool
boiling heat transfer correlation and the one phase con-
vective heat transfer correlation to his flow boiling data.
Shah (Shah, 1982) proposed a model which is not su-
perimposing the convective and the nucleate heat trans-
fer coefficients but chooses the larger of the two. Gunger
and Winterton (Winterton, 1986) developed a new form
of the Chen model, basing on a larger database. They
later also proposed a simpler version of the model (Gun-
gor and Winterton, 1987). The VDI heat atlas (Steiner,
2002) proposes an asymptotic model which incorporates
natural limitations of the flow boiling coefficients, instead
of surpression and two phase factors as used by the other
models. It is also refered to as the Steiner-Taborek model
as it bases on a publication of the two authors (Steiner and
Taborek, 1992). The model is recommended by ASHRAE
(Owen, 2005) and Thome (Thome, 2006a).

Critical Heat Flux
In the further course of the evaporation process the criti-
cal boiling state xcrit , also known as critical heat flux, is
reached and the gas phase becomes the dominating phase
at the wall. In a vertical pipe it is a distinct point at
which the heat transfer coefficient drops suddenly by mag-
nitudes. In a horizontal pipe the critical boiling state at the
top of the pipe can already be reached while the bottom of
the pipe is still covered with liquid. The circumferential
averaged heat transfer coefficient in such a situation can
be seen in Figure 1.

Several approaches for prediction of the critical heat
flux can be found in literature. This are on the one hand the
local hypothesis correlations which take the local condi-
tions at the point of boiling crisis into account. Then there
are the global hypothesis correlations which consider the
conditions at the pipe inlet. A third method are the look-up
tables.

The VDI heat atlas (Auracher et al., 2002) gives the
Groeneveld tables (Groeneveld, 2007) as reference for
look-up tables and the Katto-Ohno model (Katto Y.,
1984) as reference for the global hypothesis correlations.
The Katto-Ohno correlation is also proposed by Thome
(Thome, 2006a). For medium to high pressures and mass
flow rates the VDI heat atlas proposes the local hypothesis
correlations of Doroshchuk and Kon’kov. They are con-

Extended Modelica Model for Heat Transfer of Two-Phase Flows in Pipes Considering Various Flow Patterns

468 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132467

sidered as superior to the other two methods. Furthermore,
they differentiate between dry out and departure from nu-
cleate boiling.

Post Critical Heat Flux Boiling
At least two boiling regimes can be recognized after the
critical boiling state. On the one hand there is the dry out
of the surface. The wall is not necessarily dry, as the re-
maining liquid is entrained as droplets in the vapour flow,
also referred to as mist flow. Droplets may then hit the
wall and wet it temporarily. The second regime is called
film boiling or departure from nucleate boiling. It is char-
acterized by the formation of a gas film, the corresponding
flow pattern is called inverted annular flow. The heat trans-
fer coefficient is significantly lower than in mist flow. For
each regime different heat transfer models are required.
If the wall temperature is very high compared to the gas
temperature radiation will also play an important role in
the heat transfer.

For dry out there are two different kinds of correlations.
The simpler correlations assume thermodynamic equilib-
rium between gas and liquid phase. The model of Groen-
eveld (Groeneveld, 1973) is proposed by the VDI heat at-
las (Katsaounis, 2002) and by Thome (Thome, 2006a).

The more complicated models account for thermody-
namic non-equilibrium effects by an apparent superheated
gas temperature. The Köhler model (Köhler, 1983) pro-
posed by the VDI heat atlas is to mention here. A model
which also includes radiation was published by Ganic and
Rohsenow (Ganic and Rohsenow, 1977).

Summary
The VDI heat atlas proposes correlations for all different
boiling mechanisms, thus the complete boiling process is
covered by the VDI proposal. In some extent the mod-
els refer to each other. For example one model merges
by construction into the model for the following boiling
regime. This smooth transition between the different mod-
els is important in system simulation. It should be con-
tinuous, continuous differentiable, with low gradients and
without hysteresis. The proposed models are also con-
sidered among the most reliable ones by other authors.
Therefore, the models of the VDI heat atlas are imple-
mented. Where it is possible the references between the
models are used to smooth or simplify the transitions.

2.2 Library Review
It is not known to the authors that an existing Modelica
library incorporates a heat transfer model for the complete
boiling process. The AirConditioning library and the TIL
library, which are commercially used for simulation of
automotive refrigeration cycles, cover only the saturated
boiling regime. The AirConditioning includes implemen-
tations of the simple Gungor-Winterton and the Chen cor-
relation. The TIL library includes the Chen correlation and
the convective boiling correlation of the Steiner-Taborek
model. In the freely available ThermoCycle library the
Shah and the simple Gungor-Winterton correlation are im-

plemented.
In power plant modelling the critial heat flux plays

an important role. In the freely available ClaRa li-
brary only the saturated boiling regime is covered. Also
other libraries, the freely available ThermoSysPro, the
freely available ThermoPower and the commercial Ther-
malPower, provide no correlations for determination of
the boiling crisis.

3 Implementation
The different boiling regime correlations are implemented
in the FluidDissipation which is an open source li-
brary and freely available, see (XRG Simulation). For
implementation the functional approach described in
(Vahlenkamp and Wischhusen, 2009) is used. The main
aspects of the approach are:

• Independence of thermo-hydraulic framework

• Use of function calls

• Inputs are delivered by records

In contrast to the models already implemented in the Flu-
idDissipation each boiling regime is implemented in a
separate model. Thus, the overall heat transfer models are
built outside of the FluidDissipation. The advantage of
this procedure is that models can be developed which are
tailored to the corresponding problem. In the following
the implementation of the separate models is shortly de-
scribed focussing on main declarative equations and dif-
ferences of the implementation to the VDI heat atlas mod-
els. For detailed description of the models see the Fluid-
Dissipation documentation.

3.1 Subcooled Boiling Heat Transfer
From the VDI heat atlas (Schröder, 2002) the models for
determination of the position, in terms of a steam quality,
of initial bubble formation xi and of net vapour forming xn
are implemented. Both values are by definition of the sub-
cooled boiling regime always negative. For xi < x < xn the
proposed model for calculation of the heat transfer coeffi-
cient from VDI heat atlas is used. For xn < x < 0 the VDI
heat atlas proposes a superposition of the nucleate boil-
ing heat transfer coefficient and the subcooled convective
heat transfer coefficient. However, this model incorpo-
rates the wall temperature in the heat transfer coefficient
calculation, which would introduce additional iterations
for the solver. Furthermore, the transition to the saturated
boiling heat transfer coefficient is only smooth if the in-
fluence of the flow pattern on the saturated boiling heat
transfer coefficient is neglected. To simplify this model,
thus making it numerical more stable, a simple smooth-
ing from the subcooled convective heat transfer coeffi-
cient αsc(x = xn) to the saturated heat transfer coefficient
αsat(x = 0) is done. The Stepsmoother from the FluidDis-
sipation is used which makes use of the smooth transition

Session 7B: Thermodynamic Systems

DOI
10.3384/ecp17132467

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

469

of the following equation

yreg = (1+ tanh(tan(x)))/2 (3)

The output yreg is between 0 and 1 for x=[-π/2,π/2].

3.2 Saturated Boiling Heat Transfer
The Steiner-Taborek model from the VDI heat atlas
(Steiner, 2002) is implemented. The following equation
results in an asymptotic combination of the convective
boiling αconv and the nucleate boiling heat transfer coef-
ficient αnclt

αsat =
3
√

α3
conv +α3

nclt . (4)

Convective Boiling
The VDI heat atlas distinguishes between horizontal and
vertical pipes, in consequence two different correlations
are provided. Both depend on the one phase heat transfer
coefficients for liquid and steam αliq and αvap, the density
ratio ρ ′/ρ ′′ and the steam quality x. For horizontal pipes
the VDI correlation includes a correction for stratified
flow patterns. The information of the present flow pattern
and the angle of the unwetted circumference of the
pipe is needed. The correction weights the one phase
liquid and steam heat transfer coefficients according
to the unwetted angle. In the implementation of these
functions a smoothing with the stepsmoother from the
FluidDissipation is applied for the transition between
different flow patterns.

Nucleate Boiling
The used correlation from the VDI heat atlas is a function
of heat flux q̇, pressure p, pipe diameter d and surface
roughness W . For horizontal pipes the correlation shows
an additional dependency on the mass flow rate ṁ and on
the steam quality x. Furthermore, a correction includes
the dependency of the present flow pattern. The function
expects the present flow pattern of the flow as an input
and aligns a correction factor to each flow pattern.
These correction factors depend on the thickness and
conductivity of the wall. Also in this implementation the
transition between flow patterns is smoothed.

3.3 Boiling Crisis
The position of the critical boiling state in terms of a crit-
ical steam quality xcrit is determined by the correlations
which are explained in this subchapter. The critical steam
quality marks the end of the saturated boiling regime and
the begin of the post critical heat flux regime and therefore
determines in an overall boiling model at which point the
heat transfer coefficient calculation has to change from the
saturated boiling correlation to the post critical heat flux
correlation.

The local thesis correlations of the VDI heat atlas (Au-
racher et al., 2002) of Konkov and Doroshchuk for water
are implemented. They depend on the local mass flow

rate, the local pressure, diameter of the pipe and the local
heat flow rate.

The Konkov correlation predicts the critical steam qual-
ity for dry out, the Doroshchuk correlation the critical
steam quality for departure from nucleate boiling. A logic
chooses the smaller of the two. The used correlation deter-
mines whether dry out or departure from nucleate boiling
is present. Thus, it can be decided which post critical heat
flux correlation has to be used.

For horizontal pipes gravitational effects have to be
considered. With the modified Froude number Fr these
effects can be described

Fr =
xcritṁ√

ρ ′′
√

9.81d(ρ ′−ρ ′′)cos(θ)
. (5)

The angle θ is the inclination of the pipe. For Froude
numbers < 10 the stratification of the flow induces an oc-
currence of the boiling crisis at the upper side of the pipe
xcrit,up at much lower steam qualities than at the bottom
side of the pipe xcrit,low. This difference ∆xcrit can be de-
termined with the modified Froude number

∆xcrit = xcrit,low− xcrit,up =
16

(2+Fr)2 . (6)

With the difference ∆xcrit the transition zone in horizontal
pipes from the saturated boiling regime to the post critical
heat flux regime can be determined.

3.4 Post Dry-Out Heat Transfer
Two different kinds of models exist for the post dry out
heat transfer. One type assumes thermodynamic equilib-
rium between the liquid and the vapour phase, i.e. the
temperatures are equal. The other type calculates a super-
heated gas temperature, which determines the temperature
difference for the heat transfer.

Thermodynamic Equilibrium
The proposed model from the VDI heat atlas (Katsaou-
nis, 2002) is implemented. According to the heat at-
las the scope of the model is only for large mass fluxes
ṁ > 2000 kg/(m2s) and high pressures with ρ ′/ρ ′′ ≤ 6.
However, the model bases on data of a much wider range,
according to (Thome, 2006b).

Thermodynamic Non-Equilibrium
The proposed model for thermodynamic non-equilibrium
from the VDI heat atlas (Katsaounis, 2002) is imple-
mented. The assumption of the vapour liquid equilibrium
is not valid in this boiling regime. The heat transferred
from the wall to the fluid is not used completely for vapor-
ising the liquid but also for superheating the gas phase.
Thus, the temperature difference for heat flow rate cal-
culation is calculated with the temperature of the super-
heated gas and the wall temperature within the scope of
the model, i.e.:

Q̇ = αch f A(Tw−Tg). (7)

Extended Modelica Model for Heat Transfer of Two-Phase Flows in Pipes Considering Various Flow Patterns

470 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132467

For calculation of the gas temperature the model provides
an empirical correlation. It is no result of energy balanc-
ing.

The steam quality xlim gives the end of validity of the
model in terms of steam quality and is an output of the
model. For x > xlim the original source of the model (Köh-
ler, 1983) suggests to keep the wall temperatures constant.
As the object-oriented modelling approach does not allow
a direct manipulation of the wall temperature calculation,
this behaviour is approximated implicitly by keeping the
superheated gas temperature constant. This temperature is
used for calculation of the heat flux until the equilibrium
temperature of the fluid is greater.

3.5 Flow Pattern Map
The calculation bases on the flow pattern map model de-
scribed in the VDI heat atlas (Steiner, 2002). To determine
the flow pattern the angle of the unwetted circumference
of the pipe ϕ is needed. The VDI heat atlas model uses
an iteration process to calculate the unwetted angle. To
reduce iterations and make the model suitable for system
simulations some modifications have been made. The un-
wetted angle is calculated directly with the approximation
suggested by Biberg (Biberg, 1999).

The output of the function is the unwetted angle ϕ and
a real variable flowPattern. To each number a flow pattern
is aligned to, see Figure 2. The variable flowPattern and
the unwetted angle are used by the saturated boiling heat
transfer model, see section 3.2. They identify with the
value of the variable the present flow pattern and correct
the heat transfer coefficient, accordingly. The transition
between two flow patterns is smoothed using the Fluid-
Dissipation Stepsmoother see, equation 3.

• Bubble flow→ 6

• Stratified flow→ 1

• Wavy flow→ 2

• Slug flow→ 3

• Annular flow→ 4

Figure 2. Flow patterns for two phase flow in horizontal straight
pipes.

4 Application
In this section an examplary application of the functions
is described. The overall boiling process including flow
pattern effects is implemented in the model. The combi-
nation of the subfunctions is done in a replaceable model
applying the FluidDissipation functions. This makes the
introduction of additional states possible. These states are
necessary due to numerical reasons. The thermo-hydraulic

framework of the ClaRa library, (The ClaRa development
team) and (Brunnemann et al., 2012), is used. The ap-
plication is done for the three conservation equation pipe
model. The main features of the pipe model are:

• homogeneous single phase, i.e. thermodynamic
equilibrium between the phases and same velocities
for gas and vapour phase

• one dimensional flow direction

• dynamic energy and mass balances, static momen-
tum balance

• balance equation spatially discretised in flow direc-
tion

4.1 Transition of subfunctions
Main task of the application model is to ensure a smooth
transition between the different heat transfer modes. The
smoothing function, defined by equation 3, is used to en-
sure a continuous and numerical stable transition. In Fig-
ure 3 an example for the transition from saturated boiling
to post critical heat flux boiling is given. In the example
the transition zone is defined by

tz = ∆xcrit (8)

Figure 3. Schematic picure for transition from saturated to post
critical heat flux boiling

In the following the used submodels and the switching
between the submodels is described in detail. Figure 4
gives an overview of the used models and the selection
sequence which is run by the model for determining the
heat transfer mode. The corresponding transition zone is
displayed in the figure as well. The chosen values of the
transition zone are a trade-off between accuracy and nu-
merical performance.

1. Superheated one-phase flow: The one-phase heat
transfer model (Dittus-Bölter) from the FluidDissi-
pation is used. The transition zone depends on the
choice of the post critical heat flux heat transfer
model. For the equilibrium model the transition zone
is defined from x = 0.9 to x = 1.

Session 7B: Thermodynamic Systems

DOI
10.3384/ecp17132467

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

471

su
pe

rh
ea

te
d
flo

w

su
bc

oo
le
d
flo

w

su
bc

oo
le
d

bo
ili
ng

sa
tu

ra
te

d
bo

ili
ng

nu
cl
ea

te
 b

oi
lin

g

co
nv

ec
tiv

e

 b
oi
lin

g

po
st

 C
HF

 b
oi
lin

g

1

2

3

4

4

5

Figure 4. Transition between different Boiling Regimes

2. Subcooled one-phase flow: The one-phase heat
transfer model (Dittus-Bölter) from the FluidDissi-
pation is used. The point of initial bubble forma-
tion xi is calculated by the subcooled boiling model
from section 3.1. The transition zone is defined from
xi−0.02 to xi +0.02.

3. Subcooled boiling: The model for subcooled boiling
described in the previous section is used. At x = 0
the model is merged by construction of the equations
into the saturated boiling model described in the pre-
vious section.

4. Saturated boiling: The model for saturated boil-
ing described in the previous section is used. If the
minimum heat flux for onset of nucleate boiling is
exceeded the saturated boiling heat transfer coeffi-
cient is calculated according to equation 4 otherwise
only convective boiling is present. The critical steam
quality xcrit is calculated by the boiling crisis model.
The transition area in terms of a steam quality dif-
ference is provided for a horizontally oriented tube
by the boiling crisis model. For vertically oriented
tubes a fixed value of ∆xcrit = 0.05 is set. Thus, the
transition area is defined by tz=±∆xcrit .

5. Post-CHF boiling: The models described in the pre-
vious section are used. It can be decided whether the
thermodynamic equilibrium or the non-equilibrium
model is used.

4.2 Calculation of critical heat flux
The position of the critical heat flux is calculated using
the functions of Konḱov and Doroshchuk (Auracher et al.,

2002) which assume a local hypothesis for the critical heat
flux. However, the position is calculated for the total pipe
and not for each cell. Thus, situations are avoided in which
the model calculates several boiling crises at a time in dif-
ferent cells. Otherwise inconsistent results could be ob-
tained with the previously described selection sequence
of the model. As inputs to the critical heat flux model
the pressure and mass flow rate of the last cell are used.
The heat flow rate is averaged over the total pipe. Thus,
a strong numerical coupling between the wall tempera-
tures, heat flows and the heat transfer coefficients of all
cells is introduced. To uncouple these variables and help
the simulator to break up the resulting non-linear systems
of equations a stabilizer state for the heat flow rate Q̇_ is
introduced with the following equation:

dQ̇_
dt

=
Q̇− Q̇_

τ
(9)

During stationary conditions both heat fluxes are equal,
thus no new information is included, the stationary results
do not change. During transient conditions the additional
state lags behind the real heat flux Q̇ with the time constant
τ = 0.1s.

In consonance with the calculation of the critical heat
flux position also the point of initial bubble formation xi
and the point of net vapour generation xn are calculated for
the total pipe and not for each cell. The fluid properties
of the first cell are handed over to the two models. The
average stabilizer state heat flow rate of equation 9 is used
as a heat flow rate in the models.

Extended Modelica Model for Heat Transfer of Two-Phase Flows in Pipes Considering Various Flow Patterns

472 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132467

5 Verification and Discussion of first
Results

5.1 Verification of overall heat transfer model
For verification of the total model which is described in
section 4 two simulations of evaporation of water in a hori-
zontal pipe are conducted. A screenshot of the used model
built with the ClaRa library is shown in Figure 5. The re-

Figure 5. Screenshot of test model

sults should show the principle behaviour of the heat trans-
fer coefficient as can be seen in Figure 1. The boundary
conditions and geometric parameters are shown in Table
1, column "Sim. 1". The first values in column one re-
fer to the extreme case of a convective boiling dominated
flow, the second values to the extreme case of a nucleate
boiling dominated flow. Furthermore, an independency of
the flow pattern is assumed, which occurs in pipe walls
with a good conductivity (Steiner, 2002). A circumferen-
tial uniform heating is assumed. The pipe is discretised
with 60 control volumes. The pipe length is chosen such
that the fluid is evaporated completely in both cases.

The simulation results are shown in Figure 6. The cir-

Table 1. Boundary conditions and geometric parameters of ver-
ification simulation

Parameter Sim. 1 Sim. 2 Unit

Mass flow 500/400 500 kg/(m2s)
Heat flow 20/750 600 kW/(m2)
Outlet pressure 50 50 bar
Inlet spec. enthalpy 550 800 kJ/kg
Hyd. diameter 0.032 0.032 m
Pipe length 600/15 15 m
Wall conductivity high low -

cumferential averaged heat transfer coefficient is plotted
against the steam quality. The convective boiling domi-
nated case shows a behaviour which is to be expected from
Figure 1. The heat transfer coefficient rises with a steam
quality of zero, thus no subcooled boiling is present. It
rises further with rising steam quality until it peaks at a

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
steam quality ẋ [-]

0

10000

20000

30000

40000

50000

h
e
a
t

tr
a
n
sf

e
r

co
e
ff

ic
ie

n
t
α

 [
W

/(
m

2
K

)]

convective boiling dominated

nucleate boiling dominated

Figure 6. Simulation results of evaporation of water in a hori-
zontal pipe

steam quality of x= 0.8. From that point on the heat trans-
fer coefficient drops until the one phase heat transfer at a
steam quality of 1 is reached, thus no post critical heat
flux boiling is present. The nucleate boiling dominated
case shows a distinct subcooled boiling regime. A plateau
of the heat transfer coefficient follows at which a limit of
the effect of mass flow is reached, according to the nucle-
ate boiling model from the VDI (Steiner, 2002). After that
plateau the nucleate boiling heat transfer coefficient drops
as one could expect from the schematic Figure 1. At a
steam quality of x = 0.65 the critical heat flux at the upper
side of the pipe is reached. At x = 0.9 the critical heat flux
is reached also at the bottom side, a post critical heat flux
regime follows.

In summary it can be said that the results for both ex-
treme conditions are in very good consonance with the
schematic figure. The model predicts the occurrence of
the different heat transfer regimes correctly. Also the tran-
sition between the different subfunctions is handled in a
plausible way.

5.2 Comparison with a simple saturated boil-
ing heat transfer model

A simulation with the boundary conditions from Table
1, column "Sim. 2", is conducted with the overall heat
transfer model described in section 4 and the Gungor-
Winterton 1986 (Winterton, 1986) heat transfer model
which is widely used in system simulation. The boundary
conditions are chosen such that they lie in between the ex-
treme conditions of a nucleate and a convective dominated
flow. Furthermore, a pipe with a low thermal conductivity
of the wall is used.

The results are shown in Figure 7. As an interpreta-
tion of the results a schematic pipe with the present flow
pattern is drawn below the plot. The flow pattern is cal-
culated from the functions described in section 3.5. The
overall heat transfer model predicts a distinct subcooled
boiling regime. This boiling regime is neclected in the
Gungor-Winterton model and the one phase heat transfer
coefficient is used instead. Thus, the heat transfer coef-
ficient of the overall model is over a wide range multiple
times larger than the one of the simple Gungor-Winterton

Session 7B: Thermodynamic Systems

DOI
10.3384/ecp17132467

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

473

Bubble
Flow

Slug
Flow

Annular
Flow

Dry-OutStratified
Flow

-0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
steam quality ẋ [-]

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

h
e
a
t

tr
a
n
sf

e
r

co
e
ff

ic
ie

n
t
α

[W
/(

m
2
K

)]

Overall boiling

Gungor-Winterton

Figure 7. Simulation results of evaporation of water in a hori-
zontal pipe

model.
At steam qualities slightly below zero the heat trans-

fer coefficient of the overall model peaks before it drops
again at steam qualities larger than zero. This is due to the
fact that the subcooled boiling model does not depend on
the flow pattern. Whereas with begin of saturated boiling
the heat transfer coefficient shows a high dependency on
the flow pattern. At low steam qualities a stratified flow
is present. As the upper surface of the pipe is not wet-
ted due to stratification, the circumferential averaged heat
transfer coefficient is significantly lower than the Gungor-
Winterton model. It predicts a up to 60% larger heat trans-
fer coefficient, as it has no correction due to stratification
effects of the flow.

In the further course of the evaporation process the
overall boiling model predicts two more different flow pat-
terns. Both induce only a partial wetting of the upper pipe
wall, thus the heat transfer coefficient is reduced compared
to the simple Gunger-Winterton model.

In the overall heat transfer model the saturated boiling
regime ends at a steam quality of x= 0.65. The dry out be-
gins at the upper side of the pipe. At the end of the dry out
process at a steam quality of x = 0.9 the heat transfer co-
efficient is approximately 10 times smaller than predicted
by the simple Gungor-Winterton model.

The results show that the neglection of effects can lead
to over- or underestimation of the heat transfer coefficient
by magnitudes. For applications, in which crucial vari-
ables depend strongly on the heat transfer coefficient, sim-
ple models fail to produce reliable results. For example,
this may be the case for wall temperatures in the post dry
out regime. In that case it is important to include more
complex heat transfer models which cover the overall boil-
ing process.

5.3 Validation with measurements
As a validation case the Becker experiments (Abel-Larsen
et al., 1985) are presented. They are a series of steady state
critical heat flux experiments, all of them with a dry-out

heat crisis. The test section is a vertical pipe, electrically
heated with a length of 7 m and a diameter of 0.0149 m.

In Figure 8 the results of a simulation with the over-
all model using the thermodynamic equilibrium model for
the post critical heat flux heat transfer are shown. The

Figure 8. Becker Experiment Case 3 Equilibrium Model

wall temperatures before the heat crisis and the location
of the heat crisis are predicted correctly. The predicted
wall temperatures after the heat crisis until a length of ap-
proximately 5.5 m match also the measurement. Beyond
that point the post critical heat flux heat transfer model is
not valid, the overall boiling model changes to the one-
phase heat transfer correlation. This change leads to an
underestimation of the wall temperature, as the gas phase
is superheated in the post critical heat flux area. This un-
derestimation has two main reasons. On the one hand the
definite temperature is underestimated as the temperature
difference for calculation of the heat flux is formed with
the equilibrium temperature. On the other hand, the heat
transfer coefficient is calculated with fluid properties at the
equilibrium temperature, the fluid properties at the super-
heated gas temperature should be used instead.

In Figure 9 the test case is simulated with the overall
model using the thermodynamic non-equilibrium model.
The effect of the superheating of the wall near gas phase
is included in the non-equilibrium model. Thus, it matches
the measurement much better than the simple equilibrium
model. At a length of 6 m the model keeps the wall tem-
peratures constant. This assumption fits also better to the
measurement than the use of the one phase heat trans-
fer coefficient as it is done by the simple thermodynamic
equilibrium model.

The thermodynamic non-equilibrium model is able to
predict the wall temperatures more accurate than the sim-
ple equilibrium model. Especially, the transition to the
purely convective one phase heat transfer regime fits much
better to the experiment data. However, this advantage
is dearly bought by a loss of numerical stability and ef-
ficiency. This is due to the introduction of a fictive gas

Extended Modelica Model for Heat Transfer of Two-Phase Flows in Pipes Considering Various Flow Patterns

474 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132467

Figure 9. Becker Experiment Case 3 Non-Equilibrium Model

temperature and the indirect manipulation of the wall tem-
peratures. These means are introduced to overcome the
drawback of an equilibrium temperature for gas and liquid
phase which is used for calculation of the heat balance in
the three equation pipe model. For a more accurate mod-
elling of the effects in the post critical heat flux regime a
separate energy balancing of the liquid and the gas phase is
necessary. This would require a thermo-hydraulic frame-
work which includes volume models for separate balanc-
ing of the phases, the so called five or six conservation
equation models, see (Hänninen and Ylijoki, 1992).

6 Summary

In this paper an implementation of an extended heat trans-
fer model for two phase flow in pipes is presented.

The various correlations of the different boiling regimes
are implemented in separate subfunctions. The functional
based approach of the FluidDissipation (XRG Simulation)
is used. It enables users to create models which are tai-
lored to their problem.

An exemplary application within the thermo-hydraulic
framework of the ClaRa library is given. This model is
used to verify the implementation. A comparison with a
widely used saturated boiling model is conducted. The
predicted heat transfer coefficients of the two models dif-
fer by magnitudes. These results show the importance of
complex heat transfer models in system simulation. These
models are relevant in applications, in which crucial vari-
ables depend strongly on the heat transfer coefficient, e.g.
a safety analysis concerning the pipe wall temperatures.

For validation of the extended heat transfer experiment
data from the literature are used. The simulations match
the measurement data well. Especially, the position of the
critical boiling state is predicted correctly. For more accu-
rate results concerning the post critical heat flux regime a
separate balancing of the phases is necessary, which is a
feature of the six conservation equations models.

References
H. Abel-Larsen, A. Olsen, J. Miettinen, T. Siikonen, J. Ras-

mussen, A. Sjoberg, and K. Becker. Heat transfer correla-
tions in nuclear reactor safety calculations. Technical report,
Nordic liaison committee for atomic energy, 1985.

H. Auracher, G. Drescher, D. Hein, O. Herbst, A. Katsaounis,
V. Kefer, and W. Köhler. VDI Heat Atlas, chapter Hbc - Kri-
tische Siedezustände. 9th edition, 2002.

D. Biberg. An explicit approximation for the wetted angle in
two-phase stratified pipe flow. The canadian Jounal of Chem-
ical Engineering, 1999.

N.O.W.W. Brinkmeier. Flexibilisierung von Kraftwerken. PhD
thesis, Technische Universität Braunschweig, 2015.

J. Brunnemann, F. Gottelt, K. Wellner, A. Renz, A. Thüring,
V. Roeder, C. Hasenbein, C. Schulze, G. Schmitz, and J. Ei-
den. Status of ClaRaCCS: Modelling and Simulation of Coal-
Fired Power Plants with CO2 Capture. Proceedings of the
9th International Modelica Conference, Munich, Germany,
pages 609 – 618, 2012.

J. C. Chen. Correlation for boiling heat transfer to saturated flu-
ids in convective flow. Industrial and Engineering Chemistry
Process Design and Development, 5:322–329, 1966.

E.N. Ganic and W.M. Rohsenow. Dispersed flow heat transfer.
International Journal of Heat and Mass Transfer, 20:855–
866, 1977.

D.C. Groeneveld. Post-dryout heat transfer at reactor working
conditions. In Proceedings of the National Topical Meeting
on Water Reactor Safety. Atomic Energy of Canada Limited,
1973.

D.C. Groeneveld. The 2006 CHF look-up table. Nuclear Engi-
neering and Design, 237:1909–1922, 2007.

K.E. Gungor and R.H.S Winterton. Simplified general corre-
lation for saturated flow boiling and comparisons of correla-
tions with data. Chemical Engineering Research and Design,
1987.

M. Hänninen and J. Ylijoki. The one-dimensional seperate two-
phase flow model of apros. Technical report, Technical Re-
search Centre of Finland, 1992.

E. Hahne K. Spindler, N. Shen. Vergleich von Korrelationen
zum Wärmeübergang beim unterkühlten Sieden. Wärme- und
Stoffübertragung, 1990.

A. Katsaounis. VDI Heat Atlas, chapter Hbd -Wärmeübergang
nach der Siedekrise. 9th edition, 2002.

Ohno H. Katto Y. An improved version of the generalized corre-
lation of critical heat flux for the forced convective boiling in
uniformly heated vertical tubes. Int. Journal for Heat Mass
Transfer, 27, 1984.

W. Köhler. Einfluß des Benetzungszustandes der Heizfläche auf
Wärmeübergang und Druckverlust in einem Verdampferrohr.
PhD thesis, 1983.

Session 7B: Thermodynamic Systems

DOI
10.3384/ecp17132467

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

475

M.S. Owen, editor. ASHRAE Handbook - Fundamentals, chap-
ter 5 - Two Phase Flow. ASHRAE, 2005.

J.J. Schröder. VDI Heat Atlas, chapter Hba - Strömungssieden
unterkühlter Flüssigkeiten. 9th edition, 2002.

M. M. Shah. Chart Correlation for Saturated Boiling Heat Trans-
fer: Equations and Further Study. ASHRAE Transaction1982,
88, 1982.

D. Steiner. VDI Heat Atlas, chapter Hbb - Strömungssieden
gesättigter Flüssigkeiten. 9th edition, 2002.

D. Steiner and J. Taborek. Flow Boiling Heat Transfer in Vertical
Tubes Correlated by an Asymptotic Model. Heat Transfer
Engineering, 13(2):43–69, 1992.

The ClaRa development team. ClaRa - Simulation of Clausius-
Rankine cycles. URL www.claralib.com. fetched Dec,
15th 2016.

J. R. Thome, editor. Engineering Data Book III, chapter 10 -
Boiling Heat Transfer inside Plain Tubes. Wolverine Tube
Inc., 2006a.

J. R. Thome, editor. Engineering Data Book III, chapter 18 -
Post Dry-Out Heat Transfer. Wolverine Tube Inc., 2006b.

T. Vahlenkamp and S. Wischhusen. FluidDissipation for Appli-
cations - A Library for Modelling of Heat Transfer and Pres-
sure Loss in Energy Systems. In Proceedings 7th Modelica
Conference, Como, Italy, September 2009.

K.E. Gungor R.H.S Winterton. A general correlation for flow
boiling in tubes and annuli. Int. J. Heat Mass Transfer, 29(3):
351–358, 1986.

XRG Simulation. URL http://www.xrg-simulation.
de/de/produkte/xrg-library/
xrg-fluiddissipation-library. fetched Dec.,
15th 2016.

Extended Modelica Model for Heat Transfer of Two-Phase Flows in Pipes Considering Various Flow Patterns

476 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132467

Improved Model of Photovoltaic Systems

Dmitry Altshuller1 Peter Hüsson1 Christopher Alain Jones1 Leonard Janczyk2
1Dassault Systemes, USA, {dmitry.altshuller, peter.huesson,

christopher.jones}@3ds.com
2Dassault Systemes, Germany, leonard.janczyk@3ds.com

Abstract
The paper describes a model of a typical photovoltaic

(PV) system. Unlike models previously discussed in

literature, heat transfer phenomena are accounted for

simultaneously with the electrical dynamics.

Furthermore, the model is simulated for a time scale of

one full year.

Keywords: Photovoltaic system, Modelica, Thermal
effect, Modeling thermal effect, Solar power, Dymola

1 Introduction

The importance of obtaining energy from renewable

resources cannot be overestimated. However,

harnessing these resources often presents considerable

technical difficulties. Furthermore, the effectiveness of

using resources such as wind or solar power depends on

the weather conditions. It is, therefore, critically

important to develop mathematical models that can

reliably predict power output before any significant

investment is made.

The main difficulty in modeling photovoltaic (PV)

systems lies in the complexity of accounting for all the

factors that may influence the performance of a PV cell.

Most of the existing models of PV systems tend to focus

only on some of these factors while simplifying the

influence of others. For example, modeling the

influence of solar irradiance is emphasized in (Tian et

al, 2012) as well as in (Khatib and Elmenreich, 2016)

while the dependence of temperature is simplified. By

contrast, a detailed thermal model is developed in (Jones

and Underwood, 2001) but the influence of electric

power output on the temperature of the system, which,

in turn, affects this power output, is considerably

simplified.

The most commonly used tool for modeling PV

systems is Simulink. PSpice is used in (Castaner and

Silvestre, 2002) and MATLAB is used in (Khatib and

Elmenreich, 2016). In this paper we propose to use

Modelica and the tool Dymola to account for the mutual

influence of the power output and temperature variation.

To this end, we start with the circuit model proposed in

(Pandiarajan and Muthu, 2011) which is then combined

with the thermal model from (Jones and Underwood,

2001). The simulation is run using the weather module

from the HVAC Library developed by XRG Simulation.

2 Mathematical Background

2.1 Equivalent Circuit

The concept of using an equivalent circuit to model a

PV cell goes back to the book (Angrist, 1982). The

model was subsequently improved in the book (Masters,

2004) and is to this day used. The circuit consists of a

signal-dependent current source connected anti-parallel

to a diode, parallel to a resistor, and in series with

another resistor. The generic schematic of the equivalent

circuit is shown in Figure 1.

Figure 1. Schematic of a PV equivalent circuit.

The resistors Rsh and Rs are the intrinsic shunt and series

resistances of the cell. Typically, the value of Rsh is

several magnitues higher than Rs. Therefore, they can be

neglected to simplify some of the equations. These

parameters also affect the characteristic of the diode.

The current Iph depends on the solar radiation and the

temperature of the system. In addition, the diode current

depends on several other voltages and currents in the

circuit. In the next subsections we will give the details

of these models.

2.2 Modeling of the Current Source

The current source is the element where the solar

irradiance energy is converted into the electrical energy.

The equation for the current Iph has the form

(Seyedmahmoudian et al, 2013):

𝐼𝑝ℎ = [𝐼𝑆𝐶 + 𝐾𝑖(𝑇 − 𝑇𝑟𝑒𝑓)]
𝐺

𝐺𝑟𝑒𝑓

 (1)

In this equation ISC is the short-circuit current, Ki is

the temperature coefficient, T is the temperature of the

Rs

R
sh

 I
ph

I
D

R
L

I
PV

DOI
10.3384/ecp17132477

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

477

PV cell, Tref = 298 K is the reference temperature, G is

the solar irradiance, and Gref=1000 W/m2 is its reference

value.

The value of the solar irradiance is obtained from the

weather model which is taken from the HVAC Library

developed by XRG Simulation. The temperature is

obtained by modeling various heat transfer phenomena

described in Subsection 2.4.

2.3 Modeling of the Diode

The diode current is described by the following equation

(Pandiarajan and Muthu, 2011):

𝐼𝐷 = 𝐼0 [exp
𝑞(𝑉𝑃𝑉 + 𝐼𝑃𝑉𝑅𝑠)

𝑁𝑆𝐴𝑘𝑇
− 1] (2)

The parameters in this equation are as follows:

q=1.6E-19 C is the electron charge;

NS is the number of PV cells connected in series;

A is the ideality factor;

k=1.3805E-23 J/K is the Boltzmann constant.

Also, involved in the equation are voltage through

and current at the load. These are obtained while the

simulation is running.

The saturation current I0 is calculated from (Angrist,

1982):

𝐼0 = 𝐼𝑅𝑆 (
𝑇

𝑇𝑟𝑒𝑓

)

3

exp
𝑞𝐸g0(𝑇−𝑇𝑟𝑒𝑓)

𝐵𝑘𝑇𝑇𝑟𝑒𝑓

 (3)

In addition to the already defined variables and

parameters, B is the ideality factor and Eg0 is the band

gap. The equation for the reverse saturation current IRS

is (Pandiarajan and Muthu, 2011):

𝐼𝑅𝑆 =
𝐼𝑆𝐶

exp
𝑞𝑉𝑂𝐶

𝑁𝑆𝑘𝐴𝑇
− 1

(4)

The new parameters in this equation are the short-circuit

current ISC and the open-circuit voltage VOC.

The reader is referred to the paper (Pandiarajan and

Muthu, 2011) and references therein for a more detailed

discussion of these equations and parameters.

2.4 Modeling of the Heat Transfer

There are four heat transfer mechanisms that must be

modelled: heating by short-wave and long-wave

radiation as well as cooling by free and forced

convection. In addition, there is heat loss equal to the

power output of the PV system. Let us describe each of

these following (Jones and Underwood, 2001).

The short-wave radiation is directly proportional to

the solar irradiance and is equal to 𝛼𝐴𝐺, where α is the
absorptivity, A is the surface area, and G is solar

irradiance.

The long-wave radiation comes from two sources:

sky and ground. It obeys the Stefan-Boltzmann law but

the terms must be multiplied by respective emissivity of

the sky, the ground, and the PV module. Furthermore,

for the purposes of radiation modeling, the temperature

of the sky is increased by 20 K for clear sky. This

number is reduced down to zero for the overcast sky,

proportionately to cloud cover. In addition, adjustments

need to be made for the tilt angle of the panel.

The convection flow rate is directly proportional to

the difference between the temperature of the panel and

the ambient temperature. The coefficient for the free

convection is proportional to the cubic root of this

temperature difference (Holman and Bhattacharyya,

2011, p.335) but the coefficient for the forced

convection is treated as a parameter since there are

presently no known reliable correlations for it.

The equation has the form (Jones and Underwood,

2001):

𝐶
𝑑𝑇

𝑑𝑡
= 𝛼𝐴𝐺 + 𝜎𝐴 (

1 + cos 𝛽

2
𝜀𝑠𝑘𝑦𝑇𝑠𝑘𝑦

4

+
1 − cos 𝛽

2
𝜀𝑔𝑟𝑜𝑢𝑛𝑑𝑇𝑔𝑟𝑜𝑢𝑛𝑑

4

− 𝜀𝑚𝑜𝑑𝑢𝑙𝑒𝑇𝑚𝑜𝑑𝑢𝑙𝑒
4)

− (ℎ𝑐,𝑓𝑜𝑟𝑐𝑒𝑑

+ 1.31√𝑇 − 𝑇𝑎𝑚𝑏
3)𝐴(𝑇

− 𝑇𝑎𝑚𝑏) − 𝑃𝑜𝑢𝑡

(5)

In this equation, in addition to the already defined

variables and parameters, C is the heat capacity of the

module, σ is the Stefan-Boltzmann constant, β is the tilt

angle of the panel, ε refers to the emissivity, and hc, forced

is the forced convection coefficient. The indices for the

temperatures are self-explanatory.

3 Model Implementation

3.1 Electrical System

3.1.1 Overall System Model

In order to model the electrical part of a PV system, the

following Modelica classes were created: Current

Source, Diode, PV array, and PV cell.

The PV cell class connects all of these elements and

also includes the heat transfer model described below in

Subsection 3.2. It includes a two-pin electrical port

which is to be connected to the load and a temperature

port to receive the ground temperature. Additional

inputs are solar irradiance, the numerical value of the

ambient temperature, and the cloud cover fraction.

Parameters are propagated from its included classes.

The model is shown in Figure 2

Improved Model of Photovoltaic Systems

478 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132477

Figure 2. PV cell model.

The Current Source class has a two-pins electrical

port connected to the signal-driven current source. The

signal input for the source is calculated using the

equation (1) using the solar irradiance as input. The class

also has a thermal port that provides the temperature of

the cell. Parameters for this class are the same as in the

equation (1) and are propagated to the PV cell class.

PV array is a two-port electrical system. One port is

connected to the Current Source and the other to the

load. It also has a thermal port. The model includes the

shunt and the series resistances and the diode model

modified as described in the next Subsection.

Parameters are propagated from its included classes and

are further propagated to the PV cell class. The model is

shown in Figure 3.

Figure 3. PV array model.

3.1.2 Diode Model

The PV_Diode model implements equations described

in Subsection 2.3. It has been modified from the MSL

Diode2 model.

The model itself has a basic electrical OnePort which

are connected in the equivalent circuit model.

Additionally, the model has four real inputs. These

inputs are the temperature of the PV module, the serial

resistance of the equivalent circuit model as well as the

current and voltage signal of the load.

In comparison to the Diode2 model of the MSL we

do not need to smooth the function, because we do not

have to consider any switching behavior.

Parameters for the diode model and their default

values are shown in Figure 4.

Figure 4. Parameters for the diode model.

The model equations are implemented as follows:

equation

 Tk = temperature_PV;

 R_s = resistance_Rs;

 I_pv = current_Ipv;

 V_pv = voltage_V_pv;

 Irs = Isc/(exp((q*V_oc)/(N_s*Kb*A*Tk

))-1);

 I_01 = Irs*((Tk/Tr)^3)*exp(((q*Ego)/

(A*Kb))*((1/Tr)-(1/Tk)));

 I_0 = I_01*(exp((q*(V_pv + I_pv*R_s)

)/(N_s*A*Kb*Tk))-1);

 i = I_0;

 LossPower=i*v;

Session 7C: Electrical & Power Systems II

DOI
10.3384/ecp17132477

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

479

3.1.3 Verification

After modeling the electrical part of the PV-array, we

want to verify our model. Most of the literature use the

same output characteristics of PV modules to

characterize the system behavior. We use these

characteristics to verify the correct behavior of our

model.

The tests are made at a constant temperature of

293.15 K. Two variables are varied to get the typical

curve. First the system load will be varied. Second, the

irradiation will be changed.

Figure 5 shows the test setup of the verification

experiment.

Figure 5. PV array test setup.

For the electrical parameters we use the references of

a Solkar 36W PV module. The electrical characteristics

can be seen in Table 1 (Pandiarajan and Muthu, 2011).

Table 1. Electrical characteristic data of Solkar 36W

Electric parameters

Open circuit voltage (VOC) 21.24 V

Short circuit current (ISCr) 2.55 A

Number of cells in series (Ns) 36

Number of cells in parallel (Np) 1

For the first simulation run we take the irradiation of

200 W/sqm and change the electrical load outside of the

PV cell. This load represents the consumer. We repeat

this experiment with the irradiation of 600 W/sqm and

1000 W/sqm.

Figure 6. I-V characteristics with varying irradiation.

Figure 6 shows the result of the simulation runs. You

can see the characteristic I-V output diagram of a PV

cell. The results match the results from the paper

(Pandiarajan and Muthu, 2011). Our electrical model is

therefore considered verified.

3.2 Thermal System

The thermal system implements the equations described

in Subsection 2.4. It has two thermal ports: one for the

ground temperature and one for the temperature of the

cell. The latter is connected to both Current Source and

the PV array classes. Additional inputs are ambient

temperature, solar irradiance, the cloud cover ratio, and

the electrical power output computed in the PV cell

model. Parameters for the heat transfer model are also

described in Subsection 2.4 and they are propagated to

the PV cell class. The model is shown in Figure 7.

Figure 7. Heat transfer model.

Convection is modelled with the MSL Thermal

Convection component. The forced convection

coefficient is implemented as a parameter and the free

convection coefficient is computed using the cubic root

law with the provision that it can never be less than zero.

Improved Model of Photovoltaic Systems

480 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132477

An additional class has been created for computing

the long wave radiation by modifying the MSL thermal

Body Radiation component. The two thermal ports from

this component are used to connect the ground and the

PV cell. A real input port has been added for the

temperature of the sky. The parameters for this class are

emissivities, the area of the panel and the tilt angle and

they are propagated to the heat transfer model. The

governing equation has been modified as follows in

order to comply with the equation (5):

equation

 Q_flow = A*Modelica.Constants.sigma*((

(1 + cos(beta_surface))/2)*

 epsilon_sky*T_sky^4+((1 - cos(

beta_surface))/2)*epsilon_ground*port_

a.T^4 - epsilon_module*port_b.T^4);

The variables in this equation correspond to those in

the equation (5). For example, beta_surface means

β, the tilt angle of the panel.

Unfortunately, data in (Jones and Underwood, 2001)

does not provide enough information to verify our

model in simulation experiments.

4 Experiments and Results

Simulation experiments have been run using the tool

Dymola and the weather models from the HVAC

Library. The setup is shown in Figure 8.

Figure 8. Experimental setup.

The weather and the orientation models are taken

directly from the above-referenced library. The weather

model uses the file specifying the weather condition for

the entire year. It provides values of the ambient

temperature, the cloud cover, the ground temperature

and sun position in the sky. The latter is used by the

orientation model to calculate the solar irradiance.

We have used the following values of the parameters

for the PV cell as shown in Figure 9.

To get a better understanding of the system it makes

sense to simulate the PV cells over the course of a year.

To see the effect of the weather on the energy output of

our solar system, it is interesting to compare different

climate conditions. To keep the simulation results

simple and comparable we only varied the cloud

coverage between 0% and 50% for this investigation.

The remaining weather conditions were kept the same

for both simulation runs.

Figure 9. Parameters for the simulation.

In Figure 10 the generated energy over the course of

a year is shown. One can see, that the cloud coverage

has an effect on the energy output of the PV system.

Although the simple variation of this weather input is

just effecting the long wave radiation, described in

Subsection 2.4. To get a better understanding of the

electric outputs and the possible use-cases of the

complete system, we would have to make simulations

with varying set of weather data.

Figure 10. Electric energy over one year.

Session 7C: Electrical & Power Systems II

DOI
10.3384/ecp17132477

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

481

5 Conclusions and Outlook

The results of the simulation experiments demonstrate

the fundamental soundness of our modeling approach,

which is to combine the electrical and the thermal

models.

Future research may proceed along the following

lines. First, it may be beneficial to consider other

weather conditions and/or climates. Second, it may be

of interest to implement control systems and algorithms

so that various parameters can be changed in response

to changing weather conditions in order to obtain

maximum power output. Finally, it will be interesting to

investigate the feasibility of using PV systems in electric

vehicles and/or battery charging stations.

References

S. W. Angrist. Direct Energy Conversion, 4th ed. Boston:

Allyn and Bacon, Inc., 1982

L. Castaner and S. Silvestre. Modeling Photovoltaic Systems

Using PSpice. Chichester: Wiley and Sons, Inc., 2002.

J. P. Holman, S. Bhattacharyya. Heat Transfer. In SI Units.,

10th ed. McGraw Hill, 2011.

A. D. Jones and C. P. Underwood. A Thermal Model for

Photovoltaic Systems. Solar Energy, Vol. 70, No 4, pp.

349–359, 2001.

T. Khatib and W. Elmenreich. Modeling of Photovoltaic

Systems Using MATLAB, John Wiley & Sons, 2016.

G. M. Masters. Renewable and Efficient Electric Power

Systems. Hoboken; Wiley and Sons, Inc., 2004.

N. Pandiarajan and R. Muthu. Mathematical Modeling of

Photovoltaic Module with Simulink. International

Conference on Electrical Energy Systems (ICEES), 3-5 Jan

2011, pp. 314-319.

M. Seyedmahmoudian, S. Mekhilef, R. Rahmani, R. Yusof

and E. T. Renami. Analytical Modeling of Partially Shaded

Photovoltaic Systems. Energies, 2013, 6, pp. 128-144. doi:

10.3390/en6010128.

H. Tian, F. Mancilla-David, K. Ellis, E. Muljadi and P.

Jenkins. A Cell-to-Module-Array Detailed Model for

Photovoltaic Panels. Solar Energy, 86, pp. 2695-2706,

2012.

Improved Model of Photovoltaic Systems

482 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132477

Modelling of a Hydro Power Station in an Island Operation

Arndís Magnúsdóttir1 Dietmar Winkler2

1Verkís hf, Iceland, arm@verkis.is
2University College of Southeast Norway, dietmar.winkler@usn.no

Abstract
There is a strong focus on new renewable energy sources,
such as, solar power, wind energy and biomass, in the con-
text of reducing carbon emissions. Because of its maturity,
hydropower is often overlooked. However, there is an era
of hydro oriented research in improving many aspects of
this well established technology.

Representing a physical system of a hydropower plant
by mathematical models can serve as a powerful tool for
analysing and predicting the system performance during
disturbances. Furthermore it can create opportunities in
investigating more advanced control method.

A simulation model of a reference hydropower station
located in northwest of Iceland was implemented using
the modelling language Modelica R⃝. The main simulation
scenarios of interest were: 20% load rejection, worst-case
scenario of full shut-down and pressure rise in the pressure
shaft due to the water hammer effect. This paper will show
that the different simulation scenarios were successfully
carried out based on the given the data available of the
Fossárvirkjun power plant. The load rejection simulation
gave expected results and was verified against a reference
results from manufacturer.
Keywords: Hydropower in Iceland, modelling, simulation,
island operation, Modelica, Dymola, Electric Power Li-
brary, Hydro Power Library, water hammer effect

1 Introduction
The process of using the energy of moving water to cre-
ate electricity is a long-standing, well-proven and reliable
technology. Unlike other renewable energy sources, hy-
dropower is not a recent development but has been around
for several hundredths of years. As of today the availabil-
ity of hydropower has been associated with kick-starting
economic growth (International Hydropower Association
2016).

There is a strong focus on renewable energy sources
in the context of the desired global reduction in carbon
emissions. Technologies such as solar power, wind energy
and biomass are in focus while hydropower is often over-
looked. Hydropower has many advantage when it comes
to the effect of climate change as it is renewable, efficient
and reliable source of energy that does not directly emit
greenhouse gasses. Because of its maturity, hydropower
is often associated with conservative and perhaps stag-
nant technology development. However, there is an area

of hydro-oriented research in improving many aspects of
this well established technology, taking full advantage of
progress in science and engineering (Munoz-Hernandez,
Mansoor, and Jones 2013).

Around 70% of Iceland’s electricity is produced from
hydroelectric power and is the world’s largest electricity
producer per capita. In cooperation with Icelandic old-
est and leading consulting engineers in energy produc-
tion, Verkís hf, a complete dynamic hydropower model
was implemented based on a reference power station, Fos-
sárvirkjun, located in the northwest region of Iceland. The
objective of developing such model is to study the dy-
namic characteristics of the plant, such as load rejection
and to explore worst-case scenario of a full shut-down of
the plant. Furthermore, the effect of water hammer, fol-
lowing pressure rise in the pressure shaft will be of outer-
most interest since Fossárvirkjun’s water-way has no surge
tank installed. Water inertia is the main aspect that influ-
ences the water hammer waves in the pressure shaft.

To build such model and to simulate these differ-
ent scenarios the object-oriented modelling language,
Modelica R⃝, is used to model the complex, physical power
plant. The commercial modelling and simulation envi-
ronment Dymola (Dassault Systèmes 2016), a product of
Dassault Systémes, was used. In addition, two separate
libraries, the Hydro Power Library(HPL) and the Electric
Power Library(EPL) (Modelon AB 2016) will be coupled
together in order to represent the complete hydro power
system.

1.1 Fossárvirkjun
In the year 1937, a hydropower station was built to serve
Ísafjörður, located in the northwest region of Iceland in
Skutulsfjörður, in the Westfjords. At that time, it was the
only electric power source for the Ísafjörður area. Since
then there has been no refurbishment until now. The West-
fjord Power Company has refurbished the existing power
station with a new turbine/generator and electrical equip-
ment. A new pressure shaft and a new powerhouse were
constructed about 800m from the existing one and the
new power station is named Fossárvirkjun. The existing
600kW Pelton machine was replaced by a new 1200kW
Pelton turbine. The new refurbished power plant serves
Súðavík in an island operation (Refurbishment of the Fos-
sár hydro Power Plant 2015). Figure 1 shows the new
power house of Fossárvirkjun.

The reference system used for the modelling part is the

DOI
10.3384/ecp17132483

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

483

Figure 1. Power house of Fossárvirkjun (Refurbishment of the
Fossár hydro Power Plant 2015)

new refurbished Fossárvirkjun that started operation in au-
tumn of 2016.

The reservoir is Fossavatn, a fresh water which is
mostly fed by direct runoffs and springs. The intake is
at 343 m.a.s.l. and the rated discharge is at 0.45m3/s. The
pressure shaft is around 1900 metres long consisting of a
DN500 GRP pipe with no surge facility. The turbine is a
two-nozzle horizontal Pelton turbine. Since Fossárvirkjun
will be running in island operation two simulation scenar-
ios are of interest.

As has been mentioned, there is no surge tank to absorb
a sudden rise of pressure in the pressure shaft. Therefore,
the pressure at the bottom of the pressure shaft, has to be
closely monitored. Table 1 summarises the general infor-
mation data of the system.

Table 1. General data table of Fossárvirkjun

Properties Values unit

Pressure shaft
Length 1 900 [m]
Inner Diameter 0.50 [m]
Nominal pressure in pressure shaft 32 [bar]
Maximum over pressure 15 [%]

Pelton Turbine
Number of Nozzles 2
Rated Discharge 0.45 [m3/s]
Rated Net Head 308 [m]
Turbine Efficiency 91 [%]

Synchronous Generator
Power 1404 [kVA]
Max mechanical power 1325 [kW]
Nominal Voltage 400 [V]
Nominal Current 2026.5 [A]

A rough sketch of the real water-way of Fossárvirkjun
is depicted in Figure 2. The intake is at 343 m.a.s.l. and
the connection to the turbine at 38 m.a.s.l. The length of
the water-way roughly 1900 m, keeping in mind that the

actual length of the pipe segments is longer.
The turbine runner is fixed on the generator’s shaft. The

generator is a standard 400V AC synchronous machine
with a brush-less excitation system. The governor is a PID
controller.

2 Modelling
The Modelica simulation environment used in this project
was Dymola which is commercial tool for modelling and
simulation of complex systems. It is a product of Das-
sault Systémes. Dymola allows the user to create a graph-
ical representation of a physical system and has different
solvers to choose from. Modelica is multidomain mod-
elling language which means that different libraries pro-
duced by sometimes several developers can be coupled
together if needed. Taking the advantage of this mul-
tidomain modelling, two types of libraries were used to
build the dynamic model of Fossárvirkjun; Hydro Power
Library and Electric Power Library.

The complete power system of Fossárvirkjun can be
seen in Figure 3. The model entails different source com-
ponents that are connected together.

The reason why the EPL has to be coupled with the
HPL is that even though the HPL contains an electrical
system, it does not give information about active or re-
active power, that is, it is only calculating active power
quantities.

2.1 The Water-Way
The water-way was modelled using components from the
HPL that calculate the media state vectors (f (p,T)) and
media flow of the water.

An important assumption made in the modelling is that
the states are uniformly distributed. It is assumed in the
upcoming modelling that the water head is constant, that
is, assuming that the water source is an infinite. Figure 4
shows the water-way sub-component.

Mass, energy and momentum balance equations are dis-
cretised with the finite volume method using an upwind
discretisation scheme. State variables are pressure, tem-
perature and mass-flow for each pipe segment. Each pipe
segment is split up by a combination of closed volume
models and mass flow models. For each pipe segment the
two models contain the following

Closed Volume Models

• Conservation laws: Energy Balance and Mass Bal-
ance

• State variables: Pressure (p) and temperature (T)

• Inflow and outflow: Flow of mass and enthalpy

Mass Flow Models

• Conservation Laws: Momentum Balance

• State variables: Mass flow ṁ

• Outflow: ṁout

Modelling of a Hydro Power Station in an Island Operation

484 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132483

Figure 2. From the real water-way of Fossárvirkjun to modelled water-way in Modelica, split by segments.

Fossavatn

Electrical

WaterWay

Pelton

f y
Langa

turbineGovernor

Figure 3. Complete model of Fossárvirkjun in Dymola

Fossavatn

WaterWay

Pelton

f y
Langa

turbineGovernor

Fossavatn

Conduit closedVolume

HeadSource

H T

PressureShaft

b

Figure 4. Submodel: Water-way

2.1.1 Finite Volume Method

For one phase flow models, the partial differential equa-
tions of mass, energy and momentum are discretised and
solved with the finite volume method where they are in-
tegrated and approximated by ordinary differential equa-

tions. The Finite Volume Method is considered to be
particularly good at maintaining the conserved quanti-
ties (Elmqvist, Tummescheit, and Otter 2003).

The conduit in Fossársvirkjun is a uniform pipe, but
modelled with two separate pipes, the conduit and the
pressure shaft. This was done in order to be able to analyse
the pressure shaft in more details because of the special in-
terest in the pressure rise.

The water-way sub-component consists of a head
source, reservoir (Fossavatn), conduit, closed volume and
pressure shaft:

Head Source Infinite source of volume with prescribed
details about water height and temperature.

Reservoir/Fossavatn Detailed reservoir built with n seg-
ments. Using massflow models which calculates us-
ing momentum balance for fluid segments that is be-
tween two open channel segments/reservoir.

Conduit/Pressure shaft Model of discretised pipe with
massflow models at inlet and outlet. Using the up-
wind scheme of finite volume method to discretise
the balance equations; Mass, Momentum and En-
ergy. Pressure, temperature and mass-flow are the
state variables. This pipe is made up of n segments.

Closed Volume Used to connect the conduit and pressure
shaft together. As the name implies, it is a closed vol-
ume with state variables as pressure and temperature.

In relation to the model of the water-way in Figure 4
where different sub-components come together to create
the water-way,

The earlier Figure 2 shows also how the different sub-
components were used in order to build the model of the
head-race water-way. The conduit model (red line in the
figure) is divided into four segments. It begins at the in-
take and ends at the junction with the pressure shaft. The
pressure shaft then starts descending at this junction and
continues all the way to the turbine inlet. The real water-
way of Fossárvirkun is the blue line in the background.

Session 7C: Electrical & Power Systems II

DOI
10.3384/ecp17132483

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

485

As Figure 2 shows, there is some loss in detail in the
water-way while modelling. From one junction to an-
other, the conduit pipe is modelled as a straight line. In
theory, you could have numerous of segments throughout
the conduit and subsequently minimising the loss of detail
but with the cost of the simulation being computational
demanding.

As mentioned before, the conduit is composed of two
main elements; closed volume and mass flow component.
To calculate the dynamics all three conservation equa-
tions; Energy, mass and momentum; are used. The HPL
calculates the mass and energy balance in the closed vol-
ume and the momentum balance in the mass flow compo-
nent. One of the benefits of using Modelica language is the
transparency, that is, behind the sub-components/models
are the corresponding equations that describe the dynam-
ics of the model. For example, the reservoir model that
represents Fossavatn uses the momentum balance to cal-
culate the mass flow models.

2.1.2 Pelton Turbine
The HPL offers two types of turbine models; the Kaplan
turbine with guide vanes and runner blades and a basic
turbine with guide vane servo which can be used for both
Francis and Pelton turbines. The latter turbine model was
the preferred choice for Fossárvirkjun.

The turbine model is controlled via a gateActuator
input signal from the controller changing the discharge of
the turbine. For Pelton turbines this corresponds to the
nozzle opening which dictates the flow through the turbine
based on a look-up table, i.e.,, TurbineTable. This
turbine look-up table contains information about:

• Nozzle Opening [pu]

• Volume Flow Rate [m3/s]

• Turbine Efficiency [pu]

Based on the nozzle vane opening, the volume flow rate
and turbine efficiency can be calculated. Therefore, the
behaviour of how the turbine responds to the control signal
depends on the TurbineTable.

The corresponding plot can be seen in Figure 5. The
red line represent the turbine efficiency [pu] and the blue
line the volume flow rate [m3/s] corresponding to the gate
actuator signal [pu] on the x-axis.

The Pelton turbine contains two nozzle jets. The
first nozzle operates alone under relatively low flow rate
(0.124− 0.224m3/s) until the second nozzle steps in to
aid with the increased flow at 0.225m3/s. This is clearly
visible in Figure 5 where there the blue line becomes sud-
denly steeper. At this time, the efficiency also increases as
the red line displays.

Equation (1) describes the power from the Pelton tur-
bine.

Pturbine = ηhydro ·∆Pavailable ·Qmax

= ηhydro ·Havailable ·g ·ρ ·Qmax
(1)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Gate actuator signal [pu]

0.0

0.2

0.4

0.6

0.8

1.0

Turbine Efficiency [pu]
Flow rate [m3/s]

Figure 5. Plot from the TurbineTable

For Fossárvirkjun the maximum power arriving at the
turbine shaft is calculated using the maximum efficiency
of 91% (from the TurbineTable):

Pturbinemax = 0.91 ·304m ·9.81
m
s2 ·1000

kg
m3 ·0.45

m3

s
≈ 1.221MW

(2)

2.1.3 Langá
The Langá component consists simply of a pipe model and
a fixed source of temperature and pressure, as can be seen
in Figure 6.

Fossavatn

Electrical

WaterWay

Pelton

f y
Langa

turbineGovernor

DraftPipe

fixed_pT

pT
a

Figure 6. Details of the Langá model

Since the Pelton turbine does not require a draft tube,
the pipe that is connected to the output of the turbine is

Modelling of a Hydro Power Station in an Island Operation

486 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132483

only put in there to have the connectors compatible with
the fixed source. The fixed source is simply a constant
pressure, which is set near to atmospheric pressure.

2.1.4 Governor

The governor component is situated above the Pelton tur-
bine as can be seen in Figure 3. The governor is an ana-
logue PID controller where it takes in both the power from
the generator and the frequency. The PID controller works
under two conditions; No-load and under load. These con-
ditions are set with a Boolean condition; true when no-
load, false when under load. This Boolean condition
allows to run with two sets of parameters, one for speed
control and one for power control. The calculations for
the error signal into the PID controller is shown here be-
low in Equation (3).

e = (f0 − f)+(Pin −Pre f) (3)

Since the power system will be run in speed control
the governor will have an open MCB breaker, that is the
Boolean condition is set to true. The signal will be the
speed of the rotor connected to the generator. The gover-
nor will therefore control the output by keeping the signal
at a speed of 1 pu, i.e.,, 50 Hz.

2.2 Electrical grid
For the modelling of the electrical grid the Electric Power
Library was used. It is a library for electric power systems.
The library offers a choice of different phase systems:

• DC system

• AC one-phase system

• AC three-phase abc (non-transformed)

• AC three-phase dq0 (dq0-transformed)

• AC three-phase dq (dq-transformed) — for a bal-
anced system

The electrical grid was modelled for a balanced system,
that is, represented by the AC three-phase dq0 system but
omitting the zero-component creating the AC three-phase
dq-transformation. Figure 7 shows the details of the elec-
trical grid component.

The power generated from the Pelton turbine goes as an
input to the single mass rotor in per unit which is then con-
nected to the generator through a flange. The synchronous
generator generates power with positive direct-quadrature
representation. The voltage and reactive power is con-
trolled by the first order control exciter which is connected
to the field voltage. In between the load/consumer, is the
transformer.

The transformer is a step-up type, from 0.4 kV to 11 kV.
The 5 km transmission line then carries the alternating
current to the consumer. The consumer is a small fish-
ing village, Súðavík, located on the west coast of Iceland,

Fossavatn

Electrical

WaterWay

Pelton

f y
Langa

turbineGovernor

Output Turbine Speed Input Turbine Power

Si
ng

le
M

as
sR

ot
or

generator

syn

excitation

torque
gen
field

voltage

busbar

1 2

trafo
SensorGenerator

line Sudavik

Z

SensorSudavik

k=
1/

da
ta

FO
SS

.P
re

f

SI
2P

U

exciter

1st

Active

ini
fin

Reactive

ini
fin

setPoint

k=dataFO
SS.pp

M
ech2ElectricalFreq

Figure 7. Electrical Component in EPL

20 km from Ísafjörður. Half of the power consumed is
from households and the other half is consumed by a fish
factory.

The EPL is highly complex, where all the components
involved are fully mathematically represented. Since EPL
is very detailed, the amount of input parameters required
by the user is plentiful. This can be beneficial for accuracy
reasons but does invite parameterisation error. There are
a great number of input parameters that have to be known
and correspond to a real scenario power system. Com-
pared to the HPL, EPL is very sensitive to parameter in-
consistencies.

The main components involved are:

2.2.1 Single Mass Rotor

Represents one single stiff rotating mass, defined with in-
ertia constant H [s]. The single mass rotor is used as a
connector between the generator and the Pelton turbine.
A power signal from the HPL turbine model is used to
calculate the rotational speed based on the load that the
connected generator represents.

Session 7C: Electrical & Power Systems II

DOI
10.3384/ecp17132483

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

487

2.2.2 Synchronous Generator
This component is a three-phase-balanced-dq, AC syn-
chronous machine with electric excitation. The user can
choose from a Y or Delta topology.

2.2.3 Exciter
The exciter controls the excitation DC voltage with first
order control which is directly determined by the per unit
voltage control signal. The exciter controls both the reac-
tive power and the voltage in the field.

2.2.4 Transformer
Ideal three-phase-balanced-dq step-up transformer. The
magnetic coupling is ideal with no stray-impedance and
zero magnetisation current. The user then chooses be-
tween Y and Delta topology at primary and secondary
side. On the primary side there is the 0.4 kV from the
generator and on the secondary side the resulting 11 kV
from the transformer.

2.2.5 Súðavík Load
Inductive three-phase-balanced-dq load. Consumes active
and reactive power of nominal voltage. Power is derived
from the apparent power multiplied with the power factor
input.

3 Simulation
The act of simulation is the experiment done on the model.
The simulation results depend highly on how well the
model represents the real system. One should always note
that the simulation is only valid under the limitation and
conditions given and can never represent the system com-
pletely, but is mainly an approximation for understanding
the system. The simulation is only valid for the given in-
put data (Tiller 2016). There were two types of simulation
scenarios of interest.

• 20% load rejection

• The water hammer effect

Since the power system is in an island operation it is
important to monitor the behaviour of any disturbances in
the system. The load rejection simulation was constructed
by a 20% sudden load rejection. This scenario is trying
to imitate the incidence when there is a power shut-down,
e.g.,, a shut-down of a large factory. The water hammer ef-
fect is particularly of interest for two reasons: There have
been incidents where the pressure on the bottom of the
pressure shaft raised above the pressure threshold of the
pipe’s material, resulting in an outburst. Second reason is
the lack of surge tank in the power system. The objec-
tive of the surge tank is to absorb the pressure and there-
fore take care of the sudden pressure rise in the pressure
shaft, like has been stated. Omitting the surge tank leads
to an increase in the travel distance of the impact waves in
the conduit which causes increase in inertia of the water
mass (Kiselev 1974).

3.1 Load Rejection
The load rejection simulation was constructed in a way
that the induction load modelled was changed from its
original steady active power load of 1.239 MW to a sudden
drop of 20% resulting in an active power of 0.996MW .
Figure 8 illustrates the model basis for the simulation con-
sisting of the water-way, governor and electrical part.

The results from the simulation can be seen in Figure 9
where the plot illustrates the expected changes in active
power, reactive power and the flow into the turbine. The
aim here was to keep the rotor speed (frequency) consis-
tent at 1 per unit (50 Hz). The upper plot shows the ro-
tors speed [pu] as the red line and the flow m3/s in to the
turbine as the blue line. The control action taken is to
decrease the nozzle opening to compensate for the power
loss caused by the load rejection. Similarly, the active and
reactive power [W] decreased accordingly.

Similarly, it is interesting to see if the voltage stays con-
stant since the aim of the exciter (voltage regulator) is to
keep the voltage steady. On the upper plot in Figure 10
the results from the 20% Load Change illustrate the effect
it has on the voltage both on the low voltage side and the
high voltage side, that is, before and after the transformer.
On the lower plot in the same Figure 10 the pressure at
inlet of the turbine rises from 27.47 bar to 29.19 bar, thus
the pressure increase is 1.72 bar. This increase in pressure
is a result of the output of the controller, closing the valve
to reduce the flow.

To summarise, Table 2 reflects the numerical results
from the 20% load rejection.

Table 2. 20% load rejection

Original Change Difference [%]

Active P. [MW] 1.239 0.996 −19.61
Reactive P. [Mvar] 0.138 0.111 −19.56
Pressure [bar] 27.47 29.19 5.89
Flow [m3/s] 0.454 0.341 −24.89

Since the objective of the controller is to keep the rotor
speed constant, three different load rejections were imple-
mented to see the reaction of the rotor. Figure 11 shows
the results after the following load rejections; 20%, 40%,
60% and 80%. The desired outcome is to keep the speed
at 1 pu (50Hz) after each load-rejection.

As can be seen in Figure 11 it follows that higher the
load rejection the more amplitude the oscillations have at
the instance when the load changes.

3.2 The Water Hammer Effect
The following simulations were done in order to investi-
gate pressure rise in the pressure shaft and the effect it
has on the governing stability due to the oscillations in
the pressure shaft. A rapid change in the flow can lead to
major oscillations in the water-way, also called the water
hammer effect. Figure 12 shows the model constructed

Modelling of a Hydro Power Station in an Island Operation

488 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132483

Fossavatn

Output Turbine Speed

Input Turbine Power

Turbine

f y langa

turbineGovernor

Fossavatn

Conduit CV

HeadSource

H T

PressureShaft

tu
rb

oG
rp

generator

syn

excitation

torque

gen

field

voltage

busbar

1 2

TransformerSensorGeneratorSensorGenerator Transmission Sudavik

Z

SensorSudavikSensorSudavik

k=
1/

da
ta

FO
SS

.P
re

f

SI
2P

U

exciter

1st

setpts

k=dataFOSS.m

k=dataFO
SS.pp

M
ech2ElectricalFreq

Active

ini
fin

Reactive

ini
fin

LowVoltageSensor HighVoltageSensor

Link EPL - HPL

Figure 8. Hydropower model of the load changes

0 100 200 300 400 500 600
0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.3

0.4

0.5

0.6

[p
u]

[m
3 /

s]

Time [s]

20% Load Rejection Flow and n Speed

FlowTurbine n Speed

0 100 200 300 400 500 600

0.0E0

4.0E5

8.0E5

1.2E6

P
ow

er
 [W

]

Time [s]

20% Load Rejection Active and Reactive Power
Active Power Reactive Power

Figure 9. Simulation results of 20% load changes

for the simulation analysis. It is worth noting that there
are two water-way models. One is connected to the elec-
tric part, controlled by the load and the governor. The sec-
ond water-way is situated below is a stand-alone without
a turbine, controller or an electrical part. This is modelled

0 100 200 300 400 500 600

0.0E0

4.0E3

8.0E3

1.2E4

Vo
lta

ge
 [V

]

Time [s]

20% Load Change Voltage

LowVoltageSensor HighVoltageSensor

0 100 200 300 400 500 600

24

28

32

36

Pr
es

su
re

 [b
ar

]

Time [s]

20% Load Change Pressure
PressureInTurbine

Figure 10. 20% load changes, voltage and pressure

this way to isolate the water hammer effect to see whether
there is a difference between the complete power system
model and the isolation of the water-way. On the stand-
alone water-way, a valve is installed instead of the turbine,
the flow through the valve is imitated after the turbine.

Session 7C: Electrical & Power Systems II

DOI
10.3384/ecp17132483

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

489

0 500 1000 1500 2000 2500 3000
0.8

0.9

1.0

1.1

1.2

1.3

1.4

[p
u]

Time [s]

n Rotor Speed 20% n Rotor Speed 40% n Rotor Speed 60% n Rotor Speed 80%

Figure 11. Rotor speed after various load rejections

The reason for the creating a stand-alone water-way is
simply to allow more direct flow changes and investiga-
tions without a controller modifying the control signals
because of some safe-guard and control delay restrictions
that might be present/activated.

Fossavatn

Fossavatn

Output Turbine Speed

Input Turbine Power

Electrical Part

WaterWay

WaterWay Stand-alone for comparison

Turbine

f y

langa

turbineGovernor

W_Fossavatn

W_Conduit W_CV

W_HeadSource

H T

PressureShaftValve

langa1

pwr_ref1

duration=65

Fossavatn
Conduit CV

HeadSource

H T

PressureShaft

tu
rb

oG
rp

generator

syn

excitation

torque
gen
field

voltage

busbar

1 2

trafoSensorGeneratorSensorGenerator TransmissionLine Sudavik

Z

SensorSudavikSensorSudavik

SI
2P

U

exciter

1st

setpts

M
ech2ElectricalFreq

Active

ini
fin

Reactive

ini
fin

LowVoltageSensor HighVoltageSensor

Governor

Figure 12. Overview of the model used for the water hammer
effect scenario

It follows that in order to compare these models, the
control signal from the governor in the upper model has
to be the same as the valve/nozzle closing time. The con-
trol signal to the valve in the stand-alone model is a sim-
ple ramp function. The resulting plot can be seen in Fig-
ure 13. Since the control system is involved in the com-
plete model, it is not possible to simply close the nozzle
in the Pelton turbine. To achieve a fully closed turbine the
load has to be shut-down first. Therefore, the load is set
to zero at time 250 seconds, from its original load. The
time it takes to fully close the turbine until there is no flow

through, is 65 seconds.

0 100 200 300 400 500

0

1

[P
er

 U
ni

t]

Time [s]

Comparison of Stand-Alone WaterWay and the Whole Power System

NozzleOpening ValveOpening

0 100 200 300 400 500
24

28

32

[b
ar

]

Time [s]

PressureInTurbine PressureInValve

0 100 200 300 400 500

0.0

0.4

[m
3 /s

]

Time [s]

FlowTurbine FlowValve

Figure 13. Water hammer plot comparing both models

The top plot shows the nozzle closing signal from the
governor and the equivalent ramp signal to close the valve.
As can be seen in Figure 13 they are almost identical. The
most important is that their closing time is the same, which
it is.

The comparison between the pressure drop in the tur-
bine and valve can be seen on the middle plot. As ex-
pected, for the whole power system there is fluctuation in
the pressure at the beginning since the governor is reacting
to the full load. However, for the stand-alone water-way
the valve starts fully opened. Eventually after 100 seconds
the pressure in the turbine settles to the same pressure as
the valve. At the 250 seconds the turbine and valve close.
Apart from the pressure oscillation in the whole system,
the models respond in a similar dynamic behaviour. Simi-
larly, on the bottom plot the flow out from the turbine and
the valve behave in a similar manner.

Since the comparison between the stand-alone water-
way and the whole system gave identical results the stand-
alone water-way can undergo further analysis. It was im-
portant to confirm that for the same opening degree, pres-
sure and flow the results are identical before and after clos-
ing. For worst-case scenario in terms of the water hammer
effect is if the load in Súðavík completely shuts-down.
This can be seen in the resulting plot on Figure 13. There
the time it takes to close the turbine is 65 seconds.

Having now an identical water-way with a simple pres-
sure shaft with valve, an analysis of a faster closing of the
valve can take place to test the minimum closing time to
see the maximum allowable pressure in the pressure shaft.

Stated in the technical data from the manufacturer the
allowable pressure rise in the pressure shaft is 15%. We

Modelling of a Hydro Power Station in an Island Operation

490 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132483

investigated how quickly the valve can close. This was
done by gradually decreasing the closing time starting
from at 56 seconds as shown in Figure 13 and then inspect-
ing the pressure rise for smaller closing times. Table 3
displays the peak/maximum pressure rises for a series of
faster closing times.

Table 3. Closing time in water-way analysis

Closing time Pressure
[s] Max [bar] Rise [%]

56 32.26 0.8
40 32.58 1.8
15 34.76 8.6
12 35.59 11.2
10 36.71 14.7

The corresponding plots can be seen in Figure 14. The
upper plot shows the closing signal to the valve and the
bottom plot shows the pressure oscillations at the inlet of
the valve. The most aggressive pressure rise is between
closing time (10-15 seconds), resulting in heavy oscillat-
ing dynamic of the water wave.

0 100 200 300 400 500
-0.2

0.0

0.2

0.4

0.6

0.8

1.0

[P
er

 U
ni

t]

Time [s]

Comparing Pressure In Pressure Shaft With Varying Closing Time

Closing: 56 s Closing: 40 s Closing: 15 s Closing: 12 s Closing: 10 s

0 100 200 300 400 500
26

28

30

32

34

36

38

[b
ar

]

Time [s]

@56 s @40 s @15 s @12 s @10 s

Figure 14. Closing time analysis on stand-alone water-way

Figure 15 shows a schematic of the water-way where
the blue line represents the actual pipe alignment and the
red/yellow lines represent the pipe as modelled in Model-
ica split up by segments. Each pipe is divided into four
segments of equal length. One could increase the reso-
lution by using more segments but in this case the de-
fault of four was sufficient. Both the elevation of the
pipe segments and corresponding pressure is marked on
the schematic. The pressure build-up due to the closing of
the valve from the intake at 343m and down to the turbine
inlet can be seen in Figure 16.

4 Conclusion
4.1 Load Rejection
The load rejection was carried out while monitoring the
flow into the turbine, speed of the rotor, pressure, volt-
age and power. The variables of interest gave a promising
outcome indicating in a dynamic model that should repre-
sent Fossárvirkjun power plant adequately. Since having
information regarding 20% load change from the manu-
facturer, similar load change scenario was implemented in
order to validate the results.

As for the change in active and reactive power due
to the load change, both decreased immediately around
19.6% in power. They are controlled by separate con-
trollers, active power by the PID governor and the reactive
by the voltage regulator, therefore a good indicator that
both controllers are taking similar action. When looking
into whether the results are as expected is to

Also the in (1) calculated theoretically available Pelton
turbine power of 1.221MW compares well with the simu-
lated active power of 1.239MW .

The same can be said for the voltage in Figure 10 . The
objective of the voltage regulator is to keep the voltage
constant during load rejections. The voltage on both, the
low voltage side and the high voltage side, remains con-
stant throughout the disturbance which results in a good
performance from the voltage regulator.

4.2 The Water Hammer effect
The analysis of the water hammer effect was implemented
in Section 3.2 where the stand-alone water-way was com-
pared to the whole power system. The results in Fig-
ure 13 were promising as both models yielded to similar
behaviour. Since both water-ways are identical, apart from
the valve in the pressure shaft on the stand-alone unit, it
was expected that the pressure would be the same. The
pressure and the flow in the turbine are of course more os-
cillating since being represented by the whole power sys-
tem and thus controlled by the governor while the stand-
alone model shows a more ideal behaviour.

After having the above results confirm that the stand-
alone unit had identical result to the whole power sys-
tem. More aggressive worst-case scenario shut-down of
the valve took place. Closing time analysis was therefore
implemented while observing the pressure in the pressure
shaft of the stand-alone unit. Figure 14 showed the pres-
sure increases with different closing times. To no surprise,
the pressure increased as expected from the original clos-
ing time of the valve of 56 seconds down to 10 seconds.

The worst-case scenario shut-down of the valve indi-
cated that a closing time of 10 seconds creates a maxi-
mum pressure increase to 36.71bar. This is something
that is dangerously near the maximum allowed pressure
of 32bar+ 15%, see Table 1. Therefore, the results indi-
cate that the valve/turbine should not be closed/shutdown
in under 12 seconds.

Session 7C: Electrical & Power Systems II

DOI
10.3384/ecp17132483

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

491

Figure 15. Pipe segments Fossavatn to turbine/valve inlet

0 100 200 300 400 500
0

4

8

12

16

20

24

28

32

[b
ar

]

Time [s]

1.5 bar

6.1 bar

10.7 bar

15.3 bar

19.9 bar

21.8 bar

23.7 bar

25.5 bar

27.4 bar

1.5 bar

6.9 bar

12.3 bar

17.8 bar

23.2 bar

25.2 bar

27.3 bar

29.3 bar

31.3 bar

Figure 16. Pressure build-up in pipe segments from segment 1 (bottom) through to turbine connection (top)

References
Dassault Systèmes (2016). Dymola. Modelon. URL:
http : / / www . dymola . com (visited on
05/28/2016).

Elmqvist, Hilding, Hubertus Tummescheit, and Martin
Otter (2003). “Object-oriented modeling of thermo-
fluid systems”. In: pp. 269–286. URL: http : / /
elib.dlr.de/11988/ (visited on 05/30/2016).

International Hydropower Association (2016). A brief his-
tory of hydropower. International Hydropower Associ-
ation. URL: http://www.hydropower.org/a-
brief- history- of- hydropower (visited on
05/28/2016).

Kiselev, G. S. (1974). “Effect of water inertia in penstocks
on regulating characteristics of hydraulic units”. In:
Hydrotechnical Construction 8.4, pp. 337–341. ISSN:
1570-1468. DOI: 10 . 1007 / BF02406941. URL:
http://dx.doi.org/10.1007/BF02406941.

Modelon AB (2016). Modelon Libraries. Modelon. URL:
http : / / www . modelon . com / products /
modelica-libraries/ (visited on 05/28/2016).

Munoz-Hernandez, German Ardul, Sa’ad Petrous Man-
soor, and D. I Jones (2013). Modelling and control-
ling hydropower plants. London; New York: Springer.
ISBN: 978-1-4471-2291-3. URL: http://public.
eblib . com / choice / publicfullrecord .
aspx?p=973672 (visited on 05/25/2016).

Refurbishment of the Fossár hydro Power Plant (2015).
Verkís. URL: http : / / www . verkis . com /
about - us / news / refurbishment - of -
the-fossarvirkjun-power-plant (visited on
05/28/2016).

Tiller, Michael M. (2016). Modelica By Example. Ed. by
Michael M. Tiller. URL: http://book.xogeny.
com/ (visited on 01/20/2017).

Modelling of a Hydro Power Station in an Island Operation

492 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132483

Periodic Steady State Identification for use in Modelica based AC
electrical system simulation

Martin Raphael Kuhn
German Aerospace Center (DLR e.V.), department of system dynamics and control, Germany

Martin.Kuhn@dlr.de

Abstract
Analysis of dynamic systems is often carried out at
steady state condition. For cyclic systems like rotating
machinery, it is not possible to detect this condition by
simply monitoring the change rate of their variables,
due to their periodicity. This paper focuses on methods
for stationary periodic steady state identification of AC
electrical systems. An overview of relevant methods is
given and mappings of periodic variables to equivalent
stationary variables are discussed. Two new periodic
steady state monitors based on Short Time Fourier
Transformation are proposed. The study was motivated
by the need to identify the steady state condition of an
aircraft electrical network for power quality checks. An
implementation with Modelica tools is demonstrated.

Keywords: periodic systems, steady state
identification, wavelet, FFT

1 Introduction
Testing of power quality criteria of electrical compo-
nents and networks according to industrial standards,
as (MIL-STD-704F,2004), often demands testing in
settled condition. When the data is generated from a
simulation of the physical system, at best, the system
might be initialized in steady-state condition already.
For non-linear switching and periodic systems this con-
dition might not be found easily or only approximately
from alternative representations, as in (Kuhn et
al.,2012). In this case, the time-domain simulation of
the system may converge to the exact periodic steady-
state condition from a start condition, if the system is
internally stable and well damped. The correct estima-
tion of the convergence time becomes crucial if the
evaluation of the quality criterion is part of a closed-
loop optimization of the system itself. Then the time
for simulation to reach steady-state condition, may af-
fect the total time for the optimization process signifi-
cantly. While the convergence rate may be known ana-
lytically for simple systems, generally this is not the
case for arbitrary systems. This chapter shows practical
methods for testing on the periodic steady-state condi-
tion of AC electrical circuits to reduce unnecessary
simulation time. Input signals can be simulation results
or measurements. It is assumed that the differential al-
gebraic equation system or the loosely coupled subsys-

tem of interest is completely observable via the chosen
output.

To demonstrate the requirement, we will use the fol-
lowing example of a small aircraft electrical network in
Figure 1. It was used as part in a loop of an industrial
design process of a generator, whose design parameters
are generated by a foregoing routine (Kuhn et al.,
2012). The generator feeds a mixed AC resistive and
DC 6-pulse switching load. The model simulates
through an initial transient phase, till it reaches peri-
odic steady-state. The design is then tested for confor-
mance with industrial standards on power quality in the
AC distribution line, which is found between the gen-
erator on the left and loads on the right. Power quality
is tested via a Fast Fourier Transformation (FFT) Rou-
tine block.

The fast identification of periodic steady-state is of
wider interest in simulation technique; for example for
the non-linear transfer analysis in Saber (Saber,2016)
or a similar Modelica-based tool (Bünte,2011). Both
record the input/output behavior of a system, where the
input is a frequency sweep signal. Its rate of change is
limited in order to arrive -hopefully- in steady-state at
the output. The sweep rate may need manual tuning for
the specific condition, which may be circumvented by
an automatic steady-state detection.

This paper focuses purely on the detection of the peri-
odic steady-state of systems with output x(t) , which

Figure 1: Simulation model for power quality of a small
aircraft electrical network

nonlinear load 1 - LLratio

starRlLf1

id
e

al
D

io
d

e
1

re
sisto

r1

star1

star2

id
e

al
D

io
d

e
2

spectrum
potentialSensor

inductor1

ca
p

a
cito

r
rc

RfLf

ground

GCU

ground1

ground2

re
si

st
o

r
in

d
u

ct
o

r

constantSpeed

DOI
10.3384/ecp17132493

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

493

can be represented by a superposition of band-re-
stricted time-varying harmonic phasors Χ k (t) . with
base angular velocity ωbase .

x(t)≈∑
k∈K

Χk (t)⋅e j kωbase t , K∈ℤ ,Χ∈ℂ , x∈ℝ (1)

The time variant complex variable Χ k (t) is called
dynamic phasor

Χ k (t)=
1
T ∫

t−T

t

x(ζ)e− j kωe ζ d ζ (2)

. The mathematics can be found for example in
(Demiray,2008). An example of such a system with
time-varying content around distinct frequencies is dis-
played in Figure 2.

This paper is structured as follows: In the following
section the difference between steady-state and peri-
odic steady-state is highlighted. An overview on appli-
cable methods for Steady State Identification is given
in section 3. Section 4 discusses the transformation
from periodic to non-periodic domain by pre-operators.
The main theory of three selected methods for steady-
state detection is presented and tested in section 5. This
is followed by a conclusion. A theoretical investigation
on parametrization of Discrete Fourier Transformation
(DFT) for the purpose of Total Harmonic Distortion
(THD-based steady-state detection is given in the Ap-
pendix.

2 Steady state versus periodic Steady
State Identification

In general, a time-variant system F (x , ẋ ,u)=0 , ex-
cited by input u or autonomous, may show stable-sta-
tionary, unstable-stationary, stable-periodic, unstable-
periodic or chaotic behavior of the state variables and
possibly of the outputs. For non-linear systems, the
system may bifurcate into several possible periodic
steady-state conditions (Schupp,2003). For linear dif-
ferential algebraic systems, a steady-state detection
mechanism may search for the condition

 x(t)−x(t−Δ t)=0 or ẋ=0 (3)

. In practical applications only the detection of a mini-
mum convergence rate ẋ<α1 may be feasible, since a
longer duration of ẋ=0 may not appear because of as-
ymptotic convergence and/or additive noise. In the case
of periodic systems, the steady-state definition has to
be adapted. It is called a periodic steady-state condi-
tion, where consecutive cycles do not deviate, which
means they have an auto-correlation of 1. This can be
expressed by

x(τ)−x(τ−T)=0 ∀τ∈[t−T .. t] (4)

, where the periodicity time constant T replaces the
infinitesimal Δ t in equation 3.

To display the difference between steady-state and pe-
riodic steady-state, Figure 3 shows the output of a very
basic first-order lowpass (PT 1) system, excited by a
unit step at t=0. The system is asymptotically internal
stable and converges to 1. An amplitude of 0.95 may be
seen as quasi steady-state condition, appearing after 3
times characteristic time T.

In contrast to this, the transient of phase A of a three-
phase AC voltage of the aircraft electrical network ex-
ample is plotted in Figure 4. While it is oscillating, at
the same time, it shows a first-order like transient be-
havior of the envelope.

3 Overview of methods
The process of signal-based steady-state detection has
remarkable analogies with the theory of fault detection.
The signal-based fault detection observes the behavior
of a system on the change from its nominal (dynamic)
behavior. Steady-state detection basically observes the
behavior of a system on its change from past behavior.

Figure 2: Fourier spectrum of nonstationary signal, with
spectral content around sin (ωe) , sin (ωe⋅(6±1)) ,

sin (ωe⋅(12±1))

Figure 3: Transient of PT 1 system

Figure 4: Transient of AC voltage of small aircraft
electrical network example (original data)

ω

X (jω)

ωe 5⋅ωe 7⋅ωe0 11⋅ωe 13⋅ωe

Periodic Steady State Identification of electrical circuits

494 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132493

They differ, as fault detectors generally are designed
offline with specific fault data and models; absolute
values on nominal or faulty conditions are known.
Steady-state observers do not necessarily rely on de-
tailed knowledge of the system. Isermann
(Isermann,2006) classifies methods for single signal
fault-detection into methods with “limit or trend check-
ing”, and methods with “signal models”. “Limit and
trend checking” methods are applicable for measurable
absolute values or measures from statistical observers.
Detection by “signal models” include correlation meth-
ods, spectrum analysis and wavelet analysis. Isermann
(Isermann,2006) defines the basic steps of a scheme for
fault detection with signal models, as preparation and
transformation into “signal model“, extraction of rele-
vant measures by “feature generation” and detection of
faults, or by comparison to the nominal behavior in
“change detection”.

Similar to it, steady-state detection can be separated
into the steps:

• “Signal model” preparation, for periodic sys-
tems with removal of oscillation by an opera-
tor: The prepared signal can be any property in
time domain, frequency domain or stochastic
property.

• Application of test on steady-state: The test it-
self is based on the signal model.

• Decision making: the steady-state decision has
to be made. It is very specific to the system,
where noise and additional dynamics super-
pose the potential periodic system and the
threshold has to be set based on prior knowl-
edge.

(additive high-frequency noise is not correlated by def-
inition, and should be filtered out from the original sig-
nal before, by low pass filtering)

For the steady-state detection, the following methods
attracted attention in research in recent years:

The F-like test- developed first by Cao and Rhinehart
(Cao and Rhinehart,1995) - belongs to the class of in-
dex-based change-detection methods1. It relies on sta-
tistical methods to identify steady-state in noisy pro-
cesses. It was tested and expanded on afterwards by
Rhinehart for a multi-variable case (Brown and
Rhinehart,2000). Applications included different pro-
cesses, especially in chemical engineering. Other
works by Kelly and Hedengren (Kelly and
Hedengren,2013) concentrated on slow varying drifts
in non-stationary processes with application to a win-
dowed signal.

Wavelet transformation can be used to analyze charac-
teristics of a specific system and match its specific out-

1 A “F-Test“ is a detector of the change in variance

put patterns. Based on this, Jiang (Jiang et al.,2000) de-
veloped a method for identification of steps, peaks,
noises, abnormal sudden changes and similar for chem-
ical processes and reciprocally steady-state. The tech-
nique is not adapted to on-line steady-state detection.
However, in an independent work, Korbel (Korbel et
al.,2014) developed a steady-state identification for on-
line reconciliation, based on wavelet transform and fil-
tering for real-time data.

THD is a quality criterion, which is a measure of the
distortion of a base oscillation through its harmonics
(multiples). In case where industrial standards demand
testing for a specific maximum THD, the criterion
needs to be evaluated at periodic steady-state condi-
tion. When THD is evaluated repeatedly, observation
of convergence of ΔTHD can be used as a direct indi-
cator of the steady-state condition. This definition is in-
dustrially sufficient for the purpose of testing of THD.
It was proposed in (Kuhn et al.,2015).

A further method for detecting steady-state is to use
auto-regressive exogenous models with exogenous in-
puts (ARX). This method allows the SSI by system
identification, where an auto-regressive model is tuned
from the results of simulation or measurements. It is
not based on detailed knowledge of the system equa-
tions. The identifiability of the system is checked
where singularities in the model matrices appear in
case of steady-state. Based on this singularity, an index
is proposed (Rincón et al.,2015).

From these methods, the “F-like test”, wavelet-based
test, THD-based test, and an adaptation of the THD-
based test in frequency domain will be discussed in de-
tail in the next sections. The first, due to its popularity
and simplicity. The second, as a promising approach
and to test the new Modelica Wavelet library. The THD
criterion and the adapted frequency-based criterion is
chosen, since it relies on the objective criterion di-
rectly. An overview is shown in Figure 5.

All methods are tested for detection of steady-state oon
the small electric on-board network example from Fig-
ure 1.

Figure 5: Overview on applied methods

Signal under Observation

RMS
Transformation

to baseband

Z-1Stochastic
F-like test

Stochastic
F-like test

Fourier
transformation

Wavelet
decomposition

THD

Thresholding

Preparation
of
Signal Model

scaled ΔΔ

Thresholding

Z-1

Thresholding Thresholding

Application
of test

Decision
making

Session 7C: Electrical & Power Systems II

DOI
10.3384/ecp17132493

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

495

4 Mapping of periodic to non-
periodic variables

For AC circuits, the method for steady-state testing has
to be capable of detecting periodic steady-state. Either
by itself, or the signal model preparation has to trans-
form it to an oscillation-free measure. The problem can
be overcome by mapping of the periodic signal to a
non-cyclic equivalent and identification with standard
methods. For a system of type (1), knowledge of a
dominating, excited oscillation can be exploited, to
identify the steady-state condition of the AC voltage
signal. The signals main content is a modulation of a
baseband signal xbb and forced oscillation as

x(t)=ℜ{xbb(t)e jωbase t
} (5)

plus harmonic content at k⋅ωbase , plus uncorrelated
noise. The minimum periodic cycle is the forced
oscillation’s time constant T base=2π/ωbase , 2⋅T base in
case of additive odd harmonics, or arbitrary in case of
non-harmonic content.
Equation (4) is not useful to implement, since the con-
dition is only fulfilled for perfect congruence. Instead,
it can be simplified by using a norm x̆(t) . The steady-
state condition can be identified directly via ˙̆x(t)<ϵ or
via some more advanced methods on x̆(t) , listed next.

The test on steady-state can be seen as testing of the
auto-regression of the signal, separated in intervals of
length T . And it is similar to regression testing of two
signals by the use of norms (e.g. (Pollok and
Bender,2014)). The maximum error norm of consec-
utive periods generates a periodic sampled one-dimen-
sional output:

x̆me [t]=max(‖x(τ)−x(τ−T)‖

‖x(τ)‖)∀τ∈[t−T .. t] (6)

The norm is quite efficient, due to its simplicity. Since
it is a norm on signal amplitude rather than energy, it
will penalize sharp discontinuities and noise.

Similar to this and even more easy to implement, by a
rough knowledge of the period, only peak values
within consecutive periods can be selected. The signal
corresponds to sample-and-hold of the peak values
with sample period T . In aeronautical standards, this
is often called the “envelope”:

x̆e [t]=
^x(t−T .. t)− ^x (t−2T .. t−T)

^x(t−T .. t)
(7)

Only one sample is gained within one interval at maxi-
mum or in case of application to the absolute value, an
additional sample at minimum. Peak values may be
prone to noise as some electronics, as rectifiers, add
high portions of distortion to the high amplitude part of
a voltage wave.

The temporal (time limited) auto-correlation treats
not only minimum and maximum values, but all data
of a period. It normalizes the signal to

˘xauto [t] =

∫
t−T

t

x(τ−T)x*
(τ)d τ

(∫
t−2 T

t−T

|x(τ)|2d τ)
1/2

(∫
t−T

t

|x(τ)|2 d τ)
1 /2

=

∫
t−T

t

x(τ−T)x*
(τ)d τ

(∫
t−2 T

t

|x(τ)|2d τ)
1/2

(8)

This norm is tolerant to noise and time shifts but highly
prone to incorrect estimation on length of period T .
The temporal auto-correlation measure is similar to the
temporal auto-co-variance γyy of stochastic signals. It
is common to think complex or unmodeled processes
as stochastic processes (Oppenheim,1999), which
opens the field of stochastic data analysis for the
problem. Other coherency metrics on spectrum, energy
and time or phase-shift are listed in (Marple and
Marino,2004).

Alternatively the steady-state condition can be seen as
the steady-state condition of the baseband signal. When
the condition of a cycle is known exactly, it can be
identified by one of the following methods:

AC coupled RMS (Root Mean Square): This method is
best known for power supply networks at a fixed fre-
quency of 50 or 60 Hz. It can be calculated as by MIL
704f, where RMS is the “value for one half-cycle mea-
sured between consecutive zero crossings of the funda-
mental frequency component”. Information on har-
monic contents is lost by the integration.

X RMS=√ 1
T
∫

0

T

x(t)2
⋅dt (9)

When the phase angle θ is known, mathematical
transformations to phase-fixed reference system can
be applied (e.g. dq0/Park system or Fortescue transfor-
mation): For simulation, the phase angle is known. For
real electrical systems, for single synchronous genera-
tor fed networks, it can be obtained by measuring a
machines angular position. Without position measure-
ment, the phase can be derived from the AC voltage by
Phase Locked Loops (PLL). A PLL is a control circuit
which generates an output signal in proportion to the
phase difference of a reference signal to a measured
signal. It can be used to adapt the frequency and phase
of an observer to the measured signal (Krause et
al.,2002).

Alternatively, the base band and harmonics can also be
identified by frequency selective filtering: Signals can
be analyzed in the spectral domain, where the base fre-

Periodic Steady State Identification of electrical circuits

496 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132493

quency is usually associated with the spectral content
of maximum amplitude. The frequency spectrum can
be computed as the correlation of the signal with theo-
retically infinite sinusoidal waves at certain frequencies
(Fourier transformation) or the correlation to finite
wave packages at prevailing base frequencies (wavelet
transformation (Mallat,2008)). For wavelet transform,
one has to distinguish between direct application on si-
nusoidal signals and application on the pre-processed
oscillation-free signal. For finite signals, the Fourier
transformation is called Short Time Fourier Transfor-
mation, which can be implemented efficiently using
Fast Fourier Transformation (FFT) (Cooley and
Tukey,1965).

5 Implementation and validation of
tests

In the following section, the selected theories of Steady
State Identification are summarised and the steady-
state monitors are tested through experiments.

5.1 F-like test

The F-like test, by Cao and Rhinehart (Cao and
Rhinehart,1995) is based on statistical measures. The
algorithm tests a signal on showing settled distribution
at an associated level of significance. Possible distribu-
tions are uniform and Gaussian distribution. Measures
are variance between data, moving average value and
variance in the data itself. This method relies on sam-
pled data.

The following steps can be implemented at low compu-
tational effort: First, the sampling vector is filtered by a
filter factor of λ1 .

X f [i]=λ1 X [i]+(1−λ1)⋅X f [i−1] (10)

Where X [i] are sampled data, X f [i] are filtered val-
ues and λ1 is a filter factor. In the second step, a mea-
sure of the variance v f

2 is computed with a moving av-
erage filter factor of λ2 :

v f [i]
2
=λ2(X [i]−X f [i−1])2+(1−λ2)v f [i−1]2 (11)

The unbiased estimate of the variance based on the fil-
tered squared deviation from previous filtered values
var 1 is given by:

var1[i]=(2−λ1)
v f [i]

2

2
(12)

A measure on the second filtered variance estimate δf
2

is calculated based on the filtered square differences of
successive data:

δf [i]
2
=λ3(X [i]−X [i−1])2+(1−λ3)δf [i−1]2 (13)

The formula includes a moving average filter with fac-
tor λ3 . This second variance var 2 is given by:

var2[i]=
δf [i]

2

2
(14)

Finally, the Steady State Identification index R is ob-
tained as the ratio of the two variances:

R=
(2−λ1)v f [i]

2

δf [i]
2 (15)

While R is a continuous measure, decision making
needs tuning of a threshold R t to distinguish between
steady-state R<R t and non steady-state R>R t . Filter
values have to be tuned to match the time constants of
the system under observation. Some more theoretical
considerations on correct and incorrect identification of
steady-state are given in (Cao and Rhinehart,1995),
with respect to different types of error signals.

In a first trial, the F-like test was applied directly on the
sinusoidal phase voltage. No useful results could be
gained (not plotted), which can be explained by the
strong correlation of the sinusoidal shaped signal.
Therefore, isolation of the signal of interest had to be
conducted first. For this example, simulation results
did not show significant difference between several
methods of RMS detection. Those are transformation
by phase angle, integration over one period with start
and end conditions identified by zero crossing detec-
tion, and peak-value detection. Figure 7 (top plot)
shows the source signal of the test. The AC voltage is
mostly settled after 0.1 seconds simulation time with
an additional step of 10% at 0.3 seconds.

The influence of different types of sampling, and there-
fore different dominating noise on identification index
R, can be seen in Figure 6. The plots present the results
of the F-like test, applied on the same source data but
with regular sampling intervals 6f and 24f, and irregu-
lar sampling around 6f and around 25f. The lambda
factors were tuned manually.

It can be clearly seen that the quality of the results di-
verge on a significant scale. The results based on the 1f

Figure 6: “R” index of F-like test for several sampling
rates; input signal see Figure 7, top diagram

Session 7C: Electrical & Power Systems II

DOI
10.3384/ecp17132493

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

497

sampling show some slow transient behavior, which is
hard to interpret. In contrast, 6f and 24f sampling
clearly identify changes. The R statistics show low
pass behavior at steps of the input signal. A decision
value on steady-state can be set but needs to deal with
the chattering around the boundary value R t .

5.2 Wavelet test

In wavelet analysis, the one-dimensional time variant
input signal is decomposed into time variant subspaces
with bandpass characteristics. By iterative wavelet
multi-level decomposition, the original signal f (t) is
projected into a sequence of nested subspaces; each
subspace is characteristic for a spectral content, similar
to the indices of the Discrete Fourier Spectrum:

f (t)=∑
i∈ I j

c J , i φ J , i+∑
j=1

J

∑
k∈k1

d j , k ψ j , k (16)

The first sum represents low frequency content, while
the right part represents higher frequency content. The
wavelet spectrum originates from iterative bisection of
the high-frequency signal up to scale J . ψ j(t) are
scaled mother wavelets which define orthogonal
spaces. Filtering of a signal corresponds to variation
and limiting of its wavelet coefficients c j , i and d j , i .
Adaptive methods for filtering of Gaussian noise exist
in many wavelet toolboxes. The filtered signal in the
time domain can be restored by inverse transformation
of the conditioned data. Formulas for discrete wavelet
transformation are similar.2

Similar to the F-like test, this method needs separation
of the fundamental of the amplitude- modulated wave
first. While this can theoretically be done by an addi-
tional wavelet transformation, there is no benefit com-
pared to the RMS method presented before. Next, the
signal can be de-noised if necessary. Jiang (Jiang et
al.,2003a) proposes to separate the baseband signal into
the desired process trend T(t) and process noise N(t),
by wavelet multi-level decomposition, filtering and re-
construction. Any other type of continuous or discrete
filters may be used equivalently. Although the signal
will suffer from a frequency dependent group delay by
the filter, for steady-state detection, this can be seen as
negligible compared to the typical time scales.

The wavelet-based detection itself uses the fact that a
wavelet transform Wf (t) of a signal f (t) is propor-
tional to the time derivative of the signal smoothed by
the scaling function φ (see wavelet theory for details):

W f (t)=2
d
d t

(f∗φ)(t) (17)

Furthermore, by the wavelet transform of the wavelet
transform WWf (t) one gets an analogon to the sec-
ond-order derivative. Analogue to assumption of a

2 For background on wavelet analysis, one may see Debnath (Debnath
and Shah,2002), section “Wavelet bases and Multiresolution Analysis”.

steady-state condition as a local extremum where first
and second time derivative being zero, single and dou-
ble wavelet transform can be applied. At a (local) mini-
mum, the conditions

Wf (t)<αw 1 , d(Wf (t))/dt<αw2 . (18)

must hold true. Similarly, for steady-state detection in
the time domain, specific scaling of the α would be
necessary. Where an ideal temporal derivative function
is unspecific of the frequency and a Fast Fourier Trans-
formation based spectral decomposition lacks informa-
tion on the temporal variation, a wavelet can be
adapted to the “characteristic scale”. This means, the
frequency of the wavelet is chosen close to the charac-
teristic response time τ of a system which acts as a
kind of a bandpass filter. This can be realized by the
sampling frequency directly, or iteratively by fragmen-
tation into a wavelet spectrum with narrower bands of
equation (16) which is called multi-resolution repre-
sentation or alternatively Jiang (Jiang et al.,2000) calls
it multi-scale process data analysis.

The steady-state index β(t) is calculated from equa-
tions (19-21), where θ(t) is a factor of combined con-
tributions from the first and second order wavelet and
γ(t) is an amplitude-limiting signal operator on the

second order wavelet transform.

θ(t)=|Wf (t)|+γ(WWf (t)) (19)

γ(WWf (t))={
0 ,|WWf |≤T W

(|WWf|−T w)/2⋅T W ,|WWf|∈{T W ,3⋅T w}

1 ,|WWf|≥3⋅T W

(20)

β itself calculates as a threshold comparator from the
contributions factor θ(t) , with smoothed transient
from 0 to 1.

β(t)={
0 ,θ(t)≥T u

1
2 [cos(θ(t)−T s

T u−T s

⋅π)+1] ,T s<θ(t)<T u

1 ,θ(t)≤T s

(21)

Where T s =standard deviation of Wf , T u = 3⋅T s , T w

=median (WWf). In β , “zero” indicates unstable
status and “one” steady-state condition. For details, see
(Jiang et al.,2003b) and for advanced end-of-steady-
state-detection see (Korbel et al.,2014).
(Jiang et al.,2003b) demonstrates steady-state detection
but does not focus on online implementation. It may
look straightforward to perform the analysis continu-
ously on a window of past samples. Practical imple-
mentations for this thesis showed the correct choice of
the limits T s , T u and T w often fails when consider-
ing only one window. The median especially moves
quite arbitrarily. Therefore, limits are calculated non-
causally by using the full data set. This proves the con-

Periodic Steady State Identification of electrical circuits

498 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132493

siderations of Korbel (Korbel et al.,2014) who pro-
poses to choose the limits from past measurements.

To implement the wavelet test, the Modelica wavelet
library (Gao et al.,2014) was used. The library is simi-
lar to MATLAB’s wavelet toolbox. Since the Modelica
wavelet library does not support online computation
yet, this study is an offline demonstration only. The li-
brary can be developed further for online computation,
if issues regarding the initialization of buffers, data
storage and allocation of vector sizes of intermediate
variables are solved. Furthermore, the plotting relies on
Dymola-specific Modelica scripting.

The test makes use of the interpolation routine, defini-
tion of a wavelet function and the discrete wavelet
transform:

Wavelet.General.interpL()
Wavelet.Families.wavFunc(Wavelet.Records.wa
vletDefinition());
Wavelet.Transform.dwt());
Results of the test are displayed in Figure 7: From the
original signal, the RMS value is calculated via Park
transformation using generator angular information.
The RMS value is processed by first and second order
wavelet transformation. They show a clear relationship
to the temporal derivatives. β is calculated via formu-
las 19-21. The first steady-state condition is detected at
around 0.05 seconds. This assumption is based on the
limits T s , T u and T w and may be changed by differ-
ent settings.

In summary, the wavelet-based method identifies the
steady-state condition of the base harmonic well for the
example. The signal can not be processed directly but
has to be transformed to a non-periodic representation
(RMS). The time scale for the wavelet transform and
the limits need to be adapted to the model, based on
known prior results. The computational efficiency has
to be questioned critically for the wavelet transform. It
may be improved in a future, real-time capable imple-
mentation of the Modelica library, by use of fast wave-
let algorithms.

5.3 Discrete Fourier transformation based THD
criterion

In (Kuhn et al.,2015) a Total Harmonic Distortion
based steady-state detector was proposed. Its “signal
model” relies on the Fourier spectrum. According to
(Isermann,2006), Fourier spectra are well suited for
identification of periodic, stochastic, and non-station-
ary properties, and therefore for periodic Steady State
Identification.

In a first step, a vector of sampled data of the input sig-
nal is decomposed into a discrete amplitude-frequency
spectrum by a short time Discrete Fourier Transform
algorithm. THD is calculated from the spectrum by 3

3 e.g., IEEE Standard 519-2014 (IEEE,2014)

Figure 7: Wavelet based test, results

Session 7C: Electrical & Power Systems II

DOI
10.3384/ecp17132493

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

499

THD=√∑h=2

M

A [h⋅f base]
2

A [f base]
2

(22)

It is a one-dimensional norm on the M−1 amplitudes
of the harmonics, which is normalized by the ampli-
tude of the base frequency. The phase information and
DC component is not considered.

Finally, the steady-state test is designed as a normal-
ized “trend checking”, based on ΔTHD :

yTHD=
|THD(t x)−THD(t x−N⋅p)|

max(THD ,ϵ)

yTHD <
?

δ⇒ steady state

(23)

The criterion relies on consecutive evaluations of the
spectra at times t x and t x+ΔT . Each evaluation is
based on data sets of length N [s] . The time delay be-
tween the two THD windows is defined in proportion
p of the data set length, where an overlap of 50% is

proposed for the data sets. Theoretical consideration
are derived in section 7. ϵ prevents division by zero
and influence of noise at small values of THD . While
THD could be evaluated at every sampling interval, for
efficiency reasons, the Modelica algorithm is only
evaluated every N⋅p . When the frequency resolution
is set to 1/r⋅f base , the total data set length is
(1+ p)⋅r⋅T base and evaluated no later than p⋅r⋅T base af-

ter an event. Example: r=4 p=1/2 →criterion evalua-
tion not later than in 2⋅T base , based on data set length=
6⋅T base .

The main features of the implementation by the Model-
ica block “WithinAbsoluteFFTdomain_THD” were al-
ready discussed in (Kuhn et al.,2015). It is a big advan-
tage of this method, that the AC signal can be taken di-
rectly as an input. There is no need for pre-processing
as RMS or transformation to base band. While the ex-
pected base frequency should be given roughly, the
Modelica-based algorithm can tune itself to the domi-
nating peak in the nearby-spectrum. Also, the block
features the option to use the criterion as an indicator
for termination of simulation; the THD is delivered as
a final result at this steady-state condition. No extra
FFT computation is necessary for this, as the computa-

tion of THD and THD-based steady-state criterion rely
on the same FFT data.

The THD-based criterion was tested with the small grid
example. Here, the criterion could NOT identify
steady-state condition. This shortcoming can be better
understood from the plot of the THD in relation to
V rms . in Figure 8, rather than the criterion itself.

As can be seen in the upper plot, the THD is not corre-
lated with the main trend, even at steps. This is a spe-
cial property of the small grid example. There exist
higher harmonics because of the rectifier, but they are
in fixed proportion to the base harmonic with fast and
well damped filter dynamics on the DC side. There-
fore, normalization of THD by the base amplitude pre-
vents a change of the criterion in this case. Furthermore
it can be proven easily, it gives the same THD if a Δ
on one harmonic amplitude compensates for the ampli-
tude on other.

THD(t 1)=√A1
2
+A2

2
+...

Ab

=THD(t 2)=√ (A1+Δ1)
2
+(A2−Δ2)

2
+...

Ab

(24)

With proper choice of Δ1 and Δ2 . Strictly speaking,
for the THD identification according to industrial stan-
dards, no “real” steady-state condition would be neces-
sary here, as the THD does not change. But since it is
not a proper indicator, it is not generally recommended.
But it can be adapted to overcome the obstacles as
shown next.

Adapted discrete Fourier Transformation-based crite-
rion

In order to overcome the problems of the THD-based
steady-state monitor, the new “THD-similar” criterion
is proposed:

yTHD similar=

max(|A [h⋅f base [t x]]|
2
−|A [h⋅f base [t x+ΔT]]|

2

|A [f base(t x)]|
2
+ϵ⋅|Anom|

2)
∀h∈[1.. M] ,

yTHD similar <
?

δ⇒steady state

(25)

It is also based on the DFT spectrum and is inspired by
the THD criterion, maximum error norm and variation
in base amplitude. In contrast to THD, also the first
(=base) harmonic is considered. An educated guess of a
factor ϵ of the nominal base amplitude Anom prevents
division by zero and smooths the result. The decision
threshold δ has to be set based on knowledge from
past results.

The criterion and parameterization of FFT is discussed
in detail in section 7. It is shown, that this criterion is
well suited for identification of steady-state of dynamic

Figure 8: Investigation on spectrum: THD vs. signal (FFT
window 0.017s)

Periodic Steady State Identification of electrical circuits

500 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132493

systems (1), where unmodeled dynamics are treated as
uniform noise.

The implementation of the function is based on Within-
AbsoluteFFTdomain_THD, with the same parameters
unless stated otherwise. It shares the benefits with the
THD approach, with little simulation overhead through
the efficient FFT algorithm. As soon as steady-state is
detected, the test on conformance with the standards on
THD can be performed. The quality test is based on the
same FFT data without need for an additional FFT cal-
culation. Results analogue to Figure 6 are shown in
Figure 9.

It can be seen that the steady-state condition is found
reliably, with proper detection of the initial transient
period. The change in amplitude at 0.3 seconds is de-
tected shortly after the event.

Lastly, all methods are tested with an example based on
hardware tests. The top plot in Figure 10 shows the
measurement data of a generator connected to an elec-
trical-driven Wing Ice Protection System (WIPS). The
load is increased at 0.15seconds. It can be seen that the
F-like criterion detects the event, but the output is
noisy although care was taken for proper parameteriza-

tion. In contrast to this, the beta parameter of wavelet-
based test and THD and THD-similar criterion detect
the event reliably, with high signal-to-noise ratio.

6 Conclusion
In this paper, procedures for Steady State Identification
were tested with an AC electrical circuit, with domi-
nant main amplitude and harmonic distortion, and a
second example. Both methods from literature demand
a mapping of the periodic to non-periodic signals. The
F-like test showed good performance and short delays.
However, it was difficult to parameterize, and detection
was weak. The wavelet-based test was very successful,
but computational overhead and delay is high. Alterna-
tively, an experiment based on a variation of THD was
tested. The monitor can treat the periodic signal di-
rectly, at medium computational overhead. The delay is
high but it can be seen as not critical, since evaluation
of THD in steady state is requested. This criterion was
not able to detect a transient period, where the signal
had a fixed ratio of the base amplitude and harmonics.
The THD-similar criterion was designed to also con-
sider the base. Tests were very promising, at medium
efficiency and medium delay. Due to its generality and
efficiency, this method is proposed as the best choice
for the application. The results are summarized in Ta-
ble 1. Any generalization of the methods demands an
investigation with more examples.

Test Quality of
SSI for the
examples

Pre-operator
needed for

AC

Delay Computation
Efficiency

F-like bad yes Short high

Wavelet based Very good yes high low

THD criterion Only partial no Medium-high Medium, low if
THD is needed

THD-similar
criterion

good no Medium-high Medium, low if
THD is needed

Table 1: Evaluation matrix of proposed methods

Acknowledgements
Some preliminary studies were performed together
with Mr. Mohamed Jmari, who did an internship at
DLR as part of his studies at ENSMM, Besançon,
France.

Valuable input was given by K. Chong.

7 Appendix: parametrization of FFT
and derived measures for detection
of steady-state condition

The following section builds on the results in (Kuhn et
al.,2015) and goes into deeper discussion on the pa-
rameterization of the Discrete Fourier Transformation
needed for THD evaluation, and their influence on
steady-state detection. Use of Discrete and Fast Fourier
Transformation itself is not discussed here but (Kuhn et

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40

0.00

0.04

0.08
crit [] delta []

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28 0.32 0.36 0.40

0

200

simulation time [s]

V_rms[V]

Figure 9: Investigation on new steady-state criterion vs.
signal (FFT window 0.017s)

Figure 10: Identification of steady-state, based on real test
data

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28
-100

0

100
Generator, phase current

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28

2

4
F-like test

0.00 0.04 0.08 0.12 0.16 0.20 0.24 0.28

0.0

0.2

simulation time [s]

THD test THD similar test

0 25 50 75 100 125

0

1

Points

wavelet based test

Session 7C: Electrical & Power Systems II

DOI
10.3384/ecp17132493

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

501

al.,2015) gave a practical approach to the generation of
Fourier spectra in Modelica.4 Computation of FFT
might sound numerically demanding, but efficient rou-
tines are available as public domain software, or as
proprietary software down to chip-optimized routines
from Intel and AMD. Cyclic FFT can evaluate the FFT
at each sampling step, where results from earlier com-
putations can be reused rather than freshly computated.
For practical reasons, one may not evaluate the FFT
and THD at every sample, since the convergence of the
signal may happen within some AC periods, but not
within some sampling intervals.

The FFT algorithm for use by THD calculation is well
parameterized by

• The expected base frequency f base and num-
ber of harmonics demanded nharmonics ; the
maximum frequency in the spectrum f max , FFT

needs to be well above the highest treated har-
monic: f max , FFT>nharmonics⋅f base , where sample
frequency f s=1 /T s=2⋅f max ,FFT

• The type of window function, (e.g. rectangu-
lar, Hamming or Butterworth)

• The window length N=ns⋅T s=1 / f resolution ,
with the spectral resolution f resolution and the
number of sample points ns

(proper anti-aliasing by a low-pass filter is assumed).

“Windows” transfer the theoretical unlimited data set
to finite length by selection of N samples, where the
signal is multiplied by the window function before
DFT. Such a window function starts near or at zero,
then increases smoothly to a maximum at the center of
the time series and decreases again (see Figure 11 for a
Hamming window). The theory of DFT implicitly pos-
tulates that the input is periodic, where any waveform
must repeat itself after the window of sampled signals.
This means, for signals with sinusoidal content, the
Fourier spectra of temporal consecutive windows coin-
cide: if the windows are of length l p⋅T p , and time
shifted by r p⋅T p ; with arbitrary integer numbers l p

and r p , and wavelength T p for each sinusoidal con-
tent p .

4 In the meantime the underlying FFT algorithm found its way into the
Modelica standard library 3.2.2 as tool independent implementation
“Modelica.Math.FastFourierTransform.realFFT()”

In the following, the properties of the spectral analysis
are discussed with the purpose of steady-state identifi-
cation. For better understanding, Figure 12 shows two
spectra of the voltage transient of the small aircraft
electrical network example: The amplitudes spectrum
on the initial transient phase (red) differs from the
spectrum of the settled phase (blue) in amplitude and
distinctiveness of the peak (a sinusoidal oscillation of
infinite length would result in a distinct Dirac impulse).
The example shows that the spectra clearly differ and
can be used for distinction of steady-state and non
steady-state.

The spectrum can be affected by:

• a) Smearing of peaks, from non-periodicity
(energy conservation by Parseval’s theorem)
or mismatch of period by window length,

• b) Spectral leakage, from convolution of the
spectrum Χ by the window’s spectrum W

• c) Band restricted variation and smearing of
peaks, from unmodeled dynamics

Case a) might be used as an indicator for the variation
of the wavelengths, where non-integer l p distort the
spectrum. This is not recommended. The exact finding
of the wavelength or phase information is highly prone
to errors. Instead, the discontinuity can be removed by
application of a non-rectangular window (Henning
etc.)

Case b) can be seen a requirement on the shape and
length of the window function. For better understand-
ing, the effect of windowing is demonstrated in Figure
13. It shows the windowing the input signal Χ (grey
peaks) by “rectangular” window (blue) and a “flattop”
window (green). The width of the window in frequency
domain is indirectly proportional to its length in time
domain. The window type itself is characterized by the
peak flatness (3dB bandwidth) and peak level of the
sidelobes (see overview of window types in (Heinzel et
al.,2002)). Figure 11: Hamming window

50 100 150 200
0

0.2

0.4

0.6

0.8

1

Samples

A
m

pl
itu

de

Time domain

0 0.2 0.4 0.6 0.8
-100

-50

0

50

Normalized Frequency
(x π rad/sample)

M
ag

ni
tu

de
 (

dB
) Frequency domain

Figure 12: Voltage spectrum of small aircraft electrical
network example, with dominant signal

sin (2⋅pi⋅360 Hz) ; blue: spectrum of period [0..0.2s],
red: spectrum of period [0.2..0.4s],

0 1000 2000
-100

0

100

200

300

400

A
m

pl
itu

de

Frequency in [Hz]

Periodic Steady State Identification of electrical circuits

502 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132493

The convolution of the window with the signal in fre-
quency domain is:

Y (e j ω
)=

1
2 π

∫
−π

π

Χ(e jθ
)W (e j(ω−θ)

)d θ (26)

The following requirements result, to distinguish tight
steady-state and wider non steady-state spectra Χ of a
signal of type (1):

1) The DFT has to resolve the individual base-
band signals of the spectrum, without overlap-
ping caused by the window; (e.g. in Figure 13,
the adjacent blue wave packs shall not merge).
The window type and length ns⋅T s have to be
chosen with focus on their broadening and
height of sidelobes.

2) The steady-state and non-steady-state con-
dition in the basebands of Χ , need to have
distinguishable amplitudes in discrete Y as
well: The discretization of (26) at a given sam-
pling rate f s results in

Y [k]=Y (e j ω
)|ωk=(2π/ N)k

=
1

2 π
∫
−π

π

Χ(e j θ
)W (e j(ω−θ)

)d θ|
ωk=(2π/N)k

,

k=0.. N−1

(27)

2) is similar to 1), but includes a further demand:
Y [k] may not be undifferentiated for the shapes of Χ

with the same local area c:

∫
(2π/N)(k−1/2)

(2π /N)(k +1/2)

Χ(e j ω
)dω=c (28)

. This can be the case with flat top windows which
makes them not favourable for the purpose of
identification of band restricted disturbances: They
exhibit broad peaks, with 3dBwidths starting from 2.9
bins. This gives them an approximate characteristics of
W (e jω

)=1 in the interval around a discretized angular
velocity ωk=(2 π/N)k±1 /2 (called “bin”). This
certainly has benefits for the correct identification of

amplitudes, in case of a frequency mismatch of signal
and discretized frequency; but overlapping and
visibility of narrow banded effects had to be prevented
by high spectral resolution and therefore be paid by
large window lengths.
Case c) is by wide the most interesting effect. Steady
-state identification can be based on prior knowledge,
with measures from a single spectrum. Measures are
the amplitudes of the main peaks, or their (3dB)
widths, or their amplitude to width ratio, or the ratios
of the main peaks. Or it can also be based on the
temporal change of these measures. For this work, we
assume there is little information on the spectrum
given. Furthermore, there is no need to tune the
algorithm for a special spectral shape, since any
distinct change is seen as non-periodic condition.
Instead, a measure is proposed based on the variation
of the noise from unmodeled dynamics.
In the 1970s a method called “Welch’s method of
averaging modified periodograms” was developed to
improve the accuracy of periodograms. Periodograms
are estimates of the spectral density of a signal. In this
context, “modified” means the window is not of type
“rectangular”. According to (Oppenheim and
Schafer,1998), the estimate r , of a sequence of K
periodograms is given by

I r (ω)=
1

N U
|Y r(e jω

)|
2 (29)

, where estimates are based on non-overlapping data
segments of length N , which are taken from a total
data set length Q by a window. The correction factor
U normalizes the amplitudes of the windows (if not
already included in Y r):

U=
1
L
∑
n=0

N−1

(w[n])2 (30)

Averaging of the K estimates results in the averaged
periodogram

Ī (ω)= 1
K
∑
r=0

K−1

I r(ω) (31)

, respectively

Ī [k]= 1
K
∑
r=0

K−1
1

N U
|Y r[k]|

2
(32)

of a discrete spectrum. In case the properties of the
signal remain stationary, and noise is additional and
uniformly distributed, the variance of Ī (ω) is reduced
by a factor of 1/K (Heinzel et al.,2002). Welch
(Welch,1967) proved that other types of windows may
be used with similar reduction in variance (modified
periodogram). Also he found, that HALF-overlapped
windows (see Figure 14) reduce the variation in the
spectral components approximately by an additional
factor of 2, if this increases the number of windows on
the data. More than 50% overlap usually gives no
additional benefit, since the cross-correlation of the
windows grows. Detailed considerations on the optimal

Figure 13: Influence of windowing and sampling

Χ(jω) (grey): Dirac peaks in continuous Fourier
domain, e.g. from sine and cosine

Y (jω) (blue): convolution of “rectangular” window
with Χ(jω)

Y (jω) (green): convolution of “flattop” window with
Χ(jω)

ω
ωe 5⋅ωe 7⋅ωe0 11⋅ωe 13⋅ωe

Session 7C: Electrical & Power Systems II

DOI
10.3384/ecp17132493

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

503

usage of the information in relation to window overlap,
are summarized in (Heinzel et al.,2002). The author
lists 33 types of windows with amplitude flatness and
power flatness in relation to overlap correlation.
Results clearly show, that an overlap of 50% is a good
choice for all windows except the “flat top” windows.
By Welch’s method it is possible to get better, unbiased
estimates of the spectrum, and therefore better inputs
for THD calculation. Additionally, with the data of the
periodogram (32), the standard deviation of the
estimate can be computed with little extra effort. It is
possible to construct an F-like test upon these
measures, where transition to steady state can be
associated with decreasing noise, and therefore
decreasing standard deviation. This is not
recommended since the large data vector would effect
a substantial delay in the steady state detection.
Instead, an indicator named `randomness' (Heinzel et
al.,2002). is more applicable. It is the ratio of the
standard deviation to the averaged estimate of the
signal, that dominates the frequency bin under
consideration. “Randomness” is near unity for
stochastic signals such as noise, and small for coherent
signals such as sinusoidal wave:

‘ randomness ’=
σ(Ī [k])
E(Ī [k])

(33)

This “randomness” criterion is proposed as base of the
THD-similar steady-state detector. Since reduction of
delay is of highest interest, the set of input data must be
kept short. This directly results in a number of 2
windows, with an overlap of 50% (more windows
might be used to filter noise). The choice of only two
windows transforms the σ(Ī [k]) operator into a
Δ(I [k]) operator. Δ(I [k]) is evaluated per “bin” [k]

. Since any variation can be seen as “non steady-state”,
it is sufficient to map the data vector to a single value
by a maximum norm. (Euclidean norm might work as
well, with smoother output). The criterion can be made
less prone to noise if the variances [k] are normalized
by the expectation value of the main amplitude, rather
than the expectation value [k]. This results in

yrandomness=max(|A [k [t x]]|
2
−|A [k [t x+ΔT]]|

2

|A [kbase(t x)]|
2)∀ k

(34)

The SSI delay needs to be kept to a minimum, where
delay is proportional to the window length, which in
turn is proportional to the resolution of the DFT
spectrum. The minimum delay is attained, when each
band restricted variation is included by one bin each,
but the window is not “flat top” whilst the resolution is
high enough to prevent overlap with the adjacent
harmonic by the window. Since we assume that all
non-steady-state-caused distortion is centered around
the base-frequency and the harmonics, the set of all k
in criterion (34) can be limited to all bins which
represent a harmonic of f base . With the usual notation
of expressing the number of the bins by their
equivalent frequency, the k s in (34) are replaced by
k=h⋅f base , with h=[1.. M] . Inserting an additional ϵ

in the denominator to prevent division by zero and
influence of noise directly results in

yTHD−similar=

max(|A [h⋅f base [t x]]|
2
−|A [h⋅f base [t x+ΔT]]|

2

|A [f base(t x)]|
2
+ϵ⋅|Anom|

2)
∀ h∈[1.. M]

(35)

The windows of type Bartlett, Hamming or Hanning
are especially recommended due to their small 3dB
peak width of 1.2736,1.3008 and 1.4382 bins. For
these windows the resolution of the spectrum should be
at least 1/3⋅f base to prevent overlap.

Figure 14: Segmented signal, with three windows and
50% overlap

overlap

w
in

do
w

Periodic Steady State Identification of electrical circuits

504 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132493

References

Bünte, T.. Recording of Model Frequency Responses and
Describing Functions in Modelica, Proceedings of the 8th
International Modelica Conference , 2011.

Brown, P. R. and Rhinehart, R. R.. Demonstration of a
method for automated steady-state identification in
multivariable systems. Hydrocarbon processing 79:79-83,
2000.

Cao, S. and Rhinehart, R. R.. An efficient method for on-line
identification of steady state, 5:363 - 374, 1995.

Cooley, J. W. and Tukey, J. W.. An algorithm for the machine
calculation of complex Fourier series. Math. Comput.
19:297-301, 1965.

Debnath, L. and Shah, F. A.. Wavelet transforms and their
applications. : Springer, 2002.

Demiray, T.. Simulation of Power System Dynamics using
Dynamic Phasor Models. Ph.D. thesis, ETH Zurich, 2008.

Gao, J., Ji, Y., Bals, J. and Kennel, R.. Wavelet library for
Modelica, Proceedings of the 10th International Modelica
Conference; March 10-12; 2014; Lund; Sweden , 2014.

Heinzel, G., Rüdiger, A., and Schilling, R.. Spectrum and
spectral density estimation by the Discrete Fourier
transform (DFT), including a comprehensive list of
window functions and some new at-top windows.. , online.
http://www.rssd.esa.int/SP/LISAPATHFINDER/docs/Data
_Analysis/GH_FFT.pdf., 2002.

IEEE. Recommended Practice and Requirements for
Harmonic Control in Electric Power Systems. IEEE Std
519-2014 (Revision of IEEE Std 519-1992) :1-29, 2014.

Isermann, R.. Fault-diagnosis systems: an introduction from
fault detection to fault tolerance. Springer (Ed.). : Springer
Science & Business Media, 2006.

Jiang, T., Chen, B. and He, X.. Industrial application of
Wavelet Transform to the on-line prediction of side draw
qualities of crude unit. Computers & Chemical
Engineering 24:507-512, 2000.

Jiang, T., Chen, B., He, X. and Stuart, P.. Application of
steady-state detection method based on wavelet transform.
Computers & Chemical Engineering 27:569 - 578, 2003b.

Kelly, J. D. and Hedengren, J. D.. A steady-state detection
(SSD) algorithm to detect non-stationary drifts in
processes. Journal of Process Control 23:326-331, 2013.

Korbel, M., Bellec, S., Jiang, T. and Stuart, P.. Steady state
identification for on-line data reconciliation based on
wavelet transform and filtering. Computers & Chemical
Engineering 63:206-218, 2014.

Krause, P. C., Wasynczuk, O. and Sudhoff, S. D.. Analysis of
Electric Machinery and Drive Systems. : WileyBlackwell,
2002.

Kuhn, M. R., Otter, M. and Giese, T.. Model Based
Specifications in Aircraft Systems Design, 11th
international Modelica Conference , 2015.

Kuhn, M. R., Rekik, M. and Bals, J.. Modelling and Use of
an Aircraft Electrical Network Simulation for Harmonics
Consideration in Generator Design, SAE Technical Paper ,
2012.

Mallat, S.. A wavelet tour of signal processing: the sparse
way. : Academic press, 2008.

Marple, S. L. and Marino, C.. Coherence in signal
processing: a fundamental redefinition, Signals, Systems
and Computers, 2004. Conference Record of the Thirty-
Eighth Asilomar Conference on 1:1035-1038 Vol.1, 2004.

US Department of Defense. Aircraft electric power
characteristic.
http://www.wbdg.org/ccb/FEDMIL/std704f.pdf, 2004.

Oppenheim, A. V.. Discrete-time signal processing. : Pearson
Education India, 1999.

Oppenheim, A. V. and Schafer, R. W.. Zeitdiskrete
Signalverarbeitung. : Oldenbourg Wissenschaftsverlag,
1998.

Pollok, A. and Bender, D.. Using Multi-objective
Optimization to Balance System-level Model Complexity,
Proceedings of the 6th International Workshop on
Equation-Based Object-Oriented Modeling Languages
and Tools :69-78, 2014.

Saber. Integrated Environment for Physical Modeling and
Simulation. Synopsys, I.,
www.synopsys.com/prototyping/saber., 2016.

Schupp, G.. Numerische Verzweiungsanalyse mit
Anwendungen auf Rad-Schiene-Systeme. Ph.D. thesis,
Universität Stuttgart, 2003.

Welch, P.. The use of fast Fourier transform for the
estimation of power spectra: A method based on time
averaging over short, modified periodograms. IEEE
Transactions on Audio and Electroacoustics 15:70-73,
1967.

Session 7C: Electrical & Power Systems II

DOI
10.3384/ecp17132493

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

505

506 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Discrete-time models for control applications with FMI
Rüdiger Franke1 Sven Erik Mattsson2 Martin Otter3 Karl Wernersson2 Hans Olsson2

Lennart Ochel4 Torsten Blochwitz5
1ABB, ruediger.franke@de.abb.com, 3 DLR, martin.otter@dlr.de,

2 Dassault Systémes, {svenerik.mattsson, karl.wernersson, hans.olsson}@3ds.com,
4 Uni Linköping, lennart.ochel@liu.se, 5 ESI ITI, torsten.blochwitz@esi-group.com

Abstract

The paper proposes an extension of FMI 2.0 for the rig-
orous treatment of discrete-time models. This includes
the introduction of discrete-time states, the declaration
of clocks in the model description and an extension of
the calling interface for the external activation of clocks
by an importing environment.
The synchronous discrete-time extension enables for the
first time the synchronization of FMUs with the environ-
ment and with other FMUs. It specializes the existing
generic event mechanism of FMI 2.0 and maps to syn-
chronous features of Modelica.
Discrete-time FMUs are needed for the generation of
controller code from functional models. This paper out-
lines different use cases, including a simple PI control-
ler, feed forward control with a nonlinear inverse model
and nonlinear model predictive control.
The FMI change proposal FCP-001 and the Modelica
change proposal MCP-0024 describe the proposed ex-
tensions in more detail. Test implementations exist in the
simulation tools Dymola and OpenModelica and in the
importing optimization solver HQP. The use cases given
in this paper served for further refinement of the change
proposals and the test implementations.

Keywords: Modelica, Synchonous modeling, Inline Inte-
gration, Model-based Control, Nonlinear Inverse
Model, Feed Forward Control, NMPC.

1 Introduction

Control systems are composed of interconnected control
blocks that must synchronize with each other and with
real time. This requires precise time event handling and
discrete states.
Modelica 3.3 extends the scope from a language primar-
ily intended for physical systems modeling to modeling
of complete systems. In particular, new synchronous
language primitives were introduced for increased cor-
rectness of control systems implementation (Elmqvist et
al, 2012).

Version 2.0 of the FMI standard omitted precise time
event handling. The design was considered complicated
at the time of the release of FMI 2.0 since several aspects
have to be considered (Blochwitz et al, 2012):

• The synchronous features of Modelica 3.3
should be supported.

• FMI should also be useable by tools that do not
support synchronous time event handling.

• The time event handling is to be defined in a
way that allows backward compatible exten-
sions.

This paper discusses the progress made recently. The
work resulted in a new version of the FMI change pro-
posal FCP-001 (Otter et al, 2016) and in the Modelica
change proposal MCP-0024 (Franke, 2016). This paper
summarizes the change proposals, provides use cases
and investigates examples using test implementations in
the simulation tools Dymola and OpenModelica and in
the optimization solver HQP (Franke and Arnold, 1997).

2 Synchronous Modelica

Modelica has always supported continuous-time varia-
bles and discrete-time variables defined as piecewise
continuous and piecewise constant functions of time, re-
spectively. Both may change discontinuously at time in-
stants, so called events. Events are treated at runtime.

The synchronous features of Modelica 3.3 introduce a
new Clock type. Clock variables c(tk) are special discrete
variables that are active (are ticking) at particular time
instants, see Figure 1.

Figure 1: Clock variable c and clocked variable r

time t
t0

 t1
 t3

r(tk)

t2

c(tk)

DOI
10.3384/ecp17132507

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

507

A clocked discrete-time variable r(tk) is associated with
exactly one clock. This enables the partitioning of a
model into sub-models for each clock at translation time.
A clock defined for one variable of a partition automati-
cally propagates to all other variables of this partition.
This enables generic discrete-time models with inferred
sample times.

A clocked discrete-time variable only has a value when
the clock ticks. Continuous-time variables may be con-
verted to clocked variables with the sample operator. A
clocked variable may be converted to a continuous-time
variable with the hold operator.

A clocked partition is mathematically defined as:

 𝑥𝑥𝑘𝑘 = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘 , 𝑡𝑡𝑘𝑘), 𝑘𝑘 = 0,1,2, … , 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 − 1,
 𝑥𝑥−1 = 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 (1)

 𝑦𝑦𝑘𝑘 = 𝑔𝑔𝑘𝑘(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘 , 𝑡𝑡𝑘𝑘), 𝑘𝑘 = 0,1,2, … ,𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 (2)

Here 𝑥𝑥𝑘𝑘 are discrete-time states, 𝑢𝑢𝑘𝑘 are inputs, 𝑦𝑦𝑘𝑘 are
outputs, k is the k-th tick of the associated clock and 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒
is the final tick. The discrete-time states are defined with
difference equations as function 𝑓𝑓𝑘𝑘 of the previous val-
ues 𝑥𝑥𝑘𝑘−1 and the inputs 𝑢𝑢𝑘𝑘.

2.1 Clocked continuous-time models

A clocked partition may contain differential equations.
This allows the embedding of regular continuous-time
models from given Modelica libraries. The Modelica
translator brings the equations of a clocked partition to
the form of an ODE or semi-explicit index-1 DAE:

𝑑𝑑𝑥𝑥(𝑡𝑡)
𝑑𝑑𝑡𝑡

= 𝑓𝑓[𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)]

 0 = ℎ[𝑥𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)] (3)

The translator then applies a specified solver method to
convert continuous-time differential equations to dis-
crete-time difference equations. This mixed sym-
bolic/numeric approach is also known as inline integra-
tion (Elmqvist et al, 1995).

Basic solver methods are implicit Euler, explicit Euler
and semi-implicit Euler. Application of implicit Euler
results in:

𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−1

𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1
= 𝑖𝑖𝑓𝑓 𝑘𝑘 = 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘)

 0 = ℎ(𝑥𝑥𝑘𝑘 ,𝑢𝑢𝑘𝑘) (4)

Explicit Euler avoids the implicit equation system for the
states 𝑥𝑥𝑘𝑘 in (4) for non-stiff models. It results in:

𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−1

𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1
= 𝑖𝑖𝑓𝑓 𝑘𝑘 = 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1)

 0 = ℎ(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘−1) (5)

The use of 𝑢𝑢𝑘𝑘−1 in (5) leads to the introduction of addi-
tional discrete-time states for the delay of inputs by one
sample period, even though this is typically not wanted.
Semi-implicit Euler avoids the delay of inputs and im-
plicit dependencies of states for non-stiff models. It re-
sults in:

𝑥𝑥𝑘𝑘 − 𝑥𝑥𝑘𝑘−1

𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1
= 𝑖𝑖𝑓𝑓 𝑘𝑘 = 0 𝑡𝑡ℎ𝑒𝑒𝑒𝑒 0 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑓𝑓(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘)

 0 = ℎ(𝑥𝑥𝑘𝑘−1,𝑢𝑢𝑘𝑘) (6)

Many more solver methods exist with specific ad-
vantages and drawbacks. The choice of the best solver
method depends on the model at hand. This is why it is
advantageous that inline integration embeds the most ap-
propriate solver method into an exported model.

Modelica 3.3 defines the operators previous(x) to ac-
cess 𝑥𝑥𝑘𝑘−1 and interval() to determine 𝑡𝑡𝑘𝑘 − 𝑡𝑡𝑘𝑘−1.

The Modelica change proposal MCP-0024 introduces
the operator firstTick() to determine if 𝑘𝑘 = 0
(Franke, 2016).

3 FMI extension

FMI 2.0 defines a generic event mechanism that also co-
vers synchronous models. The drawbacks of this generic
mechanism are that discrete states are hidden in the FMU
and that the environment does not know any details
about the events. This makes it impossible to synchro-
nize events with the environment of an FMU. Thus, it is
not possible to re-import an exported FMU with syn-
chronous discrete-time features and achieve a determin-
istic behavior. Neither it is possible to exploit a discrete-
time FMU for advanced applications such as parameter
estimation or model predictive control, because the dis-
crete states are hidden.

It is proposed to extend FMI by the following:

1. Declare clocks in modelDescription.xml

2. Declare discrete-time states in modelDescrip-
tion.xml

3. Let the environment activate clocks in order to
enable synchronization with the environment
and with other FMUs.

This extension is optional. A model can always hide
event details according to FMI 2.0.

3.1 Extension of modelDescription.xml

The “TypeDefinitions” section is extended with a
“Clocks” subsection that contains one or more “Clock”
entries.

Discrete-time models for control applications with FMI

508 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132507

Figure 2: Kinds of Clock

Each Clock may be one of (see Figure 2):

• Periodic: the clock ticks periodically with an a
priori known interval specified in the model de-
scription XML file. A priori known values
make the sampling a structural model property
for increased correctness at runtime.

• Triggered: the clock is activated by a Boolean
condition in the model, e.g. for an interval that
depends on model variables.

• Inferred: the clock is activated from outside
the model, e.g. for a generic discrete-time
model with arbitrary sample interval. Synchro-
nous models do not require a parameter for the
sample time; the clock propagates with clocked
variables. Synchronous Modelica models use
the interval operator instead of a parameter.

The attributes of Periodic define the clock interval and
offset time. The basic clock interval is either specified
with a double valued baseInterval or with integer
valued intervalCounter and resolution. Both
definitions relate to each other with

 baseInterval = intervalCounter/resolution

Periodic clocks may be further refined with the attributes
subSampleFactor and shiftCounter. This re-
sults in the actual

 interval = baseInterval/subSampleFactor

that is delayed by

 offsetTime = interval*shiftCounter

The attributes of “ScalarVariable” are extended with two
new attributes:

• previous marks a discrete-time state, similar to
the derivative attribute of continuous-time
states. The value is an index to the variable
providing the previous value of the discrete-
time state.

• clockIndex associating a variable uniquely
with a clock in the “Clocks” section.

Finally, the “ModelStructure” section is extended with
a subsection “DiscreteStates”. It provides an ordered list
of all exposed discrete states with their indices in the
“ScalarVariable” list. Each entry of “DiscreteStates”
may declare the dependencies from known inputs, con-
tinuous-time states and other discrete-time states. The
dependencies are defined under the assumption that the
respective clock ticks.

3.2 Extension of the C calling API

The C calling API is extended with four new functions
that can be called during the event mode of an FMU.

A clock is activated by the environment for the current
time instant by the function fmi2SetClock, and the sta-
tus of a clock can be queried with the function
fmi2GetClock:

fmi2Status fmi2SetClock (
 fmi2Component c,
 const fmi2Integer clockIndex[],
 size_t nClockIndex,
 const fmi2Boolean tick[],
 const fmi2Boolean* subactive);

 Set the clock activation status by providing
the indices of the corresponding clocks
with respect to the xml element
“<TypeDefinitions><Clocks>” and val-
ues. A clock is activated at the current
time instant if tick[i] = fmi2True, oth-
erwise the clock is deactivated. The envi-
ronment may set subactive[i] =
fmi2True to only evaluate the output
equations (2) and replace the state equa-
tions (1) with
 𝑥𝑥𝑘𝑘 = 𝑥𝑥𝑘𝑘−1 (7)
This is similar to the treatment of clocked
continuous states at initial time, see (4),
(5) and (6). The argument subactive[i]
defaults to fmi2False if a NULL pointer is
passed.

fmi2Status fmi2GetClock (
 fmi2Component c,
 const fmi2Integer clockIndex[],
 size_t nClockIndex,
 fmi2Boolean tick[]);

 Query whether a set of clocks is active by
providing the indices of the corresponding
clocks with respect to the xml element
“<TypeDefinitions><Clocks>”.

A clock interval is set by the environment for the current
time instant by the function fmi2SetInterval, and it
can be queried with the function fmi2GetInterval:

Session 7D: Control Systems III

DOI
10.3384/ecp17132507

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

509

fmi2Status fmi2SetInterval(
 fmi2Component c,
 const fmi2Integer clockIndex[],

 size_t nClockIndex,
 const fmi2Real interval[]);

 Set the interval value between the previ-
ous and the present tick of the clock.

fmi2Status fmi2GetInterval(
 fmi2Component c,
 const fmi2Integer clockIndex[],

 size_t nClockIndex,
 fmi2Real interval[]);
 Query the interval value for the provided

clocks (periodic or non-periodic). If the
clocks are non-periodic, the interval has
to be queried at every clock tick, to define
the follow-up clock tick.

3.3 Extension of importing environment

The importing environment parses the model description
XML file and activates periodic and inferred clocks dur-
ing simulation. It activates periodic clocks at sample in-
tervals specified in the model description XML file. It
activates inferred clocks as needed by the environment
(e.g. with an externally specified sample interval or if the
clock of a connected FMU ticks). The FMU itself acti-
vates Triggered clocks.

This extension does not change the overall calling se-
quence of C functions for model exchange. The environ-
ment calls the new API functions additionally during
event mode as follows:

0. Enter event mode:
FMI 2.0 enters the event mode either after ini-
tialization (call to function fmi2ExitIni-
tializationMode) or during simulation (call
to function fmi2EnterEventMode).

1. Activate clocks and set inferred intervals:
An FMU activates triggered clocks itself. The
environment may query the clock activation sta-
tus with the function fmi2GetClock. The en-
vironment sets the activation status of periodic
and inferred clocks by calling fmi2SetClock.
Moreover, the environment calls
fmi2SetInterval for inferred clocks. It may
query the clock interval, e.g. for triggered
clocks, with the function fmi2GetInterval.

2. Evaluate clocked equations:
The evaluation is triggered by fmi2GetXXX for
clocked variables during event mode or by

fmi2NewDiscreteStates. The FMU cop-
ies 𝑥𝑥𝑘𝑘 to 𝑥𝑥𝑘𝑘−1 and evaluates the discrete-time
equations, updating 𝑥𝑥𝑘𝑘, if the corresponding
clock is active. The FMU resets the clock acti-
vation after one evaluation. This means that the
environment must activate the clock again if it
wants to re-evaluate clocked equations, for in-
stance to treat an algebraic loop (see below)

3. Leave event mode:
The functions fmi2NewDiscreteStates and
fmi2Reset leave event mode and deactivate
all clocks.

The environment might need to evaluate clocked dis-
crete-time equations multiple times at one time instant,
for instance to iteratively solve an algebraic loop among
multiple connected FMUs or to calculate partial deriva-
tives for optimization. The environment can either call
fmi2GetXXX within event mode, triggering the evalua-
tion of clocked equations if the respective clocks are ac-
tive. The FMU will update discrete-time states and de-
activate the clocks. The environment may reset discrete-
time states by calling fmi2SetXXX, re-activate clocks
and call fmi2GetXXX again for multiple evaluations.
This also applies to all kinds of clocks, including also
triggered clocks. Alternatively, the environment may en-
ter event mode multiple times and reset discrete-time
states for multiple evaluations.

The environment might be interested in the dependen-
cies of model outputs from inputs and given discrete-
time states, independently of the state equations. This
can be achieved by passing subactive=fmi2True to
fmi2SetClock.

3.4 Relation to Simulink S-functions

The basic concept of the proposed FMI extension is well
known from other simulation technologies. The widely
used simulation tool Simulink, for example, supports an
arbitrary number of discrete sample times in an S-func-
tion, in addition to continuous-time equations. Lacking
an XML file, the sample times are defined in S-function
methods (C functions). The most important methods are
listed here and related to the proposed FMI extension.
mdlInitializeSizes(SimStruct *S)

This method declares the number of sample times with
 ssSetNumSampleTimes(S, n);

It corresponds to the number of Clock entries in the
model description XML file.
mdlInitializeSampleTimes(SimStruct *S)

This method initializes each sample time i = 0,…,n-1
with an interval and an offset time by calling
 ssSetSampleTime(S, i, interval);
 ssSetOffsetTime(S, i, offsetTime);

Discrete-time models for control applications with FMI

510 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132507

The argument interval may take the special values
CONTINUOUS_SAMPLE_TIME for a continuous-time
model and INHERITED_SAMPLE_TIME, corresponding
to an inferred sample time of this proposal.

Moreover, the argument interval may take the special
value VARIABLE_SAMPLE_TIME and the argument
offsetTime may take the special value
FIXED_IN_MINOR_STEP_OFFSET, relating discrete-
time sub-models to numerical integration steps of con-
tinuous-time sub-models. Such sampling can be imple-
mented with triggered clocks of this proposal, if the
FMU activates clocks itself during transitions between
continuous-time mode and event mode.

Simulink will activate any sample time from outside S-
functions in the case of sample hits and call the function
mdlUpdate(SimStruct *S, int_T tid)

A model must query the activation status and evaluate
the respective discrete-time equations.
 if (ssIsSampleHit(S, i, tid)) {
 // update discrete states that belong
 // to sample time i
 }

Discrete states are accessed with
 real_T *x = ssGetRealDiscStates(S);

This FMI proposal uses variable references to access dis-
crete states. It introduces optional previous values for
discrete-time states. Previous values allow the definition
of dependencies on 𝑥𝑥𝑘𝑘−1 in the model structure, see (1),
(2). The environment only sets the actual value 𝑥𝑥𝑘𝑘. An
FMU with previous values copies 𝑥𝑥𝑘𝑘 to 𝑥𝑥𝑘𝑘−1 prior to the
evaluation of clocked equations.

4 Use Cases

This section lists use cases for control applications. A
chemical process model serves as an example.

4.1 Exemplary chemical process model

We consider a continuous stirred-tank reactor (CSTR)
with cooling jacket published by (Engell, Klatt, 1993).
This highly nonlinear model exhibits interesting proper-
ties, like nonminimum phase behavior and change of
steady-state gain at the main operating point. (Chen et
al, 1995) propose this example as a benchmark problem
for nonlinear control system design.

The following reaction describes the chemical process:

 𝐴𝐴
𝑘𝑘1→ 𝐵𝐵

𝑘𝑘2→ 𝐶𝐶

 2𝐴𝐴
𝑘𝑘3→ 𝐷𝐷 (8)

The reactor primarily transforms cyclopentadiene (sub-
stance A) to the product cyclopentenol (substance B).
An unwanted subsequent reaction transforms B to cyclo-
pentanediol (substance C). Another unwanted parallel
reaction transforms A to the by-product dicyclopentadi-
ene (substance D). The mathematical model contains the
component balances for A and B:

𝑑𝑑𝑐𝑐𝐴𝐴
𝑑𝑑𝑡𝑡

=
�̇�𝑉𝐹𝐹
𝑉𝑉𝑅𝑅
�𝑐𝑐𝐴𝐴,𝐹𝐹 − 𝑐𝑐𝐴𝐴� − 𝑘𝑘1(𝑇𝑇)𝑐𝑐𝐴𝐴 − 𝑘𝑘3(𝑇𝑇)𝑐𝑐𝐴𝐴2

𝑑𝑑𝑐𝑐𝐵𝐵
𝑑𝑑𝑡𝑡

= −
�̇�𝑉𝐹𝐹
𝑉𝑉𝑅𝑅
𝑐𝑐𝐵𝐵 + 𝑘𝑘1(𝑇𝑇)𝑐𝑐𝐴𝐴 − 𝑘𝑘2(𝑇𝑇)𝑐𝑐𝐵𝐵

 (9)

with the reaction coefficients

 𝑘𝑘𝑖𝑖(𝑇𝑇) = 𝑘𝑘𝑖𝑖,0𝑒𝑒
𝐸𝐸𝑖𝑖
𝑇𝑇 , 𝑖𝑖 = 1,2,3 (10)

as well as the energy balances for the reactor and the
cooling jacket:

𝑑𝑑𝑇𝑇
𝑑𝑑𝑡𝑡

=
�̇�𝑉𝐹𝐹
𝑉𝑉𝑅𝑅

(𝑇𝑇𝐹𝐹 − 𝑇𝑇) +
𝑘𝑘𝑤𝑤𝐴𝐴𝑅𝑅
𝜌𝜌𝐶𝐶𝑝𝑝𝑉𝑉𝑅𝑅

(𝑇𝑇𝐾𝐾 − 𝑇𝑇)

 −
1
𝜌𝜌𝐶𝐶𝑝𝑝

[𝑘𝑘1(𝑇𝑇)𝑐𝑐𝐴𝐴𝐻𝐻1 + 𝑘𝑘2(𝑇𝑇)𝑐𝑐𝐵𝐵𝐻𝐻2 + 𝑘𝑘3(𝑇𝑇)𝑐𝑐𝐴𝐴2𝐻𝐻3]

𝑑𝑑𝑇𝑇𝐾𝐾
𝑑𝑑𝑡𝑡

=
1

𝑚𝑚𝐾𝐾𝐶𝐶𝑝𝑝,𝐾𝐾
��̇�𝑄𝐾𝐾 + 𝑘𝑘𝑤𝑤𝐴𝐴𝑅𝑅(𝑇𝑇 − 𝑇𝑇𝐾𝐾)�

(11)

Table 1 lists the model parameters.

Table 1: Parameters of CSTR model

Na
me

Value Description

𝑘𝑘1,0 1.287 ℎ−1 Collision factor one
𝑘𝑘2,0 1.287 ℎ−1 Collision factor two
𝑘𝑘3,0 9.043 (𝑚𝑚𝑚𝑚𝑒𝑒𝐴𝐴 ℎ)−1 Collision factor three
𝐸𝐸1 −9758.3 𝐾𝐾 Activation energy one
𝐸𝐸2 −9758.3 𝐾𝐾 Activation energy two
𝐸𝐸3 −8560 𝐾𝐾 Activation energy three
𝐻𝐻1 4.2 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑒𝑒𝐴𝐴 Reaction enthalpy one
𝐻𝐻2 −11.0 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑒𝑒𝐵𝐵 Reaction enthalpy two
𝐻𝐻3 −41.85 𝑘𝑘𝑘𝑘/𝑚𝑚𝑚𝑚𝑒𝑒𝐶𝐶 Reaction enthalpy three
𝜌𝜌 0.9342 𝑘𝑘𝑔𝑔/𝑒𝑒 Density reactant
𝐶𝐶𝑝𝑝 3.01 𝑘𝑘𝑘𝑘/(𝑘𝑘𝑔𝑔 𝐾𝐾) Heat capacity reactant
𝑘𝑘𝑤𝑤 1.12 𝑘𝑘𝑘𝑘/(𝑚𝑚2 𝐾𝐾) Heat transfer jacket
𝐴𝐴𝑅𝑅 0.215 𝑚𝑚2 Surface reactor
𝑉𝑉𝑅𝑅 0.01 𝑚𝑚3 Volume reactor
𝑚𝑚𝐾𝐾 5.0 𝑘𝑘𝑔𝑔 Mass cooling jacket
𝐶𝐶𝑝𝑝,𝐾𝐾 2.0 𝑘𝑘𝑘𝑘/(𝑘𝑘𝑔𝑔 𝐾𝐾) Heat capacity coolant

Session 7D: Control Systems III

DOI
10.3384/ecp17132507

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

511

Table 2: Desired steady operating point

Name Value Description
𝑐𝑐𝐴𝐴,𝐹𝐹 5.10 𝑚𝑚𝑚𝑚𝑒𝑒𝐴𝐴/𝑒𝑒 Feed concentration
𝑇𝑇𝐹𝐹 104.9 °𝐶𝐶 Feed temperature

�̇�𝑉𝐹𝐹/𝑉𝑉𝑅𝑅 14.19 ℎ−1 Feed flow rate
𝑄𝑄𝐾𝐾 −1113.5 𝑘𝑘𝑘𝑘/ℎ Heat removal
𝑐𝑐𝐴𝐴 2.14 𝑚𝑚𝑚𝑚𝑒𝑒/𝑒𝑒 Concentration A
𝑐𝑐𝐵𝐵 1.09 𝑚𝑚𝑚𝑚𝑒𝑒/𝑒𝑒 Concentration B
𝑇𝑇 114.2 °𝐶𝐶 Reactor temperature
𝑇𝑇𝐾𝐾 112.9 °𝐶𝐶 Coolant temperature

Table 2 gives the desired operating point for optimal
yield. The following subsections use this CSTR model
to outline different use cases.

4.2 Functional Engineering

Modelica system models combine physical plant models
with control models. This enables the study the func-
tional behavior of a system with simulation. Having a
functional model available, the actual controller code
shall be generated automatically from the control mod-
els.

Figure 3 shows a system model with a CSTR and a PI
control for the coolant temperature. The PI controller
uses a clock and sample blocks from the Modelica_Syn-
chronous library (Otter et al, 2012). The clock also de-
fines the solver method ImplicitEuler to convert the con-
troller model to discrete time.

The control task is to hold the coolant temperature at the
desired operating point, in order to keep the desired con-
centration of product B.

Figure 3: Simulation results for the functional model
with plant and controller over 3000s

Figure 6 shows simulation results. The feed temperature
CSTR.TF is increased periodically by 5 K. This results
in higher reactor temperature and increased concentra-
tion CSTR.cB. The PI controller increases heat removal
to bring the reactor back to the desired operating point.

Overall the disturbance leads to large deviations of the
concentration of the product CSTR.cB from the desired
operating point of 1.09 mol/l. This is because the con-
troller sees the disturbance only indirectly if the coolant
temperature increases. Moreover the reference value of
the coolant temperature is not adjusted to the disturb-
ance.

Figure 4: Functional model of a plant with controller

0 1000 2000 3000
1.06

1.08

1.10

1.12

 [m
ol

/l]

CSTR.cB

0 1000 2000 3000
100

105

110

115

[d
eg

C
]

CSTR.TK CSTR.TF

0 1000 2000 3000

-8000

-4000

0

 [k
J/

h]

CSTR.QK_flow

controller plant

CSTR

TK

cA

V_flow

QK_flow

cB

TF

TF_ref

k=104.9

V_flow

k=14.19 PI

PI

T=10

TF TF

+
+1

+1

TK_ref

k=112.9

disturbance

period=2000

-
feedback sample

periodicClock

0.5 s
ImplicitEuler

sample1

0.0

hold

Discrete-time models for control applications with FMI

512 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132507

Figure 5: Functional model with advanced controller containing a nonlinear inverse plant model

Figure 6: Discrete-time plant model for nonlinear model predictive control

4.3 Nonlinear inverse models for control

Feed forward is a well-known strategy to increase dy-
namic control performance. Modelica can invert a phys-
ical plant model analytically to get an inverse model for
the feed forward path of a controller (Looye et al, 2005).

Figure 4 shows an advanced controller with nonlinear
inverse model. This increases controller performance for
disturbance rejection by converting feed temperature to
an appropriate set point for heat removal and reference
point for the coolant temperature TK_ref. Moreover, this
enhances the controller with an external set point for the
concentration of the product B.

Figure 7 shows simulation results. During the first 1000
s the controller adjusts the heat removal for the modified
reference cB_ref of 1.07 mol/l. Afterwards the disturb-
ance in the feed temperature is rejected considerably bet-
ter with feed forward control.

Figure 7: Simulation results for feed forward control
with inverse plant model over 3000s

controller

plant

CSTR

TK

cA

VF_flow

QK_flow

cB

TF

TF_ref

k=104.9

VF_flow

k=14.19

PI

PI

T=10

cB_ref

k=1.09 - 0.02

TF TF

+
+1

+1 disturbance

period=2000

invCSTR

TK

cA

VF_flow

QK_flow

cB

TF

forward forward

+
+1

+1

filter

PTn

1

f=0.01

-
feedback

periodicClock

0.5 s
ImplicitEuler

sample

sample1

0.0

hold

sample2
sample3

discrete-time plant model

CSTR

TK

cA

VF_flow

QK_flow

cB

TF

assignClock

periodicClock

20 s
ImplicitEuler

TF

VF_flow

QK_flow

cA

cB

TK

0 1000 2000 3000
1.06

1.08

1.10

1.12

 [m
ol

/l]

CSTR.cB

0 1000 2000 3000
100

105

110

115

[d
eg

C
]

CSTR.TK CSTR.TF

0 1000 2000 3000

-8000

-4000

0

 [k
J/

h]

CSTR.QK_flow

Session 7D: Control Systems III

DOI
10.3384/ecp17132507

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

513

4.4 Discrete-time plant models for nonlinear
model predictive control

Nonlinear model predictive control (NMPC) treats an
optimal control problem for a given plant model at
runtime. The model is used as is, without analytical in-
version. This simplifies the treatment of multi-variable
constrained problems at the cost of increased computing
requirements for numerical optimization at runtime. A
model predictive controller takes the following steps
during each cycle (Franke et al, 2015):

1. Convert continuous-time physical model to dis-
crete-time model for control.

2. Calculate model sensitivities.

3. Formulate a large-scale nonlinear optimization
program spanning multiple time steps.

4. Solve the large-scale nonlinear optimization
program.

The synchronous features of Modelica and the discrete-
time extension of FMI enable to shift steps 1 and 2 from
the runtime to model translation time. Figure 5 shows
the CSTR model with clock and solver method assigned.

The resulting exported FMU has the discrete-time states
𝑥𝑥 = (𝑐𝑐𝐴𝐴; 𝑐𝑐𝐵𝐵;𝑇𝑇;𝑇𝑇𝐾𝐾), the inputs 𝑢𝑢 = ��̇�𝑄𝐾𝐾;𝑇𝑇𝐹𝐹; �̇�𝑉𝐹𝐹

𝑉𝑉𝑅𝑅
� and the

outputs 𝑦𝑦 = (𝑐𝑐𝐴𝐴; 𝑐𝑐𝐵𝐵;𝑇𝑇𝐾𝐾). The control task is formulated
as discrete-time optimal control problem over the time
horizon of 3000s with 𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 = 150 intervals of length
20s. The optimization objective is to minimize quadratic
deviations of the concentration of substance B from the
desired operating point. A second objective term applies
a small penalty to control moves:

𝑘𝑘 = � (𝑐𝑐𝐵𝐵𝑘𝑘 − 1.07)2
𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒

𝑘𝑘=0

+ � �
�̇�𝑄𝐾𝐾𝑘𝑘+1 − �̇�𝑄𝐾𝐾𝑘𝑘

107
�
2𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒−1

𝑘𝑘=0

→ min
�̇�𝑄𝐾𝐾𝑘𝑘

(12)

The manipulated extraction of heat is constrained by

−9000 𝑘𝑘𝑘𝑘/ℎ < �̇�𝑄𝐾𝐾𝑘𝑘 < 0 𝑘𝑘𝑘𝑘/ℎ, 𝑘𝑘 = 0, … ,𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 − 1

(13)

The discrete-time state equations in the FMU define
further constraints:

𝑥𝑥𝑘𝑘+1 = 𝑓𝑓𝑘𝑘(𝑥𝑥𝑘𝑘,𝑢𝑢𝑘𝑘), 𝑘𝑘 = 0, … ,𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 − 1

 𝑥𝑥0 = (2.14; 1.09; 114.2; 112.9) (14)

The solver HQP collects all states and the control in-
puts of all time intervals into one large vector of opti-
mization variables

𝑣𝑣 = (𝑥𝑥0,𝑢𝑢0, 𝑥𝑥1,𝑢𝑢1, … , 𝑥𝑥𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒−1,𝑢𝑢𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒−1,𝑥𝑥𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒).

(15)

This results in the large-scale mathematical program

𝑘𝑘(𝑣𝑣)
𝑣𝑣
→𝑚𝑚𝑖𝑖𝑒𝑒 𝑘𝑘:ℝ𝑒𝑒 → ℝ1

ℎ(𝑣𝑣) = 0 ℎ:ℝ𝑒𝑒 → ℝ𝑚𝑚𝑒𝑒

𝑔𝑔(𝑣𝑣) ≥ 0 𝑔𝑔:ℝ𝑒𝑒 → ℝ𝑚𝑚 (16)

with 𝑒𝑒 = dim(𝑣𝑣), 𝑚𝑚𝑒𝑒 = (𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒 + 1)dim (𝑥𝑥) and 𝑚𝑚 =
2𝑘𝑘𝑒𝑒𝑒𝑒𝑒𝑒. HQP applies Sequential Quadratic Programming
(SQP) with a sparse Interior Point QP solver to the nu-
merical solution of the mathematical program.

Figure 8: Results of the optimal control problem over a
time horizon of 3000s

Figure 8 shows simulation results of the CSTR model for
the optimized control trajectory 0 𝑘𝑘𝑘𝑘/ℎ The optimal so-
lution exploits the full range between −9000 𝑘𝑘𝑘𝑘/ℎ and
0 𝑘𝑘𝑘𝑘/ℎ to arrive at the new reference value 𝑐𝑐𝐵𝐵,𝑠𝑠𝑒𝑒𝑟𝑟 =
1.07 𝑚𝑚𝑚𝑚𝑒𝑒/𝑒𝑒 significantly faster. It rejects the disturbance
for the feed temperature 𝑇𝑇𝐹𝐹 similar to the controller with
nonlinear inverse model.

5 Conclusions

Modelica 3.3 introduced synchronous features that ena-
ble the rigorous treatment of discrete-time models. The
Modelica_Synchronous library demonstrates the rele-
vance of these features for control (Otter et al, 2012).
The simulation tools Dymola and OpenModelica sup-
port Modelica_Synchronous so far.

0 1000 2000 3000
1.06

1.08

1.10

1.12

 [m
ol

/l]

CSTR.cB

0 1000 2000 3000
100

105

110

115

[d
eg

C
]

CSTR.TK CSTR.TF

0 1000 2000 3000

-8000

-4000

0

 [k
J/

h]

CSTR.QK_flow

Discrete-time models for control applications with FMI

514 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132507

This paper proposes an extension of FMI 2.0 to make
rigorous discrete-time models available for control ap-
plications. The extension is backwards compatible. It
specializes generic events towards clocks for discrete-
time models. Tools that do not support synchronous time
event handling can export the same model using generic
events as known from FMI 2.0. An importing tool should
parse the extensions of the XML file, in particular the
Clocks section, activate periodic clocks at the specified
intervals and activate inferred clocks on environment
needs. Alternatively, an importing tool might reject the
FMU if it finds inferred or periodic clocks in the Clocks
section. Triggered clocks are activated by the FMU itself
and need no support by the importing environment.

The basic concept of activation of sample times by a tool
is well known from other simulation technologies, such
as Simulink S-functions. The proposed FMI extension
exploits the XML model description to associate clocks
with variables. This enables deterministic clock propa-
gation among multiple connected FMUs. The optional
specification of integer valued clock intervals further en-
hances clock inference for system level design.

FMI export with synchronous features was implemented
in the tools Dymola and OpenModelica. Import was im-
plemented in the optimization solver HQP. The paper
motivates the FMI extension with use cases for a highly
nonlinear chemical process model. The use cases include
functional engineering, nonlinear inverse models for
control and nonlinear model predictive control.

The synchronous features of Modelica also include the
automatic conversion of continuous-time models to dis-
crete-time models with inline integration. This mixed
symbolic/numeric approach simplifies model-based
control applications considerably, because it releases an
importing environment from the treatment of continu-
ous-time differential equations and sensitivity equations.
Run-time efficiency increases.

Discrete-time FMUs with inline integration are a work
in progress. Development versions of OpenModelica,
Dymola and HQP were used for the optimal control
problem in section 4.4. Dymola 2017 was used for the
nonlinear inverse model in section 4.3.

Discrete-time FMUs will serve for the investigation of
parallel algorithms for automatic differentiation and nu-
merical optimization in the PARADOM project.

Acknowledgements

This work was supported in parts by the Federal Minis-
try of Education and Research (BMBF) within the pro-
ject PARADOM (PARallel Algorithmic Differentiation
in OpenModelica) – BMBF funding code: 01IH15002E.

References

T. Blochwitz, M. Otter, J. Åkesson, M. Arnold, C. Clauß, H.
Elmqvist, M. Friedrich, A. Junghanns, J. Mauss, D. Neumer-
kel, H. Olsson, A. Viel: Functional Mockup Interface 2.0:
The Standard for Tool independent Exchange of Simula-
tion Models, 9th International Modelica Conference, Mu-
nich, 2012. http://www.ep.liu.se/ecp/076/017/ecp12076017.pdf

H. Chen, A. Kremling, F. Allgöwer: Nonlinear Predictive
Control of a Benchmark CSTR, Proceedings 3rd European
Control Conference ECC’95, Rome, 1995.

H. Elmqvist, M. Otter, S.E. Mattsson: Fundamentals of Syn-
chronous Control in Modelica, 9th International Modelica
Conference, Munich, 2012.
http://www.ep.liu.se/ecp/076/001/ecp12076001.pdf

H. Elmqvist, M. Otter, F. Cellier: Inline integration: A new
mixed symbolic/numeric approach for solving differential-
algebraic equation systems. In Proceedings ESM European
Simulation Multiconference, Prague, 1995.

S. Engell, K.-U. Klatt. Nonlinear control of a nonminimum
phase CSTR. In Americal Control Conference, Los Angeles,
1993.

R. Franke, E. Arnold: Applying new numerical algorithms to
the solution of discrete-time optimal control problems. In:
Computer Intensive Methods in Control and Signal Pro-
cessing: The Curse of Dimensionality, Birhäuser, Basel,
1997.

R. Franke, M. Walther, N. Worschech, W. Braun, B. Bach-
mann: Model-based control with FMI and a C++ runtime for
Modelica. Proceedings of 11th International Modelica Con-
ference, Paris 2015. https://www.modelica.org/events/modelica2015/pro-
ceedings/html/submissions/ecp15118339_FrankeWaltherWorschechBraunBach-
mann.pdf

R. Franke: Initialization of Clocked Discrete States, Modelica
Change Proposal MCP-0024 2016. https://svn.modelica.org/pro-
jects/MCP/public/MCP-0024_InitializationClockedStates/MCP-0024_Initializa-
tionClockedStates.docx

Functional Mock-up Interface for Model Exchange and Co-
Simulation, Version 2.0, July 2014.

G. Looye, M. Thümmel, M. Kurze, M. Otter, J. Bals: Nonlin-
ear Inverse Models for Control. Proceedings of 4th Interna-
tional Modelica Conference, Hamburg, 2005. https://www.mod-
elica.org/events/Conference2005/online_proceedings/Session3/Session3c3.pdf

Modelica Association: Modelica – A Unified Ob-ject-Ori-
ented Language for Systems Modeling. Language Specifi-
cation, Version 3.3. May 9, 2012.

M. Otter, S.E. Mattsson, R. Franke, H. Elmqvist, T.
Blochwitz: Discrete States and Time Events in FMI
(#353), FMI Change Proposal FCP-001, 2016.
https://svn.fmi-standard.org/fmi/trunk/FMI_ChangeProposals/FCP_001_Sam-
pledDataSystemsForModelExchange/FMI_Proposal_DiscreteS-
tates_TimeEvents.docx

M. Otter, B. Thiele, H. Elmqvist: A Library for Synchronous
Control Systems in Modelica, 9th International Modelica
Conference, Munich, 2012.
http://www.ep.liu.se/ecp/076/002/ecp12076002.pdf

Session 7D: Control Systems III

DOI
10.3384/ecp17132507

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

515

516 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Model-based Embedded Control using Rosenbrock
Integration Methods

Hans Olsson1 Sven Erik Mattsson1 Martin Otter2 Andreas Pfeiffer2 Christoff Bürger1
Dan Henriksson1

1Dassault Systèmes AB, Lund, Sweden,
{Hans.Olsson, SvenErik.Mattsson, Christoff.Buerger, Dan.Henriksson}@3ds.com

2DLR, Institute of System Dynamics and Control, Germany,
{Martin.Otter, Andreas.Pfeiffer}@dlr.de

Abstract
Directly generating controller code from models is
important for advanced model-based design. This
paper describes how Dymola can generate embedded
C-code from Modelica models, designed to be easy to
embed, with care about minimal foot-print, traceability,
and straightforward integration in embedded platforms
and gives actual application examples.

The paper focuses on using Rosenbrock methods for
index-1 problems (instead of the normal transformation
to index 0) that allows Dymola to handle stiff systems
in a way that both is theoretically sound and has an
upper bound on the execution time per sample.

The stiff systems in the control system often occur
due to using an inverse (simplified) model of the real
plant in the controller. A nonlinear feedforward
controller and a controller with feedback linearization,
both applying an inverse model, demonstrate the
proposed process by using Rosenbrock methods for
embedded code generation.
Keywords: Modelica, inverse models, real-time,
embedded, Rosenbrock methods, inline integration,
feedforward controller, feedback linearization

1 Introduction
Modelica and Modelica tools such as Dymola are very
well suited to model and simulate complex physical
systems with primary focus on offline simulation for
design and assessment, as well as on online simulation
on special purpose hardware, e.g. for hardware-in-the-
loop simulations. Modelica models have been used in
controller applications where nonlinear Modelica
models are part of the real-time control system, see for
example (Looye et al., 2005). The controller could be
designed and assessed with Dymola, however, the
actual real-time controller code had to be re-built
manually either directly in C or with dedicated
software for controller code generation.

There are several activities to extend the tool chains
for Modelica models for real-time platforms, for
example (Satabin et al., 2015) for generation of
certified code of simple Modelica models via the
SCADE-suite (SCADE, 2017), or (Bertsch et al., 2015)

for utilizing Modelica code on automotive electronic
control units.

This paper describes the steps to generate embedded
real-time code using a new prototype functionality of
Dymola. The goals are (a) to generate code that can be
certified for critical applications, (b) to guarantee an
upper number of operations so that hard real-time
constraints can be fulfilled, and (c) to support advanced
controllers that can utilize nonlinear Modelica models
in the feedback or feedforward path of the controller,
which may require solving nonlinear differential-
algebraic equation systems.

Numerical integration in real-time is a challenging
task. Explicit integration, such as explicit Runge-Kutta
methods or explicit multistep methods provide
integration schemes with a deterministic number of
numerical operations, but they may fail for stiff
systems due to stability problems. Choosing a rather
small step size can help to overcome this issue, but the
sample rate and the computational power of real-time
platforms are (strongly) limited. Standard implicit
methods like implicit Runge-Kutta methods or BDF
methods are designed for stiff systems with an
acceptable step size, but nonlinear systems of equations
have to be solved in each time step. Linearly implicit
one-step methods, in particular Rosenbrock methods,
provide a compromise. They can solve stiff problems
using larger steps than explicit methods at the cost of
having to solve linear systems.

The paper describes the new contributions in the
following order: Section 2 gives an overview of the
new code generator, Section 3 explains implementation
of the Rosenbrock methods, Section 4 gives realistic
application examples, and finally Section 5 gives a
summary and outlines possible future extensions.

2 Model-based Embedded Controller
Development in Dymola

Controller code intended to be executed in real-time on
embedded devices is subject to special requirements.
For example, (Bertsch et al., 2015) discusses these
challenges in the context of automotive embedded
applications for the case of FMU source code

DOI
10.3384/ecp17132517

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

517

generation using Modelica tools. The standard C-code
generated by Modelica tools is typically designed for
desktop computer environments, where substantial
hardware and software resources are available.
Simulation is offline and without hard real-time
constraints. Such standard code does not fulfill real-
time system requirements, where code has to be
deployed on embedded targets.

The standard C-code generated by Dymola from
Modelica models is no exception; it is highly optimized
to cope with several application scenarios including
offline simulation and hardware-in-the-loop simulation
of complex plant models on dedicated hardware
platforms. However, this code includes many features
not needed (and fails to fulfill constraints) for real-time
controller code to be executed on embedded targets
where minimalistic, self-contained, and human
readable code is required.

On the other hand, Dymola provides convenient
tooling for the development of full multi-domain
system models and their simulation. It would be very
convenient if embedded code for the controller parts
also could be automatically generated and evaluated in
software-in-the-loop simulations. The advantages of
Modelica regarding complete system modeling and
simulation are then leveraged also for real-time and
embedded controller development.

Figure 1 summarizes the embedded development
scenario we like to support. Physical plant models,
controllers and test inputs for typical use cases can be
fully modeled (left part) and simulated (right part) on
system level. Throughout iterative development of all
components, the whole system can be evaluated using
standard simulation facilities. Embedded code can then
be generated for the controller and co-simulated with
the rest of the system. The results of such a software-
in-the-loop co-simulation are shown on the right. The
control signal (blue curve) is computed using the code
generated by the embedded code generator. The red
curve is the controlled plant output and the green signal

is a disturbance that becomes active midway through
the simulation. The embedded code generator to
support this process is described below.

2.1 Embedded Development Process
Given a physical system model in Modelica, the
experimental Dymola embedded code generator
considers the following four tasks for the design and
implementation of controllers for an embedded target:
(1) Controller modeling: Implement controllers as
Modelica models with continuous model equation parts
as done in Modelica since many years.
(2) Model decomposition: Use the controller models
in a synchronous environment as described in (Otter et
al., 2012). Sample and hold blocks are used to
incorporate the controller inputs and outputs. As
integration scheme for the clocked blocks the
Rosenbrock methods presented in Section 3 can be
used. In Modelica terms, controllers are therefore just
synchronously clocked sub-models. Their synchronous
clock models the interval in which the embedded
environment provides new real-time inputs and queries
for respective control actions.
(3) Embedded code generation: To generate the code
to be embedded for the controller parts, apply the
embedded code generator on the total model. Dymola
extracts the synchronously clocked parts and generates
C-code which is a self-contained, real-time simulator
of its clocked parts. The code is well-suited for
embedded deployment.
(4) Embedded deployment: Adapt, integrate and test
the generated controller code on a real-time platform,
like a rapid prototyping platform or embedded device.

The four tasks can be iteratively performed, in
interrelation with the development of the model of the
controlled physical systems. Co-simulation of the
generated controllers is achieved by binding the
generated C-code of controllers as external C functions
to Modelica and calling them at every sample point

Figure 1. Embedded controller development scenario with Modelica/Dymola.

Model-based Embedded Control using Rosenbrock Integration Methods

518 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132517

throughout the system simulation. Examples of this
procedure are given in Section 4.

2.2 Properties of Generated Code
In addition to the standard optimizations performed by
Dymola’s symbolic manipulation facilities (equation
systems are automatically torn to solve as much
symbolically as possible, constant expressions are
folded and shared expressions are eliminated to be
computed at most once), the controller source code
generated by the embedded code generator complies
with the following requirements for execution on
embedded devices:
Code Integration
• All types (model variables, states and records)

relevant for user code and further code integration
are encapsulated in header files.

• Proper C data types are deduced. Substitutions are
performed to reduce memory footprint.

• A clear interface (with separate C-functions for
initialization, output calculations, etc.) enables
easy integration within external embedded
environments.

• A generic interface to a solver for linear equation
systems enables the usage of solvers tailored for
specific applications and targets. The code for a
default LU-solver is provided.

• The generated code is self-contained, without
dependencies on further libraries (including the C
standard library), supporting embedded devices
without operating system or restricted software
availability.

Traceability
• Comments link the generated code to its Modelica

model, enabling traceability of computations and
declarations. An XML file describing all variables
is generated.

Real-Time Execution
• No heap memory allocation or recursion enables

deterministic static memory allocation and
therefore memory requirement predictions.

• The Rosenbrock integration methods described in
Section 3 are applied to achieve deterministic
execution times and enable predictable response
times by preventing iterative loops with unknown
number of iterations.

• Equations and variables are only considered when
relevant for controller outputs; irrelevant
computations are removed from the code.

There are also some restrictions on the generated
embedded code:
• It does not (yet) fulfill all requirements of the

MISRA-C standard (MISRA, 2013), which is
important for safety-critical systems.

• Simplified event handling is applied. Only state
events can occur, since the models do not use time
directly.

• Nonlinear systems of equations to be solved in
real-time are currently not directly supported. By
using linearly implicit integration methods with an
index-1 formulation these systems are
automatically avoided, see Section 3.2.

2.3 A Simple PI-Controller Example

Figure 2. Simple PI-controller with output saturation and
integer quantization.

Figure 2 shows a simple linear PI-controller. Since
the synchronous model decomposition is only required
to “mark” the controller for embedded code generation,
but irrelevant for the actual embedded code generated,
we can ignore the controller’s clock and in- and output
samplings. Relevant for embedded code generation is
that the output u of the controller model is declared
with min and max attributes defining its saturation:
 Modelica.Blocks.Interfaces.IntegerOutput

u (min = -500, max = 500) "Controller output";
The embedded code generator generates two C source
code files: a header file defining the controller’s in-
and output types (dsembedded.h) and its actual
implementation (dsembedded.c).

The header file in Figure 3 defines a C struct that
holds all relevant model variables, each annotated with
a comment referring to its original Modelica
declaration and description. Note, that the type of the
output u is a signed 16-bit integer which Dymola has
deduced from the min and max attributes declared in
the controller’s Modelica model.

Figure 4 shows parts of the generated model
implementation, in this case the start of the routine for
the calculation of controller outputs. Each calculation
is preceded by a comment that traces back to the
original component, class and equation within the
controller’s Modelica model responsible for the code
generated. The comments also contain information
about alias substitutions and deduced array sizes.

Similar code is generated for model update used to
provide new sampling inputs and dynamics to compute
complex simulation steps. Using the code and the types
provided by the generated header file, the generated
controller implementation can be integrated in the
embedded software system actually deployed on some
target device. More advanced application examples
combining Rosenbrock integration methods and this
embedded code generator are given in Section 4.

Session 7D: Control Systems III

DOI
10.3384/ecp17132517

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

519

/* dsembedded.h
 * Model variables for Modelica model PIController */
#ifndef _dsembedded_h_
#define _dsembedded_h_
#include <dse_types.h>
#include <dsembedded_structs.h> /* structs for records */
#include <dsembedded_prototypes.h> /* function prototypes */

/* Model variables */
struct PIController_variables {
 /* input Modelica.Blocks.Interfaces.RealInput y
 "Measured variable" */
 real_t y;

 /* input Modelica.Blocks.Interfaces.RealInput y_ref
 "Reference signal" */
 real_t y_ref;

 /* output Modelica.Blocks.Interfaces.IntegerOutput
 u(min=-500, max=500) "Controller output" */
 integer16_t u;
 ...

 /* parameter Modelica.Blocks.Types.Init
 integrator.initType (min=1, max=4) =
 Modelica.Blocks.Types.Init.InitialState
 "Type of initialization (1: no init,
 2: steady state, 3,4: initial output)" */
 uinterger8_t integrator_initType;

 /* parameter Boolean limiter.strict = false
 "= true, if strict limits with noEvent(..)" */
 boolean_t limiter_strict;
 ...
};

Figure 3. C header file generated for the PI-controller.
/* dsembedded.c
 * Model equations for Modelica model PIController */
#include <dsembedded.h>
#include <dsembedded_codes.c> /* functions code */

/* Model outputs */
static int model_outputs(PIController_variables* v,
 PIController_states* s)
{
 /* Component add1 */
 /* Class Modelica.Blocks.Math.Add */
 /* y = k1*u1+k2*u2; */
 /* y = Ki.u; */
 /* u1 = y_ref; */
 /* u2 = y; */
 v->Ki_u = v->add1_k1*v->y_ref+v->add1_k2*v->y;

 /* Component Kp */
 /* Class Modelica.Blocks.Math.Gain */
 /* y = k*u; */
 /* u = Ki.u; */
 v->Kp_y = v->Kp_k*v->Ki_u;

 /* Component add */
 /* Class Modelica.Blocks.Math.Add */
 /* y = k1*u1+k2*u2; */
 /* u1 = integrator.y; */
 /* u2 = Kp.y; */
 v->add_y = v->add_k1*v->integrator_y+v->add_k2*v->Kp_y;
 ...
}

Figure 4. Generated PI-controller implementation.

3 Rosenbrock Methods
For real-time applications of stiff systems Dymola has
historically reduced the model’s equation system to
index 0 (an ODE system) and used a nonlinear solver
to handle the implicit Euler discretization by a limited
number of Newton iterations, see e.g. (Elmqvist,
Mattsson et al., 2004).

One main advantage of Rosenbrock methods is to
directly solve stiff systems using only a linear solver.

A certain variant of the implicit Euler method doing
only one Newton iteration per step is equivalent to the
corresponding Rosenbrock method of order 1.

In the following subsection Rosenbrock methods are
introduced for index-1 DAEs which are known from
the literature. Further, the advantages of the index-1
formulation and their application on Modelica models
are presented. Finally, some properties and details of
their implementation in Dymola are discussed.

3.1 Rosenbrock Methods for Index-1 DAEs
The supported Rosenbrock methods consider non-
autonomous DAE systems with index 1 of the form

𝐸𝐸�̇�𝑦 = 𝑓𝑓(𝑡𝑡,𝑦𝑦)

where 𝐸𝐸 is a constant and possibly singular matrix.
The Rosenbrock methods (Hairer, Wanner, 1991)

are defined by s stages for a single step from 𝑡𝑡0 to
𝑡𝑡1 ≔ 𝑡𝑡0 + ℎ with the initial state vector 𝑦𝑦0 = 𝑦𝑦(𝑡𝑡0) to
get an approximation of the state vector 𝑦𝑦(𝑡𝑡1):

𝑦𝑦1 = 𝑦𝑦0 + �𝑚𝑚𝑖𝑖

𝑠𝑠

𝑖𝑖=1

𝑢𝑢𝑖𝑖 ,

𝐽𝐽𝑖𝑖 =
1
ℎ𝛾𝛾𝑖𝑖𝑖𝑖

𝐸𝐸 − 𝑓𝑓𝑦𝑦(𝑡𝑡0,𝑦𝑦0),

𝐽𝐽𝑖𝑖𝑢𝑢𝑖𝑖 = 𝑓𝑓(𝑡𝑡0 + 𝛼𝛼𝑖𝑖ℎ, 𝑦𝑦0 + �𝑎𝑎𝑖𝑖𝑖𝑖

𝑖𝑖−1

𝑖𝑖=1

𝑢𝑢𝑖𝑖) + 𝐸𝐸�
𝑐𝑐𝑖𝑖𝑖𝑖
ℎ

𝑖𝑖−1

𝑖𝑖=1

𝑢𝑢𝑖𝑖

 + 𝛾𝛾𝑖𝑖ℎ𝑓𝑓𝑡𝑡(𝑡𝑡0,𝑦𝑦0) (𝑖𝑖 = 1, … , 𝑠𝑠).
Fixed method coefficients are 𝛾𝛾𝑖𝑖𝑖𝑖 , 𝑎𝑎𝑖𝑖𝑖𝑖 , 𝛼𝛼𝑖𝑖 , 𝑐𝑐𝑖𝑖𝑖𝑖 , 𝛾𝛾𝑖𝑖 and
𝑚𝑚𝑖𝑖. To compute the stage vectors 𝑢𝑢𝑖𝑖 a linear system of
equations has to be solved in each stage. Especially
interesting are methods with 𝛾𝛾 ≔ 𝛾𝛾𝑖𝑖𝑖𝑖 (𝑖𝑖 = 1, … , 𝑠𝑠),
because then the iteration matrix 𝐽𝐽𝑖𝑖 of the linear system
is the same in each stage – and we can drop the index.
So, only one decomposition of the iteration matrix 𝐽𝐽 is
required in each time step. Rosenbrock methods
require the evaluation of the Jacobian 𝑓𝑓𝑦𝑦 and the
derivative with respect to time 𝑓𝑓𝑡𝑡.

For systems with input variables 𝑢𝑢 (which must not
be mixed up with the stage vectors 𝑢𝑢𝑖𝑖):

𝐸𝐸�̇�𝑦 = 𝑓𝑓(𝑡𝑡,𝑦𝑦) ≔ 𝜑𝜑�𝑡𝑡,𝑦𝑦,𝑢𝑢(𝑡𝑡)�

this means 𝑓𝑓𝑡𝑡 = 𝜑𝜑𝑡𝑡 + 𝜑𝜑𝑢𝑢�̇�𝑢 with the derivatives �̇�𝑢 of the
external input signal 𝑢𝑢 to be provided.

There exist coefficients of Rosenbrock methods with
convergence orders from 1 to 4 with different stability
properties. In (Lubich, Roche, 1990) an L-stable
Rosenbrock method of order 3 with 𝑠𝑠 = 4 stages is
developed for index-1 systems. In (Rang, 2013) the
coefficients of Rosenbrock methods are improved to
get methods without order reduction for (very) stiff
problems.

Rosenbrock methods are interesting for real-time
simulation of stiff systems, because the computational
procedure for a step includes the solution of linear

Model-based Embedded Control using Rosenbrock Integration Methods

520 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132517

systems but not of nonlinear systems. For linear
systems a fixed number of computations guarantee
finding the numerical solution in contrast to the
iteration process for solving nonlinear systems.

3.2 Linear and Nonlinear Systems of
Equations

In comparison to the ODE representation of a Modelica
model, the index-1 formulation in Section 3.1 has some
advantages in combination with Rosenbrock methods.
Consider the example system of index 1

�̇�𝑥 = 𝑓𝑓(𝑡𝑡,𝑥𝑥, 𝑦𝑦),
0 = 𝑔𝑔(𝑡𝑡, 𝑥𝑥, 𝑦𝑦),

where a possibly nonlinear function 𝑔𝑔 couples states 𝑥𝑥
and algebraic variables 𝑦𝑦. The typical transformation to
ODE form would lead to

�̇�𝑥 = 𝑓𝑓�𝑡𝑡, 𝑥𝑥,𝑦𝑦(𝑥𝑥, 𝑡𝑡)�,
𝑦𝑦 = 𝑔𝑔−1(𝑥𝑥, 𝑡𝑡).

Here, maybe a nonlinear or at least a linear system
of equations has to be solved when inverting the
function 𝑔𝑔 with respect to 𝑦𝑦. This can be avoided, if
the index-1 formulation is used:

�𝐼𝐼 0
0 0��

�̇�𝑥
�̇�𝑦� = �𝑓𝑓(𝑡𝑡, 𝑥𝑥, 𝑦𝑦)

𝑔𝑔(𝑡𝑡,𝑥𝑥, 𝑦𝑦)�.

When applying a Rosenbrock method only the right
hand side and its derivatives are evaluated. The one
step method provides an approximation of the solution
vectors 𝑥𝑥, 𝑦𝑦 just by solving linear systems in the stages
of the method. So, no nonlinear or nested linear system
has to be solved. This property is very helpful for real-
time simulation, because nonlinear loops in the original
Modelica model can be replaced by linear systems in
this way – leading to predictable computation times,
see Section 4.1.2 for an example.

3.3 Rosenbrock Methods in Dymola
The support of Rosenbrock methods has recently been
implemented in Dymola. The integration schemes rely
on the index-1 formulation of the manipulated
Modelica model equations. By the symbolic
manipulation algorithms of Dymola, it is structurally
guaranteed, that the system 𝐸𝐸�̇�𝑦 = 𝑓𝑓(𝑡𝑡, 𝑦𝑦) has index 1.
Currently, in Dymola four different Rosenbrock
methods with orders 1-4 are available. The method of
order 1 is the linearly implicit Euler method. All the
methods are available as global inline integration
methods in Dymola, see the menu in Figure 5.

Further, a Rosenbrock method can be specified as a
solver method for a clocked part, by setting the
argument solverMethod of the Modelica Clock
constructor Clock(c, solverMethod). This functionality
is then used in the Modelica_Synchronous library to
define the integration method of clocked equations. In

the example in Figure 6 the first order Rosenbrock
method “Rosenbrock1” is used.

Figure 5. Menu to select a Rosenbrock integration
method in Dymola.

Figure 6. Inclusion of a continuous-time controller into a
clocked environment using Rosenbrock integration.

To complete the tool chain, the Rosenbrock methods
are also supported by Dymola’s embedded code
generator. The symbolic machinery transforms the
Modelica model equations after index reduction and
fixed state selection to the form 𝐸𝐸�̇�𝑦 = 𝑓𝑓(𝑡𝑡,𝑦𝑦) and
generates code for calculating 𝐸𝐸 and 𝑓𝑓. Additionally
the matrix 𝑓𝑓𝑦𝑦 corresponding to the analytic Jacobian is
straightforward to construct and generate code for.

It is more complicated to construct the vector 𝑓𝑓𝑡𝑡.
The symbolic machinery normally deduces a total
derivative with respect to time, but for Rosenbrock
methods a partial derivative is needed. We will explain
the difference with an example. If for example
𝑓𝑓(𝑡𝑡,𝑦𝑦) = 𝑡𝑡2 + 𝑦𝑦, the total derivative with respect to
time would be 𝑑𝑑 𝑑𝑑𝑡𝑡⁄ 𝑓𝑓(𝑡𝑡, 𝑦𝑦(𝑡𝑡)) = 2𝑡𝑡 + �̇�𝑦, but the
partial derivative is 𝑓𝑓𝑡𝑡(𝑡𝑡,𝑦𝑦) = 2𝑡𝑡. The symbolic
machinery has also to deal with intermediate variables
(e.g. 𝑧𝑧, if we rewrite the previous equation as 𝑓𝑓(𝑡𝑡,𝑦𝑦) =
𝑧𝑧 + 𝑦𝑦; 𝑧𝑧 = 𝑡𝑡2; and the partial derivative with respect to
time should differentiate those, but not the states).

Moreover, this time-derivative is not used by other
standard numerical integration methods, and thus some
Modelica functions do not provide the necessary
derivatives (this can be handled either by assuming that
the functions are smooth even if not specified or some
minor modifications of libraries such as Modelica

Session 7D: Control Systems III

DOI
10.3384/ecp17132517

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

521

Standard Library to specify this). This is especially the
case, if the model follows some time-dependent
trajectory 𝑟𝑟(𝑡𝑡) – because we need the derivative �̇�𝑟(𝑡𝑡),
which is not needed for other methods. For input
dependent models the derivative �̇�𝑢 of the input is
involved in 𝑓𝑓𝑡𝑡 (as explained in Section 3.1) and could
be approximated by a difference quotient or the
influence of �̇�𝑢 could be neglected in the method
equations (�̇�𝑢 = 0), when we assume that the input
signal is piecewise constant. But this introduces some
non-smoothness into the right hand side 𝑓𝑓, which could
lead to numerical errors especially when applying
Rosenbrock methods with orders greater than two. A
more sophisticated solution for such input dependent
models would require the additional input �̇�𝑢 for the
model. This approach has not been investigated so far.

The matrix 𝐸𝐸 is generally sparse or even diagonal
with just zeros and ones on the diagonal and it would
be worth to exploit the structure of the matrix when
generating tailored code for the application of a
Rosenbrock method to a specific Modelica model – but
this is not yet realized in the implementation.

Dymola’s implementation of Rosenbrock is
generic, and some method-specific optimizations are
not yet included, e.g. some Rosenbrock methods have
several rows of the matrix (𝑎𝑎𝑖𝑖𝑖𝑖) that are identical, and
in those cases we could avoid re-evaluating the right
hand side 𝑓𝑓. This can intuitively be explained as
performing exactly two iterations of the nonlinear
solver for that point.

There are variations of Rosenbrock methods (W-
methods) that keep the factorized matrices for several
steps. We have not considered them for real-time
applications. The reason is that for real-time code the
goal is to ensure a maximum computation time for
each sampling point – not for the average one; and we
will anyway need new factorized matrices after each
event. If we do not explicitly detect events, the
problem with W-methods would be more severe since
the continuity assumptions are silently broken.

4 Application Examples
In this section two application examples are given to
demonstrate how the embedded code generation and
the Rosenbrock methods can be used to generate real-
time code for nonlinear controller structures with
guaranteed upper number of operations.

4.1 Nonlinear Feedforward Controllers
We consider a continuous-time controller with two
structural degrees of freedom and an inverse plant
model in the feedforward path. See (Looye et al., 2005)
for details on this controller structure and its
implementation in Modelica. In case the inverse plant
and the plant model are identical, they start at the same
initial values and the plant is stable, then the control

error is equal to zero, so the plant output follows the
filtered reference input. The feedback controller is used
to compensate for differences in the plant and inverse
plant model, as well as for external disturbances, and it
stabilizes a plant in case it is unstable.

4.1.1 Implementation in Modelica
In Modelica an inverse plant model can be constructed
by using the model component
 Modelica.Blocks.Math.InverseBlockConstraints
to exchange inputs and outputs and by connecting a
filter to the input of the inverse model. As filter the
model Modelica.Blocks.Continuous.Filter with
parameters filterType = LowPass and analogFilter =
CriticalDamping or Bessel can be used, see Figure 7.
The minimum order of the filter results from the
structural analysis of the inverse plant model resp. the
corresponding DAE in order to only provide the input
u but not derivatives of it. The derivatives of the
smoothed input signal are computed inside the filter
model.

Figure 7. Definition of an inverse plant model.

In order that the controller can be used on a real
time system, the process of Section 2 is applied. The
continuous controller model is transformed to a
clocked system with sample and hold blocks and an
appropriate inline integrator needs to be selected for
the clock. In simple cases, an Explicit Euler method
might be enough. If the controller contains nonlinear
algebraic equations or if the model is stiff, a
Rosenbrock integrator has to be selected, see also
Section 3.3. Note, that the filter might be stiff even if
the inverse plant model might be non-stiff.

It follows an application example for the automatic
construction of nonlinear feedforward controllers that
can be used in an embedded system.

4.1.2 Example 1: Slider Crank Mechanism
with Feedforward Controller

The following example is a slider-crank
mechanism that is directed in vertical
direction. At the top a spring-mass system is
present. The goal is to move the revolute
joint of the slider-crank mechanism, such
that the mass follows a pre-defined path
without vibrations.

When kinematically driving the revolute
joint with constant velocity, then the vertical
coordinate of the top mass moves as shown

Model-based Embedded Control using Rosenbrock Integration Methods

522 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132517

in Figure 8. As can be seen, significant vibrations are
present in the movement of the mass. The goal is to
develop an embedded controller according to Section
2. The problem is rather challenging, because the slider
crank mechanism introduces a nonlinear algebraic
equation system in the plant, as well as in the plant
inverse.

Figure 8. Vertical movement of top-mass of the slider-
crank mechanism.

Figure 9. Controlled slider crank mechanism.

In Figure 9 the overall system including a controller
is shown. The controller is detailed in Figure 10 where
for the feedforward path of the controller an inverse
model of the slider crank mechanism is present such
that the input of the inverse model is the vertical
position s of the top mass, and the outputs are (a) the
reference torque tau for the revolute joint, and (b) the
reference angle phi for the revolute joint. As filter a

third order critical damping filter is used. The control
error is the difference between the reference angle phi
computed by the inverse slider crank model and the
measured angle phi from the plant. A simple P
controller is used in the feedback loop.

Although a nonlinear system of equations appears in
the model equations of the inverse slider-crank model,
it is possible to generate embedded code for the
sampled data controller according to Section 2 by
using the newly supported Rosenbrock integrators of
Section 3. The detailed explanation of this effect is
found in Section 3.2. A proper step size of the tested
Rosenbrock methods for the controller is 1 ms.

Some simulation results are shown in Figure 11. The
Rosenbrock method of order 1 (the linearly implicit
Euler method) leads to very accurate results with
respect to the reference solution generated by a highly
accurate DASSL simulation. The numerical solution of
the Rosenbrock method with order 3 is also rather
accurate, only in the torque signal some vibrations are
visible. One reason could be neglecting the input
derivatives of s_ref and phi in the integration scheme
of Rosenbrock methods as described in Section 3.1.

Experiments show for the Explicit Euler method a
maximum step size of 0.5 ms can be used; otherwise
the numerical integration cannot be run due to
difficulties with solving the nonlinear system. There
remains still a nonlinear system of equations due to the
index-0 formulation of the translated model equations.
This also means that currently no embedded code can
be generated for this controller example when using an
Explicit Euler method as integrator.

There are two advantages of Rosenbrock methods:
Because they are implicit methods, generally greater
step sizes can be used than for explicit methods and
nonlinear system of equations present in the model
equations can be approximately solved by a
Rosenbrock solver resulting in only linear systems.

Figure 10. Sampled data controller of a slider crank mechanism consisting of inverse plant model in the feedforward

path, a filter of order 3 and a P controller in the feedback loop.

Session 7D: Control Systems III

DOI
10.3384/ecp17132517

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

523

Figure 11. Simulation results of the slider crank
mechanism with a nonlinear feedforward path and a P
controller in the feedback loop. The reference solution
using the continuous controller in Modelica is generated
by highly accurate BDF-methods with DASSL (blue
lines) whereas the embedded controllers contain
Rosenbrock methods of order 1 (red lines) and order 3
(green lines) with a constant step size of 1 ms.

4.2 Feedback Linearization Controllers
A further important controller structure using nonlinear
plant models is feedback linearization, see (Looye et
al., 2005) for more details including the implemen-
tation in Modelica.

4.2.1 Implementation in Modelica
The first part of this subsection is a summary of
material provided in (Looye et al., 2005). The principal
differences between a controller with feedback
linearization and a feedforward controller of Section
4.1 are that for the feedback linearization
• the inverse plant model is in the feedback part of

the controller and
• the states in the inverse model are obtained from

the actual plant via measurement and/or estimation
and not via solving a DAE (but algebraic equations
might need to be solved).

When deriving feedback linearizing control laws
manually, the outputs to be controlled are differentiated

until an analytical relation with a control input is
found. If the system model is available in Modelica,
the derivation of the control laws can be automated
using a similar procedure as described in Section 4.1.1.
However, instead of a filter with a minimal order, a
minimal set of integrators is added:

𝑣𝑣 ∶= 𝑦𝑦(𝑝𝑝) ∶=
𝑑𝑑𝑝𝑝

𝑑𝑑𝑡𝑡𝑝𝑝
𝑦𝑦 (1)

where 𝑣𝑣 is the new model input corresponding to the
output with relative degree 𝑝𝑝. We describe the
procedure for a single output system with the
controlled output 𝑦𝑦. The desired dynamic behavior of
the closed-loop system is then imposed by application
of an additional feedback law:

𝑣𝑣 = 𝑘𝑘0�𝑦𝑦𝑅𝑅𝑅𝑅𝑅𝑅 − 𝑦𝑦� −�𝑘𝑘𝑖𝑖

𝑝𝑝−1

𝑖𝑖=1

𝑦𝑦(𝑖𝑖) (2)

with constant coefficients 𝑘𝑘𝑖𝑖. This feedback law
requires availability of the (𝑝𝑝 − 1)-th derivative of the
controlled output 𝑦𝑦. The derivatives may be obtained
from measurements or from the computed values in the
inverse model. In case the inverted model exactly
represents the true system, the closed loop system
becomes the single output case:

𝑦𝑦(𝑝𝑝) + �𝑘𝑘𝑖𝑖

𝑝𝑝−1

𝑖𝑖=1

𝑦𝑦(𝑖𝑖) + 𝑘𝑘0(𝑦𝑦 − 𝑦𝑦𝑅𝑅𝑅𝑅𝑓𝑓) = 0. (3)

A disadvantage of feedback linearization is that the
state vector of the plant must be fully available from
measurement and/or estimation.

In Modelica, the inverse model is built in a similar
way as for a feedforward controller, see Figure 12:

Figure 12. Definition of an inverse plant model for
feedback linearization.

When translating this model with Dymola, typically
an error message of the following kind is displayed:
"The model requires derivatives of some inputs as
listed below: ...". For example if derivatives of order 2
are required by 𝑣𝑣, then 2 more integrators have to be
added.

This inverse model with the integrators of Figure 12
is placed in the feedback-loop of the controller. If the
minimal number of integrators are added, then the
model from 𝑣𝑣 → 𝑦𝑦 has the same number of states as the
non-inverted plant. These states must be provided from
measured and/or estimated values of the plant. To
formulate this, Dymola has introduced an annotation to
map a sampled input signal, say, xs = sample(xc) to a
state x, say:

𝑦𝑦

�̇�𝑦

�̈�𝑦

Model-based Embedded Control using Rosenbrock Integration Methods

524 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132517

Real xs annotation(useAsInputForState=x);
The meaning is that
1. StateSelect.always is defined for variable x.
2. After the usual index reduction and state selection

x is deselected as state and the equation x = xs is
added. Its derivative is set as a dummy derivative.

As a result, the inverse model is no longer a
differential-algebraic equation system, but only an
algebraic equation system. In case this system is
nonlinear, the Rosenbrock method from Section 3 is
used to solve it during run-time with a fixed upper
bound on the number of operations.

Figure 13. Modelica block to apply the new annotation
useAsInputForState.
A corresponding Modelica block has been
implemented to use the annotation, see Figure 13. The
main line of code in the block is

RealInput xs annotation (useAsInputForState=x);
to enforce, that the state x is set to the input xs
according to the above logic.

In the next subsection an application example
demonstrates the general tool chain for the automatic
construction of feedback linearization controllers that
can be used in an embedded system.

4.2.2 Example 2: Mixing Reactor with Feedback
Linearization Controller

We use a mixing reactor model that is explained in
detail in (Looye et al., 2005) – including different types
of controllers for it. The reactor shall be controlled by a
feedback linearization controller. For the feedback
linearization it is assumed that the two system states,
the concentration 𝑐𝑐 =:𝑦𝑦 of the chemical substance, as

well as its temperature 𝑇𝑇, are measurable.
With the approach of Figure 12 it is determined that

two integrators are needed. By Equation (3) we get the
following feedback law:

𝑣𝑣 = �̈�𝑐 = 𝑘𝑘0�𝑐𝑐𝑟𝑟𝑅𝑅𝑅𝑅 − 𝑐𝑐� − 𝑘𝑘1�̇�𝑐 (4)
whereby 𝑐𝑐 is available from measurement and �̇�𝑐 is
computed from the inverse model (which in turn means
that it is computed from the measured 𝑐𝑐 and 𝑇𝑇). The
following feedback coefficients are selected:

𝑘𝑘0 = 4.39e-4, 𝑘𝑘1 = 0.0419.
The complete model including the controller and the
controlled plant is shown in Figure 14. The controller
is according to (4) and includes the “input to state”
blocks for the states of the inverse plant model: the
concentration 𝑐𝑐 and the temperature 𝑇𝑇. As explained in
the previous subsection this is necessary to provide the
measured states to the inverse model of the feedback
linearization controller.

Figure 15 shows the response of the closed loop
system using the embedded controller generated
according to the process described in Section 2. The
simulation results are generated with Rosenbrock
methods of order 1-4. It is obvious that the results are
rather identical for the used step size of 5 s. It is also
possible to use the Explicit Euler method, but then a
step size of 1 s is necessary to achieve similar accuracy
as the Rosenbrock methods do.

The main novelty of this example is the support of
the newly introduced annotation useAsInputForState
within a clocked system. This feature enables the user
to develop and test a controller with feedback
linearization in a purely Modelica environment.
Previously (see Looye et al., 2005) this was only
possible by exporting the inverse model to for example
Simulink and building the controller in this
environment. The additional support by the embedded
code generator completes this feature.

 Figure 14. Mixing reactor controlled by a feedback linearizing controller. The “input to state” blocks are used to
provide the states of the inverse model.

𝑐𝑐 ̈ 𝑐𝑐 ̇ 𝑐𝑐 𝑐𝑐𝑟𝑟𝑅𝑅𝑅𝑅

Session 7D: Control Systems III

DOI
10.3384/ecp17132517

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

525

Figure 15. Step response of the mixing reactor controlled
by a feedback linearization controller.

5 Summary and Outlook
Directly generating controller code from models is
important for model-based design. This paper
demonstrates how Dymola can generate embedded C-
code for Modelica models (with several novel aspects)
and demonstrates this for application examples.

By using Rosenbrock methods on the index-1
problem Dymola can handle stiff systems in a way that
both is theoretically sound and has an upper bound on
the execution time per sample. The stiff systems in the
control system often occur due to using an inverse
(simplified) model of the real plant in the controller.

Additionally Dymola's generated embedded C-code
has been designed to be easy to embed, with care about
minimal foot-print, traceability, and straightforward
integration in embedded platforms.

Finally, a nonlinear feedforward controller and a
feedback linearization controller have been
implemented in Modelica for different application
examples. They show the potential of the whole
process by generating embedded real-time code for
these nontrivial examples.

Future considerations include investigating how to
handle inputs (piece-wise constant or extrapolation) for
Rosenbrock methods, and nonlinear systems in

initialization and event code. Additionally, the choice
of the specific Rosenbrock methods will be re-
investigated. A possible future extension would be to
use Rosenbrock methods with step-size control in off-
line mode; one benefit would be to quickly get an
estimate of the step-size needed for the model.

6 Acknowledgment
We would like to thank Gertjan Looye from DLR for
his help regarding modeling of feedback linearizing
controllers.

References
C. Bertsch, J. Neudorfer, E. Ahle, S. S. Arumugham, K.

Ramachandran, A. Thuy. FMI for Physical Models on
Automotive Embedded Targets. Proc. of 11th International
Modelica Conference, pp. 43-50. Versailles, France, 2015.

H. Elmqvist, S. E. Mattsson, H. Olsson, J. Andreasson, M.
Otter, C. Schweiger, D. Brück. Realtime Simulation of
Detailed Vehicle and Powertrain Dynamics. Electronics
Simulation and Optimization. SAE 2004 World Congress,
Detroit, USA, 2004.

E. Hairer, G. Wanner. Solving Ordinary Differential
Equations II. Stiff and Differential-Algebraic Problems.
Springer, 1991.

G. Looye, M. Thümmel, M. Kurze, M. Otter, J. Bals.
Nonlinear Inverse Models for Control. Proceedings of 4th
International Modelica Conference, pp. 267-279, TU
Hamburg-Harburg, Gemany, 2005.

C. Lubich, M. Roche. Rosenbrock Methods for Differential-
algebraic Systems with Solution-dependent Singular
Matrix Multiplying the Derivative. Computing 43, 325-
342, Springer, 1990.

MISRA Consortium. Guidelines for the Use of the C
Language in Critical Systems. 2013.

M. Otter, B. Thiele, H. Elmqvist. A Library for Synchronous
Control Systems in Modelica. Proc. of 9th International
Modelica Conference, pp. 27-36. Munich, Germany, 2012.

J. Rang. Improved traditional Rosenbrock Wanner methods
for stiff odes and daes. Technical report, Institute of
Scientific Computing, Technical University
Braunschweig, 2013.

L. Satabin, J.-L. Colaco, O. Andrieu, B. Pagano. Towards a
Formalized Modelica Subset. Proc. of 11th International
Modelica Conference, pp. 637-646. Versailles, France,
2015.

SCADE:
www.esterel-technologies.com/products/scade-suite

Model-based Embedded Control using Rosenbrock Integration Methods

526 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132517

Integration of complex Modelica-based physics models and

discrete-time control systems: Approaches and observations of

numerical performance

Kai Wang
1
 Christopher Greiner

1
 John Batteh

2
 Lixiang Li

2

1
 Ford Motor Company, USA, kwang37@ford.com, cgreiner@ford.com

2
 Modelon, Inc., USA, john.batteh@modelon.com, lixiang.li@modelon.com

Abstract
A Modelica-based air conditioning (A/C) system

model has been integrated, closed-loop, with related S-

function-based controls in the Simulink environment.

The integration was performed with two different

approaches, with a DymolaBlock-based S-function for

the A/C model, and as a co-simulation FMU. The

simulation performance of the integrated model needs

to be sufficiently fast for the purpose of vehicle-level

simulations and optimizations. This paper will discuss

the integrated modeling of A/C system and associated

control systems over a dynamic drive cycle, and the

associated numerical performance issues discovered, as

well as some approaches taken to increase said

performance.

Keywords: Modelica, discrete, variable, integration

1 Introduction

 As CAE simulations become more complex, the need

for computational efficiency increases in order to

provide timely solutions and analyses. One facet of this

complexity is the integration of multiple software

modeling tools and environments in order to utilize the

most capable computational technologies for the

different features of these complex system models.

Physical plant models may be developed in Modelica

and require variable step solvers to capture both fast

and slow continuum dynamics while discrete time-

based control systems may be developed in C-code or

Simulink and require fixed time step solvers.

Integrating these plant and control models into a single

environment can result in computational inefficiencies

due to conflicting solver time step requirements. This

paper will discuss the integrated modeling of an

automotive vapor compression air conditioning system

and associated control systems over a dynamic drive

cycle, and the associated numerical performance issues

discovered, as well as some approaches taken to

increase said performance.

2 Overview of the physical plant

model - A/C refrigerant

components, refrigerant system,

and cabin

Figure 1 (a) Hierarchy structure of the A/C model (b)

Modelon A/C model layout

 For this study, only models of the complete

refrigerant system and the vehicle interior (cabin) were

required to simulate the physics of interest. The plant

models are Modelica-based and developed in Dymola

2015FD01, utilizing component and refrigerant models

from Modelon-supplied libraries. The structure and

layout of the A/C model package are shown in Figure

1. The Dymola package browser in the upper-left of

Figure 1(a) displays the package hierarchy and is

shown with the A/C model selected. There are three

sub-packages under the A/C model, namely,

parameterized components, test benches, and A/C

system model package. The parametrized components

are specific, populated component models which are

DOI
10.3384/ecp17132527

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

527

used in the refrigerant circuit models. They include an

evaporator, compressor, condenser, internal heat

exchanger, and Thermostatic Expansion Valve (TXV),

as well as piping and hoses. The test bench sub-

package is a workspace for users to customize or

calibrate individual component instances, and includes

test benches for condenser, evaporator, and compressor

models. The A/C simulation model sub-package

consists of two main sub-models, the refrigerant circuit

and the cabin model (including the air duct, blower

model, etc.) as shown in Figure 1(b). Included in the

refrigerant circuit model are the evaporator,

compressor, condenser, internal heat exchanger,

piping, and hoses. The cabin model consists of cabin

interior, an air duct model, temperature blend door

model, and the blower model.

The SC03 drive cycle is part of the EPA regulatory

automotive 5-cycle fuel economy method. SC03 is a

full vehicle chassis dynamometer test performed with

the vehicle A/C unit operating with an ambient

temperature of 95°F (35°C) and a solar loading on the

vehicle of 850 W/m
2
. The cycle represents a 3.6 mile

(5.8 km) route with an average speed of 21.6 mph

(34.8 kph), maximum speed 54.8 mph (88.2 kph), and

duration of 596 seconds. The vehicle speed profile for

the SC03 test is shown in Figure 2. The SC03 drive

cycle was chosen for this study as it is the only cycle of

the EPA 5-cycle method that requires the air

conditioning system to be operating.

Figure 2 Vehicle speed race for SC03 cycle

3 Overview of the control systems

models

 The control systems required for the electrified

automotive air conditioning system operation typically

consist of the climate control head, compressor control,

condenser fan control, active grille shutters, and

electric water pump, as shown in Figure 3. The climate

control head is the interface between the occupant and

the climate control system. It controls the overall

operation of the climate system, including cooling or

heat request, blower airflow setting, airflow mode

setting (location of discharge air), recirculation versus

fresh air, cabin and evaporator temperature settings,

and automatic or manual operational mode. The control

head also controls the states of ancillary systems such

as auxiliary heaters, glass fogging detection,

heated/cooled seats, heated backlight/windshield, and

heated steering wheel. Explicit modeling of a closed-

loop control head is not included in this study, as the

climate system settings are manually set at the start of

the cycle and remain static throughout the drive cycle,

and the evaporator target temperature time trace comes

from actual test data.

The compressor control modulates the compressor

speed based on temperature request and refrigerant

discharge pressure. The climate control head

determines an appropriate target evaporator outlet

temperature profile and the compressor control sets the

compressor speed to achieve the target temperature

using a PI control algorithm. If the compressor

discharge pressure exceeds a specified limit,

compressor speed is reduced and modulated using a PI

controller to maintain a maximum allowed discharge

pressure.

Figure 3 Automotive air conditioning control systems

The cooling fan control regulates the underhood

front-end airflow fan speed in order to maintain the

thermal management of systems requiring airflow

through their associated heat exchangers. These

systems typically include the A/C system, engine

coolant, engine oil, and transmission oil systems.

When the A/C system is operating the fan control

calculates a desired fan speed/duty cycle based on

compressor discharge pressure and ambient

temperature. Fan speeds/duty cycles are also calculated

for the other thermal systems and an arbitrator function

determines the maximum required fan speed/duty cycle

then commands the fan. Above certain vehicle speeds

the fan speed/duty cycle is reduced to take advantage

of ram air effect on front-end airflow.

Active grille shutters are used to balance

aerodynamic drag and front end airflow/thermal

management system requirements, closing down at

higher vehicle speeds to reduce drag and opening more

at lower speeds to enhance front end airflow. Similar to

the cooling fan control, each thermal system has a

desired shutter opening calculated and an arbitrator

determines the maximum opening required and

commands the shutters. For the A/C system, the

desired grille shutter opening is calculated based on

compressor discharge pressure and ambient

temperature and then combined with a vehicle speed

multiplier to account for aerodynamic effects.

Integration of complex Modelica-based physics models and discrete-time control systems: Approaches and
observations of numerical performance

528 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132527

Each of the control systems described above are

implemented in the Matlab/Simulink (Version R2014a)

environment as pre-compiled S-functions. The source

of the S-functions is based on the C-language code

implemented on the actual vehicle. While specific

control strategies are hard-coded into the S-functions

themselves, all control calibration parameters are user

accessible at run time. Also, as each of the controls are

discrete time-based systems operating with timing

loops of 10 and 100 milliseconds, execution of the

control models in Simulink require fixed step solvers.

4 Integrated Dymola/Simulink Model

- Methods of model integration

In Dymola, the A/C plant model operates in an open

loop fashion with the time varying inputs for a

simulation prescribed in advance. While this is useful

for a number of scenarios, such as plant model

development and verification, substantially more value

can be realized when the plant models are integrated

with control systems in closed loop, thereby allowing

more complex system performance and optimization

studies to be conducted. Simulink is used here as the

integration environment, and there are multiple

methods for incorporating a Dymola model into

Simulink.

The first integration approach is using the

DymolaBlock S-function interface. This Dymola

option allows models developed in Dymola to be

compiled as S-functions incorporated directly into

Simulink, enabling the powerful physical modeling

capabilities of the Modelica language to be combined

with the controls orientated approach of Simulink.

Figure 4 depicts the A/C model integrated into

Simulink as a DymolaBlock S-function.

Figure 4 Integrated A/C model as a DymolaBlock S-

function in Simulink

The second integration method utilizes the

Functional Mock-up Interface (FMI) for model

exchange or co-simulation. FMI defines a standardized

modeling interface to be implemented by an executable

module called a Functional Mock-up Unit (FMU). The

FMI functions are used (called) by a simulation

environment to create one or more instances of the

FMU and to simulate them, typically together with

other model elements. An FMU may either have its

own embedded numerical solvers (FMI for Co-

Simulation) or utilize the simulation environment’s

own solvers (FMI for Model Exchange). [1].

In this application, we only consider the FMI for

Co-Simulation option for two reasons. First, FMI for

Model Exchange is very similar to utilizing an S-

function function approach, like the DymolaBlock, as

they both use the Simulink solver, and the

DymolaBlock process is already incorporated into our

modeling process. Second, due to the nature of the

continuum behavior of the A/C system physics, and the

need for a variable time step solver for the plant model,

FMI for Co-Simulation allows the use of Dymola’s

solver for the physics in conjunction with Simulink’s

solver for the controls. Figure 5 shows an A/C model

FMU in Simulink, with open loop inputs.

Figure 5 Integrated A/C model FMU in Simulink

 Closed-loop control modeling requires the A/C

system plant model to respond, minimally, at near real-

time and produce physical and realistic outputs for the

control systems to properly act upon [3]. In this study,

there are three primary physical outputs from the A/C

system plant model, specifically, the evaporator air out

temperature, the vehicle cabin interior air temperature,

and the compressor refrigerant discharge pressure. The

evaporator air out temperature is the primary feedback

signal used by the compressor controller to modulate

the compressor speed, while the other two signals are

used to a lesser degree. The input signals to the A/C

system plant model from the control systems and

Simulink-based physics models are the compressor

speed, condenser airflow and air inlet temperature. The

A/C system airflow through the evaporator and cabin

interior is determined by the cabin blower fan and

controlled by the Climate Control Head. In the SC03

drive cycle the blower is set to its maximum speed and

is modeled as a constant input into the A/C model.

Additional physics required by the integrated model

are defined in Simulink, including the condenser

airflow and air temperature. These physics models are

coupled to both the control systems as well as the A/C

model, as appropriate.

Session 7D: Control Systems III

DOI
10.3384/ecp17132527

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

529

5 Model performance and solver

strategies

 The A/C system model, including the associated

control systems, is one subsystem in a much larger and

more complex total vehicle model. Because of this, it is

desirable to optimize the computational performance of

each subsystem in order to minimize the impact on the

total vehicle model simulation time. The

aforementioned A/C model integration approaches

were selected to give the broadest range of solver and

simulation settings to minimize the subsystem

computational time.

 The baseline performance for the A/C system model

is defined as the physics-only Modelica model running

the SC03 cycle open-loop in the Dymola environment,

utilizing the DASSL variable time step with a solver

tolerance of 1e-05. Baseline simulation run time was

185 seconds, about one third of the real cycle time of

600 seconds. Next, the S-functions version of the

Dymola model was run open-loop in the Simulink

environment. Due to the numerical stiffness of the

mathematics, only the Simulink ode15s variable time

solver was capable of reliable solutions, and we used a

solver tolerance of 1e-05 to provide sufficient solution

accuracy. The S-function simulation time averaged 183

seconds, essentially identical to the native-mode

Dymola model. These results are shown as the first

two bars in Figure 6. The actual SC03 cycle time

comparator of 600 seconds is the right-most bar in the

figure.

Figure 6. Comparison of the A/C system model

computational performance

 Next, we consider the closed-loop integration of the

Dymola S-function with the 100ms fixed sampling

rate compressor control and the 10ms sampling rate

fan control. In Matlab R2014a, if any part of a

Simulink model requires a variable step solver, the

variable step solver must be the master solver for the

simulation. However, Simulink does allow the user to

define fixed sampling rates for parts of the model. For

the integrated Dymola S-function model, we utilized

the ode15s variable time step solver as the master

solver and specified a fixed sampling rate of 100ms

for the compressor control, in order for the controls

system to operate realistically. Likewise, when the

cooling fan control was added to the integrated

model, the fan control was set to run at a 10ms

sampling rate, consistent with its actual operation.

 The A/C model with the compressor control model

completed the SC03 cycle in a time of 1119 seconds,

as shown in the fourth bar of Figure 6, almost twice

as slow as real time. When the fan control was added

to the A/C model and compressor control the

simulation time for the SC03 cycle increased

dramatically to 3181 seconds, more than five times

the actual cycle time.

 To rationalize the performance degradation we need

to understand the interactions between the

continuous, variable step solver used for the

refrigerant system physics, and the discreet time-step

solvers used by the control systems. With the

integrated compressor control, the control module has

to communicate 100ms. Additionally, when the fan

control is also connected, it must communicate every

10ms. These sampling/exchange rates force the

variable time step solver operating on the physical

plant to synchronize the inputs and outputs of the

Dymola S-function at the communication interval

defined by the control system sampling rate. To

illustrate this effect, the Simulink model was

instrumented to record the timing rate of the variable

time step solver. Figure 7a shows a histogram of the

time step sizes used by the ode15s solver for the

stand-alone, open-loop Dymola S-function model for

the SC03 cycle. 53 percent of the time steps were

larger than 100ms. Figure 7b shows the results of the

A/C model with the integrated 100ms compressor

control. The largest variable time step for this

example was less than 80ms, and a large percentage

10ms or less. Finally, the combined A/C plant with

compressor and cooling fan controls variable solver

time steps are shown in Figure 7c, where the

maximum step size is even less than the 10ms

sampling rate of the fan controller. Combining

variable and fixed step rates in Simulink models is

referred to as a hybrid system in the Simulink

documentation, as is detailed as follows:

“A hybrid system is a system that has both discrete

and continuous states. Strictly speaking, any model

that has both continuous and discrete sample times is

treated as a hybrid model, presuming that the model

has both continuous and discrete states. Solving such

a model entails choosing a step size that satisfies both

the precision constraint on the continuous state

integration and the sample time hit constraint on the

discrete states. The Simulink software meets this

requirement by passing the next sample time hit, as

determined by the discrete solver, as an additional

Integration of complex Modelica-based physics models and discrete-time control systems: Approaches and
observations of numerical performance

530 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132527

constraint on the continuous solver. The continuous

solver must choose a step size that advances the

simulation up to but not beyond the time of the next

sample time hit. The continuous solver can take a

time step short of the next sample time hit to meet its

accuracy constraint but it cannot take a step beyond

the next sample time hit even if its accuracy

constraint allows it to.” [2]

Figure 7 Comparison of variable solver time step of

the A/C model without/with compressor and fan

control

 As we attempted to optimize the computational

performance of the combined A/C system and

associated control systems, this approach of utilizing a

Dymolablock-based S-function combined with the

discreet time-based controls in Simulink was unable to

deliver a sufficient level of performance, given the

versions of the tools utilized, Dymola 2015FD01 and

Matlab R2014a.

 Next, the computational performance of the A/C

model, as a co-simulation FMU, coupled with the

control systems in Simulink, was evaluated. The

primary benefit of FMI for co-simulation is that the

FMU utilizes a native-mode solver from its parent tool,

and the integrating environment uses its own

appropriate solver, and the communication interval

between the FMU and the integrating environment can

be independently specified. After a series of tests, it

was determined that a communication interval of one

second, between the FMU and the Simulink-based

controls, was sufficient to capture the required

accuracy and dynamics of the of the A/C plant model

to support vehicle-level cycle simulations. The

following results discussed here are only for a

communication interval of one second. The A/C model

FMU utilized the Dymola DASSL solver, and the

Simulink solver used was ODE1 with a fixed time step

of 10ms, consistent with vehicle-level simulations.

 Running the A/C model FMU coupled to open-loop

inputs in Simulink resulted in a run time of 314

seconds, 70% slower than the stand-alone S-function,

seen as the third bar in Figure 6. While this degradation

was not expected, it was most likely due to the

generation of time events in the FMU associated with

the open-loop inputs, and not explored in depth here.

Combining the A/C model FMU with the compressor

controls resulted in a run time of 528 seconds,

indicated by the fifth bar in Figure 6. Then, after

adding the cooling fan controls, the simulation time

only increased to 564 seconds, about a 7% increase in

simulation time. Even with both controls systems

integrated with the FMU, the model was able to

execute faster than real time, as opposed to the large

simulation times recorded utilizing the S-function-

based plant model approach.

 The benefit of the FMU co-simulation modeling

approach is due to the variable time step solver for the

physical plant model not having to synchronize lock-

step with the discrete-time systems in the model, thus

allowing the variable solver to run, on average, larger

time steps permitted by the physics.

 There have been recent performance enhancements

and tool developments in the co-simulation software

space, as well as enhancements to hybrid-solver

simulations in more recent versions of Matlab, but

those studies are not yet complete and could not be

included in this paper.

6 Conclusions

A Modelica-based A/C system model has been

integrated, closed-loop, with related S-function-based

controls in the Simulink environment. The integration

was performed with two different approaches, with a

DymolaBlock-based S-function for the A/C model, and

as a co-simulation FMU. The simulation performance

Session 7D: Control Systems III

DOI
10.3384/ecp17132527

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

531

of the integrated model needs to be sufficiently fast for

the purpose of vehicle-level simulations and

optimizations. A study has been performed to evaluate

and improve the simulation performance of the

integrated model. The execution time of A/C model

coupled with controls using Modelica FMI/FMU in

closed-loop is faster than the real time of the SC03

cycle, and it is 5 times faster than the same A/C model

using Dymola-Simulink interface S-function.

Combining models that require both variable and fixed

time step solvers can lead to serious numerical

performance issues and care must be taken in

evaluating potential solutions of these hybrid models.

These performance issues are expected to grow as the

complexity of physics and control models continue to

increase, and the demand for faster model turnaround

does, likewise.

References

[1] T. Blochwitz:, M. Otter, M. Arnold, C. Bausch and H.

Elmqvist, "The Functional Mockup Interface for Tool

independent Exchange of Simulation Models," in

Proceedings of the 8th International Modelica Conference;

March 20th-22nd; Technical Univeristy, Dresden; Germany,

2011.

[2] MathWorks. [Online]. Available:

http://www.mathworks.com/help/simulink/ug/modeling-

dynamic-systems.html?refresh=true.

Integration of complex Modelica-based physics models and discrete-time control systems: Approaches and
observations of numerical performance

532 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132527

Improving Interoperability of FMI-supporting Tools
with Reference FMUs

Christian Bertsch1 Award Mukbil2 Andreas Junghanns3
1Corporate Research, Robert Bosch GmbH, Germany Christian.Bertsch@de.bosch.com

2Dept. of Informatics, Clausthal University of Technology, Germany, Awad.Mukbil@tu-clausthal.de
3QTronic GmbH, Germany, Andreas.Junghanns@QTronic.de

Abstract
The Functional Mockup Interface (FMI) is more and
more adopted by industrial users, increasing the
pressure for higher quality and standard compliance of
FMI supporting tools. The FMI cross check
infrastructure was created to support tool vendors in
their quest for quality improvements and to give users
some measure of confidence in the tool quality.
Currently it is up to the tool vendors which FMUs to
submit there. For this reason the features tested in the
FMI cross check are incomplete and interpretation of
failures is difficult. While for FMI export there is the
FMU compliance checker to test a wide variety of FMI
features, no means are available today to prove standard
compliance for FMI import. This will be overcome by
adding reference FMUs to the FMI cross check, testing
specific features of the FMI standard for standard
compliance and giving detailed feedback, if an
importing tool violates the standard. The paper
describes the realization and the importance of reference
FMUs.
Keywords: FMI, Reference FMUs, Compliance, Testing

1 Introduction
The Functional Mock-up Interface (FMI) is a tool
independent approach for model exchange (ME) and co-
simulation (CS) (Blochwitz et al. 2011, 2012), and on
the way to become the industry standard for exchange
of models and cross-company collaboration (Bertsch et
al. 2014). Its main purpose is to share and reuse
simulation artifacts among a wide variety of tools and
environments, by putting the model specifications into a
simple compressed file called Functional Mockup Unit
(FMU). The FMU contains a model description in XML
format, source written in C and/or binaries ready to run
and optional components such as documentation, model
logo, etc.

Even before the release of the first version of FMI,
several modeling and simulation tools started
supporting the FMI standard. According to the official
website of FMI project, more than 80 simulation tools
support FMI version 1.0 and more than 40 support

version 2.0. Many automotive Original Equipment
Manufacturers (OEM) have committed themselves to
support FMI as exchange format for simulation models.

Because industrial users must rely on the results of
FMI-based simulations, the maturity of FMI
implementations comes into focus. For this reason, the
FMI project has organized the FMI cross check (XC,
2014), where FMI exporting tools can upload test FMUs
together with reference solutions as comma-separated
values (CSV) files, and importing tools can run those
FMUs and report the results. Once the results have been
submitted, they are shown in the FMI cross check table
at the FMI official website, which helps users to check
which tools work well together and which vendors are
serious in supporting FMI. In our experience, this has
improved the quality and the maturity of FMI support of
tools significantly.

The FMU compliance checker (FMU CC, 2016) is an
open source software tool that was initiated by the FMI
project and implemented by Modelon AB,contracted by
the Modelica Association. Its intention is to check
compliance of a given FMU with the FMI standard.
Through this compliance checker, users can get reports
about a wide range of problems that could arise from
loading FMUs, which in turn play an important role in
validating the tools that create (i.e. export) FMUs.

Figure 1: Three complementary ways of FMI compliance
testing

According to the “rule #8” of the FMI cross check
document (XC, 2014), vendors should test their FMUs
using the FMU compliance checker before submitting

Exporting
Tool

compliant?

FMU
Compliance

Checker

Importing
Tool

compliant?

Reference
FMUs

Feedback

Feedback Feedback

Feedback

? ?Today‘s
FMI

Cross Check

DOI
10.3384/ecp17132533

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

533

them, with or without reference results. This allows
vendors to find problems in their implementations early.
However, it is up to the exporting tool vendors which
FMUs they submit to the FMI cross check, and (as
depicted in Figure 1) in cases of problems it can be
difficult to find out if it is a problem of the importing or
exporting tool. This shows that special testing of FMI
importing tools is no less important. We propose do
realize this with the help of reference FMUs. Executing
these in an importing tool can provide feedback on the
FMI standard compliance of this tool as described
below.

From the beginning, in the FMI cross check rules
(XC, 2014) the important role of reference FMUs was
foreseen. The contribution of this work is a step towards
realizing such reference FMUs. In Sec. 2 we introduce
the concepts, the requirements and the classifications of
the reference FMUs. In Sec. 3 we present an initial
implementation of reference FMUs. In Sec. 4 we present
the means of testing the reference FMUs and first
experience with FMI importing tools. Last but not least,
we conclude our work and give an outlook to ongoing
research in Sec. 5 respectively.

2 FMI and Reference FMUs
The FMI standard comes in textual form, supported by
graphs, e.g., of the calling sequence, and XML
schemata. (Blochwitz et al. 2012). The FMI 2.0
standard has added also a mathematical description of
FMI, which clarifies a large number of concepts.
However, the FMI standard is considered to be not fully
formalized, which means the standard specifications are
not written in formal description language. Formalizing
the standard would help automatically generating test
cases, and for validating FMUs statically or during
runtime.

Formalizing the FMI standard has been partially
addressed in some publications, e.g. (Hasanagić et al.
2016), but this seems far away from being realized for
the whole standard in the next years. Thus, testing
methods from software engineering come into the focus.

2.1 Reference FMUs and Software Testing
In order to test FMI standard compliance, we must test:
1. Exporting tools: these tools create FMUs.
2. Importing tools: these tools run FMUs.

The exporting tool should follow the FMI standard
specifications for creating FMUs, such as providing a
correct modelDescription.xml file, and use the
correct naming and implementation for the functions as
stated in the standard. The FMU compliance checker
tests the validity of the FMUs and, implicitly, the
exporting tools with respect to a large number of FMU
properties. However, the FMU compliance checker can
only check a finite number of FMU properties for
correctness and is extended step by step. If the FMU

compliance checker does not find a problem, it is not
guaranteed that the FMU is error free.

In software engineering, the three basic types of
software testing are (Bruegge, B., Dutoit, A. H., 2009):
• Black-Box testing: testing done by giving inputs and

analyzing outputs. Tester does not use source code.
• White-Box testing: testing done with knowledge of

the internals of the software.
• Grey-Box testing: a combination of the black-box

and white-box techniques.
Testing FMUs using the FMU compliance checker is
grey-box testing because there are open aspects about an
FMU (like the modelDescription.xml) and closed
aspects of an FMU (compiled dynamic link libraries
(DLLs) containing the model behavior of the FMU). If
the FMU comes with reference CSVs, then the FMU
compliance checker sets the inputs according to the
input CSV file, runs the FMU and compares the
resulting outputs with the reference outputs.

Dealing with the importing tools is different. Most of
the simulation tools supporting FMI are commercial,
with unknown import mechanisms. Therefore, those
importing tools are considered black-boxes, and the
only way to test them is to run special FMUs that can
spot problems and log errors. These special FMUs are
called “Reference FMUs”.

2.2 Definition of Reference FMUs
“A reference FMU is an FMU specifically implemented
to test compliance with a certain aspect of the FMI
standard of a simulation tool. It has the ability to detect
and log errors and wrong practices according to the
FMI standard specifications. A reference FMU shall be
inspected and reviewed before being accepted and
published; thus, they must be available in source code
and all the creation tools must be freely available.”

This definition makes clear, that FMUs
demonstrating a certain feature but exported by some
commercial simulation tool cannot be considered as
reference FMUs, because they might be too
complicated, coming without the full source code and
tools that are necessary to create them without having
the needed licenses. However, they can also be very
valuable. We encourage tool vendors also to export such
“Feature demonstration FMUs” more often to the FMI
cross check.

For the first set of reference FMUs we focus on
testing “hard facts”, e.g., testing standard compliance
aspects of the importing tools such as data type support
and correct calling sequences. Other goals such as
testing usability of FMUs with many parameters or large
input/output sets, simulation performance with many
states or simulation performance with many
algebraic/discrete equations are currently not covered.
We limit ourselves to “positive” test cases (that the
importing tool should accept) and do not consider
negative FMU cases (that should be rejected by the

Improving Interoperability of FMI-supporting Tools with Reference FMUs

534 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132533

importing tool), because we think that invalid or
incorrect FMUs should be detected by the FMU
compliance checker and in the FMI standard we have
not seen requirements on an FMI importing tool to reject
certain FMUs.

2.3 Requirements on Reference FMUs
Reference FMUs shall:
• test specific features of FMI importing tools, and the

set of reference FMUs cover many features, and
• follow the FMI standard. A minimum requirement

is, that the FMU compliance checker runs
successfully (i.e., without warnings or errors) or that
a trac issue has been created in case of limitations,

• be simple and well-documented,
• be of high quality; to this purpose they shall
• be reviewed according to defined rules
• be available with all source code and tools that are

necessary to create them – in order that the creation
process can be inspected and reproduced,

• detect and log the cause of a failure if possible, and
• fit into the FMI cross check infrastructure (if

possible), e.g. by providing output signals.
The documentation of the reference FMUs is very
important in order to reproduce the creation and
interpret the results. It shall contain the following
information:
• Authors, change history and review status of this

reference FMU.
• The test purpose: What shall be tested with this

FMU? Which potential errors of importing tools
shall be detected with this FMU? Which capabilities
of importing tools shall be tested?

• Implementation hints: How is this FMU created?
(E.g. which libraries and tools are used?) Which
steps or scripts have to be run to create the FMU?

• Test setup: What are inputs to this FMU (data type,
values over time) and what are the expected
outputs?

• Is this FMU suitable for the current FMI cross check
infrastructure?

We have created a template for the documentation
which will be made publicly available. The
documentation will be contained within the reference
FMUs as html documentation.

2.4 Sources of Reference FMUs and
Coverage

There are several ways of deriving reference FMUs:
One is to go systematically through the standard and
trying to derive FMUs testing coverage and correct
implementation of all features. Another is to implement
FMUs based on (negative) experience with importing
and simulating FMUs created by one and run in some

other (presumably buggy) tool. For creating a reference
FMU based on this experience, one should abstract the
missing feature or error of the importing tool to a simple
example fulfilling the requirements listed above and
triggering the erroneous behavior.

In the following we followed both concepts. In the
current work, we did not intent creating a complete set
of reference FMUs, but we consider this as a starting
point that can be extended by developers and users once
the reference FMUs will be released to the FMI project
and to the public.

For certain aspects of the FMI standard, measures of
coverage can be derived: E.g., we have created reference
FMUs for all supported data types or we check the
allowed function calls in all FMI states and have created
reference FMUs that reach all of these states.

2.5 Classifications of Possible Reference
FMUs

FMI standard has main features and specifications that
should be followed, and from those features we propose
this classification of reference FMUs:
• FMUs for testing data type’s capability (one for

each data type),
• FMUs having dependencies on binaries, e.g. DLLs,

or other resources, e.g. CSV files,
• FMUs testing correct interpretation of the

modelDescription.xml file (version string,
GUID, model identifier… etc.),

• FMUs for testing access restrictions depending on
variable attributes (i.e. causality/variability
combination),

• FMUs for testing the calling sequence as specified
in the finite-state machine of the standard document,

• FMUs testing correct event handling (e.g., plausible
event localization),

• FMUs for testing optional capabilities, e.g., partial
derivatives, and

• Complex FMUs enabling the testing of the
interactions of different features (e.g., having
continuous states, multiple variables with different
attributes, different kind of events).

The first FMUs in this list can be considered as single-
feature “diagnostic FMUs”, i.e., they are designed to
test for a specific feature. A failure of them is very easy
to interpret. It is intended that the features to be tested
by different diagnostic FMUs are “orthogonal” in the
sense that the feedback is as clear as possible.

On the other hand, the more complex “multi-feature”
FMUs enable the detection of more subtle errors that
only occur due the interplay of different effects or due
to high complexity of the FMUs.

While in principle there could be completely different
reference FMUs for ME and CS, for our first set of

Session 9A: FMI I

DOI
10.3384/ecp17132533

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

535

reference FMUs we have created all our reference
FMUs for both ME and CS.

2.6 Feedback of Reference FMUs
If an importing tool does not support a feature (e.g.,
specific data types) it should check this during FMU
import based on the information in the
modelDescription.xml file, and give a meaningful
feedback: this is an “announced incompatibility”.

During runtime – especially for diagnostic FMUs –
an internal check of the reference FMU will trigger an
FMI error, so that the simulation is stopped and a
meaningful log message is created. Another possibility
is, that the FMU runs without an error, but the outputs
of the FMU are wrong. This can be detected, e.g. by the
FMI cross check infrastructure.

In the best case the reference FMU is simulated by
the importing tool without any error and produces the
correct outputs (within specified tolerances).

3 Implementation of Reference FMUs
3.1 Tools to Create our Reference FMUs
The FMU Software Development Kit (FMUSDK, 2014)
is considered a good starting point for supporting FMI
and implementing reference FMUs. The FMUSDK
demonstrates the basic use of Functional Mockup Units
(FMUs) as defined by the FMI version 1.0 and 2.0
specifications (FMUSDK, 2014) and implemented by
QTronic and freely available in open source. The
FMUSDK is suitable to create source code FMUs in a
quite simple manner, and already contains many
checking mechanism for the functions calling sequence.
Therefore, reusing and adding to this implementation
helps in creating the first reference FMUs. Furthermore,
we used the FMUSDK scripts and libraries for building
our FMUs.

For the first reference FMUs we concentrated on FMI
2.0 FMUs for Windows 64-bit binaries. Extending this
to other platforms is discussed in Sec. 4.2.

3.2 Preliminary Set of Reference FMUs
The basic structure of our reference FMUs is the same

as proposed by the FMUSDK (Figure 2).

Figure 2: Reference FMU source code structure

 The fmuTemplate.c/.h source files contain all
necessary FMI function implementations and are
included by the main FMU source file “fmu.c”. We
consider this structure versatile, because each FMU can

reuse the template and just modify small code parts for
the realization of specific features. As a starting point,
we used the original template files from the FMUSDK.
For advanced checks for the calling sequence, we
modified the templates (see Sec. 3.2.5).

All of the source code is included in the FMU in order
to enable inspection and debugging. Except for the FMU
mentioned in 3.2.3, all FMUs are separately created as
ME or CS FMUs. We will briefly describe our first set
of reference FMUs:

3.2.1 FMUs for Testing Datatype Support
While the support for real variables is standard for FMI
importing tools, the support for other data types is
limited. String inputs/outputs are not standard in many
simulation tools; however, it is expected that an
importing tool gives a meaningful error message in such
a case.

We created an FMU for testing of support for
Boolean inputs/outputs (bool.fmu): We implemented a
simple test of the Boolean data type support. This model
demonstrates a simple AND gate logical operation, with
two Boolean inputs, executing AND operation and a
Boolean output with the result. This FMU uses three
model variables: two Boolean inputs and one Boolean
output.

Additionally, we implemented an FMU for testing of
support for Integer inputs/outputs (integer.fmu): It
implements the addition of two Integer inputs written to
an output.

Further on, an FMU for testing String capability
(string.fmu) was created: It gets a string input,
concatenates it with a locally defined string and writes
it to a String output. As stated in the FMI standard, the
importer should provide his own allocating and freeing
functions (e.g. calloc, free) along with the logger
function. This property gives the importer the ability to
manage memory also for the FMU. We use this
allocation function to initialize strings, and problems of
the importing tool arising from the allocation will be
detected.

3.2.2 FMU for Testing FMI Version Number for
Future Bugfix Release FMI 2.0.1 (ver.fmu)

This FMU tests if FMI 2.0 importing tools accept FMUs
with a version string “2.0.1”. A future version 2.0.1 of
the FMI standard will have only clarifications about
ambiguities in the FMI 2.0 standard. FMI 2.0.1 FMUs
shall be valid FMI 2.0 FMUs (i.e., FMI 2.0 shall be
“forward compatible”) as mandated by the FMI
development process (FMI DEV, 2015). This reference
FMU contains no calculations.

3.2.3 FMU for Testing Events
We created an FMU with internal time events
tEvents.fmu: it increments an internal integer variable
every second; for ME, time events are defined for this

Improving Interoperability of FMI-supporting Tools with Reference FMUs

536 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132533

purpose; for CS the events are handled internally in the
FMU.

State events are present by the bouncingBall example
described in 3.2.6. Event handling shall be tested by
more reference FMUs to be developed in the future, see
Sec. 5.4.

3.2.4 FMU for Testing the Support of both ME and
CS Support in One FMU (mecs.fmu)

This FMU contains both ME and CS binaries – without
any calculations. The FMI 2.0 standard allows for
having both ME and CS in one FMU. It is expected, that
importing tools supporting only one of these FMI
flavors, nevertheless accept such an FMU. This FMU
was inspired by negative experience with one simulation
tool only supporting ME import and rejecting FMUs
containing ME and CS. This FMU is created with
modified build scripts compared to the original
FMUSDK, which can create only FMUs supporting
either ME or CS.

3.2.5 Testing the Handling Additional Resources
We implemented an FMU testing the calling of an
additional dynamic link library (DLL) in the binaries
folder (dll.fmu): The FMI 2.0 standard allows the
exporting tools to include additional binaries to be
shipped along with the FMU. These libraries should be
placed in the same folder of the compiled FMU binary
(or binaries) and to test this capability we have created
a simple FMU that contains and uses an additional DLL.
This DLL is compiled for each specific target platform
(i.e. 32-bit or 64-bit for Windows) with /MT option to
include a run-time environment, which is also
mentioned by the FMI standard when compiling the
FMU source code. In our example, we included
“square.dll”, which includes a function that returns
the square of a given real value. We use this function to
calculate the square of an input and to write it to an
output.

Additionally, we implemented an FMU shipped
using a CSV file resource (csv.fmu): The FMI 2.0
standard enforced the importing tool to provide a clear,
IETF RFC3986 compliant URI of resources location
during FMU instantiation. According to the standard,
this URI could be used for a local resources folder
(prefixed by ‘file:///’) or for remote ones (prefixed by
‘http://’, ‘https://’ or ‘ftp://’). The resources folder is
intended to be used only during FMU instantiation. To
test this feature, we created a simple FMU that is
shipped with a csv file in resources folder, which is
accessed during instantiation. This csv file contains an
integer value, and during instantiation we load this file,
set the value stored in the csv file to a local variable and
calculate the square of this value as an output.

3.2.6 FMUs for Testing the Calling Sequence
The FMUSDK has already implemented many

checks regarding the calling sequence. However, we

have gone through all states again and re-considered the
allowed function calls. The FMI standard describes the
calling sequences for ME and CS using finite-state
machines and textual representations
(Blochwitz et al., 2012). The finite-state machines and
their legends also describe which functions are allowed
in which state, including which categories of the
variables are allowed to be accessed in each state,
regarding the causality-variability-initial attributes.
 The FMUSDK functions knows which state the FMU
is in by an indicator and a table of allowed functions
calls in each state is defined. The following features are
already checked by the FMUSDK:
1. Whenever an FMI interface function is called, it

checks whether the current state is among the
allowed states, otherwise it returns fmi2Error.
This ensures the detection of erroneous calling
sequences.

2. fmi2Instantiate ≠ NULL. This can happen if:
a. there is no valid logger function,
b. no allocate/free function provided by importer,
c. the GUID is inconsistent, or
d. model variables did not initialize successfully.

Those features are clearly described in the state machine
graphs. However, there are a few rules mentioned in the
textual description of the FMI standard, that should also
be checked, which are not yet handled by the FMUSDK.
Those features are:
1. Fmi2SetupExperiment should be called at least

once before fmi2EnterInitializationMode,
although they can be called in the same state:
instantiated.

2. stopTime and Tolerance are optional, but
should be handled if set. If stopTimeDefined =
fmi2True, then the independent variable time
must not be set to a value greater than stopTime.

3. In case of CS, after an fmi2SetXXX call, there
must be an fmi2DoStep before an fmi2GetXXX is
allowed. In other words, the order fmi2SetXXX -
fmi2DoStep - fmi2GetXXX must be followed.

Checks for these features are implemented in a
modified version of the fmuTemplate.h/.c files.
Several FMUs with an increasing difficulty using these
modified template files have been created:

An FMU testing the correct calling sequence for an
algebraic calculation for real variables has been
implemented: (real.fmu): It sums two real inputs and
writes them to the output.

An FMU testing the correct calling sequence for one
continuous state was created (dq.fmu): This is a simple
FMU with a continuous state, we used the Dahlquist’s
example from the FMUSDK.

Another FMU tests the correct calling sequence for
continuous states and state events (bB.fmu): this is the
BouncingBall example from the FMUSDK, which

Session 9A: FMI I

DOI
10.3384/ecp17132533

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

537

contains two continuous states and state events. The
simulation time for running this FMU shall be 2s, so that
the phase of minimal amplitudes of the bouncing ball
including the Zeno effect (Fritzson 2004) is currently
excluded from the evaluation.

We used modified fmuTemplate.c/.h files with
the additional checks.to create these FMUs.

3.2.7 Testing Variables Access Restrictions
One of the enhancements brought by the FMI 2.0
standard is the clear definition of variables access
restrictions. The standard added more categories to the
causality/variability attributes, and the “initial” attribute
was added. According to the standard, a specific set of
combinations are allowed to be used in describing model
variables. Furthermore, there are restrictions in
accessing model variables in each state according to the
attribute combinations of the variables. These
restrictions are considered to be part of the state-
machine (Figure 3 and Figure 4), because not only a
specific set of functions are allowed to be called in a
state, but also a specific set of variables are allowed to
be accessed in each state. E.g., discrete variables are
only allowed to be accessed when an event is triggered.
Another example is that the simulator should never set
constant variables. A last example is, that continuous
states may not be set via fmi2SetReal, but with
fmi2SetContinuousStates. This is a basic idea of
this kind of reference FMU and the authors are still
working on these when submitting this paper.

Compared to the current implementation of the
FMUSDK, the template.c/.h and the specific
fmu.c files have to be enriched by additional
information regarding the variable attributes, as the
FMUSDK does not parse the
modelDescription.xml during FMU creation and
this information is currently not available to the
implementation of the FMU during simulation.

4 Testing and Using Reference FMUs
We validated our reference FMUs with the FMU
compliance checker, and tested them with several tools.
This led to three tickets for clarification of the FMI
standard version 2.0.1, three tickets for extension to the
FMU compliance checker, several tickets for
improvements of the FMUSDK and several bug reports
regarding errors or improvements the tested tools.

4.1 Implementing an Erroneous Simulator
Two simple open source simulators come with the
FMUSDK that import and run FMUs, one for ME and
one for CS. We used these simulators to perform first
test of the reference FMUs. Then we injected some
faults (or wrong practices) in these simulators to check
that these errors are detected by the reference FMUs and
meaningful feedback is provided. Those faults are

chosen carefully from our experience and from most
frequent errors that occur. Examples of these faults are
to initialize FMUs before instantiating, or to exit
initialization mode before entering it. Another example
for CS to call fmi2SetXXX and directly call
fmi2GetXXX afterwards without an fmi2DoStep call
between them.

4.2 Tests with Importing Tools - Overview
We tested the reference FMUs with 10 different tools
for Windows 64-bit binaries. Most of these tools cope
very well with normal FMUs generated by other
simulation tools. However, with our reference FMUs we
detect some limitations and bugs in the involved tools,
which are communicated to the tool vendors and
implementers.

In Table 1 and Table 2, we depict the result of our
checks of the ME and CS Reference FMUs:

Table 1: Results for ME:

Table 2 Results for CS:

 OK
 “Announced limitation” of the tool
 Error or missing feedback for limitations
 Error; possibly standard clarification needed
 ME or CS not supported by the tool
Alone for testing the Windows 64-bit combinations of
10 tools with 11 ME and 11 CS FMUs, it took the effort
of setting up and running more than 200 simulation
models. Additionally, we tested some 32-bit tools, with
no significant differences to the 64-bit results. The effort
of running the tests and diagnosing the results will be
shifted in the future to the tool vendors by including the
reference FMUs in the FMI cross check (see Sec. 5.1).

bool integer string tEvent versionmecs csv dll real dq bB

Tool A

Tool B

Tool C

Tool D

Tool E

Tool F

Tool G

Tool H

Tool I

Tool J

bool integer string tEvent ver mecs csv dll real dq bB

Tool A

Tool B

Tool C

Tool D

Tool E

Tool F

Tool G

Tool H

Tool I

Tool J

Improving Interoperability of FMI-supporting Tools with Reference FMUs

538 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132533

In most tools the FMI import support has a quite
mature quality level, and the problems encountered in
our tests mostly are mainly due to our very strict
diagnostics.

4.3 Problems Detected in Importing Tools
The reference FMUs for data type support revealed
problems of several tools for non-real data types: For the
FMUs testing for Integer and Boolean input data support
(bool.fmu and integer.fmu), five tools show errors in
ME due to violations of the calling sequence: They want
to set discrete values in continuous time mode, which is
forbidden. (Remark: this is not an incompatibilty
between hybrid modeling in Modelica and limitations of
the Modelica standard; several Modelica-based tools do
not have a problem with these FMUs).

The results for the string.fmu reflect, that String
inputs and outputs are not supported by typical block-
oriented simulation tools. However, it is expected that
in this case, the tools give a meaningful diagnostic
message during FMU import and not just ignore the
string in/outputs.

The time events FMU tEvents.fmu was successfully
run by all except one tool (violating the calling
sequence).

A “2.0.1” version string in the ver.fmu as foreseen in
the FMI 2.0 standard for a future FMI 2.0.1 FMU is
problematic for all but one tested importing tools. FMUs
following a future FMI 2.0.1 bugfix release, shall be
valid “FMI 2.0” FMUs, see (FMI DEV, 2015). Thus, we
suggest not to use the “2.0.1” version string in FMI
2.0.1, but “2.0”. FMUs could contain the information
that they follow the FMI 2.0.1 standard in an annotation
in the modelDescription.xml file. This shall be
discussed in the FMI project and clarified for FMI 2.0.1.

Only one tool is not able to import an FMU with both
ME and CS support contained (mecs.fmu), but gives a
meaningful feedback.

The csv.fmu crashes for one tool both in ME and CS.
The dll.fmu detects in one tool a violation of the

calling sequence which is not related to DLL-access.
In ME, in none of the tools, except one, problems due

to the additional checks in the calling sequence
(real.fmu, dq.fmu and bB.fmu) have been detected.
For CS, two tools violate the rule, that there may not be
a call to fmi2GetXXX directly after an fmi2SetXXX
without an fmi2DoStep call in between for real.fmu.

5 Outlook
The implemented reference FMUs will first be
internally shared within the FMI project, e.g. within the
“sandbox” of the FMI cross check infrastructure. The
intention is to gather feedback both on the concept and
the reference FMUs, to fix bugs and extend the
documentation and to give tool vendors the opportunity
to fix their implementations. The cross check working

group of the FMI project will review the FMUs and
discuss the proposed requirements on reference FMUs.

5.1 Usage within the FMI Cross Check
After the feedback and review phase within the FMI
project we plan to publish the reference FMUs on the
public part of the FMI project’s resources on GitHub.

After acceptance by the FMI project, the part of the
reference FMUs that fit into the FMI Cross Check
infrastructure (e.g., w.r.t. to real inputs/outputs) shall be
committed there and treated as an exporting tool and
extensions to the infrastructure shall be considered.

5.2 Versioning and Indexing
When releasing the reference to the public within the
FMI cross check, we will use a version number to refer
to this release of the reference FMUs.

With the first release, we will propose an indexing of
the FMUs by a naming convention enabling for a serial
execution of the reference FMUs in a meaningful order.
E.g. single-feature diagnostic FMUs should be
performed before complex FMUs, so that the
localization of errors is simplified. In this ordering, as
few features as possible shall be added from one FMU
to the next.

5.3 Extension of Supported Platforms
With the current solution, it is very easy to create
reference FMUs for Windows 32-bit and 64-bit binaries.
In order to support other platforms like Linux (32-
bit/64-bit) or MAC OS X, the port of the FMUSDK to
Linux (FMUSDK Linux, 2015) could be used.
However, this version is not up to date with the latest
version for the FMUSDK. Linux and OS X versions of
the FMUSDK would be beneficial.

5.4 Increasing the Coverage
The first set of reference FMUS shall be extended by
additional diagnostic and complex FMUs, e.g.:
• for systematically testing all kinds of events (state,

time, externally triggered, zero crossings),
• dealing with a larger number of states (e.g. >=10

states with multiple events), and
• testing for optional capabilities of FMUs (e.g.,

partial derivatives).
Additionally, reference FMUs shall be implemented as
proof of concept of new features of a future FMI
standard from FMI Change Proposals (FCPs).

5.5 Connected FMUs and Parameter Sets
We also propose to extend the FMI cross check and
reference FMUs to connected FMUs: for this purpose
one could use connected FMUs inspired by the FMI 2.0
test FMUs (Test FMUs FMI 2.0 ME). However, these
FMUs are implemented in Modelica, and need a
Modelica tool for the generation of the C-code. Thus, it

Session 9A: FMI I

DOI
10.3384/ecp17132533

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

539

would have to be clarified, if this can be done with a
publicly available tool chain fulfilling our requirements
listed in 2.4 or a re-implementation in C-code is needed.
The definition of connected FMUs should be realized
using the future System Structure and Parameterization
(SSP) standard for the definition of connected FMUs
(Köhler et al., 2016). Additionally, the SSP standard
could be used to test the correct setting of parameter
values to an FMU by the importing tool. For this
purpose, the FMI cross check will have to be extended
for connected FMUs.

5.6 Additional Benefit of Reference FMUs
Reference FMUs can also provide additional example
implementations of FMUs to the FMI community that
can serve as a starting point to implement FMI features
in a good way; in other words, they give hints to the
exporting tools of how typical FMUs could be
implemented. This could help, e.g., for the handling of
additional resources (binaries or other files), where we
have observed many problems of tools in the past.

Reference FMUs can also contribute to clarifying
unclear points of the FMI standard, as demonstrated e.g.
for the version string reference FMU.

Additionally, with reference FMUs we can provide
test FMUs for features that are not yet supported by
(many) exporting tools, e.g. string inputs, provision of
partial derivatives, and serialization of states.

6 Summary
In the current paper, we present the concept for the
creation and usage of reference FMUs. As a starting
point, first reference FMUs have been implemented and
tests with importing tools have been performed, which
led to the detection of several bugs in importing tools.
This is seen as a proof of concept for the idea of
reference FMUs. They shall be made publicly available
first within the FMI project and then publicly by
including them in the regular FMI cross check. With
FMI community effort, the set of reference FMUs and
thus feature coverage shall be increased. This will
contribute to the improvement of quality of FMI
importing tools.

Acknowledgements
The authors want to thank the members of the FMI cross
check working group for their valuable input to our
work.

Many thanks also to Torsten Blochwitz (ESI group),
Umut Durak (DLR Braunschweig), Dan Henriksson
(Dassault Systems), Adrian Tirea (QTronic), Karl
Wernersson (Dassault Systems) for their valuable input
and fruitful discussions.

Referenced Tools and Online Documents
(XC, 2014) FMI Cross Check Rules, v3.1, Modelica

Association Project FMI: How to Improve FMI
Compliance, June 2015. [Accessed online on Dec 16th
2016] https://www.fmi-standard.org/tools

(FMI DEV, 2015) FMI Development Process and
Communication Policy, [Accessed online on Jan 22nd 2017]
https://www.fmi-standard.org/development

(FMI 2.0 Standard, 2014) Functional Mock-up Interface for
Model Exchange and Co-Simulation, Version 2.0,
[accessed on Jan 21st 2017] https://www.fmi-
standard.org/downloads

(FMU CC, 2016) FMU Compliance Checker, Modelon AB,
released by Modelica Association Project FMI [accessed
on Dec 16th 2016] https://www.fmi-standard.org/downloads

(FMUSDK, 2014) FMUSDK 2.0.4, QTronic GmbH, July
2014. [Accessed online on Dec 16th 2016]
https://resources.qtronic.de/fmusdk/

(FMUSDK Linux, 2015) FMUSDK port to Linux and OS X,
[accessed on Jan 6th 2017] https://github.com/cxbrooks/
fmusdk2

(Test FMUs FMI 2.0 ME) Testing FMI 2.0 Model Exchange
features of connected FMUs, Martin Otter, DLR, [Accessed
on Jan 13th 2017] https://www.fmi-standard.org/downloads

References
Bertsch, C., Ahle, E., Schulmeister, U., The Functional

Mockup Interface - seen from an industrial perspective, In:
Proceedings of the 10th International Modelica Conference
2014, Lund, Sweden

Blochwitz, T., Otter M., Arnold, M., Bausch, C., Clauß, C.,
Elmqvist, H., Junghanns, A., Mauss, J., Monteiro, M.,
Neidhold, T., Neumerkel, D., Olsson, H., Peetz, J.-V, Wolf,
S., The Functional Mockup Interface for Tool independent
Exchange of Simulation Models, In: Proceedings of the 8th
International Modelica Conference 2011, Dresden,
Germany

Blochwitz, T., Otter, M., Akesson, J., Arnold, M., Clauß, C.,
Elmqvist, H., Friedrich, M., Junghanns, A., Mauss, J.,
Neumerkel, D., Olsson, H., Viel, A., The Functional
Mockup Interface 2.0: The Standard for Tool independent
Exchange of Simulation Models, In: Proceedings of the 9th
Modelica Conference 2012, Munich, Germany

Bruegge, B., Dutoit, A. H., Object-Oriented Software
Engineering Using UML, Patterns, and Java, 3rd edition,
Prentice Hall Press, 2009, Upper Saddle River, USA

Fritzson, P., Principles of Object-Oriented Modeling and
Simulation with Modelica 2.1, Wiley, 2004, Hobiken, USA

Hasanagić, M., Tran-Jørgensen, P. W. V., Lausdahl, K.,
Larsen, P. G., Formalising and Validating the Interface
Description in the FMI Standard, FM 2016: Formal
Methods, 2016, Springer, Heidelberg, Germany

Köhler, J., Heinkel, H.-M., Mai, P., Krasser, J., Deppe, M.,
Nagasawa, M., Modelica-Association-Project “System
Structure and Parameterization” – Early Insights, Modelica
Conference Japan, 2016

Pressman, R. S., Software engineering: a practitioner’s
approach, seventh edition. Publisher McGraw-Hill Higher
Education, (2010), New York, USA

Improving Interoperability of FMI-supporting Tools with Reference FMUs

540 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132533

The Embedded Simulation via FMI
and its Application to the Simulation of Lifetime Tests Including

Wear

Julia Gundermann1 Matthias Thiele2 Sebastian Fraulob3 Susanne Walther1 Karsten
Todtermuschke1 Uwe Schnabel1

1ESI ITI GmbH, julia.gundermann@esi-group.com
2Institute of Electromechanical and Electronic Design, Technische Universität Dresden

3Johnson Electric Germany GmbH & Co. KG Dresden

Abstract
The "Embedded Simulation via FMI" is a new modeling
approach which allows for efficient and fast computation
of systems with a clear separation of time axis or time
scale. For its application the so-called "inner model" is
wrapped into an FMU and embedded into an outer model,
whose dynamics control the integration. The computation
of the embedded model is only utilized on demand. In this
way the "Embedded Simulation via FMI" uses the Func-
tional Mock-up Interface for Co-Simulation in a different
way than it was provided for. The functionality has been
realized within SimulationX prototypically. It is applied to
the simulation of the lifetime test of a linear stepper mo-
tor including wear in the screw drive, for which the axial
play after several months’ runtime shall be determined. A
significant reduction of computing time while preserving
considerable accuracy can be shown.
Keywords: FMI, wear, SimulationX, simulation, mecha-
tronics

1 Introduction
The functional mock-up interface (FMI) defines a tool in-
dependent standard interface used for the coupling of dif-
ferent simulation tools (FMI, 2014). It allows for the sim-
ulation of multi-component systems. Components of the
system are packed into an functional mock-up unit (FMU),
which is a .zip-file. It contains an xml-file with a model
description and C-functions covering the functionality and
behavior of the model by functions defined by the FMI-
standard. The acceptance and application of the FMI-
standard is increasing, there are about 90 tools which sup-
port FMI. Depending on the simulation task a model can
be exported with (FMI for Co-Simulation) or without its
solver (FMI for Model exchange).

The FMI-standard for Co-simulation is used for the
coupling of component models, which run indepen-
dently besides the communication after predefined time-
intervals. There are examples for which the simulation
of all components is not necessary throughout the whole
simulation time. This is the case, if the system’s topology

can be divided into an inner and an outer model, which
have a separated time axis or time scale. In such cases the
pure FMI for Co-Simulation enforces unnecessary com-
putations of the inner model. The "Embedded Simulation
via FMI" avoids this by calling the computation of the in-
ner model only on demand.

Figure 1. A linear stepper motor based on a screw drive. a)
Complete assembly of the motor to be used as adjusting drive. b)
Dismantled nut thread with ball bearing. These two components
are susceptible to mechanical wear. c) Screw drive without mo-
tor in a setup for lifetime testing. The manufacturer of this and
other mechatronic components is interested in the simulation of
these lifetime tests in order to save time during the development
of new components.

One application of this concept is the simulation of life-
time tests of mechatronic (and other) components. Fig-
ure 1 shows an linear stepper motor, which underlies wear
effects due to abrasion in the screw drive. The manu-
facturer is faced with the following problem: the devel-
opment period of a new component is comparable to the
duration of lifetime tests. The latter are necessary since
they assess the compliance of predefined criteria during
the lifetime of the component. One way out of this prob-
lem is the virtual simulation of these lifetime tests. Such
a simulation consists of a high number of repetitions of
nearly identical cycles, i.e. rotating a screw drive back and
forth. During the lifetime the component is subject to wear
and aging effects. These alter the behavior of the com-
ponent slowly, i.e. on a long time scale, however barely
within the duration of one cycle. However, the current
behavior of a component and the wear phenomena can-
not be considered separately, since wear is dependent on

DOI
10.3384/ecp17132541

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

541

the usage of the component, but vice versa wear and ag-
ing modify the response of a system, e.g. debris increases
friction. The manufacturer is interested in a fast extrap-
olation of the wear effects, yet not in the computation of
each cycle. The virtual simulation of a whole lifetime test
including wear and aging can help to derive information
about the accumulated effects of loads, temperature, etc.,
which in turn can be used for the re-planning, shortening
or even circumvention of real lifetime tests.

The simulation of the wear effect in a lifetime test con-
sisting of many nearly identical cycles is slowed down by
the calculation of the fast degrees of freedom such as the
position of the screw drive. Wrapping these fast degrees
of freedom into an inner model and embedding this inner
model into an outer extrapolation enables to substantially
speed up the simulation. In the "Embedded Simulation
via FMI" the inner model containing the simulation of one
cycle is wrapped into a functional mock-up unit, and then
embedded into an outer integration, which extrapolates the
wear quantities such as the abraded volume.

The remainder of this paper is structured as follows:
In section 2 the concept of the Embedded Simulation via
FMI is illustrated. Section 3 introduces the linear step-
per motor. The motor is modeled with components from
SimulationX libraries. The screwDrive - component is ex-
tended by a wear model, which is also presented here. The
preparation of the model for the Embedded Simulation is
described in section 4, and its performance is assessed in
section 5. The article closes with a summary.

2 Embedded Simulation via FMI
The Embedded Simulation via FMI allows for an ac-

celerated computation of certain types of coupled simula-
tions, where one model’s time scale or time axis is sepa-
rated from the time scale or axis of the other models. The
following small examples shall illustrate the idea and what
is meant by time scale or time axis separation. One of the
examples - the linear stepper - will be illustrated explicitly
in the following section.

• Equation-free modeling / molecular dynam-
ics (Kevrekidis and Samaey, 2009) - time scale
separation: Given is a system with many fast degrees
of freedom (such as molecules), for which the time-
like evolution is defined by equations. However, one
is interested in the long-term dynamics of averaged
quantities such as the evolution of the energy or
temperature of the system.

• Simulation of lifetime tests - time scale separation:
The example of lifetime tests including wear and ag-
ing was introduced above. These tests - and hence
its simulation - contain a high number of repetitions
of nearly identical cycles. However, one is only in-
terested in the slowly varying quantities such as the
amount of wear debris and the increase of axial back-
lash, but not in the fast degrees of freedom.

Figure 2. Reuse of the Functional Mock-up Interface (FMI).
The upper figure illustrates the usage of FMI in the way it was
designed for. Two models are connected and are simulated in
parallel independently of each other. They exchange variables at
previously defined communication times. The Embedded Sim-
ulation via FMI is shown in the lower figure. In contrast to the
Co-Simulation only the outer solver runs for the whole simula-
tion. It calls the inner solver at each of its time steps but not at
predefined communication steps. The inner solver simulates for
the duration of one cycle only. It returns output variables to the
outer solver afterwards. Since the time steps of the outer solver
are expected to be much longer than TCycle, the outer solver con-
tinues its calculation at ti, but not at ti +TCycle.

• Model predictive control (Dittmar and Pfeiffer,
2004) - time axis separation: The model predictive
control uses a time-discrete dynamical model of the
process, which is to be controlled. This model shall
compute the future behavior of the process depend-
ing of the input signals based on an iterative, finite-
horizon optimization of the underlying model.

Common to all three examples is the possibility to split
the system into an inner model - the fast molecules, one
cycle in the lifetime test, or the model predictive control
- and an outer model - the evolution of energy or tem-
perature, the extrapolation of accumulated wear debris, or
the outer system which the controller is part of. The cru-
cial point is that the inner system needs only to be com-
puted on demand, but not for the whole simulation time
of the outer system. For the Embedded Simulation the
inner model is wrapped with its own solver into a FMU
and embedded into an outer model. The latter determines
the time-integration of the overall system. In contrast to
the common usage of the FMI for Co-Simulation the in-
ner model does not run independent from the outer model
and communicates only at previously fixed points in time.
Instead it is run for a predefined (short) time interval, and
only on demand given by the outer model. The number
of calls of the inner model depends on the simulation task.
For systems with time scale separation this number will be

The Embedded Simulation via FMI and its Application to the Simulation of Lifetime Tests Including Wear

542 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132541

Figure 3. SimulationX model of the linear stepper motor. The components affected by wear are the screwDrive due to abraded
volume and the ballBearing due to an increasing backlash. The latter effect is negligibly small and hence not considered further.
The FMUin/out block on the right is added in preparation of the FMU-Export.

considerably low compared to the ratio between the sim-
ulation times of the outer and inner model. In contrast,
for systems with time axis separation no general state-
ment can be made about the number of calls of the inner
model besides that it depends on the variables exchanged
between the embedded inner and the outer model.

Every time it is initiated, it receives input values from
the outer model (such as previous wear debris), while
some other variables have default start values (such as
spindle position). The inner model is reset, initialized,
run, and returns output values to the outer model, and is
reset (Technically it is reset at the beginning of the FMU-
call). Figure 2 illustrates the difference to the standard of
FMI for Co-Simulation.

With the Embedded Simulation via FMI it is possible
to speed up simulations preserving considerable accuracy.
Furthermore the inner model is replaceable more easily.
The presented method was realized and tested in Simu-
lationX for an example with time scale separation. The
following section shall illustrate the application of the Em-
bedded Simulation via FMI to the lifetime test of a linear
stepper motor.

3 The Linear Stepper
3.1 The SimulationX model
Figure 1 shows a picture of the linear stepper model. In
preparation of the lifetime-simulation it was modeled in
SimulationX, as shown in Figure 3. It is parametrized
such that during one simulation the motor drives the nut
to rotate by a predefined angle forth and back. This rota-
tion leads to a translation of the spindle a few millimeters
forward and backward. The translation is acting against a
constant force (Load) (in the example, F = 1 N). By con-
struction the angle of rotation increases stepwise, but not
continuously. Each jump triggers an event, which slows
down the simulation. The step frequency of 50 Hz on av-

erage for 1000 steps in one cycle leads to a computation
time of 1.6 s, versus 20 s of real cycle length.

3.2 The wear in the screw drive
The centerpiece of wear processes is the screw drive,
which is modeled by the screwDrive element from the
PowerTransmission library in SimulationX. The linear
stepper model does not contain other wear or aging phe-
nomena such as the increase of backlash in the ball bear-
ing, since the increasing amount of wear debris in the
screw drive is considered as the major effect leading to
system failure.

Figure 4. Bathtub curve determining the value of the wear coef-
ficient k (Eq. (2)) and the friction coefficient µ = µ0 b(V). The
parameter b linearly decreases for V < VvEarly, stays constant
until V = VvLate and increases exponentially afterwards. The
values for the regime-changes and the exponential increase are
optimally derived from experiments, but in general they have to
be estimated.

The underlying wear model bases on Archard’s law,

dV =
k Fs

h
, (1)

where V is the volume of wear debris, dV its increase, F
the total normal load, s the sliding distance. The material

Session 9A: FMI I

DOI
10.3384/ecp17132541

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

543

Figure 5. Simulation results of the linear stepper motor, original
model. Abraded volume in the screw drive vs. simulation time.
The overlaying oscillation is easy to see. Computation step size
was � 1s.

quantities h and k are the Vicker’s hardness of the plastics
and the wear coefficient, respectively. In the model here
the wear coefficient is assumed to be dependent on the
wear debris V , and to run through a bathtub curve (Sta-
chowiak, 2006),

k = k0 b(V). (2)

The bathtub is shown in Figure 4.
The axial play in the screw drive increases due to the

abraded layer on the flanks. It can be calculated by geo-
metric construction. The wear debris also feeds back on
the current wear process, since the friction coefficient is
not constant, instead, µ = µ0 b(V).

Technically the wear is modeled by an extension of the
ScrewDrive component.

4 Preparation for the Embedded Sim-
ulation

Per cycle the linear stepper model computes a change in
wear volume. Figure 5 shows the wear debris calculated
during four cycles. The increasing curve is superimposed
by an oscillation with period equal to the cycle length.
For a simulation of approximately 60 days, i.e. rotating
forth and back 259.200 times, one is not interested in this
oscillation, but more in the long term dynamics. There-
fore it suffices to calculate the average change in wear
debris per cycle, i.e. derVv= (screwDrive.Vv0 -
screwDrive.Vv)/TCycle, where Vv0 and Vv are
the values of wear debris at the beginning and end of the
cycle.

For the preparation of the Embedded Simula-
tion the averaged derivative derVv is calculated in
an additional element, cf. Figure 3. Furthermore,
a function element ZF is added, which contains
the regime changes of the bathtub, i.e., ZF.y =
{screwDrive.Vv-screwDrive.VvEarly,
screwDrive.Vv-screwDrive.VvLate}. Trig-
gering events in the Embedded Simulation by adding
if-conditions containing ZF.y forces the solver to

Figure 6. Embedded Simulation via FMI of the linear stepper
motor. The wear debris Vv is integrated by the outer solver.
The function blocks event1 and 2 are used to let the outer
solver catch the transition points in the bathtub curve correctly
(cf. section 4).

integrate more accurately at the regime changes.
The linear stepper model is exported as FMU for Co-

Simulation 2.0. The wear debris Vv0 at the beginning
of the cycle is set as input, the derivative derVv and the
bathtub-differences ZF as output. Further output variables
or parameters are optional.

The FMU is imported into a new SimulationX model
and the modelica-component containing it is modified to
make the FMU run in the embedded mode (cf. Figure 2).
The main modifications are the replacement of the com-
munication step size hc by the cycle length Tcycle, and
the altered calling of the fmu in order to be re-set, re-
initialized and run for one cycle everytime it is called.
Technically the latter was realized in SimulationX by
wrapping all these steps into a single function call.

The output of the variable of interest,
i.e. derVv.derh is connected to an integral ele-
ment, whose output, in turn, is connected to the FMU’s
input. For each component of ZF a function block is
added in order to trigger an event, e.g. event1.y = if
(fmu.ZF.y[1]>0) then 1 else 0, cf. Figure 6.

5 Performance and Validation
To validate the approach, the Embedded Simulation via
FMI of the linear stepper is compared with a longterm-
simulation of the original model. The simulation time is
set to 60 days.

Using the wear coefficient from experinment, k0 =
2 · 10−10, there is little wear and tear within 60 days.
The error tolerances of the outer solver have been cho-
sen such that a reduction would not improve the accuracy
significantly, but would slow down the computation speed.
The deviation of calculated wear debris between original
model and Embedded simulation is smaller than 0.05%.
The computation time in SimulationX was reduced from

The Embedded Simulation via FMI and its Application to the Simulation of Lifetime Tests Including Wear

544 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132541

Figure 7. Comparison of Embedded Simulation with FMI
(pluses, red) and original model (solid line, green) with accel-
erated effect of wear and tear. The wear behavior switches be-
tween regions after some hours, where V v = 10−3 mm3, and
after 42 d, where V v = 0.1mm3, respectively. These behavior
changes are passed to the outer solver via triggering events. In
the second region, where the wear coefficient stays constant, the
time step size of the outer model reaches its maximal value of
5d.

about 2.5 days to 1 minute or by the factor 4000, respec-
tively.

To reveal the dynamics within the region of exponential
increase longer simulation times (with the original model)
are needed. On the other hand it is also possible to ac-
celerate the wear by increasing the wear coefficient k0 to
6 ·10−8. Then the simulation time of 60 days is sufficient
to reach all regions of the bathtub curve. The maximum
difference between the result values of both simulations is
smaller than 0.1%, cf. Figure 7, which also reveals that the
solver is able to catch the regime changes in the bathtub.
In this case the computation time was reduced from about
2.3 days to 2.5 minutes or by the factor 1300, respectively.

6 Summary and Outlook
The Embedded Simulation via FMI can speed up certain
types of simulation tasks by preserving considerable ac-
curacy. The new simulation approach was introduced and
motivated by three potential applications. Its success-
ful implementation was proven exemplary for the lifetime
simulation of a mechatronic component including wear.
The application of the Embedded Simulation to the other
two of the named examples or further systems is future
work. It remains to be examined whether other integra-
tion approaches such as Quantized State Systems meth-
ods (Cellier and Kofman, 2006; Casella, 2015) could serve
as an alternative.

Acknowledgements
The project Robustness and Reliability Simulation
of Mechatronic Systems including Aging and Wear
(ROMESA (BMBF, 2015)) runs in cooperation of ESI
ITI GmbH Dresden, Institute of Electromechanical and
Electronic Design from Technische Universität Dresden,

Dynardo GmbH Weimar and Johnson Electric Germany
GmbH & Co. KG Dresden (associated partner). Espe-
cially the authors but also the involved companies and in-
stitutes like to thank the German Federal Ministry of Ed-
ucation and Research (BMBF) represented by the project
coordinator German Aerospace Center (DLR) for support-
ing financially.

References
Federal Ministry of Education and Research BMBF. Projektblatt

Romesa, 2015. URL http://www.pt-sw.de/media/
content/Projektblatt_ROMESA.pdf.

Francesco Casella. Simulation of large-scale models in mod-
elica: State of the art and future perspectives. In Proceed-
ings of the 11th International Modelica Conference, pages
459–468. The Modelica Association, September 21-23 2015.
doi:10.3384/ecp15118459.

François E Cellier and Ernesto Kofman. Continuous system sim-
ulation. Springer Science & Business Media, 2006. ISBN
0387261028.

Rainer Dittmar and Bernd-Markus Pfeiffer. Modellbasierte
prädiktive Regelung: Eine Einführung für Ingenieure. Walter
de Gruyter, 2004. ISBN 3486275232.

Functional Mock-up Interface FMI. FMI 2.0, 2014. URL
https://www.fmi-standard.org/.

Ioannis G. Kevrekidis and Giovanni Samaey. Equation-free mul-
tiscale computation: Algorithms and applications. Annual re-
view of physical chemistry, 60:321–344, 2009.

G. W. Stachowiak. Wear: materials, mechanisms and practice.
John Wiley & Sons, 2006. ISBN 0-262-16209-1.

Session 9A: FMI I

DOI
10.3384/ecp17132541

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

545

546 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Integration Modelica with Digital Mockup Tool using the FMI

Shinji Matsuda
1
 Hiroshi Toriya

1
 Hiromasa Suzuki

2
 Koichi Ohtomi

2

1
Lattice Technology Co.,Ltd., Japan, {matsuda,toriya}@lattice.co.jp

2
Department of Precision Engg., The University of Tokyo, Japan, suzuki@den.t.u-tokyo.ac.jp

koichi.ohtomi@delight.t.u-tokyo.ac.jp

Abstract
The Delight Design Platform Project is managed by

The University of Tokyo as part of the Cross-

ministerial Strategic Innovation Program (SIP) which

is organized by Cabinet Office, Government of Japan.

This project recommends using 1DCAE design tools in

the concept phase of the product development. In the

Delight Design Platform, new product concepts are

simulated and evaluated as 1DCAE models. One of the

objectives of this project is to prototype a tool for

translating product concepts to 3D models. This paper

describes a method of integrating Modelica with a 3D

digital mockup (DMU) tool. The prototype is

implemented as an extension of XVL Studio, which is a

popular DMU tool provided by Lattice Technology
Co.,Ltd. The integration is implemented using the FMI

(Functional Mockup Interface).

Keywords: Modelica, 1DCAE, Functional Mockup
Interface, XVL, Digital Mockup

1 Introduction

For many years, Japanese manufacturers placed top

priority on developing high quality products at low cost.

However, nowadays their primary focus is to develop

more attractive products (Ohtomi K, 2015). When

thinking about attractive product design, we focused on

the fact that there are many potentially interesting

product ideas left unattended in the backyard of the

companies without being commercialized. In the

Delight Design Platform Project, we are trying to

support the development of attractive products by

visualizing the attractive qualities of new ideas. The

technology of Model Based Design (MBD),

represented by Modelica, is one of the key

technologies in our project. In this paper, we propose a

method to visualize the MBD simulation results in a

DMU tool using FMI. By integrating with the DMU

tool, the simulation results can be represented with

realistic 3D graphics which makes the presentation

more impressive and persuasive. Also, the DMU tool

has another useful feature – it supports the inclusion of

a 3D human model, which is a very effective way to

perform human work analyses. For example, product

usability can be evaluated using estimates for product

characteristics such as weight and size, but with an

MBD human model it is possible to directly evaluate

the load on the human body. In our prototype, we tried

to perform a realistic evaluation by modeling the

product along with a human model.

This paper describes the integration of Modelica and

DMU tools and some of the resulting outputs.

Figure 1 shows the outline of the integration.

Figure 1 Outline of the integration Modelica with XVL

Studio.

2 XVL and DMU Tool

XVL® (eXtensible Virtual reality description

Language) is a lightweight 3D file format developed by

Lattice Technology Co.,Ltd. And XVL Studio is a

digital mockup tool based on the XVL technology

(Lattice Technology, 2016). It is widely used for

design review, digital assembly and generating

technical illustrations (Toriya H. 2008).

The file size of a complete model of an automobile,

a piece of construction equipment, an agricultural

machine, a train or a ship can easily reach several GB,

and it is difficult for CAD systems to handle such large

assemblies. In these cases a lightweight 3D file format

such as XVL is more effective (Toriya H. 2014; Toriya

H., Jablonski M., 2017).

Digital Assembly is the concept of performing a

virtual assembly validation without using an actual

prototype. It requires managing multiple structures for

each product. Using XVL it is possible to define

multiple structures in a single file -- for design, for

manufacturing and for service. This makes it possible

DOI
10.3384/ecp17132547

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

547

for the user to easily change the design structure to the

desired structure, such as the manufacturing structure.

XVL is also capable of handling the large point

cloud data generated by laser scanners. 3D point cloud

data is a new technology that makes it easy to convert

existing facilities to 3D models. For example, a 3D

point cloud scan of a facility makes it possible to check

whether new equipment will fit in the existing space.

The following chapters will include an example of

using 3D point cloud data.

3 3D Model Generation

In the libraries provided by Modelica we want to

highlight here is MultiBody library. Since MultiBody

library is targeting to 3D mechanical system, we

integrate the library with a DMU tool for visualizing

mechanical simulation.

3.1 Geometry

Some of the Commercial products for Modelica

modeling support 3D visualization (Figure 2). But it is

limited only for visualization purpose. In most cases,

reuse of the visualization data is not considered.

Figure 2 3D visualization in Dymola (Dassault Systèmes,

2016).

Each component in the Multibody library has the

parameters of the visualization such as the sphere

diameter or the length of the cylinder. We have

implemented the parser, which parses the information

of the visualization, and a generator which generates

B-Spline surface using XVL Kernel. Most of the

Modelica tools support only polygon data as 3D model.

However, NURBS models are more common than

polygon models in 3D CAD system (Figure 3). The 3D

model can be exported as IGES file format with the

standard command of XVL Studio. The IGES files can

be imported to most of the CAD systems.

Figure 3 3D model (with NURBS surface)

Our prototype generates 3D models from the

Modelica components listed in the Table 1.

Table 1 Components supported in the prototype.

Package Model

MultiBody World

MultiBody.Joints Prismatic
MultiBody.Joints Revolute

MultiBody.Joints Cylindrical

MultiBody.Joints Universal

MultiBody.Joints Spherical

MultiBody.Joints SphericalSpherical

MultiBody.Joints UniversalSpherical

MultiBody.Joints JointUPS

MultiBody.Parts Fixed

MultiBody.Parts FixedTranslation

MultiBody.Parts Body

MultiBody.Parts BodyShape

MultiBody.Parts BodyBox

MultiBody.Parts BodyCylinder

MultiBody.Parts PointMass

3.2 Assembly Structure

The CAD system or the DMU tool has an assembly

structure which is defined as a tree structure (Figure 4).

Figure 4 An assembly tree in the XVL Studio.

The assembly structure has an important

functionality in CAD system (also in DMU Tool), that

is locating its sub-components in the model coordinate

system. An assembly has the information of its sub-

Integration Modelica with Digital Mockup Tool using the FMI

548 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132547

components and the transformation matrix for each

sub-component. User can move a sub-component by

changing its translation matrix. This functionality can

be used to animating the simulation result in the DMU

Tool. The appropriate structure should be created while

generating the 3D model from Modelica. For example

a Body component connected to a Revolute joint, has

to be moved synchronizing with the rotation of the

joint (Figure 5). To do this, the 3D model of the joint

and the model of Body should belong to one assembly

group (Figure 6).

Figure 5 Example model with a Revolute and a Body.

Figure 6 Assembly tree of the example, which shows the

shape of the body “prt_body” and the shape of revolute

“revolute” are included in one assembly “body”.

4 Kinematics

The MultiBody Library of Modelica is designed to

simulate both kinematic and dynamic mechanical

models (Martin Otter, et al. 2003). The analysis of

kinematics is one of the most popular features of 3D

CAD systems. XVL Studio (A DMU Tool) also has the

functionality of the kinematic analysis. The revolute

joint, the linear sliding mechanism and some other

types of kinematic objects can be defined in XVL
Studio (Figure 7).

Figure 7 GUI of the kinematic analysis in XVL Studio.

While reading the Modelica model, the kinematic

information is translated to the kinematic objects of

XVL Studio. For example the information of the

revolute joint of the Modelica is translated to the

information of the Rotation Axis object in XVL Studio.

It has following information as the kinematic object

(Table 2).

Table 2 The kinematic information of the Rotation Axis

in XVL Studio.

information data type

Joint Name text

Point of the origin vector

Rotational Axis vector

Rotational part text

Fixed part text
An instance of the revolute joint defined as

“revolute1” in a Modelica file is translated as follows.

The instance name of the Modelica is translated to

the name of the Rotation Axis of XVL. The Point of

the Origin of XVL is calculated by traversing the

connection of the Modelica model. The parameter “n”

of the revolute joint is translated to the vector of the

rotational axis in XVL. The Rotational part and the

fixed part in the XVL are also found by traversing the

connection of the Modelica model.

This information is used for the 3D animation in

XVL Studio.

5 Running Simulation

The DMU Tool does not have the functionality to

generate the executable module for simulation. The

prototype runs the simulation using FMI. We used FMI

Library by JModelica.org in our prototype for running

the simulation. FMU module is generated by using a

small batch command. Following is an example batch

command for JModelica.

@echo off

call C:\JModelica.org-1.17\setenv.bat

if %errorlevel% neq 0 exit /b 1

echo from pymodelica import compile_fmu

>>_t3.py

echo mn = '%1'>>_t3.py

echo mf = '%2'>>_t3.py

echo my = compile_fmu(mn, mf, target='cs',

version='2.0')>>_t3.py

"C:\Python27\python.exe" "_t3.py"

if %errorlevel% neq 0 exit /b 2

This batch file takes 2 arguments. One is the name

of the model, and the other is the name of the Modelica

file. It generates a python script as _t3.py and call

python.exe.

5.1 FMI Interface

The FMI (Functional Mockup Interface) is the standard

which enables running the simulation from any tools

(FMI-Standard.org, 2014). There are publicly available

Session 9A: FMI I

DOI
10.3384/ecp17132547

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

549

FMI implementations. For example, FMI Library

(JModelica.org, 2016) is a library developed by

JModelica.org can be downloaded in source code or

binaries for Windows. Using the library, all of the steps

for running the simulation can be executed by simple

function call, like unzipping the FMU module or

parsing the modelDescription.xml. Our prototype is

implemented to use the FMI Library.

5.2 3D Matrix

The connector of the MultiBody Library is defined as

the Frame. Frame model is defined in the package

Interfaces as following.

connector Frame

SI.Position r_0[3]

Frames.Orientation R

flow SI.Force f[3]

flow SI.Torque t[3]

end Frame;

The position vector r_0 is directed from the origin of

the world coordinate system to the origin of the Frame.

The orientation object R describes the relative

orientation between the world frame and the Frame.

From these parameters, we can generate a

transformation matrix which is used to animate the 3D

object in DMU Tool.

|𝑨| = |

𝑹. 𝑻[𝟏, 𝟏] 𝑹. 𝑻[𝟐, 𝟏] 𝑹. 𝑻[𝟑, 𝟏] 𝒓_𝟎[𝟏]

𝑹. 𝑻[𝟏, 𝟐] 𝑹. 𝑻[𝟐, 𝟐] 𝑹. 𝑻[𝟑, 𝟐] 𝒓_𝟎[𝟐]

𝑹. 𝑻[𝟏, 𝟑] 𝑹. 𝑻[𝟐, 𝟑] 𝑹. 𝑻[𝟑, 𝟑] 𝒓_𝟎[𝟑]
𝟎 𝟎 𝟎 𝟏

| (1)

This translation matrix moves the 3D object in the

DMU model. The values r_0 and R.T of the

components in the Modelica model are referred while

running the simulation and are used for the animation

of 3D model.

5.3 Using CAD Model

Using the 3D CAD model of the existing products, the

presentation of the simulation result becomes more

realistic. The DMU Tool has the functionality to

import CAD model. Most of the DMU Tools support

many types of the CAD format. Figure 8 is the list of

the supported formats in XVL Studio.

Figure 8 CAD format supported by XVL Studio.

To use the existing CAD data in our prototype, just

drag and drop the CAD file to XVL Studio. Following

instructions show how to use the CAD data in the

prototype.

 Import Modelica model to the prototype.

 The 3D visualization model is generated. (Figure

9)

 Import CAD data to DMU Tool. (Figure 10)

 Move parts of the CAD model to the group under

the visualization model. (Figure 11)

 Run simulation. (Figure 12)

Using the integration Modelica and DMU Tool the

simulation can be visualized with CAD model with

simple operations like this.

Figure 9 3D visualization model generated with the

prototype.

Figure 10 CAD model is imported over the visualization

model.

Integration Modelica with Digital Mockup Tool using the FMI

550 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132547

Figure 11 Move CAD model to the group generated with

the 3D visualization model.

Figure 12 Simulation is visualized with the CAD model.

6 Example

We create a crane model in our project. The CAD data

of a crane is provided by a Japanese manufacturer of

mobile cranes.

6.1 Crane Model

Figure 13 is a crane model created with Dymola. It

consists of 2 revolute joints for simulating the fall over

problem. 2 revolute joints and 4 prismatic joints are for

simulating the movement of the boom. One prismatic

joint held in the revolute joint and a universal joint are

for the extending of the wire. Figure 14 is a screenshot

of the prototype showing the 3D model generated from

the Modelica file. As instructed in chapter 5.3, CAD

model of the product can be imported (Figure 15).

Figure 16 is the screenshot of the final 3D model,

which includes the 3D skeleton model generated from

the visualization information defined in Modelica,

CAD data of the product design and point cloud of the

construction field. The point cloud is measured with

the laser scanner and imported to XVL Studio.

Figure 13 Modelica model of a mobile crane.

Figure 14 3D skeleton data generated by the prototype

Figure 15 A screen shot after imported the CAD model.

Drag & Drop

Session 9A: FMI I

DOI
10.3384/ecp17132547

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

551

Figure 16 A screen shot after imported point cloud.

Using this model, we have simulated the swing of

the load while turning the Boom (Figure 17). Figure 18

shows the simulation of the problem of fall over of the

full vehicle.

Figure 17 A screenshot simulating the swing of the load

while turning the Boom.

Figure 18 Simulating the problem of fall over when the

boom was tilted.

7 Human Model

Analyzing the human interaction, during the

production in the factory is one of the important use-

case of the DMU tool. Some of the DMU Tools has the

functionality of evaluate the posture of the worker

using 3D human model. On the other hand there are

some biomechanics software enables to analyze the

human muscle bone model. For example DhaibaWorks

developed by National Institute of Advanced Industrial
Science and Technology (AIST, 2016) is well known in

Japan. These bio-mechanics software are for the expert

users in the laboratory of the universities or the

enterprise. Our target in the Delight Design Platform is

to develop a human model easy to use for engineers in

the manufacturer using the Modelica technology.

7.1 Muscle-Bone Model Prototype

Our first prototype was a generator, which generate a

simple 3D muscle-bone model using the kinematics of

XVL. The generator reads a BVH file, and generates a

XVL model referring the structure data in the BVH file.

The BVH file format is originally developed by

Biovision as a motion capture data file format

(Autodesk, 2016).

In this model, there are 16 skeletal joints. We

defined degree-of-freedom for each joint, and

associated prime mover muscle (Table 3).

Table 3 Mapping of the skeletal joint and muscle.

skeltal joint axis associated muscle

Left/Right Thigh x psoas l/r

y gluteus l/r

z piriformis l/r

Left/Right Leg x femoris l/r

Left/Right Foot x surae l/r

y peroneus l/r

Chest x abdominis

y ex oblique

z in oblique

Left/Right Shoulder y trapezius l/r

z pectoralis min l/r

Left/Right Arm x pectoralis maj l/r

y deltoid l/r

z spinatus l/r

Left/Right Forearm x biceps l/r

y pronator l/r

Left/Right Hand x digitorum l/r

y carpi l/r

Head x sternocleido

y splenius
The basic model of a set of joint and muscle is

shown in Figure 19.

Integration Modelica with Digital Mockup Tool using the FMI

552 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132547

Figure 19 The basic model with one rotational joint and

one JointUPS.

The Revolute component is associated to one degree of

freedom of a skeletal joint. The JointUPS component is

associated to the prime mover muscle. Similarly, we

generated instance for all joints (Figure 20).

Figure 20 A Modelica model of the muscle bone model.

We prepared a 3D model with kinematic definitions

referring a 3D human model for anatomy (Figure 21).

The prototype generates the Modelica model from the

geometric and kinematic information in the 3d model.

Figure 21 Defining the fixing position of the muscle to

the bone. The left is an anatomy model and the right is a

kinematic model.

A skin model created with CG software is added just

like the CAD model written in the section 5.3 (Figure

22).

Figure 22 A 3D muscle bone model with skin.

In this model the properties of mass and the inertia

tensor are calculated by the skin data of the 3D model.

This concept is as same as the one in the paper

Redundancies in Multibody System and Automatic
Coupling of CATIA and Modelica (Hilding Elmqvist et

al., 2009). Also the value in the TimeTable which is

the input of the JointUPS is embedded from the value

in the BVH motion data. Figure 23 is a table plot of the

motion data in Dymola. The input of the JointUPS is

the relative distance and it is calculated from the Euler

angles of the joint contained in the BVH file.

Figure 23 A table plot of the motion data embedded in

the Modelica model.

We have visualized the force of the JointUPS as

color mapping. Figure 24 is a sample showing the

color mapping of the human model while using the

hair-dryer. Our prototype generates the color mapping

as a key frame animation of XVL Studio.

Session 9A: FMI I

DOI
10.3384/ecp17132547

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

553

Figure 24 The visualization with the color mapping.

Following charts are samples of the simulation

result. Figure 25 is a chart showing the length of the

JointUPS placed at the position of the biceps. Figure 26

is the force of the JointUPS. Since the sampling rate of

the motion capture is not high, the force of the

JointUPS is filtered with Blocks.Continuous.Filter

component.

Figure 25 The length of the biceps.

Figure 26 The force of the biceps.

7.2 Reaction Force on the Ground

Our first prototype described in the previous section

has some problems. For example it does not simulate

the reaction force from the ground. There is a contact

library for the MultiBody Library, proposed as the

IdealizedContact (Oestersötebier et al., 2014). Also a

simple point contact model is proposed in the paper

Kinematic and Dynamic Analysis for Biped Robots
Design (David M., 2012).

We have used a modified one point contact model in

the following example. This model is a passive

dynamic walking model, which is intended to simulate

the human gait (Figure 27, Figure 28).

Figure 27 The passive dynamic walking model.

Figure 28 Animation view of the passive dynamic

walking model.

In this model, 2 BodyShape components

corresponding to the legs are connected to the

PointContact component. The torque of the revolute

joint corresponding to the knee is controlled as zero

when the reaction force from the ground is zero. It

holds the knee angle while the reaction force from the

ground is above zero.

The gravity vector is tilted from Z axis. With the

gravity the walking motion is continued. Since the legs

of the model are placed at the same position in Y

direction, the model fell down sideway after 10 steps.

The simulation can be animated with the skin of the

human model installed with XVL Studio (Figure 29).

Integration Modelica with Digital Mockup Tool using the FMI

554 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132547

Figure 29 The walking model with the skin in XVL Studio.

8 Future Work

In the future work, we plan to extend the functionality

of the prototype, and evaluate in the actual product

design.

In the next prototype of the human model we will

not use the muscle bone model. The forces of the

muscle will be calculated from the torque of the joint

inside the DMU Tool. Because of the detailed

evaluation of each force of the muscles are not required

in the use case of the DMU Tool. The reaction force on

the ground described in the section 7.2 will be included

in the next prototype. And the calculation of the gravity

center of the whole body will be included. It helps to

evaluate the working posture which is the main use

case of the human model of the DMU Tool. In the

Figure 30 left image is a typical human model holding

a box which is created with XVL Studio. Since the

gravity balance is not considered, the simulation model

fall down foreword like the image right side.

Figure 30 A typical human model holding a box.

Figure 31 shows the posture considered gravity balance.

In this way, by using Modelica simulation in DMU

Tool more natural posture can be created.

Figure 31

Also, the automatic generation of the models

corresponding to human bodies of various physiques is

planned.

9 Conclusion

This project demonstrated significant advantages using

a DMU tool as a Modelica front-end. The advantages

are as follows.

 Enables visualization of simulation results with 3D

CAD models and/or 3D scan data.

 Enables easier 1D modeling by using the 3D user

interface of the DMU Tool.

 Better visualization of results will promote the use

of Model based design.

Further advantage can be expected with the future

work described in the previous section.

Acknowledgements

The authors wish to thank Takayuki Kosaka

(TADANO LTD.) and Marc Jablonski for their

contributions and feedbacks. This research and the

prototype were supported by New Energy and

Industrial Technology Development Organization

(NEDO) of Japan, and we would like to thank them for

their assistance.

References

Autodesk (2016): BVH File Specification.

 http://www.autodesk.com

Dassault Systèmes (2016): Dymola 2016

 http://www.Dymola.com

David Mauricio Alba Lucero. (2012): Kinematic and

Dynamic Analysis for Biped Robots Design.

Felix Oestersotebier, Peng Wang and Ansgar Trachtler.

(2014): A Modelica Contact Library for Idealized

Simulation of Independently Defined Contact Surfaces.

FMI-Standard.org (2014): Functional Mockup Interface for

Model Exchange and Co-Simulation Version 2.0, July 25,

2014. https://www.fmi-standard.org

Session 9A: FMI I

DOI
10.3384/ecp17132547

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

555

Hilding Elmqvist, Sven Erik Mattsson, Christophe Chapuis.

(2009): Redundancies in Multibody Systems and

Automatic Coupling of CATIA and Modelica. In:

Proceedings of the 7
th
 International Modelica Conference.

JModelica.org (2016): FMI Library 2.0.2

 http://jmodelica.org

Lattice Technology (2016): XVL

 http://www.lattice3d.com/

Martin Otter, Hilding Elmqvist and Sven Erik Mattsson

DLR; Dynasim: (2003): The New Modelica MultiBody

Library. In: Proceedings of the 3
rd

 International Modelica

Conference, Linkoping, November 3-4, 2003.

National Institute of Advanced Industrial Science and

Technology (AIST) (2016): DhaibaWorks

 http://www.dhaibaworks.com

Ohtomi, K. (2015): Kansei Modeling for Delight Design

based on 1DCAE Concept. In: Proceedings of the 11
th

International Modelica Conference, Versailles, France,

September 21-23, 2015. doi: 10.3384/ecp15118

Toriya, H. (2008): 3D Manufacturing Innovation. doi:

10.1007/978-1-84800-038-4

Toriya, H. (2014): Manufacturing Innovation Based On

Lightweight 3D Technology. In: The 4th IIEEJ

International Workshop on Image Electronics and Visual

Computing 2014.

Toriya H., Jablonski M. (2017): 3D Manufacturing

Evolution: Evolutionary Change in Global Manufacturing

with Digital Data. ASIN: B01N29ZFZM

Integration Modelica with Digital Mockup Tool using the FMI

556 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132547

Solving Large-scale Modelica Models:
New Approaches and Experimental Results using OpenModelica

Willi Braun1 Francesco Casella2 Bernhard Bachmann1

1FH Bielefeld, Bielefeld, Germany, {willi.braun,bernhard.bachmann}@fh-bielefeld.org
2Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy,

francesco.casella@polimi.it

Abstract
Modelica-based modeling and simulation is becoming in-
creasingly important for the development of high quality
engineering products. Therefore, the system size of in-
terest in a Modelica-based simulation is continuously in-
creasing and the traditional way of generating simulation
code, e.g. involving symbolic transformations like match-
ing, sorting, and tearing, must be adapted to this situation.
This paper describes recently implemented sparse solver
techniques in OpenModelica in order to efficiently com-
pile and simulate large-scale Modelica models. A proof
of concept is given by evaluating the performance of se-
lected benchmark problems.
Keywords: Modelica, large-scale, sparse solver tech-
niques

1 Introduction
The design and safe operation of modern large-scale
cyber-physical systems requires the ability to model and
simulate them efficiently. The Modelica language is op-
timally suited for the modelling task, thanks to the high-
level declarative modelling approach and to the powerful
object-oriented features such as inheritance and replace-
able objects. On the other hand, as noted in (Casella,
2015), until recently the development of Modelica tools
has been focused on the modelling of moderate-sized
models, optimizing the simulation code as much as pos-
sible by means of structural analysis and symbolic pro-
cessing of the system of equations.

Large system models are usually characterized by a
high degree of sparsity, since each component interacts
only with a few neighbours, so that each differential-
algebraic equation in the model only depends on a hand-
ful of variables. The availability of reliable open-source
sparse solvers (Hindmarsh et al., 2005; Davis and Natara-
jan, 2010) and of cheap computing power and memory
even on low-end workstations opens up the possibility of
tackling much large system models, featuring hundreds of
thousands or possibly millions of equations, exploiting the
sparsity of such models for their solution.

In particular, the interest in the use of Modelica for
the modelling and simulation of national- and continental-
sized power generation and transmission systems recently

motivated a first exploratory effort in this direction, using
OpenModelica as a development platform, see (Casella
et al., 2016). The methods implemented for the power sys-
tem studies also allowed to efficiently simulate the cool-
ing blanket of the future DEMO nuclear fusion reactor,
which requires the modelling of thousands of individual
heat-exchanging pipes, see (Froio et al., 2016).

The goal of this paper is threefold: to discuss different
strategies for the simulation of large-scale Modelica mod-
els using sparse solvers; to describe an implementation
of such strategies in the OpenModelica Compiler (OMC),
using open-source solvers; finally, to present and dis-
cuss the performance obtained in a number of benchmark
cases. The numerical methods are discussed in Section 2.
The simulation performance is analyzed on three sets of
benchmarks: the ScalableTestSuite library (Casella, 2015;
Casella and Sezginer, 2016), some large power system
models (Casella et al., 2016), and large high-fidelity mod-
els of the cooling system of the future DEMO nuclear fu-
sion plant (Froio et al., 2017); results are reported in Sec-
tion 3. Finally, Section 4 concludes the paper and gives an
outlook to future work.

2 Solving Modelica Models
2.1 ODE mode
2.1.1 Symbolic Transformation Steps

In common Modelica tools the compile process can be
summarized with the following steps, which are also ex-
plained in (Cellier and Kofman, 2006):

Flattening The Modelica model is transformed by the
front-end into a flat representation, consisting essen-
tially of lists of variables, functions, equations and
algorithms.

Pre-Optimization In this phase a basic structural anal-
ysis of the differential-algebraic equations (DAE) is
performed, e.g. detecting the potential states and dis-
crete variables, eliminating alias variables.

Causalization This is a basic step in a Modelica Com-
piler, the so-called BLT-Transformation. Matching,
sorting, and index reduction algorithms are applied

DOI
10.3384/ecp17132557

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

557

in order to causalize the DAE and transform it to a
system of ordinary differential equations (ODE).

Post-Optimization In this phase further optimization
processes are applied on the equation system, e.g.
the optimization of algebraic loops, like tearing, or
the generation of corresponding symbolic Jacobians.

Code-Generation The final step after the symbolic ma-
nipulation is the target code generation for the opti-
mized system in order to perform the simulation.

For this description and without lack of generality, and
for clarity of the presentation, only the continuous part of
the DAE is considered in the following. The result of the
Flattening is the equation system:

F(t, ẋ(t),x(t),u(t),y(t), p) = 0, t ∈ [t0, t f]

x(t0) = x0
(1)

where ẋ(t) ∈ Rnx are the potential state derivatives, x(t) ∈
Rnx are the potential states, u(t) ∈ Rnu are the inputs and
y(t) ∈ Rny are the algebraic variables. For simplicity, the
initial conditions of the DAE states are given by x0. Intro-
ducing z = (ẋ y), denoting the unknowns of the DAE, and
v = (x u), denoting the known variables, the DAE can be
re-written as

F(z,v) = 0 (2)

that is basically the result of the Pre-Optimization.
The conceptual idea of the DAE Causalization com-

monly used in Modelica tools is to get an ordering of the
unknowns z(t), which enables to solve them sequentially

z = G(v) ∈ Rnx+ny (3)

If index reduction is necessary, some of the potential states
and state derivatives become algebraic and the number of
equations might change. The general form of the causal-
ized system consists of a sequence of assignment state-
ments including implicit systems of equations (algebraic
loops)

0 = gi(zi,z1, . . . ,zi−1,x,u), i = 1, . . . ,k (4)

where
z = (z1, . . . ,zk), zi ∈ Rni ,

k

∑
i=1

ni = nx +ny.

Finally, the ODE may be re-written

ẋ = f (x,u, p, t) (5)
ŷ = h(x,u, p, t) (6)

where ŷ are the outputs of the system. Note that the other
algebraic variables of y are considered to be internal to the
ODE in this representation.

In the Post-Optimization mainly algebraic loops are
torn down (Täuber et al., 2014) and the symbolical Jaco-
bians are determined where applicable. Also the sparsity
pattern of equation (5) is detected, which can be employed
for the numerical jacobian calculation of the integration
method (see also (Braun et al., 2012)).

2.1.2 Numerical Solving Process

For the simulation of the generated ODE equation (5) a
numerical integration method for solving the differential
equations as well as linear and non-linear system solvers
for the implicit equations (4) are needed . In the next sec-
tion the utilized methods and the exploitation scope for
sparsity are described.

The numerical integration can be performed with ex-
plicit or implicit methods, whereby the implicit ap-
proaches are used in a Modelica environment more often,
since most problems arising in practice are stiff. For ex-
plicit methods the next step can be calculated by

x(t +δ t) = Φ(x(t),u, p, t,δ t, f), (7)

whereby Φ is calculated by explicitly evaluating the func-
tion f in formula (5). Therefore, sparse methods can only
be applied for calculating the solution of algebraic loops
with respect to equation (4). The handling of sparse alge-
braic loops is described below.

For implicit methods the next step has to be calculated
by

x(t +δ t) = Ψ(x(t +δ t),u, p, t,δ t, f), (8)

whereby the evaluation of Ψ involves the solution of a
non-linear system using equation (5). The most widely
used method for solving such non-linear systems is New-
ton’s method and the core of it is to solve consecutive a
linear system of the form

J · (x(t +δ t)− x(t)) =−F (9)

where F denotes the residual form of equation (8) and J
is the corresponding Jacobian matrix. The solution of this
linear system offers some potential to gain performance
for large-scale systems. Firstly, the matrix J can be calcu-
lated by exploiting the sparsity of the system, both numer-
ically and symbolically. Naturally, this includes the stor-
age of the matrix in a suitable sparse format to reduce the
memory consumption. Secondly, in order to solve equa-
tion (9) sparse linear solvers (e.g. sparse LU factorization)
can be utilized. For that purpose several methods have
been developed and made publicly available (Davis and
Natarajan, 2010; Davis, 2004).

For calculating the solution of algebraic loops with re-
spect to equation (4) the same sparse solution methods can
be utilized to gain some performance.

2.2 Simulation in DAE mode
An other way to go is to pass-through the whole system of
equation (2) directly to an DAE solver, instead of using the
ODE solver for integration and solve the implicit parts of
equation (5) explicitly by algebraic solvers. Due to the fact
that the index reduction is an important step for better con-
vergence to the solution (Brenan et al., 1996), it is prefer-
able to pass the system with index 1 (eq. (3)). Also, if
the simulation is performed with equation (3), some time

Solving large-scale Modelica models: new approaches and experimental results using OpenModelica

558 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132557

consuming steps in the Post-Optimization compiling pro-
cess, which deal with algebraic loops, namely tearing and
the generation of symbolic Jacobians, can be skipped. A
DAE solver is always an implicit solver and has to solve
an non-linear system, which is usually solved using some
variants of the Newton’s method (Brenan et al., 1996).
Thus, all the local implicit algebraic loops are solved all
together by the global routine. One effect of using equa-
tion (3) instead of solving equation (5) is that the Jacobian
matrix gets bigger, since the integration method needs to
solve for the variables x, ẋ and y instead only for x. But
this also preserves the sparse structure of the equation sys-
tem with respect to Modelica models. In the ODE mode
the corresponding Jacobian matrix is more dense due to
the fact that the algebraic variables y are considered as in-
ternal variables.

Note, that in the current status of the DAE mode im-
plementation it is still mandatory to generate the causal-
ized code for proper handling of synchronous events and
discrete variables. Therefore, OpenModelica generates
currently an additional system in DAE mode. However,
it is possible to skip unnecessary compiling steps by
some specific compiler flags, which are documented in
the OpenModelica User’s Guide (Open Source Modelica
Consortium).

2.3 Implementation in OpenModelica
The default simulation in OpenModelica is performed by
solving system (5) using DASSL as a pure ODE solver.
Hereby, the implicit parts (algebraic loops) are solved ex-
plicitly with algebraic equation solvers, the linear parts
with lapack and the non-linear parts with a newton-based
solver implemented in OpenModelica (Bachmann et al.,
2015).

For the simulation of large scale Modelica models the
most important part is a suitable sparse linear solver as
depicted in section 2.1.2. Currently, one of the best under
public domain available direct sparse linear solver for un-
symmetric problems is the KLU solver (Davis and Natara-
jan, 2010) from the sparse matrix suite SuiteSparse. This
solver is designed for solving sequences of unsymmetric
sparse linear systems that arise from differential-algebraic
equations, occurring when simulating electronic circuits.
In fact, the linear systems arisen when simulating Model-
ica models are in general unsymmetric and often sparse,
both in ODE and DAE mode. The open-source software
family called SUNDIALS offers as a DAE solver the IDA
solver (Hindmarsh et al., 2005). The IDA solver stands
for Implicit Differential-Algebraic solver and is based on
DASSL, but is written in ANSI-standard C. Further, for
the solution of the underlying non-linear system at each
time step, the IDA solver offers an interface to the sparse
linear solver KLU. Furthermore, the SUNDIALS suite in-
cludes also a newton-based non-linear solver KINSOL,
which is also able to use the KLU solver for the underling
linear system. Through the connection of SUNDIALS and
SuiteSparse suite to the OpenModelica environment it is

now possible to rely on sparse methods at every step of
the numerical simulation process.

3 Performance Results
3.1 Benchmarks from the ScalableTestSuite

3.1.1 Test set-up

The ScalableTestSuite (Casella, 2015; Casella and
Sezginer, 2016) contains a number of different benchmark
models, whose size can easily be chosen by setting one or
more Integer parameters. The benchmarks are designed
to stress some aspect of the code generation and execu-
tion, e.g. by possessing large implicit systems of alge-
braic equations, large number of states, large number of
event-generating functions, etc. Please refer to the library
documentation for further details.

This section reports the performance of a selection of
nine benchmark models, each one coming in three differ-
ent sizes.The results obtained with four different numeri-
cal solution strategies are presented and compared. Note
that the current set of benchmarks does not include sys-
tems with large implicit systems of nonlinear equations –
these will be added in the final version of the paper.

The first solution strategy, labelled OD in the result ta-
ble, is the default approach to solving Modelica models
implemented in the OpenModelica tool (see section 2).
The DAEs are turned into ODEs by solving them for the
derivatives, using the BLT transformation to do so effi-
ciently, applying symbolic index reduction if the system
has index greater than one. The implicit equations in the
BLT corresponding to strong components in the depen-
dency graph are solved with dense linear and nonlinear
equation solvers, using tearing to reduce the size of the
implicit part of the problem and thus somehow exploiting
sparsity. The ODEs are then solved by the DASSL BDF
integrator, using a dense linear solver for its internal oper-
ations.

The second strategy, labelled OS, still resorts to causal-
ization; however, the implicit equations corresponding to
the strong components in the BLT are solved by the Kin-
sol/KLU sparse solvers, while the ODEs are solved by
the IDA BDF integrator, relying on the KLU sparse lin-
ear solver internally.

In this case, tearing is not applied to solve the implicit
equations corresponding to strong components in the BLT.
The rationale behind this decision is that on the one hand,
the sparse solver already vastly reduces the computational
complexity, if the system is highly sparse. On the other
hand, tearing very large systems might take a dispropor-
tionately large amount of time by the compiler back-end,
so that the time savings at run time are likely to be more
than offset by the much longer code generation time. In
fact, this trade-off would itself deserve to be studied, but
that goes beyond the scope of the present paper.

The third strategy, labelled DA, is to only apply sym-
bolic index reduction (if needed) to the DAEs, and then

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132557

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

559

use the sparse IDA solver directly to solve them over time.
The fourth strategy, labelled DD, is a variant of the for-

mer one, in which the subset of the DAEs that is strictly
required to be solved in order to compute the state vari-
ables at the next time step is identified and passed to the
sparse IDA solver. Once the new time step has been com-
puted and accepted as valid by the error estimation rou-
tine, the remaining equations are solved for the remain-
ing variables by OpenModelica-generated code, exploit-
ing the usual BLT decomposition to solve them efficiently.

This strategy can be advantageous because it avoids
computing unnecessary variables during the internal
solver iterations, particularly when tentatively computing
a step that may then be rejected by the error estimation
routine. Also, it is often the case that the dependencies
in the systems are such that, once the variables required
to advance the states have been computed, the remaining
ones can be computed by explicit assignments. Further-
more, these are only computed once instead of getting un-
necessarily involved many times in the iterative solution
of the implicit sparse nonlinear DAEs.

As to the initialization problem, with the first strategy
the standard dense linear and nonlinear solvers with tear-
ing are used; with the other three, the sparse solvers Kin-
sol/KLU without tearing are used instead.

All tests were carried out on the Open Source Mod-
elica Consortium continuous testing infrastructure, using
the development version 1.12.0 of OpenModelica. The
computer used to run the tests is a 16-core Intel i7-6900K
CPU @ 3.20 GHz, with 132 GB RAM.

3.1.2 Results and discussion

Table 1 reports some selected results, showing the num-
ber of equations NE, number of states NS and the run-
ning times of the simulations in seconds, including the
time spent for initialization, for the four above-mentioned
strategies. The full online report for each strategy can be
retrieved by clicking on the corresponding label in the ta-
ble headings of the PDF file.

Note that all the employed solvers are stiff and equipped
with automatic order and step-size adaptation, with rel-
ative tolerance set to 10−6, so that accuracy of the sim-
ulation results is comparable and the comparison among
simulation times is fair and meaningful.

First of all, it is apparent how the adoption of sparse
solvers turns out to be beneficial for 7 out of 9 bench-
mark models, reducing the simulation times by factors
ranging from about 2 (SteamPipe and OneDHeatTrans-
ferTT_Modelica) to about 60 (TransmissionLineEqua-
tions_N_1280). It is also not significantly harmful in the
remaining two.

Although the models in the ScalableTestSuite might be
somewhat artificial and thus possibly bring higher benefits
than real-life models, in the author’s opinion this result is
a clear indication that sparse solvers are the recommended
option to simulate large-scale Modelica models.

The improvement in performance can be ascribed both

to the more efficient solution of the large implicit systems
of equations involved in the solution process, and proba-
bly also to the lower number of time-consuming memory
cache misses, due to the much smaller memory footprint
of the simulation executable.

For some models, a large fraction of the simulation time
is spent computing the right-hand-sides of the equations,
rather then solving them, as in the case of the SteamPipe,
where most of the time is spent computing the steam prop-
erties. In these cases, the adoption of a sparse solver can-
not change the situation dramatically. On the contrary,
sparse methods can bring huge benefits to models like
TransmissionLineEquations, which have a large number
of state variables, and an easy-to-compute right-hand side
of the ODEs, with a very sparse Jacobian.

The advantage of using a sparse DAE solver over a
sparse ODE solver is instead much less clear, and depends
a lot on the specific case.

The multi-body models StringModelica, a suspended
string modelled as a chain of rigid bodies and free rota-
tional joints, and FlexibleBeamModelica, a cantilevered
beam modelled as a chain of rigid bodies with elastic rota-
tional joints, perform much better with the DAE solver, for
reasons currently under investigation; also the SimpleAd-
vection models show a factor 2 improvement when using
the DAE solver.

In other cases, such qas TransmissionLineEquations
and PowerSystemStepLoad, the advantage is more lim-
ited. The TransmissionLineModelica model turns out to
be five time faster with the sparse ODE solver than with
the full DAE solver (DA strategy). The penalty is reduced
to about a factor 2 when using the more advanced DD
strategy, which is understandable, as the model is built
with basic Resistor and Capacitor models from the Model-
ica Standard Library and thus has a lot of redundant equa-
tions.

Finally, it seems that the DA strategy never turns out
to provide any substantial advantage over the second best
choice.

3.2 Large-scale power generation and trans-
mission system models

The interest in Modelica modelling of national- and
continental-size power generation and transmission sys-
tems is growing. A first feasibility study in this field was
reported in (Casella et al., 2016). The relevant features of
the benchmark models are reported here for convenience;
the interested reader is referred to the above-mentioned
reference for background information and more details.

Three benchmark test cases from that study are con-
sidered in this paper, whose main features are reported in
Table 3. Note that the size of these models is much larger
than the typical size of the ScalableTestSuite examples re-
ported in the previous section.

RETE_C is a model of the Irish power generation and
high-voltage power transmission system, while RETE_E
and RETE_G are a medium- and a high-fidelity model

Solving large-scale Modelica models: new approaches and experimental results using OpenModelica

560 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132557

Table 1. Simulation times of ScalableTestSuite benchmarks in seconds.

Benchmark NE NS OD OS DA DD

SimpleAdvection_N_3200 6402 3199 20.81 4.851 3.087 2.561
SimpleAdvection_N_6400 12802 6399 104.9 13.27 6.107 6.781
SimpleAdvection_N_12800 25602 12799 642.2 41.15 19.17 18.38

SteamPipe_N_640 8966 1280 169.2 148.4 158.7 139.3
SteamPipe_N_1280 17926 2560 395.8 316.8 357.8 302.9
SteamPipe_N_2560 35846 5120 1165 651.0 801.9 679.9

TransmissionLineEquations_N_320 642 640 4.344 0.5742 0.2626 0.3563
TransmissionLineEquations_N_640 1282 1280 23.52 1.133 0.8848 0.7923
TransmissionLineEquations_N_1280 2562 2560 241.1 6.099 4.973 4.621

TransmissionLineModelica_N_320 6755 642 3.677 1.100 3.337 1.937
TransmissionLineModelica_N_640 13475 1282 29.15 2.090 11.63 7.59
TransmissionLineModelica_N_1280 26915 2562 235.0 9.012 47.80 20.96

FlexibleBeamModelica_N_16 5949 32 26.74 21.65 14.4 9.611
FlexibleBeamModelica_N_32 10877 64 111.9 64.87 38.12 28.30
FlexibleBeamModelica_N_64 20733 128 1819 393.8 n.a. 65.47

StringModelica_N_16 5887 34 1.801 1.410 0.4385 1.012
StringModelica_N_32 10783 66 9.710 10.02 1.541 1.897
StringModelica_N_64 20575 130 86.48 25.91 3.756 n.a.

PowerSystemStepLoad_N_16_M_4 1059 193 0.2272 0.1477 0.1329 0.4610
PowerSystemStepLoad_N_32_M_4 3139 385 0.7197 0.632 0.4116 0.5558
PowerSystemStepLoad_N_64_M_4 10371 769 2.713 2.961 2.277 2.867

OneDHeatTransferTT_Modelica_N_320 3190 318 0.322 0.2358 0.1794 0.3176
OneDHeatTransferTT_Modelica_N_640 6390 638 0.9237 0.3579 0.4711 0.4736
OneDHeatTransferTT_Modelica_N_1280 12790 1278 1.822 1.038 0.9342 1.058

HeatingSystem_N_20 103 41 16.76 20.26 n.a. n.a.
HeatingSystem_N_40 203 81 113.7 155.6 n.a. n.a.
HeatingSystem_N_80 403 161 827.2 831.5 n.a. n.a.

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132557

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

561

Table 2. Number of synchronous generators, transmission lines,
transformers and equations of the benchmark models

Network Gen’s Lines Trafo’s Equations
RETE_C 74 369 583 56386
RETE_E 267 1458 1202 157022
RETE_G 407 6833 2824 593886

of the Italian high-voltage power generation and transmis-
sion system, with an equivalent simplified representation
of the interconnection to the pan-European grid.

These models have a peculiar feature, i.e., their DAE
representation is highly sparse, but their ODE representa-
tion is dense, because all the synchronous generators in-
teract instantaneously with each other, due to the phasor-
based algebraic description of the transmission network.
As a consequence, the use of implicit ODE solvers is
not recommended, because the corresponding Jacobian is
very large and dense.

At the time of the writing of (Casella et al., 2016), the
sparse DAE solver only worked on the smallest test case,
so for the larger ones a variant of the the OD strategy was
employed, using an explicit Runge-Kutta solver to avoid
computing the dense Jacobian. Linearized load models
were required in order to use the linear sparse solver KLU
to compute the causalized equations. However, this ap-
proach was clearly sub-optimal, because a) realistic load
models are non-linear and b) the system models are sig-
nificantly stiff. Using fully implicit sparse DAE solvers
with variable step size is clearly preferrable from a perfor-
mance point of view.

In this paper, we can now report the simulation perfor-
mance obtained with the DA strategy, using an Intel Xeon
CPU E5-2650 server running at 2.30GHz with 72 GB of
RAM installed. All simulations start with the system in
steady-state, then at time t = 1 s a big load is disconnected
from the grid, causing an imbalance between generated
and consumed power. The system undergoes a transient
with some voltage and frequency oscillations, until the
voltage and frequency controllers re-establish a new equi-
librium in about 10-15 seconds. The simulation time span
is 20 seconds, in order to check that the system actually
returns to steady-state.

Performance results are reported in Table 2. It is worth
noting that these results were obtained with a first imple-
mentation of the DA strategy; the authors are confident
that the optimization of the IDA solver parameters and
a more thorough scaling of the problem, which is badly
scaled due to the use of SI units, could further improve the
performance significantly.

3.3 Large-scale models of nuclear fusion reac-
tor components

The development of a conceptual design of the European
Demonstration Fusion Power Reactor (EU DEMO) is one
of the goals defined in the EU fusion roadmap Horizon

Table 3. Simulation performance with DA strategy

Network Rel. tol. No. of steps Sim. time [s]
RETE_C 10−4 39 0.96
RETE_C 10−6 146 3.18
RETE_E 10−4 140 8.80
RETE_E 10−6 364 15.22
RETE_G 10−4 221 59.95
RETE_G 10−6 615 123.19

2020. The future DEMO reactor aims at demonstrating
industrial-scale electrical power production from nuclear
fusion processes.

Politecnico di Torino, in cooperation with Politecnico
di Milano, is developing a global thermal-hydraulic model
of the entire system, using Modelica. One important part
of that is the breeding blanket cooling system, in which
pressurized water flows through a very complex and large
system of tubes, collecting the heat generated from the nu-
clear fusion process and delivering it to a standard steam
generator and turbine system, similar to those used for tra-
ditional PWR nuclear power plants. The breeding blan-
ket cooling system is highly modular and has a repetitive
structure, but its sub-components have different geometric
features, so that it necessary to simulate each and every
tube individually. As a result, models of this system can
have a very large size. The interested reader can refer to
(Froio et al., 2017) for more details.

The model reported in the above-mentioned reference
has 289126 equations and 20772 states. The simulation of
a transient of interest for the study of such system requires
64 s with the DD strategy and 146 s with the DA strategy.

The model has been benchmarked and validated against
more detailed 3D CFD models. Given the simulation
times shown above, which are obviously much faster than
those of the CFD simulation, the model is suitable for use
in parametric optimization studies, aimed at the optimal
design of the coolant flow distribution.

4 Conclusion
This paper introduces methods and strategies to solve
large-scale Modelica models and reports the performance
of their implementation in OpenModelica on selected
benchmark problems.

The main result of this study is that the use of sparse
solvers is almost always beneficial, sometimes very sub-
stantially, over the traditional use of dense solvers sup-
ported by thorough symbolic manipulation. The compari-
son between sparse DAE solvers and sparse ODE solvers
has many different outcomes, depending on the specific
problems at hand.

Another interesting result is that we have demonstrated
the feasibility of using such sparse solvers to successfully
simulate Modelica models of industrially relevant systems
with size up to over half a million DAEs.

Solving large-scale Modelica models: new approaches and experimental results using OpenModelica

562 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132557

Further developments of this work are already planned.
First of all, it would be interesting to using the DAE solver
to simultaneously handle the differential equations and the
nonlinear algebraic implicit equations corresponding to
strong components of the BLT, while still exploiting the
BLT to compute the residuals of the DAEs by sequences of
explicit assignments. This would combine the advantages
of the sparse ODE and sparse DAE approaches discussed
in this paper, avoiding the nested iterations of the non-
linear strong components solver and of the implicit ODE
solver, possibly further improving the results reported in
this paper on some classes of models.

It will also be necessary to further optimize the code
generation for use with sparse solvers, as the current im-
plementation is such that the code generation time is typi-
cally much larger than the simulation time, particularly for
very large models. Radically new approaches to the code
generation process are needed to break the one million
equation barrier with reasonable executable code sizes and
code generation times.

Last, but not least, although the handling of hybrid
models with DAE sparse solvers is already implemented
in OpenModelica, it has not been specifically optimized
for efficient handling of large-size models. Such optimiza-
tion would be another interesting research direction.

5 Acknowledgments
The presented work is partly financed by the PARADOM
project, that is funded by the Federal Ministry of Ed-
ucation and Research (BMBF) under the support code
01IH15002B.

CESI S.p.A. is gratefully acknowledged for making the
power system models available for this study.

References
B. Bachmann, W. Braun, L. Ochel, and V. Ruge. Sym-

bolical and numerical approaches for solving nonlin-
ear systems. Annual OpenModelica Workshop 2015,
2015. URL https://www.openmodelica.org/
images/docs/openmodelica2015/
OpenModelica2015-talk04-Bernhard-
Bachmann-NLSinOpenModelica.pdf.

W. Braun, S. Gallardo Yances, K. Link, and B. Bachmann. Fast
simulation of fluid models with colored jacobians. In Pro-
ceedings of the 9th International Modelica Conference, pages
247–252, Munich, Germany, Sep. 3–5 2012. Modelica Asso-
ciation. doi:10.3384/ecp12076247.

K.E. Brenan, S.L. Campbell, and L.R. Petzold. Numerical Solu-
tion of Initial-Value Problems in Differential-Algebraic Equa-
tions. Society for Industrial and Applied Mathematics, 1996.
doi:10.1137/1.9781611971224.fm.

F. Casella and K. Sezginer. The ScalableTestSuite Modelica
Library, 2016. URL https://github.com/casella/
ScalableTestSuite.

Francesco Casella. Simulation of large-scale models in Model-
ica: State of the art and future perspectives. In Peter Fritz-

son and Hilding Elmqvist, editors, Proceedings 11th Inter-
national Modelica Conference, pages 459–468, Versailles,
France, Sep 21–23 2015. The Modelica Association. ISBN
978-91-7685-955-1. doi:10.3384/ecp15118459.

Francesco Casella, Andrea Bartolini, Simone Pasquini, and
Luca Bonuglia. Object-oriented modelling and simulation of
large-scale electrical power systems using Modelica: a first
feasibility study. In Proceedings of the 42nd Annual Confer-
ence of the IEEE Industrial Electronics Society IECON 2016,
pages 0–6, Firenze, Italy, Oct. 24-27 2016. IEEE, IEEE.
ISBN 978-1-5090-3474-1.

F. E. Cellier and E. Kofman. Continuous System Simulation.
Springer-Verlag, 2006.

T. A. Davis. Algorithm 832: UMFPACK v4.3—an
unsymmetric-pattern multifrontal method. ACM Transac-
tions On Mathematical Software, 30(2):196–199, June 2004.
ISSN 0098-3500. doi:10.1145/992200.992206. URL http:
//dx.doi.org/10.1145/992200.992206.

T. A. Davis and E. Palamadai Natarajan. Algorithm 907: Klu, a
direct sparse solver for circuit simulation problems. ACM
Trans. Math. Softw., 37(3):36:1–36:17, September 2010.
ISSN 0098-3500. doi:10.1145/1824801.1824814. URL
http://doi.acm.org/10.1145/1824801.1824814.

Antonio Froio, Francesco Casella, Fabio Cismondi, Alessan-
dro Del Nevo, Laura Savoldi, and Roberto Zanino.
Dynamic thermal-hydraulic modelling of the eu demo
wcll breeding blanket cooling loops. Fusion Engineer-
ing and Design, in press, available online:1–5, 2017.
doi:10.1016/j.fusengdes.2017.01.062.

C. Froio, F. Casella, F. Cismondi, A. Del Nevo, L. Savoldi, and
R. Zanino. Dynamic thermal-hydraulic modelling of the eu
demo wcll breeding blanket cooling loops. In Proc. 29th Sym-
posium on Fusion Technology (abstract), Prague, Czech Re-
public, 2016.

A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban,
D. E. Shumaker, and C. S. Woodward. SUNDIALS: Suite of
nonlinear and differential/algebraic equation solvers. ACM
Transactions on Mathematical Software (TOMS), 31(3):363–
396, 2005.

Open Source Modelica Consortium. OpenModelica User’s
Guide. Online. URL https://openmodelica.org/
doc/OpenModelicaUsersGuide/latest/.

P. Täuber, L. Ochel, W. Braun, and B. Bachmann.
Practical realization and adaptation of cellier’s tearing
method. In Proceedings of the 6th International Work-
shop on Equation-Based Object-Oriented Modeling Lan-
guages and Tools, EOOLT ’14, pages 11–19, New
York, NY, USA, 2014. ACM. ISBN 978-1-4503-2953-
8. doi:10.1145/2666202.2666204. URL http://
doi.acm.org/10.1145/2666202.2666204.

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132557

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

563

564 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Transformation of Differential Algebraic Array Equations to
Index One Form

Martin Otter1 Hilding Elmqvist2
1Institute of System Dynamics and Control, DLR, Germany, Martin.Otter@dlr.de

2Mogram AB, Sweden, Hilding.Elmqvist@Mogram.net

Abstract
Several new algorithms are proposed that in effect
transform DAEs (Differential Algebraic Equations) to
a special index one form that can be simulated with
standard DAE integrators. The transformation to this
form is performed without solving linear and/or
nonlinear equation systems, the sparsity of the
equations is kept, and array equations remain array
equations or differentiated versions of them.
Furthermore, certain DAEs can be handled where
structural index reduction methods fail. It is expected
that these new algorithms will help to treat large
Modelica models of any index in a better way as it is
currently possible. The algorithms have been evaluated
and tested in the experimental simulation environment
Modia that is implemented with the Julia programming
language.
Keywords: Modelica, Modia, Julia, DAE, sparse DAE,
large DAE, Pantelides algorithm, Dummy Derivative
Method.

1 Introduction
The objective is to handle larger Modelica models as it
is practically possible today. For this purpose new
algorithms have been developed: equations as well as
variables are not scalarized but keep their original array
types, even if differentiated. This gives a more compact
code which is a benefit with regards to code cache
behavior. Furthermore, there is a possibility to utilize
vector instructions of modern processors. With respect
to current Modelica tools, equation systems are not
solved locally in the model code but by a DAE solver
where the sparsity of the Jacobian is taken into account
and in the model code single (array) equations are
either explicitly solved if this is possible or residues for
implicit equations are computed to be solved by the
DAE solver. The new algorithms have been evaluated
and tested in the prototype Modia (Elmqvist et al.,
2016, Elmqvist et al., 2017) which is implemented with
the Julia programming language1 (Bezanson et al.,
2017) and takes advantage of this very promising
language effort with focus on scientific computing.
Modia is available from https://github.com/ModiaSim.

1 http://julialang.org/

2 Special Index One DAE Form
The goal is to simulate physical models that are
described by a modeling language such as Modelica
and mapped to a DAE in the form

𝐟𝐟0(�̇�𝐱𝑑𝑑0, 𝐱𝐱𝑑𝑑0, 𝐱𝐱𝑎𝑎0, 𝑡𝑡) = 𝟎𝟎 (1)
𝐟𝐟0 ∈ ℝ𝑛𝑛𝑑𝑑0 × ℝ𝑛𝑛𝑑𝑑0 × ℝ𝑛𝑛𝑎𝑎0 × ℝ → ℝ𝑛𝑛𝑑𝑑0+𝑛𝑛𝑎𝑎0

where 𝐱𝐱𝑑𝑑0(𝑡𝑡) are variables that appear differentiated
and 𝐱𝐱𝑎𝑎0(𝑡𝑡) are variables that do not appear
differentiated. Furthermore, it is assumed that a unique
solution of this DAE exists if consistent initial
conditions of �̇�𝐱𝑑𝑑0, 𝐱𝐱𝑑𝑑0, 𝐱𝐱𝑎𝑎0 are given, and that the
equations and variables are smoothly differentiable
sufficiently often. Typically, Modelica tools transform
(1) into ODE (Ordinary Differential Equation) form
and use ODE or DAE integration methods for the
solution. In this paper, this is not done because (a) a
transformation to ODE form may destroy the sparsity
structure of the equations and (b) requires in general
solving linear and/or nonlinear algebraic equation
systems and an implicit integration method will in turn
solve nonlinear algebraic equation systems as well (so
a nonlinear solver is called within a nonlinear solver).
For certain classes of physical models, such as large 3-
dimensional mechanical systems, this approach might
not be efficient and not reliable. Instead a new
approach is proposed to transform (1) to the following
special index one DAE

𝐟𝐟𝑑𝑑(�̇�𝐱, 𝐱𝐱, 𝑡𝑡) = 𝟎𝟎
𝐟𝐟𝑐𝑐(𝐱𝐱, 𝑡𝑡) = 𝟎𝟎 (2a) 𝐉𝐉 = �

𝜕𝜕𝐟𝐟𝑑𝑑
𝜕𝜕�̇�𝐱
𝜕𝜕𝐟𝐟𝑐𝑐
𝜕𝜕𝐱𝐱

� is regular (2b)

without solving equation systems. DAE (2) shall have
an identical solution space as DAE (1) and 𝐱𝐱𝑑𝑑0, 𝐱𝐱𝑎𝑎0
shall be part of 𝐱𝐱. Note, when differentiating 𝐟𝐟𝑐𝑐(..),

𝐟𝐟𝑑𝑑(�̇�𝐱, 𝐱𝐱, 𝑡𝑡) = 𝟎𝟎
𝜕𝜕𝐟𝐟𝑐𝑐
𝜕𝜕𝐱𝐱

�̇�𝐱 +
𝜕𝜕𝐟𝐟𝑐𝑐
𝜕𝜕𝑡𝑡

= 𝟎𝟎 (3)

can be solved for �̇�𝐱 because the matrix of partial
derivatives of (3) with respect to �̇�𝐱 is the Jacobian 𝐉𝐉 of
(2b) which is regular. This shows that (2) has index 1.

A number of methods exist for solving system (2)
numerically. In particular, under mild conditions BDF

DOI
10.3384/ecp17132565

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

565

(Backward Differentiation Formula) methods with
order 𝑘𝑘 (𝑘𝑘 < 7) and fixed or variable step-size ℎ
converge with 𝑂𝑂(ℎ𝑘𝑘), see (Brenan et al. 1996) page
51-54. This means that a DAE integrator like Sundials
IDA (Hindmarsh et al. 2005) can solve such systems.

On the other hand, solving (2) with a BDF-method
requires to solve a nonlinear equation system where the
inverse of the iteration matrix becomes singular for
ℎ → 0. (Petzold and Lötstedt, 1986) point out that step
size selection is difficult if reducing the step size
makes the iteration matrix ill-conditioned and it is
proposed to scale elements of the iteration matrix with
ℎ so that this effect does not occur. In (Arnold, 2016) it
is shown how this technique can be applied for
multibody systems. For system (2) scaling with ℎ is
particularly simple, resulting in two possible ways:

ℎ𝐟𝐟𝑑𝑑(�̇�𝐱, 𝐱𝐱, 𝑡𝑡) = 𝟎𝟎
𝐟𝐟𝑐𝑐(𝐱𝐱, 𝑡𝑡) = 𝟎𝟎

(4a)
𝐟𝐟𝑑𝑑(�̇�𝐱, 𝐱𝐱, 𝑡𝑡) = 𝟎𝟎
1
ℎ
𝐟𝐟𝑐𝑐(𝐱𝐱, 𝑡𝑡) = 𝟎𝟎

(4b)

Assume that these systems are solved with a BDF
method of order 𝑘𝑘. This means that the derivatives �̇�𝐱 at
step 𝑖𝑖 are approximated as:

�̇�𝐱𝑖𝑖 ≈
𝛼𝛼𝑘𝑘0
ℎ
𝐱𝐱𝑖𝑖 +

1
ℎ
�𝛼𝛼𝑘𝑘𝑘𝑘

𝑘𝑘=𝑘𝑘

𝑘𝑘=1

𝐱𝐱𝑖𝑖−𝑘𝑘 (5)

where 𝛼𝛼𝑘𝑘𝑘𝑘 are constant coefficients depending on the
order of the method, ℎ = 𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑖𝑖−1 is the step size and
the sum ∑𝛼𝛼𝑘𝑘𝑘𝑘𝐱𝐱𝑖𝑖−𝑘𝑘 is a known term computed from
values of 𝐱𝐱 at previous time instants. Inserting (5) in
(4a) results in a nonlinear system of equations for 𝐱𝐱𝑖𝑖:

ℎ𝐟𝐟𝑑𝑑 �
𝛼𝛼𝑘𝑘0
ℎ
𝐱𝐱𝑖𝑖 , 𝐱𝐱𝑖𝑖 , 𝑡𝑡𝑖𝑖� = 𝟎𝟎

𝐟𝐟𝑐𝑐(𝐱𝐱𝑖𝑖 , 𝑡𝑡𝑖𝑖) = 𝟎𝟎
(6)

Assume that 𝐱𝐱, 𝐟𝐟𝑑𝑑 , 𝐟𝐟𝑐𝑐 are sufficiently smooth and
bounded and that 𝐱𝐱𝑖𝑖−1 solves (6) at the previous time
instant 𝑡𝑡𝑖𝑖−1. According to the implicit function
theorem, (6) has a unique solution at time instant
𝑡𝑡𝑖𝑖−1 + ℎ if the inverse of the Jacobian of this system

𝐉𝐉𝑖𝑖 =

⎣
⎢
⎢
⎢
⎡
𝜕𝜕ℎ𝐟𝐟𝑑𝑑
𝜕𝜕𝐱𝐱𝑖𝑖
𝜕𝜕𝐟𝐟𝑐𝑐
𝜕𝜕𝐱𝐱𝑖𝑖 ⎦

⎥
⎥
⎥
⎤

=

⎣
⎢
⎢
⎢
⎡𝛼𝛼𝑘𝑘0

𝜕𝜕𝐟𝐟𝑑𝑑
𝜕𝜕�̇�𝐱

+ ℎ
𝜕𝜕𝐟𝐟𝑑𝑑
𝜕𝜕𝐱𝐱𝑖𝑖

𝜕𝜕𝐟𝐟𝑐𝑐
𝜕𝜕𝐱𝐱𝑖𝑖 ⎦

⎥
⎥
⎥
⎤
 (7)

exists for small ℎ. This is indeed the case, since for
ℎ → 0 the Jacobian (7) converges to the regular
Jacobian (2b), when dividing the upper equation by the
constant 𝛼𝛼𝑘𝑘0. A similar result can be derived for (4b).

To summarize, DAE (2) can be solved by standard
(index one) DAE integrators and a reliable numerical
solution with a BDF method can be expected even for
small step sizes when one of the ℎ scaling methods of
(4) is used. In the remaining part of this paper it is
shown, how a large class of DAEs in the form (1) can
be transformed to (2). This transformation is performed
in several steps that are discussed now in sequence.

3 Index Reduction of DAEs
that have Array Equations

3.1 Algorithms for Index Reduction
In order to reduce a DAE (1) to ODE or index one
form, equations of (1) might need to be differentiated.
There are in principle many algorithms to perform this
index reduction based on the structure of the equations,
that is by the information which variable is present in
which equation. The essential idea and the key
algorithm are from (Pantelides, 1988): The structure of
the equations is described by a bipartite graph of
equations and variables. The equations are
differentiated until a complete assignment of the
highest derivative equations is possible with respect to
the highest derivative variables (which include
algebraic variables that are not differentiated).

Since the goal is to achieve complete assignment in
a bipartite graph, any matching algorithm for a
bipartite graph can be used as basis. In (Pantelides,
1988), the matching algorithm of (Duff, 1981) is
utilized which results in a very simple and elegant
implementation. It results in a worst time complexity
of 𝑂𝑂(𝑛𝑛 ∙ 𝑚𝑚) where 𝑛𝑛 is the number of equations in the
final system (= original and all differentiated
equations) and 𝑚𝑚 is the number of entries (incidences)
in the final bipartite graph.

In (Duff et al., 2011) eight matching algorithms and
various additional heuristics are compared. Most of
them have the same worst time complexity as (Duff,
1981), a few have 𝑂𝑂(√𝑛𝑛 ∙ 𝑚𝑚). On average the 𝑂𝑂(𝑛𝑛 ∙ 𝑚𝑚)
algorithm PF+ described in this article had the best
performance on the test matrices. In (Frenkel et al.,
2012) nine matching algorithms and different
implementations for structural index reductions are
compared for multibody examples with varying
number of bodies. This evaluation indicates that PF+
has on average the best performance for index
reduction with the Pantelides algorithm.

It is well-known that complete matching in a
bipartite graph is equivalent to the network flow
problem where the maximum amount of flow shall be
determined that can be sent between two given vertices
of a graph, see for example (Skiena, 2008, page 217). It
is also well-known that both the network flow problem
and the bipartite matching problem can be formulated
as a special linear programming problem, see for
example (Edmond,1965; Cook and Rohe, 1999;
Skiena, 2008, pp. 509-510). For all these problem
classes solution algorithms are available and can be
used for index reduction. For example, (Pryce, 2001)
describes an index reduction method based on the
special linear programming problem.

All above algorithms for index reduction are
iterative and the question is when the iteration stops.
(Pantelides, 1988) provides an elegant method to test
beforehand whether the (structural) index is finite:

Transformation of Differential Algebraic Array Equations to Index One Form

566 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132565

Adding the relationship 0 = ℎ𝑖𝑖(�̇�𝑥𝑑𝑑0,𝑖𝑖 , 𝑥𝑥𝑑𝑑0,𝑖𝑖) structurally
for all differentiated variables in (1) gives an extended
system which can be interpreted as solving (1) with an
implicit integration method. If this system has a
complete matching, the (structural) index is finite and
structural index reduction algorithms will converge.

All the algorithms mentioned above have the
disadvantage that only structural properties are utilized
and therefore will fail if state constraints are not
structurally visible. In (Chowdhry et al., 2004) a
symbolic/numeric index reduction procedure is
proposed. It is based on a symbolic numerical algebra
for pattern manipulations of the DAE (1) and reduces
the index of linear constant coefficient DAEs
numerically by LU decompositions and the index of
nonlinear parts by a structural index reduction
algorithm.

In section 5 a new method is proposed to exactly
handle singularities in the connection graph of a model,
both to treat (consistently) underdetermined and
overdetermined equation systems, as well as state
constraints that cannot be handled by a structural index
reduction algorithm. This technique transforms a DAE
(1) in a DAE (1) and is therefore a pre-processing step
for the transformations of section 3 and 4.

3.2 Index Reduction on Array Equations
The Pantelides algorithm and other structural index
reduction algorithms are designed for scalar variables
and equations. So Modelica tools typically
symbolically expand array equations into a set of scalar
equations involving the array elements and the
description with array equations is lost. This has
significant drawbacks for large array equations. In
(Schuchart, et al., 2015) it is shown how special for-
loops can be handled so that they need not to be
expanded for the Pantelides algorithm and are retained
in the generated code.

Below, a new technique is proposed to handle any
kind of array equations. Hereby the (conceptual)
expansion of array equations is performed only in the
bipartite graph to perform structural index reduction
and in a BLT (Block Lower Triangular) transformation
on the highest derivative equations. In order to
illustrate this technique, a tiny multibody example will
be used.

Consider the following model of a sliding mass. It is
a one degree-of-freedom model, with scalar parameters
c,d,𝑚𝑚, vector parameters 𝐧𝐧, 𝐠𝐠, scalar unknown 𝑠𝑠 and
vector unknowns 𝐫𝐫, 𝐯𝐯, 𝐟𝐟,𝐮𝐮, that is described by the
following equations:

𝐫𝐫 = 𝐧𝐧𝑠𝑠
𝐯𝐯 = �̇�𝐫

𝑚𝑚�̇�𝐯 = 𝐟𝐟 + 𝑚𝑚𝐠𝐠 + 𝐮𝐮
0 = 𝐧𝐧 ∙ 𝐟𝐟
𝐮𝐮 = −(𝑐𝑐𝑠𝑠 + 𝑑𝑑�̇�𝑠)𝐧𝐧

(8)

(8) is a DAE (1) with 4 ∙ 3 + 1 = 13 equations in the
13 variables 𝐱𝐱𝑑𝑑0 = [𝑠𝑠; 𝐫𝐫; 𝐯𝐯], 𝐱𝐱𝑎𝑎0 = [𝐟𝐟;𝐮𝐮].

With the Pantelides algorithm it is determined how
often every equation would have to be differentiated
until the highest derivatives variables can be uniquely
assigned to the highest derivative equations. Since we
want to keep array equations intact, it is natural to
assign array variables to array equations, provided they
have the same type and the same dimensions. See also
(Stavåker, 2015) chapter 9. However, this does not
work for the sliding mass example above and any other
multibody system where bodies are connected by
joints.

The scalar variable 𝑠𝑠 appears only in vector
equations, so 𝑠𝑠 or a higher derivative of it can only be
assigned to an element of these equation (or a
derivative of them), which means that a vector
equation must be expanded in scalar equations.
Furthermore, the vector variable 𝐟𝐟 appears as only
variable in a scalar equation (0 = 𝐧𝐧 ∙ 𝐟𝐟) and therefore
one element of 𝐟𝐟 must be assigned to this scalar
equation. As a result, the two other elements of 𝐟𝐟 have
to be assigned in other equations, which then must be
expanded as well. In the end, all equations must be
expanded to scalar equations in order that an
assignment of all variables is possible.

After expanding all equation graphs, the Pantelides
algorithm determines that the first vector equations
must be differentiated twice and the second one time
leading to the following assignments:

assigned highest derivative equations diff. order
�̈�𝑠 �̈�𝑟1 = 𝑛𝑛1�̈�𝑠 2
�̈�𝑟2 �̈�𝑟2 = 𝑛𝑛2�̈�𝑠 2
�̈�𝑟3 �̈�𝑟3 = 𝑛𝑛3�̈�𝑠 2
�̈�𝑟1 �̇�𝑣1 = �̈�𝑟1 1
�̇�𝑣2 �̇�𝑣2 = �̈�𝑟2 1
�̇�𝑣3 �̇�𝑣3 = �̈�𝑟3 1
�̇�𝑣1 𝑚𝑚�̇�𝑣1 = 𝑓𝑓1 + 𝑚𝑚𝑔𝑔1 + 𝑢𝑢1 0
𝑓𝑓2 𝑚𝑚�̇�𝑣2 = 𝑓𝑓2 + 𝑚𝑚𝑔𝑔2 + 𝑢𝑢2 0
𝑓𝑓3 𝑚𝑚�̇�𝑣3 = 𝑓𝑓3 + 𝑚𝑚𝑔𝑔3 + 𝑢𝑢3 0
𝑓𝑓1 0 = 𝑛𝑛1𝑓𝑓1 + 𝑛𝑛2𝑓𝑓2 + 𝑛𝑛3𝑓𝑓3 0
𝑢𝑢1 𝑢𝑢1 = −(𝑐𝑐𝑠𝑠 + 𝑑𝑑�̇�𝑠) 𝑛𝑛1 0
𝑢𝑢2 𝑢𝑢2 = −(𝑐𝑐𝑠𝑠 + 𝑑𝑑�̇�𝑠) 𝑛𝑛2 0
𝑢𝑢3 𝑢𝑢3 = −(𝑐𝑐𝑠𝑠 + 𝑑𝑑�̇�𝑠) 𝑛𝑛3 0

As will become clear in section 4, the set of highest
derivative equations must be sorted, so a BLT (Block
Lower Triangular) transformation must be applied that
identifies the order of evaluation, as well as the
algebraic loops under the assumption that the lower-
order derivative variables are known. Furthermore, the
assumption is used that array equations have full
incidence (see Assumption 1 below).

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132565

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

567

highest derivative equations solve for
𝑢𝑢1 = −(𝑐𝑐𝑠𝑠 + 𝑑𝑑�̇�𝑠) 𝑛𝑛1
𝑢𝑢2 = −(𝑐𝑐𝑠𝑠 + 𝑑𝑑�̇�𝑠) 𝑛𝑛2
𝑢𝑢3 = −(𝑐𝑐𝑠𝑠 + 𝑑𝑑�̇�𝑠) 𝑛𝑛3

𝑢𝑢1,𝑢𝑢2,𝑢𝑢3

�̈�𝑟1 = 𝑛𝑛1�̈�𝑠
�̈�𝑟2 = 𝑛𝑛2�̈�𝑠
�̈�𝑟3 = 𝑛𝑛3�̈�𝑠
�̇�𝑣1 = �̈�𝑟1
�̇�𝑣2 = �̈�𝑟2
�̇�𝑣3 = �̈�𝑟3

𝑚𝑚�̇�𝑣1 = 𝑓𝑓1 + 𝑚𝑚𝑔𝑔1 + 𝑢𝑢1
𝑚𝑚�̇�𝑣2 = 𝑓𝑓2 + 𝑚𝑚𝑔𝑔2 + 𝑢𝑢2
𝑚𝑚�̇�𝑣3 = 𝑓𝑓3 + 𝑚𝑚𝑔𝑔3 + 𝑢𝑢3

0 = 𝑛𝑛1𝑓𝑓1 + 𝑛𝑛2𝑓𝑓2 + 𝑛𝑛3𝑓𝑓3

�̈�𝑠, �̈�𝑟1, �̈�𝑟2, �̈�𝑟3,
�̇�𝑣1, �̇�𝑣2, �̇�𝑣3,
𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3

The result is that there is an algebraic system with 3
equations that has to be solved for 3 unknowns.
Afterwards an algebraic equation system with 10
equations has to be solved for 10 unknowns. Note,
whenever an algebraic loop is encountered, the
previous assignment information on equation level is
no longer relevant (which is anyway not unique in such
a case) but only the set of unknown variables of the
respective algebraic loop.

Although the Pantelides algorithm must be
performed on (conceptually) expanded scalar equations
and scalar variables, the BLT transformed highest
derivative equations can be contracted to array
equations again:

highest derivative equations solve for
𝐮𝐮 = −(𝑐𝑐𝑠𝑠 + 𝑑𝑑�̇�𝑠)𝐧𝐧 𝐮𝐮
�̈�𝐫 = 𝐧𝐧�̈�𝑠
�̇�𝐯 = �̈�𝐫

𝑚𝑚�̇�𝐯 = 𝐟𝐟 + 𝑚𝑚𝐠𝐠 + 𝐮𝐮
0 = 𝐧𝐧 ∙ 𝐟𝐟

�̈�𝑠, �̈�𝐫, �̇�𝐯, 𝐟𝐟

The original Pantelides algorithm and the BLT
transformation are graph based algorithms that assume
nodes and vertices correspond to scalar real variables
and equations. These algorithms can be generalized to
work directly on the array variables and equations.

3.3 Properties of Array Equations
The presented approach relies on the fact that all
scalarized equations/variables appear in the same
algebraic equation system (or more precisely in the
same strongly connected component of a directed
graph). This sub-section contains the assumption under
which this property holds and the proof of the property.
Multi-dimensional arrays are treated as vectors with
length being the total number of elements.
Assumption 1: When expanding the bipartite graph of
DAE (1) regarding array variables and array
equations, it is assumed that they have full incidence.
Example: For the equation 𝐞𝐞: 𝐰𝐰 = 𝐟𝐟(𝐮𝐮,𝐯𝐯) with all
variables being vectors of length 2, the incidence
structure is assumed to be:

 𝑤𝑤1 𝑤𝑤2 𝑢𝑢1 𝑢𝑢2 𝑣𝑣1 𝑣𝑣2
𝑒𝑒1 x x x x x x
𝑒𝑒2 x x x x x x

Theorem 1: If one element of an array equation needs
to be differentiated, all elements of all time varying
variables in the equation need to be differentiated.
Example: For the equation 𝐞𝐞: 𝐰𝐰 = 𝐟𝐟(𝐯𝐯) with all
variables being vectors of length 2, the incidence
structure of the differentiated equation is:

 𝑤𝑤1 𝑤𝑤2 �̇�𝑤1 �̇�𝑤2 𝑣𝑣1 𝑣𝑣2 �̇�𝑣1 �̇�𝑣2
�̇�𝑒1 x x x x x x x x
�̇�𝑒2 x x x x x x x x

Proof: This follows since if an array variable has full
incidence, so has its time derivative. This means that
derivatives of all time varying array variable elements
will appear in the differentiated element of the array
equation. ∎

This is consistent with the Pantelides algorithm
because, if the function augmentPath returns false, all
variable elements with incidence are marked as
colored. All colored V-nodes to be differentiated are
then marked in the A vector.

Theorem 2: If one element of an array equation needs
to be differentiated, all other elements of the equation
need to be differentiated.
Proof: According to Theorem 3, all elements of an
array equation will appear in the same strongly
connected component. It means that there is a mutual
dependency between all array equation elements. This
means that there is also a mutual dependency between
all differentiated array variable elements. In order to be
able to solve for all derivatives, an equal number of
array equation elements are needed, that is all array
equation elements must be differentiated. ∎

Function augmentPath colors all equations visited. If
assignment is not possible, augmentPath tries to
reassign. Due to the mutual dependency, all of the
elements of an array equation are visited. In the B-
vector of the Pantelides algorithm it is marked that all
colored equation nodes should be differentiated.

Theorem 3: If the highest derivative equations are
structurally non-singular with respect to the highest
derivative variables, all elements of an array equation
will appear in the same strongly connected component.
Proof: The incidence matrix of an array equation
consists of n identical rows with n being the number of
scalar elements of the left and right hand side. Assume
that these elements of the array equation (incidence
matrix rows) appear in different strongly connected
components. This would mean that some of these
elements of the array equation could be solved without
the others. Since they have the same incidence, it
would mean that the other elements of the array

Transformation of Differential Algebraic Array Equations to Index One Form

568 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132565

equation would be structurally over-constrained. This
contradicts the assumption of structural non-
singularity. ∎

Limitations
It is worth noting that there are cases when symbolic
expansion of array equations is beneficial. For
example, (Elmqvist and Mattsson, 2016) discusses
detection and handling of planar loops of multibody
systems. In such cases, certain elements of position
vectors are overdetermined and certain elements of
force vectors are underdetermined. In order to reveal
this, the zeros in axis of rotation and translation vectors
must be utilized, that is, certain equations must be
expanded.

When discretized partial differential equations are
handled, the boundary elements may give rise to issues
with Assumption 1. In such a case, array equations for
the inner elements might be formulated and scalar
equations for the boundary elements added separately.

3.4 Implementation Notes
The Pantelides and BLT algorithms have as input the
incidence graph for the array variables and equations,
that is, non-expanded equation and array structure.
Additionally, a vector of lengths of each variable, that
is the number of scalar elements, and a vector of the
lengths of equations are given as inputs.

All for-loops over variables and equations in the
original algorithms are replaced with nested for loops
also looping over the lengths.

The usual indices in the assignment, lowlink and
number vectors and stack are replaced by tuples
denoting which array and which array element is
referred to. However, due to Theorem 1, the 𝐀𝐀 vector
(see below) which tells which variables are
differentiated is still just a vector over array variables.
Similarly, due to Theorem 2, the 𝐁𝐁 vector (see below)
for differentiated equations does not need the tuple
indexing. The strongly connected component
representation is only referring to array equations due
to Theorem 3.

3.5 Result of Structural Index Reduction and BLT
For the further processing, the result of the structural
index reduction and BLT transformation of array
equations is summarized formally. For this, the
following notation is used
• All symbols are collected in a variable vector 𝐯𝐯

and 𝑣𝑣𝑘𝑘 is symbol 𝑗𝑗. A symbol may represent a
scalar or an array. 𝑉𝑉𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙ℎ,𝑘𝑘 gives the number of
elements of symbol 𝑗𝑗.

• All equations are collected in an equation vector 𝐞𝐞
and 𝑒𝑒𝑖𝑖 is equation 𝑖𝑖. An equation may be a scalar
or an array equation. 𝐸𝐸𝑙𝑙𝑙𝑙𝑛𝑛𝑙𝑙𝑙𝑙ℎ,𝑖𝑖 gives the number of
elements of equation 𝑖𝑖.

• The relationship between the symbols is defined
by the variable association vector 𝐀𝐀, such that:
 𝐴𝐴𝑘𝑘 = 𝐢𝐢𝐟𝐟 �̇�𝑣𝑘𝑘 = 𝑣𝑣𝑘𝑘 𝐭𝐭𝐭𝐭𝐞𝐞𝐧𝐧 𝑘𝑘 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 0.
Also the inverse relationship is needed below:
 𝐴𝐴𝑖𝑖𝑛𝑛𝑖𝑖,𝑘𝑘 = 𝐢𝐢𝐟𝐟 �̇�𝑣𝑘𝑘 = 𝑣𝑣𝑘𝑘 𝐭𝐭𝐭𝐭𝐞𝐞𝐧𝐧 𝑗𝑗 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 0.

• The relationship between the equations is defined
by the equation association vector 𝐁𝐁, such that:
 𝐵𝐵𝑖𝑖 = 𝐢𝐢𝐟𝐟 �̇�𝑒𝑖𝑖 = 𝑒𝑒𝑘𝑘 𝐭𝐭𝐭𝐭𝐞𝐞𝐧𝐧 𝑘𝑘 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 0.
Also the inverse relationship is needed below:
 𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖,𝑘𝑘 = 𝐢𝐢𝐟𝐟 �̇�𝑒𝑖𝑖 = 𝑒𝑒𝑘𝑘 𝐭𝐭𝐭𝐭𝐞𝐞𝐧𝐧 𝑖𝑖 𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞 0.

Starting point is DAE (1) that can be defined with
𝐯𝐯0 = [�̇�𝐱𝑑𝑑0; 𝐱𝐱𝑑𝑑0; 𝐱𝐱𝑎𝑎0] and the 𝑛𝑛𝑙𝑙0 array equations:

𝐞𝐞0(𝐯𝐯0, 𝑡𝑡) = 𝟎𝟎 (9)
Structural index reduction determines the minimal
number of differentiations of (9) such that the
following conditions are fulfilled by the final system:
𝑒𝑒𝑖𝑖�𝑣𝑣𝑘𝑘 , 𝑡𝑡� = 0; 𝐵𝐵𝑖𝑖 = 0; 𝐴𝐴𝑘𝑘 ≥ 0
𝑒𝑒𝑘𝑘�𝑣𝑣𝑘𝑘 , 𝑡𝑡� = 0; 𝐵𝐵𝑘𝑘 > 0; 𝐴𝐴𝑘𝑘 > 0

𝜕𝜕𝑒𝑒𝑖𝑖
𝜕𝜕𝑣𝑣𝑘𝑘

 structurally regular for 𝐴𝐴𝑘𝑘 = 0

(10a)
(10b)

(10c)

(10a) are 𝑛𝑛𝑙𝑙0 array equations (the highest derivative
equations) in 𝑛𝑛𝑙𝑙0 unknown arrays (the highest
derivative variables 𝑣𝑣𝑘𝑘 with 𝐴𝐴𝑘𝑘 = 0). The matrix (10c)
of partial derivatives of the highest derivative
equations with respect to the highest derivative
variables is structurally regular. (10b) are 𝑛𝑛𝑙𝑙 − 𝑛𝑛𝑙𝑙0
array equations describing the constraints between the
variables appearing differentiated. The highest
derivative variables (that is 𝑣𝑣𝑘𝑘 with 𝐴𝐴𝑘𝑘 = 0), do not
appear in these equations.

4 Transformation to Index One Form
4.1 Overview
The transformation from (1) to index one form (2)
using (10) is made in three steps: In a first step, the
solution is sketched for multibody system equations. In
a second step this approach is generalized and in a final
step the transformation is made more efficient by
partial static state selection.

In the field of multibody systems, constraints appear
in nearly every model and hence multibody programs
need to inherently cope with the special constraints
appearing in 3-dimensional mechanical systems. It is
therefore natural to inspect the many solution methods
developed for multibody systems and try to generalize
one or more of them to general DAEs (1). In the recent
report (Arnold, 2016), a very broad and nice overview
of the current state of the art for simulation of
multibody systems is given and used as basis of this
section.

One solution method is to integrate the highest
derivative equations (10a) and when the violation of
the constraints (10b) becomes too large project on the

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132565

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

569

constraint manifold, see for example (Ascher and
Petzold, 1991; Eich, 1993). Such methods could be
implemented by utilizing an implicit one-step DAE
integrator and after every step project the solution on
the constraint manifold.

Many industrial applications of Modelica models are
best solved with an implicit multistep method.
Unfortunately, multistep methods require non-trivial
modifications to embed a projection method because
the solution is interpolated smoothly over several steps
and (potentially) in every step the solution is modified
in a discontinuous way by a projection. It seems that
the stabilized index-2 formulation according to Gear,
Gupta, Leimkuhler (Gear et al., 1985) is a more
attractive starting point especially for multistep
methods. This method is analyzed in the sequel in
some detail. The presentation is made in such a way
that a generalization is straightforward.

4.2 Transformation of Multibody Equations
Starting point is the following set of equations for a
multibody system:

�̇�𝒒 = 𝒗𝒗
𝐌𝐌(𝒒𝒒, 𝑡𝑡)�̇�𝒗 + 𝐆𝐆𝑇𝑇(𝒒𝒒, 𝑡𝑡)𝝀𝝀 = 𝒉𝒉(𝒒𝒒,𝒗𝒗, 𝑡𝑡)

𝟎𝟎 = 𝒈𝒈(𝒒𝒒, 𝑡𝑡)

(11a)
(11b)
(11c)

with

𝐆𝐆 =
𝜕𝜕𝒈𝒈
𝜕𝜕𝒒𝒒

 , 𝐌𝐌 = 𝐌𝐌𝑇𝑇 > 𝟎𝟎 (11d)

It is assumed that 𝐆𝐆 has full row rank that is the
constraints equations (11c) are not redundant. (11) has
𝑛𝑛𝑞𝑞 + 𝑛𝑛𝑖𝑖 + 𝑛𝑛𝜆𝜆 real unknowns �̇�𝒒, �̇�𝒗,𝝀𝝀 for the same
number of equations. With the new array version of the
Pantelides algorithm, equation (11a) is differentiated
once and equation (11c) twice in order to arrive at the
following equation system that needs to be fulfilled by
consistent initial values 𝒒𝒒0,𝒗𝒗0,𝝀𝝀0, �̇�𝒒0, �̈�𝒒0, �̇�𝒗0:

�̇�𝒒 = 𝒗𝒗
𝐌𝐌�̇�𝒗 + 𝐆𝐆𝑇𝑇𝝀𝝀 = 𝒉𝒉(𝒒𝒒,𝒗𝒗, 𝑡𝑡)

𝟎𝟎 = 𝒈𝒈(𝒒𝒒, 𝑡𝑡)
𝟎𝟎 = 𝐆𝐆 �̇�𝒒 + 𝒈𝒈(1)(𝒒𝒒, 𝑡𝑡)
𝟎𝟎 = 𝐆𝐆 �̈�𝒒 + 𝒈𝒈(2)(𝒒𝒒, �̇�𝒒, 𝑡𝑡)
�̈�𝒒 = �̇�𝒗

(12a)
(12b)
(12c)
(12d)
(12e)
(12f)

with

 𝒈𝒈(1) =
∂𝐠𝐠
∂t

, 𝒈𝒈(2) = �̇�𝐆 �̇�𝒒 + �̇�𝒈(1) (12g)

This is an ODAE (Overdetermined Differential
Algebraic Equation) with 2𝑛𝑛𝑞𝑞 + 𝑛𝑛𝑖𝑖 + 3𝑛𝑛𝜆𝜆 equations
for the 2𝑛𝑛𝑞𝑞 + 𝑛𝑛𝑖𝑖 + 𝑛𝑛𝜆𝜆 unknowns �̇�𝒒, �̈�𝒒, �̇�𝒗,𝝀𝝀. In order to
arrive at an equation system with the same number of
unknowns and equations that are consistent (so locally
a unique solution exists), the following approach of
(Gear et al., 1985) is used:

𝟎𝟎 = �̇�𝒒 − 𝒗𝒗 + 𝐆𝐆𝑇𝑇𝝁𝝁
𝟎𝟎 = 𝐌𝐌 �̇�𝒗 + 𝐆𝐆𝑇𝑇 𝝀𝝀 − 𝒉𝒉(𝒒𝒒,𝒗𝒗, 𝑡𝑡)
𝟎𝟎 = 𝒈𝒈(𝒒𝒒, 𝑡𝑡)
𝟎𝟎 = 𝐆𝐆 𝒗𝒗 + 𝒈𝒈(1)(𝒒𝒒, 𝑡𝑡)

(13a)
(13b)
(13c)
(13d)

These are 𝑛𝑛𝑞𝑞 + 𝑛𝑛𝑖𝑖 + 2𝑛𝑛𝜆𝜆 residue equations for the
𝑛𝑛𝑞𝑞 + 𝑛𝑛𝑖𝑖 + 2𝑛𝑛𝜆𝜆 unknowns �̇�𝒒, �̇�𝒗,𝝀𝝀,𝝁𝝁, so the number of
equations and number of unknowns is the same. (13)
has a differential index of two and has the same
solution as (12) because it can be shown that 𝝁𝝁 = 𝟎𝟎:
Inserting equation (13a) in equation (13d):

𝟎𝟎 = 𝐆𝐆 (�̇�𝒒 + 𝐆𝐆𝑇𝑇 𝝁𝝁) + 𝒈𝒈(1)(𝒒𝒒, 𝑡𝑡)
and subtracting the derivative of (13c) results in the
equation 𝟎𝟎 = 𝐆𝐆 𝐆𝐆𝑇𝑇𝝁𝝁. Provided 𝐆𝐆 has full row rank,
𝐆𝐆 𝐆𝐆𝑇𝑇 is regular and therefore 𝝁𝝁 = 𝟎𝟎. ∎

This scheme can be easily generalized. For example
assume that (say due to an inverse model) the third
derivative of (12c) is needed. Then, new 𝝁𝝁2 variables
and corresponding dummy derivatives are introduced
in combination with the second derivatives of the
constraints:

𝒘𝒘 = �̇�𝒗 + 𝐆𝐆𝑇𝑇 𝝁𝝁2
𝟎𝟎 = 𝐆𝐆𝒘𝒘 + 𝒈𝒈(2)(𝒒𝒒,𝒗𝒗, 𝑡𝑡)

With the same argument as before it can be shown that
𝝁𝝁2 = 𝟎𝟎: Inserting 𝒘𝒘 in the second equation and
subtracting the differentiated equation (13d) results in
𝟎𝟎 = 𝐆𝐆 𝐆𝐆𝑇𝑇𝝁𝝁2 and therefore 𝝁𝝁2 = 𝟎𝟎. ∎

In (Gear et al., 1985) it is shown that variable-step
and variable order BDF (Backward Differentiation
Formula) methods converge for this index-2 DAE.
However, (13) is not yet in the desired form (2). In
particular, the BDF iteration matrix becomes singular
for a small step size. (13) can be transformed to (2) by
using the substitution (Gear, 1988):

𝛍𝛍 = �̇�𝛍𝑖𝑖𝑛𝑛𝑙𝑙 , 𝛌𝛌 = �̇�𝛌𝑖𝑖𝑛𝑛𝑙𝑙 (14)
as well as 𝐱𝐱 = [𝐪𝐪; 𝐯𝐯;𝛌𝛌𝑖𝑖𝑛𝑛𝑙𝑙;𝛍𝛍𝑖𝑖𝑛𝑛𝑙𝑙]:

𝟎𝟎 = �𝐟𝐟𝑑𝑑
(�̇�𝐱, 𝐱𝐱, 𝑡𝑡)
𝐟𝐟𝑐𝑐(𝐱𝐱, 𝑡𝑡) � =

⎣
⎢
⎢
⎢
⎡ �̇�𝐪 − 𝐯𝐯 + 𝐆𝐆T�̇�𝛍𝑖𝑖𝑛𝑛𝑙𝑙
𝐌𝐌 �̇�𝐯 + 𝐆𝐆T �̇�𝛌𝑖𝑖𝑛𝑛𝑙𝑙 − 𝐭𝐭(𝐪𝐪, 𝐯𝐯, 𝑡𝑡)

𝐠𝐠(𝐪𝐪, 𝑡𝑡)
𝐆𝐆 𝐯𝐯 + 𝐠𝐠(1)(𝐪𝐪, 𝑡𝑡) ⎦

⎥
⎥
⎥
⎤
 (15)

Note, the Jacobian (2b) of (15) is regular (𝐏𝐏 in (16) is a
permutation matrix to exchange the third and the fourth
equation of (15) in order that the regularity is at once
visible):

𝐉𝐉 = �

𝜕𝜕𝐟𝐟𝑑𝑑
𝜕𝜕�̇�𝐱
𝜕𝜕𝐟𝐟𝑐𝑐
𝜕𝜕𝐱𝐱

� = 𝐏𝐏 �
𝐈𝐈 𝟎𝟎 𝟎𝟎 𝐆𝐆𝑇𝑇

𝟎𝟎 𝐌𝐌 𝐆𝐆𝑇𝑇 𝟎𝟎
𝟎𝟎 𝐆𝐆 𝟎𝟎 𝟎𝟎
𝐆𝐆 𝟎𝟎 𝟎𝟎 𝟎𝟎

� is regular (16)

4.3 Transformation of general DAEs
The goal is to transform the ODAE (10) to (2). In a
first step the elements of vector 𝐱𝐱 are identified:

Transformation of Differential Algebraic Array Equations to Index One Form

570 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132565

1. All variables 𝑣𝑣𝑘𝑘 that appear differentiated are
collected together with their derivatives in vector
𝐱𝐱𝑑𝑑 with exception of their highest derivatives (so
𝑥𝑥𝑑𝑑,𝑘𝑘 are all variables 𝑣𝑣𝑘𝑘 with 𝐴𝐴𝑘𝑘 > 0).

2. All variables 𝑣𝑣𝑘𝑘 that do not appear differentiated
(so 𝑣𝑣𝑘𝑘 with 𝐴𝐴𝑘𝑘 = 0 and 𝐴𝐴𝑖𝑖𝑛𝑛𝑖𝑖,𝑘𝑘 = 0) are collected
either in vector 𝐱𝐱𝑎𝑎 or vector 𝛌𝛌 = �̇�𝛌𝑖𝑖𝑛𝑛𝑙𝑙 in such a
way that (a) all assigned variables of every BLT
block are either only differential variables
(�̇�𝐱𝑑𝑑; �̇�𝛌𝑖𝑖𝑛𝑛𝑙𝑙) or only algebraic (𝐱𝐱𝑎𝑎) variables and (b) a
BLT block with assigned 𝐱𝐱𝑎𝑎 variables does not
contain any differential variables (�̇�𝐱𝑑𝑑; �̇�𝛌𝑖𝑖𝑛𝑛𝑙𝑙).

3. New 𝑛𝑛𝜇𝜇 unknown variables 𝛍𝛍𝑖𝑖𝑛𝑛𝑙𝑙 are introduced
(𝑛𝑛𝜇𝜇 is defined below).

The index-one DAE (2) can now be defined as:

𝐱𝐱 = �

𝐱𝐱𝑑𝑑
𝐱𝐱𝑎𝑎
𝛌𝛌𝑖𝑖𝑛𝑛𝑙𝑙
𝛍𝛍𝑖𝑖𝑛𝑛𝑙𝑙

� , �̇�𝐱 = �

�̇�𝐱𝑑𝑑
�̇�𝐱𝑎𝑎
𝛌𝛌
�̇�𝛍𝑖𝑖𝑛𝑛𝑙𝑙

� (17a)

𝟎𝟎 = �𝐟𝐟𝑑𝑑
(�̇�𝐱, 𝐱𝐱, 𝑡𝑡)
𝐟𝐟𝑐𝑐(𝐱𝐱, 𝑡𝑡) �

=

⎣
⎢
⎢
⎢
⎢
⎡�̇�𝐱𝑑𝑑𝑙𝑙𝑑𝑑(0:𝑛𝑛−2) − 𝐱𝐱𝑑𝑑𝑙𝑙𝑑𝑑(1:𝑛𝑛−1) + 𝐆𝐆𝑇𝑇�̇�𝛍𝑖𝑖𝑛𝑛𝑙𝑙

𝐫𝐫0,𝑑𝑑

𝐫𝐫0,𝑎𝑎
𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(0)

𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(1:𝑛𝑛−1) = 𝐆𝐆𝐱𝐱𝑑𝑑𝑙𝑙𝑑𝑑(1:𝑛𝑛−1) + 𝐠𝐠 ⎦
⎥
⎥
⎥
⎥
⎤

(17b)

The variables in gray color, that is 𝛌𝛌𝑖𝑖𝑛𝑛𝑙𝑙,𝛍𝛍𝑖𝑖𝑛𝑛𝑙𝑙 , �̇�𝐱𝑎𝑎, are
not used in equations (17b) and are variables needed
by the integrator. The different parts of the equations
are:
1. The index vectors 𝑑𝑑𝑒𝑒𝑟𝑟(0:𝑛𝑛 − 2),𝑑𝑑𝑒𝑒𝑟𝑟(1:𝑛𝑛 − 1) are

defined in such a form that (for 𝛍𝛍𝑖𝑖𝑛𝑛𝑙𝑙 = 𝟎𝟎):

 𝑑𝑑�𝐱𝐱𝑑𝑑𝑑𝑑𝑑𝑑(0:𝑛𝑛−2)�
𝑑𝑑𝑙𝑙

= 𝐱𝐱𝑑𝑑𝑙𝑙𝑑𝑑(1:𝑛𝑛−1)

2. 𝐫𝐫0,𝑑𝑑 are non-differentiated equations of (10a), so
equations 𝑒𝑒𝑖𝑖 with 𝐵𝐵𝑖𝑖 = 0 and 𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖,𝑖𝑖 = 0, that have
only differentiated variables (�̇�𝐱𝑑𝑑; �̇�𝛌𝑖𝑖𝑛𝑛𝑙𝑙) as assigned
variables of the respective BLT block.

3. 𝐫𝐫0,𝑎𝑎 are non-differentiated equations of (10a), so
equations 𝑒𝑒𝑖𝑖 with 𝐵𝐵𝑖𝑖 = 0 and 𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖,𝑖𝑖 = 0, that have
only algebraic variables (𝐱𝐱𝑎𝑎) as assigned variables
of the respective BLT block.

4. 𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(0) are constraint equations (10b) that are not
differentiated, so equations 𝑒𝑒𝑖𝑖 with 𝐵𝐵𝑖𝑖 = 0 and
𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖,𝑖𝑖 = 0.

5. 𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(1:𝑛𝑛−1) = 𝐆𝐆(𝐱𝐱𝑑𝑑𝑙𝑙𝑑𝑑(0:𝑛𝑛−2), 𝑡𝑡)𝐱𝐱𝑑𝑑𝑙𝑙𝑑𝑑(1:𝑛𝑛−1) +
𝐠𝐠(𝐱𝐱𝑑𝑑𝑙𝑙𝑑𝑑(0:𝑛𝑛−2), 𝑡𝑡) are constraint equations (10b)
that are differentiated at least once, but not the
highest derivative equations, so equations 𝑒𝑒𝑖𝑖 with
𝐵𝐵𝑖𝑖 > 0 and 𝐵𝐵𝑖𝑖𝑛𝑛𝑖𝑖,𝑖𝑖 > 0. The number of additionally
introduces variables 𝑛𝑛𝜇𝜇 is equal to the number of
equations of 𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(1:𝑛𝑛−1).

6. Matrix 𝐆𝐆 collects the linear factors of the equations
𝑟𝑟𝐷𝐷𝐷𝐷𝐷𝐷(1:𝑛𝑛−1),𝑖𝑖 with respect to the highest derivatives
𝐱𝐱𝑑𝑑𝑙𝑙𝑑𝑑(1:𝑛𝑛−1),𝑖𝑖 appearing in the resp. equation 𝑒𝑒𝑖𝑖.
Note, as recognized in (Führer, 1988) in a similar
context, 𝐆𝐆 is part of the iteration matrix (Jacobian)
of a BDF integrator and therefore if the iteration
matrix is computed numerically, 𝐆𝐆 is determined
without additional effort, see also (Arnold, 2016).

With this structuring we can now prove the following
theorems:

Theorem 4: (17) is a DAE (2) under the assumption
that 𝜕𝜕𝑙𝑙𝑖𝑖

𝜕𝜕𝑖𝑖𝒋𝒋
 for 𝐴𝐴𝑘𝑘 = 0 in (10a) is regular (and not just

structurally regular) and 𝑮𝑮 has full row rank (= the
constraints are not redundant).
Proof: (a) Due to the construction, the upper two
equations of (17b) are a function of �̇�𝐱, 𝐱𝐱, 𝑡𝑡 and the
lower three equations are not functions of �̇�𝐱, so (17b)
has the functional dependency as required by (2a).
(b) 𝑑𝑑𝒓𝒓𝐷𝐷𝐷𝐷𝐷𝐷(0:𝑛𝑛−2) 𝑑𝑑𝑡𝑡⁄ = 𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(1:𝑛𝑛−1) →

𝟎𝟎 = 𝐆𝐆(�̇�𝐱𝑑𝑑𝑙𝑙𝑑𝑑(0:𝑛𝑛−2) − 𝐱𝐱𝑑𝑑𝑙𝑙𝑑𝑑(1:𝑛𝑛−1))
= 𝐆𝐆𝐆𝐆𝑇𝑇�̇�𝛍𝑖𝑖𝑛𝑛𝑙𝑙 → �̇�𝛍𝑖𝑖𝑛𝑛𝑙𝑙 = 𝟎𝟎

(c) If the highest order constraint equations in the
lower part of (17b) are differentiated once, then these
differentiated equations, together with the second and
third equation of (17b) are the highest order derivative
equations of (10a) which can be solved for the highest
order derivatives (so for �̇�𝐱, since �̇�𝛍𝑖𝑖𝑛𝑛𝑙𝑙 = 𝟎𝟎) due to the
assumption and therefore (2b) holds.∎
Theorem 5: (17) and (9) have the same solution
space.
Proof: Since �̇�𝛍int = 𝟎𝟎, (17) are equations (9) and
differentiated equations of (9). ∎
To summarize, every DAE (1) can be transformed to
DAE (17) without solving linear or nonlinear algebraic
equation systems provided the Pantelides algorithm or
an equivalent structural index reduction algorithm can
be applied to it. (17) is an index one DAE (2).

4.4 Example
(17) is demonstrated with the following example from
(Mattsson and Söderlind, 1993) that has been extended
with additional equations and unknowns to include
several special cases on the basis of a simple DAE:

0 = 𝑢𝑢1(𝑡𝑡) + 𝑥𝑥1 − 𝑥𝑥2
0 = 𝑢𝑢2(𝑡𝑡) + 𝑥𝑥1 + 𝑥𝑥2 − 𝑥𝑥3 + �̇�𝑥6
0 = 𝑢𝑢3(𝑡𝑡) + 𝑥𝑥1 + �̇�𝑥3 − 𝑥𝑥4
0 = 𝑢𝑢4(𝑡𝑡) + 2�̈�𝑥1 + �̈�𝑥2 + �̈�𝑥3 + �̇�𝑥4 + 𝑥𝑥6
0 = 𝑢𝑢5(𝑡𝑡) + 3�̈�𝑥1 + 2�̈�𝑥2 + 𝑥𝑥5 + 0.1𝑥𝑥8
0 = 𝑢𝑢6(𝑡𝑡) + 2𝑥𝑥6 + 𝑥𝑥7
0 = 𝑢𝑢7(𝑡𝑡) + 3𝑥𝑥6 + 4𝑥𝑥7
0 = 𝑢𝑢8(𝑡𝑡) + 𝑥𝑥8 − sin (𝑥𝑥8)

(18a)
(18b)
(18c)
(18d)
(18e)
(18f)
(18g)
(18h)

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132565

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

571

The 𝑢𝑢𝑖𝑖(𝑡𝑡) are known forcing functions. Applying the
Pantelides algorithm (Pantelides, 1988)2 and sorting
the equations on highest derivative level results in the
following three BLT components:

BLT component 1 (unknowns: 𝑥𝑥8)
0 = 𝑢𝑢8(𝑡𝑡) + 𝑥𝑥8 − sin (𝑥𝑥8) (19h)

BLT component 2 (unknowns: 𝑥𝑥6, 𝑥𝑥7)
0 = 𝑢𝑢6(𝑡𝑡) + 2𝑥𝑥6 + 𝑥𝑥7
0 = 𝑢𝑢7(𝑡𝑡) + 3𝑥𝑥6 + 4𝑥𝑥7

(19𝑓𝑓)
(19𝑔𝑔)

BLT component 3 (unknowns: �̈�𝑥1, �̈�𝑥2, �̈�𝑥3, �̇�𝑥4, 𝑥𝑥5)
0 = �̈�𝑢1(𝑡𝑡) + �̈�𝑥1 − �̈�𝑥2
0 = �̈�𝑢2(𝑡𝑡) + �̈�𝑥1 + �̈�𝑥2 − �̈�𝑥3 + 𝑥𝑥6
0 = �̇�𝑢3(𝑡𝑡) + �̇�𝑥1 + �̈�𝑥3 − �̇�𝑥4
0 = 𝑢𝑢4(𝑡𝑡) + 2�̈�𝑥1 + �̈�𝑥2 + �̈�𝑥3 + �̇�𝑥4 + 𝑥𝑥6
0 = 𝑢𝑢5(𝑡𝑡) + 3�̈�𝑥1 + 2�̈�𝑥2 + 𝑥𝑥5 + 0.1𝑥𝑥8

(19�̈�𝑎)
(19�̈�𝑏)
(19�̇�𝑐)
(19𝑑𝑑)
(19𝑒𝑒)

Transformation to the index one DAE (17) results in:
𝐱𝐱𝑑𝑑 = [𝑥𝑥1; 𝑥𝑥2; 𝑥𝑥3; 𝑥𝑥4; 𝑥𝑥6; 𝑥𝑥7; �̇�𝑥1; �̇�𝑥2;
 �̇�𝑥3; �̇�𝑥6; �̇�𝑥7; �̈�𝑥6; �̈�𝑥7]
𝐱𝐱𝑎𝑎 = [𝑥𝑥8]

�̇�𝛌𝑖𝑖𝑛𝑛𝑙𝑙 = [𝑥𝑥5]

𝐫𝐫0,𝑑𝑑 = �𝑢𝑢4(𝑡𝑡) + 2�̈�𝑥1 + �̈�𝑥2 + �̈�𝑥3 + �̇�𝑥4 + �⃛�𝑥6
𝑢𝑢5(𝑡𝑡) + 3�̈�𝑥1 + 2�̈�𝑥2 + 𝑥𝑥5 + 0.1𝑥𝑥8

�

𝐫𝐫0,𝑎𝑎 = [𝑢𝑢8(𝑡𝑡) + 𝑥𝑥8 − sin(𝑥𝑥8)]

𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(0) =

⎣
⎢
⎢
⎢
⎡ 𝑢𝑢1(𝑡𝑡) + 𝑥𝑥1 − 𝑥𝑥2
𝑢𝑢2(𝑡𝑡) + 𝑥𝑥1 + 𝑥𝑥2 − 𝑥𝑥3 + �̇�𝑥6
𝑢𝑢3(𝑡𝑡) + 𝑥𝑥1 + �̇�𝑥3 − 𝑥𝑥4
𝑢𝑢6(𝑡𝑡) + 2𝑥𝑥6 + 𝑥𝑥7
𝑢𝑢7(𝑡𝑡) + 3𝑥𝑥6 + 4𝑥𝑥7 ⎦

⎥
⎥
⎥
⎤

𝐫𝐫𝐷𝐷𝐷𝐷𝐷𝐷(1:𝑛𝑛−1) =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ �̇�𝑢1(𝑡𝑡) + �̇�𝑥1 − �̇�𝑥2
�̇�𝑢2(𝑡𝑡) + �̇�𝑥1 + �̇�𝑥2 − �̇�𝑥3 + �̈�𝑥6

�̇�𝑢6(𝑡𝑡) + 2�̇�𝑥6 + �̇�𝑥7
�̇�𝑢7(𝑡𝑡) + 3�̇�𝑥6 + 4�̇�𝑥7
�̈�𝑢6(𝑡𝑡) + 2�̈�𝑥6 + �̈�𝑥7
�̈�𝑢7(𝑡𝑡) + 3�̈�𝑥6 + 4�̈�𝑥7 ⎦

⎥
⎥
⎥
⎥
⎥
⎤
′

𝐆𝐆 =

⎣
⎢
⎢
⎢
⎢
⎡
1 −2 0 0 0 0 0
1 2 −3 0 0 0 0
0 0 0 2 1 0 0
0 0 0 3 4 0 0
0 0 0 0 0 2 1
0 0 0 0 0 3 4⎦

⎥
⎥
⎥
⎥
⎤

𝑑𝑑𝑒𝑒𝑟𝑟(0:𝑛𝑛 − 2) = [1; 2; 3; 5; 6; 10; 11]
𝑑𝑑𝑒𝑒𝑟𝑟(1:𝑛𝑛 − 1) = [7; 8; 9; 10; 11; 12; 13]

The result is a DAE with 21 equations that can be
solved with an index one DAE integrator.

2 For simplicity of the example, the equations contain higher
derivatives. The Pantelides algorithm can be easily generalized
to this case by providing a corresponding 𝐀𝐀 vector.

4.5 Structuring the Constraint Sets
The direct mapping to (17) results often in
unnecessarily large DAEs. We will therefore now
improve the mapping by utilizing (partial) static state
selection. As a first step, the inherent structure of the
constraint set (10b) is (algorithmically) determined.
This can be performed elegantly by utilizing results
from the dummy derivative method of (Mattsson and
Söderlind, 1993). The "lower derivative" equations
(10b) determined by the Pantelides algorithm are
ignored in the sequel and they are instead newly
derived from the sorted highest derivative equations
(10a) by inspecting every BLT component in sequence
and for component k the follow actions are performed:
Step 1: The differentiation order of an equation in

component k is reduced by one if it is a
differentiated equation. The resulting set of
equations forms an independent constraint set.

Step 2: The differentiation order of an unknown (=
assigned variable) in component k is reduced by
one if it is a differentiated variable. The resulting
set of variables contains the unknowns of the
derived constraint set.

Step 3: Goto Step 1, if there are still differentiated
equations in the derived constraint set and apply
Step 1-3 on it. Otherwise, go to Step 4.

Step 4: Order the components in such a way that
within a BLT component first the lowest order
derivative constraints are placed, then the
constraints with one differentiation order higher
and so on. The order of the BLT components is not
changed.

Applying this procedure to (19) results in the following
sorted ODAE:

BLT component 1 (unknowns: 𝑥𝑥8)

(20)

0 = 𝑢𝑢8(𝑡𝑡) + 𝑥𝑥8 − sin (𝑥𝑥8)
BLT component 2
 BLT component 2.1 (unknowns: 𝑥𝑥6, 𝑥𝑥7)
 0 = 𝑢𝑢6(𝑡𝑡) + 2𝑥𝑥6 + 𝑥𝑥7

0 = 𝑢𝑢7(𝑡𝑡) + 3𝑥𝑥6 + 4𝑥𝑥7
 BLT component 2.2 (unknowns: �̇�𝑥6, �̇�𝑥7)
 0 = �̇�𝑢6(𝑡𝑡) + 2�̇�𝑥6 + �̇�𝑥7

0 = �̇�𝑢7(𝑡𝑡) + 3�̇�𝑥6 + 4�̇�𝑥7
 BLT component 2.3 (unknowns: �̈�𝑥6, �̈�𝑥7)
 0 = �̈�𝑢6(𝑡𝑡) + 2�̈�𝑥6 + �̈�𝑥7

0 = �̈�𝑢7(𝑡𝑡) + 3�̈�𝑥6 + 4�̈�𝑥7
 BLT component 2.4 (unknowns: 𝑥𝑥6, 𝑥𝑥7)
 0 = 𝑢𝑢6(𝑡𝑡) + 2𝑥𝑥6 + 𝑥𝑥7

0 = 𝑢𝑢7(𝑡𝑡) + 3𝑥𝑥6 + 4𝑥𝑥7
BLT component 3
 BLT component 3.1 (unknowns: 𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3)
 0 = 𝑢𝑢1(𝑡𝑡) + 𝑥𝑥1 − 𝑥𝑥2

0 = 𝑢𝑢2(𝑡𝑡) + 𝑥𝑥1 + 𝑥𝑥2 − 𝑥𝑥3 + �̇�𝑥6
 BLT component 3.2 (unknowns: �̇�𝑥1, �̇�𝑥2, �̇�𝑥3, 𝑥𝑥4)

Transformation of Differential Algebraic Array Equations to Index One Form

572 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132565

 0 = �̇�𝑢1(𝑡𝑡) + �̇�𝑥1 − �̇�𝑥2
0 = �̇�𝑢2(𝑡𝑡) + �̇�𝑥1 + �̇�𝑥2 − �̇�𝑥3 + �̈�𝑥6
0 = 𝑢𝑢3(𝑡𝑡) + 𝑥𝑥1 + �̇�𝑥3 − 𝑥𝑥4

 BLT component 3.3 (unknowns: �̈�𝑥1, �̈�𝑥2, �̈�𝑥3, �̇�𝑥4, 𝑥𝑥5)
 0 = �̈�𝑢1(𝑡𝑡) + �̈�𝑥1 − �̈�𝑥2

0 = �̈�𝑢2(𝑡𝑡) + �̈�𝑥1 + �̈�𝑥2 − �̈�𝑥3 + 𝑥𝑥6
0 = �̇�𝑢3(𝑡𝑡) + �̇�𝑥1 + �̈�𝑥3 − �̇�𝑥4
0 = 𝑢𝑢4(𝑡𝑡) + 2�̈�𝑥1 + �̈�𝑥2 + �̈�𝑥3 + �̇�𝑥4 + 𝑥𝑥6
0 = 𝑢𝑢5(𝑡𝑡) + 3�̈�𝑥1 + 2�̈�𝑥2 + 𝑥𝑥5 + 0.1𝑥𝑥8

Due to the construction, a variable like �̈�𝑥6 is computed
in a BLT sub-component (here: BLT component 2.3)
and used only in later BLT components (here BLT
component 3.2).

In the next step the number of constraint equations
and unknowns shall be reduced statically. In principal
this is just a variant of the dummy derivative method.
However, (Mattsson and Söderlind, 1993) describe a
(very useful) conceptual algorithm, but not how to
implement it practically for nonlinear systems which
requires non-trivial extensions. In order to do this, an
auxiliary algorithm is needed that is described in the
next section.

4.6 Tearing with retained solution space
Starting point is a nonlinear algebraic equation system

𝟎𝟎 = 𝒈𝒈(𝒛𝒛), 𝒛𝒛 ∈ ℝ𝑛𝑛𝑛𝑛 ,𝒈𝒈 ∈ ℝ𝑛𝑛𝑙𝑙,𝑛𝑛𝑔𝑔 ≤ 𝑛𝑛𝑛𝑛 (21)
where the number of equations 𝑛𝑛𝑔𝑔 is at most the same
as the number of unknowns 𝑛𝑛𝑛𝑛, but it may be less. The
goal is to split this equation system in an explicitly
solvable part and an implicit part:

𝒛𝒛𝑙𝑙 ∶= 𝒈𝒈𝑙𝑙(𝒛𝒛𝑙𝑙 , 𝒛𝒛𝑙𝑙)
0 = 𝒈𝒈𝑑𝑑(𝒛𝒛𝑙𝑙 , 𝒛𝒛𝑙𝑙)

(22a)
(22b)

where 𝒛𝒛𝑙𝑙 can be solved recursively from (22a) by
utilizing only already computed elements of 𝒛𝒛𝑙𝑙 when
calculating a new element of 𝒛𝒛𝑙𝑙. 𝒛𝒛𝑙𝑙 are called the
explicitly solvable variables of 𝒛𝒛, 𝒛𝒛𝑙𝑙 the tearing
variables of 𝒛𝒛 and 𝒈𝒈𝑑𝑑 the residue equations. The
interpretation is that when 𝒛𝒛𝑙𝑙 is given, 𝒛𝒛𝑙𝑙 can be
explicitly computed and 𝒛𝒛𝑙𝑙 must be provided in such a
way that the residues equations are fulfilled.

In order that this transformation is practically useful,
the solution space of (22) must be identical to the
solution space of (21). In the following an algorithm is
derived to automatically deduce (22) from (21) such
that (22) has the same solution space as (21).

Tearing is a well-known technique and was
probably introduced by (Kron, 1962). A recent
extensive literature survey is given in (Bahainv et al.,
2016a). In (Bahainv et al., 2016b) a novel tearing
technique is proposed based on an integer
programming formulation with a custom branch and
bound algorithm. Tearing was used in object-oriented
modeling, for example in (Elmqvist and Otter, 1994)
and in (Carpanzano et al., 1997). The following
algorithm sketch for automatic tearing is due to a

development of the authors of this paper in 1999. Some
results of it have been reported in (Otter, 1999):

Equation (22a) can be interpreted as a DAG
(Directed Acyclic Graph) where the nodes are
equations 𝑔𝑔𝑙𝑙,𝑖𝑖 together with the explicitly solved
variables 𝑛𝑛𝑙𝑙,𝑖𝑖 of 𝑔𝑔𝑙𝑙,𝑖𝑖, and the edges of a node i are
directed to the nodes of the remaining variables 𝑛𝑛𝑙𝑙,𝑖𝑖
appearing in 𝑔𝑔𝑙𝑙,𝑖𝑖. The goal of the algorithm is to
construct such a DAG using equations and unknowns
from (21). Initially, the DAG is empty and is
constructed with the following steps:
Step 1: Select an array equation i from (21) that is not

yet in the DAG (in a first step equations are
selected according to their initial ordering; later,
heuristics for the selection are added based on
additional information).

Step 2: Select an array variable j from equation i that
is (a) not assigned to equation i, (b) not yet
selected before in this equation, and (c) can be
explicitly solved from equation i (so the array size
of variable j and of the array equation i must agree)
without changing the solution space of this
equation (e.g. using only variables 𝑛𝑛𝑘𝑘 as candidates
that are within linear factors 𝑐𝑐 ∙ 𝑛𝑛𝑘𝑘 where 𝑐𝑐 is a
constant with 𝑐𝑐 ≠ 0; see also the discussion about
heuristics below and (Otter, 1999)).

Step 3: Add equation i and the selected variable j from
Step 2 as node to the potential DAG.

Step 4: Traverse the potential DAG starting from the
added equation node and use a standard DFS
(Depth First Search) to determine if there is a cycle
for this equation node. If there is a cycle, remove
the last added equation from it and if not all
variables of equation i have been inspected, go to
Step 2. If no cycle is present, continue with the
next step.

Step 5: If not all equations have been inspected, go to
Step 1. Otherwise, stop (equations (22a) are the
equations in the DAG, 𝒛𝒛𝑙𝑙 are the assigned
variables in the DAG).

With 𝑚𝑚 the number of variable incidences in the
system of equations, the worst time complexity of this
algorithm to find the tearing variables and residue
equations is 𝑂𝑂(𝑚𝑚2) because every DFS from every
inserted node has a worst-time complexity of 𝑂𝑂(𝑚𝑚)
and this operation is executed potentially 𝑚𝑚 times
(since in the worst case a DFS is performed on every
variable in every equation).

In the last decade, several new algorithms have been
developed to perform incremental cycle detection when
inserting vertices and edges to an existing DAG. The
algorithm of (Bender et al., 2016) has the currently
best worst case performance for sparse DAGs with
𝑂𝑂(min (𝑚𝑚1/2,𝑛𝑛2/3) ∙ 𝑚𝑚), where 𝑛𝑛 is the number of
vertices and 𝑚𝑚 the number of edges. For comparison of
such algorithms, see (Sigurðsson, 2016).

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132565

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

573

The implementation in Modia/Julia uses currently
the simple Algorithm N of (Bender et al., 2016) that
has a worst time complexity of 𝑂𝑂(𝑛𝑛 ∙ 𝑚𝑚). For example,
when an equation system of the following form is
present

0 = 𝑓𝑓1(𝑛𝑛1, 𝑛𝑛𝑛𝑛)
0 = 𝑓𝑓2(𝑛𝑛2, 𝑛𝑛1)
0 = 𝑓𝑓3(𝑛𝑛3, 𝑛𝑛2)
 …
0 = 𝑓𝑓𝑛𝑛(𝑛𝑛𝑛𝑛, 𝑛𝑛𝑛𝑛−1)

(23)

and the equations are added in the order 1,2,..., n (or
also in the order n,n-1,...,1), this tearing algorithm has
a complexity of 𝑂𝑂(𝑛𝑛) to find the single tearing
variable. On a standard notebook, this takes about 2 s
for 𝑛𝑛 = 106.

The result of the tearing algorithm depends on the
order in which equations are added to the DAG. There
are at least two useful heuristics: (a) If the user
explicitly requires to solve equations for particular
variables (for example using the operator ":=" instead
of "=" in the Modia prototype, or the algorithm section
or a function call in Modelica), then these equations are
inspected first. All equations belonging to the
connection graph (especially all linear equations with
only Integer coefficients, see section 5) are inspected
last, because it seems most natural for a physical
system to cut an algebraic loop along the connection
graph, and not within a component.

Tearing can have a significant influence on the
reliability of the numerical solution and therefore it is
not always clear whether it is useful to apply tearing to
solve algebraic loops. For this reason, more heuristics
need to be added, for example, arrays might be solved
in Step 2 above only, if they appear as linear term and
the linear factors are the scalars +1 or -1, in order to
avoid a potential division by a small value, or if the
linear term is an orthogonal matrix so that inversion is
reliable.

4.7 Partial state selection
The tearing algorithm from the last section shall now
be used to partially solve the constraint equations and
thereby identify states and dummy states. The
constraint equation sets are derived with the approach
of section 4.5 and all these sets have the following
structure:

𝟎𝟎 = 𝒈𝒈(𝒙𝒙1,𝒙𝒙2)

 𝒙𝒙1 ∈ ℝ𝑛𝑛𝑛𝑛1,𝒙𝒙2 ∈ ℝ𝑛𝑛𝑛𝑛2𝒈𝒈 ∈ ℝ𝑛𝑛𝑙𝑙,𝑛𝑛𝑔𝑔 ≤ 𝑛𝑛𝑥𝑥1
(24)

where 𝒙𝒙1 are potential states, 𝒙𝒙2 are potential states
that have been already handled in a previous BLT sub-
component (so can be treated as known variables) and
𝒈𝒈(. .) is a set of algebraic constraint equations on 𝒙𝒙1.
Via tearing the constraint equation set (24) can be split

in an explicitly solvable part 𝒈𝒈𝑙𝑙(. .) and in an implicit
part 𝒈𝒈𝑑𝑑(. .):

𝐱𝐱1𝑙𝑙 ∶= 𝒈𝒈𝑙𝑙(𝒙𝒙1𝑙𝑙 ,𝒙𝒙1𝑙𝑙 ,𝒙𝒙2)
0 = 𝒈𝒈𝑑𝑑(𝒙𝒙1𝑙𝑙 ,𝒙𝒙1𝑙𝑙 ,𝒙𝒙2) (25)

The explicitly solvable variables 𝐱𝐱1𝑙𝑙 are dummy states
according to the dummy derivative method of
(Mattsson and Söderlind, 1993). The tearing variables
𝒙𝒙1𝑙𝑙 remain potential states. If no residue equations
𝒈𝒈𝑑𝑑(..) are present, the full set of states has been
identified. If the equations are linear in 𝒙𝒙1𝑙𝑙 ,𝒙𝒙1𝑙𝑙, then
the residue equations can be transformed to a linear
equation in the tearing variables, see for example
(Elmqvist and Otter, 1994). For constant coefficient
linear systems, this equation system can be at once
solved. For variable coefficient linear systems, an
inline solution of the linear system might be used, at
least for systems with up to three unknowns. In all
these cases the full set of states has been identified as
well.

The state selection with tearing is applied on all
constraint sets starting from the lower to the higher
derivative constraint sets ec[1]...ec[end] of every BLT
component. Since by construction ec[i] is a superset of
ec[i-1], and the unknowns �̇�𝒗𝑖𝑖 of ec[i] are a
differentiated superset of the unknowns 𝒗𝒗𝑖𝑖−1, all
explicitly solvable equations of ec[i-1] are also
explicitly solvable equations of ec[i] and therefore
tearing need only to be performed additionally on
equations that are added at a higher level.

Applying the partial state selection for example on
BLT sub-component 3.1 of (20) identifies 𝑥𝑥2 as state
and computes the dummy states from:

𝑥𝑥1 ∶= −𝑢𝑢1(𝑡𝑡) + 𝑥𝑥2
𝑥𝑥3 ∶= −𝑢𝑢2(𝑡𝑡) − 𝑥𝑥1 + 𝑥𝑥2 − �̇�𝑥6

The same analysis holds for BLT sub-component 3.2,
so �̇�𝑥2 is also a state and the following equations are
directly deduced from the previous equations:

�̇�𝑥1 ∶= −�̇�𝑢1(𝑡𝑡) + �̇�𝑥2
�̇�𝑥3 ∶= −�̇�𝑢2(𝑡𝑡) − �̇�𝑥1 + �̇�𝑥2 − �̈�𝑥6

Tearing must therefore only be applied for the
additional equation of this sub-component leading to:

𝑥𝑥4 ∶= 𝑢𝑢3(𝑡𝑡) + 𝑥𝑥1 + �̇�𝑥3

Applying the partial state selection on BLT sub-
component 2.1 of (20) identifies 𝑥𝑥6 as state and
computes the dummy state from

𝑥𝑥7 ∶= −𝑢𝑢6(𝑡𝑡) − 2𝑥𝑥6

The residue equation is linear in 𝑥𝑥6 and can then be
solved for:

𝑥𝑥6 ∶= (−𝑢𝑢7(𝑡𝑡) − 4𝑢𝑢6(𝑡𝑡))/5

Once partial state selection has been applied on all
constraint sets, all the dummy states and their
derivatives, up to the highest derivatives of the dummy
states, are removed from 𝐱𝐱 and �̇�𝒙 and are computed

Transformation of Differential Algebraic Array Equations to Index One Form

574 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132565

locally from the remaining 𝐱𝐱 and �̇�𝒙. The remaining
equations can be transformed to DAE (17). Hereby, the
sorting order of the locally solved equations matters
and therefore the ordering has to be performed
according to the BLT ordering and the corresponding
ordering of the constraint sets.

Applying partial state selection with tearing on
example (20) results in the following DAE (17):

𝐱𝐱𝑑𝑑 = [𝑥𝑥2; �̇�𝑥2]
𝐱𝐱𝑎𝑎 = [𝑥𝑥8]
�̇�𝛌𝑖𝑖𝑛𝑛𝑙𝑙 = []
�̇�𝛍𝑖𝑖𝑛𝑛𝑙𝑙 = []
𝑥𝑥6 ∶= �−𝑢𝑢7(𝑡𝑡) − 4𝑢𝑢6(𝑡𝑡)� 5⁄
𝑥𝑥7 ∶= −𝑢𝑢6(𝑡𝑡) − 2𝑥𝑥6
�̇�𝑥6 ∶= �−�̇�𝑢7(𝑡𝑡) − 4�̇�𝑢6(𝑡𝑡)� 5⁄
�̇�𝑥7 ∶= −�̇�𝑢6(𝑡𝑡) − 2�̇�𝑥6
�̈�𝑥6 ∶= �−�̈�𝑢7(𝑡𝑡) − 4�̈�𝑢6(𝑡𝑡)� 5⁄
�̈�𝑥7 ∶= −�̈�𝑢6(𝑡𝑡) − 2�̈�𝑥6
𝑥𝑥6 ∶= �−�⃛�𝑢7(𝑡𝑡) − 4�⃛�𝑢6(𝑡𝑡)� 5⁄
𝑥𝑥7 ∶= −�⃛�𝑢6(𝑡𝑡) − 2𝑥𝑥6
𝑥𝑥1 ∶= −𝑢𝑢1(𝑡𝑡) + 𝑥𝑥2
𝑥𝑥3 ∶= −𝑢𝑢2(𝑡𝑡) − 𝑥𝑥1 + 𝑥𝑥2 − �̇�𝑥6
�̇�𝑥1 ∶= −�̇�𝑢1(𝑡𝑡) + �̇�𝑥2
�̇�𝑥3 ∶= −�̇�𝑢2(𝑡𝑡) − �̇�𝑥1 + �̇�𝑥2 − �̈�𝑥6
𝑥𝑥4 ∶= 𝑢𝑢3(𝑡𝑡) + 𝑥𝑥1 + �̇�𝑥3
�̈�𝑥1 ∶= −�̈�𝑢1(𝑡𝑡) + �̈�𝑥2
�̈�𝑥3 ∶= −�̈�𝑢2(𝑡𝑡) − �̈�𝑥1 + �̈�𝑥2 − 𝑥𝑥6
�̇�𝑥4 ∶= �̇�𝑢3(𝑡𝑡) + �̇�𝑥1 + �̈�𝑥3
𝑥𝑥5 ∶= −𝑢𝑢5(𝑡𝑡) − 3�̈�𝑥1 − 2�̈�𝑥2 − 0.1𝑥𝑥8
𝐫𝐫0,𝑑𝑑 = [𝑢𝑢4(𝑡𝑡) + 2�̈�𝑥1 + �̈�𝑥2 + �̈�𝑥3 + �̇�𝑥4 + 𝑥𝑥6]
𝐫𝐫0,𝑎𝑎 = [𝑢𝑢8(𝑡𝑡) + 𝑥𝑥8 − sin(𝑥𝑥8)]
𝐆𝐆 = []

𝑑𝑑𝑒𝑒𝑟𝑟(0:𝑛𝑛 − 2) = [1]
𝑑𝑑𝑒𝑒𝑟𝑟(1:𝑛𝑛 − 1) = [2] (→ �̇�𝑥𝑑𝑑,1 = 𝑥𝑥𝑑𝑑,2)

The result is a DAE with 3 equations (without partial
state selection, it had been 21 equations).

Using tearing for the constraint equations seems to
be always a useful approach because this can
significantly reduce the number of variables that need
to be discretized by the integrator. For example,
assume a tree-structured multi-body system is modeled
with the Modelica.Mechanics.MultiBody library and
has 𝑛𝑛 bodies that are connected together by revolute
joints. Without partial state selection, DAE (17)
consists of (6 ∙ 3 + 4 ∙ 9 + 2)𝑛𝑛 = 56𝑛𝑛 equations3.
After partial state selection with tearing the DAE
consists of the 2𝑛𝑛 equations (15), provided the simple
heuristics from section 4.6 are used.

However, it is less clear whether tearing is also
useful when applied on the highest order derivative
equations that are no derivatives of constraints. For
example, discretized partial differential equations
typically lead to structures where tearing cannot reduce

3 𝐱𝐱 = �𝐫𝐫𝑖𝑖; �̇�𝐫𝑖𝑖;𝐓𝐓𝑖𝑖; �̇�𝐓𝑖𝑖;𝛚𝛚𝑖𝑖; 𝐫𝐫𝑖𝑖𝐶𝐶𝐶𝐶; �̇�𝐫𝑖𝑖𝐶𝐶𝐶𝐶;𝐓𝐓𝑖𝑖𝐶𝐶𝐶𝐶; �̇�𝐓𝑖𝑖𝐶𝐶𝐶𝐶;𝛚𝛚𝑖𝑖

𝐶𝐶𝐶𝐶;𝜑𝜑𝑖𝑖; �̇�𝜑𝑖𝑖�
𝑖𝑖 = 1,2, . . .𝑛𝑛

the equation size much but will completely destroy the
sparseness and may be numerically less reliable. In
such cases it is much better to not apply tearing and
rely on the sparse matrix handling used by the
integrator. More investigations are needed here.

5 Exact Removal of Singularities
5.1 Overview
In this section a new method is proposed to exactly
remove certain types of singularities of a physical
system model provided as DAE (1). The result is again
a DAE in form (1). A typical example is shown in
Figure 1.

Figure 1. Modelica model of an electrical circuit that is
difficult to simulate. It can be automatically handled with
the method of this section.
Modelica tools transform DAEs (1) with structural
symbolic algorithms. These algorithms fail for the
circuit in Figure 1 (as well as other useful application
models). Since this electrical circuit is not grounded,
the potentials of the electrical Pins can float, that is, the
system equations are underdetermined. On the other
hand, the equations are overdetermined regarding
currents. An analysis, literature survey, and a solution
based on exploitation of the connection graph is
presented in (Elmqvist and Mattsson, 2016).

Additionally, the currents 𝑖𝑖𝐿𝐿1, 𝑖𝑖𝐿𝐿2 appear differen-
tiated in the inductors 𝐿𝐿1, 𝐿𝐿2 and are therefore assumed
to be known. The two inductors are connected by two
resistors in parallel leading to the following connection
equations for the currents:

𝑖𝑖𝐿𝐿1 = 𝑖𝑖𝐷𝐷1 + 𝑖𝑖𝐷𝐷2
𝑖𝑖𝐿𝐿2 = 𝑖𝑖𝐷𝐷1 + 𝑖𝑖𝐷𝐷2

(26)

where 𝑖𝑖𝐷𝐷1, 𝑖𝑖𝐷𝐷2 are the currents through the resistances
𝑅𝑅1,𝑅𝑅2. Structurally, (26) are two equations for two
unknown algebraic variables 𝑖𝑖𝐷𝐷1, 𝑖𝑖𝐷𝐷2 since the potential
states 𝑖𝑖𝐿𝐿1, 𝑖𝑖𝐿𝐿2 are assumed to be known. Therefore,
structural algorithms assume that 𝑖𝑖𝐷𝐷1, 𝑖𝑖𝐷𝐷2 can be
determined from (26). However, when subtracting the
two equations 𝑖𝑖𝐿𝐿1 + 𝑖𝑖𝐿𝐿2 = 0, that is an equation with
only known variables is obtained, which means that
one of the two variables cannot be a state. As a result
structural index reduction algorithms, as discussed in
section 3, will fail on this circuit.

The method below is based on the observation that
object-oriented models have a particular structure:
Zero-sum equations of flow variables 𝑖𝑖 in connectors

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132565

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

575

𝑐𝑐𝑘𝑘 have the form ∑𝑐𝑐𝑘𝑘 . 𝑖𝑖 = 0. After alias elimination,
relative potential variables in a component have the
form 𝑢𝑢𝑑𝑑𝑙𝑙𝑙𝑙 = 𝑐𝑐𝑘𝑘. 𝑣𝑣 − 𝑐𝑐𝑘𝑘 . 𝑣𝑣. All these equations have the
common property that they are linear and the
coefficients are integer (even +1 or -1). Due to the
integer coefficients exact analysis is possible. In
particular, singularities and state constraints in linear
equations with integer coefficients are identified and if
possible removed. The latter cannot be achieved with
methods based on connection graphs, such as (Elmqvist
and Mattsson, 2016) or similar techniques.

When applied to the circuit in Figure 1, the method
in section 5.3 gives the result that the following
equation shall be removed since redundant:
-L2.n.i - V.n.i = 0

In order to make all potentials well-defined, the
following equation is added:
L2.n.v = 0

In order to make the state constraints structurally
visible, the equation
-R1.p.i - R2.p.i - L1.n.i = 0

is replaced by
-L1.p.i + L2.p.i = 0

5.2 Transformation to upper trapezoidal form
The new approach is based on a utility algorithm to
perform a fraction-free Gaussian elimination of linear
algebraic equations with integer coefficients. The
algorithm is a slight generalization of (Bareiss, 1968),
see also (Turner 1995). Starting point is a linear
algebraic equation system
𝐀𝐀 ∙ 𝐗𝐗 = 𝐁𝐁, 𝐀𝐀 ϵ ℤ𝑛𝑛𝑎𝑎1 𝑛𝑛 𝑛𝑛𝑎𝑎2,𝐁𝐁 ϵ ℤ𝑛𝑛𝑎𝑎1 𝑛𝑛 𝑛𝑛𝑛𝑛2 (27)

where 𝐀𝐀 and 𝐁𝐁 are sparse, rectangular integer matrices.
The goal is to use fraction-free Gaussian elimination to
transform (27) to upper trapezoidal form:

�𝐀𝐀𝑢𝑢11 𝐀𝐀𝑢𝑢12
𝟎𝟎 𝟎𝟎 � ∙ � 𝐗𝐗𝑢𝑢1 𝐗𝐗𝑢𝑢2

� = �𝐁𝐁𝑢𝑢1𝐁𝐁𝑢𝑢2
� (28)

where 𝐀𝐀𝑢𝑢11,𝐀𝐀𝑢𝑢12,𝐁𝐁𝑢𝑢1,𝐁𝐁𝑢𝑢2 are integer matrices and
𝐀𝐀𝑢𝑢11 is quadratic, regular, and upper triangular with
non-zeros on the diagonal, that is rank(𝐀𝐀) =
size(𝐀𝐀𝑢𝑢11, 1). Additionally, permutation vector 𝑝𝑝1
describes the accumulated row interchanges of 𝐀𝐀,𝐁𝐁
and permutation vector 𝑝𝑝2 describes the accumulated
column interchanges of 𝐀𝐀 and row interchanges of 𝐗𝐗
such that 𝐗𝐗𝑢𝑢 = 𝐗𝐗[𝑝𝑝2, :]. Permutation vector 𝑝𝑝2 is
selected such that if possible the "upper" part of 𝐗𝐗 is
utilized in 𝐗𝐗𝑢𝑢1 (this is used in section 5.3).

Algorithm 1 is a straightforward implementation of
Gaussian elimination with full pivoting for sparse
matrices. The key point are the two equations at the
end with the "div(a,b)" operator where equation i is
subtracted from equation k with a fraction free
operation. Here, the non-trivial to derive property is
used that the integer division div(a,b)=a/b has no
remainder in this case. For details see (Bareiss,1968).

Algorithm 1
(Au,Bu,rk,p1,p2) = upperTrapezoidal(A,B)
Transform the rectangular linear system A*X=B
to upper trapezoidal form Au*X[p2,:]=Bu
A,B,Au,Bu are integer matrices
initialize variables
(na1,na2) = size(A); nb2 = size(B,2); p1=1:na1; p2=1:na2
Au = copy(A); Bu = copy(B);
oldPivot = 1
inspect all rows of Au
for k = 1:na1
 # search column wise for a pivot in Au[k:,min(k,na2):]
 pivotFound = false
 for k2 = k:na2
 for (k1,pivot) in < row indices k1 and values pivot of
 non-zero entries of column k2 >
 if k1 >= k && pivot != 0
 pivotFound = true
 p1k = k1
 p2k = k2
 break
 end
 end
 if pivotFound; break; end
 end
 # exchange rows/columns such that Au[k,min(k,na2)]≠0
 if pivotFound
 <exchange rows k and p1k of Au, Bu, p1, and
 exchange columns k and p2k of Au and row p2k of p2 >
 else # submatrix Au[k:na1,:] has only zeros
 rk = k-1
 return (Au, Bu, rk, p1, p2)
 end
 # Subtract row k from rows k+1:na1
 k1 = k+1
 j = k1:na2
 for (i,val) in < row indices i and values val of non-zero
 entries of column k >
 if i >= k1
 Bu[i,:] = div(pivot*Bu[i,:] – val*Bu[k,:], oldPivot)
 Au[i,j] = div(pivot*Au[i,j] – val*Au[k,j], oldPivot)
 Au[i,k] = 0
 end
 end
 oldPivot = pivot
end
return (Au, Bu, rk, p1, p2)

5.3 Identifying singularities in the model
Starting point is the largest subset of equations of DAE
(1) that is described by a linear algebraic system

𝐀𝐀𝑛𝑛𝒗𝒗𝑛𝑛 + 𝐀𝐀𝑦𝑦𝒗𝒗𝑦𝑦 + 𝐀𝐀𝑐𝑐𝒗𝒗𝑐𝑐 + 𝑨𝑨𝑑𝑑𝒗𝒗𝑑𝑑 = 𝟎𝟎 (29)

where 𝐀𝐀𝑛𝑛 ,𝐀𝐀𝑦𝑦,𝐀𝐀𝑐𝑐 ,𝐀𝐀𝑑𝑑 are sparse matrices with (scalar)
integer elements of appropriate dimensions and
𝒗𝒗𝑛𝑛,𝒗𝒗𝑦𝑦,𝒗𝒗𝑐𝑐 ,𝒗𝒗𝑑𝑑 are vectors of variables of (1). An
element of these vectors may be a scalar, an array, or
an instance of any data structure for which the
operators "+", "-", "*" are defined (overloaded) as
operations between instances of the same type and
between an instance of the type and a scalar integer.
Furthermore, it is assumed that within one equation the

Transformation of Differential Algebraic Array Equations to Index One Form

576 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132565

variables are all of the same type and arrays have the
same dimension sizes (so, one equation may state a
relationship between [3,3] matrices, whereas another
equation between [6] vectors, and yet another one
between scalars). Since an equation can only depend
on variables of the same type, equations (29) are
basically a disjunct set of equations for different types
that are analyzed conceptually in an independent way
from each other. The various vectors have the
following meaning:

𝒗𝒗𝑛𝑛 Variables used in the derivative operator, so
𝐝𝐝𝐞𝐞𝐫𝐫(𝑣𝑣𝑛𝑛,𝑖𝑖) appears in the model.

𝒗𝒗𝑦𝑦 After removing equations (29) from (1),
variables 𝒗𝒗𝑦𝑦 are no longer present in (1).
Therefore, these variables must be computed
from (29). For example, if 𝑣𝑣𝑑𝑑𝑙𝑙𝑙𝑙 = 𝑝𝑝. 𝑣𝑣 − 𝑛𝑛. 𝑣𝑣
and the connector variables 𝑝𝑝. 𝑣𝑣 and 𝑛𝑛. 𝑣𝑣 are not
used otherwise in the model, they are part of
𝒗𝒗𝑦𝑦.

𝒗𝒗𝑐𝑐 Variables defined by a parameter expression.
For example, if 𝑣𝑣0 = 5 and 𝑣𝑣0 is utilized in
other linear equations with integer coefficients,
then 𝑣𝑣0 is part of 𝒗𝒗𝑐𝑐.

𝒗𝒗𝑑𝑑 All remaining variables that do not belong to
one of the other three categories above.

In a first step, equations (29) are restructured to:

𝐀𝐀𝑦𝑦𝑑𝑑𝒗𝒗𝑦𝑦𝑑𝑑 = 𝐁𝐁𝑛𝑛𝑐𝑐(−𝒗𝒗𝑛𝑛𝑐𝑐) (30)

with

𝐀𝐀𝑦𝑦𝑑𝑑 = [𝐀𝐀𝑦𝑦 𝐀𝐀𝑑𝑑], 𝒗𝒗𝑦𝑦𝑑𝑑 = �
𝒗𝒗𝑦𝑦
𝒗𝒗𝑑𝑑�

𝐁𝐁𝑛𝑛𝑐𝑐 = [𝐀𝐀𝑛𝑛 𝐀𝐀𝑐𝑐], 𝒗𝒗𝑛𝑛𝑐𝑐 = �
𝒗𝒗𝑛𝑛
𝒗𝒗𝑐𝑐�

(31)

With Algorithm 1 from section 5.2

(𝐀𝐀𝑢𝑢,𝐁𝐁𝑢𝑢, 𝑟𝑟𝑘𝑘,𝑝𝑝1,𝑝𝑝2) = upperTrapezoidal(𝐀𝐀𝑦𝑦𝑑𝑑 ,𝐁𝐁𝑛𝑛𝑐𝑐)

(30) can be transformed to upper trapezoidal form:

�𝐀𝐀𝑢𝑢,11 𝐀𝐀𝑢𝑢,12
𝟎𝟎 𝟎𝟎

� ∙ �
 𝒗𝒗𝑢𝑢1
 𝒗𝒗𝑢𝑢2� = �𝐁𝐁𝑢𝑢1𝐁𝐁𝑢𝑢2

� ∙ (−𝒗𝒗𝑛𝑛𝑐𝑐) (32)

where 𝐀𝐀𝑢𝑢,11 is a quadratic, regular, upper triangular
integer matrix of size [𝑟𝑟𝑘𝑘, 𝑟𝑟𝑘𝑘] with non-zeros on the
diagonal, 𝒗𝒗𝑢𝑢1 = 𝒗𝒗𝑦𝑦𝑑𝑑[𝑝𝑝2[1: 𝑟𝑟𝑘𝑘]] are 𝑟𝑟𝑘𝑘 elements of 𝒗𝒗𝑦𝑦𝑑𝑑
and 𝒗𝒗𝑢𝑢2 = 𝒗𝒗𝑦𝑦𝑑𝑑[𝑝𝑝2[𝑟𝑟𝑘𝑘 + 1:]] are the remaining
elements of 𝒗𝒗𝑦𝑦𝑑𝑑. With 𝐁𝐁𝑢𝑢2 = [𝐁𝐁𝑢𝑢2,1 𝐁𝐁𝑢𝑢2,2], the lower
part of (32) can be stated as:

𝐁𝐁𝑢𝑢2,1𝒗𝒗𝑛𝑛 = 𝐁𝐁𝑢𝑢2,2(−𝒗𝒗𝑐𝑐) (33)
Using Algorithm 1 again:

(𝐀𝐀𝑢𝑢𝑛𝑛 ,𝐁𝐁𝑢𝑢𝑛𝑛, 𝑟𝑟𝑘𝑘𝑛𝑛,𝑝𝑝𝑛𝑛1,𝑝𝑝𝑛𝑛2) =
 upperTrapezoidal(𝐁𝐁𝑢𝑢2,1,𝐁𝐁𝑢𝑢2,2)

(33) can be transformed to upper trapezoidal form:

�𝐀𝐀𝑢𝑢𝑛𝑛11 𝐀𝐀𝑢𝑢𝑛𝑛,12
𝟎𝟎 𝟎𝟎

� ∙ �
 𝒗𝒗𝑢𝑢𝑛𝑛1
 𝒗𝒗𝑢𝑢𝑛𝑛2� = �𝐁𝐁𝑢𝑢𝑛𝑛1𝐁𝐁𝑢𝑢𝑛𝑛2

� ∙ (−𝒗𝒗𝑐𝑐) (34)

where 𝐀𝐀𝑢𝑢𝑛𝑛,11 is a quadratic, regular, upper triangular
integer matrix of size [𝑟𝑟𝑘𝑘𝑛𝑛, 𝑟𝑟𝑘𝑘𝑛𝑛] with non-zeros on the
diagonal, 𝒗𝒗𝑢𝑢𝑛𝑛1 = 𝒗𝒗𝒙𝒙[𝑝𝑝𝑛𝑛2[1: 𝑟𝑟𝑘𝑘𝑛𝑛]] are 𝑟𝑟𝑘𝑘𝑛𝑛 elements of
𝒗𝒗𝑛𝑛 and 𝒗𝒗𝑢𝑢𝑛𝑛2 = 𝒗𝒗𝑛𝑛[𝑝𝑝𝑛𝑛2[𝑟𝑟𝑘𝑘𝑛𝑛 + 1:]] are the remaining
elements of 𝒗𝒗𝑛𝑛.

From (32) and (34) the following conclusions can be
drawn regarding singularities in the model equations:

• If 𝐁𝐁𝑢𝑢𝑛𝑛2 is not the zero matrix, then there are
constraints 𝐁𝐁𝑢𝑢𝑛𝑛2𝒗𝒗𝑐𝑐 = 𝟎𝟎 between the parameter
expressions 𝒗𝒗𝑐𝑐. A tool may reject such a model. In
the following it is assumed that 𝐁𝐁𝑢𝑢𝑛𝑛2 = 𝟎𝟎.

• If 𝑟𝑟𝑘𝑘 + 𝑟𝑟𝑘𝑘𝑛𝑛 < length(𝒗𝒗𝑦𝑦𝑑𝑑), then the lower part of
(34) are zero-equations and represent redundant
equations. As a result, the original equations with
row indices 𝑝𝑝1[𝑟𝑟𝑘𝑘 + 𝑝𝑝1𝑛𝑛[𝑟𝑟𝑘𝑘𝑛𝑛 + 1, :]] can be
removed since they can be expressed as a linear
combination of the other integer equations. A tool
may just remove these equations and print an
information message that it removed them.

• If 𝒗𝒗𝑢𝑢2 contains elements of 𝒗𝒗𝑦𝑦, then these
variables can have an arbitrary value. For example
assume that 𝒗𝒗𝑦𝑦𝑑𝑑 are scalar real variables, then (32)
can be solved for 𝒗𝒗𝑢𝑢1:
 𝒗𝒗𝑢𝑢1 = −𝐀𝐀𝑢𝑢,11

−1 �𝐀𝐀𝑢𝑢,12𝒗𝒗𝑢𝑢2 + 𝐁𝐁𝑢𝑢1𝒗𝒗𝑛𝑛𝑐𝑐�
Therefore, for given states 𝒗𝒗𝑛𝑛𝑐𝑐 and given values of
𝒗𝒗𝑢𝑢2, variables 𝒗𝒗𝑢𝑢1 can be uniquely computed.
Note, since variables 𝒗𝒗𝑦𝑦 must be computed from
(29) they can be arbitrarily set, if part of vector
𝒗𝒗𝑢𝑢2. Since variables 𝒗𝒗𝑑𝑑 appear also in the
remaining model equations, they need to be
computed in these remaining model equations. A
tool may either reject a model where 𝒗𝒗𝑢𝑢2 contains
elements of 𝒗𝒗𝑦𝑦, or may set arbitrary values (say the
null-element of the respective type) and print an
information message.

• The upper part of (34) can be formulated as:
𝐀𝐀𝑢𝑢𝑛𝑛11𝒗𝒗𝑢𝑢𝑛𝑛1 = −𝐀𝐀𝑢𝑢𝑛𝑛,12𝒗𝒗𝑢𝑢𝑛𝑛2 − 𝐁𝐁𝑢𝑢𝑛𝑛1𝒗𝒗𝑐𝑐 (35)

Since 𝐀𝐀𝑢𝑢𝑛𝑛11 is regular this means that 𝒗𝒗𝑢𝑢𝑛𝑛1 can be
computed from 𝒗𝒗𝑢𝑢𝑛𝑛2 and 𝒗𝒗𝑐𝑐 and therefore 𝒗𝒗𝑢𝑢𝑛𝑛1 are
(dependent) dummy states. A tool can either utilize
this information directly and transform the model
equations with this information, or the equations
leading to (35), that is the equations of (29) with
row indices 𝑝𝑝1[𝑟𝑟𝑘𝑘 + 𝑝𝑝1𝑛𝑛[1: 𝑟𝑟𝑘𝑘𝑛𝑛]], are replaced by
equations (35). Since 𝐀𝐀𝑢𝑢𝑛𝑛11 is upper triangular,
the constraints between the states are structurally
visible and therefore index reduction with
structural algorithms (see section 3) is possible.

To summarize, with the transformation of the integer
equations (29) of DAE (1) to upper trapezoidal form
(32),(34) an important set of singularities can be
exactly identified and if possible and desired removed.

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132565

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

577

6 Outlook
With this paper new algorithms are provided to start
from a high level modeling language like Modelica or
Modia and generate code for standard Index-1 DAE
integrators. The algorithms are designed to keep array
data structures intact from the model language until the
generated code. Furthermore, no equation systems are
solved to transform to index 1 form and therefore the
sparsity of the model equations is kept. As a
consequence, sparse matrix methods can be utilized in
the DAE integrator.

In the paper it was not discussed how to initialize
the index-1 DAEs. In principal similar techniques can
be used as for Modelica models. Currently, in Modia it
is experimented with a new form of initialization where
start values 𝐱𝐱0(𝑡𝑡0−) can be provided that do not fulfill
the constraints of (2), so 𝐟𝐟𝑐𝑐(𝐱𝐱0(𝑡𝑡0−), 𝑡𝑡0−) ≠ 0. Via Dirac
impulses of the derivatives of the discontinuous start
values, consistent start values 𝐱𝐱0(𝑡𝑡0+) are computed
with the new technique of impulse handling for DAEs
(2), developed in (Benveniste et al., 2017).

In industrial applications often steady-state
initialization is required. This is still a difficult topic
and not yet satisfactorily solved. Typically, reliable
steady-state initialization requires the use of a
probability one homotopy method; see for example
(Melville et. al., 1993; Sielemann, 2012). It is an open
question how to restrict the special index-one DAEs
(2) so that probability one homotopy methods can be
applied.

The goal is to further extend the algorithms and the
Modia prototype in order to be able to simulate multi-
mode systems, where the number of equations and
unknowns can change during simulation (for example
to simulate drastic failure cases or perform end-to-end
simulations of complicated scenarios).

Acknowledgements
The authors would like to thank Martin Arnold from
University Halle-Wittenberg for discussions to
understand the fine details of multibody integrators.

References
M. Arnold (2016): DAE aspects of multibody systems. In A.

Ilchmann, T. Reis (eds.): Surveys in Differential-Algebraic
Equations IV. - Springer, 2017 (in print). - A preliminary
version of this material was published as Technical Report
01-2016, Martin Luther University Halle-Wittenberg,
Report No. 01, 2016. http://sim.mathematik.uni-
halle.de/reports/sources/2016/01-2016.pdf

U.M. Ascher, L.R. Petzold (1991): Projected Implicit
Runge–Kutta Methods for Differential-Algebraic
Equations. SIAM J. Numer. Anal., 28(4), pp. 1097–1120.

A. Bahainv, H. Schichl, A. Neumaier (2016a): Tearing
systems of nonlinear equations. I. A survey.
http://www.mat.univie.ac.at/~neum/ms/tearing_survey.pdf

A. Bahainv, H. Schichl, A. Neumaier (2016b): Tearing
systems of nonlinear equations. II. A practical exact
algorithm.
http://www.mat.univie.ac.at/~neum/ms/tearing_exact_algo
rithm.pdf

E.H. Bareiss (1968): Sylvester's Identity and Multistep
Integer-Preserving Gaussian Elimination. Math. Comp.
22, pp. 565-578.

M.A. Bender, J.T. Fineman, S. Gilbert, R.E. Tarjan (2016): A
New Approach to Incremental Cycle Detection and
Related Problems. ACM Transactions on Algorithms,
Volume 12, Issue 2.

A. Benveniste, B. Caillaud, H. Elmqvist, K. Ghorbal, M.
Otter, and Marc Pouzet (2017): Multi-Mode DAE Models
Challenges, Theory and Implementation. Lecture Notes on
Computer Science, submitted for review.

J. Bezanson, A. Edelman, S. Karpinski and V.B. Shah
(2017): Julia: A Fresh Approach to Numerical Computing.
SIAM Review, Vol. 59, No. 1, pp. 65-98.
http://julialang.org/publications/julia-fresh-approach-
BEKS.pdf; see also: http://julialang.org/

K.E. Brenan, S.L. Campbell, and L.R. Petzold (1996):
Numerical Solution of Initial Value Problems in
Differential-Algebraic Equations. SIAM.

E. Carpanzano, R. Girelli (1997): The Tearing Problem:
Definition, Algorithm and Application to Generate
Efficient Computational Code from DAE Systems.
Proceedings of 2nd Mathmod Vienna, IMACS Symposium
on Mathematical Modelling, Wien.

S. Chowdhry, H. Krendl, and A.A. Linninger (2004):
Symbolic numeric index analysis algorithm for differential
algebraic equations. Industrial and Engineering Chemistry
Research. Vol. 43, Issue 14, pp. 3886-3894.

W. Cook, and A. Rohe (1999): Computing Minimum-Weight
Perfect Matchings. INFORMS Journal of Computing, Vol.
11. www.math.uwaterloo.ca/~bico/papers/match_ijoc.pdf

I.S. Duff (1981): On algorithms for obtaining a maximum
transversal. ACM Trans. Math. Software, Vol. 7, Issue 3.

I.S. Duff, K. Kaya, and B. Ucar (2011): Design, Implemen-
tation, and Analysis of Maximum Transversal Algorithms.
ACM Trans. Math. Software, Vol. 38, Issue 2.

J. Edmonds (1965): Paths, Trees , and Flowers. Canadian
Journal of Mathematics. Vol. 17, pp. 449-467.
https://cms.math.ca/openaccess/cjm/v17/cjm1965v17.0449
-0467.pdf

E. Eich (1993): Convergence Results for a Coordinate
Projecion Method Applied To Mechanical Systems with
Algebraic Constraints. SIAM J. Numer. Anal. Vol. 30, No.
5, pp. 1467-1482.

H. Elmqvist, M. Otter (1994): Methods for Tearing Systems
of Equations in Object-Oriented Modeling. Proceedings
ESM’94, European Simulation Multiconference,
Barcelona, Spain, June 1–3, pp. 326–332.

H. Elmqvist, T. Henningsson, M. Otter (2016): System
Modeling and Programming in a Unified Environment
based on Julia. Proceedings of ISoLA 2016 Conference
Oct. 10-14, T. Margaria and B. Steffen (Eds.), Part II,
LNCS 9953, pp. 198-217. http://www.isola-
conference.org/isola2016/proceedings.html

Transformation of Differential Algebraic Array Equations to Index One Form

578 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132565

H. Elmqvist, S.E. Mattsson (2016): Exploiting Model Graph
Analysis for Simplified Modeling and Improved
Diagnostics. Proceedings EOOLT '16, April 18, Milano,
Italy.

H. Elmqvist, T. Henningsson, M. Otter (2017): Innovations
for future Modelica. Modelica Conference 2017, Prague.

J. Frenkel, G. Kunze, P. Fritzson (2012): Survey of
appropriate matching algorithms for large scale systems
of differential algebraic equations. Proceedings of the 9th
International Modelica Conference, Munich.
http://www.ep.liu.se/ecp/076/045/ecp12076045.pdf

C. Führer (1988): Differential-algebraische Gleichungssys-
teme in mechanischen Mehrkörpersystemen. Theorie,
numerische Ansätze und Anwendungen. PhD thesis, TU
München, Mathematisches Institut und Institut für
Informatik.

C.W. Gear (1988): Differential-Algebraic Equation Index
Transformations. SIAM J. Sci. Stat. Comput., Vol. 9, No.
1, pp. 39-47.

C.W. Gear, G.K. Gupta and B. Leimkuhler (1985):
Automatic integration of Euler–Lagrange equations with
constraints. J. Comp. Appl. Math., 12&13, pp. 77–90.

A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R.
Serban, D.E. Shumaker, and C. S. Woodward (2005):
SUNDIALS: Suite of Nonlinear and Differential/Algebraic
Equation Solvers. ACM Transactions on Mathematical
Software, Vol. 31, No. 3, pp. 363–396.
http://computation.llnl.gov/projects/sundials/toms_sundial
s.pdf

G. Kron (1962): Diakoptics – The piecewise Solution of
Large-Scale Systems. MacDonald & Co., London.

S.E. Mattsson and G. Söderlind (1993): Index Reduction in
Differential-Algebraic Equations using Dummy
Derivatives. SIAM Journal of Scientific Computing. 14(3),
pp. 677-692.

S.E. Mattsson, H. Olsson and H. Elmqvist (2000): Dynamic
Selection of States in Dymola. Modelica Workshop 2000,
Lund, Sweden, pp. 61-67.
https://www.modelica.org/events/workshop2000/proceedi
ngs/old/Mattsson.pdf

R.C. Melville, L. Trajkovic,S.-C. Fang, L.T. Watson (1993):
Artifical parameter homotopy methods for the DC
operating point problem," IEEE Transactions on
Computer-Aided Design of Integrated Circuits and
Systems, vol. 12, pp. 861-877.

M. Otter (1999): Objektorientierte Modellierung Physi-
kalischer Systeme, Teil 4: Transformationsalgorithmen. at
Automatisierungstechnik, 47, 3, pp. A9-A12.

C.C. Pantelides (1988): The Consistent Initialization of
Differential-Algebraic Systems. SIAM Journal on
Scientific and Statistical Computing, 9(2):213–231.

L. Petzold and P. Lötstedt (1986): Numerical Solution of
Nonlinear Differential Equations with Algebraic
Constraints II: Practical Implications. SIAM J. Sci. Stat.
Comput. Vol. 7, No. 3, pp. 720-733.

J.D. Pryce (2001). A Simple Structural Analysis Method for
DAEs. BIT Numerical Mathematics, Vol. 41, Issue 2, pp.
364-394.

J. Schuchart, V. Waurich, M. Flehmig, M. Walther, W.E.
Nagel, I. Gubsch (2015): Exploiting Repeated Structures
and Vectorization in Modelica. Proc. of the 11th Int.
Modelica Conference, Versailles.
www.ep.liu.se/ecp/118/028/ecp15118265.pdf

M. Sielemann (2012): Device-Oriented Modeling and
Simulation in Aircraft Energy Systems Design. PhD-
Dissertation. Technische Universität Hamburg-Harburg.
http://www.dr.hut-verlag.de/9783843905046.html

R.L. Sigurðsson (2016): Practical performance of
incremental topological sorting and cycle detection
algorithms. Chalmers University of Technology. Master
Thesis.
http://publications.lib.chalmers.se/records/fulltext/248308/
248308.pdf

S.S. Skiena (2008): The Algorithm Design Manual. Second
edition. Springer.

K. Stavaker: Contributions to Simulation of Modelica
Models on Data-Parallel Multi-Core Architectures. PhD
thesis. Linköping University. http://liu.diva-
portal.org/smash/get/diva2:806837/FULLTEXT01.pdf

P.R. Turner (1995): A simplified fraction-free Integer Gauss
Elimination Algorithm. REPORT NO: NAWCADPAX-
96-196-TR. Office of Naval Research.
http://www.dtic.mil/cgi-
bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=
ADA313755

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132565

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

579

580 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Smart Processing of Function Calls
to Achieve Efficient Simulation Code

Jan Hagemann Patrick Täuber Lennart Ochel Bernhard Bachmann

Department of Engineering and Mathematics, University of Applied Sciences Bielefeld, Germany,
{jan.hagemann,patrick_marcel.taeuber,lennart.ochel,bernhard.bachmann}@fh-bielefeld.de

Abstract
This paper introduces a new algorithm to increase the sim-
ulation performance of algebraic equation systems by en-
capsulating function calls. This avoids unnecessary eval-
uations of function calls and leads to positive structural
effects, such as code motion. To enable the reader to re-
construct the algorithm, all four phases of the algorith-
m are described in detail and the complexity of them is
analyzed. The overall complexity for practical models is
O(n), where n is the number of equations. It is shown that
the algorithm significantly decreases the simulation time
for a wide range of physical based models.
Keywords: function calls, backend, simulation

1 Introduction
Symbolic transformation and simplification methods (e.g.
alias elimination, tearing methods, and index reduction)
are essential within a Modelica compiler in order to
achieve efficient simulation of the underlying differential-
algebraic equation system. In this paper a proper handling
of time-consuming function calls is discussed. It will be
shown that the corresponding implementation of the mod-
ule WrapFunctionCalls results in a tremendous decrease
of simulation time for many models of specific libraries
including the MSL 3.2.1. The expected performance in-
crease has been already discussed in earlier publications
(Jorissen et al., 2015).

The module WrapFunctionCalls traverses the equation
system for occurring function calls. Those are stored in
temporary variables, which are inserted at the according
places in the equation system. This elimination is similar
to the Common Subexpression Elimination (Jakubowski,
2002), hence the auxiliary variables for the function calls
are called CSE-variables. However, the difference is that
in the case of WrapFunctionCalls also single occurring
function calls are stored.

There are some requirements on an efficient and reli-
able algorithm to encapsulate function calls, which are
discussed in the next section before the algorithm is p-
resented in Section 3. Such or similar symbolic transfor-
mations of function calls could not be found in literature
or are not accessible in other simulation environments.

At the end of the paper a verification section proves the
effects on models with a practical orientation and there-

fore the significance of the algorithm.

2 Requirements on the Algorithm
To achieve efficient simulation code by processing func-
tion calls first and foremost all function calls must be
found regardless whether they occur in simple equations
or if the function itself is an argument to another function.
Consequently, nested function calls (e.g. exp(cos(time)))
must be analyzed in detail to guarantee that function calls
in arguments of other functions are replaced as well.

At this point it should be mentioned that only equations
are traversed for functions. Algorithms are not handled
by the module yet. Special Modelica constructs like im-
pure functions are not traversed for nested calls as well and
functions which are called conditionally (i.e. functions in
bodies of when- and if-equations) are not encapsulated if
they do not appear in the rest of the equation system.

All the found functions must be stored in CSE-
variables. Considering the Modelica modelling language,
it must be noted that for calls in equations of the form

variable = call (e.g. x = cos(time))

or

tuple = call (e.g. (a,b,_) = f (time,x))

no new CSE-variables should be introduced, because in
those cases the variables on the left-hand side already en-
capsulate the corresponding functions and can therefore
be used as CSE-variables.
Additionally, identical function calls, which do not nec-
essarily have to look similar at the first sight, have to be
recognized. The following example shows three equations
with mathematically identical function calls in the second
and third equation, due to the first equation:

x = cos(time)
a = exp(x)
y = exp(cos(time))

The main objective of the algorithm is to reduce the
simulation time by encapsulating function calls. Thus, du-
plicated calls only need to be evaluated once instead of ev-
ery time they occur in the equation system. Especially for
models with more complex functions, this will lead to vast

DOI
10.3384/ecp17132581

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

581

time savings during simulation.
Nevertheless, this is not the only way to reduce expensive
function evaluations. As already mentioned above, one d-
ifference to the well known Common Subexpression Elim-
ination methods is that function calls that only occur once
in the whole model are encapsulated as well, because this
can lead to a desirable code motion effect. Code motion
has its origin in the optimization of standard compilers (A-
ho et al., 2008; Muchnick, 1997; Vogt, 2004). The code
expressions, which appear in loops (e.g. for, while, ...)
and are independent of the iteration variables and their de-
pendencies can be moved out of the loop and be evaluated
beforehand. In Modelica code motion can be seen as the
extraction of subexpressions, i.e. function calls, out of al-
gebraic loops. The following call illustrates the advantage
of code motion in an acausal environment by encapsulat-
ing all function calls:

f1(f2(x), f3(time))

Assuming this call to be part of an algebraic loop, where
x may be the iteration variable, by encapsulating the calls
in the following way, the calculation of function f3 can
be moved out of the loop because it is not dependent on
variables, that are changing its value during the iteration
process:

cse1 = f1(cse2,cse3)

cse2 = f2(x)
cse3 = f3(time)

Without the encapsulation f3 would be evaluated in
each iteration step, which could be expensive.

The verification of the expected effects mentioned
above is done in Section 4.

3 Algorithm
The algorithm WrapFunctionCalls is divided into four
parts:

I. Analysis

II. Dependencies

III. Substitution

IV. Creation of CSE-Equations

For a better understanding of the functionality the al-
gorithm is introduced section by section with an example
and the corresponding pseudo code. After each part the
complexity is assessed.
Listing 1 shows the abstract example model that is used to
illustrate the requirements on a reliable algorithm. Thus,
not only the sine and cosine function calls must be stored
in CSE-variables but also the more complex function f oo,
which has more than one return value, that must be han-
dled properly. The function f oo occurs in two equations.
In the first one, only the second return value is accessed. In

the second equation, however, only the first output is used.
Additionally, both calls of f oo are identical because of the
third equation. Lastly, it must be considered that the top-
level functions in the first and third equation do not need
to be stored in CSE-variables, because the left-hand side
is already a simple variable.

1 model wfc
2 f u n c t i o n foo
3 input Real x1 ;
4 input Real x2 ;
5 output Real y1 ;
6 output Real y2 ;
7 output Real y3 ;
8 [. . .]
9 end foo ;

10 Real a , b , x ;
11 equat ion
12 (, b ,) = foo (x , s i n (cos (t ime))) ;
13 a = s i n (foo (x , x)) + 5 . 0 ;
14 x = s i n (cos (t im e)) ;
15 end wfc ;

Listing 1. Abstract example model to introduce
WrapFunctionCalls

The algorithm works with three data structures, which
need to be created at the beginning. First, a hash table is
needed to store and access the found function calls effi-
ciently. Due to expiriences with the MSL the size of the
hashtable is chosen accordingly to avoid collisions. The
keys of the hash table are the function calls and the values
are integers representing indices of an expandable array,
which is the second data structure. The expandable array
contains entries consisting of a CSE-variable, a function
call and an integer list, which represents the dependencies
between function calls. As third data structure, another ar-
ray is needed to store the manipulated equations and the
new CSE-equations (Listing 2).

1 / / Array o f e q u a t i o n s : eqArray
2 / / E q u a t i o n : eq
3 / / L i s t o f v a r i a b l e s o f eqSystem : v a r L i s t
4 / / E x p r e s s i o n : exp
5 / / S u b e x p r e s s i o n : subExp
6 / / CSE v a r i a b l e : c s e _ v a r
7 / / Hash t a b l e : h t
8 / / Expandab le a r r a y : a r r a y +
9

10 c r e a t e h t :=
11 <key= c a l l (exp) , v a l u e = i n d e x (i n t) >;
12

13 c r e a t e a r r a y + :=
14 [c s e _ v a r (exp) , c a l l (exp) , d e p e n d e n c i e s (l i s t <

i n t >)] ;
15

16 c r e a t e eqArray := [] ;

Listing 2. Pre-phase of WrapFunctionCalls algorithm:
Create data structures

3.1 Analysis
In the first part of the algorithm all equations of the e-
quation system are traversed top-down to collect all func-
tion calls. A detected function call is stored within the

Smart Processing of Function Calls to Achieve Efficient Simulation Code

582 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132581

hash table, together with an index referring to the corre-
spondent entry of the expandable array, which is basically
an incremented integer for each call starting by 0. The
corresponding entry of the expandable array contains the
CSE-variable, the function call itself and an initially emp-
ty dependency list. In the first part of the algorithm all
function calls are stored, even those which might turn out
to be identical to other ones later on. To avoid the intro-
duction of unnecessary CSE-variables an additional con-
ditional branch is needed to detect equations of the form
var = call and tuple = call. In that case the already ex-
isting variables are stored as CSE-variables in the expand-
able array. If in the expandable array a CSE-variable has
been entered for a call that turns out to be equal to an exist-
ing variable or tuple, the CSE-variable entry is overwritten
with the already existing variable (cf. Listing 3).

17 i n d e x = 0 ;
18 / / I . A n a l y s i s o f eqSystem
19 f o r each eq in eqSystem
20 i f eq as (c r e f = c a l l) or (t u p l e = c a l l) then
21 i f c a l l has not an e n t r y in h t then
22 c r e a t e h t e n t r y := < c a l l , index >;
23 c r e a t e a r r a y + e n t r y := [c r e f / t u p l e , c a l l

, { }] ;
24 i n d e x = i n d e x + 1 ;
25 e l s e
26 u p d a t e / merge a r r a y + e n t r y = [Cre f / Tuple ,

Ca l l , { }] ;
27 end i f ;
28 end i f ;
29

30 f o r each c a l l in eq [TopDown]
31 i f c a l l has not an e n t r y in h t then
32 c r e a t e h t e n t r y := < c a l l , index >;
33 c r e a t e a c s e _ v a r for c a l l ;
34 c r e a t e a r r a y + e n t r y := [c s e _ v a r , c a l l ,

{ }] ;
35 i n d e x = i n d e x + 1 ;
36 end i f ;
37 end f o r ;
38 end f o r ;
39

40 i f h t i s empty then
41 / / a l g o r i t h m t e r m i n a t e s
42 re turn ;
43 end i f ;

Listing 3. Phase I of WrapFunctionCalls algorithm:
Analysis

Since the operations depend on the number of equations
and each equation is addressed exactly one time, the com-
plexity of the first part of the algorithm is O(n), where n
is the number of equations in the equation system.

If the analysis is performed on the example model from
Listing 1 the hash table from Table 1 is generated. Be-
cause of the top-down traversal, the first call detected
is f oo(x,sin(cos(time))). After that sin(cos(time)) and
cos(time) are found. The same applies to the second e-
quation. In the last equation a call is found, which already
exists in the hash table, so no new hash table entry is cre-
ated.

The detected function calls are also stored in the ex-
pandable array at the corresponding position determined

Table 1. Hash table after the first part of the algorithm (Analy-
sis)

Hash Table (ht)
Function Call Integer
f oo(x,sin(cos(time))) 1
sin(cos(time)) 2
cos(time) 3
sin(f oo(x,x)) 4
f oo(x,x) 5

by the index from the hash table. For the first call no addi-
tional CSE-variable is necessary because the call is equal
to a tuple, so the tuple is stored as CSE-variable. For all
other calls CSE-variables are introduced. Since the call in
the last equation is equal to x and the call already exists
in the hash table, the CSE-variable for sin(cos(time)) is
overwritten with x again. This leads to the expandable ar-
ray from Table 2, where the integer dependency lists are
still empty.

Table 2. Expandable array after the first part of the algorithm
(Analysis)

Array+
CSE-Variable Function Call Integer List
(_,b,_) f oo(x,sin(cos(time))) { }
x sin(cos(time)) { }
cse2 cos(time) { }
cse3 sin(f oo(x,x)) { }
(cse4,_,_) f oo(x,x) { }

3.2 Dependencies

At the beginning of the second phase all the occurring
function calls are already located in the expandable ar-
ray and in the hash table. In the second part the analysis
continues by considering each array entry to find the de-
pendencies between the different function calls. To do so,
the function calls must be analyzed successively whether
there are other function calls in their arguments. If anoth-
er function call is detected within an argument, the index
(value) of that call has to be determined from the hash ta-
ble. Now, at the position of that index in the expandable
array, the dependency list is appended by the index of the
outer function call (Listing 4). So, at the end the depen-
dency list for each call contains the indices of the calls in
which the current call occurs. An empty dependency list
after the second phase signifies a function call indepen-
dent of all other function calls.

44 / / I I . Dependenc i e s
45 f o r each e n t r y o f a r r a y +
46 t r a v e r s e a rgumen t s o f c a l l
47 add i n d e x of c a l l t o each argument e n t r y (i n

l i s t <i n t >) ;
48 end f o r ;

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132581

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

583

Listing 4. Phase II of WrapFunctionCalls algorithm:
Dependencies

If no nested function calls occur in the equation sys-
tem, the complexity of the second phase is O(k), where k
is the number of supposedly different function calls, i.e.
the number of array elements because each array entry is
addressed only once.

If there are nested function calls, the complexity is s-
maller than or equal to O(k + ∑

a
i=1 i) = O(k + a2+a

2) =

O(k+ a2), where a is the number of function calls in the
arguments of other function calls in the model, because
each call has to be addressed again for each occurrence in
the arguments of another call. The worst case of k+ a2+a

2
operations pertains if there is exactly one nested function
call in the equation system because this would lead, for
instance, to the following entries in the array, where a is
k−1:

f1(f2(...(fk−1(fk(x)))...))
f2(...(fk−1(fk(x)))...)
...
fk−1(fk(x))
fk(x)

Since ∑
a1
i=1 i+∑

a2
i=1 i < ∑

a1+a2
i=1 i less operations have to

be performed if all the inner calls are not in only one call
but distributed in different calls. In practical and realistic
models the worst case would not occur for a big k, because
a high level of nesting in functions is not used. An analy-
sis of the models of the Modelica Standard Library 3.2.1
shows that the average maximum dependency list length
is about 0.5, where the fluid and media models have the
largest nesting. Thus, with respect to the number of func-
tion calls the calls in arguments of other calls are negligi-
ble. This assumptions lead to a nearly linear complexity
of O(k).

Table 3. Expandable array after the second part of the algorithm
(Dependencies)

Array+
CSE-Variable Function Call Integer List
(_,b,_) f oo(x,sin(cos(time))) { }
x sin(cos(time)) {1}
cse2 cos(time) {1, 2}
cse3 sin(f oo(x,x)) { }
(cse4,_,_) f oo(x,x) {4}

Applying the second phase on the example leads to the
dependency list from Table 3. Since sin(cos(time)) oc-
curs in the first entry index 1 is entered in its dependency
list. The cosine occurs in the first and second entry, so its

dependency list is {1,2}, while f oo(x,x) appears in entry
four and therefore has the dependency list entry 4. For the
other function calls the dependency lists remain empty s-
ince they are the top-level functions and do not appear in
any other function arguments.

3.3 Substitution
In the third part of the algorithm the equations in the e-
quation system are traversed again but this time bottom-
up. The encountered function calls are replaced with the
CSE-variables. If the corresponding dependency list has
entries, the function calls in the expandable array at which
the indices point to are replaced as well and the dependen-
cy list is deleted afterwards. Additionally, a new entry in
the hash table is created, which contains the new function
call and its original index in the array, to guarantee that
occurring calls of that kind can be found as well. If this
entry is already existent in the hash table, then the CSE-
variables have to be merged in the expandable array. After
the processing of each equation the substituted equation
is added to the equation array if it is not redundant. If
the substituted equation is redundant, such as x = x, it is
discarded (cf. Listing 5).

49 / / I I I . S u b s t i t u t i o n
50 f o r each eq in eqSystem
51 f o r each c a l l in eq [BottomUp]
52 g e t c s e _ v a r from a r r a y + and s u b s t i t u t e

c a l l ;
53 s u b s t i t u t e t h e a rgumen t s wi t h t h e c s e _ v a r

in t h e c a l l s r e f e r e n c e d by t h e
dependency l i s t ;

54 d e l e t e t h e dependency l i s t o f t h e c u r r e n t
c s e _ v a r ;

55 i f not a l r e a d y in h t then
56 add t h e new c a l l t o h t w i t h t h e o r i g i n a l

i n d e x ;
57 e l s e
58 merge c s e v a r i a b l e s in t h e e x p a n d a b l e

a r r a y
59 end i f
60 i f t h e s u b s t i t u t e d eq i s not r e d u n d a n t

then
61 add eq t o eqArray ;
62 end i f ;
63 end f o r ;
64 end f o r ;

Listing 5. Phase III of WrapFunctionCalls algorithm:
Substitution

Since the number of operations in the equation system
depends on the number of equations, and the number of
additional operations in the expandable array depends on
the total number of all dependency list entries, which is
negligible relative to the number of equations in models
with a practical orientation, the complexity for the third
phase is nearly linear regarding n (O(n)).

If the third phase is performed on the example model,
the equations are traversed again. This time cos(time) is
the first call that is detected because now the algorithm
works bottom-up. So cos(time) is substituted by its CSE-
variable cse2. Additionally, the calls in the array the de-
pendency list of cos(time) points to are substituted as well,

Smart Processing of Function Calls to Achieve Efficient Simulation Code

584 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132581

so the first call is f oo(x,sin(cse2)) and the second call
is sin(cse2) now. The dependency list is deleted because
this substitution only needs to be performed once. Final-
ly, new hash table entries are created for f oo(x,sin(cse2))
and sin(cse2) with the values 1 and 2, respectively.
The next call that is found is sin(cse2), which is replaced
by x in the equation and in the first array entry and its de-
pendency list is deleted. The first array entry now contains
f oo(x,x). Since this call already exists in the hash table,
this call is now equal to another call and the introduced
CSE-variables have to be merged. Therefore, the CSE-
variables in the fifth array entry are changed to (cse4,b,_).
The function call in the first array entry is also overwritten
with (cse4,b,_).
After that, the call f oo(x,x) is found in the substituted e-
quation. It is replaced by (cse4,b,_) in the equation and
by cse4 in the forth array entry because there the first out-
put is needed. The call sin(cse4) is added to the hash table
with value 4 and the dependency list is deleted. At the
end of the processing of the first equation the substituted
equation is (_,b,_) = (cse4,b,_). Since this equation is
redundant it is not added to the equation array.
While processing the next equations, no more manipula-
tions on the hash table and on the expandable array have to
be performed. At the end of the substitution of the second
equation it reads a = cse3+5.0. It is added to the equation
array. The third equation reads x = x and is not added to
the equation list because it is redundant.
The hash table and the expandable array after the third
phase are illustrated in Table 4 and Table 5, respectively.

Table 4. Hash table after the third part of the algorithm (Substi-
tution)

Hash Table (ht)
Function Call Integer
f oo(x,sin(cos(time))) 1
sin(cos(time)) 2
cos(time) 3
sin(f oo(x,x)) 4
f oo(x,x) 5
f oo(x,sin(cse2)) 1
sin(cse2) 2
sin(cse4) 4

Table 5. Expandable array after the third part of the algorithm
(Substitution)

Array+
CSE-Variable Function Call Integer List
(_,b,_) (cse4,b,_) { }
x sin(cse2) { }
cse2 cos(time) { }
cse3 sin(cse4) { }
(cse4,b,_) f oo(x,x) { }

3.4 Create CSE-Equations
In the fourth and last part of the algorithm each entry of
the expandable array is considered and an equation with
the CSE-variable and the corresponding expression is gen-
erated. If that equation is not redundant it is added to the
equation array and the CSE-variable is added to the vari-
able list (Listing 6).

65 / / IV . C r e a t e c s e e q u a t i o n s
66 f o r each e n t r y o f a r r a y +
67 g e n e r a t e eq (c s e _ v a r = c a l l) ;
68 i f eq i s not r e d u n d a n t then
69 add eq t o eqArray ;
70 add c s e _ v a r t o v a r L i s t ;
71 end i f ;
72 end f o r ;
73

74 add eqArray and v a r L i s t t o eqSystem ;

Listing 6. Phase IV of WrapFunctionCalls algorithm:
Create CSE-equations

Since each array entry is addressed one time, the com-
plexity of this phase is O(k).

In the example, all equations derived from the expand-
able array, except the one from the first entry, are added to
the equation array. So the generated CSE-equations in the
example are the following:

x = sin(cse2)
cse2 = cos(time)
cse3 = sin(cse4)

(cse4,b,) = f oo(x,x)

The processed example model at the end of the Wrap-
FunctionCalls algorithm is shown in Listing 7.

1 model w f c _ r e s u l t
2 f u n c t i o n foo
3 input Real x 1 ,
4 input Real x2 ;
5 output Real y1 ;
6 output Real y2 ;
7 output Real y3 ;
8 [. . .]
9 end foo ;

10 Real a , b , x , c s e 2 , c s e 3 , c se4 ;
11 equat ion
12 a = cs e3 + 5 . 0 ;
13 c se3 = s i n (c se4) ;
14 (c s e 4 , b ,) = foo (x , x) ;
15 x = s i n (c se2) ;
16 c se2 = cos (t ime) ;
17 end w f c _ r e s u l t ;

Listing 7. Example model after processing with
WrapFunctionCalls

To estimate the costs of the complete algorithm the
complexities of the single phases have to be considered to-
gether, so it adds up to O(n+k+n+k). Since in practical
models the number of different function calls is negligi-
ble relative to the number of equations, the complexity of
the WrapFunctionCalls algorithm can be estimated with
O(n). The actual complexity is assessed in the next sec-
tion.

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132581

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

585

4 Verification

4.1 Complexity

The complexity of the optimization module WrapFunc-
tionCalls depends on the number of given function call-
s and equations as described above. The estimation
of a complexity of O(n) is confirmed by a test of the
SteamPipe models of the ScalableTestSuite library (Casel-
la, 2015a). The ScalableTestSuite library is developed by
Francesco Casella and Kaan Sezginer, Politecnico di Mi-
lano (Casella and Sezginer, 2016). This includes different
models among others of the electrical engineering, me-
chanical science and thermodynamics. The models are
characterized by the fact that they are scalable by parame-
ters, so as to test the ability of the Modelica tools in terms
of an efficient compilation and simulation time as the size
increases. To do so the execution time of the algorithm for
these models was measured during compilation for differ-
ent parameters N which is a scalable parameter depending
linearly on the number of equations n.

The results of the tests are shown in Table 6 and Fig-
ure 1. These tests confirm that the execution time is linear
proportionate to the parameter N and thus also linear to
the number of equations n. Due to experiences with a va-
riety of different other libraries it is assumed that this O(n)
bahaviour is not only valid for a certain structure of equa-
tions.

Table 6. Execution time of WrapFunctionCalls for SteamPipe
models

Model N n Calls Time [s]
SteamPipe_N_10 10 262 40 0.0074
SteamPipe_N_20 20 522 80 0.0221
SteamPipe_N_40 40 1042 160 0.0298
SteamPipe_N_80 80 2082 320 0.0607
SteamPipe_N_160 160 4162 640 0.1233
SteamPipe_N_320 320 8322 1280 0.253
SteamPipe_N_640 640 16642 2560 0.552

4.2 Code Motion

Below it is shown that the expected effect of code motion
actually happens in practice, i.e. function calls are moved
out of algebraic loops, so that these are calculated before-
hand and not in each iteration step. To do so the simulation
time of different libraries are compared with the optimiza-
tion module WrapFunctionCalls deactivated and activat-
ed, respectively. The results of the test are shown in the
next section. The analysis shows that among others in the
model WaterIF97 of the MSL 3.2.1 code motion occurs
in practical relevant examples. This model has a nonlinear
algebraic loop (Table 7), whose residual equation contains
a function call that can be stored in a CSE-variable (cse4)
and thus can be moved out of the loop (Table 8).

0 200 400 600
0

0.2

0.4

0.6

N (number of pipes)

E
xe

cu
tio

n
tim

e
[s

]

Figure 1. Graphic representation of the execution time of Wrap-
FunctionCalls for SteamPipe models

Table 7. Code Motion example without WrapFunctionCalls

Nonlinear loop.
Iteration variable: DER.medium.p

DER.medium.h = DER.medium.u -
(medium.p * DER.medium.d -
der(medium.p) * medium.d)/(medium.d ˆ 2.0)

Residual equation:
Modelica.Media.Water.IF97_Utilities.rho_ph_der
(medium.p, medium.h, Modelica.Media.Water.
IF97_Utilities.waterBaseProp_ph(medium.p,
medium.h, medium.phase, 0), DER.medium.p,
DER.medium.h) - DER.medium.d = 0.0

Table 8. Code Motion example with WrapFunctionCalls

cse4 := Modelica.Media.Water.IF97_Utilities.
waterBaseProp_ph(medium.p, medium.h,
medium.phase, 0);

Nonlinear loop.
Iteration variable: DER.medium.p

DER.medium.h = DER.medium.u -
(medium.p * DER.medium.d -
der(medium.p) * medium.d)/(medium.d ˆ 2.0)

Residual equation:
Modelica.Media.Water.IF97_Utilities.rho_ph_der
(medium.p, medium.h, cse4, DER.medium.p,
DER.medium.h) - DER.medium.d = 0.0

4.3 Improvement in Simulation Time
This section shows the improvement in simulation time of
many models in specific libraries. For this purpose, Ta-
ble 9 presents some extracts of single libraries with im-
provements of over 40 percent. The reasons for the signif-
icant upgrade are especially the described effects of code
motion and the encapsulation of expensive function calls.

Smart Processing of Function Calls to Achieve Efficient Simulation Code

586 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132581

The analysis shows that the ThermoPower library achieves
the best results with an improvement of over 90 percent,
followed by the SteamPipe models of the ScalableTest-
Suite with more than 80%. The MSL 3.2.1 also demon-
strates enhancements far above 40 percent. For example,
the already mentioned model WaterIF97 gains a speed-up
of 53%.
These absolutely positive results are confirmed by sev-
eral OpenModelica power users, which also demonstrate
a magnificent improvement in runtime performance of
their applications by encapsulating function calls. (Franke
et al., 2015; Franke, 2016; Casella, 2014, 2015b).

Table 9. Improvement in simulation time shown on an extract
of expressive libraries

Model (Library) −WFC + WFC Imp.
[s] [s] [%]

MSL 3.2.1
DrumBoiler 4.52 1.73 62
MomentumBalanceFittings 4.01 1.63 60
HeatExchangerSimulation 36.31 12.89 65
InverseParameterization 78.81 41.03 48
NonCircularPipes 8.71 3.91 55
R134a1 16.77 5.19 69
DryAir2 21.85 5.17 76
TestTwoPhaseStates 2.38 0.93 61
WaterIF97 1.90 0.90 53
PlanarMechanics
KinematicLoop_
DynamicStateSelection 19.26 6.12 68
PowerSystems
PowerWorld 7.59 1.73 77
ThermoPower
CISESim180504 284.6 20.24 93
TestMixerSlowFastSteam 8.80 0.69 92
TestWaterFlow1DFV_F 45.73 15.82 65
ScalableTestSuite
SteamPipe_N_10 23.84 4.35 81
SteamPipe_N_20 45.56 8.60 81
SteamPipe_N_40 98.24 17.61 82
SteamPipe_N_80 197.93 35.39 82
SteamPipe_N_160 412.87 73.8 82

5 Conclusions
This paper shows an optimization algorithm which en-
capsulates function calls of the given equation system in
temporary variables. Above all, the idea is that expen-
sive function calls should be evaluated only once. Fur-
thermore, the effect of code motion of standard compilers
motivates to find this effect in Modelica models. The ex-
traction of function calls out of algebraic loops promises
a huge improvement in simulation time since the iteration
does not have to be performed over a function call in each
step. Thus, also single occurring function calls are stored

in contrast to the original Common Subexpression Elim-
ination. Other peculiarities, e.g. nested function calls,
functions with multiple outputs or simple equations with
a special form such as variable = call, are considered as
well.
Additionally, the algorithm works very efficient, which is
confirmed by a complexity assessment of O(n). A test
with the help of the ScalableTestSuite approves the esti-
mation. The desired effect of code motion also can be
found in practical models and is depicted by an example
of the MSL 3.2.1.
Moreover, single extracts of different libraries are listed,
which show vast improvements in simulation time due to
code motion and the encapsulation of function calls.

Acknowledgments
This work is supported by the Ministry of Innovation, Sci-
ence and Research of the German State of North Rhine-
Westphalia (MIWF NRW) as part of the research coop-
eration “MoRitS - Model-based Realization of intelligent
Systems in Nano- and Biotechnologies" (grant no. 321 -
8.03.04.03 - 2012/02).

References
Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ull-

man. Compilers - Principles, Techniques, and Tools; 2. Edi-
tion. Pearson, 2008. ISBN 978-0321486813.

Francesco Casella. Thermopower library simulation. Open-
Modelica Workshop, Linköping, Sweden, Februar 3rd ,
2014, 2014. URL http://www.modprod.liu.se/
openmodelica2014-talks/1.544931/
OpenModelica2014-talk03-Francesco-
Casella-ThemoPowerLibrarySimulation.pdf.

Francesco Casella. Simulation of large-scale models in model-
ica: State of the art and future perspectives. In Proceedings
of the 11th International Modelica Conference, Versailles,
France, September 21-23, 2015, number 118, pages 459–
468. Linköping University Electronic Press, Linköpings uni-
versitet, 2015a.

Francesco Casella. Modelling of energy system-
s with OpenModelica. OpenModelica Workshop,
Linköping, Sweden, Februar 2nd , 2015, 2015b. URL
http://www.modprod.liu.se/openmodelica-
2015/1.620217/OpenModelica2015-talk03-
Francesco-Casella.pdf.

Francesco Casella and Kaan Sezginer. ScalableTest-
Suite homepage. https://github.com/casella/
ScalableTestSuite, December 2016.

Rüdiger Franke. Embedded optimizing control using the
OpenModelica C++ runtime. OpenModelica Workshop,
Linköping, Sweden, Februar 1st , 2016, 2016. URL http:
//www.modprod.liu.se/filarkiv/1.672872/
OpenModelica2016-talk08-RudigerFranke-
EmbeddedOptimizingControl.pdf.

Session 9B: Numerical & Symbolic Methods

DOI
10.3384/ecp17132581

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

587

Rüdiger Franke, Marcus Walther, Niklas Worschech, Willi
Braun, and Bernhard Bachmann. Model-based control with
FMI and a C++ runtime for Modelica. In Proceedings of the
11th International Modelica Conference, Versailles, France,
September 21-23, 2015, pages 339–347, 2015.

Jacek Jakubowski. Architekturunabhängige Quellcodeopti-
mierung durch Mustererkennung. Dissertation, Universität
Dortmund, 2002.

Filip Jorissen, Michael Wetter, and Lieve Helsen. Simulation
speed analysis and improvements of modelica models for
building energy simulation. In Proceedings of the 11th Inter-
national Modelica Conference, Versailles, France, September
21-23, 2015, pages 59–69, 2015.

Steven S. Muchnick. Advanced Compiler Design and Implemen-
tation. Morgan Kaufmann Publishers, San Francisco, 1997.
ISBN 978-1-55860-320-2.

Michael Vogt. Plattformunabhängige Eliminierung gemein-
samer Teilausdrücke auf Quellcode-Ebene. Dissertation, U-
niversität Dortmund, 2004.

Smart Processing of Function Calls to Achieve Efficient Simulation Code

588 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132581

Integrative Physiology in Modelica
Jiří Kofránek1, Tomáš Kulhánek1, Marek Mateják1, Filip Ježek1, Jan Šilar1

1Department of Pathophysiology, 1st Faculty of Medicine, Charles University
{kofranek, tmkulhanek, matejak.marek, jezekf, janeksilar}@gmail.com

Abstract
The integrative model of human physiology connects
individual physiological subsystems into a single unit.
They are enormous (contain thousands of variables) and
represent a formalized description of interconnected
physiological regulations. The issue of formalization
of physiological systems became part of a series of
international projects (e.g. the worldwide program
“PHYSIOME”, or the European program “VIRTUAL
PHYSIOLOGICAL HUMAN”). The development of
large-scale models of human physiology was facilitated
by a new generation (i.e. equation-based) of simulation
environments, especially by the Modelica language.
These models can be used to explain the causal relations
of the pathogenesis of many diseases. They can be applied
in the evaluation of clinical trials and they can also be
used in the core of sophisticated medical simulators.
Keywords: Simulation, Physiology, Integrative models

1 Introduction
In 1972, Arthur Guyton published an article (A. C. Guyton,
Coleman, and Granger 1972) in the journal Annual
Review of Physiology, whose form quite surpassed the
usual forms of physiological articles of those times at the
very first sight. An extensive diagram, slightly resembling
a complex electronic circuit, enclosed as an attachment,
was used as introduction, showing interconnection of
essential subsystems, that have an effect on circulation,
by means of special symbols expressing mathematical
operations (addition, subtraction, multiplication, division,
integration and functional dependencies). The connections
of the elements thus represented mathematical equations
(Fig. 1) and the entire scheme provided a visual graphic
representation of a set of equations describing the then
available ideas of bloodstream regulation including
essential connections with other physiological systems
of the human organism (Fig. 2). This graphic scheme
of Guyton was thus one of the first mathematical
descriptions of mutually connected physiological systems
in the human organism and it initiated development
of physiological research, today sometimes described
as integrative physiology.

2 Integrative physiology modelling
Modelling is closely related to formalization – i.e.

replacement of verbal description of physiological
systems with the exact language of mathematics in the
form of a mathematical model. Given the complexity of

biological systems, the process of formalization is delayed
in biological and medical sciences compared to physics,
chemistry or technical sciences.

While in physics, the formalization process began
at some point during the 17th century, in medical and
biological sciences it occurred only with the onset of
cybernetics and computer science. Computer models
developed based on mathematical description of
biological reality are used as the methodological tool in
latter sciences.

In physiology, formalized descriptions have been
used since the 1940s; at that time, McCulloch and Pitts

Multiplier
Divider

Summator Integrator

Guyton

Simulink

Functional block

s
1

Guyton

Simulink

Guyton

Simulink

GuytonSimulink

-4
0

20

50-4
0

20

50

Simulink

+
+
-

+
+
-

Guyton

Figure 1. Individual elements in the scheme of Guyton’s
model display mathematical operations whose connections
represent graphically expressed mathematical equations.
Blocks in the original Guyton notation (1972), and the same blocks
in Simulink (1990).

Figure 2. Interconnected physiological subsystems in the
Guyton model (Guyton et al., 1972).

DOI
10.3384/ecp17132589

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

589

(McCulloch and Pitts 1943; Pitts and McCulloch 1947),
to mention some examples, designed a simplified neuron
model and Sheppard (Sheppard 1948) introduced his
compartment approach, that found quick application in
pharmacokinetics. In the 1950s, Hodkgin and Huxley
(Hodgkin and Huxley 1952) published their ground-
breaking model of the neuronal excitation membrane.
In the 1960s, the development of computers supported
another wave of publications related to formalized
description of physiological reality, for example, Milhorn’s
monograph on the use of Automated Control Theory in
physiological systems (Milhorn 1966) or the pioneering
work of Grodins regarding the modelling of respiration
(Grodins, Buell, and Bart 1967). At the end of the 1960s
and at the beginning of the 1970s of the past century,
multicompartment systems found broad application in
biology and medicine (Atkins 1969), and computer-based
methods were developed to determine the parameters
of biological systems (Potůček et al. 1977).

2.1 Integrative physiology
The above mentioned model of Guyton and his

collaborators from 1972 (A. C. Guyton, Coleman,
and Granger 1972) was one of the first extensive
mathematical descriptions of physiological functions of
mutually connected subsystems in the human organism,
which established an area of physiological research,
today described as “integrative physiology“ (Coleman
and Summers 1997). Similarly as theoretical physics
seeks to describe physical reality and explain the results
of experimental research using formal means, “integrative
physiology“ also seeks to create a formalized description
of mutual connections among physiological regulation
systems and to explain their role in the development of
various diseases based on experimental results. From this
point of view, Guyton’s model was a certain milestone
aimed at capturing the dynamics of relationships among
the regulation systems of the cardiovascular circulation,
kidneys, respiration, volume and ion composition of body
fluids using a graphically depicted network while applying
a system view of physiological regulation systems.

Guyton’s graphic notation of the formalized description
of physiological relationships, inspired by then commonly
used analogue computers, provides a highly visual
representation of mathematical correlations – blocks at the
network nodes represent graphic symbols for individual
mathematical operations, while the connecting lines
represent individual variables. Guyton’s graphic notation
was soon adopted also by other authors – for example,
Ikeda et al. (Ikeda et al. 1979) in Japan or the Amosov
research group in Kiev (Amosov et al. 1977).

With his research and teaching, Guyton changed
physiology from a science of verbal descriptions to one
of quantitative analysis. He brought mathematics and
physics into the discipline. He was a pioneer in the use

of computers to study of body function and has taught
scientists all over the world computer simulation.

Guyton’s model also served as an inspiration and
a resource for the development of complex models of
physiological regulation systems used to explain causal
chains of reactions in the human organism to various
stimuli and to understand the development of various
pathological conditions. Among others, the modified
Guyton model became part of the foundations for an
extensive model of physiological functions in the NASA
program “Digital Astronauts” (White and McPhee 2007).

Currently, the international project PHYSIOME
(http://www.physiome.org) is focused on the formalized
description of physiological systems; this project is the
successor of the “GENOME“ project, which resulted in
a detailed description of the human genome. The aim
of the “PHYSIOME“ project is to develop a formalized
description of physiological functions. Computer models
are used as the methodical tool (Bassingthwaighte 2000; P.
Hunter, Robbins, and Noble 2002; P. J. Hunter et al. 2006;
Peter J. Hunter, Crampin, and Nielsen 2008; Omholt and
Hunter 2016). “VIRTUAL PHYSIOLOGICAL HUMAN“
(http://www.vph-institute.org) is a European initiative in
this field, focused, among other things, on applications of
the formalized approach to human physiology in clinical
medicine (P. Hunter 2016). Descendants of Guyton’s
original computer model of the cardiovascular system
are some of the resources for the development of present
complex models of physiological regulation systems in

Figure 3. A system as an entity that maintains its existence
through mutual interactions of its individual parts (system
elements). In the system analysis, the system should include
only those elements that enter in mutual interactions with
each other (orange squares), while elements that may be
structurally and functionally similar to other system elements
but interact only with the surroundings of the system (an
empty square) should be excluded from the system. The
surroundings of the system interact with individual system
elements or modulate their mutual bonds (dashed arrows).
When studying a system (the transfer between individual
hierarchical levels), reductionist and integration tools and
methods need to be combined. Adapted from (Peter Kohl
and Noble 2009).

R
E
D
U
C
E

I
N
T
E
G
R
A
T
E

SystemSystem

PartsParts

Integrative physiology in Modelica

590 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132589

this European project (Thomas et al. 2008).
Besides integrative models of human physiology,

integrative models of laboratory animals have also been
developed recently. The project “VIRTUAL RAT“ is
aimed at designing a complex model of a laboratory
rat that can be validated more easily by comparing to
experimental data from laboratory animals (http://www.
virtualrat.org).

2.2 The human organism as
a hierarchical system
The task of exploring a living organism as a system unit
poses a key problem of how (with respect to the explored
problem) the system structure should be defined in the
biological object, what parts should be understood as
system elements, how to define the subsystems, etc.

According to the definition of Bertalanffy (Von
Bertalanffy 1973), the system is an entity that maintains
its existence through mutual interactions of its individual
parts (system elements). Therefore in the system analysis,
a system defined on any given real object should include
only those parts that primarily interact with each other
(see Fig. 3).

System research must include (Peter Kohl and Noble
2009):

• Identification of individual parts of the entity;
• Detailed characteristics of mutually interacting

parts of the entity to be included among the system
elements (while parts interacting only with the
surroundings of the system will not be included);

• Exploration and subsequent description of mutual
interactions among individual elements;

• Exploration and subsequent description of
interactions with the surroundings of the system
(the system surroundings have direct or indirect
effects on the system elements, by influencing
mutual interactions among the system elements);

• Combinations of reductionist and integration tools
and methods in exploration of any system entity on
various hierarchical levels.

A system as a set of elements and integration bonds
is thus defined on a real object. Based on more detailed
exploration of the system entity, an ever a more complex
system can be defined, which may be composed of a
number of mutually integrating subsystems. However,
this is not a purely mechanical process. When passing to
a more detailed level, a number of included functions and
bonds of the higher hierarchical level must be reduced,
and on the contrary, when passing to a higher level
a number of elements and bonds must be integrated
(Fig. 4). Every model is a simplified notion of
representation of reality on various hierarchical levels.

The approach of classical molecular biology goes
“from below upwards“. It starts from “bottom elements“
of the organisms – genes and proteins. Molecular biology
models provide formalized descriptions of interactions
of gene and protein cell structures that can be used to
understand their functions.

The approach of classical physiology is the opposite –
“from above downwards“, somewhat resembling reverse
engineering. First, the system is studied on higher levels
and subsequently, the process goes down in an effort to
find inverse solutions. The system behaviour is used to try
to derive the functions of its individual parts.

Integrative models start “from the middle“. They
combine both approaches – downward to the cellular and
molecular level and upward to integration and deriving of
functionalities of the human organism as a whole (P. Kohl
et al. 2010).

The circulatory system model of the Japanese authors
Shim et al. (Shim et al. 2006) can be given as an example
of connecting models of various hierarchical levels;
these authors combined a simple model of cardiovascular
haemodynamics of the vascular system with the model
of ventricles of the heart (Fig. 5), acting as a heart pump.
The ventricles were modelled, in a simplified manner,
as spherical elastic compartments with variable tension
of their wall. This tension was obtained from the model
of actomyosin cross-bridges of the myocyte (formation
of these bridges determines the strength of the stretched

R
E
D
U
C
E

I
N
T
E
G
R
A
T
E

TIME
FUNCTION

STRUCTURE

Models: simplified representations of reality

MOLEKULE
GENE

TRASCRIPT
NETWORK

ORGANELE
CELL

TISSUE
ORGAN

BODY

System

Parts

System

Parts

Real world Insight

Figure 4. Our understanding of the “real world system“
usually provides only a simplified representation of
reality. The gradual evolution of our understanding of the
real biological world is based on the use and analysis of
experimental and theoretical (mathematical) models on
all hierarchical levels. The result is reflected in ever more
detailed knowledge of the structure of functional relationships
and their changes in time, gradually integrated in higher
hierarchical levels. System biology provides a framework for
targeted interconnection of various aspects of applications of
models in biomedical research and development. Adapted
from (Peter Kohl and Noble 2009).

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132589

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

591

muscle cell). Their formation is affected by calcium
crossing the cell membrane and the sarcoplasmic reticulum
membrane where calcium is cyclically released and
uptaken. In the sarcoplasmic bridge model, calcium binds
to troponin. This binding of calcium causes actomyosin
cross-bridges to form, resulting in subsequent tension of
the muscle cell. The model of actomyosin cross-bridges
was therefore connected to the model of calcium passing
between the cytoplasm and sarcoplasmic reticulum.

The cardiovascular haemodynamics model is based
on a considerable simplification of reality; it is designed
as an RLC model with lumped parameters. Ventricular
pressure is found at the input; it is generated by the
cardiac ventricular model depicted as a sphere with the
wall of variable rigidity. The tension value of the myocyte
muscle fibre, being the output of the actomyosin cross-
bridges (validated according to experimental results),
is the starting value for calculating the ventricular wall
rigidity. The actomyosin cross-bridge model depends
on the output of the myocyte calcium dynamics model
(validated according to experimental results). The
connection of models of different hierarchical levels
integrates important outputs of lower hierarchical level
models (for example, behaviour of the myocardium as a
whole is derived from the actomyosin cross-bridge model
of one cell). Although the models of every hierarchical
level represent considerable simplification of reality,
the model outputs indicate, for example, the effect of
calcium levels in the muscle cell cytoplasm on pressure-
volume curves of the left ventricle, thus illustrating, e.g.,
the clinically verified effect of pharmaceuticals acting on
the potassium pump in myocytes.

2.3 Hummod
Today, the most extensive model of integrated
physiological systems of human physiology is apparently
the HumMod model created based on international
cooperation of a group of collaborators and disciples of
A. Guyton, at the Mississippi University Medical Center,
USA (R. L. Hester et al. 2011; R. Hester et al. 2011; Lerant

et al. 2015; W. A. Pruett, Clemmer, and Hester 2016).
The authors do not seek to keep its structure a secret;
the source text of the model (containing more than
5,000 variables) can be downloaded from the website
of the model, http://hummod.org. The source text was
written in the special markup language XML. The entire
mathematical model is offered as “open source“; users
can use the website to download and install on their
computer the source code as well as the compiler and run
the model on their own machine (Figs. 6 and 7). Users
can thus adapt and modify the model. The problem is that
the XML source texts of the entire model are written in
several thousands of files located in hundreds of folders,
and it is very difficult to orient oneself in the mathematical
relationships by studying more than a thousand of
mutually connected XML files.
In the development of models in the field of integrative
physiology, many research teams actually preferred to
use older models of complex physiological regulations –
for example, the old models of Guyton (A. C. Guyton,
Coleman, and Granger 1972; A. C. Guyton et al. 1986;
A. C. Guyton, Hall, and Montani 1988; J. P. Montani,
Mizelle, et al. 1989; J. P. Montani, Adair, et al. 1989; J.-P.
Montani and Van Vliet 2009) or the old model of Ikeda
(Ikeda et al. 1979). For example, this path was taken by
the international research team of the SAPHIR (System
Approach for Physiological Integration of Renal, cardiac
and respiratory control) project in 2008 after deciding that

Figure 5. The integrative model of the cardiovascular system
as a combination of models on various hierarchical levels
according to (Shim et al. 2006).

Integrative model of
the cardiovascular

system

model of human
ventricular
myocyte

cross-bridge
dynamics

simplified
hemispheric cardiac

ventricle

model of
cardiovascular

dynamics

calcium
transient

calcium
buffer

cell tension

half sarcomere length

Ventricular
volume

ventricular
pressure

Laplace‘s lawcalcium binding to
troponin

lumped parameter modelcalcium movement

Figure 6. The HumMod simulator has been distributed with
a compiler, loader and the source code written in thousands
of XML files.

Compiler and loader
for HumMod model

Source code of
HumMod

Integrative physiology in Modelica

592 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132589

the open source mathematical model of integrative human
physiology containing over 3000 variables from Guyton’s
laboratory (R. L. Hester, Coleman, and Summers 2008)
at that time seemed very poorly readable and diffi cult
to understand to the project participants. Therefore two
legacy integrated models have served as a starting point
for integrative model development (Thomas et al. 2008),
namely the classic model of Guyton et al. (1972), which
focused on blood pressure regulation, and the model of
Ikeda et al. (1979), based on Guyton’s models but extended
to focus on the overall regulation of body fl uid. The model
of Ikeda was recently reimplemented in the modern
simulation environment (Fontecave-Jallon and Thomas
2015). Similarly, in 2011 Mangourova et al. (Mangourova,
Ringwood, and Van Vliet 2011) implemented in Simulink
an older model of Guyton of 1992 written in C instead
of the then most recent (but diffi cult to understand for
them) version of the large integrative model - QHP
(Quantitative Human Physiology - the predecessor of the
HumMod model) from Guyton’s laboratory.

It is apparent that comprehensibility of descriptions
of complex integrative models is one of their limiting
factors for their acceptance by the scientifi c community.
If the creators are the only ones to understand their
models, their potential of factual communication with
other scientists is thus hindered. This also limits the
possibilities of designing integrative models within
a broader scientifi c community. This is an important
reason why the development of methodologies has been
gaining importance; such methodologies would make the
descriptions of structures of complex hierarchical models

clearer in a way so that a wider spectrum of users can
understand them.

Special viewers have been created for better
understanding of the HumMod model that enable the user
to go through individual relationships within the model
(Xu et al. 2011; Wu et al. 2013; Chen et al. 2013). In spite
of this., the equations of the model and their relationships
still remain diffi cult to understand for the user.

2.4 Our results – Modelica libraries and
PHYSIOMODEL

One of the ways to facilitate the understanding of
complex hierarchical models consists in using the new
object-oriented modelling language Modelica. Therefore
we have decided to reimplement the entire complex model
of the American authors in this language.

We were not frightened by the complex structure of the
HumMod model (called QHP in the previous version) and
established closer cooperation with the American authors.

Figure 7. The user can compile and run the HumMod model.
Using a widely branched menu, hundreds of variables can be
monitored during simulation experiments.

Figure 8. An illustration of a part of the source text of our
HumMod implementation in Modelica. The source text
resembles hierarchical physiological schemes. The content
of the component of splanchnic circulation (from the upper
fi gure) shows blood fl ow through the gastrointestinal tract
component, the elastic compartment of the portal vein, and
fl ow through the liver.

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132589

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

593

We developed a special software tool called QHPView
(J. Kofránek, Mateják, and Privitzer 2010) to create a
clear visualization of the used mathematical relationships
from the thousands of the source text files. This enabled
us to orient ourselves in the large model.

The model reimplementation in Modelica resulted in
a substantially better visualization of the model structure
(see Fig. 8) and among other things, it also helped
to discover some mistakes in the original American
implementation of HumMod. We modified and expanded
the model especially regarding the modelling of the
transfer of blood gases and homeostasis of the inner
environment, especially the acid-base balance (Jiri
Kofranek, Matejak, and Privitzer 2011; Jirí Kofránek et
al. 2013; Marek Mateják 2015; M. Mateják and Kofránek
2015).

Our version of HumMod called PHYSIOMODEL has
been developed as an open source model. Source texts
of the model (i.e. the equations, values of all constants,
etc.) representing formalized expressions of physiological
relationships are available to the public at http://www.
physiomodel.org. The development of the integrative
model of human physiology has also resulted in designing
application libraries for the modelling of physiological
and chemical systems in Modelica called “Physiolibrary“
and “Chemical“ (see http://www.physiolibrary.org)
(Marek Mateják et al. 2014; Marek Mateják 2014; Marek
Mateják et al. 2015; Matejak et al. 2015).

A more detailed description of the libraries and of
our implementation of the integrative model of human
physiology is the subject of a PhD thesis (Marek Mateják
2015).

3 Importance of integrative models
A relatively logical question emerges in a connection

with the relatively demanding activities of developing
integrated models – what can these models, created while
exerting such great efforts, be used for?

3.1 Understanding of the context
The main benefit of these models consists in

understanding how the human organism works as
a whole, being a hierarchical system with complex
regulations; how individual disturbances are manifested
representing the bases of various diseases; and how an
appropriate therapy is applied.

The reason why actually Guyton with his collaborators
created the model cited in the introduction can also be
given as an example (A. C. Guyton, Coleman, and
Granger 1972). It was for the study of regulatory disorders
resulting in high blood pressure, for the study of effects
that control the heart pump activity, and for exploration
of adaptive responses to a heart failure (A. C. Guyton,
Granger, and Coleman 1971; A. C. Guyton 1981). The

model has helped to understand the mechanisms of these
actions.

In the past, when the physiologists focused only on
the study of the dynamics of blood circulation, a simple
mechanistic notion existed saying that high blood
pressure was caused by an elevated peripheral resistance
of blood vessels. Clinical findings in hypertonic patients
corresponded to this notion – some of them actually
did have increased peripheral resistance. However, we
can ask why in some diseases associated with increased
peripheral resistance (for example, hypothyroidism or
in conditions after amputation of multiple limbs) the
blood pressure is normal? Also, blood pressure remains
unchanged in some diseases where peripheral resistance
is decreased – for example, hyperthyroidism, beriberi,
anaemia or arteriovenous shunts. It has shown, that
exploration of regulation in the circulatory system alone is
insufficient to explain these phenomena; we need to take
into account also the regulation of volume and osmolarity
of body fluids and the regulation of water and salts intake
and output. Namely arterial blood pressure depends,
among others, not only on peripheral vascular resistance
but also on the contents of the vascular bloodstream, i.e.
on the overall volume of circulating blood and also on
the cardiac output. Blood pressure rises together with the
volume of circulating blood. Kidneys promptly respond
to this situation, excrete the excessive volume, and the
blood pressure is adjusted. When the heart starts pumping
more blood in a time unit – i.e. when the output increases,
while peripheral resistance does not decrease at the same
time, blood pressure rises, as well. On the other hand,
the heart is a special pump that is controlled also by the
pressure at its output – heart output changes also when
pressure increases in large veins at the input of the atria
of the heart. When the heart output remains increased in
the long term, it gradually leads to a regulatory response
in the periphery where peripheral resistance rises in order
to reduce chronic hyperperfusion of internal organs.
As shown by the research of Guyton using simulation
models, the pathogenesis of the hypertension disease
consists in disorders of these regulatory mechanisms – the
kidneys are wrongly set to regulating a larger volume of
circulating blood; increased contents of the bloodstream
leads to an increase of the contents of large veins; this
causes an increase in the pressure in large veins; and the
increased pressure at the input of the atria of the heart
causes increased heart output responded to in the periphery
by increased peripheral resistance after some time (in
order to reduce the hyperperfusion of peripheral organs),
and thereby the increased blood pressure becomes fixed
(A. C. Guyton, Hall, and Montani 1988).

In his models, Guyton also showed the mechanism
of adaptive response to heart failure where, again,
mechanisms related to circulatory and volume regulation
are applied (J.-P. Montani and Van Vliet 2009). The

Integrative physiology in Modelica

594 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132589

results of these simulation studies have found their way
to medical textbooks.

Guyton himself paid great attention to teaching of
physicians and wrote a generally recognized textbook
of physiology that provides a logical explanation of the
mechanism of physiological regulatory actions. Guyton
died in 2003 in a car accident, but his collaborators and
students continue his work – they not only elaborated the
original Guyton’s model creating the above mentioned
extensive model HumMod, but they also continue
publishing his textbook complementedwith new
knowledge – currently, the 13th edition of this textbook is
available (Arthur C. Guyton and Hall 2015).

The extended integrated model has also found
application in cosmic medicine. For example, the disciples
of Guyton succeeded in using the model to explain why
the adaptation to the gravitational force of the Earth after
returning from an orbit takes about 5 times longer in
female than male astronauts. Model simulations showed
the cause of this phenomenon. In females, the centre of
gravity is found lower than in males due to anatomical
differences. The extracellular space is dewatered in the
weightless condition and rewatered again after returning
to the atmosphere – in females, the volume of fluids
moved back from the blood to the interstitium is larger
than in males due to the shifted centre of gravity, resulting
in prolonged adaptation to the force of gravity – for details
see (Summers et al. 2010).

Simulation games with an integrated model can also
contribute to the guidelines for some procedures in acute
medicine. For example, HumMod showed why (and for
how long) it is important to preoxygenate the patient
with 100% inhalatory oxygen before intubation (during
anaesthesia) (this is a guideline for anaesthesia) – the
patient namely does not breathe for a certain period of
time during the intubation procedure. Furthermore, as
shown by the model, it is needless to apply preventive
hyperventilation after intubation and after connecting the
patient to artificial pulmonary ventilation (which used to
be the routine approach of some anaesthesiologists) – for
details see (Lerant et al. 2015).

One of the body’s most critical tasks is water
homeostasis. Physical challenges to the body, including
exercise and surgery, almost always coordinate with some
change in water handling reflecting the changing needs
of the body. The HumMod integrative mathematical
model of human physiology was also validated against
six different challenges to water homeostasis with special
attention to the secretion of vasopressin and maintenance
of electrolyte balance. HumMod successfully replicated
the experimental results, remaining within 1 standard
deviation of the experimental means in 138 of 161
measurements. Only three measurements lay outside of the
second standard deviation. This validation suggests that

HumMod can be used to understand water homeostasis
under a variety of conditions (W. A. Pruett, Clemmer, and
Hester 2016).

As shown by the examples above, the use of integrated
models can help to explain causal relationships of
a number of physiological actions.

3.2 Populations of virtual patients for clinical
studies

In order to explain the course of pathogenesis of
various diseases and responses of people to administered
therapy, it is important to ensure that the integrated
model represents more than a kind of an average person.
Sensitivity analysis can show how the changes in values
of individual parameters are manifested in the overall
behaviour of the model. For the purpose of studying
individual responses, the integrated model representing a
“normal“ patient is used to create a population of models
representing the population of various patients by variation
of parameter values (approx. by +/- 10%). Precisely this
approach then makes its possible to observe individual
variability of behaviour of the model and compare the
same to individual variability of the population of real
patients.

Thus, for example, in the study of individual
responses to bleeding (Zhang, Pruett, and Hester 2015)
the population of 395 patients was first created using
this method. About 85% of the thus created population

Figure 9. A possible way of using integrative models for
interpretation of clinical study results. (1) A variation of
parameter values is used to create a population of virtual
patients. (2) Patients whose variable values exceed normal
ranges are excluded from the thus created population
of patients. (3) The remaining “healthy“ heterogeneous
population of virtual patients is used to perform the clinical
experiment (simulated administration of pharmaceuticals).
(4) The virtual patients are sorted in groups with similar
responses to the virtual therapy. (5) For the given groups
of virtual patients, we try to find matching groups of real
patients with similar responses in the clinical study. Analysis
of behaviour of the simulation model during the simulated
therapy is used to seek explanations of individual differences
in responses to the administered therapy.

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132589

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

595

of virtual patients showed normal physiological values
– and only 15% showed abnormal values, which were
removed from the population. This is how a single
integrated model of the “average“ patient was used to
create the population of models representing a set of
individual (virtual) patients. And this heterogeneous
population was then used for research aimed at revealing
the causes of individual deviations in patient responses
to a pathogenic noxa (bleeding in the given case) or to
administered therapy. Results of the study (behaviour
of virtual patients in haemorrhage) were then classified
using cluster analysis in order to sort patients with similar
behavioural patterns; these groups of virtual patients were
then compared to similar behavioural patterns in real
patients. Subsequently, qualitative analysis of the model
behaviour could be done in order to find the causes of the
individually different responses.

The analysis of sensitivity of parameters affecting the
blood pressure value was performed similarly, resulting
in the population of individual models with similar
behavioural patterns based on an older model of Guyton
(Moss et al. 2012).

It thus seems that the path leading to future application
of integrative models in clinical situations (especially in
clinical studies) consists in generating a population of
models representing the population of virtual patients,
subsequent modelling of the given pathology or effect
of medications using this heterogeneous population
of models, and sorting of the simulated virtual patients
to groups according to similar responses. Based on
comparison with a group of similarly responding patients
of the clinical study, analyses of the model behaviour
can reveal the causes of different responses in the patient
groups to the given pathogenic noxa or to the therapy (see
Fig. 9).

The pathology or the effect of the therapy in integrated
models is usually modelled by changing some parameters
that cause an appropriate (pathogenic or therapeutic)
response.

As follows from simulation studies, the cause of
differences of some individual responses need not be
based on a difference in only one parameter – but in
combined changes of several parameters.

Let us explain this problem using an illustrative
example (Fig. 10) (P. Kohl et al. 2010). For a clearer idea,
only the parametric state space of two parameters, P1
and P2 will be considered. The value of the hypothetic
biological function is the axis z differentiated by its height
and colour. We shall consider a patient whose biological
profile is located at the position A. The required action
(simulating the effect of the therapy or the effect of a “side
effect of some other medication“) consists in reducing
the parameter P1 to its target value. A direct change of
parameter P1 (the path from A to C) leads to a serious

biological (pathological) response. The covariance of
both parameters P1 and P2 (the path A – A’ – B) makes
it possible to move to the required level P1 without any
harmful consequences. An isolated reduction of the
parameter P2 in the same range as at the point B (without
changing P1) would also be harmful; as can be seen
intuitively, precisely the path of gradual modification
of both parameters (P1 and P2) from A to B causes no
biological response.

And vice versa – only a concurrent change of several
parameters causes an unfavourable biological effect,
while changes in individual parameters cause no adverse
biological effect – and frequently, this is also the core
of the robustness and ultrastability of physiological
regulations that can be revealed precisely and only using
integrative models.

Thus for example, variations of parameters of the
HumMod model were used to monitor the sensitivity
of blood pressure changes after a salt intake (W. Pruett,
Husband, and Hester 2014). It was shown that no single
parameter which would lead to an increased blood
pressure after an increased salt intake existed – this is the
core of high stability of physiological regulations. Only
the change of several parameters resulted in a pathological
response.

By comparing classified groups of virtual patients with
the same behaviour and groups of real patients in clinical
studies – and subsequent qualitative analysis of the courses
of the modelled actions, the cause of individual deviations

Figure 10. The state space of parameters P1 and P2. The
vertical axis represents the size of the biological response
with the given values of parameters P1 and P2. The
purpose of a targeted intervention is to change the value
of parameter P1 to its target value. No biological response
is induced by a concurrent change of parameters P1 and
P2 (path from A to B). The change of parameter P2 to the
target value results in a biological effect (path from A to C).
Similarly, if only parameter P2 changes (while parameter P1
remains unchanged), a biological response is induced. This
illustrative example demonstrates that isolated changes of
individual parameters may result in a biological effect while
a covariant, concurrent change of two parameters may not
cause any effect at all.

Patology

Norm

A

A′

B

P1

P2

P1-target value

C

D

Integrative physiology in Modelica

596 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132589

in response to an appropriate stimulus can be revealed –
no matter whether the stimulus is a pathological noxa or
the effect of a medication.

This is why integrated models will also find their
future application in clinical studies. The project of the
European Union called “AVICENNA – A Strategy for
in silico Clinical Trials“ (see http://avicenna-isct.org),
currently under preparation, will focus on the topic of
using simulation models in clinical studies.

3.3 Medical simulators
Medical simulators represent another extensive field
for the application of integrative models; similarly as
flight simulators, medical simulators provide quite a new
mode of teaching where students can train diagnostic
and therapeutic tasks in virtual reality without any risk
for the patient. In sophisticated medical simulators,
students can also observe in detail the course of values
of various quantities that are commonly not available
for clinical examination in real patients, which supports
deeper understanding of the pathophysiological core of
the development of the clinical condition and its affection
by therapeutic interventions.
The important thing is that unlike the real world, mistakes
are reversible in virtual reality. When a flight simulator is
used to train landing we can crash many times in a row,
while in the real world an airplane crashes only once as
a rule. In acute care medicine, diagnostic and therapeutic
procedures can be trained on a virtual patient who can be
brought back to life at any time. However, patients in the
real life have no “reset“ button and, as expressed by one
harsh proverb, “the mistakes of rescuers are covered by
soil“.
Similarly as a sophisticated airplane model is the core
of flight simulators, an integrative patient model is the
key component of current top medical simulators (for
example, in CAE Healthcare simulators – see http://www.
caehealthcare.com).

4 Development tools for integrative
models

Formerly, dynamic systems were often programmed using
analogue computers, while later they were combined with
a digital computer in the so-called hybrid computers. The
program was created by connecting individual computing
elements (integrators, summators ...) using connection
cables. The computer processed analogue (continuous)
electrical signals whose changes were responded to
immediately, and therefore it remained a suitable tool for
solving sets of differential equations of simulation models
until the increasing power of digital computers removed
this advantage of analogue solutions.

4.1 Classical programming languages for the

development of simulation models
The era of analogue computers inspired also the

graphic notation of Guyton used to write physiological
models using a network of mutually connected computing
blocks (integrators, summators, dividers, multipliers and
function blocks). However, in 1972, at the time when
the groundbreaking paper of Guyton (A. C. Guyton,
Coleman, and Granger 1972) was published, models
were implemented predominantly on digital computers
using classical programming languages (e.g.Fortran,
C, C++ etc.). The graphic scheme in the paper served
only as an illustrative picture used to provide a compact
description of the model structure. The model itself was
programmed in the programming language Fortran for
digital computers.

However, this scheme was not flawless (Jiří Kofranek
and Rusz 2010) – some errors were apparent at first
sight (for example, a wrongly connected integrator that
would soon result in its overloading with an infinitely
rising value due to the feedback), while others required
a deeper analysis, understanding of the text of the article
and knowledge of physiology (Fig. 11). Actually, these
were easily detectable “graphic typing errors“ (switched
signs, shifted connectors) without any effect on the model
functionality because the entire scheme was created only
as an illustration and not as the source code of the model
(programmed in Fortran). The picture itself was a part
of the PhD thesis of a co-author of the Guyton’s article,
Thomas Coleman, and today, it can be find as a certain
scientific relic in a display case of the Guyton’s research
centre at the University of Mississippi.

4.2 Simulation chips in block-oriented languages
At the beginning of the 1990s, specialized modelling

tools emerged. These tools used computing blocks (very
similar to those used by Guyton in his graphic notation);
these blocks are connected on the computer screen using
the mouse to create a simulation network.

Figure 11. Mistakes in the Guyton’s graphic scheme and
their corrections.

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132589

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

597

These so-called block-oriented simulation languages
utilize connected blocks. Signals “flow“ through the
connecting lines between individual blocks and transfer
the values of individual variables from the output of
one block to the inputs of other blocks. The inputted
information is processed in the blocks to obtain the output
information. The connections among individual blocks
show how the values of individual variables are calculated
– i.e. the algorithm of the computation.

Blocks can be grouped in individual subsystems that
communicate with their surroundings through input and
output “pins“, thus representing certain “simulation chips“.
These subsystem blocks hide the simulation network
structure from the user, similarly as electronic chips hide
the connection structure of individual transistors and
other electronic elements so that the user need not take
care of the internal structure and of the computational
algorithm used to obtain output variables from input

variables. “Simulation chips“ in block-oriented languages
have a hierarchical structure – they may contain a network
of mutually connected subsystem blocks of a lower
hierarchical level. “Simulation chips“ can be grouped
in libraries and their individual instances can be created
using the mouse; their inputs and outputs are connected
using connecting lines, through which information (i.e.
the values of variables) “flows“. The entire complex
model can be thus depicted as interconnected simulation
blocks, while the structure of their connection provides
clear information about what values are calculated and
how.

This facilitates interdisciplinary cooperation in the
development of integrative models where experimental
physiologists do not have to explore in detail what
mathematical relationships are hidden inside the
connected subsystem blocks, and from the connections
among individual subsystem blocks the physiologists
can understand the model structure and verify the model
behaviour in an appropriate simulation visualization
environment of the block-oriented simulation language.

Block-oriented simulation languages provided
a considerable simplification of implementation of
simulation models. The most widely used block-oriented
languages include, for example, Mathworks Simulink
(http://www.mathworks.com/products/simulink) or
Visual Solution VisSim (http://www.vissim.com).

In the past, we used Simulink to create a freely available
library of blocks for the modelling of physiological
systems (http://www.physiome.cz/simchips), which
also included the source code of an integrated model of
physiological systems used as a source for our teaching
simulator Golem (Fig. 12). The teaching simulator Golem
was developed by us at the end of the 1990s and at the
turn of the millennium it was intended for teaching
the homeostasis of the inner environment in clinical
physiology. The simulator was used at some national as
well as foreign faculties of medicine (Jiří Kofránek et al.
2001).

4.3 Disadvantages of block-oriented simulation
languages

Blocks in block-oriented languages have a hierarchical
structure. On the lowest level, the blocks are created as a
network of interconnected numeric blocks that use input
values to calculate output values. The connections among
the numeric blocks represent a solution of mathematical
equations of the model designed so that output values are
calculated from input values.

However, the connection of blocks in the network of
relationships cannot be arbitrary. No algebraic loops may
occur in the connected elements – i.e. cyclic structures
where an input value brought to the input of a computing
block depends in the same time step (through several

ano XCO3

1
Outputs

vTW

yURI

GFR

yMNI

vEC

ZUR 0

ZMNE 0

zUR

xURE

yURU

zMNE

xMNE

yMNU

UREA AND MANNITOL BALANCE

 INPUTS:
 vTW - total body �uid volume [l]

 yURI - intake rate of urea [mEq/min]
 GFR - glomerular �ltration rate [l/min]

 yMNI - intake rate of mannitol [mEq/min]
 vEC - ECF volume [l]

 OUTPUTS:

 zUR - total body-�uid urea content [mEq]
 xURE - ECF urea concentration [mEq/l]

 yURU - renal excretion rate of urea [mEq/min]
 zMNE - ECF mannitol content [mEq]

 xMNE - ECF mannitol concentration [mEq]
 yMNU - renal excretion rate of mannitol [mEq/min]

 21.8.2001

Urea and Mannitol Balance

UU(E)

Selector

Scope9
Scope8

Scope7

Scope6

Scope5 Scope4

Scope3

Scope2

Scope18

Scope17
Scope16

Scope15

Scope14Scope13

Scope12

Scope11
Scope10

Scope1

Scope

VA0

pO2A

pCO2A

pHA

AH

VA

RESPIRATION CONTROL

 INPUTS:
 VA0 - normal value of alveolar ventilation [l BTPS/min]

 pO2A - O2 partial pressure in alveoli [Torr]
 pCO2A - CO2 partial pressure in alveoli Torr]

 pHA - arterial blood pH
 AH - concentration of hydrogen ions in arterial blood [nM/l]

 OUTPUTS:

 VA - alveolar ventilation [l BTPS/min]

 4.10.2001

Respiration Control

TPHA1

PHA

yORG

yPO4

yTA0

ALD

TPHU2

TPHU1

yNH40

qWU

pCO2A

GFR

xCO3

PHA 0

PHU2 0

PHU1 0

STPG

yTA

yTA1

PHU

yNH4

yCO3

yCO3R

RENAL ACID BASE CONTROL

 INPUTS:
 TPHA1 - Time constant of titratable acid [1/min]

 PHA - arterial pH
 yORG - Renal excretion rate of organic acid [mEq/min]

 yPO4 - Renal excretion rate of phosphate [mEq/min]
 yTA0 - Normal value of renal excretion rate of titratable acid [mmol/min]

 ALD - Aldosterone e�ect [x normal]
 TPHU1 - Time constant of ammonium secretion [1/min]

 TPHU2 - Time constant of titratable acids secretion [1/min]
 yNH40 - Normal value of ammonium renal excretion rate [mmol/min]

 qWU - Urine output [l/min]
 pCO2A - Alveolar pCO2 [torr]

 GFR - Glomerular �ltration rate [l/min]
 xCO3 - Actual bicarbonate concentration [mmol/l]

 OUTPUT VARIABLES:

S TPG - summary renal excretion rate of titratable acids, phosphate and org. acids [mmol/mi
 yTA - renal excretion rate of titratable acids [mmol/min]

 yTA1 - on arterial pH dependent portion of titratable acid secretion rate [mmol/min]
 PHU - urine pH

 YNH4 - Ammonium renal excretion rate [mmol/min]
 YCO3 - Bicarbonate excretion rate [mmol/min]

 YCO3R - Bicarbonate reabsorption rate [mmol/min]

 24.7.2001

Renal Acid Base Control

vIF

qLF

pC

YPLIN

vP

ZPG 0

ZPIF 0

ZPP 0

ZPLG 0

pICO

xPIF

zPIF

zPP

xPP

pPCO

 PROTEIN BALANCE

 INPUTS:
 vIF interstitial �uid volume [l]
 qLF - lymph �ow rate [l/min]
 pC - capillary pressure [torr]

 YPLIN - rate of intravenous plasma protein input [g/min]
 vP -plasma volume [l]

 OUTPUTS:

 pICO - interstitial colloid osmotic pressure [torr]
 xPIF - interstitial protein concentration [g/l]

 zPIF - interstitial protein content[g]
 zPP - plasma protein content [g]

 xPP - plasma protein concentration [g/l]
 pPCO - plasma colloid osmotic pressure [torr]

 10.7.2001

Protein Balance

xMNE

xURE

xGLE

xNE

xKE

OSMP

P L A S M A O S M O L A R I T Y

INPUTS :
 XMNE - ECF mannitol concentration [mmol/l]

 XURE - ECF urea concentration [mmol/l
 XGLE - ECF glucose concentration [mmol/l]
 XNE - ECF sodium concentration [mmol/l]

 XKE - ECF potassium concentration [mmol/l]

 OUTPUT :
 OSMP - plasma osmolarity

Plasma osmolarity calculation

vEC

yPO4I

ySO4I

yORGI

GFR

ZPO4E 0

ZSO4E 0

ZORGE 0

zPO4E

xPO4

yPO4

zSO4E

xSO4

ySO4

zORGE

xORGE

yORG

PHOSPHATE, SULPHATE AND ORGANIC ACIDS BALANCE

 INPUTS:
 vEC - ECF volume [l]

 yPO4I - phosphate intake [mEq/min]
 ySO4I - sulphate intake [mEq/min]

 yORGI - organic acids intake [mEq/min]
 GFR - Glomerular �ltration rate [l/min]

 OUTPUTS:

 zPO4E - ECF phosphate content [mEq]
 xPO4 - ECF phosphate contentration [mEq/l]

 yPO4 - Phosphate renal excretion rate [mEq/min]
 zSO4E - ECF sulphate content [mEq]

 xSO4 - ECF sulphate contentration [mEq/l]
 ySO4 - sulphate renal excretion rate [mEq/min]

 zORGE - ECF organic acids content [mEq]
 xORGE - ECF organic acids contentration [mEq/l]

 yORG - organic acids renal excretion rate [mEq/min]

 30.7.2001

Phosphate, Sulphate and Organic Acids Balance

mrCO2

uCO2A

VTW

mrO2

uO2A

QCO

PBA

fCO2i

VAL

VA

fO2i

UCO2V 0

UO2V 0

FCO2A 0

FO2A 0

uCO2V

uO2V

pCO2A

fCO2A

pO2A

fO2A

O2 and CO2 EXCHANGE

 INPUTS:
 mrCO2 - (*Metabolic production rate of CO2 [l STPD/min]*)
 uCO2A - (*Content of CO2 in arterial blood [l STPD/l]*)

 VTW - (*Total body �uid volume [l]*)
 mrO2 - (*Metabolic consumption rate of O2 [l STPD/min]*)
 uO2A - (*Content of CO2 in arterial blood [l STPD/l]*)

 QCO - (*Cardiac output [l/min]*)
 PBA - (*Barometric pressure*)

 fCO2i - (*Volume fraction of CO2 in dry inspired gas*)
 VAL - (*Total alveolar volume (BTPS)*)

 VA - (*Alveolar ventilation [l BTPS/min]*)
 fO2i - (*Volume fraction of O2 in dry inspired gas*)

 OUTPUTS:

 uCO2V - (** Content of CO2 in venous blood [l STPD/l]*)
 uO2V - (** Content of O2 in venous blood [l STPD / l*)

 pCO2A - (*CO2 tension alveoli [Torr]*)
 fCO2A - (*Volume fraction of CO2 in dry alveoli gas*)

 pO2A - (*O2 tension in alveoli [Torr]*)
 fO2A - (*Volume fraction of O2 in dry alveoli gas*)

 8.10.2001

O2 and CO2 Exchange

yTA1

yNH4

yCO3

ALD

GFR

CPR

THDF

yNIN

PHA

CBFI

CHEI

yKGLI

zKI0

CKEI

yKIN

vEC

ZNE 0

ZKE 0

ZHI 0

yNU

yNH

yND

xNE

zNE

yNHI

yKHI

zKI

zKE

yKU

yKD

xKE

SODIUM AND POTASSIUM BALANCE

 INPUTS:
 yTA1 - Arterial pH dependent portion of titrable acid excretion rate

 yNH4 - ammonium renal excretion rate [mEq/min]
 yCO3R - bicarbonate reabsorption rate [mEq/min]

 ALD - aldostrone e�ect [x normal]
 GFR - glomerular �ltration rate [l/min]

 CPR - excretion ratio of �lterd load after proximal tubule
 THDF - e�ect of 3rd factor (natriuretic horm.) [x normal]

 yNIN - sodium intake [mEq/min]
 PHA - Arterial blood pH

 CBFI - Parameter of intracellular bu�er capacity
 CHEI - Transfer coe�. of H ions from ECF to ICF

 yKGLI - K �ow rate from ECF to ICF accompanying secretion of insulin [mEq/min]
 zKI0 - normal ICF K content [mEq]

 CKEI - Transfer coe�. of K ions from ECF into ICF (exchanged with H ions)
 yKIN - K intake [mEq/min]

 vEC - ECF volume [l]

 OUTPUTS:
 yNU - Na renal excretion rate [mEq/min]

 yNH - Na excretion in Henle loop [mEq/min]
 yND - Na excretion rate in distal tubule [mEq/min]

 xNE - ECF Na concentration [mEq/l]
 zNE - ECF Na content[mEq]

 yNHI - H ions �ow rate from ECF to ICF (exchanged w. Na) [mEq/min]
 yKHI - K �ow rate from ECF to ICF (exchanged w. H) [mEq/min]

 zKI - ICF K content [mEq]
 zKE - ECF K content [mEq]

 yKU - K renal excretion rate [mEq/min]
 yKD - K excretion rate in distal tubule [mEq/min]

 xKE - ECF K concentration [mEq/l]

 27.7.2001

Na & K Balance

VIF0

VIF

QLF0

PIF

QLF

INTERSTITIAL PRESSURE
 AND

 LYMPH FLOW RATE

 INPUTS:
 vIF0 - normal interstitial �uid volume [l]

 vIF - interstitial �uid volume [l]
 qLF - normal lymph �ow rate [l/min]

 OUTPUTS:

 pIF - interstitial pressure [torr]
 qLF - lymph �ow rate [l/min]

 16.8.2001

Interstitial Pressure and Lymph Flow Rate

ADH

OSMP

yND

yKD

yGLU

yURU

yMNU

yNU

yKU

qWD

qWU

OSMU

DIURESIS AND URINE OSMOLARITY

 INPUTS:
 ADH - e�ect of antidiuretic hormone [x normal]

 OSMP - plasma osmolality [mOsm/l]
 yND - sodium excretion rate in distal tubule [mEq/min]

 yKD - potassium excretion rate in distal tubule [mEq/min]
 yGLU - renal excretion rate of glucose [mEq/min]

 yURU - renal excretion rate of urea [mEq/min]
 yMNU - renal excretion rate of mannitol [mEq/min]

 yNU - sodium renal excretion rate [mEq/min]
 yKU - potassium renal excretion rate [mEq/min]

 OUTPUTS:

 qWD - rate of urinary excretion in distal tubule [l/min]
 qWU - urine output [l/min]

 OSMU - urine osmolality [mOsm/l]

 17.8.2001

Diuresis and Urine Osmolarity

vEC

pAS

xKE

yNH

pVP

OSMP

pPCO

GFR

ALD

ADH

THDF

CONTROLLER OF RENAL FUNCTION

 INPUTS:
 vEC - ECF volume [l]

 pAS - systemic arterial pressure [torr]
 xKE - ECF K concentration [mEq/l]

 yNH - Na excretion in Henle loop [mEq/min]
 pVP - pulmonary venous pressure [torr]

 OSMP - plasma osmolality [mOsm/l]
 pPCO - plasma colloid osmotic pressure [torr]

 OUTPUTS:

 GFR - glomerular �ltration rate [l/min]
 ALD - aldosterone e�ect [x normal]

 ADH - e�ect of antidiuretic hormone [x normal]
 THDF - e�ect of 3rd factor (natriuretic horm.) [x normal]

 HIDDEN CONSTANTS:

 vEC0 - normal ECF volume [l]
 GFR0 - normal glomerular �ltration rate [l/min]

 17.8.2001

Controller of Renal Function

vEC

yCLI

yNU

yKU

yNH4

yCa

yMg

ySO4

yCO3

STPG

ZCLE 0

zCLE

xCLE

yCLU

CHLORIDE BALANCE

 INPUTS:
 vEC - ECF volume [l]

 yCLI - chloride intake [mEq/min]
 yNU - Na renal excretion rate [mEq/min]
 yKU - K renal excretion rate [mEq/min]

 yNH4 - ammonium renal excretion rate [mEq/min]
 yCa - calcium renal excretion rate [mEq/min]

 yMg - magnesium renal excretion rate [mEq/min]
 ySO4 - sulphate renal excretion rate [mEq/min]
 yCO3 - bicarbonate excretion rate [mEq/min]

 STPG - summary renal excretion rate of phosphates and org. acids
 related to arterial pH [mEq/min]

 OUTPUTS:

 zCLE - ECF chloride content [mEq]
 xCLE - ECF chloride concentration [mEq/l]

 yCLU - chloride renal excretion rate [mEq/min]

 30.7.2001

Chloride Balance

VB

RTOT

RTOP

KL

KR

DEN

KRAN

QCO

PAP

PAS

pC

PVS

PVP

CARDIOVASCULAR BLOCK

 INPUTS:
 VB - Blood volume [l]

 RTOT - Total resistance in systemic circulation [Torr * Min / l] (norm.=20)
 RTOP - Total resistance in pulmonary circulation [Torr * Min /l] (norm. =3)

 KL - Parameter of the left heart performance [l/min/torr] (norm.=0.2)
 KR - Parameter of the right heart performance [l/min/torr] (norm.=0.3)
 DEN - Proportional constant between QCO AND VB [1/min] (norm.=1)

 KRAN - Parameter of capillary pressure (norm.=5.93)

 OUTPUTS:
 QCO - Cardiac output [l/min]

 PAP - Pulmonary arterial pressure [torr]
 PAS - Systemic arterial pressure [torr]

 pC - Capillary pressure [Torr]
 PVS - Central venous pressure [torr]

 PVP - Pulmonary venous pressure [torr]

 24.8.2001 edited by Tom Kripner

Cardiovascular Block

vEC

yCaI

GFR

yMgI

zCaE0

zMgE0

zCaE

xCaE

yCa

zMgE

xMgE

yMg

CALCIUM AND MAGNESIUM BALANCE

 INPUTS:
 vEC - ECF volume [l]

 yCaI - calcium intake [mEq/min]
 yMgI -magnesium intake [mEq/min]

 GFR - glomerular �ltration rate [l/min]

 OUTPUTS:
 zCaE - ECF calcium content [mEq]

 xCaE - ECF calcium contentration [mEq/l]
 yCa - calcium renal excretion rate [mEq/min]

 zMgE - ECF magnesium content [mEq]
 xMgE - ECF magnesium contentration [mEq/l]

 yMg - magnesium renal excretion rate [mEq/min]

 INITIAL CONDITIONS:
 zCaE0 - ECF calcium content [mEq]

 zMgE0 - ECF magnesium content [mEq]

 30.7.2001

Calcium and Magnesium Balance

qIN

qVIN

qIWL

qMWP

qWU

qLF

CFC

pICO

pPCO

pC

pIF

CSM

xNE

xKE

xGLE

zKI

vRBC

xHBER

VIN 0

VP 0

VIF 0

VIC 0

HB

HT

vB

vP

vEC

vIF

vTW

vIC

BODY FLUID VOLUME BALANCE

 INPUTS:
 qIN - drinking rate [l/min]

 qVIN - intravenous water input [l/min]
 qIWL - insensible water loss [l/min]

 qMWP - metabolic water production [l/min]
 qWU - urine output [l/min]

 qLF - lymph �ow rate [l/min]
 CFC - capillary �ltration coe�cient [l/min/torr]

 pICO - interstitial colloid osmotic pressure [torr]
 pPCO - plasma colloid osmotic pressure [torr]

 pC - capillary pressure [torr]
 pIF - interstitial pressure [torr]

 CSM - transfer coe�. of water from ECF to ICF
 xNE - ECF Na concentration [mEq/l]
 xKE - ECF K concentration [mEq/l]
 xGLE - ECF glucose conc. [mEq/l]

 zKI - ICF K content [mEq]
 vRBC - volume of red blood cells [l]

 xHBER - hemoglobin concentration in the red blood cells [g/100 ml]

 OUTPUTS:
 HB - blood hemoglobin concentration [g/100 ml]

 HT - hematocrit
 vB - blood volume [l]
 vP -plasma volume [l]
 vEC - ECF volume [l]

 vIF - interstitial �uid volume [l]
 vTW - total body �uid volume [l]

 vIC - ICF volume [l]

 24.8.2001

Body Fluid Volume Balance

TYINT

xGL0

CGL1

CGL2

yINS

CGL3

yGLI

vEC

GFR

YINT 0

ZGLE 0

yINT

yGLS

yKGLI

zGLE

xGLE

yGLU

BLOOD GLUCOSE CONTROL

 INPUTS:
 TYINT - time constant of insulin secretion

 xGL0 - reference value of ECF glucose concentration
 CGL1 - parameter of glucose metabolism
 CGL2 - parameter of glucose metabolism

 yINS - intake rate of insulin[unit/min]
 CGL3 - parameter of glucose metabolism

 yGLI - intake rate of glucose [g/min]
 vEC - ECF volume [l]

 GFR - glomerular �ltration rate [l/min]

 OUTPUTS:
 yINT - insulin secretion [unit/min]

 yGLS - glucose �ow rate from ECF into cells [mEq/min]
 yKGLI - K �ow rate from ECF to ICF accompanying secretion of insulin [mEq/min]

 zGLE - ECF glucose content [mEq]
 xGLE - ECF glucose concentration [mEq]

 yGLU - renal excretion rate of glucose [mEq/min]

 21.8.2001

Blood Glucose Control

BEOX

HB

PCO2A

PO2A

XHB

STBC

BE

AH

PHA

SO2A

XCO3A

UCO2A

UO2A

BLOOD ACID BASE BALANCE

 INPUTS:
 BEOX - Base Excess in fully oxygenated blood [mmol/l]

HB - Hemoglobin concentration [g/dl]
PCO2A - CO2 tension in arterial blood [torr]

PO2A - Oxygen tension in arterial blood [torr]

OUTPUTS:
 XHB - Vector of coe�cients derived from hemoglobin concentration

STBC - Standard bicarbonate concentration [mmol/l]
BE - Base Excess concentration in arterial blood

AH - Hydrogen ions concentration [nmol/l]
PHA - arterial plasma pH

 SO2A - Oxygen hemoglobin saturation in arterial blood (expressed as ratio from 0 to 1)
XCO3 - Actual bicarbonate concentration in arterial blood

 UCO2A - Content of CO2 in arterial blood [l STPD/l]
 UO2A-Content of O2 in arterial blood [l STPD/l]

Blood Acid Base Balance

TBEox

VB

HB

A

pCO2A

VEC

yTA

yNH4

yCO3

yKHi

yNHi

yCO3in

yHin

MRH

ZBEEC 0

BEOX 0

BEox

BEEC

 ACID BASE METABOLIC BALANCE

 INPUTS:
 TBEOX - (*Time constant*)

 VB - (*Blood Volume [l]*)
 HB (fore XHB) - (*Blood hemoglobin concentration [g/100 ml]*)
 A [11] - (* vector of coe�cients, see "Blood Acid Base Balance" *)

 pCO2A - (*CO2 tension in arterial blood [Torr]*)
 VEC - (*Extracelular �uid volume [l]*)

 yTA - (*Renal excretion rate of titratable acid [mEq/min]*)
 yNH4 - (*Renal excretion rate of ammonium [mEq/min]*)

 yCO3 - (*Renal excretion rate of bicarbonate [mEq/min]*)
 yKHi - (*Potassium ions �ow rate from ECF into ICF

 exchanged with hydrogen ions [mEq/min]*)
 yNHi - (*Hydrogen ions �ow rate from ECF into ICF

 exchanged with sodium ions [mEq/min]*)

 OUTPUTS:
 BEox - (** Base excess in fully oxygenated blood [mEq/l]*)

 BEEC - (*ECF Base excess concentration

Acid Base Metabolic Balance1

1
Inputs

XCO3

<TPHA1>

<YTA0>

<ZHI0>

<ZKE0>

<ZNE0>

<VEC>

<YKIN>

<CKEI>

<ZKI0>

<YKGLI>

<CHEI>

<CBFI>

<PHA>

<YNIN>

<THDF>

<CPR>

<GFR>

<ALD>

<YCO3>

<YNH4>

<YTA1>

<YINT0>

<ZMNE0>

<ZUR0>

<VEC>

<YMNI>

<GFR>

<YURI>

<VTW>

<AH>

<PHA>

<PCO2A>

<PO2A>

<VA0>

<PPCO>

<OSMP>

<PVP>

<YNH>

<XKE>

<PAS>

<VEC>

<PHU10>

<PHU20>

<PHA0>

<XCO3>

<GFR>

<PCO2A>

<QWU>

<YNH40>

<TPHU1>

<TPHU2>

<ALD>

<YPO4>

<YORG>

<PHA>

<ZPLG0>

<ZPP0>

<ZPIF0>

<ZPG0>

<VP>

<YPLIN>

<PC>

<QLF>

<VIF>

<ZORGE0>

<ZSO4E0>

<ZPO4E0>

<GFR>

<YORGI>

<YSO4I>

<YPO4I>

<VEC>

<XKE>

<XNE>

<XGLE>

<XURE>

<XMNE>

<FO2A0>

<FCO2A0>

<UO2V0>

<UCO2V0>

<FO2I>

<VA>

<VAL>

<FCO2I>

<PBA>

<QCO>

<UO2A>

<MRO2>

<VTW>

<UCO2A>

<MRCO2>

<QLF0>

<VIF>

<VIF0>

<YKU>

<YNU>

<YMNU>

<YURU>

<YGLU>

<YKD>

<YND>

<OSMP>

<ADH>

<ZCLE0>

<STPG>

<YCO3>

<YSO4>

<YMG>

<YCA>

<YNH4>

<YKU>

<YNU>

<YCLI>

<VEC>

<KRAN>

<DEN>

<KR>

<KL>

<RTOP>

<RTOT>

<VB>

<ZMGE0>

<ZCAE0>

<YMGI>

<GFR>

<YCAI>

<VEC>

<VIC0>

<VIF0>

<VP0>

<VIN0>

<XHBER>

<VRBC>

<ZKI>

<XGLE>

<XKE>

<XNE>

<CSM>

<PIF>

<PC>

<PPCO>

<PICO>

<CFC>

<QLF>

<QWU>

<QMWP>

<QIWL>

<QVIN>

<QIN>

<ZGLE0>

<GFR>

<VEC>

<YGLI>

<CGL3>

<YINS>

<CGL2>

<CGL1>

<XGL0>

<TYINT>

<PO2A>

<PCO2A>

<HB>

<BEOX>

<BEOX0>

<ZBEEC0>

<MRH>

<YHIN>

<YCO3IN>

<YNHI>

<YKHI>

<YCO3>

<YNH4>

<YTA>

<VEC>

<PCO2A>

<A>

<HB>

<VB>

<TBEOX> YINT

YGLS

YKGLI

ZGLE

XGLE

PVP

PVS

PC

PAS

PAP

QCO

YMG

XMGE

ZMGE

YCA

XCAE

ZCAE

VEC

VP

VIC

VTW

VIF

HB

VB

HT

Sodium and potassium balance

YNU

XKE

YKD

YKU

ZKE

ZKI

YKHI

YNHI

ZNE

XNE

YND

YNH

INPUTS

Cardiovascular block

Calcium and magnesium balance

Body �uid volume balance

FO2A

PO2A

FCO2A

PCO2A

UO2V

UCO2V

OSMP

UO2A

UCO2A

Urea and mannitol balance

YMNU

XMNE

ZMNE

YURU

XURE

ZUR

Respiration control

VA

Controller of renal function

GFR

ALD

ADH

THDF

Renal acid base control

STPG

YTA

YTA1

PHU

YNH4

YCO3

YCO3R

Protein balance

PPCO

XPP

ZPP

ZPIF

XPIF

PICO

Phosphate sulphate and organic acids balance

YORG

XORGE

ZORGE

YSO4

XSO4

ZSO4E

YPO4

XPO4

ZPO4E

Plasma osmolarity

O2 and CO2 exchange

Interstitial pressure and lymph �ow rate

QLF

PIF

Diuresis and urine osmolarity

OSMU

QWU

QWD

Chloride balance

YCLU

XCLE

ZCLE

Blood glucose control

YGLU

Blood acid base balance

STBC

BE

AH

PHA

SO2A

Acid base metabolic balance

BEEC

BEOX

AXHB

ACID BASE
METABOLIC

BALANCE

BODY FLUID
VOLUME
BALANCE

BLOOD ACID
BASE BALANCE BLOOD GLUCOSE

CONTROL

CALCIUM AND
MAGNESIUM

BALANCE

CHLORIDE
BALANCE

SODIUM AND
POTASSIUM

BALANCE

PHOSPHATE
AND

ORGANIC
ACIDS

BALANCE

CONTROLLER
OF RENAL
FUNCTION

RESPIRATION
CONTROL UREA AND

MANITOL
BALANCE

PROTEIN
BALANCE RENAL ACID

BASE CONTROL

O2 AND CO2
EXCHANGE

PLASMA
OSMOLARITY

DIURESIS
AND URINE
BALANCE

INTERSTITIAL
PRESSURE AND
LYMPH FLOW

RATE

CARDIOVASCU-
LAR BLOCK

Figure 12. Structure of the connected blocks that implement
the model for the Golem simulator in the block-oriented
language Simulink. The inputs and outputs of 18 blocks
modelling individual physiological subsystems are connected
through a common bus.

Integrative physiology in Modelica

598 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132589

intermediators) on the output value of the same block.
Development environments of block-oriented

languages provide tools to avoid algebraic loops; however,
their use often results in transformations that make the
model structure less clear.

The main problem of block-oriented languages is
that the simulation network composed of hierarchically
connected blocks shows a graphic representation of a
chain of transformations of input values to output values,
meaning that when the model is designed, an exact
computational algorithm must be defined from input to
output values of the model.

The requirement of a fixed direction of connections
from inputs to outputs means that the connections of the
blocks reflect the computation procedure and not the
very structure of the modelled reality.

For example, when the direction of the computation is
reversed (by replacing inputs with outputs), the algorithm
will be different although the model equations remain the
same. Thus for example, in the model of an electrical RLC
circuit (or its hydraulic analogy) it will make a difference
if the voltage (pressure in the hydraulic domain) or
(electrical or hydraulic) current is used as the input for the
circuit although the electrical (hydraulic) scheme itself
does not change. The Simulink network representing the
computational process will be different.

In complex models, it is usually not simple to derive
the computation causality (i.e. to derive the algorithm of
computing output variables from input variables).

4.4 Modelica – the best tool for development
models of integrative physiology

At the turn of the millennium, a completely new category

of modelling tools emerged, which makes it possible
to leave the computation aside and describe directly
equations in the modelling blocks. A special object-
oriented equation-based language called Modelica was
developed.

Modelica, originally developed as an academic project
in cooperation with small development companies
associated with Lund and Linköping universities, soon
showed to be a very efficient tool for the modelling of
complex models applied particularly in mechanical
engineering, in the automobile and airline industries.
The development of Modelica therefore gradually gained
support of the commercial sector.

The speed at which the new simulation language
Modelica spread in various industries and at which it
was embraced by various commercial development
environments is astonishing. Today, several commercial
and non-commercial development tools exist that use this
language (see https://www.modelica.org).

In Modelica, the connection of individual components
results in the connection of sets of equations with each
other. The component connections thus define the
modelled reality instead of the computation process.
The way of resolving the equations is thus “left up to the
machines“.

Unlike block-oriented languages where the structure
of connections among hierarchical blocks represents
rather the computation process instead of the modelled
reality, the structure of models in Modelica shows the
structure of the modelled reality (see fig. 13 and 14). This
is why even complex models are sufficiently transparent
and comprehensible in Modelica (Kulhánek, Kofránek,

Figure 13. Circulatory dymamics - more detailed central
structures of the Simulink implementation of Guyton’s
model, representing flows through aggregated parts of the
circulatory system and the activity of the heart as a pump..

Figure 14. The same model structure as is shown in figure
13 implemented in Modelica. The structure of the model
in Simulink corresponds to the structure of computational
steps, while the Structure of Modelica model reflects the
structure of the modeled physiological reality.

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132589

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

599

and Mateják 2014).
This is very important precisely for the development

of complex integrated models. The task of unifying and
designing complex models faces another problem due to
the complicatedness. Usually, only the authors are able to
understand and use complex models. Modelica partially
resolves this problem thanks to its characteristics and a
complex model of human physiology designed in Modelica
may lead to a wider use of the model in the scientific
community. The source text of our integrated model of
human physiology PHYSIOMODEL in Modelica (see
http://www.physiomodel.org) resembles hierarchical
physiological schemes (see Fig. 8). PHYSIOMODEL is
an implementation of HumMod (modified and expanded,
particularly in the field of acid-base balance and the
transfer of blood gases) (Jiri Kofranek, Matejak, and
Privitzer 2011; Jirí Kofránek et al. 2013; Marek Mateják
2015; M. Mateják and Kofránek 2015).

5 Prospects of integrative models of
human physiology

5.1 Prospects of sharing and publishing
integrative models

The development of integrative models in physiology
exhibits an exclusively interdisciplinary nature. The
team needs to have broad knowledge of physiology as
well as knowledge of computer sciences, mathematics,
the theory of control, and cybernetics. In addition, the
team members of various professions must dispose of a
considerable intersection of their knowledge.
This is also why there are not many scientific teams that
develop large integrative models in physiology.
The developed integrative models should be
comprehensible not only within the development team,
but also externally – if a model is comprehensible only to
its authors, it will hardly receive the necessary feedback
and new impulses from specialized scientific community.

The issue of a suitable form of publishing the achieved
results is also related to this issue. Reproducibility is
the main attribute of any scientific result. Leaving aside
certain acts of deception not discovered by reviewers,
the principle of reproducibility is a key for the gradual
discovery of the secrets of nature. This principle is often
violated in the field of scientific publications related to
biomedical models (both small and large). It is not always
the fault of the authors – many times the reason is that a
sign or an index is omitted in equations while the paper
is prepared for printing, which causes a lot of problems
to readers who seek not only to understand, but also to
implement the described model.

In addition, in many cases biomedical models are as
complex that the limited space for the article is sufficient
only for fundamental equations of the model (and often

not even all of them), while no space remains for more
detailed information (initial values of state variables,
values of all parameters, etc.), necessary to set up the
model at a different department. Therefore the classical
form of publications of models in journals is insufficient.
A specialized article that describes a model should
include, as a minimum, a digital (available through the
Internet) appendix giving a detailed description of the
model structure including the values of all parameters
(preferably in the form designed in some modelling
language), sufficient for the reader to be able to reproduce
the model (and perhaps follow up in his or her own work).
This solution has already been approached by a number
of journals that publish specialized articles on computer
models.

If the model is published in a modelling language that
requires a commercial licence (for example, in MathWorks
Matlab&Simulink), a problem arises because the reader
needs to have an appropriate licence to be able to run the
given model in the licensed development environment.

Considerable efforts were thus developed in the
international project PHYSIOME to create databases –
repositories of models that, besides storing the source
text of the model in the defined format, offer publicly
available tools for their simulation. Given that Modelica is
a standardized language – and not a corporate proprietary
product (such as MathWorks Matlab&Simulink) and
given that open source development tools exist today for
this language (for example, OpenModelica – see https://
openmodelica.org) – Modelica seems to be a highly
promising tool for publishing and sharing biomedical
models.

So far, no other open source alternative besides
Modelica exists that could be used for publishing
extensive models. For example, Guyton’s model version
of 1992, implemented by Montani in C using the
C-MODSIM environment (J. P. Montani, Adair, et al.
1989), is divided in the cellML repository in 22 modules
in the open source cellML language. However, attempts
at running these modules connected in one unit were not
successful (https://models.cellml.org/exposure), while the
Simulink version of the model works without problems
(Mangourova, Ringwood, and Van Vliet 2011) (however,
it requires the commercial environment of Matlab@
Simulink).

For the sake of completeness, we should note
that theoretically, also the environment used to
publish HumMod is an open source environment for
implementation of large models – the source code of the
model is saved in a number of XML files. This is sufficient
for simple models; however, complex models are difficult
to be understood by users – the reader can compare for
themselves the HumMod model structure in the original
form (http://hummod.org) and its implementation in

Integrative physiology in Modelica

600 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132589

Modelica (http://www.physiomodel.org).
Modelica thus seems to be a promising publication

tool for extensive integrated models.

5.2 Prospects of commercial application of
integrative models

The potential of commercial application especially in
the two areas below will provide a powerful stimulus
for further development of integrative models of human
physiology:

• in medical teaching simulators;
• in the development of new therapeutic methods

and in clinical testing of new pharmaceuticals.
Medical simulators provide a very efficient teaching

aid. They enable the students to train basic examination
and therapeutic techniques and also the process of
decision-making in medicine. Sophisticated medical
simulators utilize a robotized patient mannequin as the
user interface. A model of interconnected physiological
systems of the body is the core of modern medical
simulators. Integrative physiology and integrated models
of physiological systems thus become the technological
know-how for the development of products with a high
added value in the form of medical information and
robotic knowledge that can find applications on the
rapidly developing market.

Integrative models of human physiology will allow
detailed monitoring of causal chains of application of
various therapeutic or pathogenic stimuli, thus providing
a wide potential for application of integrative models
of human physiology especially in clinical testing of
pharmaceuticals and in the development and testing of
modern medical instruments (see Section 3.2).

The pressure of possible commercial applications leads
to the fact that formalized descriptions of physiological
regulations expressed as an integrated model often
become carefully protected information, which limits the
sharing of the results of scientific physiological research
and undermines the possibilities of scientific cooperation.

5.3 Prospects of combining commercial and
academic development

However, international cooperation and openness
to sharing the results are the driving force of scientific
development in today’s globalized world. For example, as
shown by experience, a community of users and developers
as wide as possible is important for the development of
complex software systems, thus a community that can
provide feedback and ensure further innovations of a
complex product through cooperative development, while
subsequently, further entrepreneurial opportunities open
up in the connection with this product – this is why such
a great spreading of the development of projects with the
open source code has been seen in recent years.

In order to ensure the development of complex
integrated models in physiology, it will probably be suitable
to seek such forms that will combine entrepreneurial
opportunities and financing by the commercial sector
with open scientific development.

One of the possibilities is to utilize a similar form in
which the product OpenModelica has been developed in
the open community (see https://openmodelica.org). The
development of products is ensured by the consortium
of 23 universities and 23 companies and institutions as
well as a number of individual developers (Open Source
Modelica Consortium – see https://openmodelica.org/
home/consortium). Research is financed using member
contributions whose amount is determined based on
the size of the company and based on the number of
sold products in whose development OpenModelica
licences have been used. OpenModelica has created a
circle of a relatively large community of users as well
as a high number of cooperating developers; the result
is a functional open source product equivalent in terms
of functionality to competitive expensive commercial
implementations of Modelica such as Dymola from
Dassault Systèmes), MapleSim from MapleSoft),
Wolfram SystemModeler from Wolfram, etc. Commercial
companies may use and further develop any part of the
OpenModelica environment in their own commercial
applications, also in the development of competitive
commercial implementations of Modelica (this is why
companies such as Wolfram Math Core or MapleSoft are
also members of the consortium).

Perhaps a consortium of the academic community and
commercial companies built on similar foundations –
called e.g. “Physiomodelica Open Source Consortium“
could ensure further development of an integrated model
of physiology in the future.

Acknowledgements
The authors appreciate the partial funding of this work

by PRVOUK P/24/LF1 and FR Cesnet 551/2014.

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132589

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

601

References
Amosov, N. M., B. L. Palec, B. T. Agapov, I. I. Jermakova,

E. G. Ljabach, S. A. Packina, and V. P. Solovjev.
1977. Theoretical Research of Physiological Systems:
Matematical Modeling (in Russian). Naukova Dumka.

Atkins, Gordon Leslie. 1969. Multicompartment Models for
Biological Systems. Methuen London.

Bassingthwaighte, J. B. 2000. “Strategies for the Physiome
Project.” Annals of Biomedical Engineering 28 (8).
Springer: 1043–58.

Chen, Jian, Keqin Wu, William A. Pruett, and Robert L.
Hester. 2013. “HumMod Browser: An Exploratory
Visualization Tool for Model Validation of Whole-Body
Physiology Simulation.” In Eurographics Conference
on Visualization (EuroVis)(short Paper). researchgate.
net. https://www.researchgate.net/profile/Keqin_Wu2/
publication/303290077_HumMod_Browser_An_Ex-
ploratory_Visualization_Tool_for_Model_Valida-
tion_of_Whole-Body_Physiology_Simulation/
links/573f6ab108ae298602e8f3cf.pdf.

Coleman, T. G., and R. L. Summers. 1997. “Using Mathemati-
cal Models to Better Understand Integrative Physiology.”
Journal of Physiology and Biochemistry 53: 45–46.

Fontecave-Jallon, J., and S. R. Thomas. 2015. “Implementation
of a Model of Bodily Fluids Regulation.” Acta Biothe-
oretica 63 (3): 269–82.

Grodins, F. S., J. Buell, and A. J. Bart. 1967. “Mathematical
Analysis and Digital Simulation of the Respiratory Con-
trol System.” Journal of Applied Physiology 22 (2). DTIC
Document: 260–76.

Guyton, A. C. 1981. “The Relationship of Cardiac Output and
Arterial Pressure Control.” Circulation 64 (6): 1079–88.

Guyton, A. C., T. G. Coleman, and H. J. Granger. 1972. “Cir-
culation: Overall Regulation.” Annual Review of Physiol-
ogy 34. annualreviews.org: 13–46.

Guyton, A. C., H. J. Granger, and T. G. Coleman. 1971. “Au-
toregulation of the Total Systemic Circulation and Its Re-
lation to Control of Cardiac Output and Arterial Pressure.”
Circulation Research 28 (January): Suppl 1:93–97.

Guyton, A. C., J. E. Hall, and J. P. Montani. 1988. “Kidney
Function and Hypertension.” Acta Physiologica Scandi-
navica. Supplementum 571: 163–73.

Guyton, A. C., R. D. Manning Jr, R. A. Norman Jr, J. P. Mon-
tani, T. E. Lohmeier, and J. E. Hall. 1986. “Current Con-
cepts and Perspectives of Renal Volume Regulation in
Relationship to Hypertension.” Journal of Hypertension.
Supplement: Official Journal of the International Society
of Hypertension 4 (4): S49–56.

Guyton, A. C., and John E. Hall. 2015. Guyton and Hall Text-
book of Medical Physiology. Elsevier Health Sciences.

Hester, R., A. Brown, L. Husband, and R. Iliescu. 2011. “Hum-
Mod: A Modeling Environment for the Simulation of In-
tegrative Human Physiology.” Frontiers in. journal.fron-
tiersin.org. http://journal.frontiersin.org/article/10.3389/
fphys.2011.00012.

Hester, R. L., T. Coleman, and R. Summers. 2008. “A Multi-
level Open Source Integrative Model of Human Physiolo-
gy.” The FASEB Journal 22 (1 Supplement): 756.8–756.8.

Hester, R. L., R. Iliescu, R. Summers, and T. G. Coleman.

2011. “Systems Biology and Integrative Physiological
Modelling.” The Journal of Physiology 589 (Pt 5). Wiley
Online Library: 1053–60.

Hodgkin, A. L., and A. F. Huxley. 1952. “A Quantitative
Description of Membrane Current and Its Application
to Conduction and Excitation in Nerve.” The Journal of
Physiology 117 (4). ncbi.nlm.nih.gov: 500–544.

Hunter, P. 2016. “The Virtual Physiological Human: The Phys-
iome Project Aims to Develop Reproducible, Multiscale
Models for Clinical Practice.” IEEE Pulse 7 (4). ieeex-
plore.ieee.org: 36–42.

Hunter, P., J. Edmund, J. Crampin, and Poul M. F. Nielsen.
2008. “Bioinformatics, Multiscale Modeling and the IUPS
Physiome Project.” Briefings in Bioinformatics 9 (4). Ox-
ford Univ Press: 333–43.

Hunter, P., P. Robbins, and D. Noble. 2002. “The IUPS Human
Physiome Project.” Pflugers Archiv: European Journal of
Physiology 445 (1). Springer: 1–9.

Hunter, P. J., W. W. Li, A. D. McCulloch, and D. Noble. 2006.
“Multiscale Modeling: Physiome Project Standards, Tools,
and Databases.” Computer 39 (11). ieeexplore.ieee.org:
48–54.

Ikeda, N., F. M., M. Shirataka, and T. Sato. 1979. “A Model of
Overall Regulation of Body Fluids.” Annals of Biomedical
Engineering 7 (2): 135–66.

Kofranek, J., M. Matejak, and P. Privitzer. 2011. “Hummod-
Large Scale Physiological Models in Modelica.” In Pro-
ceedings of the 8th International Modelica Conference;
March 20th-22nd; Technical Univeristy; Dresden; Ger-
many, 713–24. Linköping University Electronic Press.

Kofránek, J., M. Mateják, P. Privitzer, M. Tribula, T. Kulhánek,
J. Šilar, and R. Pecinovský. 2013. “HumMod-Golem Edi-
tion: Large Scale Model of Integrative Physiology for
Virtual Patient Simulators.” In Proceedings of the Interna-
tional Conference on Modeling, Simulation and Visualiza-
tion Methods (MSV), 1. The Steering Committee of The
World Congress in Computer Science, Computer Engi-
neering and Applied Computing (WorldComp).

Kofranek, J., and J. Rusz. 2010. “Restoration of Guyton’s
Diagram for Regulation of the Circulation as a Basis for
Quantitative Physiological Model Development.” Physio-
logical Research / Academia Scientiarum Bohemoslovaca
59 (6). Institute of Physiology: 897.

Kofránek, J., L. D. Anh Vu, H. Snaselova, R. Kerekeš, and T.
Velan. 2001. “GOLEM-Multimedia Simulator for Medical
Education.” Studies in Health Technology and Informat-
ics, no. 2. IOS Press; 1999: 1042–46.

Kofránek, J., M. Mateják, and P. Privitzer. 2010. “Web Simula-
tor Creation Technology.” MEFANET Report 3: 32–97.

Kohl, P., E. J. Crampin, T. A. Quinn, and D. Noble. 2010.
“Systems Biology: An Approach.” Clinical Pharmacology
and Therapeutics 88 (1): 25–33.

Kohl, P., and D. Noble. 2009. “Systems Biology and the Vir-
tual Physiological Human.” Molecular Systems Biology 5
(July): 292.

Kulhánek, T., J. Kofránek, and M. Mateják. 2014. “Modeling
of Short-Term Mechanism of Arterial Pressure Control in
the Cardiovascular System: Object-Oriented and Acausal
Approach.” Computers in Biology and Medicine 54 (No-
vember): 137–44.

Integrative physiology in Modelica

602 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132589

Lerant, A. A., R. L. Hester, T. G. Coleman, W. J. Phillips, J.
D. Orledge, and W. B. Murray. 2015. “Preventing and
Treating Hypoxia: Using a Physiology Simulator to Dem-
onstrate the Value of Pre-Oxygenation and the Futility of
Hyperventilation.” International Journal of Medical Sci-
ences 12 (8). ncbi.nlm.nih.gov: 625–32.

Mangourova, V., J. Ringwood, and B. Van Vliet. 2011. “Graph-
ical Simulation Environments for Modelling and Simula-
tion of Integrative Physiology.” Computer Methods and
Programs in Biomedicine 102 (3). Elsevier: 295–304.

Mateják, M.. 2014. “Physiology in Modelica.” MEFANET
Journal 2 (1). Facta Medica: 10–14.

Mateják, M. 2015. “Formalization of Integrative Physiology.
Charles University in Prague.” Edited by Jiří Kofránek.
Ph.D., Charles University. https://github.com/MarekMate-
jak/dissertation/blob/master/thesis.pdf.

Mateják, M-, F. Ježek, M. Tribula, and J. Kofránek. 2015.
“Physiolibrary 2.3-An Intuitive Tool for Integrative Physi-
ology.” IFAC-PapersOnLine 48 (1). Elsevier: 699–700.

Mateják, M., T. Kulhánek, J. Šilar, P. Privitzer, F. Ježek, and
J. Kofránek. 2014. “Physiolibrary-Modelica Library for
Physiology.” In Proceedings of the 10 Th International
Modelica Conference; March 10-12; 2014; Lund; Sweden,
499–505. Linköping University Electronic Press.

Mateják, M., M. Tribula, F. Ježek, and J. Kofranek. 2015.
“Free Modelica Library for Chemical and Electrochemical
Processes.” In Proceedings of the 11th International Mod-
elica Conference, Versailles, France, September 21-23,
2015, 359–66. Linköping University Electronic Press.

Mateják, M., and J. Kofránek. 2015. “Physiomodel-an Inte-
grative Physiology in Modelica.” And Biology Society
(EMBC), 2015 37th …. ieeexplore.ieee.org. http://ieeex-
plore.ieee.org/abstract/document/7318646/.

McCulloch, Warren S., and Walter Pitts. 1943. “A Logical
Calculus of the Ideas Immanent in Nervous Activity.” The
Bulletin of Mathematical Biophysics 5 (4). Kluwer Aca-
demic Publishers: 115–33.

Milhorn, H. T. 1966. Application of Control Theory to Physi-
ological Systems. W.B. Saunders.

Montani, J. P. and Bruce N. Van Vliet. 2009. “Understanding
the Contribution of Guyton’s Large Circulatory Model to
Long-Term Control of Arterial Pressure.” Experimental
Physiology 94 (4). Wiley Online Library: 382–88.

Montani, J. P., T. H. Adair, R. L. Summers, T. G. Coleman, and
A. C. Guyton. 1989. “A Simulation Support System for
Solving Large Physiological Models on Microcomputers.”
International Journal of Bio-Medical Computing 24 (1):
41–54.

Montani, J. P., H. L. Mizelle, T. H. Adair, and A. C. Guyton.
1989. “Regulation of Cardiac Output during Aldosterone-
Induced Hypertension.” Journal of Hypertension. Sup-
plement: Official Journal of the International Society of
Hypertension 7 (6): S206–7.

Moss, R., T. Grosse, I. Marchant, N. Lassau, F. Gueyffier,
and S. R. Thomas. 2012. “Virtual Patients and Sensitiv-
ity Analysis of the Guyton Model of Blood Pressure
Regulation: Towards Individualized Models of Whole-
Body Physiology.” PLoS Computational Biology 8 (6):
e1002571.

Omholt, S. W., and P. J. Hunter. 2016. “The Human Physiome:

A Necessary Key for the Creative Destruction of Medi-
cine.” Interface Focus 6 (2). Royal Society: 20160003.

Pitts, W., and W. S. McCulloch. 1947. “How We Know Uni-
versals; the Perception of Auditory and Visual Forms.”
The Bulletin of Mathematical Biophysics 9 (3). Springer:
127–47.

Potůček, J., M. Hájek, V. Brodan, and E. Kuhn. 1977. “The
Method of Estimating Biological System Parameters on
Hybrid Computer.” Kybernetika 13 (2). Institute of Infor-
mation Theory and Automation AS CR: 153–64.

Pruett, W. Andrew, John S. Clemmer, and Robert L. Hester.
2016. “Validation of an Integrative Mathematical Model
of Dehydration and Rehydration in Virtual Humans.”
Physiological Reports 4 (22). doi:10.14814/phy2.13015.

Pruett, W., L. Husband, and R. Hester. 2014. “Understanding
Variation in Salt Sensitivity in HumMod, a Human Physi-
ological Simulator (857.11).” The FASEB Journal 28 (1
Supplement). http://www.fasebj.org/content/28/1_Supple-
ment/857.11.abstract.

Sheppard, C. W. 1948. “The Theory of the Study of Transfers
within a Multi-Compartment System Using Isotopic Trac-
ers.” Journal of Applied Physics 19 (1). AIP: 70–76.

Shim, E. B, Ch. H. Leem, Y. Abe, and A. Noma. 2006. “A New
Multi-Scale Simulation Model of the Circulation: From
Cells to System.” Philosophical Transactions. Series A,
Mathematical, Physical, and Engineering Sciences 364
(1843): 1483–1500.

Summers, R. L., S. Platts, J. G. Myers, and T. G. Coleman.
2010. “Theoretical Analysis of the Mechanisms of a Gen-
der Differentiation in the Propensity for Orthostatic Intol-
erance after Spaceflight.” Theoretical Biology & Medical
Modelling 7 (March): 8.

Thomas, S. R., P. Baconnier, J. Fontecave, J. P. Françoise,
F. Guillaud, P. Hannaert, A. Hernández, et al. 2008.
“SAPHIR: A Physiome Core Model of Body Fluid Ho-
meostasis and Blood Pressure Regulation.” Philosophical
Transactions. Series A, Mathematical, Physical, and Engi-
neering Sciences 366 (1878). rsta.royalsocietypublishing.
org: 3175–97.

Von Bertalanffy, L. 1973. General Systems Theory. George
Braziller Inc., New York.

White, R. J., and J. C. McPhee. 2007. “The Digital Astronaut:
An Integrated Modeling and Database System for Space
Biomedical Research and Operations.” Acta Astronautica
60 (4–7). Elsevier: 273–80.

Wu, K., J. Chen, W. A. Pruett, and R. L. Hester. 2013. “Hum-
mod Browser: An Exploratory Visualization Tool for the
Analysis of Whole-Body Physiology Simulation Data.” In
2013 IEEE Symposium on Biological Data Visualization
(BioVis), 97–104. ieeexplore.ieee.org.

Xu, L., J. Lyle, Y. Wu, Z Pan, M. Zhang, D. H. Laidlaw, R. L.
Hester, and J. Chen. 2011. “HumMod Explorer: A Multi-
Scale Time-Varying Human Modeling Navigator.” In SIG-
GRAPH Asia 2011 Posters, 28:1–28:1. SA ’11. New York,
NY, USA: ACM.

Zhang, S., W. A. Pruett, and R. Hester. 2015. “Visualization
and Classification of Physiological Failure Modes in En-
semble Hemorrhage Simulation.” In SPIE/IS&T Electron-
ic Imaging, 93970O – 93970O – 8. International Society
for Optics and Photonics.

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132589

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

603

604 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Sound Source Extension Library for Modelica

Johann Emhofer Raimund Zitzenbacher Christoph Reichl

Center for Energy, AIT Austrian Institute of Technology, Giefinggass 2, 1210 Wien, Austria.
{johann.emhofer,raimund.zitzenbacher.fl,christoph.reichl}@ait.ac.at

Abstract
Transient thermodynamic models in Modelica are widely
used for energetic simulations of machines and systems
which are located nearby people. Nevertheless, so far no
libraries exist which consider the noise of such machines
in the simulations. The Sound Source Extension library
(SSElib) proposed in this work, should close this gap.
With the aid of the SSElib, acoustic characteristics can be
added to existing Modelica models (e.g. to a compressor
or a pump model). The acoustic characteristic added to the
existing model is frequency dependent in the one-octave
band and could further depend on an input parameter like
the rotational speed of a compressor. With the inclusion of
sound sources into energetic models, the sound behavior
of machines can be considered and control strategies can
be optimized to lower the noise of machines.
Keywords: Modelica, sound, noise, acoustics, heat pump

1 Introduction
Due to local mechanical vibrations of a component in air,
local displacements of the air atoms and changes in lo-
cal pressure or density are excited. The local changes
propagate to the neighboring atoms. The propagation of
these vibrations are better known as sound which can be
recognized by the human ear. Speech, music or acous-
tic signals are wanted effects of sound, whereas the noise
of machines are experienced as disturbing. The aim of
the Sound Source Extension Library (SSElib) is to con-
sider the unwanted noise excited from machines. With
the SSElib one can extend existing Modelica components
with a sound source that can depend on a variable of the
component itself. This variable could be a frequency of a
fan, the pressure drop over a heat exchanger or any other
variable that influences the sound characteristic of the ma-
chine. In other words, an acoustic characteristic which
depends on the operating conditions of a component can
be added to a new or existing component.

In the SSElib we use basic acoustic calculation meth-
ods to estimate the all over loudness of a machine. Note
that the main aim of the library is not an accurate predic-
tion of the loudness but it should show how the operation
point of a machine influences their noise emission. Hence,
solely simple correlations for noise propagation and re-
duction are included in the library to give a first hint about
how the acoustic characteristic of machines behave. The
strength of the SSElib is the easy integration into existing

models without the need of significant extra computational
power in Modelica.

Several mature methods like Finite Element Methods
(FEM), Boundary Element Methods (BEM) or Compu-
tational Aero Acoustics (CAA) exist for accurate sound
propagation calculations and therefore such methods
should be used if a detailed sound analysis is needed. A
good overview of these methods can be found in (Crocker,
2007).

The SSElib was developed in Dymola 2016 and test-
ing was performed within the Testers and Examples pack-
age of the library. The SSElib builds on the Modelica
Standard Library (MSL) and no additional libraries are
needed. Most of the Testers were also tested in Open-
Modelica 1.9.6 without any problems. Besides this pub-
lication, a UsersGuide package was added to the library
on top level, to help users with the implementation of the
SSElib into their models.

SSElib is published under the Modelica License 2.

2 Methodology
2.1 General
The following assumptions were made in order to keep the
equations simple:

• All sound sources are independent point sources.

• The sound fields considered in the SSElib are as-
sumed to be diffuse and incoherent in all frequencies.

• The noise source volume has to be less than about
0.3 to 0.4 of an enclosure volume for calculations of
damping (Crocker, 2007). If the noise source occu-
pies more than a third of the enclosed volume of the
sealed enclosure, the sound field is neither reverber-
ant nor diffuse. Nevertheless, the discussed meth-
ods will be used as a first approximation of insertion
losses in an enclosure even if this requirement is not
fulfilled.

In this work, we concentrate on the sound pressure p
and the sound power W . The sound pressure is always
connected to a location and describes the local pressure
amplitude at this location. Therefore, the sound pressure
depends on the distance from the sound source (∝ 1/r2

for a point source) and the symmetry of the emitted sound
waves from the source (monopole, dipole, etc.). From

DOI
10.3384/ecp17132605

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

605

the sound pressure one can calculate the sound intensity
I which takes the material properties of the sound propa-
gating media into account. For both, a radial symmetric
point source and a plane wave moving in one direction,
this gives (Crocker, 2007):

I =
p2

rms

ρc
(1)

for the time averaged sound intensity, where ρ is the den-
sity of the medium (air) and c is the speed of sound in
the medium. In the SSElib, the denisty of air and the
speed of sound in air are assumed as constant values with
1.204 kg/m3 and 343 m/s, respectively. Subsequently, the
sound power W of a sound source can be calculated from
integrating the sound intensity over an enclosing surface
around the sound source in a far field assumption:

W =
∫

S

p2
rms

ρc
dS =

1
ρc ∑

j
p2

rms, jS j (2)

where prms, j is the sound pressure and S j is a partial area
of the enclosing surface where constant sound pressure
prms, j is assumed. From (2) one can see, that if two vari-
ables from (W ,p,S) are known, the third can be calculated.
For unsymetrical sound sources, the sound pressure on the
enclosing surface becomes rapidly complex, hence only
two special cases are considered in the SSElib: a spherical
propagation and a one dimensional propagation. For both
one finds:

W =
1

ρc
p2

rmsS (3)

where S represents the surface through which the sound
propagates and prms is the effective sound pressure at S.

If a point source is located in the free room, S would be
4πr2 where r is the radial distance from the point source.
If a rigid surface is located below the point source, the
sound will only propagate to a spherical half space with a
surface of 2πr2, therefore S is only half of the free room
situation. For a sound source standing on a rigid surface in
front of a wall and for a sound source located in a corner,
S would even be a fourth or an eight compared to the free
room situation. In other words, for a given sound power,
the sound pressure could be significantly higher for differ-
ent installation situations compared to the free room situ-
ation, due to the fact that the kinetic energy generated by
the sound source has to be transported through a smaller
surface (c.f. Table 1).

Contrary to the sound pressure, the sound power is a
characteristic value of the sound source which is indepen-
dent of the location or the symmetry of the sound source.
Hence, once the sound power level is known, the sound
pressure level can be calculated for known geometries.

Usually both the sound pressure level and the sound
power level of a single frequency source, are given in log-

arithmic dB units:

Lp(dB) = 20 log
(

p
p0

)
(4)

LW (dB) = 10 log
(

W
W0

)
(5)

where p0 is the absolute threshold of hearing at 2×10−5 Pa
and W0 is 10−12 W.

Combining (3),(4),(5) and concerning that W0 =
p2

0/(ρc), leads to a direct link between Lp and LW :

Lp = LW −10 log
(

S
1m2

)
(6)

As already noticed in (3), a change of the enclosed surface
through which the sound from the sound source propa-
gates leads to a reduction or an enhancement of the sound
pressure level. From (6) follows for two different loca-
tions A and B:

Lp,B = Lp,A−10 log
(

SB

SA

)
(7)

where SA and SB are two different enclosing surfaces with
constant sound pressure level Lp,A and Lp,B, respectively.
If the enclosed surface increases e.g. if the distance be-
tween sound source and observer increases, the sound
pressure level decreases. If the enclosed surfaces de-
creases e.g. at the inlet into a duct, the sound pressure
level increases.

For a radial symmetric point source (6) leads to an equa-
tion where S can be described with the radial distance r
directly:

Lp = LW −20 log
(r

1m

)
−10 log

(
4π

ρc
p2

0
W0

)
(8)

The last term is dominated by 10 log(4π) and is usually
approximated with 11 dB in various textbooks.

The difference of two sound pressure levels of a con-
stant radial symetrical point source changes with the dis-
tance. From (8) follows for two different locations A and
B:

Lp,B = Lp,A−20 log
(

rB

rA

)
(9)

where rA and rB are the different distances to the point
source. Hence, doubling the distance leads to a reduction
of 6 dB. Note that doubling the distance in (9) is equivalent
to quadruple the surface of constant sound pressure.

As already discussed, p2
rms will be doubled if the sound

source stands on a rigid floor and the same sound power
level of the source is assumed. Hence, the sound pres-
sure level will be enhanced by 3 dB. Similar considera-
tions lead to an enhancement of 6 dB and 9 dB for a sound
source standing on a rigid surface in front of a wall and a
sound source in a corner, respectively. Therefore, simple
rules as summarized in Table 1 hold for these scenarios.

Sound Source Extension Library for Modelica

606 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132605

Table 1. Noise enhancement for different installation situations

Situation ∆L (dB) ∆S

floor +3 S f ree/2

wall and floor +6 S f ree/4

corner +9 S f ree/8

2.2 Frequency analysis
Up to this point, only single frequency sources were con-
sidered. But both, sound pressure and power can be bro-
ken down into frequency bands as shown by Fourier over
200 years ago. It is common in acoustics to divide the fre-
quency spectrum into frequency bands like the one-octave
ot the one-third-octave band. For an octave band the lower
and upper cutoff frequencies (fl and fu) are defined as:

fl = fc/
√

2; fu =
√

2 fc (10)

where fc is the center frequency of the band. From (10)
follows the center frequency:

fc =
√

fl fu (11)

Furthermore, from (10) follows that the upper cut off
frequency is always twice the lower cut off frequency fu =
2 fl and that the bandwidth is ∆ f =

√
2 fc. For the i-th

frequency band, the center frequency follows:

fc,i = 2(i−1) fc,1 (12)

where fc,1 is the first center frequency (15.625 Hz in the
one-octave band).

Considering frequency analysis, the frequency depen-
dent sound pressure level Lp and the sound power LW are
generally described as vectors in the SSElib:

Lp =

Lp,1

...
Lp,i

...
Lp,n

 , LW =

LW,1

...
LW,i

...
LW,n

where each row corresponds to a frequency band

with a center frequency fc = (fc,1 . . . fc,i . . . fc,n)
T.

The values of fc, as well as the number of rows n
depend on the chosen frequency band. E.g. if the
octave band is choosen, the center frequencies are
fc =(16,31.5,63,125,250,500,1e3,2e3,4e3,8e3,16e3)T Hz
and therefore n=11 (c.f. Table 4). The logarithmic sum of
the sound pressure levels at different center frequencies
gives then the total sound pressure level and the total
sound power level, respectively:

Lp,total(dB) = 10 log

(
n

∑
i=1

10Lp,i/10

)
(13)

LW,total(dB) = 10 log

(
n

∑
i=1

10LW,i/10

)
(14)

The same addition rules (13) and (14) are valid if
the sound pressure or sound power levels of independent
sound sources have to be added to a total sound pressure
or sound power level, respectively.

The relative loudness of sound that can be perceived
by the human ear is usually calculated by weighting the
instrument-measured sound levels with a frequency de-
pendent curve or table. The most common used curve is
the A-weighting curve which is defined in several national
and international standards, like the (IEC 61672-1, 2003).
This curve dampens the sound at low and high frequen-
cies whereas the intermediate frequencies stay unfiltered
or are slightly enhanced. Table 4 in the Appendix shows
the weighting coefficients ∆i used for A-weighting at dif-
ferent center frequencies in the one-octave band which
are used in the SSElib. If the one-octave band is cho-
sen, the weighting coefficient vector is ∆∆∆A= (-56.7,-39.4,-
26.2,-16.1,-8.6,-3.2,0,1.2,1.0,-1.1,-6.6)T dB.

The A-weighted total sound pressure level can then be
calculated with:

L̃p,total(dBA) = 10 log

(
n

∑
i=1

10(Lp,i+∆A,i)/10

)
(15)

L̃W,total(dBA) = 10 log

(
n

∑
i=1

10(LW,i+∆A,i)/10

)
(16)

It is common, that A-weighted sound levels are de-
scribed with the unit dBA or dB(A).

One has to be aware if data is given in the unit dB or
dB(A). However, with (15) one can always convert the
units to each other.

2.3 Noise reduction
Noise reduction can be achieved with several active and
passive methods. An active method could be to operate
a machine in a silent operating point. Such points can be
found by extending simulation models with the SSElib.
A passive method is the integration of sound absorbing
materials or silencers. Currently, two main noise reduc-
tion methods are implemented in the SSElib. The first one
describes the reduction with frequency dependent differ-
ences on the sound pressure or power level. Such a de-
scription is often used for silencers in ducts. Manufactur-
ers usually provide these data to their customers. Table 5
in the Appendix shows typical values for the differences
in sound pressure level ∆Ls in a 60×60 cm rectangular si-
lencer with a length of 50 cm. Using the vector notation
one can easily describe the noise reduction with:

Lp,out = Lp,in + ∆∆∆Ls (17)

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132605

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

607

where Lp,out is the frequency dependent sound pressure
level at the outlet of the silencer, Lin is the frequency de-
pendent sound pressure level at the inlet of the silencer and
∆∆∆Ls has to be taken from manufacturers data or text books.
Note that according to (6) the reduction of Lp in (17) goes
hand in hand with a reduction of the sound power level
LW as sound power is converted to heat in the absorber
material.

The other noise reduction method implemented in the
SSElib uses absorbing material mounted in the enclosure
of a machine or on the enclosing walls of a room. As
the assumed sound fields are diffuse and reverberant the
noise in the enclosure can be described with an average
sound pressure level inside the enclosure. For this, we
have to introduce frequency dependent sound absorption
coefficients α for given surfaces and center frequencies.
The absorbed sound power is therefore given with:

Wabs =
p̃2

4ρc ∑
j

α jS j (18)

where p̃ is the diffuse sound pressure in the enclosure,
p̃2/(4ρc) represents the equivalent power per m2 and S j
and α j are partial surfaces and their corresponding absorp-
tion coefficients, respectively. The term ∑ j α jS j is often
referred to as the equivalent area of an open window in an
enclosure with no absorption.

In the steady-state, the absorbed sound power has to
be equal to the sound power propagating from the sound
source inside the enclosure. Hence,Wabs is equal to W.
From (18) it is obvious that the sound pressure p̃ becomes
smaller for higher absorption coefficients or higher sur-
face areas. Using logarithmic notations one finds (see also
(Möser, 2012)):

Lp̃ = LW−10 log
(

∑ j ααα jjjS j

1m2

)
+6dB (19)

Dependent on the material and the geometry of the en-
closure, a part of the absorbed sound power is converted
to thermal energy whereas the other part remains sound
and will be radiated from the outer surface of the enclo-
sure. Similar to ααα , the transmission can be described by
frequency dependent transmission coefficients τττ:

Wτ = W ◦
∑ j τττ jS j

∑ j S j
(20)

where Wτ is the sound power propagating from the outer
surface of the enclosure.

3 Implementation
3.1 Connectors
The acoustic port () in the SSElib consists of two vari-
ables namely, the frequency dependent sound power W
(flow variable) and the enclosing surface S at the ports lo-
cation.

Although logarithmic units are common in sound cal-
culations, decimal units were used to describe the sound
power to circumvent problems if the flow direction is un-
known. Since also negative logarithmic sound levels have
still a positive sound power, the descriptions with flow
variables was not possible without introducing a further
variable. Therefore, and for the sake of simplicity dec-
imal units are used in the SSElib to describe the sound
power in the connectors. Currently, only the one-octave
band is implemented in the SSElib, hence the sound power
W and the center frequencies fc are described as vectors
with 11 rows according to the one-octave band (c.f.Table
4). The center frequency vector fc is located in the Con-
stants package.

3.2 Components
Several components were realized in the SSElib. Table 2
gives an overview of the components and links them to the
equations and tables used in this work.

Table 2. Components of the SSElib

Name Reference

AcousticSource -

AcousticSink -

Add (13),(14)
Converter_dBA (15),(16)

InstallationSituationFloor Table 1

InstallationSituationWall Table 1

InstallationSituationCorner Table 1

RadialDistance (8),(9)

OpenWindow (6)

Silencer (17)

Enclosure (18),(19)

EnclosureWithTransmission (18),(19),(20)

3.3 Sensors
In order to observe the sound pressure and sound power
levels at different locations inside the models, four sen-
sors are provided in the library which can be connected
in between an acoustic connection. For both, the sound
power and the sound pressure sensors, an unfiltered ver-
sion and an A-weighted version exist. Table 3 shows the
four sensors. Please note that we have used dB instead of
dB(A) or dBA as unit for the A-weighted variables. The
reason is that dB(A) or dBA aren’t valid units in Modelica.

Sound Source Extension Library for Modelica

608 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132605

Table 3. Sensors of the SSElib

Name Reference

SoundPressureSensor (4),(6),(13)

SoundPressureSensor(dBA) (4),(6),(15)

SoundPowerSensor (5),(6),(14)

SoundPowerSensor(dBA) (5),(6),(16)

3.4 Sound Source Extension
The main task of the SSElib is to provide a model to ex-
tend existing models with acoustic characteristics. This
model is the AcousticExtensionOneOctave model () lo-
cated in the SoundSourceExtension package. It should be
used in the following way:

• Create a model which represents your new acoustic
component

• Extend your new model with the sound source exten-
sion from the SSElib

• Extend your new model with your non-acoustic com-
ponent e.g. a fluid pump

• Use your new model in the simulations instead of
the old model and modify the acoustic parameters to
match your components sound characteristic. Don’t
forget to connect your new model to at least one
acoustic sink.

A new model for an extended fluid pump was
implemented in the following way using the
PrescribedPump model from the MSL (Model-
ica.Fluid.Machines.PrescribedPump):

model Example_AcousticPump
extends SSElib.Extension.\
AcousticExtensionOneOctave;

extends \
Modelica.Fluid.Machines.PrescribedPump;

end Example_AcousticPump;

The extended pump can be found in the TestersAndEx-
amples package. Figure 1 shows the graphical represen-
tation of the pump from the MSL extended with a sound
source.

Figure 1. Fluid pump from the MSL extended with a sound
source.

Contrary to the connections of the original pump model,
the new model has now an additional real input and a
sound source connector as depicted in the lower right cor-
ner. The additional input is simply called "soundInput"
and can be used to influence the sound source levels. In the
case of the pump, the rotational speed of the pump would
be a reasonable input variable, due to the fact that the
acoustic characteristic of the pump is expected to change
significantly with the pump speed.

Figure 2 shows artificial sound data for a pump. We as-
sume that sound power level at the rotational speeds n =
30, 50, 70 and 90 Hz have been measured and should be
used for the simulations. They are depicted as bar plots in
Fig. 2. In order to estimate the correct sound pressure lev-
els at different rotational speeds, one could use the mea-
sured data directly in Modelica as table data and calculate
the corresponding sound power levels with the aid of inter-
polation functions. As this method would lead to signifi-
cant loss of time, we propose to use polynomial functions
to describe the sound power data. The surface plot in Fig.
2 shows a polynomial function which was fitted to the data
using polynomial functions from the Numerical Python li-
brary NumPy (Oliphant, 2006).

Figure 2. Sound power LW dependency on the rotational speed
of the pump n and the frequency bands around the center fre-
quency fc. The surface around the bar plots represents a poly-
nominal fit.

To use polynomial functions, polynomial coefficients
have to be passed to the extended model as a parameter.
In general these coefficients c should have the form:

LW (i,n) = ∑
k,l

ck,l ik nl (21)

where i is the frequency band of the octave band (c.f. Ta-
ble 4) and n is the rotational speed of the pump. Note that
we used the integer of the frequency band instead the cen-
ter frequency on purpose, as it is easier to fit the polyno-
mial functions into data with linear distributed nodes. Cur-
rently, the SSElib only supports polynomials with k=l=3
or k=l=4.

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132605

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

609

Figure 3. System sketch of the SSElib example SSElib.TestersAndExamples.Example.

3.5 Testers and Examples
Each component of the library has a testing model located
in the Testers and Examples package. Furthermore, there
is one extended component (Example_AcousticPump, Fig.
1) and one example (Example, Fig. 3) located inside this
package.

The example was derived from the PumpingSystem
example of the MSL, originally written by Francesco
Casella.

Contrary to the original example the current pump can
operate at different pump speeds and is controlled by a not
very well designed PI-controller. Furthermore, the pump
was extended with an acoustic sound source (c.f. section
3.4). A water pump which is sound-optimized for an oper-
ation around 50 Hz or 3000 rpm was assumed and polyno-
mial coefficients were used to represent this behavior (c.f.
Fig. 2).

The A-weighted sound pressure level close to the ma-
chine (1m distance) can be observed with SensorMa-
chine.L_p_total_dBA and the speed of the pump can be
observed with pumps.N_in and pumps.soundInput in rpm
and Hz, respectively (Fig. 4). Starting from the sound-
optimized speed of 3000 rpm or 50 Hz, the pump speed
decreases to around 2260 rpm or 38 Hz in the steady state
after around 1200 s. Simultaneously, the sound pressure
level increases from 88 dB(A) to 103 dB(A) (red line in
Fig. 4).

From an engineers point of view several options exists
to lower the noise of the pump. One option could be, that
the sound pressure measured at the machine or simulated
on a computer is used to optimize the control strategy of
the system. Another option could be to install sound ab-
sorption measures. The effect of the latter measure can be
estimated by adding components from the SSElib.

In this example the second option is real-

ized. The pump was covered with an enclo-
sure (EnclosureWithTransmission) which stands on a floor
without walls nearby (InstallationSituationFloor). An ob-
server located 10 m away from the pump (RadialDistance)
finally hears the pump with 66 dB(A) in the steady state
(c.f. SensorObserver.L_p_total_dBA in Fig. 4).

Figure 4. Time dependent pump speed (top) and time dependent
total sound pressure level Lp,total in dBA at different locations.

3.6 Heat pump example
Figure 5 shows a further example, where an air source
heat pump, realized with the aid of the TIL library (TLK-
Thermo GmbH) and self-written components, was ex-
tended with sound sources. Please note, that this example
is not included in the SSElib.

Sound Source Extension Library for Modelica

610 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132605

Figure 5. Air source heat pump model with an additional characteristic for the compressor and the fan. The components of the
SSElib are mainly located at the lower right corner of the figure.

Figure 6. Transient behavior of the heat pump in the one-octave
band.

The fan is housed in a casing with a 0.6 m×0.6 m open-
ing, which is represented by the OpenWindow component.
At the outlet of the casing a silencer (Silencer) is con-
nected. The compressor is inside an casing without any
free opening (EnclosureWithTransmission). The transmis-
sion coefficient to the outside for all frequencies is as-
sumed with τ=0.01. Both sound sources are located on
a floor (InstallationFloor) and an observer (SoundPres-
sureSensor_dBA) is 10 m away (RadialDistance). The to-
tal sound pressure level that the observer hears is about
57.4 dB(A) at the operating point.

Figure 6 shows the transient behavior of the sound pres-
sure level at the observer location. After starting the heat

pump at time = 0, the controller needs about 100 s to
reach a steady-state condition. During this time, the sound
power level reaches a significant maximum around 20 s.
In a sound optimized heat pump such peaks in the sound
pressure level could be easily avoided if the controller con-
siders this peaks at the start of the machine.

4 Outlook
The presented work shows the first version of a library
which should continuously grow in the years to come. The
following features should be implemented soon:

• Frequency resolutions in the one-third octave band

• Additional description methods for the acoustic be-
haviour besides the description with polynomials and
constants.

• Validation of the models with measurement on an air
source heat pump in AITs acoustic lab.

Acknowledgment
The Austrian Research Promotion Agency (FFG) is grate-
fully acknowledged for funding this work within the
SilentAirHP project under Grant No. 848891. Furhter-
more, we thank TLK-Thermo for technical advice.

References
M. J. Crocker, editor. Handbook of Noise and Vibration Control.

Wiley, New Jersey, 2007.

IEC 61672-1. Electroacoustics - Sound level meters -
Part 1: Specifications (International Electrotechni-
cal Commission Standard No. 61672-1). Onlline on:

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132605

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

611

https://webstore.iec.ch/publication/5708, last visited: 2017-
03-07, 2003.

M. Möser. Technische Akustik. Springer-Verlag, Berlin Heidel-
berg, 9th edition, 2012. doi:10.1007/978-3-642-30933-5.

Travis E. Oliphant. Guide to NumPy. Provo, UT, March 2006.
URL http://www.tramy.us/.

TLK-Thermo GmbH. TIL suite and TIL media: Commer-
cial library for steady-state and transient simulation of ther-
modynamic systems such as heat pump,refrigeration, a/c,
cooling and Rankine systems. Onlline on: https://www.tlk-
thermo.com/, last visited: 2017-01-22.

Appendix

Table 4. Frequency band index i, center frequencies fc and A-
weighting coefficients ∆A,i for the one-octave band. The coeffi-
cients were taken from (IEC 61672-1, 2003)

i fc (Hz) ∆A,i (dB)
1 16 -56.7
2 31.5 -39.4
3 63 -26.2
4 125 -16.1
5 250 -8.6
6 500 -3.2
7 1 000 0
8 2 000 1.2
9 4 000 1
10 8 000 -1.1
11 16 000 -6.6

Table 5. Typical values for the differences in sound pressure
level ∆Ls in a 60 × 60 cm rectangular silencer with a length
of 50 cm taken from the data sheet of a commercial available
silencer.

center frequency fc (Hz) ∆Ls (dB)
63 -2

125 -4
250 -10
500 -18
1000 -25
2000 -24
4000 -17
8000 -11

Table 6. Typical values for the sound absorption coefficient α of
5 cm thick melamine foam taken from the data sheet of a com-
mercial available noise insulation material

center frequency fc (Hz) α (-)
125 0.13
250 0.41
500 0.6
1000 0.9
2000 0.85
4000 0.93

Sound Source Extension Library for Modelica

612 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132605

Towards Medical Cyber-Physical Systems:
Modelica and FMI based Online Parameter Identification

of the Cardiovascular System

Jonas Gesenhues1 Marc Hein2 Maike Ketelhut1 Thivaharan Albin1 Dirk Abel1

1Institute of Automatic Control, RWTH Aachen University, Germany j.gesenhues@irt.rwth-aachen.de
2Department of Anesthesiology, RWTH Aachen University Hospital, Germany

Abstract
This paper presents a concept for online parameter iden-
tification intended to be used within cardiovascular re-
search labs and hospitals of the future featuring a data
network of medical sensors. It is based on iterative non-
linear optimization using a moving horizon scheme and
object-oriented Modelica models. Special FMUs have
been developed to interface the optimization module and
the sensor hardware. The concept is demonstrated on an
exemplary application of identifying the parameters of a
model for the systemic circulation. Unlike classical online
parameter identification methods, this concept allows for
quickly implementing changes of the underlying model.
Keywords: Online Parameter Identification, Moving Hori-
zon, FMI, ModeliChart, JModelica.org, CasADi, Cardio-
vascular, Medical

1 Introduction
Throughout many countries around the globe, public
health care systems are being faced by the ongoing trend
of increased demand for health care services. On the
one hand, this is due to the consequences of demographic
changes towards an aging population. On the other hand,
scientific progress allows for increased treatment possibil-
ities (European Commission, 2016). At the same time,
public hospitals, a major pillar within the health care sys-
tems, are faced by a lack of qualified health care personal.
Supporting health care personal in public hospitals by
smart technology might provide an essential component to
meet those challenges. In this regard, ongoing trends such
as digitalization of information, large scale data agglomer-
ation (’Big Data’), interconnection of devices (’IoT’) and
smart algorithms that allow for e.g. automated monitoring
of a patient’s status and early recognizing and possibly au-
tomatically resolving critical conditions can be expected
to find their way into hospitals in the future and have the
potential to improve the outcome of patients.

Within this context, the research focus of our interdisci-
plinary group consisting of engineers and physicians is on
improving the therapy of terminal heart failure, the most
prevalent cause of death in the western world (Nichols
et al., 2012). Specifically, we are working on control

strategies for technological heart assist devices, such as
blood pumps that are connected to the body to assist
the heart (Ventricular Assist Devices). Here, mathemat-
ical models of the cardiovascular system are applied in
many different ways, ranging from computer ’model in the
loop’ simulations of new control strategies (e.g. Habigt
et al. (2016); Ketelhut et al. (2017)) over driving test
benches for ’hardware and software in the loop’ hardware
tests (e.g. Misgeld et al. (2015)) to state estimation (e.g.
Rüschen et al. (2016)) and model based control (Gesen-
hues et al., 2016).

Although much literature exists describing the observed
behavior of the healthy body, few is known about the un-
derlying mechanisms and how they are affected by dis-
eases, drugs or the interaction with technical devices.
Consequently, the adaption, refinement and creation of
new models is an integral part within this field. Here,
over the years the object-oriented modeling paradigm us-
ing Modelica has turned out invaluable for its flexibility
for modifications and the concept of acausal formulation
of components (Gesenhues et al., 2017) and has motivated
the creation of libraries such as the Physiolibrary (Mateják
et al., 2014) or our in-house developed library HumanLib
(Brunberg et al., 2009).

Besides model structure, the identification of the con-
tained model parameters is important. When it comes to
biomedical dynamical systems such as the cardiovascu-
lar system, there is generally a great extent of variation
considering parameters. First of all, parameters vary with
countless individual characteristics of patients such as age,
height, weight, gender, lifestyle etc. Second, the presence
and extend of diseases directly affects the parameters. Fi-
nally, even in a specific single patient at a specific state,
the parameters vary because the body possesses numer-
ous physiological control mechanisms to adapt to external
conditions such as temperature, exercise or even the cur-
rent posture (standing upright or lying). Thus, the model
parameters need to be considered time varying and can
change within seconds. All in all, parameters identified
from measured data represent a snapshot of an individual
patient at a specific time.

For all of those reasons and having smart algorithms
and features of hospitals in the future in mind, an au-

DOI
10.3384/ecp17132613

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

613

ModeliChart

C
A

N
F

M
U

M
od

el
F

M
U

T
C

P
/IP

F
M

U

Hardware
Inteface

ADCsM
ic

ro
-

pr
oc

es
so

r

CAN-Bus

Sensors
(Pressure, Flow)

Optimization
Module

P
yt

ho
n

R
ou

tin
e

Network
Socket

MH-Buffer,
Optimica,
JModelica,
CasADi,
Ipopt

Online Parameter Identification Infrastructure

Modelica Model

.fmu.mop .mo
Optimica Problem FMU

Channel Links

Figure 1. Architecture and components of the online identification concept. MH: Moving Horizon, CAN: Control Area Network,
ADC: Analog-Digital Converter.

tomated online model parameter identification procedure
that is capable to be included in a hospital’s data network
and which continuously identifies model parameters based
on live patient data provides many benefits including diag-
nostic assistance to doctors (model parameters can be used
to asses a patient’s status), smart alarms that are raised
when selected parameters exceed a certain threshold up
to model based control of medical devices, for which an
adequately parametrized model is an essential prerequi-
site. In-vivo animal trials are an integral element of our re-
search. The infrastructure that we have developed to con-
duct such trials features a large number of sensors which
are connected to a data network (currently we are using
the Control Area Network (CAN) bus). This infrastruc-
ture bears resemblance to the possible infrastructure of fu-
ture hospitals. Thus, our trials and infrastructure provide a
test bed for the implementation of medical cyber-physical
systems.

The current state of technology includes many classi-
cal online and offline parameter identification methods,
which have been adapted and applied to virtually any
physical domain. Specifically for the cardiovascular sys-
tem, those include attempts using reformulation of model
equations to allow for (recursive) least square techniques
(Clark et al., 1980; Hann et al., 2006; Kosaka et al., 2002)
and Bayesian approaches like the (extended) Kalman fil-
ter (Yu et al., 1998). Although it has been shown that the
results yielded from classical approaches are valid and re-
liable, a major limitation consists in the fact that there is an
enormous effort to reformulate the model into the specific
form needed for the identification method. This generally
includes manually rearranging equations and to transform
the system by introducing new state variables and param-
eters (e.g. to resolve non-linearities). Shortly, classical
methods might be satisfactory when the underlying model
meets the requirements of the identification method and
can be considered ’frozen’ with the start of development
as revisions to the model at a later time can be laborious
and even impossible to implement.

As mentioned above, cardiovascular system models
are subject to frequent changes. Thus, the applicabil-
ity of classical methods is limited in this regard. Those
limitations motivate new online identification procedures
which do not require excessive reformulation efforts of
the underlying model. Recently, we have started to
consider non-linear optimization based identification us-
ing our Modelica models in combination with Optimica,
JModelica.org and CasADi as a possible solution. A re-
cent study focusing on the offline identification of patient
specific parameters using those tools comes to the conclu-
sion that patient specific parameter identification has the
potential to be a promising component for patient assess-
ment in the clinic (Moza et al., 2017).

The contribution of this paper is a concept that allows
for the automated online parameter identification based on
those ideas and tools which does not exhibit the described
limitations of the previous state of the art and can be used
within our animal trial infrastructure. The general idea
is to repeatedly (re-)identify the current parameter values
by solving a non linear optimization problem over a short
time interval. The paper is organized as follows: first, the
next section provides a general overview over the concept
and its components and the typical setup work flow in-
volved. Section 3 details the iteratively carried out opti-
mization procedure. Afterwards, the concept is demon-
strated by the exemplary application of identifying the pa-
rameters involved in a simple model of the systemic cir-
culation (Section 4). Finally, the results are presented and
a discussion on current limitations and further enhance-
ments is given (Section 5).

2 Concept Overview and Work Flow
The components involved within the presented concept
are summarized in Figure 1. The concept consists of our
FMU-master ModeliChart (see Section 2.2 below) which
serves as the central hub and graphical user interface and
of the optimization module, which constantly calculates

Towards Medical Cyber-Physical Systems: Modelica and FMI based Online Parameter Identification of the
Cardiovascular System

614 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132613

current parameter values. It is further described in Section
3. The optimization module is implemented as a Python
routine. Data exchange between those two components is
realized through a TCP socket stream using a simple cus-
tom protocol. This design allows for either running the
optimization module on the same machine that is running
ModeliChart as well as running the optimization module
on a different machine (possibly outside of the lab) con-
nected to the local area network (LAN).

2.1 Interface FMUs
To realize the architecture depicted in Figure 1 two
FMUs complying with the FMI 2.0 co-simulation stan-
dard have been developed to allow for data exchange be-
tween the individual components of the concept. Both in-
terface FMUs have in common that they are fully config-
urable through the modelDescription.xml and addi-
tional configuration files provided as resources. So far,
both FMUs only support the Real data type. An arbi-
trary number of input and output channels that appear
as scalar FMU variables can be set. Input channels are
intended for receiving data, output channels, which are
marked with the attributes causality="parameter"
and variability="tunable" are intended to send
data. For each of both FMUs a convenient software tool
has been developed to automatically generate the accord-
ing modelDescription.xml, additional configuration
files and the packed FMU.

The first FMU constitutes a TCP/IP based network
socket interface used for the connection between the op-
timization module and ModeliChart. During the initial-
ization of the FMU, a TCP server accepting connections
on a configurable port is started waiting for a client (here
the optimization module) to connect. At this point, only
a single client is supported. On every execution of the
doStep(...) method, the values of the output channel
scalar variables are sent to the connected client using a
simple custom protocol. Similarly, the getReal(...)
function returns the latest value of the specified input
channel scalar variable. The client is allowed to send val-
ues at any given time.

The second FMU allows for the interaction with the
CAN bus of our infrastructure which distributes the sen-
sor signals. This FMU uses the API provided by the man-
ufacturer of the CAN interface hardware (PEAK-System
Technik GmbH, Darmstadt, Germany). The CAN FMU
listens to CAN messages of preconfigured message iden-
tifiers and returns the last received value whenever the cor-
responding getReal(...) function is called. Although
not required in the here presented application, the CAN
FMU also supports sending values to the CAN bus.

2.2 ModeliChart
ModeliChart is our self-developed freely available FMU
host. The original motivation has been to provide a free
and intuitive opportunity to asses and play with simula-
tion models to physicians. However, the ease of use and

the hardware interaction capabilities through the interface
FMUs described above have turned ModeliChart into a
’Swiss army knife’ for all steps during rapid control proto-
typing cycles. Based on the .NET framework (Microsoft,
Redmond, WA, US), it provides a simple intuitive graph-
ical user interface. ModeliChart supports FMUs comply-
ing with the FMI 2.0 co-simulation standard. The main
intended use case is real time operation by periodically
calling the doStep(...) method of all FMUs after a
configurable time interval. So called ’channel links’ al-
low individual FMUs to be connected: Internally, for each
channel link the SetReal(...) method of the receiving
FMU is called at each time step. More details on Mode-
liChart can be found in (Gesenhues et al., 2017).

Within the here presented application, three FMUs are
used. The CAN FMU is used to fetch the measurements of
the sensors of interest from the CAN bus. Through chan-
nel links, the measurement data is handed to the TCP/IP
FMU which in turn sends the measurement data to the op-
timization module. In this regard ModeliChart serves as
a CAN to TCP/IP bridge. After new identified parame-
ters are available from the optimization module, they are
sent to ModeliChart through the TCP/IP FMU. The third
FMU contains the model under investigation. Through
channel links the current parameter values are set to the
model FMU. In combination with the measurement data
from the CAN FMU used as input into the model FMU, it
is possible to compare chosen simulated signals with cor-
responding measured signals. Each channel can be plotted
allowing to observe trends of parameter values and to vi-
sually asses the validity of the results by comparing the
simulated and measured signals.

2.3 Typical Setup Work Flow
Typically, the setup starts with a Modelica model that con-
tains the parameters of interest. The model should con-
tain variables that correspond to measured signals. Ob-
viously it is required that the parameters are adequately
related to the variables representing the measured signals
(i.e. observability, correlation etc.). Next, an Optimica
file is created containing the optimization problem. The
optimization class should extend from the Modelica
model. In simple cases, it can be sufficient to just mark
the parameters to be identified as ’free’ when a quadratic
penalty cost function is to be used. Nevertheless it is also
possible to define custom cost functions. For consistency,
certain variable expressions for optimization parameters
such as final time or limits on allowed parameter values
can be used which are later overwritten when the Optim-
ica file is loaded in the optimization module. An exem-
plary Optimica file can be seen in Listing 2. Both files are
placed in a folder accessible for the optimization module.
Next, some adaption of the Python routine is necessary to
match the measurement data to the corresponding model
variables and to set optimization parameter settings (see
Section 3). Besides, an FMU of the Modelica model to be
used within ModeliChart is created and if necessary the

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132613

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

615

Time

Sa
m

pl
e

V
al

ue
s Preceding

Horizon
Current
Horizon

TH
T∆

Figure 2. Illustration of the moving horizon scheme.

configuration of the interface FMUs is adapted. Finally,
a ModeliChart setup (loading the FMUs and creating the
channel links) is created and optionally saved for later use.
As soon as the setup has been loaded in ModeliChart, the
optimization module can be started.

3 Optimization Module
The online parameter identification is realized through
continuously iteratively solving the optimization problem
defined within the Optimica problem using the measure-
ment data samples within a most recent finite time frame
(horizon). Using a moving horizon scheme (Figure 2), as
soon as enough samples for a new horizon spanning the
time TH and enough time since the preceding horizon T∆

has passed, a new optimization job on the current horizon
measurement data is dispatched.

The optimization module has been implemented as a
Python routine. It uses the modules provided by JMo-
delica.org (version 1.17) and in particular the integrated
CasADi based optimization tool chain (Åkesson et al.,
2010; Andersson et al., 2011). CasADi is a nonlinear
optimization framework that is capable to automatically
discretize the optimization problem using a collocation
scheme and to calculate the necessary derivatives through
algorithmic differentiation. The tool chain automatically
transforms the formulated Optimica problem to be solved
by a non linear optimization solver. Here, Ipopt has been
used (Wächter and Biegler, 2005).

Figure 3 provides an overview of the routine. Af-
ter the optimization module has been started, the Mod-
elica and Optimica files are loaded. The variable ex-
pressions in the Optimica file (see Listing 2) are re-
placed by the configured values within the routine, i.e.
%FINAL_TIME% is set to the value TH . Using the ac-
cording modules, the Modelica model is simulated with
artificial input signals over the time frame TH to pro-
vide initial trajectories of all variables. Afterwards, the
optimization problem is compiled and discretized us-
ing the prepare_optimization(...) function of the
transfer_optimization_problem module. The so
prepared discretized problem will be used for each of the
following optimizations. Since this compilation process
takes significantly longer than the actual solution of the

Start Load files

Prepare
optimization

problem

Connect to
ModeliChart

Receiving
samples

Buffer sample

Enough
samples for

next horizon?

Run opti-
mization

Check results
validity

Send results to
ModeliChart

Set new horizon

When
sample
received

yes

no

Figure 3. Flow diagram of the optimization module routine.

optimization problem, reusing the prepared discretization
saves a lot of computation time. Afterwards, as soon the
connection to ModeliChart is established, incoming sam-
ples are awaited and buffered. As soon as a new horizon
is collected according to the described moving horizon
scheme, the samples within the horizon are set as the new
external data. Furthermore, the initial trajectories for the
solution of the optimization problem are set to the solution
trajectories of the preceding optimization. Afterwards the
solver is started.

For a number of reasons depending on the application
(some examples will be shown in Section 4), the solution
obtained from the solver might be invalid or the solver
might even fail to find a solution within a reasonable time.
At this point, it is just checked whether the found param-
eters are within defined limits to decide on the validity of

Towards Medical Cyber-Physical Systems: Modelica and FMI based Online Parameter Identification of the
Cardiovascular System

616 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132613

Listing 1. Modelica model for the identification of the TEW
parameters. The associated Modelica library ’HumanLib’ can
be found as online supplement.

model Ident3ElemWK
import HumanLib.Basics.*
import HumanLib.Vessels.*
parameter Real param_Z=0.1;
parameter Real param_R=1;
parameter Real param_C=1;
Resistance Z(R=param_Z);
Compliance C(V_0=0, C=param_C,

V(start=100, fixed=false));
Resistance R(R=param_R);
Sources.PressureSource_Variable P_Ao;
Sources.PressureSource_Variable P_CV;
input Real AoP;
input Real CVP;
Sensors.FlowSensor Q_Ao;

equation
connect(Z.cnStreamOut, R.cnStreamIn);
connect(C.cnBloodStream, R.cnStreamIn);
connect(R.cnStreamOut, P_CVP.cnBloodStream

);
connect(P_Ao.P, AoP);
connect(P_CV.P, CVP);
connect(Z.cnStreamIn, Q_Ao.cnStreamOut);
connect(P_Ao.cnBloodStream,

Q_Ao.cnStreamIn);
end Ident3ElemWK;

Listing 2. Optimica optimization problem for the identification
of the TEW parameters.

optimization OptimizeWKParams(startTime=0,
finalTime=%FINAL_TIME%)

extends Ident3ElemWK(
param_Z(free=true,min=%MIN_Z%,max=%MAX_Z%),
param_R(free=true,min=%MIN_R%,max=%MAX_R%),
param_C(free=true,min=%MIN_C%,max=%MAX_C%)
);
end OptimizeWKParams;

the results but in the future it might make sense to evalu-
ate other criteria like residuals, solution time etc. There-
fore, an additional parameter is reported back indicating
whether the result is considered valid. This provides feed-
back for the user on which it can be decided to just ignore
’sporadically’ invalid results or to investigate the reason.

4 Exemplary Application: Identifica-
tion of the Systemic Circulation

The concept is demonstrated on the simple but relevant in
practice use case of identifying the parameters involved in
modeling the flow dynamics of the systemic circulation.
The systemic circulation refers to all blood vessels (arter-
ies, capillaries, veins) between the outlet of the left (side
of the) heart, which pumps the blood into the systemic
circulation and the right heart, which pumps blood into
the pulmonary (lung) circulation (Figure 4). The vessels

Aorta PAo(t)

Ascending

Descending

From (left) heart

Further Systemic Circulation:
Arteries, Capillaries, Veins

Central Veins PCV (t)

To (right) heart

Flow Sensor Q
Ao (t)

Figure 4. Schematic overview of the systemic circulation.

Resistance Resistance
ComplianceFlow Sensor

Pressure Source
Pressure Source

PAo(t) PCV (t)Z C RQAo(t)
TEW

Figure 5. Graphical representation of Listing 1: the three-
element-windkessel (TEW) in model combination with addi-
tional components for the parameter identification process.

within the systemic circulation start with the arteries and
branch up more and more into smaller vessels (ultimately
into so called capillaries) running through all parts of the
body (muscles, organs) except the lungs. The capillaries
end up in the veins, which in turn ultimately end in the big
central veins and finally in the right heart.

The large arteries, most importantly the aorta are elastic
and have the ability to distend with raising blood pressure
and recoil with falling blood pressure (indicated through
the dashed line in Figure 4). This leads to a damping of
the amplitude of the pulsating blood pressure wave com-
ing from the heart, an effect that is commonly referred
to as the physiological windkessel effect. A very simple
model for the systemic circulation is the three-element-
windkessel (TEW) model (Westerhof et al., 2009). It con-
sists of two hydraulic resistances (∆P = R · Q, with ∆P
being the blood pressure difference across the element, Q
the blood flow and R the resistance parameter) and a com-
pliance element (V =C ·P with V being the current blood
volume inside the element, P the current blood pressure
inside the element and C being the compliance parame-

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132613

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

617

ter). For convenience, the elements and parameters will
be referred to as Z,R (resistances) and C (compliance). A
graphical representation of the model can be seen in Fig-
ure 5.

During a typical in-vivo animal trial on an anesthetized
pig, the chest is opened and the heart and the aorta un-
covered. This allows for the placement of various sensors.
For this application two invasive pressure sensors are used
that are placed inside the Aorta (PAo(t)) and inside one
of the central veins (PCV (t)). Furthermore, an ultrasonic
flow sensor is placed at the beginning of the Aorta (QAo,
see Figure 4). Listing 1 contains the complete Modelica
model based on components from our library ’HumanLib’
(Brunberg et al., 2009). The blood connector used in List-
ing 1 consists of the potential variable blood pressure (tra-
ditionally denoted in mmHg where 1mmHg = 133.3Pa,
referred to atmospheric pressure) and the flow variable
blood flow in ml/sec.

Listing 2 contains the according optimization prob-
lem. In this example the parameters to be identified are
marked free. The optimization problem consists in find-
ing those parameter values that minimize the quadratic
difference between the measured signals and the ’sim-
ulated’ signals. For this, the ExternalData class
of the pyjmi.optimization.casadi_collocation
module has been used. It allows to optimize for all three
sensor signals at the same time without the need for de-
ciding which signals are considered as input or output sig-
nals. The extend of individual signal differences can be
weighted against each other. Here, the parameters given
in Table 1 have been used to roughly normalize the sig-
nals.

To influence the parameters all sorts of experiments can
be performed during an animal trial. Here, we consider
the constriction of the aorta using a surgical band at two
different positions: at the ascending part right at the begin-
ning of the aorta and at the descending part of the aorta as
indicated by the dashed lines in Figure 4. It is important to
note that the pressure sensor measuring PAo measures the
aortic pressure right behind the constriction of the ascend-
ing position but way before the descending position. Each
of those constriction positions should have a different im-
pact on the model parameters.

5 Results and Discussion
For the results presented in this section, already available
raw data recorded during animal experiments conducted
on anesthetized pigs (approved by local animal care au-
thorities) has been used. There were no animal trials con-
ducted for this study. Accordingly, the infrastructure has
been emulated to generate the results presented in this sec-
tion. The raw data contained the sampled values of the
sensors at a sample rate of 1 kHz. The settings that have
been used are summarized in Table 1.

Two different experiments are investigated. The first
experiment is a short constriction of about 20 seconds

Table 1. Settings that have been used to obtain the presented
results. All other settings have been left at their default values.

Name Value

General:
Horizon length TH ,%FINAL_TIME% 1.5 sec
Time between horizons T∆ 0.8 sec
Validity criteria:
Maximal value %MAX_R%, %MAX_C% 3.5
Maximal value %MAX_Z% 1
Minimal value %MIN_R%, %MIN_C% 0.1
Minimal value %MIN_Z% 0.001
Quadratic penalty weight factors:
For PAo 10
For PCV 20
For QAo 1
Optimization settings:
Number of collocation elements 23
Max. Ipopt iterations 300

at the ascending position (Figure 6). The PCV signal is
not shown in the plots since it remains almost constant at
around 15 mmHg during the experiments. The pressure
PAo is measured behind the ascending occlusion position.
Hence, constricting the aorta at the ascending position
limits the blood flow but hardly affects the properties of
the systemic circulation. It can be seen that the parameters
change only slightly during the constriction and return to
their initial values some time after releasing the constric-
tion. The immediate parameter value changes (most no-
tably the sudden decrease of Z) can be explained by non-
linearities of the real system which become apparent when
the blood flow is significantly reduced. The slow changes
of parameters after the constriction are due to reactions
of the bodies regulation mechanisms; trough muscle cells
within the wall of some of the arteries the cross section
area of the vessel and thus the resistance of the vessel can
be controlled by the body. The increase in Z can be ex-
plained by the aim of the body to increase the pressure in
the aorta (the so called baroreceptor reflex). Similar, the
reduced supply of oxygen (hypoxia) leads to a widening
of the blood vessels to allow for increased blood flow and
results in a reduction of R. After the release, the regula-
tory mechanisms slowly revert the parameters back to the
original values.

For the second experiment, a constriction at the de-
scending position for several minutes is performed (Figure
7, release not shown in the figure). When the aorta is con-
stricted at the descending position, the overall resistance
of the systemic circulation is drastically increased which
is reflected in a significant increase of R. However, due
to impaired draining a significant expansion of the aorta
results in a reduction of Z due to the increase of the cross
section area of the aorta. For the same non-linearity rea-
sons as in the first experiment, the expanded aorta exhibits
a reduce elastance. Hence, the value of the compliance

Towards Medical Cyber-Physical Systems: Modelica and FMI based Online Parameter Identification of the
Cardiovascular System

618 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132613

0.4

0.5

0.6

R
[m

m
H

g
se

c/
m

l]

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70

0

100

200

Time [sec]

Q
A

o
[m

l/s
ec

]

30

40

50

60

70

P A
o

[m
m

H
g]

0

0.02

0.04

Constriction Release
Z

[m
m

H
g

se
c/

m
l]

2

3

4

C
[m

l/m
m

H
g]

Valid Result
Invalid Result

Figure 6. Short constriction of the aorta at the ascending position with subsequent release after about 20 seconds.

C decreases. Again, although small compared to the ef-
fects of the constriction, slight changes of the parameters
can be observed after the constriction due to the regulatory
mechanisms described above.

As seen in both experiments, the assumed proportional-
ity between pressure and volume to model the compliance
C is only valid within a limited range that has been ex-
ceeded during the experiments. Based on this findings it
can be considered to revise the model accordingly. Here,
the major advantage of the here presented concept consists
in the fact that such model adaption can be implemented
quickly.

The limitations considering what can be modeled are
mostly determined by the features yet supported by JMod-
elica.org, CasADi and Ipopt. A major limitation is the
requirement of the model equations to be twice continu-
ously differentiable (Wächter and Biegler, 2005) for each
optimization variable. This prohibits the use of switch-
ing components that commonly include if...else state-
ments. In our applications, this affects models containing
heart valves. To work around this limitation continuous
approximations have been used (Gesenhues et al., 2016,
2017).

On a standard personal computer, the average computa-
tion time for a valid result was 0.45 sec for the first exper-
iment and 0.36 sec for the second experiment. Since the

solution of the preceding optimization are used as the ini-
tial trajectories for the solver, the solution converges faster
if there is less change of the parameters between horizons.
Currently, a limitation of the current design of the rou-
tine of the optimization module is the requirement of the
preceding optimization being finished before the next op-
timization can be started. Consequently, the time between
two horizons T∆ needs to be chosen sufficiently high to
avoid additional delays from waiting for the preceding op-
timization to finish. Settings that affect the solution time
include the number of collocation elements and the num-
ber of collocation points within the discretization of the
optimization problem.

For verification purposes and to investigate the impact
of the length of the horizon TH , a test case has been con-
structed based on data obtained by a simulation of the
model. Here, the exact parameter values that should re-
sult out of the identification are known. All three parame-
ters have been varied during the simulation to evaluate the
dynamical effects of the identification procedure. Using a
sinus signal as input for PAo(t) and a constant signal for
PCV (t), the resulting QAo(t) was obtained. The so artifi-
cially created signals were used to emulate the sensor sig-
nals. The results of this test case are contained in Figure
8. As it can be seen, a smaller value for the horizon length
TH results in a faster response to changing parameters. On

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132613

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

619

0.5

1

1.5

2

R
[m

m
H

g
se

c/
m

l]

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0

100

200

300

400

Time [sec]

Q
A

o
[m

l/s
ec

]

40
60
80
100
120
140

P A
o

[m
m

H
g]

0.02

0.04

0.06

0.08
Constriction

Z
[m

m
H

g
se

c/
m

l]

1

2

3

4

C
[m

l/m
m

H
g]

Valid Result
Invalid Result

Figure 7. Long constriction at the descending position of the aorta.

the other hand, fluctuations are more damped for bigger
values of TH . Especially in the presence of noise, choos-
ing a bigger value for TH might be preferable. However,
significant parameter changes within the horizon lead to
invalid results (the outliers for TH = 5sec in Figure 8).

In the future, it is planned to further evaluate the con-
cept considering other aspects of the cardiovascular sys-
tem. Besides, further improvements to the optimization
module will be made to improve the robustness and the
performance. This includes canceling optimizations that
do not converge within a given time. Similarly, it will be
considered to adapt the time between horizons T∆ depend-
ing on the necessary solution time. Another interesting
idea that has come up is the synchronization of the hori-
zons to heartbeats. Besides, improvements will be made
to the setup work flow aiming at eliminating the need to
adapt the Python code for new setups. Furthermore, we
will be looking into changing the settings of within the
optimization module through the ModeliChart interface
without the need to stop and restart the optimization mod-
ule.

Concluding, the concept that has been integrated into
our lab infrastructure presents a valuable addition for our
research on the cardiovascular system and has the poten-
tial to be used as a clinical tool in the future.

1

1.5

2

R
[m

m
H

g
se

c/
m

l]

0 20 40 60 80 100

1

1.2

1.4

1.6

Time [sec]

C
[m

l/m
m

H
g]

0.1

0.15

0.2

0.25

Z
[m

m
H

g
se

c/
m

l] TH = 0.5sec
TH = 1.5sec
TH = 5sec
Actual Values

Figure 8. Verification trough identification of known parameter
values for different horizon lengths TH . The outliers in the TH =
5sec test are invalid results.

Towards Medical Cyber-Physical Systems: Modelica and FMI based Online Parameter Identification of the
Cardiovascular System

620 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132613

Acknowledgments
This work was supported by the German Research Foun-
dation (DFG) within the Smart Life Suport 2.0 PathoMod
project (PAK 183-2).

References
J. Åkesson, K.-E. Årzén, M. Gäfvert, T. Bergdahl, and

H. Tummescheit. Modeling and optimization with Opti-
mica and JModelica.org—languages and tools for solving
large-scale dynamic optimization problems. Computers &
Chemical Engineering, 34(11):1737–1749, November 2010.
doi:10.1016/j.compchemeng.2009.11.011.

Joel Andersson, Johan Åkessona, Francesco Casellad, and
Moritz Diehl. Integration of CasADi and JModelica.org.
In Proceedings from the 8th International Modelica Con-
ference, Technical Univeristy, Dresden, Germany, pages
218–231. Linkoping University Electronic Press, June 2011.
doi:10.3384/ecp11063218.

A. Brunberg, J. Maschuw, R. Autschbach, and D. Abel. Object-
oriented model library of the cardiovascular system including
physiological control loops. In IFMBE Proceedings, pages
166–169. Springer Nature, 2009. doi:10.1007/978-3-642-
03895-2_48.

John W. Clark, Robert Y. S. Ling, R. Srinivasan, J. S. Cole,
and Roderick C. Pruett. A two-stage identification scheme
for the determination of the parameters of a model of
left heart and systemic circulation. IEEE Transactions on
Biomedical Engineering, BME-27(1):20–29, January 1980.
doi:10.1109/tbme.1980.326687.

European Commission. Joint report on health care and long-term
care systems & fiscal sustainability. European Economy In-
stitutional Papers, (037), October 2016. doi:10.2765/680422.

Jonas Gesenhues, Marc Hein, Moriz Habigt, Mare Mechelinck,
Thivaharan Albin, and Dirk Abel. Nonlinear object-oriented
modeling based optimal control of the heart: Performing pre-
cise preload manipulation maneuvers using a ventricular as-
sist device. In 2016 European Control Conference (ECC).
Institute of Electrical and Electronics Engineers (IEEE), June
2016. doi:10.1109/ecc.2016.7810603.

Jonas Gesenhues, Marc Hein, Maike Ketelhut, Moriz Habigt,
Daniel Rüschen, Mare Mechelinck, Thivaharan Albin, Stef-
fen Leonhardt, Thomas Schmitz-Rode, Rolf Rossaint, Rüdi-
ger Autschbach, and Dirk Abel. Benefits of object-oriented
models & ModeliChart: Modern tools and methods for the
interdisciplinary research on smart biomedical technology.
Biomedical Engineering / Biomedizinische Technik, 2017.
doi:10.1515/bmt-2016-0074.

Moriz Habigt, Maike Ketelhut, Jonas Gesenhues, Frank
Schrödel, Marc Hein, Mare Mechelinck, Thomas Schmitz-
Rode, Dirk Abel, and Rolf Rossaint. Comparison of novel
physiological load-adaptive control strategies for ventricular
assist devices. Biomedical Engineering / Biomedizinische
Technik, 2016. doi:10.1515/bmt-2016-0073.

C.E. Hann, J.G. Chase, and G.M. Shaw. Integral-based
identification of patient specific parameters for a min-
imal cardiac model. Computer Methods and Pro-
grams in Biomedicine, 81(2):181–192, February 2006.
doi:10.1016/j.cmpb.2005.11.004.

Maike Ketelhut, Frank Schrödel, Sebastian Stemmler, Jesse Ro-
seveare, Marc Hein, Jonas Gesenhues, Thivarian Albin, and
Dirk Abel. Iterative learning control of a left ventricular assist
device. In 19th IFAC World Congress, Accepted for publica-
tion. Toulouse, France, 2017.

Ryo Kosaka, Yoshiyuki Sankai, Tomoaki Jikuya, Takashi Ya-
mane, and Tatsuo Tsutsui. Online parameter identification of
second-order systemic circulation model using the delta op-
erator. Artificial Organs, 26(11):967–970, November 2002.
doi:10.1046/j.1525-1594.2002.07112.x.

Marek Mateják, Tomáš Kulhánek, Jan Šilar, Pavol Privitzer,
Filip Ježek, and Jiří Kofránek. Physiolibrary - modelica
library for physiology. In Proceedings of the 10th Inter-
national Modelica Conference, March 10-12, 2014, Lund,
Sweden. Linkoping University Electronic Press, March 2014.
doi:10.3384/ecp14096499.

Berno J.E. Misgeld, Daniel Rüschen, Sebastian Schwandt-
ner, Stefanie Heinke, Marian Walter, and Steffen Leon-
hardt. Robust decentralised control of a hydrody-
namic human circulatory system simulator. Biomedi-
cal Signal Processing and Control, 20:35–44, July 2015.
doi:10.1016/j.bspc.2015.04.004.

Ajay Moza, Jonas Gesenhues, Dirk Abel, Rolf Rossaint,
Thomas Schmitz-Rode, and Andreas Goetzenich. Patient
specific parameter estimation for cardiovascular system mod-
els based on clinical measurements. Biomedical Engineer-
ing / Biomedizinische Technik, 2017. doi:10.1515/bmt-2016-
0078.

M Nichols, N Townsend, R Luengo-Fernandez, J Leal, A Gray,
P Scarborough, and M Rayner. European cardiovascular dis-
ease statistics 2012. european heart network, brussels, eu-
ropean society of cardiology, sophia antipolis. 2012. Cere-
brovasc. Dis, 25:457–507, 2012.

Daniel Rüschen, Miriam Rimke, Jonas Gesenhues, Steffen
Leonhardt, and Marian Walter. Online cardiac output esti-
mation during transvalvular left ventricular assistance. Com-
puter Methods and Programs in Biomedicine, August 2016.
doi:10.1016/j.cmpb.2016.08.020.

Andreas Wächter and Lorenz T. Biegler. On the implementation
of an interior-point filter line-search algorithm for large-scale
nonlinear programming. Mathematical Programming, 106
(1):25–57, April 2005. doi:10.1007/s10107-004-0559-y.

Nico Westerhof, Jan-Willem Lankhaar, and BerendE. Wester-
hof. The arterial windkessel. Medical & Biological Engineer-
ing & Computing, 47(2):131–141, 2009. ISSN 0140-0118.
doi:10.1007/s11517-008-0359-2.

Yih-Choung Yu, J.R. Boston, M.A. Simaan, and J.F. Antaki.
Estimation of systemic vascular bed parameters for artificial
heart control. IEEE Transactions on Automatic Control, 43
(6):765–778, June 1998. doi:10.1109/9.679017.

Session 9C: Acoustic & Medical Systems

DOI
10.3384/ecp17132613

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

621

622 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

The DLR RailwayDynamics Library: the Crosswind Stability
Problem

Andreas Heckmann1 Gustav Grether2

1,2Institute of System Dynamics and Control, German Aerospace Center (DLR), Germany,
andreas.heckmann@dlr.de

Abstract
High crosswinds affect the stability of railway vehicles, in
particular if they run on very high speed to reduce travel-
ing time, if they are configured as double-deck cars to in-
crease the number of passenger seats and if they use light-
weight design in order to reduce life-cycle costs. This
is why crosswind stability is an active field of research
within the project Next Generation Train. However, this
field relies on the cooperation of two different domains,
namely aerodynamics and vehicle dynamics. With this
background a crosswind stability tool was implemented in
Modelica as a part of the DLR RailwayDynamics Library.
This tool gathers data from scaled wind tunnel measure-
ments and multibody data on the railway vehicle in order
to rapidly analyze and assess the risk of overturning due
to high crosswinds. To a large extent the tool is oriented
towards the associated homologation rules and standards.
However, the tool is as well supposed to support future
advancements of these standards by providing capabilities
for the stochastic analysis of the crosswind stability prob-
lem.
vehicle dynamics, aerodynamics, railway vehicles, cross-
wind stability, aerodynamic admittance, stochastic analy-
sis

1 Introduction
1.1 Motivation
Crosswind stability addresses the risk, that vehicles run-
ning on high speed are prone for overturning, if high cross-
winds occur. At DLR, it is a particular subject of research,
since the long-term internal project Next Generation Train
(NGT) copes with three key features that aggravate the
problem: it is a very high-speed train in double deck con-
figuration and light-weight design. Nevertheless, this train
concept has been proposed since it facilitates objectives
such as low energy consumption and low life-cycle costs
per passenger even for reduced traveling times.

From the technical point of view, crosswind stability is
a multidisciplinary issue, since aspects of aero- and vehi-
cle dynamics have to be taken into account. This is why
the homologation rules, specified by regulation of the Eu-
ropean Commission (TSI HS RST 2008) and the associ-
ated standard (EN 14067-6: 2010) address both: scaled
wind tunnel experiments in order to characterize the aero-

dynamic properties and multibody simulations to study
the mechanical behavior of the railway vehicle under con-
sideration.

With this background, a subpackage of the DLR
RailwayDynamics Library (Heckmann et al., 2014a),
(Schwarz et al., 2015) has been implemented in Model-
ica which aims at the assessment of railway vehicles with
respect to crosswind stability. To a large extent, the tool
is oriented towards (EN 14067-6: 2010) and the simula-
tion procedures defined there including a non-normative
but promising stochastic approach in Appendix J. But be-
yond that, the implementation is intended to support var-
ious research activities in aerodynamics and vehicle dy-
namics control within the NGT project, see e.g. (Fey et al.,
2014), (Heckmann et al., 2014b).

1.2 Overview on Vehicle Assessment

The basic assessment scenario is defined in (EN 14067-6:
2010) as follows: At given train speed, wind velocity and
wind direction, aerodynamic forces and torques are ap-
plied to a multibody train model. These applied forces and
torques lead to an unloading of the wheels at the windward
side of the train. This unloading is interpreted to indicate
the risk of overturning.

In detail, a major assessment issue is the so-called crit-
ical wind speed that is defined as the wind velocity, at
which 90 % wheel unloading compared to the static load
occurs. In general, the evaluation procedure requires to it-
eratively vary the wind velocity as an input parameter till
the multibody simulation results show that the remaining
wheel load is 10 % of the static load.

The critical wind speed is evaluated for several train
velocities, these sample points are then connected to
construct a curve called the Characteristic Wind Curve
(CWC). In order to meet the homologation criterion the
CWC of the considered vehicle must completely run
above the Characteristic Reference Wind Curve (CRWC)
defined by (TSI HS RST 2008). As illustrative examples,
Fig. 1 presents the CWC of the NGT train head which
meets the homologation criteron, while the initial NGT
coach design does not.

DOI
10.3384/ecp17132623

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

623

150 200 250 300 350 400
22

24

26

28

30

32

34

36

38

vehicle speed v [km/h]

w
in
d

v
e
lo
c
it
y
ū

[m
/
s]

NGT train head

NGT coach

CRWC TSI

Figure 1. Characteristic Wind Curve (CWC) of the NGT
train head and the NGT coach compared to the reference curve
CRWC from (TSI HS RST 2008), cf. (Heckmann et al., 2014b).

2 Aerodynamic Loads
2.1 Fundamentals
The above described assessment scenario requires to spec-
ify loads, i.e. the aerodynamic forces and torques that are
to be applied to the mechanical train model. These loads
are commonly expressed by means of aerodynamic coef-
ficients ci = ci(β) and c j = c j(β) as function of the yaw
angle β as follows (Baker et al., 2009):

f̄i =
1
2

ρ Aci(β)V̄ 2 (1)

m̄ j =
1
2

ρ Ahc j(β)V̄ 2 . (2)

In (1) and (2), f̄i and m̄ j represent the vector components
of force and torque, ρ is the density of the air, A and h
the reference area and height, respectively. V̄ denotes the
wind speed relative to the vehicle, which follows from
vectorial decomposition considering the vehicle speed v,
the wind velocity ū and the angle βw between track and
wind, see Fig. 2.

Figure 2. Vector decomposition to evaluate the wind speed rel-
ative to the vehicle V̄ .

It is state-of-the art to identify aerodynamic coefficients
in scaled wind tunnel measurements as visualized in Fig. 3
and normalize the results with A = 10m2 and h = 3m ac-
cording to (TSI HS RST 2008). Note that the (EN 14067-
6: 2010) also approves numerical CFD simulation under
certain conditions.

Figure 3. Calculated streamlines and pressure distribution on
the NGT model scale 1:25 in the Cologne Cryogenic Wind Tun-
nel under cross wind conditions, see (Heckmann et al., 2014b).

Eq. (1) and (2) define the aerodynamic loads as a func-
tion of V̄ which in turn depends on the wind velocity ū ac-
cording to Fig. 2 or more general, on the underlying wind
gust model. Three different approaches to represent the
wind gust are implemented in the Modelica RailwayDy-
namcis Library:

1. Steady approach: ū = const

2. Quasi-steady approach: Eq. (1) and (2) are assumed
to be valid even if the wind velocity changes in time,
i.e. ū = u(t). In detail, (EN 14067-6: 2010) defines
the so-called Chinese Hat gust model in Fig. 4 which
specifies a wind field fixed along the track at which
the vehicle runs at constant speed v. For (1) and (2),
ū then follows from ū = ū(s) = ū(v · t),

3. Unsteady approach: The mean wind forces f̄i and
torques m̄ j are superimposed with fluctuating parts
f ′i and torques m′j (Baker, 1991), i.e.

fi = f̄i + f ′i , m j = m̄ j +m′j , (3)

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

30

position s [m]

c
r
o
s
s
w
in
d

v
e
lo
c
it
y
ū

[m
/
s]

Figure 4. Crosswind velocity definition "Chinese Hat" accord-
ing to (EN 14067-6: 2010).

The DLR RailwayDynamics Library: the Crosswind Stability Problem

624 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132623

10
−2

10
−1

10
0

10
1

0

10

20

30

40

50

60

70

80

90

frequency f [Hz]

p
o
w
e
r
s
p
e
c
tr
a
l
d
e
n
s
it
y
S
u
[m

2
/
s]

ū = 10m/s

ū = 20m/s

ū = 30m/s

Figure 5. Power spectral density example of the turbulent wind
according to (Cooper, 1984) for three different wind velocities
ū, train speed v = 400km/h and wind angle βw = 90◦.

which are specified in the frequency domain as de-
scribed in the next section.

2.2 Unsteady Aerodynamics
Unsteady wind may be approximated as a Gaussian
stochastic process and therefore may be characterized by
the power spectral density (PSD). Cooper derived the fol-
lowing wind spectrum relative to the moving vehicle Su as
function of the frequency f (Cooper, 1984):

Su =
4 f̃
f

σ2
u

[1+70.8 f̃ 2]
5
6

[
cu +(1− cu)

0.5+94.4 f̃ 2

1+70.8 f̃ 2

]
(4)

that include the following definitions and parameter val-
ues:

• the coefficient cu: cu =
(u

V̄ cosβw + ū
V̄

)2.

• the root mean square of the wind velocity fluctua-
tions σu: σu = 0.245 · ū, here inserted according to
(EN 14067-6: 2010).

• the turbulence length scale in wind direction xLu:
xLu = 96.0395 m, see (EN 14067-6: 2010).

• the compound length scale Lu:
Lu =

xLu
√

cu +0.706(1− cu)

• the normalized frequency f̃ : f̃ = f Lu
V̄

Fig. 5 shows exemplary spectra in order to illustrate (4).
In order to generate a representation of Su in time do-

main, the fluctuation wind velocity u′ may be evaluated by
superimposing n discretized frequencies fi with amplitude
Ai = Ai(fi) and random phase φi:

u′ =
n

∑
i=1

Ai sin(2π fi · t +φi) , Ai =
√

2Su,i(fi+1− fi) . (5)

In reality, it has been observed that force fluctuations don’t
follow wind velocity fluctuations without attenuation or

10
−2

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

normalized frequency f̃ [−]

a
e
r
o
d
y
n
a
m
ic

a
d
m
it
ta
n
c
e

|X
K
|2
[−

]

1.0, 1.0, 1.0
1.0, 0.6, 2.0
1.0, 1.0, 2.0
1.0, 2.0, 2.0

Figure 6. Aerodynamic addittance function for various parame-
ter triples k̂, ξ̂ , f̂ .

lag, so that an additional dynamics transfer behavior has
to be considered by the aerodynamic admittance function
|XK(f)|2 for each of the six force or torque components K
and their associated spectra SK :

|XK(f)|2 :=
1

(ρAckū)2
SK

Su
, k = i, j , K = f ′i ,m

′
j . (6)

The measurement of the aerodynamic admittance for
high-sped trains is a field of active research, which the
RailwayDynamics Library is supposed to support. As
an initial approach, it is refered to the following model,
which uses three free, dimensionless parameters k̂, f̂ and
ξ̂ , which are fitted to approximate wind tunnel measure-
ments as good as possible (Sterling et al., 2009):

|XK(f)|2 :=
1

k̂

([
1−
(

f̃
f̂

)2
]2

+
[
2ξ̂

f̃
f̂

]2
)2 (7)

Fig. 6 gives an impression on parameter values from liter-
ature specifying the aerodynamic admittance.

3 Vehicle Dynamics
The (EN 14067-6: 2010) refers to three vehicle models
with increasing complexity:

• The 2D three-mass model, which is not implemented
in the RailwayDynamics Lib.

• The five-mass model without wheel-rail contact
which is supposed to be used in a steady-state sce-
nario.

• The multibody model with wheel-rail contact which
is intended to be utilized for transient simulation
tasks, in which quasi-steady or unsteady aerody-
namic loads are applied.

Session 9D: Wind & Naval Engineering

DOI
10.3384/ecp17132623

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

625

3.1 The Simplified Five-Mass Model
Fig.7 presents the structure of the five-mass model, as it
is defined in (EN 14067-6: 2010, Appendix H) It consid-
ers two unsprung bodies which are the wheelsets of the
railway vehicle, two primary suspended bodies represent-
ing the bogie frames including all attachments and the car
body, which is connected to the bogies via secondary sus-
pensions.

The four wheel-rail forces Qi j, i, j = 1,2, in Fig.7 are in-
terpreted as supporting or reaction forces due to the con-
dition that the wheels do no lift off. Note, that at most
90 % wheel unloading is permitted which in turn defines
that lift-off or loss of contact at the wheel-rail interface is
not admissable and motivates to disregard the wheel-rail
contact for the sake of simplicity.

The model takes all together 11 degrees of freedom into
account. These are the lateral, vertical and roll motion
of bogies and the car body, which may in addition rotate
around its pitch and yaw axis. The vertical and lateral
spring elements of the primary and secondary suspensions
are equipped with bump stops specified by a non-linear
stiffness characteristic as well proposed in (EN 14067-6:
2010, Appendix H). The rotational stiffness of an anti-roll
bar as part of the secondary suspensions is supposed to
reduce the tilting of the carbody due to wind torques acting
around the longitudinal or x-axis.

Since this model is used in a steady-state scenario, tran-
sient behavior or modeling of damping devices actually is
irrelevant but nevertheless is introduced in parallel to all
spring elements. Due to the bump stops, the model is non-
linear and the analysis is organized as a time simulation
that is intended to converge against its final and steady
state as a result of the applied constant wind loads.

In summary, the five-mass model is supposed to facil-
itate a simple analysis to be feasible in early engineering
phases yielding conservative results with comparable low
critical wind speeds. To this aim, the suspension elements
are not modeled considering design details but are rep-
resented by a set of generalized stiffness parameters and

Figure 7. Structure of the simplified five-mass model according
to (EN 14067-6: 2010).

Figure 8. Animation of the five-mass-model.

very essential geometric information. Fig. 8 shows an an-
imation of the five-mass model in Modelica.

3.2 The Multibody Model
The multibody model to described here is tailored to the
lightweight intermediate car of NGT project, but may eas-
ily adapted to conventional high-speed railway vehicles.
The most prominent up-grade to the five-mass model con-
cerns the non-linear wheel-rail contact that is considered
on basis of the geometry of the standarized UIC 60 rail
and the WS 1002 profile geometry.

To this aim, the Modelica RailwayDynamics Library
(Heckmann et al., 2014a) employs the distance ∆ =
∆(s,y,ϕ,ψ) as a function of the wheel profile coordinate s,
s≤ s≤ s̄, and the lateral displacement, roll and yaw angle
between wheel and rail, see Fig. 9. The contact position
s∗ defined as a weighted mean value of s using the regu-
larization parameter α is a continuous function of y,ϕ and
ψ and thus constitutes a smooth contact formulation, see
(Arnold and Netter, 1997):

s∗ :=

∫ s̄

s
s e

∆

α ds∫ s̄

s
e

∆

α ds
. (8)

However for transient analysis, the (EN 14067-6: 2010)
allows to monitor the wheel-rail forces utilizing a 2 Hz
low-pass filter to evaluate the wheel unloading criterion.
Therefore, it cannot be completely ruled out that loss of
contact occurs and is admissible for very short time pe-
riods. In addition, overloading and in turn wheel lift-off

Figure 9. Sketch to illustrate the wheel-rail contact quantities
(exaggerated presentation of the penetration δ).

The DLR RailwayDynamics Library: the Crosswind Stability Problem

626 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132623

−20 −15 −10 −5 0 5 10 15 20 25 30

0

2

4

6

8

10

12

14

penetration δ [µm]

n
o
r
m
a
l
fo
r
c
e
f
N

[k
N
]

original Hertzian force law

regularized force law

δ
0

Figure 10. Illustration of the regularized contact force law.

may occur during the iteration process to determine the
critical wind speed.

In order to take this into account, the wheel-rail con-
tact algorithm of the Modelica RailwayDynamics Library
had to be adapted. In particular the kinematic constraint
(Heckmann et al., 2014a, (6)) is replaced by a regularized
penalty contact formulation, in which the penetration δ of
the wheel and the rail body in Fig. 9 features a non-linear
spring element to evaluate the normal contact force fN ac-
cording to the Hertzian theory (Hertz, 1882):

fN =

{
δ < δ0 : a · e−b(c+δ)2

,

δ ≥ δ0 : cH ·δ
3
2 ,

(9)

where δ0 > 0, a := cHe
3
4 δ

3
2

0 , b := 3
4δ 2

0
, c :=−2δ0.

The coefficient cH is a function of the material proper-
ties and the local curvatures of the contact partners at the
point of contact, while a,b and c are defined in such a way
that fN is two times continuously differentiable for all val-
ues of δ and in particular for δ = δ0, see Fig. 10. The
proposed regularization prevents chattering in the vicin-
ity of wheel lift-off situations and therefore improves the
numerical robustness. In addition, this elastic contact, to
be distinguished to the quasi-elastic formulation in (Heck-
mann et al., 2014a), requires damping to be numerical fea-
sible.

It is state of the art in multibody analysis of railway ve-
hicles to take the elastic compliance of the track into ac-
count that is excited by large wheel-rail forces. This is in
particular important if these forces are a significant result
of the analysis. Therefore, the track superstructure shown
in Fig. 11 is presented as one body with three sprung and
damped degrees of freedom, which is assumed to follow
each wheel pair as a so-called moving track model, e.g.
see (Iwnicki, 2006, Ch. 12)

The NGT running gears use so-called independently ro-
tating wheel sets (IRW set) with two wheels attached to
a wheel carrier. Active guidance control (Kurzeck et al.,
2014) provides running stability and low wear properties
of this configuration which is a main objective of the NGT
project.

In order to be consistent, these model upgrades impli-
cate a more complex motion composition compared to

Figure 11. Structure of the multibody model of the NGT inter-
mediate car (all springs include dampers connected in parallel).

Sec. 3.1 that requires the consideration of all together
31 degrees of freedom which are indicated in Fig. 11.
Apart from that, the multibody model, whose animation
is shown in Fig. 12, sticks to the concept of the five-mass
model to present all suspension elements by a set of gener-
alized stiffness and damping parameters and very essential
geometric information. This modeling idea is well suited
to be used in early engineering phases, when detailed in-
formation on the design of the suspensions are not yet
available and therefore fits to the scope of the Railway-
Dynamics Library.

3.3 Negotiating Curves
For comfort reason, the maximum lateral acceleration that
passengers are supposed to experience while the vehicle
is negotiating curves is restricted to 1m/s2. Therefore, the
lay-out of railway tracks also includes superelevations and
the maximum speed at which the vehicles runs through the
curve is limited as a function of curve superelevation and
radius in order to meet this requirement.

This property is exploited by the (EN 14067-6: 2010) to

Figure 12. Animation of the NGT intermediate car multibody
model.

Session 9D: Wind & Naval Engineering

DOI
10.3384/ecp17132623

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

627

Figure 13. Diagram layer of a crosswind stability model of the
Modelica RailwayDynamics Library.

address the crosswind stability while negotiating curves.
The evaluation of the CWCs are additionally parametrized
with the so-called unbalanced lateral acceleration aq,
which can take values between −1 and 1 [m/s2] , i.e.
−1m/s2 ≤ aq ≤ 1m/s2. The introduction of this param-
eter into the Modelica crosswind scenario is straight for-
ward by specifying the direction and value of the gravity
vector accordingly.

4 Implementation
Fig. 13 gives an overview on the structure of a cross-
wind stability model of the Modelica RailwayDynamics
Library. Vehicle data are separated from the model in-
stances and organized by data records, which in turn are
substructured in aerodynamical and mechanical informa-
tion. Another record called Scenario organises informa-
tion to perform the specific simulation task, see Fig. 14.

Wind generation, aerodynamical load evaluation and
vehicle running dynamics are separated in three model
components, so that it is easy to exchanged e.g. the
stochastic wind with a chinese hat wind gust instance or
subsitute steady for unsteady aerodynamic approach.

In order to facilitate robust initialization, the application
of the aerodynamic loads fi and m j from (3) is delayed in
time using a first order low pass filter with time constant
t0, i.e.:

f̆i = (1− e−
t

t0) fi , m̆ j = (1− e−
t

t0) m j. (10)

The railCar instance in Fig. 13 provides the wheel-
unloading of each running gear as a function of time,
which then is low-pass filtered according to (EN 14067-
6: 2010). The output of the max() block evaluates the
final simulation result or the crosswind stability criterion,
respectively.

Figure 14. Parameter menu of the scenario data record.

In order to determine the critical wind speed, a func-
tion find_Vcwc is defined, which iteratively simulates the
crosswind stability model, while the wind speed is varied
systematically. The function terminates and returns the
critical wind speed, if the model simuation results show
90% wheel unloading:

f u n c t i o n f ind_Vcwc
input Real vVehicle_kmh (u n i t ="km / h ") =80 "

v e h i c l e speed " ;
input S I . A n g l e betaW=

M o d e l i c a . S I u n i t s . C o n v e r s i o n s . f r o m _ d e g
(9 0) " wind a n g l e " ;

input S I . A c c e l e r a t i o n aq =1 " u n b a l a n c e d
l a t e r a l a c c e l e r a t i o n " ;

input S I . V e l o c i t y vW[2] = { 2 0 , 3 0 } " r a n g e t o
look f o r v_cwc " ;

input S t r i n g modelName ;
input Real t o l e r a n c e =0 .1 " t o l e r a t e d

d e v i a t i o n o f t a r g e t u n l o a d i n g =0 .9 " ;
input Real t _ s t o p =110 " end t ime "
output S I . V e l o c i t y v_cwc ;

A second function plot_CWC not only evaluates one
critical wind speed, but provides a plot of the critical wind
curve as shown in Fig. 1.

f u n c t i o n plot_CWC
" i t e r a t i o n p r o c e s s t o e v a l u a t e v_cwc=

v_cwc (v V e h i c l e , betaW, aq) "
input Real vVehicle_kmh [2] (u n i t ="km / h ")

={120,400} " c o n s i d e r e d speed r a n g e " ;
input S I . A n g l e betaW=

M o d e l i c a . S I u n i t s . C o n v e r s i o n s . f r o m _ d e g
(9 0) " wind a n g l e " ;

input S I . A c c e l e r a t i o n aq =1 " u n b a l a n c e d
l a t e r a l a c c e l e r a t i o n " ;

input S I . V e l o c i t y vW[2] = { 2 0 , 3 0 } " r a n g e t o
look f o r v_cwc " ;

input S t r i n g modelName ;
input I n t e g e r numberOfVvehic les = 15 "

number o f speed s a m p l in g p o i n t s " ;
input Real t o l e r a n c e =0 .1 " t o l e r a t e d

d e v i a t i o n o f t a r g e t u n l o a d i n g =0 .9 " ;

The DLR RailwayDynamics Library: the Crosswind Stability Problem

628 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132623

input Real t _ s t o p =110 " end t ime "
output S I . V e l o c i t y v_cwc [

numberOfVvehic les] ;

5 Exemplary Results
5.1 The Five-Mass Model
The (EN 14067-6: 2010) offers the opportunity to verify
the implementation of the steady scenario with the five-
mass model, since its Appendix H contains the input data
and the results of two example vehicles. Fig. 15 presents
a comparison of Modelica RailwayDynamcis Library re-
sults with the CWC from the EN standard for Vehicle 2
and two unbalanced accelerations. The large correspon-
dence of results can be stated, a slight derivation only oc-
curs for v = 80km/h vehicle speed, which is to be further
investigated.

The CWC of the NGT in Fig. 1, which has been in-
troduced in order to give an overview on the vehicle as-
sessment methodology in Sec. 1.2, has also been gener-
ated using the five-mass model, see also (Heckmann et al.,
2014b) for a more detailed discussion.

5.2 The Multibody Model of the NGT Coach
With the exception of Fig. 19, all results to be given in this
section have been obtained using the scenario shown in
Fig. 14, which will turn out to lead to 90% wheel unload-
ing. The associated transient wind velocities are plotted in
Fig. 16.

The parameters to be used in (6) are intended to be
gained in wind tunnel measurements, which are not yet
available. Therefore, hypothetical addmittance parame-
ters have been introduced in order evaluate preliminary
and exemplary results. Following a proposal of (Baker,
2010), the values below have been chosen for the most
important force and torque components:

side force: k̂ = 1, ξ̂ = 1, f̂ = 2.0 · sin(β),
lift force: k̂ = 1, ξ̂ = 1, f̂ = 2.5 · sin(β),
roll moment: k̂ = 1, ξ̂ = 1, f̂ = 2.0 · sin(β).

(11)

80 100 120 140 160 180 200
20

25

30

35

40

45

50

vehicle speed v [km/h]

w
in
d

v
e
lo
c
it
y
ū

[m
/
s]

EN14067: aq = 0m/s2

Modelica: aq = 0m/s2

EN14067: aq = 1m/s2

Modelica: aq = 1m/s2

Figure 15. Comparison of the CWC evaluated in Modelica with
(EN 14067-6: 2010), Vehicle 2 in Appendix H.

0 20 40 60 80 100
5

10

15

20

25

30

35

40

time t [s]

w
in
d

v
e
lo
c
it
y
ū
,
ū
+
u

|
[m

/
s]

buffeting wind

mean wind velocity

Figure 16. Transient velocities of buffeting wind (ū =
22.307m/s, σu = 0.245 · ū , βw = 90◦,v = 140km/h).

The admittance of all other wind load components have
been set to |XK(f)|2 := 1 as recommended in (EN 14067-
6: 2010, Appendix J).

Fig. 17 presents the transient wheel forces, which all
start from the static wheel load fw(t = 0) = 57727N, since
the wind loads are applied according to (10) with time
constant t0 = 2s.

The lowest frequency that has been considered in (5)
to transfer the PSD in Fig. 5 into the time domain is
f1 = 0.01Hz. In the (EN 14067-6: 2010, Appendix J),
it is proposed to choose the simulation time in such a way,
that one full period of the lowest frequency is covered, i.e.
100s here. The additional 10s have been appended in or-
der to account for the low passed filtered load application
at the beginning of the simulation. Note, the (EN 14067-
6: 2010) requests to repeat this simulation with different
random phases φi in (5) and to statistically determine the
mean value of the critical wind velocity and its confidence
interval.

The fifth curve in Fig. 17 displays the low pass filtered
wheel unloading that reaches the crosswind stability crite-
rion at t = 90.3s.

0 20 40 60 80 100
0

2

4

6

8

10

12

x 10
4

v
e
r
ti
c
a
l
w
h
e
e
l
fo
r
c
e
f
N

[N
]

time t [s]

leeward leading wheel

windward leading wheel

leeward trailing wheel

windward trailing wheel

u
n
lo
a
d
in
g
[-
]

 0

0.2

0.4

0.6

0.8

1.0

unloading

Figure 17. Transient vertical wheel force and unloading results
based on hypothetical admittance parameters.

Session 9D: Wind & Naval Engineering

DOI
10.3384/ecp17132623

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

629

leeward train side windward train side

Figure 18. Wheel-rail contact configuration with flange contact
at the leeward train side

Fig. 18 illustrates the corresponding contact configura-
tion between wheel and rail. Due the lateral wind load
the complete car is displaced in lateral direction until the
wheel flange is touched and counteracts the load force.

Fig. 19 shows the CWC of the NGT coach, which sum-
marizes the critical wind velocities for 15 different vehi-
cle speeds (aq = 0m/s2). Note, that all curves in Sec. 5.2
are preliminary results. Measured admittance functions
for the NGT are not yet available, so that the associ-
ated parameters only have been chosen on a trial basis.
The introduced root mean square of the wind fluctuations
σu = 0.245 · ū that lead to rather large peaks of the wind
velocities in Fig. 16 is another parameter to be substanti-
ated in the future.

182cpu-s on a lap-top with Core-i7 processor and 2.9
GHz clock rate were required to get the above given re-
sults associated to 110s simulation time. It took less than
an hour to evaluate the CWC in Fig. 19, which relies on
an iterative process to obtain the critical wind velocity for
all 15 vehicle speeds.

6 Conclusions and Outlook
In the course of the DLR project Next Generation Train
the subpackage CrosswindStability of the DLR Railway-

120 160 200 240 280 320 360 400
18

22

26

30

34

38

w
in
d

v
e
lo
c
it
y
ū

[m
/
s]

vehicle speed speed v [km/h]

NGT coach

CRWC TSI

Figure 19. Preliminary critical wind curve of the NGT coach
based on hypothetical admittance parameters for stochastic anal-
ysis.

Dynamics Library has been implemented. The tool offers
the capability of use and combine several vehicle models
and aerodynamic approaches in order to assess the cross-
wind stability of railway vehicles.

The consideration of unsteady aerodynamics within this
task is a active field of research at DLR. The current focus
is the measurement of the aerodynamic admittance func-
tion in a reproduceable and reliable manner. The Railway-
Dynamics Library now affords to rapidly analyze the vehi-
cle dynamics once a aerodynamic admittance is available
and that way provides a quick insight on further implica-
tions with respect to the risk of overturning.

Another future field of application of the presented ca-
pabilities concerns the dimensioning of suspension pa-
rameters of a railway vehicle in early engineering phases.
Although the multibody model considers all relevant de-
grees of freedom and suspension components only mod-
erate computational resources are required. The employ-
ment of the vehicle dynamics model in optimization tasks
seems to be feasible, which may include multiple design
objectives such as passenger comfort or running behavior
besides crosswind stability.

Acknowledgment
An initial version of the Modelica crosswind stability tool
has been implemented by Dr. Antonio Carrarini during his
period of employment at DLR.

Wind tunnel measurements on the steady aerodynamics
of the NGT have been provided by Sigfried Loose and his
colleagues from the DLR Institute of Aerodynamics and
Flow Technology, see Fig. 3 and cf. (Heckmann et al.,
2014b).

References
M. Arnold and H. Netter. Wear profiles and the dynamical sim-

ulation of wheel-rail systems. Progress in Industrial Mathe-
matics at ECMI, 96:77–84, 1997.

Chris Baker, Federico Cheli, Alexander Orellano, Nicolas
Paradot, Carsten Proppe, and Daniele Rocchi. Cross-wind
effects on road and rail vehicles. Vehicle System Dynamics,
47(8):983–1022, 2009. doi:10.1080/00423110903078794.

C.J. Baker. Ground vehicles in high cross winds part II: unsteady
aerodynamic forces. Journal of fluids and structures, 5(1):
91–111, 1991.

C.J. Baker. The simulation of unsteady aerodynamic cross wind
forces on trains. Journal of Wind Engineering and Industrial
Aerodynamics, 98(2):88–99, 2010.

R.K. Cooper. Atmospheric turbulence with respect to moving
ground vehicles. Journal of wind engineering and industrial
aerodynamics, 17(2):215–238, 1984.

EN 14067-6: 2010. Railway Applications -Aerodynamics- Re-
quirements and test procedures for crosswind assessment.,
2010.

The DLR RailwayDynamics Library: the Crosswind Stability Problem

630 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132623

Uwe Fey, Johannes Haff, Mattias Jönsson, Sigfried Loose, and
Claus Wagner. Experimental investigation of topological
changes in the flow field around high-speed trains with re-
spect to reynolds number scaling effects. In J. Pombo, editor,
The Second International Conference on Railway Technol-
ogy: Research, Development and Maintenance, number P32
in Civil Comp Proceedings, pages 1–20. Civil-Comp Press,
Stirlingshire, UK, 2014. doi: 10.4203/ccp.104.32.

A. Heckmann, A. Keck, I. Kaiser, and B. Kurzeck. The Founda-
tion of the DLR RailwayDynamics Library: the Wheel-Rail-
Contact. In 10th International Modelica Conference, 2014a.

Andreas Heckmann, Bernhard Kurzeck, Tilman Bünte, and
Sigfried Loose. Considerations on active control of cross-
wind stability of railway vehicles. Vehicle System Dynamics,
52(6):759–775, 2014b.

Heinrich Hertz. Über die Berührung fester elastischer Körper.
Journal für die reine u. angewandte Mathematik, 92, 1882.

S. Iwnicki. Handbook of railway vehicle dynamics. CRC Press,
2006.

B. Kurzeck, A. Heckmann, C. Wesseler, and M. Rapp. Mecha-
tronic track guidance on disturbed track: the trade-off be-
tween actuator performance and wheel wear. Vehicle System
Dynamics, 52(sup1):109–124, 2014.

Christoph Schwarz, Andreas Heckmann, and Alexander Keck.
Different models of a scaled experimental running gear for
the DLR RailwayDynamics Library. In 11th International
Modelica Conference, 21.-23. Sep. 2015, 2015.

Mark Sterling, Chris Baker, Abdessalem Bouferrouk, Hugh
ONeil, Stephen Wood, and Ewan Crosbie. An investigation
of the aerodynamic admittances and aerodynamic weighting
functions of trains. Journal of Wind Engineering and Indus-
trial Aerodynamics, 97(11):512–522, 2009.

TSI HS RST 2008. 2008/232/EC: Commission Decision of 21
February 2008 concerning a technical specification for in-
teroperability relating to the rolling stock sub-system of the
trans-european high-speed rail system, 2008.

Session 9D: Wind & Naval Engineering

DOI
10.3384/ecp17132623

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

631

632 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

The OneWind R© Modelica Library for Floating Offshore Wind
Turbine Simulations with Flexible Structures

Mareike Leimeister Philipp Thomas

Fraunhofer Institute for Wind Energy and Energy System Technology IWES Northwest, Germany,
{mareike.leimeister,philipp.thomas}@iwes.fraunhofer.de

Abstract
Floating offshore wind turbines are getting more and more
into the focus of interest, as industries aim for larger tur-
bines and deeper water areas. Fully coupled analyses of
those highly complex systems are challenging. In this pa-
per, the hierarchical programming structure in Modelica is
used to model a fully flexible floating wind turbine system.
The single components, as well as special difficulties that
have to be dealt with during modeling, are addressed. On
basis of a reference floating offshore wind turbine, the im-
plemented fully flexible model is compared with its rigid
equivalent, as well as results from code-to-code compar-
isons of free-decay simulations. The findings are satisfac-
tory and confirm the theoretical assumptions. In addition,
further applications of the created model are shown.
Keywords: offshore wind energy, floating platform, fully
coupled aero-hydro-servo-elastic simulation, Euler-
Bernoulli beam, OneWind Modelica Library, MultiBody

1 Introduction and Outline
Many promising offshore sites for wind energy utilization
are in deep water. For water depths larger than 50 m,
commonly used bottom-fixed foundations, as for example
monopiles, jackets, or tripods, are no longer suitable.
However, floating platforms, such as spar-buoys, semi-
submersibles, or TLPs (tension leg platforms), could be a
potential solution for deep water operations. Easier and
faster installation due to onshore assembly, as well as
reduced noise during erection are some advantages that
floating support structures have over bottom-fixed de-
signs. On the other hand, floating wind turbines are very
complex systems. Motion-coupling, wave excitation, and
additional components like mooring lines are inter alia
new challenges for accurately modeling and simulating
those systems, and allowing fully coupled load analyses.

Extensive research on floaters is conducted and several
prototypes are designed1,2,3. Even in the IEA Wind

1https://www.statoil.com/en/news/hywindscotland.html (Ac-
cessed: 02 March 2017)

2http://principlepowerinc.com/en (Accessed: 02 March 2017)
3http://ideol-offshore.com/en (Accessed: 02 March 2017)

Tasks4, floating wind turbine systems are included.
In order to contribute to code-to-code comparison
analyses, a fully flexible model for floating wind turbine
systems is developed in the OneWind

R©
Modelica Library.

In this paper, first, the different components of a
floating offshore wind turbine system and their imple-
mentation in Modelica, based on the Modelica MultiBody
Library, are explained in Chapter 2. Chapter 3 outlines
the limitations of the implemented floating wind turbine
model. The OCx offshore wind turbine designs, elabo-
rated in the IEA Wind Tasks, are used in Chapter 4 as
basis for comparison of reference load case simulation
results, as well as for demonstrating the high flexibility
for adaptions and ease of model modifications. Finally,
Chapter 5 summarizes the developed approach and gives
recommendations for further work on fully flexible
floating offshore wind turbine systems in Modelica.

2 Components and Implementation in
Modelica

Object-oriented programming in Modelica enables a hi-
erarchical structure of the complex wind turbine system.
The implemented floating wind turbine model contains six
main components (rotor, nacelle, operating control, sup-
port structure, wind, and waves), which are possibly us-
ing further subcomponents, as presented in the following
Modelica code and in Figure 1.

model Of f sho reWindTurb ine
e x t e n d s OneWind.WindTurbine.OffshoreWT
(

/ / === r o t o r ===
, r e d e c l a r e model Ro to r = OneWind.Rotor
(

r e d e c l a r e r e c o r d Ro to rDa ta
, r e d e c l a r e model Hub
, r e d e c l a r e model Blade

)
/ / === n a c e l l e ===
, r e d e c l a r e model N a c e l l e =

OneWind .Nace l le

4http://www.ieawind.org/taskWebSites.html (Accessed: 23
September 2016)

DOI
10.3384/ecp17132633

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

633

(
r e d e c l a r e r e c o r d NcData
, r e d e c l a r e model D r i v e t r a i n
, r e d e c l a r e model G e n e r a t o r
, r e d e c l a r e model Y a w C o n t r o l l e r

)
/ / === o p e r a t i n g c o n t r o l ===
, r e d e c l a r e model O p e r a t i n g C o n t r o l =

O n e W i n d . O p e r a t i n g C o n t r o l
(

r e d e c l a r e r e c o r d O p e r a t i n g C o n t r o l D a t a
, r e d e c l a r e model MainCon t ro l
(

r e d e c l a r e model P i t c h C o n t r o l
, r e d e c l a r e model

G e n e r a t o r T o r q u e C o n t r o l
)
, r e d e c l a r e model G e n e r a t o r S p e e d F i l t e r

)
/ / === s u p p o r t s t r u c t u r e ===
, r e d e c l a r e model S u p p o r t S t r u c t u r e =

O n e W i n d . F l e x i b l e F l o a t e r
/ / === wind ===
, r e d e c l a r e model Wind = OneWind.Wind
(

r e d e c l a r e r e c o r d WindData
)
/ / === waves ===
, r e d e c l a r e model Waves = OneWind.Wave
(

r e d e c l a r e r e c o r d WaveData
)

) ;
end Of f sho reWindTurb ine ;

Figure 1. Components and interactions of a floating wind tur-
bine, using the example of a semi-submersible platform.

2.1 Rotor
The rotor model extends the basic model for a hub
with one blade to a three-bladed rotor. The blades

are implemented either as rigid bodies or as flexible
structures, which could be based on modal reduction
techniques or finite-elements (Thomas et al., 2014). The
structure model is connected to the aerodynamic model,
which uses unsteady blade element momentum theory for
load calculation, and takes aero-structure-coupling into
account.

2.2 Nacelle
The model of the nacelle contains two subcomponents:
the drivetrain and the generator. Furthermore, the yaw
controller is included. The nacelle is basically represented
as rigid link with mass and inertia, while drivetrain and
generator provide also stiffness and damping (Strobel
et al., 2011).

2.3 Operating Control
The operating control covers algorithms and parameters
for pitch and generator torque control, using either built-in
PID-algorithms (Jonkman et al., 2009) or an external
control DLL. The latter one is obtained from a simulation
tool, Bladed (GL Garrad Hassan, 2010) or Hawc2 (Larsen
and Hansen, 2014), and accessed via a generic DLL
interface. A bus system forms the link between rotor,
nacelle, and operating control (Otter, 2009). There is
no direct link to the support structure, as the control
parameters are initially adjusted based on the floating
system design. Furthermore, different operating phases,
such as startup, shutdown, or idling, can be realized.

2.4 Support Structure
The support structure model defines everything related to
the floating device, including the tower from the RNA
(Rotor Nacelle Assembly) down to the substructure, the
floater itself, station-keeping system, and all loads acting
on the entire support structure. Furthermore, it contains
the FreeMotion, relevant for modeling the motions of the
floating body. An overview of the structure of the model
SupportStructure is given in the following:

model S u p p o r t S t r u c t u r e
/ /−−− s u b s t r u c t u r e P a r t i a l −−−
e x t e n d s O n e W i n d . S u b s t r u c t u r e P a r t i a l ;
/ /−−− s t r u c t u r e E l e m e n t −−−
TopologyData = OneWind .F loa t e rTopo logyDa ta ;
S t r u c t u r e E l e m e n t = OneWind.Bernoull iBeam3D ;
/ /−−− a d a p t e r s −−−
OneWind.AdapterFemFrameToFrame_free

t o p A d a p t e r ;
OneWind.AdapterFemFrameToFrame_fixed

bo t t omAdap te r ;
OneWind.AdapterFemFrameToFrame_free

f a i r l e a d A d a p t e r [3] ;
/ /−−− a d d i t i o n a l w e i g h t s −−−
OneWind .Addi t iona lWeigh tLoadElement

b a l l a s t W e i g h t [n o E l e m e n t s B a l l a s t] ;

The OneWind Modelica Library for Floating Offshore Wind Turbine Simulations with Flexible Structures

634 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132633

OneWind .Addi t iona lWeigh tLoadElement
capsWeigh t [noElementsCaps] ;

/ /−−− s t a t i o n−k e e p i n g sys tem −−−
OneWind.DynamicMooringLines moor ingLines

[3] ;
M u l t i B o d y . P a r t s . F i x e d T r a n s l a t i o n

f T r F a i r l e a d s [3] ;
M u l t i B o d y . P a r t s . F i x e d T r a n s l a t i o n fTrAnchor s

[3] ;
/ /−−− f r e e M o t i o n −−−
FreeMot ion = M u l t i B o d y . J o i n t s . F r e e M o t i o n ;
end S u p p o r t S t r u c t u r e ;

2.4.1 SubstructurePartial
The basis of the support structure model is formed by the
partial model SubstructurePartial. This covers all main
loads, as well as the visualization of the environment, rep-
resented by a squared FixedShape for the seabed and a
moving surface for animating the wave motion, and con-
tains the model World. The structure of the partial model
SubstructurePartial is presented in the following:

p a r t i a l model S u b s t r u c t u r e P a r t i a l
o u t e r Mul t iBody .Wor ld wor ld ;
/ /−−− v i s u a l i z a t i o n −−−
M u l t i B o d y . V i s u a l i z e r s . F i x e d S h a p e ground ;
M u l t i B o d y . V i s u a l i z e r s . A d v a n c e d . S u r f a c e

s u r f a c e ;
/ /−−− wave l o a d s −−−
OneWind.MorisonLoadElement waveLoads [

noElementsUnderWater] ;
OneWind.MorisonLoadHeavePla te

mor i sonLoadHeaveP la t e [n o H e a v e P l a t e s] i f
h e a v e P l a t e s ;

/ /−−− wind l o a d s −−−
OneWind.TowerLoadElement windLoads [

noElementsOverWater] ;
/ /−−− buoyancy l o a d s −−−
OneWind.BuoyancyLoadElement buoyancyLoads [

n o S t r u c t u r e E l e m e n t s] ;
end S u b s t r u c t u r e P a r t i a l ;

The determination of the loads due to waves, wind,
and buoyancy is covered in the following in more detail.
The gravity force is not elaborated explicitly, as its

Figure 2. Schematic representation of the main loads acting on
the support structure.

computation is directly included in the setup of the
subcomponent StructureElement (Subsection 2.4.2). A
schematic overview of these main loads is presented in
Figure 2.

Wave Loads The hydrodynamic load calculation uses
Morison’s equation, as given in Equation 1, and is per-
formed for each structure element that is initially below
the water surface, based on its diameter D, length ∂ z, hy-
drodynamic drag coefficient CD, and added mass coeffi-
cient Ca, as well as velocities (structure velocity q̇, water
particle velocity vwater, relative velocity vwater− q̇), accel-
erations (structure acceleration q̈, water particle accelera-
tion v̇water), and water density ρwater.

Fwaves =
1
2

ρwaterCDD(vwater− q̇) |vwater− q̇|∂ z

+ρwater (1+Ca)
πD2

4
v̇water∂ z

−ρwaterCa
πD2

4
q̈∂ z

(1)

As offshore wind turbines often have to deal with large
dimensioned support components, a separate parameter
is introduced to select whether a fixed value for the
added mass coefficient should be used, which is only
valid for slender structures, or the added mass coefficient
is calculated depending on the wave number, known
as MacCamy-Fuchs approach for large diameters (Yu,
2015). Furthermore, if the floater is equipped with heave
plates, acting as motion suppression device, as it is
the case for semi-submersible platforms, an additional
hydrodynamic heave force due to these heave plates is
included.

Wind Loads In the aerodynamic load calculation, the
drag forces at each emerged support structure element are
computed by means of Equation 2, based on the density of
air ρair, the aerodynamic drag coefficient Cd of the cylin-
drical element, its diameter D and length ∂ z, as well as the
local relative velocity, resulting from the local wind speed
vwind and the velocity of the structure element q̇.

Fwind =
1
2

ρairCdD(vair− q̇) |vair− q̇|∂ z (2)

Buoyancy Loads Because a floating wind turbine sys-
tem is considered, buoyancy force and center of buoyancy
will vary with the motion of the floater. Therefore, these
two variables have to be computed for each structure
element at each time step, depending on the actual
position. The coordinate system, used in this calculation,
as well as the degrees of freedom (DoFs) of a floating
wind turbine are presented in Figure 3.

Session 9D: Wind & Naval Engineering

DOI
10.3384/ecp17132633

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

635

Figure 3. Coordinate system of a floating wind turbine, using
the example of a spar-buoy platform, adapted by the author from
(Tran et al., 2014).

In an extensive computation, first, the sequential
rotation, defined by roll, pitch, and yaw angles, is trans-
formed into a combined rotation, expressed in terms of a
combined rotation angle αcombined and the corresponding
axis of the combined rotation. Instead of having the
complex floater geometry rotated, the following approach
is used: it is assumed that the floater remains in its initial
position and the water plane area is rotated with the
combined rotation angle around the axis of combined
rotation, however, in opposite direction, as schematically
shown in Figure 4.

Figure 4. Schematic representation of the used buoyancy calcu-
lation approach.

Including the translational motion of the floater, given
by surge, sway, and heave values of the platform, and used
as the distance from the initial origin to the moved wa-
ter plane, the equation for the rotated and translated water
plane can be set up. With the node positions of the con-

sidered beam, defined in the subcomponent StructureEle-
ment, as further explained in Subsection 2.4.2, a straight
equation can be defined for the considered structure el-
ement. The intersection of this straight with the moved
water plane is analyzed according to the following case
discrimination:

• An infinite number of cross points corresponds to the
structure element lying exactly in the water plane,
leading to a buoyant volume of half of the element
volume.

• The solution of having no cross points corresponds
to the structure element being parallel to the water
plane. Depending on the node positions in relation
to the translational motion, the element is either fully
submerged or not submerged at all.

• Finally, when having one cross point of straight and
plane, the buoyant volume can be computed as frac-
tion of the element volume, if the cross point lies
within the actual length of the structure element. If
the straight would intersect the water plane at an ex-
tension of the structure element, the buoyant volume
is either equal to the element volume or zero, depend-
ing on the relative position of the element nodes to
the translated water plane.

From the determined buoyant volume VB, the buoyancy
load of each structure element at each time step is obtained
by multiplication with the water density ρwater and gravi-
tational acceleration g, as given in Equation 3.

Fbuoyancy =VBρwaterg (3)

The buoyancy force is then connected to the frame_c
of the element (introduced in Subsection 2.4.2), which
is located in the middle of the element axis, including
deformation. As, however, the point of attack of the
buoyancy force varies with the motion of the floater, the
distance from the actual point of attack to the central point
(frame_c) is computed according to the different element
positions elaborated in the above case discrimination. The
resulting moment due to the shifted center of buoyancy is
finally added as torque load to the frame_c, so that correct
loads due to buoyancy are represented.

2.4.2 StructureElement

In the subcomponent StructureElement, all members of
the support structure (floater and tower up to the RNA)
are defined, based on a record for the topology data. This
record contains number and coordinates of the nodes, as
well as number and definition of the members, specified
by the two end nodes and the structural properties of
the element. The tubular beam properties are defined
by an isotropic material (with elastic modulus and shear
modulus, density, and Rayleigh damping parameters),

The OneWind Modelica Library for Floating Offshore Wind Turbine Simulations with Flexible Structures

636 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132633

as well as start and end diameters and wall thicknesses.
This record can either be written manually, or generated
by means of a MATLAB code. The latter method makes
it easy to change subdivisions of the beam elements
and is thus useful for a more comprehensive structural
analysis. The TopologyData record is used for setting up
the structure elements, using an extended 3D-Bernoulli
beam element model, which is also applicable to branched
geometries and has an external load connector frame_c.

Avoiding Closed Loops Offshore substructures might
be branched structures, like semi-submersibles, TLPs,
or also bottom-fixed support structures, such as tripods
and jackets. This will lead to closed loops in multibody
applications that use the floating frame of reference, what
makes it impossible to calculate the unique orientation
of each frame, especially where branches are connected.
This problem is addressed here by excluding orientation
from the node connectors that are used to build up the
substructure by defining the position of each member and
connecting the members. In case internal forces need to
be resolved between local beam and world frame, a local
beam orientation is constructed by means of absoluteRo-
tation() and axesRotations(). This beam orientation only
depends on the initial node positions and is independent
of the body motion. Therefore it is combined with a
reference orientation from the bottomAdapter to calculate
an approximation of the local beam orientation, assuming
small flexible body motion, which is sufficient for rigid
body motion. Since the multiplicity of external floating
frame connectors rely on correct orientation, each frame
orientation is exactly calculated from a combination of
reference orientation and local elastic rotation.

Adapters Since the structure is built by 3D-Bernoulli
beams, which have FEM-nodes with node position,
cut force, cut torque, elastic displacement, and elastic
rotation as variables, adapters between the FemFrame
connectors and the common Modelica Frame connec-
tors, not having the elastic deformation variables but
the frame orientation in addition, are needed. Two
different adapters are used: AdapterFemToFrame_fixed
and AdapterFemToFrame_free. The “fixed” adapter
(bottomAdapter), where the boundary conditions are set,
is needed for the structure node that will be connected to
the FreeMotion, while the “free” adapter is for connecting
any other components, such as mooring lines at the
fairleads (fairleadAdapter), or RNA on the tower top
(topAdapter).

2.4.3 Additional Weights

Besides the main loads due to waves, wind, and buoyancy,
which are already included in the partial model Substruc-
turePartial, covered in Subsection 2.4.1, additional weight
due to column caps, not considered as beam elements,

and ballast have to be integrated into the model. The
subcomponent AdditionalWeightLoadElement, similar
to the BuoyancyLoadElement, however, just using the
simple time- and position-independent weight calculation,
has the weight as output, which is implemented in the
vertical component of a force equation.

2.4.4 Station-Keeping System

The station-keeping system contains three different com-
ponents: fairleads, mooring lines, and anchors, as
schematically shown in Figure 5.

Figure 5. Schematic representation of a catenary mooring line.

Fairlead and anchor positions are defined by fixed
translations, while the mooring lines are implemented by
means of a separate model. This (1) models the mooring
lines, divided into several elements, as mass-spring-
damping systems, (2) considers velocity-dependent
(Morison) and inner damping, (3) computes weight
and buoyancy of the lifted parts of the catenary lines,
and (4) includes bottom contact reaction forces. Thus,
the shape of the mooring lines, as well as the effective
lengths are internally determined at each time step, based
on the common catenary equation, given mooring line
parameters, and the actual fairlead positions. (Feja, 2013)

2.5 Wind
Several wind models, either deterministic, based on gust
models, or stochastic, using binary or ASCII data, are
available. Different gust profiles, such as 1-cosine gust,
extreme coherent gust, extreme direction change, or
extreme operating gust, can be selected; wind shear can
be included by means of an exponential or logarithmic
profile; and the tower effect can be considered either for
upwind or downwind turbines. Two different guidelines
can be chosen: IEC-61400-1 edition 3 (International
Standard, 2005) or GL guideline for certification of wind
turbines (GL Rules and Guidelines, 2010). Corresponding
to this, the wind turbine class (I, II, III), depending on
the reference wind speed average over 10 minutes, the
turbulence characteristic (A, B, C), for high, medium,
or low turbulence, as well as the turbulence model
(e.g. normal or extreme) have to be specified. For the
simulation of the wind, ramped, steady, turbulent, as well
as upwind or downwind steady or turbulent wind types

Session 9D: Wind & Naval Engineering

DOI
10.3384/ecp17132633

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

637

for turbine wake simulation using two or more turbines,
can be chosen. Finally, the basic parameters, such as
hub wind speed, density and dynamic viscosity of air,
wind direction, and flow inclination, are defined in the
WindData record. (Thomas et al., 2014)

2.6 Waves
Two basic wave models are implemented in Modelica:
one model for regular waves and one for irregular random
waves. Water parameters, like water depth and density,
as well as the option to use Wheeler stretching or linear
extrapolation method, are common for both wave models.
The regular waves are further specified by wave period,
wave height, and phase angle. The irregular waves,
on the other hand, are defined by a Pierson Moskowitz
or JONSWAP wave spectrum, significant wave height,
spectral period, random phase angles, and number of
frequencies, because irregular waves are obtained as
superimposition of several regular waves of different
frequencies.

3 Limitations
Holistic modeling of a flexible floating offshore wind tur-
bine system is, because of non-linear physics and fully
coupled aero-hydro-servo-elastic simulation, very com-
plex and extensive. Therefore, some simplifications have
to be made in the first step of implementation, which are
depicted in the following:

• Additional weights due to caps and ballast are
computed for each element and connected to their
frame_c, which is located at the midpoint along the
central axis of each element. However, this does not
correspond to the correct center of gravity in case of
the caps and the uppermost element containing bal-
last, if this element is only partially filled with bal-
last. This inaccuracy can be removed by adding a
torque load to the frame_c resulting from the differ-
ent center of gravity, similar to the method applied in
the buoyancy load calculation, described in Subsec-
tion 2.4.1.

• In case of a branched structure, like the semi-
submersible floater, there is an overlap of elements.
For example, the pontoons are connected to the
nodes at the central axis of the columns, however, the
pontoon structure itself should just start from the col-
umn surface instead of the column center. This leads
to some additional incorrect weight, which has to be
removed, for example by using massless elements for
connecting branched elements to the surface of an-
other element. However, the type and characteristics
of those massless elements have to be chosen such
that they would not affect the real structural perfor-
mance.

• Wave and wind loads are actually only calculated
based on the elements above and below the still wa-
ter level in the initial undisplaced position, not tak-
ing into account that elements could emerge or sub-
merge during simulation due to the motion of the
floater. In addition, the wave load calculation only
accounts for relative velocities but not for relative
accelerations, as otherwise the initialization of the
time-domain simulation in Dymola does not finish.
Any loads on the submerged structure due to cur-
rents are not included. Furthermore, for correct sim-
ulation of floating offshore wind turbines in different
sea states, the actual wave height has to be included
in the buoyancy calculation.

Those simplifications are rather minor and do not affect
the system performance in the free-decay simulations,
except for the neglect of the relative acceleration in the
wave load calculation, as shown in Section 4.1. However,
for an offshore floating wind turbine system, which
should represent accurate system performances and
valid results for any simulation and load case, the above
mentioned points have to be included in the model.

4 Results and Applications
The practical use of the offshore wind turbine model in
Modelica is presented by analyzing simulation results
based on the implemented code (Section 4.1) and pointing
out the feasibility of model adaption (Section 4.2).

4.1 Simulation Results
In order to examine the developed code for a floating
offshore wind turbine system, the NREL offshore 5-MW
reference wind turbine (Jonkman et al., 2009) on top
of a floating spar-buoy, defined in OC35 Phase IV
(Jonkman, 2010), is implemented in Modelica, based
on the created floating wind turbine model presented in
Chapter 2, as shown in Figure 6. In order to point out

Figure 6. Visualization of the OC3-spar floating wind turbine
system (top grey area: water surface, dotted red lines: mooring
lines, bottom brown area: seabed).

5Offshore Code Comparison Collaboration

The OneWind Modelica Library for Floating Offshore Wind Turbine Simulations with Flexible Structures

638 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132633

the complexity of the implemented model, some main
statistics are presented in Table 1. The simulation settings
and performance, as well as the hardware properties are
listed in Table 2.

Table 1. Dymola statistics of translated OC3-spar wind turbine
model.

Statistical Parameter Value

Continuous time states (scalars) 866
Time-varying variables (scalars) 34,341
Sizes after manipulation of linear systems {436, 3, 2}
DAE scalar equations 121,139

Table 2. System properties, simulation settings, and perfor-
mance.

Parameter Value

Clock frequency 3.10 GHz
Operating system 64-bit

Simulation interval 600 s
Output interval length 0.05 s
Solver Esdirk45a
Tolerance 1.0E-4

CPU time for integration 38,041.8 s
CPU time for initialization 83.3 s

With this model, free-decay simulations, as specified in
OC3 Phase IV (Jonkman et al., 2010), are carried out in
Dymola6. OC3 mainly focuses on “(1) discussing model-
ing strategies, (2) developing a suite of benchmark mod-
els and simulations, (3) running the simulations and pro-
cessing the simulation results, and (4) comparing and dis-
cussing the results” (Jonkman et al., 2010, pp. 1-2). The
OC3 participants, together with their simulation tools, are
listed in Figure 7, which represents the legend to Figure
8(a).

Figure 7. Participants and used simulation tools within the OC3
code-to-code comparison.

The free-decay tests are performed with the fully
flexible support structure, while the turbine is modeled
as rigid structure. Furthermore, aerodynamic damping
is deactivated, so that the hydrodynamic damping can
be elaborated in detail. The obtained motion response

6http://www.3ds.com/products-services/catia/products/dymola
(Accessed: 22 August 2016)

time series are then compared with the results from
the code-to-code comparisons (Jonkman et al., 2010).
As, however, the relative acceleration is not included
in the wave load calculation, the same simulations are
performed with the fully rigid equivalent of the floating
wind turbine model, once considering, once neglecting
the relative acceleration.

Figure 8 presents the time series of the free-decay simu-
lations exemplarily for the surge DoF. The rigid wind tur-
bine model, taking the relative acceleration into account,
yields similar results as obtained by the code-to-code com-
parison (Jonkman et al., 2010), shown in Figure 8(a). The
effect of neglecting the relative acceleration is shown on
the rigid model and compared to the results from the fully
flexible model, not yet capable of taking this parameter
into account. From Figure 8(b) it can be seen that the
shorter eigenperiod and stronger damping, obtained by the
time series of the fully flexible model, are mainly due to
the disregarded relative acceleration in the wave load cal-
culation.

(a) Rigid model and code-to-code comparison results, legend
given in Figure 7

(b) Consideration and neglect of relative acceleration

Figure 8. Free-decay time series in surge.

The system response by the end of the decay process
turns out to depend on the chosen solver. This, however,
is expected to be caused by the damping parameters set in
the TopologyData record of the StructureElement. At this
stage, the Rayleigh damping parameters are computed
manually, based on the system eigenfrequencies, and

Session 9D: Wind & Naval Engineering

DOI
10.3384/ecp17132633

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

639

used for all beam elements. However, for the sake of
accuracy and in order to obtain more realistic estimates
for the structural damping parameters, it is recommended
to compute those Rayleigh damping parameters for
each beam element individually and internally within
Modelica.

4.2 Model Adaption
Due to the hierarchical programming in Modelica and
the multibody approach, single components can easily
be adapted or exchanged. This way, other floating wind
turbine designs, bottom-fixed offshore or even onshore
wind turbine systems can be modeled, using the basic
structure of the implemented fully flexible model for a
floating offshore wind turbine system. Thus, the presented
model can be used as a simple tool for elaborating new
research topics and different or innovative wind turbine
system designs.

This flexibility of model adaption is demonstrated
on the example of the OC4 semi-submersible platform
(Robertson et al., 2014), the OC3 tripod (Nichols et al.,
2009), and the OC4 jacket (Jonkman et al., 2012), shown
in Figures 9(a), 9(b), and 9(c), respectively. Further-
more, Table 3 compares the complexity of those mod-
els, using the same statistics from Dymola as presented in

(a) Semi-submersible (b) Tripod (c) Jacket

Figure 9. Other wind turbine systems, implementation based on the basic model.

Table 3. Dymola statistics of translated adapted wind turbine models.

Statistical Parameter Semi-submersible Tripod Jacket

Continuous time states (scalars) 1,658 796 2,056
Time-varying variables (scalars) 64,139 35,079 75,425
Sizes after manipulation of linear systems Vector length 78 94 366

Maximum value 983 499 1,681
DAE scalar equations 237,246 148,435 374,173

Table 1 for the spar-buoy floating wind turbine model.
This underlines the enlarged calculation effort due to the
increased number of system parameters, which comes
with more complex and highly branched structures. But
nevertheless, it is feasible to model and simulate very
sophisticated wind turbine system designs.

5 Conclusion and Outlook
This paper presents the modeling of a fully flexible
floating offshore wind turbine system in Modelica. Based
on the Modelica MultiBody Library and the hierarchical
programming structure in Modelica, the complex system
is implemented via six main components and several
subcomponents. Floating systems bring new challenges,
such as buoyancy, free motion, station-keeping system, as
well as relative velocities and accelerations. Furthermore,
closed loops have to be avoided, when handling branched
structures in multibody applications, and certain adapters,
as well as a special load frame, are needed to connect
external components to the flexible Bernoulli beams.

Due to the complexity of fully flexible modeling of a
floating offshore wind turbine system, some simplifica-
tions are made. Most of them have minor impact on the
behavior of the system and the simulation results. Never-

The OneWind Modelica Library for Floating Offshore Wind Turbine Simulations with Flexible Structures

640 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132633

theless, the proposed methods for accurate modeling have
to be implemented in the next stage. More challenging
and more relevant for correct simulation results, however,
is the inclusion of the relative acceleration in the wave
load calculation. In order to account for this, further work
on an alternative way to connect external loads to the
structure elements is in progress. In this approach, each
structure element is made up of two Bernoulli beams,
while the mid-node is added separately and connected to
a “free” adapter. To avoid too small beam elements, the
TopologyData record is adapted and the number of nodes
and members is reduced. A more realistic estimation of
the Rayleigh damping parameters, which could be directly
included as internal computation within Modelica, is as
well of relevance for obtaining correct system responses.
Further fine tuning and detailed examination of the en-
vironmental models should be carried out in order to get
even closer to the reference results. Finally, with regard
to the computational effort and simulation performance,
additional work on speeding up the initialization process
is recommended.

Thus, the presented model should be seen rather as
a work in progress than as a fully established Modelica
code, as further work on small but important details is
still needed for proper representation of fully flexible
floating wind turbine systems. However, the implemented
model is a very good basis for simulation of fully flexible
floating offshore wind turbines and already reproduces
the dynamics of such a complex system quite well.
Furthermore, using the Modelica MultiBody Library and
the object-oriented programming in Modelica comes with
the great advantage to quickly adapt the implemented
basic model. This makes it a simple tool, which can be
used in other research projects and for modeling of novel
wind turbine designs.

Acknowledgements
This work is financially supported by the German Federal
Ministry of Economics and Technology, funding code
0325841A.

References
P. Feja. Dynamische Modellierung von Verankerungsleinen

für schwimmende Offshore-Windenergieanlagen mit Mod-
lica. Bachelor’s Thesis, RWTH Aachen University, Fraun-
hofer Institute for Wind Energy and Energy System Technol-
ogy (IWES), Germany, 2013.

GL Garrad Hassan. V4 Bladed Multibody dynamics. Garrad
Hassan & Partners Ltd., Bristol, UK, Bladed User Manual,
Version 4.0, 2010.

GL Rules and Guidelines. IV: Industrial Services, Part 1:
Guideline for the Certification of Wind Turbines. German-
ischer Lloyd, Hamburg, Germany, 2010.

International Standard. Wind turbines - Part1: Design require-
ments. International Electrotechnical Commission, Geneva,
Switzerland, IEC 61400-1, 3rd edition, 2005.

J. Jonkman. Definition of the Floating System for Phase IV
of OC3. Technical Report NREL/TP-500-47535, National
Renewable Energy Laboratory (NREL), Golden, Colorado,
USA, 2010.

J. Jonkman, S. Butterfield, W. Musial, and G. Scott. Definition
of a 5-MW Reference Wind Turbine for Offshore System De-
velopment. Technical Report NREL/TP-500-38060, National
Renewable Energy Laboratory (NREL), Golden, Colorado,
USA, 2009.

J. Jonkman, T. Larsen, A. Hansen, T. Nygaard, K. Maus,
M. Karimirad, Z. Gao, T. Moan, I. Fylling, J. Nichols,
M. Kohlmeier, J. Pascual Vergara, D. Merino, W. Shi, and
H. Park. ’Offshore Code Comparison Collaboration within
IEA Wind Task 23: Phase IV Results Regarding Float-
ing Wind Turbine Modeling’. In 2010 European Wind En-
ergy Conference and Exhibition (EWEC), Warsaw, Poland,
April 2010. Conference Paper NREL/CP-500-47534. doi:
10.13140/2.1.3576.5768.

J. Jonkman, A. Robertson, W. Popko, F. Vorpahl, A. Zuga,
M. Kohlmeier, T.J. Larsen, A. Yde, K. Saetertro, K.M.
Okstad, J. Nichols, T.A. Nygaard, Z. Gao, D. Manolas,
K. Kim, Q. Yu, W. Shi, H. Park, A. Vasquez-Rojas, J. Dubois,
D. Kaufer, P. Thomassen, M.J. de Ruiter, J.M. Peeringa,
H. Zhiwen, and H. von Waaden. ’Offshore Code Comparison
Collaboration Continuation (OC4), Phase I - Results of Cou-
pled Simulations of an Offshore Wind Turbine with Jacket
Support Structure’. In Proceedings of the 22nd International
Society of Offshore and Polar Engineers Conference, 17-22
June 2012, Rhodes, Greece, pages 337–346, June 2012. Con-
ference Paper NREL/CP-5000-54124.

T.J. Larsen and A.M. Hansen. How 2 HAWC2, the user’s man-
ual. Risø-R-Report Risø-R-1597(ver. 4-5), Risø National
Laboratory, 2014.

J. Nichols, T. Camp, J. Jonkman, S. Butterfield, T. Larsen,
A. Hansen, J. Azcona, A. Martinez, X. Munduate, F. Vor-
pahl, S. Kleinhansl, M. Kohlmeier, T. Kossel, C. Böker, and
D. Kaufer. ’Offshore Code Comparison Collaboration within
IEA Wind Annex XXIII: Phase III Results Regarding Tri-
pod Support Structure Modeling’. In 47th AIAA Aerospace
Sciences Meeting Including The New Horizons Forum and
Aerospace Exposition, 5-8 January 2009, Orlando, Florida,
USA, January 2009. Conference Paper NREL/CP-500-44810.

M. Otter. Modeling, Simulation and Control with Modelica 3.0
and Dymola 7. Technical Report, Deutsches Zentrum für
Luft- und Raumfahrt e.V. (DLR) - Institut für Robotik und
Mechatronik, Wessling, Germany, 2009.

A. Robertson, J.M. Jonkman, F. Vorpahl, W. Popko, J. Qvist,
L. Frøyd, X. Chen, J. Azcona, E. Uzunoglu, C. Guedes
Soares, C. Luan, H. Yutong, F. Pengcheng, A. Yde,
T.J. Larsen, J. Nichols, R. Buils, L. Lei, T.A. Nygaard,
D. Manolas, A. Heege, S. Ringdalen Vatne, T. Duarte, C. Go-
dreau, H.F. Hansen, A.W. Nielsen, H. Riber, C. Le Cunff,
F. Beyer, A. Yamaguchi, K.J. Jung, H. Shin, W. Shi, H. Park,
and M. Alves. ’Offshore Code Comparison Collaboration

Session 9D: Wind & Naval Engineering

DOI
10.3384/ecp17132633

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

641

Continuation Within IEA Wind Task 30: Phase II Results Re-
garding a Floating Semisubmersible Wind System’. In Pro-
ceedings of the ASME 2014 33rd International Conference on
Ocean, Offshore and Arctic Engineering, OMAE 2014, San
Francisco, California, USA, volume 9B, OMAE2014-24040,
page V09BT09A012. American Society of Mechanical Engi-
neers, June 2014. doi:10.1115/OMAE2014-24040.

M. Strobel, F. Vorpahl, C. Hillmann, X. Gu, A. Zuga, and
U. Wihlfahrt. ’The OnWind Modelica Library for Offshore
Wind Turbines - Implementation and first results’. In Pro-
ceedings of the 8th International Modelica Conference 2011,
Dresden, Germany, pages 603–609. Modelica Association,
March 2011.

P. Thomas, X. Gu, R. Samlaus, C. Hillmann, and U. Wihlfahrt.
’The OneWind

R©
Modelica Library for Wind Turbine Simu-

lation with Flexible Structure - Modal Reduction Method in
Modelica’. In Proceedings of the 10th International Modelica
Conference 2014, Lund, Sweden, pages 940–948. Modelica
Association, March 2014. doi:10.3384/ECP14096939.

T. Tran, D. Kim, and J. Song. ’Computational Fluid Dynamic
Analysis of a Floating Offshore Wind Turbine Experiencing
Platform Pitching Motion’. Energies, 7(8):5011–5026, 2014.
doi:10.3390/en7085011.

W. Yu. Dynamic Modeling of a Floating Wind Turbine. Techni-
cal Report, Fraunhofer Institute for Wind Energy and Energy
System Technology (IWES), Germany, 2015.

The OneWind Modelica Library for Floating Offshore Wind Turbine Simulations with Flexible Structures

642 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132633

1

Modelica Based Naval Architecture Library for Small Autonomous

Boat Design

Thom Trentelman1 Joshua Sutherland2 Kazuya Oizumi2 Kazuhiro Aoyama2
1Maritime Engineering, Delft University of Technology, The Netherlands,

t.r.trentelman@student.tudelft.nl
2Systems Innovation, University of Tokyo, Japan, {joshua, oizumi, aoyama}@m.sys.t.u-tokyo.ac.jp

Abstract
This paper describes a method for early stage boat

design by creating and utilizing a library of naval

architecture based boat components in Modelica. The

method involves the construction of stand-alone boat

components which can be assembled into a simulation

model. Structuring the model into multiple system

levels provides a clear overview. Utilizing the partial-

complete methodology ensures that all system levels are

replaceable within the simulation. This allows the user

to construct many different boat models and experiment

with unconventional or innovative designs. By

comparing the performance and behaviour of different

assemblies of components the most ideal design for a

given purpose can be found and used as a starting point

for the in-depth design process. By organizing the

components in a library they can be re-used in future

projects as well. It is noted that when additional libraries

are utilized the effectiveness of this design method

increases significantly. As the availability of component

models increases, users can save time on the physical

design and modelling of the individual components and

instead focus on assembling working simulation models

right from the beginning. To illustrate this, the

construction of a few simple boat components is

described in this paper. These components are then

combined to simulate multiple concept designs.

Keywords: early stage ship design, model based design,

object-orientated , innovative naval architecture

1 Introduction

Shipping nowadays is one of the world’s most important

means of transport. Not only for product or passenger

transport, but also for leisure such as pleasure yachts and

sport boats. The volume of world seaborne trade

exceeded 10 billion tons in the year 2015. Together this

volume was accountable for more than 80% of the total

worldwide merchandise trade, growing with 2.1% over

the year 2014 (UNCTAD/RMT, 2016). A downside to

this key global trade enabler is the overall environmental

pollution that comes from the industry. In 2012 ship

emissions were responsible for 3.4% of the worldwide

emissions of greenhouse gasses (GHG), ranking 2nd as

transport related polluter after road transport (24.3%)

and just above aviation (3.1%). Although road transport

is the major source of transport related emissions,

shipping is the only sector where the GHG emission

rates are still rising (Maragkogianni, Papaefthimiou, &

Zopounidis, 2016). A publication of the International

Maritime Organisation (Buhaug et al., 2009) described

a scenario where without political involvement the

growth of ship’s GHG emissions would grow by

150~250% between 2007 and 2050.

1.1 The Importance of Innovative Naval

Architecture Design

The design process of ships from scratch to seaborn is

costly and requires large amounts of detailed analysis, is

subject to extensive safety and environmental

legislation and to remain competitive, the time-span for

this design process is ever decreasing. There is little

room for uncertainty or assumptions. And whilst most

drastic and influential decisions are made in the early

stages of the design process, most design software tends

to emphasise more on the detailed phases in later stages

of the design process (Abt, Bade, Birk, & Harries, 2001;

Bole & Forrest, 2005). For these reasons ship design

often loses its innovative character and mostly evolves

around the slight improvement of existing designs.

However, due to international political involvement

the imposed legislation on the emission of GHG has

increased in the recent years. Stricter emission quotas

and the introduction of eco-zones at major ports have

forced the industry to innovate (Rue & Anderson,

2015). Moreover, not only stricter legislation has moved

the industry; in recent years the direct influence of

global warming have exposed itself more clearly where

conditions on sea have become more challenging for

existing vessels due to the changing climate. Reports of

an increase in storms and higher rising waves have set

high performance demands for the vessels in order to

maintain safety for their passengers and crew on board

(Bitner-Gregersen, Eide, Hørte, & Skjong, 2013).

DOI
10.3384/ecp17132643

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

643

2

1.2 A New Method for Innovative Early

Stage Concept Design

Using Model Based Design (MBD) in the early design

stage makes it possible to experiment with innovative

techniques. For example, 3-Dimensional simulation

gives direct performance output of the created concept.

However, the level of detail of the simulation output will

vary greatly based on the complexity of the simulation

model. This results in the necessity for further

investigation. This in-depth design stage follows a spiral

path. Such a design path has an iterative character; the

concept design should run down all design stages

multiple times. At the end of every iteration the concept

design should be adjusted to ultimately result in a

suitable design (Papanikolaou, 2014). Even though

eventually this high detail design path is inevitable for

every concept design, this method only states whether

the chosen concept is suitable for its goal or not after one

or more iterations. When the concept turns out to be

unsuitable for its goal, the process must start over from

the very beginning. Although this method allows

innovative decisions to made regarding concept designs,

it does not solve the time issue.

In this paper, we present a complimentary method

utilizing the Modelica modelling language in the early

design stages, with the simulation model subdivided

into multiple system levels. The advantage is that these

system levels have a replaceable properties, with every

system level consisting of one or more components. The

components can be anything the user wants to attach to

his simulation model e.g. thrusters, motors, solar panels,

gearboxes and batteries. Connecting these components

all the way through to the top level creates a complete

simulation model arranged in a hierarchy to aid the

management of complexity. By swapping components

within these levels multiple concepts are established on

the same structure. Still the level of detail of the

simulation output is heavily reliant on the complexity of

these individual components. However, at this design

phase the suitability of the designs can be determined by

comparing the performance of various concepts. Only

the most promising concept designs will be subjected to

the advanced design stage. Meanwhile all created

components can be exchanged or stored in a library for

use in later projects.

2 Background to Model Based Design

and its Application in Navel

Architecture

2.1 Model Based Design

Model Based Design (MBD) is a design method which

enables the rapid creation of design concepts in software

by leveraging advances in computing technology.

While various modelling languages exist their choice

to be used on a specific project and lifecycle stage within

that project must be made based on what value they

provide. Conceptual modelling languages such as

SysML provide a structure to describe a system and its

purpose, but fail to provide feedback on the performance

of the system being designed. Conversely 3D CAD, can

give clear and direct feedback on the geometry of a

system but requires the designer to commit to a great

deal of detail which often occurs later in the design

lifecycle.

1 Dimensional Computer Aided Engineering (1D

CAE) is a broad term used to cover methodologies and

tools which aid the early stages of engineering lifecycles

by the utilization of computers (Sawada, 2012). By

deliberately neglecting 3D geometry the engineer can

quickly prototype designs and crucially; predict the

performance by simulating the models created rather

than creating a physical prototype. Likely leading to cost

and time savings for a given project and making it easier

to complete difficult trade-off decisions which must

made to select a combination of components to form a

system which serves its purpose best.

Modelica is an example of a numerical modelling

language popular in the 1D CAE paradigm. Equations

capture the behaviour of individual components which

are then connected together to develop subsystems

which ultimately form the system being modelled. Its

object orientated features make it possible to quickly

create and modify models including the sharing of

interfaces and inheritance of common attributes.

Features of which are vital for the handling highly

complex systems being developed by large teams.

This is particularly useful when attempting to create

highly innovative designs where experimental or

extraordinary components can be realized as models by

their particular domain experts and integrated into a

system by an engineer who is not a specialist in those

particular domains.

2.2 Current Applications of Modelica to

Naval Architecture

A review of the current literature shows the use of

Modelica in the naval architecture has been focusing on

the design of highly detailed specific systems aboard

ships. For example (Dong, Wu, Zhang, & Peng, 2011)

have constructed a simulation model of a hydraulic

rudder and used it for the analysis of shock resistant

effects while (Marty, Corrignan, Gondet, Chenouard, &

Hétet, 2012) focussed on simulating energy flows and

fuel consumption on board of a large cruise vessel.

The high level of detail of these simulation models is

typical for the advanced design stage of a ship or boat

and as such these stand-alone simulations are not meant

to be integrated into a larger holistic simulation model

of the entire ship or boat. The amount of detail in these

individual component models would be excessive for

the construction of an early design stage model.

Modelica Based Naval Architecture Library for Small Autonomous Boat Design

644 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132643

3

Through the course of a literature review no prior

attempt at using Modelica to model an entire ship or boat

was found. As such we conclude the navel architecture

preliminary design process is likely still reliant on other

software languages other than Modelica and so is not

experiencing the benefits described in Section 2.1 of this

paper.

3 Contributions of this Paper

Earlier literature from authors including (Sutherland,

Oizumi, Aoyama, Eguchi, & Takahashi, 2016;

Sutherland, Oizumi, Aoyama, Takahashi, & Eguchi,

2016; Sutherland, Salado, Oizumi, & Aoyama, 2017)

has focused on the practical use of a Modelica based

naval architecture library. It describes the process of

designing a race winning model boat for an annual

student contest. The boat model needed to be rather

innovative as it was assigned to sail autonomously on

solar energy. This paper will describe the details and

architecture of the navel architecture library used.

The focus will be on the replaceable components,

system level characteristics and the hierarchal structure.

Successively the architecture of several components

will be described to aid reader comprehension.

Through this paper the authors aim to inspire

engineers from the naval community to take benefit

from advanced design methods and tools. The

effectiveness of the design method will grow

exponentially as more naval component model libraries

become available.

4 Methodology for Creating

Replaceable System Levels

As shown in Figure 1 the simulation model is

subdivided into four systems levels. All system levels

are linked to one another and ultimately make up the

Solar Boat Model. All system levels are replaceable

since they are all constructed using the partial-complete

methodology. With one click a component, subsystem

or system of interest can be swapped for an alternative.

4.1 System Levels

The hierarchical structure provided by the four system

levels offers a clear overview of the simulation model as

demonstrated in Figure 1. In Modelica these system

levels are introduced as separate packages. Underneath

these, every system level has their own sub-packages

containing relevant models.

At the bottom level (Level 4) all individual

components are arranged in a library. This library

provides fundamental elements to the simulation model,

where other system levels are introduced for enabling

quick and drastic concept changes. The number of

possible components is infinite and the level of

complexity per component is variable. Components can

often be broken down into separate sub-components.

These sub-components can then be reconnected at the

subsystem level. However, it is important to

acknowledge that this method is used in the early (lower

detail) design stage.

The subsystem level (Level 3) contains assemblies of

Level 4 components which interact one-on-one to

function properly in a system. Every unique

Figure 1. Schematic view of system level hierarchy; enabling the creation of several ready to simulate Solar Boat models

by alternating various replaceable complete components from the library (Level 4). System Levels 2 and 3 are also

replaceable as shown in Figure 4 and Figure 5.

Session 9D: Wind & Naval Engineering

DOI
10.3384/ecp17132643

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

645

4

combination of components within a subsystem requires

a different subsystem name at this level.

The systems of interest level (Level 2) combines all

subsystems which will be used in the concept. It is at

this level that changes will radically influence the

appearance of the concept design.

At the top level (Level 1) the final concept design is

assigned and connected with external factors. These

external factors could be weather conditions, but also

payloads or obstacles in the simulated space the vehicle

operates in. At this level the model is complete and

ready to simulate.

4.2 Partial-Complete Methodology

The partial-complete methodology, as the name

suggests, makes use of a partial model to create multiple

complete models of the same type. This objected-

orientated inheritance scheme uses a partial model to

state the characteristic parameters and equations for

every component, subsystem or system of interest. Each

complete model then extends their corresponding partial

model and assigns real values to the parameters. The

partial-complete methodology allows the models to be

replaceable and enables the rapid creation of multiple

complete components using the same architecture.

Figure 2 shows a flow-chart which demonstrates the

methodology for a simplified (Level 4) component.

Figure 2. Flow chart demonstrating the partial-complete

methodology for creating a replaceable propeller

component (Level 4). The component parameters and

equations have been heavily simplified.

4.2.1 Component Modelling (Level 4)

Not only do all components have to be replaceable, for

experimenting it is also desirable to make the

components easily adjustable and scalable. The use of

records ensures this. A record formulates all constant

parameters which are used in the physical description of
the component. The very base of a component is a

partial record.

A partial record states all the parameters without

assigning a value to them. For example, these

parameters could be dimensions, mass, cost,

conductivity, material characteristics and cost. A

complete record extends the partial record and

ultimately assigns values to the parameters. By creating

various complete records with alternating values, every

time extending the same partial record, many different

components of the same type can be created at the one

instant. Using the partial-complete methodology on a

record level ensures that components of the same type

are using identical parameters.

The partial component is used to describe the outlines

of the component and can include both interfaces and

behaviour. When used for describing the outline of a

component, it must declare replaceable the partial

record and therefore gain access to the parameters.

These parameters must then be complemented with

additional variables which will solely be used in the

characteristic set of equations of the component. Note

that every time a component desires a new set of

equations, a new partial component has to be created.

In order to make the components connectable to other

components all output forces expressed by the different

components must be attached to the same frame. To

enable this a connector from the Modelica

Mechanics.Multibody library is used in the Diagram

view of the partial specifically:

Interfaces.Frame_a. By using this library the

Modelica compiler can automatically combine the

forces and torques excreted by the components and

compute the resulting net acceleration on the entire boat

assembly. In some cases (e.g. components affected by

hydrodynamics) it is useful to attach

Mechanics.Multibody.Sensors to the frame. The

data from this sensors could be used in the equations of

the same partial model (e.g. compute drag from

velocity). Lastly, for a clearer understanding of the 3D

simulation of the model Mechanics.Multibody.

Visualizers can also be attached to the frame. The

template for the Diagram view is shown in Figure 3.

Figure 3. Diagram template used for creating general

boat components (Level 4).

b
resolve

force

b

resolve

torque

x_force

X_force

y_force

Y_Force

z_force

Z_force

l_torque

L_Torque

m_torque

M_Torque

n_torque

N_Torque

partial_Pr…

a

absVel

v

resolve

a

absPos

r

resolve

Modelica Based Naval Architecture Library for Small Autonomous Boat Design

646 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132643

5

The last step for creating a Level 4 component is to

create a complete component. The complete model

extends its corresponding partial component and

inherits the values for the parameters by re-declaring the

partial record with the chosen complete record. Every

complete record should be re-declared in a complete

model in order to create the eventual replaceable

components.

4.2.2 Subsystem Modelling (Level 3)

Subsystems (Level 3) are models that state one or more

component types which the designer decides should be

grouped together. In the partial subsystem the partial

components are assigned. Constraining the replaceable

partial components to their own types (complete

components) makes a subsytems distinctive. This is

illistrated in the following Modelica code for a partial

Electrical to Thrust partial subsystem which is also

shown as a diagram in the central layer of Figure 4:

model ElectricalToThrust

 replaceable motors.motor_partial

 constrainedby motor;

 replaceable gearbox.gearbox_partial

 constrainedby gearbox;

 replaceable propellers.propeller_partial

 constrainedby propeller;

end ElectricalToThrust;

Clearly, within a subsystem, components should be

connected in using the appropriate connectors (i.e.

mechanical, electronical, etc.). And to enable interaction

with other subsystems external connectors must be

added.

The complete subsystem is constructed in the same

way as at the component level. First it extends the partial

subsystem, then re-declares the partial components with

their corresponding complete components. Figure 4

demonstrates the construction of two different complete

subsystem architectures by alternating the thruster

component (propeller to jet).

4.2.3 System of Interest Modelling (Level 2)

The Systems of Interest level (Level 2) is the level the

full architecture of the simulation model is brought

together into a complete concept design. The method for

coding is no different than on the subsystem level. Again

the subsystems should be connected at this level as

required. Figure 5 demonstrates the construction of two

different complete systems of interest by alternating the

energy source subsystems.

4.2.4 Simulation Level Modelling (Level 1)

The simulation level assigns the concept design from the

System of Interest level. On this level external factors

Figure 5. Schematic view of the partial-complete methodology used for the creation of replaceable systems of interest

(Level 2). In this specific example both replaceable complete systems of interest will use a motor, gearbox and propeller

propulsion system, as well as a mono-hull buoyancy generation. The difference comes from the variation of solar panels

(dotted line) and windmills (dashed line) as main energy source.

Figure 4. Schematic view of the partial-complete methodology as used for the creation of replaceable subsystems (Level

3). In this specific example both replaceable complete subsystems will use a motor and a gearbox. The difference comes

from the variation of propeller (dotted line) and jet (dashed line) as main thruster.

Session 9D: Wind & Naval Engineering

DOI
10.3384/ecp17132643

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

647

6

such as weather can be linked to the concept design,

making it ready to simulate.

5 The Modelica Naval Architecture

Library

This chapter demonstrates the practical application of

the design method as described in Chapter 4 in order to

construct a complete simulation model. The simulation

model will be a solar powered model boat. Although this

design method has the potential to model the simulation

model with six degrees of freedom (see Figure 3), for

reasons of simplification this paper will model in only

two degrees of freedom. This means that the eventual

simulation output will only contain a boat travelling in a

straight line and moving up and down along its vertical

axis.

5.1 The Library: Component Modelling

(Level 4)

This section describes the individual components which

are used in the simulation model. Even without precise

knowledge about the physics of every type of

component, it is still possible to construct functioning

components by yourself. This method allows using

existing literature to formulate component

characteristics and equations. This makes it possible to

construct components even without knowledge or

thorough research. In this paper the solar panel

components are based on existing literature. In some

occasions components, such as motors and gearboxes,

could be implemented from the Modelica Standard

Library. As a result, very few parameters and equations

have to be formulated in the partial models, keeping the

components simple. In other occasions the components

will be based on the authors’ expertise, resulting in more

complex, yet more adjustable components (as shown

with the propeller and buoyancy components later in the

paper).

5.1.1 Solar Panel Components

The solar panel components are implemented as

modelled by (Esram, 2010). Most parameters are pre-

defined and do not need to be changed. However, for

simulation purposes the solar panel components needs

additional parameters such as surface area, mass and

cost. These additional parameters should be formulated

in the partial record along with the other pre-defined

parameters and later assigned by a complete record in a

complete component.

Also it is possible to vary the distribution of the solar

panels over the length of the boat model. Every unique

distribution requiring a different partial component,

later extended by corresponding complete components.

For a solar panel to generate electricity it needs solar

irradiation. This solar radiation needs to be modelled on

the simulation level (Level 1). In order for this external

value to reach the solar panel component it needs to be

implemented as an input in the Modelica Diagram view

of the partial solar panel component.

5.1.2 DC Electrical Motor and Gearbox Components

The electrical motor component and the gearbox

component are selected from the Modelica Standard

Library. Without any adjustment these component will

respond to the appropriate inputs and generate an output.

These inputs and outputs need to be connected within a

subsystem, and on the system of interest level.

Both the electrical motor and the gearbox need some

additional adjustment before they can be successfully

implemented in the simulation model. Just like the solar

panel component, the motor and gearbox need to have

parameters for size, mass and cost assigned. Also, it is

important to determine a gearbox ratio. Which of course

is also adjustable.

Every time an adjustment in one of the parameter

values is desired, a new complete component has to be

created, extending the partial component.

5.1.3 Propeller Component

The propeller is a propulsion device often mounted at

the stern of the boat. Although there are many different

types of propulsion devices, the propeller is the most

commonly used. A boat can be designed having more

than one propeller. The direction of the propeller can be

fixed or with the ability to rotate around its vertical axis

in order to adjust the direction of the boat, like the

propellers on typical outboard motors. In this

simulation, a fixed single propeller is used as the thruster

of the boat.

The propeller generates the thrust which will

ultimately displace the boat in the simulation. The thrust

is calculated using the basic equation:

𝑇ℎ𝑟𝑢𝑠𝑡 = 𝑘𝑡 ∙ 𝜌 ∙ 𝑛2 ∙ 𝐷4 (1)

At the same time a propeller generates a torque. This

toque is described by using a similar basic equation:

𝑇𝑜𝑟𝑞𝑢𝑒 = 𝑘𝑞 ∙ 𝜌 ∙ 𝑛2 ∙ 𝐷5 (2)

Where (𝜌) is the density of the water, 𝑛 is the

revolutions per second of propeller, 𝐷 the diameter of

the propeller and (𝑘𝑡(𝐽)) and (𝑘𝑞(𝐽)) are the

parametrised thrust and torque coefficients,

respectively. Since 𝜌 is determined by the environment

and 𝑛 is as a result of interaction with torque from either

the gearbox or the motor, only the diameter and the

coefficients have to be formulated in the partial record

of the propeller.

The coefficients are found by a 4th-order polynomial

in the form of 𝑎 ∙ 𝐽 + 𝑏 ∙ 𝐽2 + 𝑐 ∙ 𝐽3 + 𝑑 ∙ 𝐽4, where 𝐽 is

the advance ratio of the propeller. The advance propeller

is determined using the equation:

Modelica Based Naval Architecture Library for Small Autonomous Boat Design

648 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132643

7

𝐽 =
𝑉𝑎

𝑛 ∙ 𝐷
 (3)

Where 𝑉𝑎 stands for the advance velocity (the

velocity of the water as it reaches the propeller, which

in practice is influenced by the shape of the hull). For

simplification, the advance velocity in this simulation is

equalled to the absolute velocity of the simulation, the

value for which is extracted from the implemented

velocity sensor.

The 𝑎, 𝑏, 𝑐 and 𝑑 polyfits within the 4th order

polynomial are determined for a particular propeller

design by iterative calculation using a calculation

executed in Matlab as described by the blade element

theory presented by (Auld & Srinivas, 2016). But of

course experimentally derived functions could also be

used.

5.1.4 Buoyancy Component

The buoyancy component describes the hull used in the

simulation and the interaction with its surrounding. The

hull of a boat can come in various shapes and sizes. In

addition there is possibility to design a mono-hull,

double-hull or even a triple-hull. The shape and weight

of the hull mainly affects the resistance from the water

and the stability of the boat. However its hydrodynamic

outline and the interaction with the water are extremely

difficult to accurately model without resorting to

calculations within the field of advanced 3D fluid

dynamics. But in the preliminary design stage it is not

necessary to calculate so accurately and some basic

equations are sufficient as described in the following

subsections.

5.1.4.1 Resistance force

To reduce complexity the resistance of the buoyancy

component calculation is primarily calculated by the

friction force (Equation 4) using the ITTC-57 equation

(Equation 5).

𝑅𝑡𝑜𝑡𝑎𝑙 = 𝑅𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 (4)

𝑅𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =
1

2
𝐶𝑓 ∙ 𝜌 ∙ 𝑆 ∙ 𝑉2 (5)

Where 𝐶𝑓 is the friction coefficient, 𝜌 is the density

of the water, 𝑆 is the wetted surface area of the hull and

𝑉 is the absolute velocity of the model.

The friction coefficient itself is a function of the

number of Reynolds Number, hence the following

equations:

𝐶𝑓 =
0.075

(𝐿𝑜𝑔10(𝑅𝑒) − 2)2
 (6)

𝑅𝑒 =
𝑉 ∙ 𝐿𝑤𝑙

𝑣
 (7)

Reynolds Number as shown in equation 7 is

calculated using the length of the waterline (𝐿𝑤𝑙) of the

hull rather than the overall length but for simplification

this could be equalled to the overall length. It is

multiplied with the absolute the velocity and then

divided by the kinematic viscosity of the water (𝑣). This

parameter is determined as a function of temperature

and water density, but could also be implemented as a

constant. For salt water with a density of 1025kg/m3 and

a temperature of 15°C, 𝑣 = 1.188 ∙ 10−6 is used.

The wetted surface (𝑆) is for simplification equalled

to the surface of the under half of an ellipsoid and

assumed to be constant:

𝑆 =
1

2
∙ 4𝜋

((𝑎𝑏)1.6 + (𝑏𝑐)1.6 + (𝑎𝑐)1.6)

3

1
1.6

(8)

Where 𝑎 is the overall length of the hull, 𝑏 the

greatest width and 𝑐 the depth, vertically measured from

the bottom to top of the ellipsoid.

The frictional resistance always works in the opposite

direction of the traveling direction of the boat. More

resistance components such as air resistance and wave-

making resistance could be added in order to increase

the accuracy of the resistance simulation but they are

neglected at this time.

5.1.4.2 Buoyancy force

The buoyancy force keeps the vessel floating on the

water and maintains its stability. It has an upward force

component along the z-axis and restoring moments

around the x-,y- and z-axes of the construction. In the

simulation the restoring moments have been neglected

for simplification. The equation for the buoyancy force

along the z-axis then becomes:

𝐹𝑏𝑢𝑜𝑦𝑎𝑛𝑐𝑦 = ∇ ∙ 𝜌 ∙ 𝑔 (9)

The water displacement (∇) would normally be

calculated using the block coefficient, length of the

water line, breadth and draft of the hull. The equation is

as follows:

∇ = 𝐶𝑏 ∙ 𝐿𝑤𝑙 ∙ 𝐵 ∙ 𝑇 (10)

However, to remain consistent with previous

calculations, the displacement will again be calculated

using an ellipsoid equation:

∇=
1

2
∙

3

4
𝜋𝑎𝑏𝑐 (11)

Session 9D: Wind & Naval Engineering

DOI
10.3384/ecp17132643

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

649

8

Again only the bottom half of the ellipsoid will be

submersed. The coefficients 𝑎𝑏𝑐 are used the same as in

equation 8.

5.1.5 Overhead Components

The overhead components make up for weight or cost

values of components which have not been modelled or

used in the simulation model. Moreover they could be

used as the safety margin of the design. The overhead

components have no further dimensions or forces

applied other than weight.

5.2 The Library: Subsystems (Level 3)

The subsystems which are used in the boat model are

Solar to Electrical, Electrical to Thrust, Buoyancy

Generation and Overhead Structures (as shown in

Figure 1, overhead structures excluded).

5.2.1 Solar to Electrical

The Solar to Electrical subsystem consists of solely the

solar panels. The distribution of solar panels is

determined at this level. The output from the solar

panels is an electrical connection which has to be

connected to an electrical motor. In the subsystem an
Electrical.Analog.Interfaces.PositivePin

and a .NegativePin are utilized. In the systems of

interest level these pins can be used to connect the

electrical current to the electrical to thrust subsystem

(see Figure 9). Figure 6 show a possible composition for

the Diagram view of the Solar to Electrical subsystem.

Figure 6. Diagram view of Solar to Electrical subsystem.

5.2.2 Electrical to Thrust

The electrical to thrust subsystem is responsible for the

transformation of the electrical current generated by the

solar panels into a thrusting force. It accesses electrical

current via the connection of the pins at the system of

interest level (Level 2).

Several configurations could be made to convert the

electrical signal and the resulting thrusting force with

every configuration should be constructed in a separate

partial subsystem.

Figure 7 shows a Diagram view of an electrical to

thrust subsystem containing a motor, gearbox and

propeller. These components are mechanically linked to

each other. The motor component has two wires with

pins attached, which will be used to link this

components in the system of interest level to the energy

source (see Figure 9).

Figure 7. Diagram view of Electrical to Thrust subsystem.

5.2.3 Buoyancy Generation

The buoyancy generation subsystem is used to connect

the hull component with external factors such as water

velocity or wind speed. A “single hull” subsystem will

contain only one hull component.

If the concept design should contain multiple hull

components, as seen on catamaran or trimaran boats, a

separate partial subsystem must be created. Two or more

replaceable components can be implemented and

attached to the frame.

Figure 8 show a Buoyancy Generation subsystem

with a single hull component, connected to a water

velocity input.

Figure 8. Diagram view of Buoyancy Generation

subsystem.

5.2.4 Overhead Structures

The overhead structures subsystem is a stand-alone

subsystem which assesses the overhead structure

component of choice and make it possible to fit this into

the simulation in the systems of interest level.

5.3 The Library: Systems of Interest

(Level 2)

The systems of interest model combines various

subsystems to form a model of the system for
assessment (i.e. a boat). At this system-level (Level 2) it

is possible to change entire subsystems with the use of

the partial-complete methodology described previously.

S

frame_a

Solar_Irradiation

Temperature

p n

m pp g

frame_a

p n

Hull

frame_a

Water_Velocity

Modelica Based Naval Architecture Library for Small Autonomous Boat Design

650 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132643

9

Figure 9. Diagram view of Systems of Interest (Level 2).

5.4 The Library: Simulation Level

(Level 1)

The simulation level contains the chosen concept design

and connects it to all the external parameters such as

environmental elements or payloads. It is at this level

that the simulation is ready to run. Chapter 6 gives an

example of simulating multiple concept designs.

6 Simulation

In this section we present the results of simulating boat

concept designs constructed in Modelica. With the use

of 3D animation (by means of Mechanics.Multibody

library) it is possible to visualize the behaviour of a

particular concept (see Figure 10). While detailed

performance can be analysed using charts. When

multiple different concept designs are simulated, the

data from the charts can be compared to determine the

most suitable design for its purpose.

Figure 10. Screenshot of the 3-Dimensional simulation.

6.1 Simulating the Concepts

To demonstrate, we compare the results of simulating

two competing boat designs. Both designs are based on

the basic set of components as described in Chapter 5.

However, they vary with Concept 1 being powered by

mid-range efficiency solar panels (12.5%, 3.24kg).

Demanding a higher maximum boat velocity, the second

simulation will be powered by more efficient, however

slightly heavier solar panels (21.5%, 5.40kg). It should

be noted that the maximum allowable solar panel

surface may not exceed 2 m2. Six mid-range efficiency

solar panels almost perfectly fill up all the available

space, where six of the high efficiency solar panels only

fill up 89% of all the available space. There is no room

left for adding a seventh solar panel. By simulating both

boats subject to the same environmental conditions of

average solar irradiance of a day in August in Japan (610

W/m2) it is possible to construct Figure 11 with time

series of velocity and Table 2 containing data selected

from the point when the simulation reached a steady

state (simulation time = 25s). As mentioned previously

no steering component is attached to the boat and hence

the boat only moves in the X and Z axis.

Figure 11. Simulation results of two concept designs.

Table 2. Simulation data of two concept designs.

Concept 1 2

Efficiency of solar panels [%] 12.5 21.5

Area per solar panel [m2] 0.333 0.297

Area of six solar panels [m2] 1.99 1.78

Mass of six solar panels [kg] 3.24 5.40

Spin speed motor [rpm] 12900 13300

Thrust generated [N] 111 118

Draft boat [m] 0.166 0.185

Maximum velocity [m/s] 3.56 3.53

6.2 Analysing the Simulation Results

The expectation would be that the design with the most

efficient solar panels, generating more power, will result

in a faster concept. However, by looking at the output

results from both simulations we find both concepts

reaching about the same maximum velocity. We

therefore conclude that the more efficient solar panels,

used in Concept 2, are not appropriate to increase the

velocity of the boat.

In order to increase the velocity of the boat we could

run more simulations with different hull designs in order

to decrease the draft and ultimately the drag, swap

motors, gearboxes and propellers or simply try to find

lighter solar panels with a sufficient efficiency.

7 Discussion

7.1 Benefits

By using the design strategy utilizing Modelica

described in this paper for preliminary ship design

engineers are able to rapidly construct working

assemblies and cut valuable time on their early design

research. Even without detailed domain knowledge of

naval architecture a user is able to assemble and

compare different models.

B_G

O_C S_to_E

solarInsolation temp_kelvin

No MPPT

E_to_T

ground

Solar_Irradiance Temperature

waterVelocity X

B_G

O_C S_to_E

solarInsolation temp_kelvin

No MPPT

E_to_T

ground

Solar_Irradiance Temperature

waterVelocityX

Session 9D: Wind & Naval Engineering

DOI
10.3384/ecp17132643

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

651

10

By using Modelica’s object oriented features the

methodology enables radical or minor changes to a

simulation model with one mouse-click. With the

possibility to directly run a 3D animation of the

simulation model the reaction to these changes can be

reviewed immediately.

There is basically no limit of components to add to

the simulation and it is also it is possible to break up

existing components into several separated components.

For example, a rudder can be simply modelled by the

deflection of alternating a single value for the angle, or

if desired be split up into different components, where

the mechanism to initiate this deflection is implemented

as individual components.

7.2 Limitations

As for every design method, the simulation output will

never be an exact representation of reality. The methods

used for describing the boat components are by

necessity based on approximations. Given the stated

goals of the 1DCAE method can only be used for

preliminary ship design, the engineer must still run

detailed design iterations on the eventual chosen model

in order to create a system which is producible and

successful.

8 Conclusions and Future Work

8.1 Conclusion

This paper set out to describe a new method for the early

stage design of ships which are highly innovative. We

achieved this by introducing the use of Modelica for

complete ship design. Combined, they form a working

simulation of a boat that travels in a straight line. While

the accuracy of the simulation may not be very high, at

this stage it is already possible to determine the

difference between the performance and behaviour of

different assemblies. Only once the demands for the

eventual design rise, must the simulation increase in

accuracy.

8.2 Future Work

Primarily the content of the library must be expanded in

the future. Further, the availability of many different

types of components will make it possible to assemble

innovative simulation models. Therefore, the authors

hope to see more marine engineers finding their way to

Modelica.

In addition, given the complexity level can vary per

component and every ship design has its own purpose

and requires different accuracies from the simulation a

balance must be made on how complex to make each

component. However, if for example waves are to be

simulated all forces in the six degrees of freedom must

be formulated in every component. Which in turn will

make the library more useful.

References

Abt, C., Bade, S., Birk, L., & Harries, S. (2001). Parametric

hull form design-a step towards one week ship design. In

8th international symposium on practical design of ships

and other floating structures (pp. 67–74).

Auld, & Srinivas. (2016). Blade Element Propeller Theory.

Retrieved November 10, 2016, from

http://s6.aeromech.usyd.edu.au/aerodynamics/index.php/sa

mple-page/propulsion/blade-element-propeller-theory/

Bitner-Gregersen, E. M., Eide, L. I., Hørte, T., & Skjong, R.

(2013). Ship and offshore structure design in climate

change perspective. Springer.

Bole, M., & Forrest, C. (2005). Early stage integrated

parametric ship design. In Proc. ICCAS (pp. 447–460).

Buhaug, Ø., Corbett, J. J., Endresen, Ø., Eyring, V., Faber,

J., Hanayama, S., … others. (2009). Second IMO GHG

Study 2009. London UK: International Maritime

Organization.

Dong, R., Wu, C., Zhang, J., & Peng, W. (2011). Modeling

and simulation for ship hydraulic rudder system based on

Modelica/MWorks [J]. Ship Science and Technology, 11,

20.

Esram, T. (2010). Modeling and Control of an Alternating-

Current Photovoltaic Module. University of Illinois at

Urbana-Champaign.

Maragkogianni, A., Papaefthimiou, S., & Zopounidis, C.

(2016). Shipping Industry and Induced Air Pollution. In

Mitigating Shipping Emissions in European Ports (pp. 1–

9). Springer International Publishing.

Marty, P., Corrignan, P., Gondet, A., Chenouard, R., &

Hétet, J.-F. (2012). Modelling of energy flows and fuel

consumption on board ships: application to a large modern

cruise vessel and comparison with sea monitoring data. In

Proceedings of the 11th International Marine Design

Conference, Glasgow, UK (pp. 11–14).

Papanikolaou, A. (2014). Ship Design: Methodologies of

Preliminary Design. Athens Greece: Springer.

Rue, C. D. L., & Anderson, C. B. (2015). Shipping and the

Environment. New York USA: Routledge.

Sawada, H. (2012). Upstream design and 1D-CAE. Journal

of System Design and Dynamics, 6(3), 351–358.

Sutherland, J., Oizumi, K., Aoyama, K., Eguchi, T., &

Takahashi, N. (2016). System-Level Design Tools

Utilizing OPM and Modelica. In ASME 2016 International

Design Engineering Technical Conferences and

Computers and Information in Engineering Conference

IDETC2016. Charlotte, North Carolina.

Sutherland, J., Oizumi, K., Aoyama, K., Takahashi, N., &

Eguchi, T. (2016). System-Level Design Trade Studies by

Multi Objective Decision Analysis (MODA) utilizing

Modelica. In The First Japanese Modelica Conference,

May 23-24, Tokyo, Japan (pp. 61–69). Tokyo Japan:

Linköping University Electronic Press.

Sutherland, J., Salado, A., Oizumi, K., & Aoyama, K.

(2017). Implementing Value-Driven Design in Modelica

for a racing solar boat. In 15th Annual Conference on

Systems Engineering Research. Los Angeles, California

(accepted for presentation).

UNCTAD/RMT. (2016). Review of Maritime Transport

2016. Geneva Switserland: United Nations Publication.

Modelica Based Naval Architecture Library for Small Autonomous Boat Design

652 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132643

FMI Go! A simulation runtime environment with a client server
architecture over multiple protocols

Claude Lacoursière, claude@hpc2n.umu.se

Tomas Härdin, tomas.hardin@umu.se
HPC2N/UMIT, Umeå University

SE-901 87, Umeå, Sweden

Abstract
We present a distributed software infrastructure to perform
distributed simulations with Functional Mockup Interface
(FMI) compatible components. The current implementa-
tion supports both TCP/IP and MPI. This is a client-server
design where the client is the global simulation stepper
and the servers are the simulation modules. Features on
the master time stepping algorithm currently include sev-
eral time stepping algorithms including one which can
handle algebraic constraints, root finding for cases involv-
ing loops, and support for asynchronous data exchange
with “monitors” and “observers” which only consume
data. The servers provide support for numerical direc-
tional derivatives, filtering, and interpolation. Support is
provided for the System Specification and Parameteriza-
tion (SSP), an emerging standard aimed at supporting the
FMI.

The software is open source with a permissive license
and designed to be used inside simulation environments
and platforms with user interfaces. The focus being on
the mathematical and runtime aspect of FMI based simu-
lations.

1 Introduction
No one simulation tool can satisfy everyone’s needs and
yet, full system simulation is the order of the day. Mod-
els created using different tools must be made compati-
ble with each other for data transfer at least, and by force
of reality, a lowest common denominator must be found
for numerical time integration of modular, heterogeneous
systems. In this model, subsystems are black boxes con-
nected with simple elements representing boundary condi-
tions. The (FMI)(MODELISAR, 2014) standard specifies
an API which answers the first question of data formats as
well as fundamental functionality to initialize and termi-
nate modules, and defines semantics to handle events etc.
However, this standard does not specify the requirements
on the runtime environment or the master stepper.

We consider both these issues with the aim of providing
a minimal runtime infrastructure which is fully standards
compliant as well as open. We also intend to develop a
number of numerical methods for time integration. This
should allow academics to test their new numerical meth-

ods on nontrivial examples. The hub based design should
also allow people to write their own interfaces to connect
with the data analysis and visualization tools they prefer,
and can serve as a foundation for commercial integration
tools with sophisticated user interfaces.

In what follows we describe the nature of the problem
we are trying to resolve in Sec. 2, then cover some previ-
ous work in Sec. 3. We then describe some details of our
architecture in Sec. 4. Force based model coupling and is
described in Sec. 5 and a kinematic coupling as well as a
differential algebraic stepper is found in Sec. 6. Experi-
ments and discussions are in Sec. 7,8,9 and in Sec. 10.

2 Problem statement and objectives
Software tool interoperability requires a standardized in-
terface to be implemented by vendors, as well as a stan-
dard format to describe and exchange source or binary
code implementing a Functional Mockup Unit (FMU).
Also needed mathematical model which corresponds to
the interface, a configuration format and editor for pro-
ducing configuration files. Then comes a runtime envi-
ronment which can read these, load the FMUs and per-
form time integration. One also needs data collection from
the runtime environment, data formats and communica-
tion protocols. Of course, one also needs one needs nu-
merical methods for time integration. When all this is in
place, one can create simulations, run them, gather data,
and analyze it with the tools of their choice.

The FMI specifies only the first three items: interface,
exchange formats, and high level mathematical formula-
tion. The emerging standard System Specification and
Parametrization (SSP) (Köler et al., 2016) aims at defin-
ing the structure of a simulation – which FMU connects
to which and on what port – as well as parameterization,
including unit conversion etc. This is in the process to be
adopted by the FMI committee. Editors for SSP are under
development by vendors. There is also a Software Devel-
opment toolKit (SDK)(QTronic, 2017) which is a refer-
ence implementation of the FMI API and can serve as a
foundation for writing runtime environments.

We decided to develop components of the runtime en-
vironment including SSP, protocols and formats for data
communication and handling, as well as stepping meth-
ods. We believe that these are the components missing to

DOI
10.3384/ecp17132653

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

653

achieve a genuinely modular solution which avoids ven-
dor lock-in, as well as a sufficiently complete environ-
ment for researchers to test their numerical methods and
simulation master algorithms. We are also considering IP
and secrecy issues which can be supported with our client
server design. Of course, we believe that performance is a
fundamental aspect.

Loading many shared libraries as is suggested by the
FMI documentation always leads to problems. This is
why we chose a client server architecture which we imple-
mented over TCP/IP for LAN and WAN configurations,
and MPI for standalone of cluster ones.

User interfaces we leave for others.
The objective is to provide a robust runtime environ-

ment with good numerical methods which goes from SSP
to data files, based on standards and protocols so that visu-
alization and analysis software of choice can be plugged
in easily.

3 Previous work
Nearly twenty FMI import tools are listed on the FMI
website (MODELISAR, 2014) and these fall unevenly
into two categories. First come the well established simu-
lation packages which support import functionality in or-
der to connect to third party tools. Second come integra-
tion tools only designed to couple simulation and analysis
tools, which is close to our own work. These divide fur-
ther into commercial and open source ones. Of the latter,
DACCOSIM (Galtier et al., 2015) is the closest to our
effort.

Yet all integration tools we know of aim at providing a
full environment and it appears that the issue of the quality
of time integration is secondary at best, yet the numerical
methods are locked down which isn’t good if one has a
particularly recalcitrant and difficult model. We don’t see
the need to keep numerical methods secrets. And this pre-
vents experimentation on real-life problems by academics.
One of our motivations.

Distributed and modular simulations isn’t new and
predecessors include the High Level Architecture
(HLA) (IEEE, 2010) for instance, which has even been
adapted to FMI (Awais et al., 2013). Focusing on FMI
compatible efforts, Ptolemy (Ptolemaeus, 2014) is an
object oriented peer-to-peer agent based simulation envi-
ronment and has now FMI (Broman et al., 2013; Cremona
et al., 2016) capabilities with an eye on meeting the re-
quirements for discrete-continuous simulations (Zeigler,
Praehofer, and Kim, 2000), and DACCOSIM (Galtier et al.,
2015) which is most similar to ours. There are others yet
but too numerous to list here.

Why a new effort? First because there is a need for a
test environment for new time integration methods which
is not possible with commercial tools. The open source
projects did not seem to have this as a focus.

Then comes a more contentious issue: software license.
The commercial dimension here weights heavily so we

chose the permissive MIT (MIT, nodate) license to avoid
any problem.

It is clear from the literature about time integration for
cosimulations methods (Fiedler and Arnold, 2014; Martin,
Christoph, and Tom, 2013; Schierz, Arnold, and Clauss,
2012; Schierz and Arnold, 2012; Arnold, 2010; Bern-
hard Schweizer, Li, and Daixing Lu, 2015; Bernhard
Schweizer, Daixing Lu, and Li, 2015; B. Schweizer and
D. Lu, 2015) that it is hardly possible to control errors or
reach stability without having access to directional deriva-
tives or at least the ability to rollback which isn’t available
in too many cases. However, both of these features can
be provided by the runtime environment with numerical
differentiation and various brute force techniques. This is
clearly not addressed in any of the tools we looked at. One
can provide these features when wrapping a ME FMU into
a CS FMU, since one, which means that it might be advan-
tageous to export as ME when possible and let a wrapper
take care of more advanced features.

The DAE stepper presented in Sec. 6 is different from
that of Schweizer (Bernhard Schweizer, Daixing Lu, and
Li, 2015) in that we are using a previously published re-
laxation and regularization technique (Lacoursière, 2007)
which is provably linearly stable, unlike the variants
Schweizer analyzed (Ascher and Petzold, 1993). Expe-
rience has proved that our method does not require the so-
lution of nonlinear systems of equations as the linearized
approximation is sufficiently stable and produces no sys-
tematic drift.

Therefore, we believe that our work has much orthog-
onality with what already exists, enough to add yet one
more FMI runtime environment to the list.

4 Software design
We opted for a client-server architecture in which each
server process hosts an individual FMU. The global step-
per is then a client, consuming results produced by the
FMUs, and serves also as a data hub. It is also a server
to monitors which are read-only applications for interac-
tive, online visualization and data analysis, as well as data
storage. See Fig. 2. We decided against peer-to-peer com-
munication

We used Protobuf (Protocol Buffers 2017) to map the
twenty or so functions in the FMI API to messages
which can be passed via ZeroMQ (iMatrix, 2017). The
servers dynamically load an FMU and using the QTronix
SDK (QTronic, 2017). The same was repeated to use the
Message Passing Interface (MPI) (MPI, 2017) which has
the benefit of not needing to pack and unpack data. We
chose to use (MPICH, 2017) because it is better than other
implementations at handling oversubscription, i.e., when
there are more processes than cores available. On Win-
dows, we use the native library (Microsoft, 2017).

The numerical Jacobians were implemented in the
servers using simple first order finite differences. These
computations are done in the servers which can exploit

FMI Go! A simulation runtime environment with a client server architecture over multiple protocols

654 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132653

parallelism to perform this task. This requires the ability
to rollback a simulation one or several times, and if pos-
sible, to clone it for parallelism. In the best case, FMUs
provide rollback functionality. The second best case is a
functional serialization and deserialization. We are inves-
tigating other methods, as well as the trade off between
doing much more work per step vs step size and accuracy.

Support for Model Exchange (ME) FMUs is in develop-
ment on two fronts. One is a global stepper capable of han-
dling ME FMUs or combinations of ME and CS FMUs,
i.e., integrating discrete and continuous systems(Zeigler,
Praehofer, and Kim, 2000). The other is to include a lo-
cal ME stepper inside the servers so that ME FMUs can
be transformed to be CS ones. The advantage here is that
even though CS export tools make a choice of numerical
time integration which cannot be changed, yet is critical
for stability and application dependent. Therefore, delay-
ing the decision until runtime is appealing. In addition,
ME FMUs are required to be able to cancel a step as long
as no event is crossed which makes it easier to compute
numerical derivatives and rollback. Access to the ME
FMU also allows the support of extrapolation and inter-
polation methods (Bernhard Schweizer, Li, and Daixing
Lu, 2015) after the model has been exported, and to intro-
duce other types of filters on the inputs (M. Benedikt et
al., 2013; Drenth, 2016). We have already automated the
latter. Briefly, assuming a module has continuous states
x, inputs u and outputs y = g(x,u), the dynamics is aug-
mented so that

ẋ = f (x,u,t)
ż = x,

(1)

and then the reported output is

y = ⟨g(⟪x⟫,⟪u⟫)⟩ (2)

instead of g(x,u) at the end of the communication step.
The averages can be, e.g.,

y = g(
1

2H
(z0+ z1),⟪u⟫)⟩) , (3)

where H is the communication step, and z0,z1 are the val-
ues of z at the beginning and end of the communication
step (Drenth, 2016). The advantage of such filters is to
offset the noise produced by the discontinuous inputs at
each communication point. Such functionality is clearly
not possible when using a CS FMU, and we believe that it
is good to leave the choice open. We have automated the
augmentation of the equations of motion. Other types of
filters are straight forward to implement.

The overall design is shown in Fig. 1. Here, one goes
from a FMU via the Qtronix library to the FMI API. At
this point, depending on whether the FMU is ME or CS,
support libraries are used to deliver additional functional-
ity to the global stepper. This funnels through the FMI/X
communication library towards the global stepper, and
said returns results to be processed by the FMU.

numerical
integration

x = ∫ ds f (x,u)

filtering
y = ⟨g(⟪x⟫,⟪u⟫)⟩

numerical
derivatives

∂y
∂u ≈

∆y
∆u

m
od

el
ex

ch
an

ge

co
m

m
on

co
si

m
ul

at
io

n

numerical
derivatives

∂y
∂u ≈

∆y
∆u

FMI/X API
FMI/MPIFMI/TCP

t,u,y, ∂y
∂u

FMU server

FMU
FMI API

Figure 1. Server architecture

The global stepper program has a barebone, command
line interface to describe the connections, as well as sup-
port for SSP files which is much more convenient.

The global stepper can also resolve loops at initializa-
tion using Newton-Raphson’s method, and we intend to
use this feature for the ME stepper so that it can process
DAEs.

As the kinematic stepper requires the solution of linear
problems, we currently use UMFPACK (Davis, 2004).

The overall design of the system appears diagrammati-
cally in Fig. 2.

For TCP/IP, there are a number of issues related to the
GRID computing concept of “network weather service”,
which is about resource discovery and allocation. This is
not implemented yet but there are simple tools for this.

Hardware in the Loop (HIL) functionality has not been
developed at this time though the architecture is compati-
ble with this.

The software runs on Linux, Mac OS X and Windows.
To emphasize, this type of design is not entirely novel as

mentioned in Sec. 3. What is different however is the re-
striction we imposed ourselves to the runtime environment
and not the user environment. In addition, the existing
functionality and what is in planning will hopefully pro-
vide building blocks for the development of new numeri-
cal time integrators, since typical restrictions of FMUs –
absence of directional derivatives or rollback functionality
– will be compensated for by the support modules, as de-
scribed above, i.e., wrappers for ME FMUs to transform
them into CS FMUs.

We follow the UNIX philosophy here: “Do one thing
and do it well”. For our case, the pipe model is “initial
conditions in, data out”. Clearly, there is more than one
thing going on here, but we are aiming at being atomic
and modular: all that’s needed to perform time integration
of systems made of FMUs, but only that.

To confirm that this is a position statement, we be-
lieve that numerical algorithms have little if anything to
do with trade secrets, yet should be tested extensively in
real situations. When an engineer runs a simulation, the
same wants to have confidence that the results make sense.
For that reason, the numerical time integration software
should open. If successful, the best methods will be avail-
able for all to use.

Session 10A: FMI II

DOI
10.3384/ecp17132653

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

655

Time stepper

FMU FMU . . . FMU

FMI/X
Simple Stepper

step control
DoStep(. . .)

(parallel/serial)
y = getReal(. . .)
u = L(y)
setReal(. . . ,u)

Kinematic stepper

s = saveState(. . .)
DoStep(. . ., False)
y = getReal(. . .)
J = getDerivatives(. . .)
Solve: GJ∆u = a
u = L(y,∆u)
SetState(. . .,s)
setReal(. . . ,u)
DoStep(. . ., True)

Command line
Python parsing
System Specification and Parametrization

Monitors

Visualization

Figure 2. Overall architecture

5 Force subsystem couplings
Splitting a system leads to having one variable, x, say,
which appear in two subsystems. For instance, the out-
put shaft of an engine is the very same as the input shaft
of a clutch so the angle of said should be the same in each
module.

As the systems are integrated independently, the dupli-
cates, x(1),x(2) cannot remain in sync. One strategy for
physical systems at least is to introduce a generally stiff
spring-damper in one or both subsystems. There are sev-
eral choices as described previously (Bernhard Schweizer,
Li, and Daixing Lu, 2015) namely, force-displacement
or force-velocity in which one of the units contains a
spring-damper but not the other. These we call “holo-
nomic” and “non-holonomic”, respectively. Then there is
displacement-displacement coupling in which case there
are spring and dampers on both sides. Finally, there
is the “spring free” case described in Sec. 6 which re-
quires a global solver to computes the force required so
that x(1) = x(2) at each communication step, an algebraic
condition. The latter requires both rollback and direc-
tional derivatives which is not often supported. Rollback
is also required for “iterative” methods which are essen-
tially fixed point iterations (Bernhard Schweizer, Li, and
Daixing Lu, 2015) and have good stability properties. As
mentioned, we aim at making our software capable of ap-
plying these methods for any FMU, whether it has these
features natively or not.

We chose force-velocity in our examples.
Whenever there is a spring-damper at the input of a sys-

tem, system 1, say, there is an input signal

u(1) = x(2), or u(1) = v(2) or both (with abuse of notation).
(4)

But this signal is not available continuously, only at the
beginning once per communication step. This values are
denoted as x̄(2) and v̄(2). The coupling force, given spring
and damping constants k(c), γ

(c), respectively, is then

f (c) = −k(c)(x(1)− x̄(2))− γ
(c)

(x(1)− v̄(2)). (5)

The reaction force − f̄ (c) at the end of the reported to the

coupled element. When x̄(2) is not reported, the approxi-
mation

x(t)− x̄ ≈ −∫
0

ds(v− v̄) (6)

is used and x(t)− x̄ is reset to 0 at the beginning of each
communication step.

A variety of methods can be used to improve on the
Zero Order Hold (ZOH) including extrapolation, or com-
bination of extrapolation and interpolations, often called
iterative methods (Bernhard Schweizer, Li, and Daixing
Lu, 2015, and references therein).

One thing remains though, the spring-dampers
k(c),γ (c) are not in the original model and introduce
artificial dynamics. One needs to keep the frequencies
due to the couplings much higher than the design fre-
quencies, i.e., time scales involved by the couplings
should me much smaller than those of interest in order to
not interfere with the results as we show in Sec. 9, and
this leads to communication steps which are orders of
magnitude smaller than the time scales of interest, and
introduces stiffness in the individual modules as they fight
against the spring force in Eqn. (5). As we show below in
Sec. 9, coupling frequencies need to be at least one order
of magnitude above the design frequencies, meaning that
coupling springs must be two order of magnitude above
the stiffness of the internal force derivatives.

There are alternatives to this which do not involve a
global solver as the one in Sec. 6, such as bilateral de-
lay lines (TLM) (Dag Fritzson, 2007; Krus, 1995). This
is still a spring-damper coupling but motivated by the fact
that a force takes finite time to traverse any form of physi-
cal coupling, interactions are interpolated between the two
previous steps. The main issue here is that this only works
with intermediate steps within the DoStep calls. Some-
thing which can only be addressed with ME FMI using
state machines without continuous states, one of our next
steps. An effort similar to ours but based on TLM is in
the process of being released to the public (Sjölund et al.,
2010).

As far as trying to damp the high frequencies due
to coupling and avoid oversampling the system, an an-
tialiasling technique as been presented recently (Drenth,
2016) which is promising. We have introduced it into our
software though we are not including this in our results as
explained below in Sec. 11.

6 A differential algebraic stepper
As mentioned in Sec. 5, a split model involves algebraic
conditions, and these can be taken care of directly by a
DAE method (Bernhard Schweizer, Daixing Lu, and Li,
2015; Bernhard Schweizer, Li, Daixing Lu, and Meyer,
2015; Bernhard Schweizer and Li, 2015; B. Schweizer
and D. Lu, 2015), though that requires rollback and di-
rectional derivatives. There are no spring-dampers in this
model and therefore, no parasitic dynamics. Also, the
problems related to choosing suitable spring and damping
constants for the couplings is now entirely avoided, so are

FMI Go! A simulation runtime environment with a client server architecture over multiple protocols

656 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132653

artifacts introduced by the numerical integration methods
because of stiffness, or unnaturally small time steps.

We reuse ideas from multibody dynamics (Lacoursière,
2007) to design a stepper which computes the interaction
forces required to maintain the constraints at least linearly,
and uses damping to stabilize the symmetric average of the
algebraic conditions.

Consider two systems with output variables y(1),y(2)

as well as time derivatives ẏ(1), ẏ(2). These variables are
constrained either holonomically or nonholonomically, re-
spectively, meaning that in discrete time we should have

g(y(1)k ,y(2)k) = 0 or q(y(1)k ,y(2)k) =G(1)ẏ(1)k +G(2)ẏ(2)k = 0,
(7)

respectively, where k is the discrete time index. We also
write G = ∂g/∂y so that Gẏ = 0 holds for both cases, abus-
ing notation. First we make the assumption that

y(j)
k+1 ≈ y(j)

k +hẏ(j)
k+1, (8)

where H is the communication step is a reasonable ap-
proximation. This is the case for the SHAKE (Hairer, Lu-
bich, and Wanner, 2001) stepper and a variant of ours (La-
coursière, 2007). Note that k+1 is used on the time deriva-
tives. Next we write a time translation operators as

y(j)
k+1 =Φ

(j)
k (u(j)

k) and ẏ(j)
k+1 =Ψ

(j)
k (u(j)

k). (9)

The aim now is to compute u(j)
k in such a way that

Eqn. (7) is satisfied at k+ 1. Assuming that all modules
can rollback, we start with a guess ū(j)

k and from this we
expand the constraint equations in Eqn. (7) to compute
u(j)

k = ū(j)
k + δu(j)

k such that the constraints are satisfied.
This requires the directional derivatives

∂ ẏ(j)
k

∂u(j)
k

=
∂Ψ
(j)
k

∂u(j)
k

, (10)

which are mobilities in the case of multibody dynamics, or
admittance for electrical circuits. Dropping superscripts
on all variables and writing G for the agglomerated Jaco-
bian of the constraint equations and gk for the value of the
constraint equation at discrete time k, δu should satisfy

gk+1 ≈ gk +hGẏk+1

= gk +hGΨk(ūk +δu)

≈ gk +hG ˙̄yk +h[G
∂Ψk

∂uk
]δu.

(11)

This linear approximation can be stabilized as shown in
our previous work (Lacoursière, 2007), which is uncondi-
tionally stable, unlike more popular methods (Ascher and
Petzold, 1993) variants of which have been studied also in
the context of cosimulation (Bernhard Schweizer, Daixing
Lu, and Li, 2015). However, methods mentioned above all
based on spring-damper ideas and introduce second order

dynamics on the algebraic condition. Our method is of
first order only and this is what provides stability. We also
use a symmetric form of the constraint so that in fact, we
are enforcing

1
4
(gk+1+2gk +gk−1)+

τ

h
Gkvk+1+

ε

h
uk+1 = 0, (12)

where τ is a relaxation time and serves as stabilization.
This is clearly of first order in and of itself, but of course,
the averaging does introduce oscillations, damped by the
τ term. Such symmetric projections have been shown to
have good energy preservation properties (Hairer, 2000)
when τ = 0 and the nonlinear equations are solved ex-
actly. The parameter ε has the same unit of the inverse
of a spring constant if we assume that u has units of force,
and is there only to prevent against constraint degeneracy
but can be shown to introduce physical compliance when
τ is sufficiently small. However, τ serves as a low pass
filter and when τ = 2h, the oscillations are just below crit-
ical damping. This is needed to stabilize on the constraint
manifold. This analysis is found in part in our own work
cited above. With this parameterization, τ/h is the rate of
exponential decay of the constraint violation. There is no
such guarantee of stability with the standard scheme (As-
cher and Petzold, 1993). A more thorough stability analy-
sis is in preparation. We linearize Eqn. (12) to avoid hav-
ing to solve the nonlinear system of equations. Introduc-
ing the parameter

γ =
1

1+4τ/h
(13)

we need to solve the following linear system of equations
for δu

[G
∂Ψ

∂u
+

4γε

h
]δu = −

4γ

h
gk + γGẏ(k)−G ˙̄y(k+1) (14)

In practice, one performs a step with some guess for in-
puts ūk to obtain a preliminary estimate on the velocities
˙̄yk+1, rollback, compute δu, and then step forward again
with uk = ūk +δu. This has been shown to work very well
even for nonsmooth, event driven systems (Lacoursière
and Sjöström, 2014) dozens of units simulated in paral-
lel.

Note here that if there are n observables y ∈ Rn and m
control inputs u ∈ Rm, the system is underactuated if m <

n, overactuated if m > n and fully actuated when m = n.
The matrix G∂Ψ/∂u has full row rank when m ≤ n but is
degenerate otherwise, and this is where ε ≥ 0 comes in to
regularize the system.

The control flow is described in the following. In this
notation, each statement is understood to be applied to all
FMUs in parallel and all superscripts are removed.

s = GetState(. . .)
SetXXX(. . .), ū
DoStep(. . . ,t,t +h, False)
GetReal(. . . , ȳ)
GetDirectionalDerivative(. . . ,∂Ψ/∂u)

Session 10A: FMI II

DOI
10.3384/ecp17132653

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

657

Assemble system matrix G∂Ψ/∂u
Solve for inputs δu from Eqn. (14)
SetState(. . . ,s)
SetRealXXX(. . . , ū+δu)
DoStep(. . . ,t, h, True)

7 Experimental methodology
In evaluating the performance of FMIGo! we focused
on the latency introduced by the FMI/X communication
layer. We looked at scalability here and worked strictly
with the best case scenario using loopback ports. Over-
head due to TCP/IP routers or switches varies greatly, but
are in the millisecond range.

For the rest, we compare both the accuracy of cosim-
ulated systems with respect to reference or analytic solu-
tions, and pay attention to the small time scales introduced
by the spring-damper couplings.

Two examples are considered, chains of spring damper
systems with uniform masses, and a simple truck model
often used for elementary analysis (Eriksen and Nielsen,
2014). The latter example contains large mass ratios.

In all cases, we choose our time steps using dimensional
analysis and compare them the periods of oscillations in
the systems, the rationale being that accurate solutions
should require around twenty steps per period of oscilla-
tion – the smallest in the system – , as is the case for most
good numerical time integration methods as easily veri-
fied. For instance, an embedded Runge Kutta method of
order 4/5 requires 15 steps per period for the simple har-
monic oscillator to reach local tolerance of 10−4, involving
90 function evaluations, though forward Euler requires at
least 50 function evaluations (steps) to produce a reason-
able solution, though more than 200 to deliver any form of
accuracy. And because ZOH techniques are very akin to
forward Euler, this is the best one can expect.

8 Timing
Measurements on 4 cores i7 2.8GHz, sufficient memory
and a vanilla Linux installation. We had 4GB available,
but the footprint of the program was small enough as to
be irrelevant for common hardware. Results will vary for
different systems but this should give a good idea of the
overhead involved.

Using /usr/bin/time utility we extracted user,
system and wall time. The user time is spent in com-
putation and signal routing and communication packaging
and a part of the time spent in moving data via sockets.

For TCP/IP version, system includes time for polling,
waiting and going through the TCP/IP stack. For the
MPI version, system includes interprocess communica-
tion which depending on the MPI library, might also go via
sockets and TCP/IP. So, this time has to be considered in
the present case as it is used by the application. There are
other unrelated processes counted in system but that was
made negligible by stopping all irrelevant applications.

The wall time is larger than the sum of user and

1 20 40

50

100

150

computations

communication
idle

N FMUs

Ti
m

e
[µ

s]

Per process timing on single computer

wall
system+user

user

Figure 3. Timing measurements in loopback configuration

m1 m2 m3 m4 m5 m6

m̄2 m̄3m̄1 m̄4

v2

f3

v4

f5

Figure 4. A chain of mass spring-dampers split into subunits

system because the CPU is not fully utilized and spends
cycles waiting for packets and communication.

Note that this timing is sensitive to the choice of MPI
library for the case of oversubscribing, i.e., when there are
more processes than cores. OpenMPI performs badly in
this case and seems to have quadratic complexity. MPICH
however is well behaved and delivers linear performance
as shown in Fig. 3. The Microsoft MPI library did perform
well also.

Our experiment consisted of minimal FMUs which con-
tained a point mass and a spring-damper. Computations
were minimal and represent a lower bound on any practi-
cal simulation. What is therefore included here is all the
time needed to perform time integration on said physical
model, communication to the master stepper, routing of
signals and communication back to the individual FMUs.

The conclusion is that a distributed design, at least
when using MPI, is negligibly slower than one based
purely on dynamic loading. The benefits of MPI how-
ever are immense as one can simulate on clusters, and as
for the TCP/IP version, enables IP protection by hosting
FMUs on secured computers.

9 Chains of mass-spring-dampers
The purpose of this experiment is to see at which point
the time scales of the models and those of the couplings
are sufficiently far apart that the dynamics of interest is
negligibly disturbed and from there, made an estimate of
the kind of time step required, in proportion to that one
would use for the individual systems.

We consider a chain of N elements with ideal springs as

FMI Go! A simulation runtime environment with a client server architecture over multiple protocols

658 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132653

seen in Fig. 4

m̄(j) ¨̄x(j)
= −k(j−1)

(x̄(j)
− x̄(j−1)

)−k(j)
(x̄(j)

−¯(j+1)
),
(15)

with j = 2,3, . . . ,N −1, and

m̄(1) ¨̄x(1) = −k(1)(x̄(1)− x̄(2)) and

m̄(N) ¨̄x(N) = −k(N−1)
(x̄(N)− x̄(N−1)

).
(16)

We call these spring constants the design variables as they
are the ones included in the original model. The un-
damped case is the only irrelevant one for this analysis
as it is the worst case scenario for testing the schemes.
This considerably reduces the dimension of the parameter
space. Then we split each mass except the first and last so
that for j = 2,3, . . . ,N −2

m(i) = m̄(1),m(2N−2)
= m̄(N), and

m(2 j)
+m(2 j+1)

= m̄(j+1).

(17)

The interaction between m(2 j−1) and m(2 j) is the same
as that between m(j) and m(j+1), but we now intro-
duce spring-damper coupling k(c),γ (c) between m(2 j)

and m(2 j+1) so that

m(2 j)ẍ(2 j)
= −k(j)

(x(2 j)
−x(2 j−1)

)+ f (2 j,2 j+1), and

m(2 j+1)ẍ(2 j+1)
= −k(j)

(x(2 j+1)
−x(2 j+2)

)− f (2 j,2 j+1),

m(1)ẍ(1) = −k(1)(x(1)−x(2)),

m(N)ẍ(N) = −k(N)(x(N)−x(N−1)
), and

f (2 j,2 j+1)
= −k(c)(x(2 j)

−x(2 j+1)
)

− γ
(c)

(ẋ(2 j)
− ẋ(2 j+1)

), j = 1,2, . . .N −1.
(18)

and therefore, we should have

x(2 j)
→k(c)→∞ x(2 j+1). (19)

if the damping is correctly adjusted. We chose the non-
dimensional damping parameter such that

ζ =
γ
(d)

2
√

µk(c)
= 0.7 where µ =

m(2 j)m(2 j+1)

m(2 j)+m(2 j+1)
. (20)

This means that γ
(c) →∞ as k(c) →∞ as required for

convergence. The effect of this is also that in the stability
analysis, we are at the same location in the complex plane
as long as

h1ω
(c)
1 = h2ω

(c)
2 , where ω

(c)
i =

¿
Á
ÁÀk(c)i

µ
. (21)

Note that it is not generally possible to pick the damp-
ing constant γ optimally since internal inertiae and fre-
quencies of any given FMU cannot be assumed to be

−1.0

0.0

1.0

0 5 10
10−6

10−4

10−2

100

x

Position of Second mass

Time [s]

lo
g 1

0(
∣x
−

x r
ef
∣)

Differences with reference

r1 = 4 r2 = 32
r3 = 320 reference

Figure 5. Influence of coupling springs on natural dynamics

known. We expect the time step to decreases linearly
with the smallest period of the system, which should be
O(k(c)) unless an implicit integration strategy can be im-
plemented.

We now look at ratio ρ between the coupling frequen-
cies ω

(c) and those of the original system ω
(d), and es-

timate how large ρ must be to minimize interference. In
our experiments, we set x(1)(0) = 1 so as to inject energy
in the natural modes. As expected for a linear system, the
modes are separated and do not interact very much so the
overall dynamics is similar. What is worrisome however
that it takes a ratio of coupling of more than 100 before
the errors go below 10−3.

As seen in Fig. 4, one needs frequency ratios of around
30 to start recovering the correct solution and from Fig. 5
there is quadratic convergence towards the original solu-
tion. But given that this is a forward Euler technique, we
get less. We found that we needed at least 50 times more
step per coupling period than the minimum required by an
good numerical integrator to have stability and some sta-
bility. This means 30 ⋅50 = 1,500 more steps per unit time
than for the isolated models. That’s three orders of mag-
nitude more work. The DAE stepper of Sec. 6 produced
very good solutions with a step commensurate with the
design frequencies. We used a holonomic coupling here
and included the positions in the model.

10 Experiments with a truck model
Here we investigate a simple truck model with an engine
modeled with a point mass – the flywheel –, a PI control
which aims at reaching a given speed, a clutch, a gearbox
and a shaft, each represented with a pair of masses cou-
pled with spring-dampers – piecewise linear for the clutch
as in Fig. 7–, and a trailer modeled as a point mass but in-
teracting with a road with variable slope following a sine

Session 10A: FMI II

DOI
10.3384/ecp17132653

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

659

−1.0

0.0

1.0

0 5 10
10−4

10−2

100

x
Position of Second mass

Time [s]

lo
g 1

0(
∣x
−

x r
ef
∣)

Differences with reference

npp = 50 npp = 450
npp = 4500 kin, npp = 20
reference

Figure 6. Simulation results for chains

−0.1 0 0.1 0.2

−2

0

2

4
⋅103

δφ [Rad]

[N
⋅m

]

Clutch model

Figure 7. A piecewise linear clutch model

wave, and subject to gravity, rolling and dry friction, as
well as air resistance. This is a textbook model (Eriksen
and Nielsen, 2014).

The engine delivers 1,350 Nm max torque, the target
speed is 100 km/h, and the trailer has a mass of 10,000 kg.
The slope of the road was made sinusoidal. The interest-
ing aspects here are the mass ratio and the large torques
involved. The kinematically coupled model simply con-
straints velocities and coordinates between the compo-
nents, i.e., the flywheel angle should match that of the in
plate of the clutch, etc.

Each FMU has it’s own time integration and we chose
the GSL for that. We used the fourth order Runge Kutta
method rkf45 for our experiments with 10−6 tolerance.
For the kinematic stepper, we computed the effective mo-
bility by integrating and rollback and then using finite dif-
ferences.

Here we compare our kinematic stepper of Sec. 6 with
a step of 1/20 and 1/120 of the smallest period in the de-
sign. In this case, this is in the clutch and gearbox dynam-

0

20

40

0

1

2

3

0 5 10
10−6

10−4

10−2

100

ω
[r

ad
/s

]

Angular velocity at engine

ω
[r

ad
/s

]

Angular velocity at trailer

Time [s]

ω
[r

ad
/s

]

Clutch engine δω

kin 20 spp
kin 120spp
fv 350spp
fv 640spp

Figure 8. Cosimulation of a truck model. The “spp” key stands
for steps per period.

ics. The case of 120 steps per period offers good results,
though as low as 10 steps per period as stable. However,
for the force-velocity coupling using either sequential or
parallel simulation required more than 350 steps per pe-
riod before stability. Good results come after 640 steps
per period. Things were worse yet when we used holo-
nomic coupling, i.e., including spring dampers for posi-
tions as well as velocities. We needed more than 10 times
as many steps for the force-velocity versions, though with
kinematic coupling, we had high accuracy at 20 steps per
period already (results not shown). To be considered here
is that the mass of the trailer is so much larger than the
driveline that very stiff springs would be needed to reach
the correct result. Considering the previous experiment in
Sec. 9 we used coupling springs 30 times larger those in
the design. This leads to 30 ⋅350/20 ≈ 500 more steps than
necessary just for stability. The DAE stepper does perform
more work per step: solving a small system of linear equa-
tions, computing directional derivatives, and performing
two sub-steps per step. But even that’s not a fair compar-
ison since the FMUs in the kinematic coupling setup do
not contain stiff coupling springs and therefore, they also
perform an order of magnitude less work. In this case, the
best result from the DAE stepper used four times fewer in-
tegration steps overall, and that’s despite the fact that we
used numerical directional derivatives, which takes four
times as many steps.

FMI Go! A simulation runtime environment with a client server architecture over multiple protocols

660 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132653

11 Discussion
The main lesson here is that when it comes to force-
velocity couplings at least, but this applies to the other
cases of spring-damper type couplings, one needs at least
30:1 ratio of frequencies and as far as ZOH techniques
goes, this introduces orders of magnitude more work than
an all-at-once method, or a DAE based one. Though
the frequency ratio appears inevitable, there is recent
work (Drenth, 2016) indicating that the communication
step size can be kept modest by filtering the high oscilla-
tions. We have not been able to use this technique or re-
produce the results in our experiments, something which
the author relates to admittance or mobility ratio between
the FMUs.

Kinematic coupling offers very good solutions at rel-
atively large steps and were able to use holonomic cou-
plings as well at moderate steps. Of course, this requires
functionality that is not often seen in CS FMUs, namely,
rollback and directional derivatives.

12 Conclusion
The software we introduce should be of interest for being
minimalistic and offering a good foundation to build inte-
gration environments for cosimulation. It offers very good
performance for a standalone computer yet can be dis-
tributed over WAN. We hope that the functionality we are
developing will open the door to more advanced time in-
tegration methods. We will soon start collaborations with
the OpenModelica and OpenCPS groups, which will pro-
vide user interfaces.

Our kinematic stepper can produce very good results in
keeping time steps commensurate with the model frequen-
cies and offers parallelism, at least on simple models. Fur-
ther investigation is needed clearly, but the benefit in com-
parison to force-velocity coupling is significant and we be-
lieve that, despite the difficulties associated with roll-back
and computation of directional derivatives, is worth much
attention.

As part of future work, we intend to support TLM as
it is popular, provide a fully functional ME simulation
master, and improve the numerical directional derivatives
functionality to be fully parallel. Other features such as
extrapolation and interpolation in the ME FMU wrapper,
as well as iterative and implicit time integration methods,
or various types of filtering are under consideration.

The software is available on a request basis at this
time at git clone at https://mimmi.math.umu.se/
users/sign_in. Anonymous access is forthcoming.

Acknowledgments
This work is a part of the project "Virtual Truck and Bus"
supported by the Swedish Energy Authority, and is a col-
laboration between Scania CV AB, Algoryx Simulation
AB, Modelon AB, Umeå University and Volvo Car Cor-
poration. Previous contributions to the software develop-
ment were made by Stefan Hedman and Adeel Ashgar.

Bibliographic References
References
Arnold, Martin (2010). “Stability of Sequential Modular

Time Integration Methods for Coupled Multibody Sys-
tem Models”. In: Journal of Computational and Non-
linear Dynamics 5.3, pp. 031003–031003.

Ascher, Uri M. and Linda R. Petzold (1993). “Stability
of Computational Methods for Constrained Dynamics
Systems”. In: SIAM J. Sci. Computing 14.1, pp. 95–120.

Awais, M. U. et al. (2013). “Distributed hybrid simulation
using the HLA and the Functional Mock-up Interface”.
In: Industrial Electronics Society, IECON 2013 - 39th
Annual Conference of the IEEE, pp. 7564–7569.

Broman, D. et al. (2013). “Determinate composition of
FMUs for co-simulation”. In: 2013 Proceedings of the
International Conference on Embedded Software EM-
SOFT, pp. 1–12.

Cremona, F. et al. (2016). “Step revision in hybrid Co-
simulation with FMI”. In: 2016 ACM/IEEE Interna-
tional Conference on Formal Methods and Models for
System Design (MEMOCODE), pp. 173–183.

Dag Fritzson Johas Ståhl, Iakov Nakimovski (2007).
“Transmission line co-simulation of rolling bearing ap-
plications”. In: The 48th Scandinavian Conference on
Simulation and Modeling. Ed. by Claus Führer Peter
Bunus Dag Fritzson, pp. 24–39.

Davis, Timothy A. (2004). “Algorithm 832: UMFPACK
— an Unsymmetric-Pattern Multifrontal Method”. In:
ACM Transactions on Mathematical Software 30.2,
pp. 196–199.

Drenth, Edo (2016). “Robust Co-Simulation Methodology
of Physical Systems”. In: 9th Graz Symposium Virtual
Vehicle.

Eriksen, Lars and Lars Nielsen (2014). Modeling and con-
trol of engines and drivelines. John Wiley & Sons.

Fiedler, Robert and Martin Arnold (2014). “Coupled dif-
ferential algebraic equations in the simulation of flex-
ible multibody systems with hydrodynamic force ele-
ments”. In: PAMM 14.1, pp. 523–524.

Galtier, Virginie et al. (2015). “FMI-based Distributed
Multi-simulation with DACCOSIM”. In: Proceedings
of the Symposium on Theory of Modeling & Simula-
tion: DEVS Integrative M&S Symposium. DEVS ’15.
Alexandria, Virginia: Society for Computer Simulation
International, pp. 39–46.

Protocol Buffers (2017). https://github.com/
google/protobuf.

Hairer, E. (2000). “Symmetric Projection Methods for
Differential Equations on Manifolds”. In: BIT Numer-
ical Mathematics 40 (4), pp. 726–734.

Hairer, E., C. Lubich, and G. Wanner (2001). Geomet-
ric Numerical Integration. Vol. 31. Springer Series in
Computational Mathematics. Berlin: Springer-Verlag.

Session 10A: FMI II

DOI
10.3384/ecp17132653

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

661

IEEE (2010). “IEEE Standard for Modeling and Simula-
tion (M&S) High Level Architecture (HLA)– Frame-
work and Rules”. In: IEEE Std 1516-2010, pp. 1–38.

iMatrix (2017). ZeroMQ. http://zeromq.org/.
Köler, Jochen et al. (2016). “Modelica-Association-

Project “System Structure and Parametrization" – Early
Insights”. In: Proceedings of the 1st Japanese Modelica
Conference. Modelica Association. Linköping Univer-
sity Electronic Press, pp. 35–42.

Krus, Petter (1995). “Modelling of Mechanical Systems
using Rigid Bodies and Transmission Line Joints”. In:
ASME J. Dyn. Sys., Meas., Control 121.4, pp. 606–611.

Lacoursière, Claude (2007). “Ghosts and Machines: Reg-
ularized Variational Methods for Interactive Simula-
tions of Multibodies with Dry Frictional Contacts”.
PhD thesis. Dept. of Computing Science, Umeå Uni-
versity.

Lacoursière, Claude and Sjöström (2014). A non-smooth
event-driven, accurate, adaptive time stepper for simu-
lating switching electronic circuits. Tech. rep. UMINF
16.15. Dept. of Computing Science, Umeå University.

M. Benedikt et al. (2013). “NEPCE - A nearly energy-
preserving coupling element for weak-coupled prob-
lems and co-simulations”. In: V International Confer-
ence on Computational Methods for Coupled Problems
in Science and Engineering. Ed. by S. Idelsohn, M. Pa-
padrakakis, and B. Schrefler, pp. 1021–1032.

Martin, Arnold, Clauss Christoph, and Schierz Tom
(2013). “Error Analysis and Error Estimates for Co-
Simulation in FMI for Model Exchange and Co-
Simulation V2.0”. In: Archives of Mechanical Engi-
neering 60. 1, pp. 75–94.

Microsoft (2017). Microsoft MPI. http://tinyurl.
com/mpilib-microsoftv85.

MIT (n.d.). MIT license.
MODELISAR (2014). FMI website. last retrieved 2017-

01-22. URL: https://www.fmi- standard.
org.

MPI (2017). A Message Passing Interface Standard.
http://mpi-forum.org/.

MPICH (2017). High performance, widely portable im-
plementation of the Message Passing Interface. http:
//mpi-forum.org/.

Ptolemaeus, Claudius, ed. (2014). System Design, Mod-
eling, and Simulation using Ptolemy II. Ptolemy.org.
URL: http://ptolemy.org/books/Systems.

QTronic (2017). QTronic FMI SDK. http://www.
qtronic.de/en/fmusdk.html.

Schierz, Tom and Martin Arnold (2012). “Stabi-
lized overlapping modular time integration of cou-
pled differential-algebraic equations”. In: Applied Nu-
merical Mathematics 62.10. Selected Papers from
NUMDIFF-12, pp. 1491–1502.

Schierz, Tom, Martin Arnold, and Cristoph Clauss (2012).
“Co-simulation with communication step size control
in an FMI compatible master algorithm”. In: Proceed-
ings of the 9th International MODELICA Conference.

Schweizer, B. and D. Lu (2015). “Predictor/corrector co-
simulation approaches for solver coupling with alge-
braic constraints”. In: ZAMM 95 (9), pp. 911–938.

Schweizer, Bernhard and Pu Li (2015). “Solving
Differential-Algebraic Equation Systems: Alternative
Index-2 and Index-1 Approaches for Constrained Me-
chanical Systems”. In: Journal of Computational and
Nonlinear Dynamics 11.4, pp. 044501–044501.

Schweizer, Bernhard, Pu Li, and Daixing Lu (2015). “Ex-
plicit and Implicit Cosimulation Methods: Stability and
Convergence Analysis for Different Solver Coupling
Approaches”. In: Journal of Computational and Non-
linear Dynamics 10.5, pp. 051007–051007.

Schweizer, Bernhard, Pu Li, Daixing Lu, and To-
bias Meyer (2015). “Stabilized Implicit Cosimulation
Method: Solver Coupling With Algebraic Constraints
for Multibody Systems”. In: Journal of Computational
and Nonlinear Dynamics 11.2, pp. 021002–021002.

Schweizer, Bernhard, Daixing Lu, and Pu Li (2015). “Co-
simulation method for solver coupling with algebraic
constraints incorporating relaxation techniques”. En-
glish. In: Multibody System Dynamics, pp. 1–36.

Sjölund, Martin et al. (2010). “Towards Efficient Dis-
tributed Simulation in Modelica using Transmission
Line Modeling”. In: Proceedings of the 3rd Interna-
tional Workshop on Equation-Based Object-Oriented
Languages and tools. Ed. by Peter Fritzson et al.,
pp. 71–80.

Zeigler, Bernard P., Herbert Praehofer, and Tag G. Kim
(2000). Theory of Modeling and Simulation. 2nd ed.
Academic Press.

FMI Go! A simulation runtime environment with a client server architecture over multiple protocols

662 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132653

Experimenting with Matryoshka Co-Simulation: Building Parallel
and Hierarchical FMUs

Virginie Galtier1 Michel Ianotto1 Mathieu Caujolle2 Rémi Corniglion2 Jean-Philippe Tavella2

José Évora Gómez3 José Juan Hernández Cabrera3 Vincent Reinbold4 Enrique Kremers5

1CentraleSupélec, France, {first.last}@centralesupelec.fr
2EDF R&D, France, first.last@edf.fr

3SIANI, Spain, jose.evora@siani.es, josejuanhernandez@siani.es
4University of Leuven, Belgium, vincent.reinbold@kuleuven.be
5EIFER, Germany, enrique.kremers@eifer.uni-karlsruhe.de

Abstract
The development of complex multi-domain and multi-
physic systems, such as Smart Electric Grids, have
given rise to new challenges in the simulation domain.
These challenges concern the capability to couple multi-
ple domain-specific simulators, and the FMI standard is
an answer to this. But they also concern the scalability
and the accuracy of the simulation within an heterogenous
system. We propose and implement here the concept of a
Matryoshka FMU, i.e. a first of its kind FMU compliant
with the version 2.0 of the FMI standard. It encapsulates
DACCOSIM – our distributed and parallel master architec-
ture – and the FMUs it controls. The Matryoshka auto-
matically adapts its internal time steps to ensure the re-
quired accuracy while it is controlled by an external FMU-
compliant simulator. We present the JavaFMI tools and
the DACCOSIM middleware used in the automatic building
process of such Matryoshka FMUs. This approach is then
applied on a real-life Distributed Energy System scenario.
Regarding the Modelica system simulated in Dymola, im-
provements up to 250% in terms of computational perfor-
mance are achieved while preserving the simulation accu-
racy and enhancing its integration capability.
Keywords: co-simulation tool, multi-threaded execution,
master algorithm, FMU, FMI standard

1 Introduction
Complex systems can be characterized by a great num-
ber of heterogeneous entities in interaction. The Smart
Grids provide a typical example: over a large territory
a multitude of devices produce, transport, store and con-
sume electricity, while some are being monitored and con-
trolled in order to best adjust the dynamic configuration of
the electric network to the current and forecasted weather
conditions and client needs. Co-simulation is essential to
design and study such complex systems.

In this context, the FMI (Functional Mockup Inter-
face) standard (Blochwitz and Otter, 2011) allows users
to share and combine their models across simulation tools
by wrapping them with a native solver in a package, called

an FMU for Co-Simulation, that is composed of an XML
model description and a compiled C code. But the orches-
tration of the execution of the multiple FMUs forming the
co-simulation of a complex system is up to the user. DAC-
COSIM, as an FMU-based co-simulation platform able to
define and simulate complex calculation graphs, proposes
an answer to this matter.

Furthermore, solvers usually used to simulate multi-
physics systems are single-threaded. They may thus en-
counter scaling problems when simulating larger systems.
This is the same for those included in FMUs. DACCOSIM
provides a master code orchestrating the execution of
FMUs in parallel, synchronizing their data exchanges and
adjusting the internal step size to ensure accuracy.

Our objective is to get the best of both worlds by wrap-
ping a DACCOSIM co-simulation in an FMU. We refer to
this englobing FMU as a "Matryoshka" FMU.

This article is organized as follow: Section 2 provides
a quick overview of DACCOSIM features and inner archi-
tecture. Section 3 lists the benefits of encapsulating DAC-
COSIM within an FMU. Section 4 presents JavaFMI, a tool
which greatly facilitates the construction of FMUs from
Java code. Section 5 explains how a Matryoshka FMU is
built with and by DACCOSIM. A real-life Distributed En-
ergy System is then considered and the results obtained
in terms of accuracy and computation efficiency are pre-
sented in Section 6. Finally Section 7 points out a few
directions we would like to explore in the future.

2 DACCOSIM, a Powerful FMI for
Co-Simulation Platform

DACCOSIM (Galtier et al., 2015) is a Java co-simulation
middleware able to define and simulate complex calcula-
tion graphs consisting of multiple FMUs compliant with
the FMI 2.0 standard for Co-Simulation. It relies on
JavaFMI (see Section 4) and is available1 under AGPL for
both Windows and Linux operating systems, whether 32-
bit or 64-bit.

1https://daccosim.foundry.supelec.fr

DOI
10.3384/ecp17132663

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

663

It consists of two complementary parts:
• A user-friendly Graphical User Interface (GUI)

that facilitates the definition of multi-domain studies
(Figure 1). It enables to easily design the calculation
graph of the simulation case, i.e. the FMUs involved
and the variables exchanged in-between. It also al-
lows the user to set the resources used for the sim-
ulation case (local multi-threaded machine or HPC
cluster) as well as its setup (simulation duration, co-
initialization method, time step control strategy, tol-
erance allowed to internal solver and variables...).
Results can be displayed a posteriori or in real-time
during the simulation. In addition, a Domain Specific
Language allows the user to write scripts to define,
configure and run parametric studies on large co-
simulation cases involving hundreds of FMUs and
thousands of variable exchanges.

Figure 1. Screenshot of DACCOSIM GUI for a system of 14
FMUs with 110 variables exchanged

• A parallel and distributed execution architecture
which manages the initialization and the execution of
the involved FMUs. To maximize performance and
scalability, DACCOSIM runs the FMUs involved in
the co-simulation in parallel, using multiple threads
on a node, and using multiple nodes when a clus-
ter is available. Each FMU is executed by a wrap-
per directly connected to other wrappers to import
and export variable values at each communication
step. To provide the best trade-off between preci-
sion and computational speed, DACCOSIM integrates
fixed and adaptive time step control strategies to dy-
namically adjust the simulation step size of all FMUs
to the estimated error. In order to perform this co-
ordinated step-size adjustment, DACCOSIM relies on
a hierarchy of "masters", one on each computation
node, controlling the set of FMU wrappers executing
on this node. This architecture (Figure 2) is used dur-
ing both co-initialization and co-simulation stages.

The transition from the calculation graph designed with
DACCOSIM GUI to its execution with DACCOSIM calcu-
lation engine relies on Acceleo2: the graph is translated

2https://www.eclipse.org/acceleo/

Figure 2. DACCOSIM distributed architecture

into one or more DACCOSIM masters depending on the re-
sources considered. These masters launch the simulation
and run concurrently till the end of the simulation case.

If it is above all a robust and scalable co-simulation
middleware able to simulate large and complex use cases,
DACCOSIM is also an experimental playground for the
FMI standard where innovative features are tested, such
as the ahead implementation of proposed FMI primi-
tives (Tavella et al., 2016), or the Matryoshka FMU ap-
proach presented in this paper.

3 The Benefits of Encapsulating DAC-
COSIM within an FMU

DACCOSIM itself is a powerful FMI for co-simulation
middleware able to perform fully parallel and distributed
co-initialisation and co-simulation tasks. But as a stan-
dalone tool, its scope remains limited:
• Only FMUs compliant with the FMI 2.0 for CS stan-

dard are supported. Consequently simulators such
as NS-2 (a communication networks simulator), or
HLA federates with no FMI interface cannot be in-
cluded into its co-simulation graph.
• It cannot be integrated within domain-specific tools

able to import FMUs, tools which become more and
more widespread nowadays.

Designing a specific control API for DACCOSIM would
help to meet these needs, but encapsulating it all into a
Matryoshka FMU fulfills even more of them:
• Such an FMU can be imported into any FMI com-

pliant simulation tool or platform such as Dymola or
MECSYCO (Vaubourg et al., 2015). This opens new
perspectives since some of these tools might as well
handle non-FMI components with which DACCOSIM
is not able to directly interact.
• Taking advantage of DACCOSIM efficient, multi-

threaded, step-size control solution helps simulat-
ing faster larger models within traditional mono-
threaded simulation tools. It makes particular sense
for domains where few parallel solvers are available.
• Initialization of complex graphs is taken care of

within the Matryoshka thanks to DACCOSIM gener-
alized co-initialization algorithm.
• A complex simulation graph can be reused directly

Building Parallel FMUs (or Matryoshka Co-Simulations)

664 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132663

without having to re-write anything and with no risk
of disclosing industrial and intellectual property.
• The co-simulation process can be finely tuned: when

a solver typically uses only one accuracy objective
for the whole model, DACCOSIM allows the user to
define different tolerance values for every output and
internal variable of each FMU.

4 JavaFMI Tools to Generate and Ex-
ecute FMUs

JavaFMI is a software project devoted to provide a tool-
box that allows to import and export Functional Mock-up
Units (FMU) to/from Java in conformance with the FMI-
CS 1.0 and 2.0 standards. This project is developed by
SIANI3 university institute and its license is LGPL. Main
contributors of this project are EDF Lab, EIFER, and Cen-
traleSupélec. This project is composed of two main tools:
a wrapper and a builder.

4.1 FMI Wrapper
The FMI wrapper allows to import FMUs into a Java
application supporting the creation of Master Algorithms
(Evora et al.). It provides two types of interface: simula-
tion (simplified interface) and access (full interface).

The simulation class (FmiSimulation) provides a very
simplified access to the FMU. This way, the user of the
wrapper can load FMUs without having a deep knowl-
edge of the FMI standard. Its methods are init, doStep,
terminate, read and write variable, getSimulationTime, is-
Terminated and reset.

The access class allows invoking all available meth-
ods of the standard depending on the version that is being
used. This way, the simulation class can be wrapped by
the access class allowing for an advanced usage. Methods
like get, set and free state can be invoked among others.
Basically, all the primitives specified in the FMI-CS stan-
dard can be found as methods in this class.

4.2 FMI Builder
The FMI builder allows to create an FMU based on a
Java application or any program that can be controlled
by a simple Java code. That is, any Java simulation can
be exported to an FMU. This tool provides an automated
solution to create an FMU covering the development of the
dynamic libraries, the generation of a model description
file and the packaging of the needed resources.

The builder provides a framework to convert a Java sim-
ulation into an FMU. It is required to extend the FmiSimu-
lation class where, at least, the following methods should
be implemented:
• define. It returns a model that contains the informa-

tion to be rendered in the modelDescription.xml
• init. It is called in the instantiation process of the

FMU. It should register all input and output variables

3http://www.siani.es

Figure 3. Communication between the JavaFMI wrapper and
the FMU JAR through the libraries (dll, so)

with their corresponding getter and/or setter meth-
ods so that the framework can later get and set the
FMU variables during the initialization and simula-
tion stages.
• doStep. It advances the simulation according to the

given step size.
• reset. It resets the simulation to its initial state.
• terminate. If needed, it should be filled with a ter-

mination code.
Once these methods are implemented, the FmiSimula-

tion class is packaged into a JAR (Java ARchive) file and
processed by the builder so that an FMU is created. The
builder creates an FMU file containing:
• Dynamic libraries (dll and so) in the binaries folder.
• Model description.
• JAR file tuned to the model in the resources folder.
• Additional FMU resources in the resources folder if

any are defined by the user.
The resulting FMU is compliant with the version 2.0

of the FMI standard which makes it applicable within any
FMI compliant tool. Basic primitives like init, doStep,
terminate, etc. are available as well as advanced ones like
get, set and free state. For these advanced methods, the
FMI builder has a default implementation that can be over-
ridden in case a custom implementation is needed.

At runtime, the FMU dynamic libraries are pro-
grammed so that an instance of a Java Virtual Machine
(JVM) is created in order to load the FMU JAR file. Once
this happens, all functions invoked by the user of the li-
brary are directly bridged to the Java application by using
pipes. Associated data flows are explained in Figure 3.

When using JavaFMI wrapper to load the FMU, this
data flow can be shortened: if the JavaFMI wrapper
detects that the FMU has been built with the JavaFMI
builder, it takes the JAR located in the resources folder,
loads it in the JVM in which the wrapper is, and com-
municates directly with the FMU methods through Java
(Figure 4). This yields a significant improvement in the
communication speed.

The JavaFMI project also contributes to make the FMI
standard evolve. New co-simulation concepts (Tavella
et al., 2016) are being trialed and validated by implement-
ing newly defined primitives linking compliant FMU-
generating tools to master algorithms.

Session 10A: FMI II

DOI
10.3384/ecp17132663

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

665

Figure 4. Direct communication between the JavaFMI wrapper
and the FMU JAR created by the builder

5 Matryoshka FMU Building Process
In this section we first describe the steps taken by a
DACCOSIM user to build a Matryoshka FMU for his co-
simulation test case. Next we expose the behind the scene
mechanisms, i.e. how DACCOSIM 2017 was augmented to
support the construction of a Matryoshka FMU and which
operations it performs during the building process. Last
we present the result of the building process.

5.1 The User’s Perspective: How to Build a
Matryoshka FMU from DACCOSIM

Exporting a Matryoshka FMU is quite simple for DAC-
COSIM users. Only a few additional steps are required
after having designed the co-simulation graph.

During this initial stage, the user sets the simulation
configuration as he would do for any co-simulation test
case. These settings determine the internal behavior of the
Matryoshka, with in particular:
• the co-initialization mode (none, sequential output

propagation, Newton or a mix of both),
• the step size control method (constant step size

or the adaptative Euler, Richardson or Adams-
Bashforth methods) and its step size characteristics
(initial, minimum and maximum step size),
• the event detection method (bisectional approach

(Camus et al., 2016) or minimum step-size).

The user’s only task is then to define the inputs and out-
puts of the Matryoshka FMU and link them to the vari-
ables of its internal FMUs:

1. The user uses a specific interface (Figure 5) to cre-
ate the external variables of the graph and set for
each its name, causality (input or output), type (real,
integer, boolean, string, enumeration), variability
(constant, discrete or continuous) and initialization
mode (exact, approximated or calculated). Adding a
description of the variables is also possible.

2. He defines default initial values for each external
input variable.

3. He adds external connectors, connects them to the
FMUs own connectors in the graph and associates
their variables as depicted in Figure 6.

4. Finally he generates the Matryoshka FMU by
clicking the toolbar export button of the GUI.

Figure 5. DACCOSIM interface enabling external IO definition

Figure 6. DACCOSIM graph with external connectors

5.2 Behind the Scene: the Steps Towards the
Matryoshka FMU

We describe in the following subsections the sequence of
actions that are automatically performed by DACCOSIM
and result in the Matryoshka FMU generation when click-
ing the "Generate DACCOSIM Matryoshka FMU" button
of DACCOSIM GUI toolbar.

5.2.1 Creating DACCOSIM master external API

DACCOSIM 2017 was augmented to be controlled from the
outside when executed on a local machine. The result is a
DACCOSIMGlobalMaster class that is tailored to a par-
ticular co-simulation configuration, and can be instan-
tiated from another Java program. The obtained master
class retains its internal mechanism specificities (multi-
threaded architecture, adaptive step size control...) while
adapting to the constraints imposed by the control pro-
gram (external step size, input values...): if the internal
step size leads to exceed the external step bound, the inter-
nal step size is truncated to meet this limit. It is afterward
restored to its non-truncated value at the beginning of the
following external step. Only DACCOSIM cluster features,
i.e. its distributed architecture, are for now not exploited
in the context of the Matryoshka FMU.

The master class is generated with Acceleo. It inte-

Building Parallel FMUs (or Matryoshka Co-Simulations)

666 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132663

grates a set of basic functions enabling external interac-
tions with the master, among which:
• instantiating DACCOSIM global master;
• setting the start and stop times of the simulation;
• setting and getting the value of the external vari-

ables of the Matryoshka. Inner variables are not ac-
cessible for now;
• changing the state of the master, i.e. initialization

or simulation mode;
• performing the co-initialization of the internal

graph considering imposed input variable values;
• performing a co-simulation step whose size is im-

posed by the control program;
• terminating the co-initialization and/or co-

simulation process.

5.2.2 Specifying Matryoshka interface to JavaFMI
All these functions are called by a Java interface code ex-
tending the FMISimulation class defined in the JavaFMI
tools. This interface is used to perform the mapping be-
tween the primitives defined by the FMI standard and
DACCOSIM master’s own interaction functions. It is au-
tomatically generated with Acceleo. The modelDescrip-
tion.xml file of the Matryoshka FMU is later generated
based on the information specified in this interface class,
and especially the list and characteristics of the external
input and output variables of the DACCOSIM co-simulation
graph.

One characteristic of the Matryoshka that has to be cal-
culated prior to the interface generation is the dependency
of the external output variables regarding its external in-
put variables. This information is important when per-
forming the co-initialization of a co-simulation scheme
involving the Matryoshka to ensure that the variables are
initialized in the correct order.

The calculation of the Matryoshka output dependencies
is automated by DACCOSIM. It first computes the oriented
acyclical causality graph of the Matryoshka co-simulation
scheme (Figure 7). The graph is then reversibly parsed
from the external outputs (blue dots) until its reaches the
graph seeds that include the external inputs (large yellow
dots). Optionally, this process can be disabled to let the
user define the dependencies manually.

5.2.3 JavaFMI interface compilation with Ant
The two Java files (Master and Interface) are put into Java
packages and compiled into a JAR using Ant. The Ant
command file is tuned to each use-case and generated with
Acceleo. The resulting JAR is an essential input compo-
nent for the FMU builder.

5.2.4 Building the FMU using JavaFMI builder
The Matryoshka FMU is finally created by using JavaFMI
builder (see Section 4). The following components are
assembled as the super FMU resources:
• the previously constituted Jar file;
• the resources required by DACCOSIM master, i.e.

the inner FMUs, the csv files defining the variables

to log and the variables exchanged, a modelDescrip-
tion file generated by DACCOSIM (different from Ma-
tryoshka’s own modelDescription file generated by
the builder, even though they’re quite similar);

• the library files required by DACCOSIM calcula-
tion engine. If most are platform independent, a few
such as 0MQ require OS specific components. This
results in an OS specific Matryoshka that can be used
either on Windows 64 bit or Linux 64 bit systems.

A simple call to the FMU builder command line point-
ing to these resources is then sufficient to automatically
create the Matryoshka FMU.

5.3 What is a Matryoshka FMU like
The result is an FMU embedding DACCOSIM with the fol-
lowing capabilities:
• Can manage variable simulation time step.
• Can be instantiated several times.
• Cannot get and set FMU state, serialize its state or

provide directional derivatives.
Generated Matryoshka FMUs have been successfully
tested with the FMU checker, as well as imported and run
in FMI 2.0 compliant tools (Dymola, DACCOSIM...).

6 Application to an Industrial Simula-
tion Use Case

6.1 Presentation of the District Energy System
Use Case

A District Energy System (DES) consists of components
that enable the delivery of energy services in a district.
This includes all possible carriers, most frequently elec-
tricy, heating, cooling and gas networks. Research inter-
ests mainly focus on the modelling of electrical and heat
grids on a neighbourhood scale to optimize the topology
and sizing of the electrical network, as well as to design
the energy management system (Baggi et al., 2014; Zucker
et al., 2016; Wetter et al., 2015).

6.1.1 Problematics

One of the main issues of such models is their lack of
scalability, i.e. the inability to study a growing number of
buildings connected to real size distribution networks in an
appropriate amount of time: long time-scale simulation of
a DES can thus easily reach limits in terms of memory and
simulation time when using one generic solver since most
of them are mono-threaded. As a result, the simulation of
large and complex DES usually leads to simplifications ei-
ther on the building side or on the network side. The alter-
native is to distribute the simulation by decomposing the
problem into smaller interconnected sub-problems. DAC-
COSIM is then a suitable candidate tool.

6.1.2 Model Description

We consider a fixed district model written in Model-
ica (Baetens et al., 2015) involving 12 grid-connected
Smart Buildings in a heterogeneous district (Figure 8).

Session 10A: FMI II

DOI
10.3384/ecp17132663

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

667

Figure 7. Complete causality graph (on the left) and its acyclic view (on the right) of a simple co-simulation graph.

For each building, we consider 3 thermal zones and one
heating-pump (HP) connected to a 3-phases linear feeder.
Thermal, electrical, ventilation, hot-water demand and
occupancy profiles are heterogeneous and derive from a
stochastic model (Baetens and Saelens, 2015). We em-
ploy complex quasi-stationary equations of the grid in or-
der to study the influence of the load demand on the max-
imal/minimal tension of the grid (Protopapadaki et al.,
2015). The impact of the MV network is also considered:
it is modeled by a voltage source following real unbal-
anced LV busbar measurements. No hot water network is
considered here.

Figure 8. Illustration of the District Energy System use case

This basic scenario is already complex enough to ex-
hibit scalability issues when using a standard solver. For
illustration, it takes about 1 full day for 2 weeks of simu-
lated time on our standard PC with Dymola 2016.

To distribute this use-case, the global model must be
divided into multiple FMUs. The use of component-
oriented modeling languages like Modelica usually makes
the cutting decisions easy. Moreover, DES usually offer a
lot of similarities, thus, one could consider creating com-
munications between clusters of buildings, buildings or,
even deeper, between heating systems, thermal envelope,
and the network. In this section, we consider each build-
ing as one FMU, and the electrical network as another
one, in order to simplify the understanding of the results.
A smart handling of occupancy profiles has been imple-
mented in the building models: the identity key, noted

idOcc ∈ {1, ..,12}, is related to resources profiles, i.e.
electrical energy and hot water demands, occupancy and
reference temperatures. This allows to keep the FMU gen-
eral so that only a single profile needs to be loaded. The
frequency of the network propagated to each of its compo-
nents is also represented as an FMU, as is the LV voltage
information imposed on the busbar.

This results in a system composed of 15 FMUs. All of
them except for the LV voltage FMU are included within
the Matryoshka FMU (Figure 9). This split allows to make
the Matryoshka sensitive to its electrotechnical environ-
ment, i.e. to the MV network behavior. This would also
allow to easily connect several DES Matryoshka FMUs to
a MV network and see how they interact.

Figure 9. Screenshot of DACCOSIM showing the Matryoshka of
the 12 Smart Buildings as a system of 14 FMUs with its external
inputs and outputs

6.2 Description of the Experiments
The pure Modelica model simulated under Dymola is used
as the reference for all the simulations performed in this
article. This allows us to assess the performance of the
other solutions in both their accuracy and computational
time. The Matryoshka FMU is compared to this reference.
This FMU is built by DACCOSIM integrating the electrical

Building Parallel FMUs (or Matryoshka Co-Simulations)

668 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132663

network and its 12 Smart Buildings as FMUs. Each inner
FMU is generated using Dymola 2016.

Similar tests are performed in DACCOSIM and Dymola
environments: considering a constant step size, a voltage
is imposed to the DES system FMUs. This input comes
from a Modelica block in Dymola and from its FMU coun-
terpart in DACCOSIM.

The comparisons are carried out for a simulated time
from one to five days. Realistic demand and occupancy
data as well as weather data are used, therefore creating
a variability in the calculations between each simulated
day. The accuracy of several variables is relevant regard-
ing the validation of the design of the electric grid with
Smart Buildings, among them:
• the inner temperature of the buildings;
• the norm of the voltage and the current;
• the correct capture of the extrema of these quantities.
The Dymola model was simulated with tolerances of

10−4, 10−5 and 10−6. Output points are saved every 60 s.
The Matryoshka is set up with a relative tolerance on each
FMU internal solver of 10−4, as well as a relative toler-
ance on the outputs of the FMUs of 10−3 for tempera-
ture and voltage, and 10−2 for currents. Euler algorithm is
used inside the Matryoshka to manage the step size, with
a minimum step size of 1 s and a maximum of 40 s. The
Matryoshka is then simulated along the voltage data FMU
with a constant step size of 60 s. The results obtained for
these four configurations for a one and five days of con-
tinuous simulation are shown in Table 1. It is clear that
the results of the Matryoshka co-simulations are closer to
the ones of the Dymola model with a tolerance of 10−6

than to the other Dymola setups. Thus in the following,
the performance of the Matryoshka will be compared with
the Dymola model with a tolerance of 10−6 on longer sim-
ulations.

All the simulations are performed on a laptop computer
with 4 physical cores and 8 logical threads with a maxi-
mum speed of 2.50 GHz (Intel i7-4710MQ) and 8 Gb of
RAM running under Windows 8.1 64 bit.

6.3 Results

6.3.1 Matryoshka Accuracy

Providing sufficient accuracy is a key-aspect of a co-
simulation. Splitting a model such a DES into smaller
subparts exported and then interconnected as FMUs cre-
ates propagation delays: they depend on the largest num-
ber of linked FMUs separating the start from the end of the
co-simulation graph and the sum of the varying time step
sizes observed for each propagation sequence. It is thus
important to use time step adaptive strategies to shorten
the time steps when model dynamics are important and
enlarge them when they stabilize.

Using Euler adaptive approach in the Matryoshka, we
obtained the cumulated distribution displayed in Fig-
ure 10. It illustrates the repartition of the absolute error of
the Matryoshka model to the pure Modelica model chosen

as reference, respectively for voltage, current and temper-
ature norms for the five days simulation case. 95.0 % and
99.8 % of the measurement points have an absolute er-
ror lower than 10−1 for respectively current and voltage.
This is to be compared with the current Smart Meter ca-
pabilities: on voltage an accuracy of 0.5 % of the nominal
voltage, i.e. about 1.15 V , is expected.

10-9 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100 101 102

Absolute error

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m

u
la

ti
v
e
 d

is
tr

ib
u
ti

o
n

Voltage (V)

Current (A)

Temperature (K)

Figure 10. Cumulated distribution of the absolute error on volt-
age, current and temperature in one building zone: Matryoshka
compared to pure Modelica simulation in the 5 days case

It is especially important to correctly capture the mini-
mum and maximum values of both grid voltages and cur-
rents in order to properly design the grid. The extrema
of the Matryoshka simulation should be close to the ones
computed with the pure Modelica model so that we can
use DACCOSIM results with as much trust as Dymola ones.
Table 2 shows the minimum, mean and maximum error
over the 12 buildings on the maximum values of current
and voltage. The error is kept low with maximum errors
of 5 mA, 0.7 mV and 1.6 mV.

With such error levels, using a Matryoshka in a co-
simulation is relevant for distribution grid design. The
representation of the use case dynamics as well as its accu-
racy are sufficient for a correct simulation of the network
and its usages.

6.3.2 Matryoshka Computational Performance
The computation time of the pure Modelica model simu-
lated under Dymola should not be lower than the one of
the FMU co-simulation under DACCOSIM to make it rele-
vant to use Matryoshka FMUs.

The results of the execution time measurement can be
seen on Figure 11. The speed up starts around 1.5 for one
day, grows and stabilizes itself around 3.5. This perfor-
mance is quite interesting when doing simulation on long
time scales. The changes of the speed up might be due
to the variable calculation load induced by the different
occupancy and weather profiles considered for every day.

Using a Matryoshka co-simulation also enables to tune
the tolerance on the relevant variables when doing simu-
lations for design purposes. The user can thus have the
accuracy he needs in a shorter time.

Session 10A: FMI II

DOI
10.3384/ecp17132663

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

669

Table 1. Performances of the different configurations for one and five days simulations

Model
Mean RMSE over the 12 buildings

Computation time (s) On current (A) On voltage (V)

1 Day 5 Days 1 Day 5 Days 1 Day 5 Days

Dymola (10−4 tolerance) 191 2633 1.34 8.69×10−1 1.17×10−1 7.10×10−2

Dymola (10−5 tolerance) 169 2329 3.25×10−1 2.52×10−1 3.13×10−2 2.04×10−2

Dymola (10−6 tolerance) 139 2375 reference reference reference reference
Matryoshka 79 666 7.99×10−2 1.39×10−1 7.08×10−3 1.18×10−2

Table 2. Errors on extrema aggregated on the 12 buildings

Error type Absolute Error

Max. error on max. voltage 6.97×10−1 mV
Max. error on min. voltage 1.62 mV
Max. error on max. current 5.04 mA

Figure 11. Computation time of the pure Modelica and FMU
simulations with speed up

7 Conclusions and Future Work
The Matryoshka FMU we have presented in this paper
and successfully implemented on a real-life test case is a
first of its kind that is compliant with the latest version
of the FMI 2.0 standard and built with an open-source so-
lution DACCOSIM. The FMIBench commercial tool can
also build hierarchical FMUs but supports fully only the
version 1.0 of the FMI standard and we have no knowl-
edge about the co-initialization and co-simulation features
implemented within the embedded master.

By taking advantage of the FMI standard capabilities,
a Matryoshka FMU can be easily integrated within any
FMI-CS compliant simulator on any Windows or Linux
64 bits system. Such FMU could even be easily deployed
on a node of a HPC-cluster environment. The use of DAC-
COSIM parallel master architecture allows to achieve both
computational efficiency and accuracy thanks to its in-
ternal adaptive time step mechanisms and its capability to
finely tune the tolerance on its variables. The JavaFMI

builder makes its generation automatic: once the simu-
lated use-case is set, a single click in the DACCOSIM user
interface generates such an FMU.

With DACCOSIM Matryoshka FMUs, complex real-life
systems can thus be easily simulated, finely tuned, and im-
proved in their computation efficiency while allowing an
easy implementation within any FMI-CS compliant simu-
lation environment.

Work is currently being carried out to further improve
their capabilities. Some can be performed with the current
FMI standard, while others require new attributes :
• When the user chooses the target platform and archi-

tecture (Linux, Windows or both) for the Matryoshka
FMU we will check that the choice is conform with
the platform(s) targeted by the inner FMUs.
• We are working to allow the Matryoshka FMU to

save and restore its state (if all its inner FMUs have
this capability). So, the Matryoshka could be in-
cluded into any co-simulation which might require
FMUs to rollback.
• We are investigating a way to build a Matryoshka

which distributes its simulation on multiple cluster
nodes. We also wish to include new information
about the number of inner FMUs in its modelDe-
scription.xml file. This would provide useful infor-
mation about the number of created threads in order
to automate its placement on HPC cluster nodes.

8 Acknowledgment
Authors thank Region Grand Est and RISEGrid institute
for their support to this research. The modeling of the
electrical network and the smart buildings was conducted
within the EFRO-SALK project, which receives the sup-
port of the European Union, the European Regional De-
velopment Fund, Flanders Innovation & Entrepreneurship
and the Province of Limburg.

References
R. Baetens and D. Saelens. Modelling uncertainty in dis-

trict energy simulations by stochastic residential occupant
behaviour. Journal of Building Performance Simulation,
(September), 2015.

Building Parallel FMUs (or Matryoshka Co-Simulations)

670 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132663

R. Baetens, R. De Coninck, F. Jorissen, D. Picard, L. Helsen,
and D. Saelens. OPENIDEAS - An Open Framework for
Integrated District Energy Simulations. In Proceedings of
Building Simulation 2015, 2015.

S. Baggi, D. Rivola, V. Medici, G. Corbellini, D. Strepparava,
and R. Rudel. Modeling and Simimulation of a residential
Neighborhood with Photovoltaic System Coupled to Energy
Storage Systems. In 29th European Photovoltaic Solar En-
ergy Conference and Exhibition, 2014.

T. Blochwitz and M. Otter. The Functional Mockup Interface
for Tool independent Exchange of Simulation Models. 8th
International Modelica Conference, 2011.

B. Camus, V. Galtier, and M. Caujolle. Hybrid Co-simulation of
FMUs using DEV and DESS in MECSYCO. In Symposium
on Theory of Modeling and Simulation, 2016.

J. Evora, J. J. Hernandez, and O. Roncal. JavaFmi. URL
https://bitbucket.org/siani/javafmi/.

V. Galtier, S. Vialle, C. Dad, J-P. Tavella, J-P. Lam-Yee-Mui,
and G. Plessis. FMI-Based Distributed Multi-Simulation with
DACCOSIM. In Symposium on Theory of Modeling and Sim-
ulation - TMS’15, 2015.

C. Protopapadaki, R. Baetens, and D. Saelens. Exploring the im-
pact of heat pump-based dwelling design on the low-voltage
distribution grid. In 14th Conference of International Build-
ing Performance Simulation Association, 2015.

J-Ph. Tavella, M. Caujolle, S. Vialle, C. Dad, C. Tan, G. Plessis,
M. Schumann, A. Cuccuru, and S. Revol. Toward an Accu-
rate and Fast Hybrid Multi-Simulation with the FMI-CS Stan-
dard. IEEE ETFA Track 9 - Information and Communication
Technology in Energy Systems, 2016.

J. Vaubourg, Y. Presse, B. Camus, C. Bourjot, L. Ciarletta,
V. Chevrier, J-P. Tavella, and H. Morais. Multi-agent Multi-
Model Simulation of Smart Grids in the MS4SG Project. In
PAAMS’15, 2015.

M. Wetter, M. Bonvini, and T. Nouidui. Equation-based lan-
guages - A new paradigm for building energy modeling, sim-
ulation and optimization. Energy and Buildings, 2015.

G. Zucker, F. Judex, M. Blöchle, M. Köstl, E. Widl, S. Hauer,
A. Bres, and J. Zeilinger. A new method for optimizing oper-
ation of large neighborhoods of buildings using thermal sim-
ulation. Energy and Buildings, 2016.

Session 10A: FMI II

DOI
10.3384/ecp17132663

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

671

672 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Scaling FMI-CS Based Multi-Simulation Beyond Thousand FMUs
on Infiniband Cluster

Stephane Vialle1,2 Jean-Philippe Tavella3 Cherifa Dad1 Remi Corniglion3 Mathieu Caujolle3

Vincent Reinbold 4

1UMI 2958 - GT-CNRS, CentraleSupelec, Université Paris-Saclay, 57070 Metz, France
2LRI - UMR 8623, 91190 Gif-sur-Yvette, France

3EDF Lab Saclay, 91120 Palaiseau, France
4University of Leuven, Department of Civil Engineering, 3001 Leuven, Belgium

Abstract
In recent years, co-simulation has become an increasingly
industrial tool to simulate Cyber Physical Systems includ-
ing multi-physics and control, like smart electric grids,
since it allows to involve different modeling tools within
the same temporal simulation. The challenge now is to in-
tegrate in a single calculation scheme very numerous and
intensely inter-connected models, and to do it without any
loss in model accuracy. This will avoid neglecting fine
phenomena or moving away from the basic principle of
equation-based modeling.

Offering both a large number of computing cores and
a large amount of distributed memory, multi-core PC
clusters can address this key issue in order to achieve
huge multi-simulations in acceptable time. This paper in-
troduces all our efforts to parallelize and distribute our
co-simulation environment based on the FMI for Co-
Simulation standard (FMI-CS). At the end of 2016 we suc-
ceeded to scale beyond 1000 FMUs and 1000 computing
cores on different PC-clusters, including the most recent
HPC Infiniband-cluster available at EDF.

Keywords: Multi-Simulation, FMI, Scaling, Multi-core,
PC Cluster

1 Introduction and Objectives
A multi-simulation based on the FMI for Co-Simulation
standard is a graph of communicating components (named
FMUs) achieving a time stepped integration, under super-
vision of a global control unit (named Master Algorithm
in the standard), as illustrated in Fig. 1. During a time
step, all FMU inputs remain constant and all FMUs can be
run concurrently. When all FMU computations of a time
step are finished, the FMU outputs are routed to connected
FMU inputs, and all FMUs communicate with the Master
Algorithm. When using adaptive time steps or managing
events inside the time steps, the Master Algorithm has a
complex role to decide on the next time step to execute.

In order to run wide multi-simulations requiring large
memory and heavy CPU resource consumption, we first
need to distribute and process a co-simulation graph on
several PCs. Second, to achieve scaling we need (1) to
speedup a co-simulation using more computing resources
(cores and PCs), and (2) to strive to maintain the same ex-
ecution time when running larger co-simulations on more

Figure 1. Generic FMU graph implementing a multi-simulation

PCs. Of course to achieve this, we attempt to minimize the
global execution time as the sum of all the parallel FMU
computation substeps, the FMU communication substeps,
and the graph control substeps.

In 2014 we designed a distributed and parallel
FMI based multi-simulation environment, named DAC-
COSIM1 (Galtier et al., 2015), integrating a hierarchi-
cal and distributed Master Algorithm. Available under
AGPL for both Windows and Linux operating systems,
DACCOSIM2 achieves a multi-threaded execution of lo-
cal FMUs on each node with concurrent run of different
FMUs on cluster nodes, and frequent data exchange be-
tween nodes (see section 2). Then, we decided to opti-
mize and facilitate the execution of our environment on
multi-core PC clusters, which are our typical computing
platforms. Unfortunately, FMUs are kind of opaque com-
puting tasks frequently exchanging small messages. They
are very different from optimized High Performance Com-
puting tasks, and we faced different difficulties. In 2016
we succeeded to exhibit scaling on a co-simulation of heat
transfers in a set of n three-floor buildings, and we effi-
ciently run up to 81 FMUs on a 12-node PC cluster with a
10 Gbit/s Ethernet interconnect and 6 cores per node (Dad
et al., 2016). However, we needed to identify the op-
timal distribution of one building on a minimum set of
cluster nodes after running several benchmarks, and we
scaled our co-simulation replicating our initial building
and its optimal distribution. This approach has proven it is
possible to achieve scaling on distributed FMI based co-
simulations, despite the unusual features of an FMU task
graph, from a classic parallel computing point of view. We
have carried on with this work, in order to automate the ef-

1https://daccosim.foundry.supelec.fr
2Partially supported by Region Lorraine (France)

DOI
10.3384/ecp17132673

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

673

ficient distribution of wide co-simulations on large multi-
core PC clusters, aiming to distributed thousands of FMUs
on thousands of computing cores.

The paper is organized as follow. Next section de-
scribes the features of an FMU graph execution, the prin-
ciples of its execution, and the choices done when de-
signing the DACCOSIM architecture. Section 3 lists all
sources of parallelism and also performance losses in an
FMU graph running on a multi-core PC cluster, in or-
der to design an efficient software architecture of multi-
simulation. Section 4 investigates the distribution of the
FMU graph on a multi-core PC cluster, with poor or rich
meta-data on the FMU graph, in order to maximize per-
formance. Then, section 5 introduces our new large scale
benchmark detailing reached numerical results, perfor-
mance and scalability. Finally, section 6 lists our current
results and remaining challenges.

2 FMI-CS based Multi-Simulations
2.1 FMI-CS Strengths and Limitations
Modern electric systems are made of numerous interact-
ing subsystems: power grid, automated meter manage-
ment, centralized and decentralized production, demand
side management (including smart charging for electric
vehicle), storage, ICT resources. . . Beyond a consensus on
the language to use, modeling wide and complex systems
in one universal modeling tool implies to make some sim-
plifications that may lead to minimize important phenom-
ena. As historic and domain-specific tools validated their
business libraries since a long time, the most rational ap-
proach to simulate wide Cyber Physical Systems (CPSs)
consists in recycling specialized simulation tools in a co-
simulation approach.

The Functional Mock-up Interface for Co-Simulation
(FMI-CS) specification can now be considered as a well-
established standard for co-simulation thanks to numer-
ous developments done by industrial parties (Blochwitz
et al., 2011). A growing number of business tools - like
EMTP-RV3 for electromagnetic transient modeling - have
adopted the standard and added FMI connectors to their
products. FMI-CS allows to obtain a fairly realistic repre-
sentation of the whole system behavior since all the sub-
systems are equally taken into account without the pre-
eminence of a domain (e.g. ICT) on another (e.g. physics).
It allows the building of stand-alone active components
(FMUs) that can be executed independently of each other.
FMUs exchange data (with other FMUs or with external
components) only at some discrete communication points.
In the time interval between two communication points
each FMU model is simulated by its own numerical solver,
and a Master Algorithm controls the FMU graph at each
communication point (see Fig. 1).

An FMU for Co-Simulation consists of a ZIP file con-
taining an XML-based model description and a dynamic

3http://emtp-software.com/

Figure 2. DACCOSIM software architecture

library being either a self-contained executable compo-
nent or a call to a third-party tool at run-time (tool cou-
pling). FMI-CS is focused on the slave side (FMU) and
remains very discreet on the master side (Master Algo-
rithm). The way a simulation tool utilizes the functional-
ity provided by FMUs is strongly related to the simulation
paradigm on which the tool relies:

• Some co-simulation middleware use the Agent & Ar-
tifact paradigm (Ricci et al., 2007) to describe an het-
erogeneous multi-model, and they rely on the Dis-
crete EVent System Specification (DEVS) formal-
ism (Zeigler et al., 2000) to conceive a decentralized
execution algorithm respecting causality constraints.
But conservative algorithms, such as Chandy-Misra-
Bryant (Chandy and Misra, 1979) used in some A&A
tools like MECSYCO4, do not integrate the concept of
rollback. They must be adapted to restore FMUs to a
previous state and adjust the step size in case of events
or fast system dynamics (Camus et al., 2016).

• Another class of tools is based on the synchronization
of the communication points of all the FMUs involved
in a calculation graph. Unfortunately these tools often
stick to the master pseudo codes given as examples in
the FMI standard with a centralized algorithm acting as
a bottleneck for all the communication (data exchanges
and control information).

2.2 DACCOSIM Architecture Choices
In our attempts to design, distribute and co-simulate on
cluster nodes very wide systems composed of thousands
of FMUs, we need both to synchronize all the communi-
cation points (for accuracy purpose) and decentralize the
usual control function of the Master Algorithm (for per-
formance purpose). First versions of these features were
available within DACCOSIM in 2014.

DACCOSIM 2017 emphasizes a complete and user-
friendly Graphical User Interface (GUI) to configure and
perform local or distributed co-simulations with poten-
tially many heterogeneous FMUs compliant with the co-

4http://mecsyco.com/

Scaling FMI-CS Based Multi-Simulation Beyond Thousand FMUs on Infiniband Cluster

674 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132673

simulation part of the FMI 2.0 standard (FMI-CS 2.0). A
DACCOSIM calculation graph consists of blocks (mainly
FMUs) that are connected by data-flow links and poten-
tially distributed on different computation nodes. The
graph is then translated into Java master codes in confor-
mance with the features described in the FMI-CS 2.0 stan-
dard. More precisely, DACCOSIM notably offers for the
co-initialization of its calculation graph:

• Automatic construction of the global causal depen-
dency graph, built both from the FMUs internal de-
pendencies and the calculation graph external depen-
dencies. An acyclic view of the graph is generated by
aggregating each cycle as a super-node composed of
Strongly Connected Components (SCCs);

• Generalized distributed co-initialization algorithm,
mixing a sequential propagation method applied to
the acyclic dependency graph, and a Newton-Raphson
method solving its SCCs.

And for co-simulation, it offers among others:

• Implementation of each FMU wrapper as two threads
allowing to concurrently run computations and send
messages (FMU & control) while receiving incoming
messages;

• Overlapped (optimistic) or ordered (pessimistic) data
synchronization inside distributed masters (see section
3.3), that can operate with constant time steps or with
adaptive time steps controlled by one-step methods
(Euler or Richardson) or a multi-step method (Adams-
Bashforth);

• Approximate event detection while waiting for a new
version of the FMI standard able to correctly handle hy-
brid co-simulations (Tavella et al., 2016).

DACCOSIM generated master codes follow a central-
ized hierarchical approach (see Fig. 2). A unique global
master located on one cluster node is in charge of han-
dling the control data coming from several local masters
located on other cluster nodes and taking step by step de-
cisions based on this information. Every master, whether
global or local, aggregates these control data that are com-
ing from each FMU wrapper present on its cluster node.
This is done before communicating synthesized informa-
tion to the global master. The control data exchanged be-
tween masters and between FMUs and masters are called
vertical data. Of course when the co-simulation is run on
a single machine, only one master code is generated.

An original feature of the DACCOSIM architecture lies
in the fact that the FMU variable values to be exchanged at
each communication step are directly transmitted from the
senders to receivers without passing by a master. The mas-
ters, the wrapped blocks (mainly FMUs with wrappers) as
well as the communication channels between them are au-
tomatically generated by DACCOSIM by translating the
calculation graph defined by the user via its GUI. All com-
munications are implemented using ZeroMQ (or ZMQ)

Figure 3. Concurrent run times on a 2x4-core node

Figure 4. Slow down of concurrent runs on a 2x4-core node

middleware, allowing direct communications between dif-
ferent threads located on the same or on different PC clus-
ter nodes. For intra-node communications, a mechanism
of shared message queue is also available.

3 Parallelism Sources and Limitations
3.1 FMU Computations
Each computing substep is a high source of parallelism,
as all FMUs can concurrently achieve their computations.
However, running n f FMUs on nc cores of the same com-
puting node can lead to imperfect concurrency: (1) when
there are less cores than FMUs (nc < n f), and (2) when the
FMU computations access the node memory and saturate
the memory bandwith. Taking into account this FMU con-
currency imperfection, we will deduce the optimal number
of FMUs to run on each computing node, and so the total
number of nodes to use (see section 4).

3.1.1 FMU Concurrency Experiment
We concurrently run HPC computing kernels of dense ma-
trix product (C = A×B, a reference HPC benchmark) on
one of our cluster computing node. We used an OpenBLAS
dgemm kernel, and a NUMA dual-haswell node with 2×4
physical cores at 3.5 GHz, and 2×15 MB of cache mem-
ory. Fig. 3 shows the execution times measured on dif-
ferent problem sizes, with optimized OpenBLAS kernels
blocking data in cache to minimize the memory bandwidth
consumption. For each problem size, we concurrently run
from 1 up to 64 threads, each thread executing one com-
plete call to the kernel on locally allocated data structures.
We considered (1) two large matrix sizes: 2048× 2048
matrices of 32 MB and 4096×4096 matrices of 128 MB,

Session 10A: FMI II

DOI
10.3384/ecp17132673

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

675

Figure 5. Size up experiments on 1 Gb/s and 10 Gb/s clusters

each matrix being larger than the entire node cache, and
(2) a smaller problem with 1024×1024 matrices of 8 MB,
allowing to store the three matrices of the problem into
one node cache. Each curve illustrates the global execu-
tion time evolution when running more concurrent com-
putations.

Fig. 4 shows the slow down observed when increas-
ing the number of concurrent computations: SD(n) =
t(n)/t(1). Our optimized OpenBLAS kernel exhibits
good concurrent performance, with a very limited slow
down up to the 8 physical cores, followed by a first slow
down increase up to the 16 logical cores (exploiting hyper-
threading), and a linear increase when running more con-
current tasks serially processed by the node cores. Then,
we concurrently run several threads executing the same
FMU5, modeling heat transfers and achieving significant
computations with the cvode solver6. We can observe
in Fig. 4 that these concurrent FMU executions (1) ex-
hibit a limited slow down, up to (nc−2) FMU computing
threads, similar to the behavior of concurrent OpenBLAS
kernels, and (2) then quickly increase their slow down be-
yond (nc − 2) FMU computing threads per node, going
away from OpenBLAS kernel curves.

In fact some extra tasks are running in parallel of the
FMU computation threads in DACCOSIM, and it is not
surprising the slow down starts to increase a little bit be-
fore deploying one FMU per physical core. But the slow
down increase appears stronger than with OpenBLAS ker-
nels, and is militantly in favour of running only (nc− 2)
FMUs per computing node and using additive nodes. Of
course, this experimental study will need to be conducted
on different cluster nodes with different FMUs in the near
future to confirm the definition of the ideal number of
FMUs to deploy and run on a multi-core cluster node.

3.1.2 Unsuccessful Performance Improvement

When the number of available computing nodes is limited,
it leads to run many FMUs on a same node, many more
than (nc−2). Then, we attempted to reduce the computa-
tion time limiting the number of FMUs simultaneously run
in parallel on a same computing node. We implemented a
semaphore-based synchronization-mechanism, authoriz-
ing only nmax FMUs to concurrently run their computa-

5FMUs were designed at EDF Lab Les Renardières using
BuildSysPro models, and generated with Dymola 2016

6Sundials suite of nonlinear and differential/algebraic equation
solvers, of the LLNL’s Center for Applied Scientific Computing

tions (a new FMU could enter its computation substep
only when a previous one finished its substep).

But performance measured when limiting the concur-
rency of many FMUs on a same node were disappointing:
the total computation time still increased. We have not
succeeded to improve the execution of many concurrent
FMUs per node with a basic scheduling mechanism.

3.2 FMU Communications
3.2.1 Main Features of Inter-FMU Communications

There is no order in the inter-FMU communications of a
time step, they can all be routed in parallel, fully exploit-
ing the cluster interconnect bandwidth. Moreover, FMU
communications inside a computing node can be achieved
faster (no crossing of network connections no network
software layer). But data exchanged between two FMUs
are usually small (like one or a few floating point values).
Each FMU communication is sensitive to the network and
applicative latency: time to transfer a byte from one JVM
(running FMUs) on one node to another JVM on another
node, in current DACCOSIM implementation. Moreover,
an FMU graph has many connections generating commu-
nications at the end of each time step.

So, communication features of multi-simulations are
different from classic HPC application ones, which always
attempt to group data and exchange large messages not too
frequently. FMU communications are small, numerous
and frequent, however their implementation can be par-
allelized.

3.2.2 Sensitivity to Latency and Bandwidth

Respective weights of FMU computations and commu-
nications depend on the FMU graph and the multi-
simulation. We have run some size up experiments on
our multi-simulation of heat transfer inside buildings. We
have implemented larger simulations using greater num-
ber of computing nodes, replicating buildings on new
nodes. Theoretically, the execution time of the multi-
simulation should have remain almost constant (FMU
computation time remained constant on each node, and
communications were routed in parallel). Experimentally,
Fig. 5 shows the execution time increase on PC clusters
with 1 Gb/s and 10 Gb/s Ethernet interconnects. This time
increase is more limited on the 10 Gb/s Ethernet intercon-
nect. These experiments of heat transfer multi-simulations
have pointed out the importance of the communications
and the sensitivity to the interconnect speed.

3.2.3 Difficulty to Fully Use Infiniband Interconnect

In order to reduce cost of these intensive and short com-
munications, an interesting issue consists in using low la-
tency and high bandwidth interconnects of standard HPC
clusters, like some Infiniband networks. However, it re-
quires to use some constrained middleware or communi-
cation libraries from HPC technologies (like MPI library),
with native Infiniband interface. Using modern and con-
fortable middleware (like ZMQ in DACCOSIM environ-

Scaling FMI-CS Based Multi-Simulation Beyond Thousand FMUs on Infiniband Cluster

676 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132673

Figure 6. Relaxed synchronization of time step subparts

ment) leads to use Infiniband networks over TCP/IP adap-
tors and to loose their very low latency (Secco et al., 2014).

We attempted to use the MPI library to implement
our multi-simulation communications, but MPI has been
designed for process-to-process communications and ap-
peared not adapted to DACCOSIM thread-to-thread com-
munications, where each thread manages an FMU. We
have currently suspended this investigation, and we use
Infiniband networks over TCP/IP adaptors.

3.2.4 Minimizing Message Sizes

Current communication mechanisms of DACCOSIM send
FMU output data as strings, and send input name strings
instead of short input identifiers (like input indexes). Fu-
ture versions of DACCOSIM will implement shorter data
encoding in order to reduce message sizes and bandwidth
consumption.

3.3 Time Step Subparts Orchestration

3.3.1 Ordered Orchestration with Relaxed Synchro-
nization

Basic orchestration of a time step is illustrated on Fig. 6,
and follows a relaxed synchronization mechanism. All
FMU computations are run in parallel to progress from ti
up to ti+1 = ti + h, and as soon as an FMU has finished
its computation substep it sends its requirements to the
Master Algorithm (M.A.): to roll back and rerun with a
smaller time step (to increase accuracy), to continue with
the same time step, or to continue with a greater time step.
Then, the M.A. processes each received requirement but
awaits all requirements (synchronization point S0) before
taking a global decision, and broadcasting its decision to
all FMUs. All FMUs wait for the M.A. global decision,
and as soon as an FMU receives the M.A. decision (sync.
point S1), it rolls back or continues its time step.

• If an FMU receives the command to continue (top of
Fig. 6), it enters its communication substep, sending its
output results to connected FMUs and waiting for the
update of all its input values (sync. point S2). Finally,

Figure 7. Overlapped orchestration mode

when it has updated all its inputs, it enters its next com-
putation substep.

• If an FMU receives the command to roll back (bottom
of Fig. 6), it restores its previous state at ti and reruns
its computation step, but progresses from ti up to t ′i+1 =
ti+h′, with h′ < h the new time step broadcasted by the
M.A.

So, the only global synchronization barrier is the M.A.
decision broadcast, that all FMUs are waiting for. Oth-
ers synchronization points are relaxed ones, that stop only
one task (the M.A. or one FMU). Then, each task going
over a relaxed synchronization point carries on with its
work independently of others tasks. Relaxed synchroniza-
tion allows to increase performance, avoiding time con-
suming synchronization barriers and avoiding to synchro-
nize all FMUs on the current slowest ones (the ones with
longest computations or communications at current time
step). Algorithms with relaxed synchronization schemes
are usually more complex to implement and to debug, but
ZMQ middleware has allowed an easy and efficient imple-
mentation of these communication and synchronization
mechanisms between threads across a PC cluster.

3.3.2 Overlapping Strategy

To still reduce the communication cost, a solution consists
in overlapping some of the communications with some
FMU computations, and with the Master Algorithm deci-
sion pending. Fig. 7 illustrates these mechanisms. When
an FMU has finished its computation substep, it sends its
requirements to the M.A. and, not waiting for M.A. de-
cision broadcast, enters its communication substep. So,
FMUs update their input values while the M.A. collects
their requirements and broadcasts its global decision.

But, depending on the pending time of the M.A decison
and on the number of inter-FMU communications, each
FMU can cross its synchronization points S1 (M.A. deci-
sion broadcast) and S2 (all input update received) in any
order (see FMU1 and FMU2 examples on Fig. 7). So,
when both S1 and S2 synchronization points have been

Session 10A: FMI II

DOI
10.3384/ecp17132673

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

677

crossed, each FMU considers the M.A. decision:

• If the M.A. has broadcasted a command to continue,
then each FMU enters its new computation substep
(see top of Fig. 7), and has saved some execution
time achieving its inter-FMU communications while
the M.A. decision was pending.

• If the M.A. has broadcasted a command to rollback,
then each FMU waits for the end of its communications,
restores its state at the beginning of the time step, and
reruns its computation from ti up to t ′i+1. In this case,
the overlapping mechanism has a little bit increased the
execution time, achieving unnecessary inter-FMU com-
munications.

From a theoretical point of view, our overlapping mech-
anism reduces the execution time when there are few roll-
backs, or when using constant time steps. But from a
technical point of view, some threads will work to send
and receive messages while some threads will achieve the
end of long FMU computations (M.A. decision broadcast
is no longer a synchronization barrier). The communica-
tion threads could disturb the ongoing computations and
slow down the multi-simulation, especially when running
more threads than available physical cores (see section
3.1). Nevertheless, our overlapped orchestration mode has
appeared efficient on our multi-simulation of heat transfer
inside three floor building, run on a 6-core node cluster
with a 10 Gb/s Ethernet interconnect. Section 5 will show
the performance achieved on our benchmark of power grid
multi-simulation.

3.4 Event Handling Impact
To increase their genericity, it seems necessary for CPSs to
handle more signal kinds especially continuous & piece-
wise differentiable signals, piecewise continuous & dif-
ferentiable signals and piecewise constant signals, which
are sources of events. The current FMI-CS 2.0 re-
lease (Blochwitz et al., 2011) can theoretically approach
events thanks to for example a bisectional search using
variable step size integration (Camus et al., 2016). But
only events due to piecewise constant signal changes can
be detected. And the solution involves bad performance
as it is based on rollbacks and finally some inaccuracies
appear due to the last non zero integration step size.

We proposed to add new primitives in the FMI-CS stan-
dard (Tavella et al., 2016) in order to integrate hybrid co-
simulation in a pure FMI-CS environment. Our solution
does not require any model adaptation and allows to cou-
ple physics model with continuous variability and con-
trollers with discrete variability. Moreover, parallelism is
not reduced by our approach, as all FMUs continue to run
concurrently either when processing shorter time steps,
or when executing rollbacks. So, event handling by the
FMI-CS evolution we have proposed does not require to
change our parallel and distribution strategy of FMU co-
simulation graph.

From a computing performance point of view, this FMI-

CS standard improvement leads to execute a maximum of
one rollback per FMU each time an unpredictable event
appears during a time step. In the end, we do not know
in advance how much the execution time will decrease but
we are sure to achieve higher accuracy while improving
the computation performance.

4 FMU Placement Strategies
4.1 Not a Dependence Graph Problem
A DACCOSIM program running a total of nF FMUs is
composed of nF FMU wrapper tasks, nF data receiver
tasks, plus a local or global control task per computing
node (implementing our hierarchical M.A., see section
2.2). Of course, a DACCOSIM program can be consid-
ered as a dependency task graph, and some strategies exist
to distribute such a graph on a PC cluster (Sadayappan and
Ercal, 1988; Kaci et al., 2016). However, a DACCOSIM
task graph has some specific task dependencies. During
one time step in ordered orchestration mode, all FMUs
execute three substeps as illustrated on Fig. 8:

• The computation substep (Fig. 8 part a): all FMU wrap-
per tasks run concurrently and autonomously, achiev-
ing the FMU computations. There is no dependence
between these tasks during this substep. The only opti-
mizations consist in load balancing the FMU computa-
tions among the computing nodes, and to set only nc−2
FMU per nodes when there are enough available com-
puting nodes, according to section 3.1.

• The control substep (Fig. 8 part b): each FMU wrapper
task sends its wish to the control task for the next op-
eration (rollback or continuation, and size of the future
time step) and waits for its global decision. There is a
total dependence of the control task to all the wrapper
tasks, followed by a total dependence of all the wrap-
per tasks to the control task, close to a synchronization
barrier for the FMU wrapper tasks (see section 3.3).
There is no optimization to achieve when distributing
the FMU graph, excepted to implement a local control
task on each node to manage its FMU wrapper tasks.

• The communication substep (Fig. 8 part c): it is only
achieved when no rollback is ordered by the control
task. Each FMU wrapper task sends its new outputs
to connected FMU inputs, while each FMU receiving
task ensures the reception of the new input values of the
FMU. These communication operations are not CPU
consuming. So, we run in parallel up to 2×n f tasks on
each computing node hosting n f FMUs, in order to op-
timize the communications (see section 3.3). All these
tasks run without any synchronization nor dependence
during the communication substep, and the only opti-
mization when distributing the FMU graph consists in
grouping on the same node the most strongly connected
FMUs (fighting with the load balancing objective).

In fact, we can classify our DACCOSIM task graph as a
periodic task graph. Its period is equal to one time step,

Scaling FMI-CS Based Multi-Simulation Beyond Thousand FMUs on Infiniband Cluster

678 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132673

Figure 8. Multi-task synchronization overview (ordered mode)

and includes 2 phases (a and c) with pure concurrent task
executions, and one phase (b) which is a kind of synchro-
nization barrier (with only the control task working). So,
we do not consider the task dependencies to distribute our
FMU graph on a PC cluster. We focus on load balancing,
on grouping the most connected FMUs, and on limiting
the number of FMU per nodes (when there are enough
available nodes).

IFP EN and INRIA succeeded to parallelize compu-
tation inside wide FMUs thanks to a fine scheduling of
basic operation executions on one multi-core node (Saidi
et al., 2016). The practical speed-up observed by our col-
leagues is achieved by imposing a constrained allocation
of all the operations of a same FMU to the same core.
Their approach is complementary to ours as they optimize
the co-simulation of FMUs on the different processors of
the same calculation node while we are optimizing the de-
ployment of a calculation graph composed with lots FMUs
on a possibly wide set of multi-core nodes.

4.2 Different Contexts and Approaches
The main trouble to establish a good distribution of the
FMU graph on a PC cluster is the lack of metadata about
FMU computations in the FMI-CS standard. There is no
information about FMU computation time, or computa-
tion complexity. Dynamic load balancing is out of reach
of our current implementation, and static load balancing
of the computations on the nodes of a PC cluster remains
difficult. This section introduces the different approaches
we identified to distribute FMU graphs.

4.2.1 Previous Experimental Approach

In the beginning of 2016 we distributed on two PC clusters
a first multi-simulations of heat transfers inside buildings.
Each building was a subgraph of only 10 FMUs. We ran
a small one-building problem setting only one FMU per
node, so that FMUs could run the real simulation with-
out disturbing each other (not sharing cache memory, nor
memory bandwidth, nor cores. . .). We measured the com-
putation time of each FMU (to characterize our different
FMUs), and then we established the most load balanced
FMU distributions on various number of nodes. Finally,
some complementary experiments allowed to identify the
most efficient distribution of a one-building problem on
each PC cluster.

When the best distribution of a one-building problem
(using n0 nodes) was identified, we enlarged the prob-
lem with k buildings, replicating our best distribution (us-
ing k× n0 nodes). We successfully scaled up (Dad et al.,
2016): processing larger problem on larger cluster in
similar time. But this approach takes too long develop-
ment times, and replicating the best elementary distribu-
tion leads to use too many nodes, some cores remaining
unused. This approach cannot be a generic solution.

4.2.2 Approach function of the User Knowledge
From our point of view, distributing a totally unknown
FMU graph or a fully characterized FMU graph should
be infrequent DACCOSIM use cases. Users build co-
simulations based on their expertise and have an initial
knowledge about computation loads and communication
volumes in their FMU graphs, allowing to use basic dis-
tribution mechanisms. When testing and improving their
co-simulations they accumulate knowledge on their FMU
graphs, and can use more complex heuristics. However, it
is not obvious to design an efficient heuristic.

During the development phase of a co-simulation many
FMU graphs are only run a few times and the FMU graph
distribution has to be computed quickly, without long cali-
bration steps. But when a co-simulation design is finished
and successful, it can enter a long exploitation phase, re-
quiring frequent runs. Then, it can be profitable to make
detailed performance measurements and to compute a fine
distribution of the FMU graph, in order to use less com-
puting nodes and/or to decrease the co-simulation time.

Considering current and future usage of DACCOSIM at
EDF, for smart grid co-simulations, we identified 3 levels
of user knowledge, and we propose 3 associated generic
FMU distribution approaches.

a - Identifying FMU Families: when users have only
minimal technical and skill information about their co-
simulations, and are able just to group the FMUs in fami-
lies with close computing load.
Proposed approach: each family will form an FMU list,
and the concatenated list of all FMU families will be dis-
tributed on the computing nodes according to a round-
robin algorithm. This approach requires light knowledge
on the FMUs used, and succeeded to load balance the
FMU computations on our benchmark (see section 5).
Extreme use case: If no information is available on some
external FMUs, it is possible to group these FMUs in a
particular family to spread over the computing nodes. If
no pertinent information is available on any FMUs, it is
also possible to group all FMUs in a unique family, to
achieve a random distribution and to track a statistical load
balancing.

b - Cumulating Knowledge for Heuristics: when users
progress in their co-simulation development they improve
their knowledge about their FMUs and FMU graph. This
extra-knowledge can be exploited by more or less generic
heuristics to improve the FMU distribution. For example:

Session 10A: FMI II

DOI
10.3384/ecp17132673

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

679

• running and testing different configurations of the FMU
graph allows to learn some relative computing weights
(ex: tcomput

FMU2 ≈ 0.5× tcomput
FMU1),

• analyzing the FMU graph allows to detect some regular
patterns strongly connected (ex: a city area connected
on one medium voltage network of a smart grid).

Proposed approach: design and use an heuristic (1) to op-
timize load balancing in order to reduce the global compu-
tation time, and/or (2) to group on same nodes the FMUs
strongly interconnected in order to reduce the global com-
munication time.

Warning: our experiments have shown the load balancing
optimization is the most important criterion, however de-
signing an efficient heuristic (improving performance of
the previous approach) remains difficult.

c - Building Models of Computation and Communica-
tion Times: when an FMU graph enters an exploitation
phase, it can be profitable to establish an execution time
model of the co-simulation, to optimize its distribution and
the computing resource usage.

Proposed approach: (1) run smaller but similar co-
simulations, deploying only one or very few FMUs per
node (to avoid mutual disruption between FMUs) and
measure each FMU computation time on the nodes of
the target cluster, (2) analyse the FMU graph to compute
the volume of each inter-FMU communication, and mea-
sure the experimental applicative latency and bandwidth
on the target cluster. Then, establish a computation and a
communication time model of the co-simulation, to feed a
solver looking for the best distribution of the FMU graph.

Warning: This approach requires long experimental mea-
surements.

The IDEAS test case described in section 5, has been
distributed on different PC clusters according to the Iden-
tifying FMU families and the Cumulating knowledge for
heuristics approaches.

4.3 FMU Distribution on Virtual Nodes
When the FMU graph is defined, the DACCOSIM soft-
ware suite distributes the FMUs and generates Java source
files for a set of virtual nodes, and maps the virtual nodes
on the available physical computing nodes at runtime.
Then the Java source codes are compiled, a JVM is started
for each virtual node and its Java program is executed.
We defined intermediate virtual nodes in order to generate
Java source files independent of physical node names and
IP addresses, and to make the deployment more flexible on
nodes with Non Uniform Memory Architecture (NUMA).

Modern computing nodes have several processors and
memory banks interconnected across a small network. But
memory access time becomes function of the distance be-
tween the core running the code and the memory bank
storing the data (NUMA principle). Creating one pro-
cess (one JVM, one virtual node) per NUMA subnode in-

I
1
2

3
4

5
18

19
20

1
2

3
4XX

thermal
envelope

ventilation

building model

occupancy
behavior

heating system

Figure 9. Topology of the large scale testbed using IDEAS lib.

stead of creating a unique JVM per node managing all the
threads, can increase data locality and performance.

5 Large Scale Experiments
5.1 Experiment Objectives
The co-simulation of a large scale District Energy Sys-
tem was chosen as a testbed. Co-simulation methods are
foreseen to handle several bottlenecks encountered during
CPS simulation on one single simulation tool, such as:
• Multi-Physics integration (electrical, hydraulic, ther-

mal, etc.),
• Multiple time-scales and dynamics,
• Implementation of controllers,
• Scalability, i.e. the capability to study a growing num-

ber of buildings and the growing size of the power grid.
The numerical experiment consists in a complex multi-
physical district energy system. The main purpose of
this section is thus to propose a proof of concept of co-
simulation with lots of FMUs on a HPC cluster and to
highlight the advantages of such an approach for large
scale systems.

5.2 Testbed Description
In this section, we propose to assess DACCOSIM Master
Algorithm efficiency by co-simulating an electrical distri-
bution grid using a variable number of cluster nodes. The
model has been completely implemented using Modelica
and the OpenIDEAS library7 (Baetens et al., 2015). Nei-
ther the electrical grid, the heating systems nor the build-
ing envelops have been simplified.

The general structure of the use case is shown on Fig.
9. It is composed of 1000 buildings connected to low volt-
age (LV) feeders, each of them including a thermal enve-
lope, ventilation and heating systems and a stochastic oc-
cupancy behavior. The buildings are dispatched on 20 low
voltage LV feeders, each modeled as one FMU, noted I to
XX on Fig. 9. These feeders are connected to a medium
voltage (MV) network that is also simulated with a single
FMU. A data-reading FMU provides real medium volt-
age measurements that are imposed at the MV substation
busbar. The electric grid frequency is provided to differ-
ent FMUs (buildings and feeders) by 20 additional FMUs.

7EFRO-SALK project, with support of the European Union, the
European Regional Development Fund, Flanders Innovation & En-
trepreneurship and the Province of Limburg

Scaling FMI-CS Based Multi-Simulation Beyond Thousand FMUs on Infiniband Cluster

680 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132673

This distributed frequency FMU implementation is meant
to reduce inter-node communications since the frequency
has to be dispatched to all the FMUs of the use case. Fi-
nally, the co-simulation holds a total of 1042 FMUs ex-
ported from Dymola 2016 FD01 in conformance with the
FMI-CS 2.0 standard. A smaller use-case with less build-
ings and only 442 FMUs, has also been designed to eval-
uate the scalability of our solution.

The test case was run on two different clusters: (1)
Sarah at CentraleSupelec Metz, composed of dual 4-cores
Intel Xeon E5-2637 v3 at 3.5 GHz (Haswell) with a 10
Gb/s Ethernet communication network, and (2) Porthos
at EDF R&D, composed of dual 14-cores Intel Xeon E5-
2697 v3 at 2.60 GHz (Haswell) with Infiniband FDR com-
munication network. These clusters are labeled "sar" and
"por" on performance curves of section 5.4. On both clus-
ters, DacRun is used to deploy and run the DACCOSIM
co-simulation. DacRun is implemented in Python 2.7, is
compliant with OAR and SLURM cluster management
environments, and can also be used on standalone ma-
chines (for small experiments). It achieves Java source
files compilation, virtual/physical nodes mapping, JVMs
starting and can ensure to gather the results and logs.

5.3 Numerical Results
The runs are done for a one-day simulation with one-
minute constant step size. The co-simulation gives realis-
tic results according to expert judgment. Moreover the en-
ergy consumption of the buildings follows the same trend
as the one observed on a Dymola simulation limited to one
20-building feeder. To assess the correctness of the co-
simulation on cluster, we selected a single building of the
test case and simulated it with Dymola by injecting sam-
pled voltage data obtained from the cluster co-simulation.
The power consumed by the building simulated with Dy-
mola and the one co-simulated on cluster should be the
same as the two selected buildings have the same environ-
ment: same input voltage, same weather data and same
occupancy data. The root mean square error on the cur-
rent between those two simulations is 1.16×10−2 A, with
current mainly in the range 1−10A. The two currents for
the one-day simulation are plotted on top of Fig. 10 with
a close-up on its bottom. The dynamic of the power con-
sumption is well reproduced thus the cluster co-simulation
seems reliable.

5.4 Performance and Scaling
The FMUs were dispatched on the nodes following two
different approaches introduced in section 4.2: with (1)
a Cumulated knowledge for heuristic approach exploit-
ing the problem topology with balanced load ("KHBL" on
Fig. 11), and (2) according to an Identifying FMU families
approach associated to a round-robin mechanism ("FFRR"
on Fig. 11). Experimentations were conducted on our
clusters in the ranges 32− 1024 and 112− 1792 cores,
with overlapped and ordered orchestration modes ("over"
and "order"), on both 442 and 1042 FMUs use-cases.

Figure 10. Current from a building of the DACCOSIM co-
simulation and its Dymola counterpart

Scalability Achievement: time curves on Fig. 11 appear
very linear on this full logarithmic scale graphic, slope is
close to −1 on HPC Porthos cluster, and time curves of
different problem sizes are parallel. So, execution time
regularly decreases when using more cores, and similar
performance can be achieved when running larger prob-
lems on larger number of cores (from 442 to 1042 FMU
benchmark curves). Of course, when using as many cores
as FMUs the execution stops to decrease (right-hand side
of Porthos curves).
Interconnect and Communication Impact: time curve
slope is smaller on Sarah cluster and its 10 G/s Ethernet
interconnect, than on Porthos and its high performance In-
finiband FDR interconnect. Communications are not neg-
ligible, and a high performance interconnect (low latency
and high bandwidth) improves the scalability.
Complex Choice of the Orchestration Mode: Over-
lapped mode was the fastest one on a previous use case
run on a cluster with smaller nodes (Dad et al., 2016). But
when running IDEAS use case on Sarah cluster, the over-
lapped mode appears slower than the ordered one, and
when run on Porthos cluster, both orchestration modes
have close performances up to allocate enough nodes to
get one core per FMU. Beyond this limit it remains free
cores on each node to manage communications, and the
execution time of the overlapped mode roughly decreases
and really becomes the smaller one. So, both orchestra-
tion modes are interesting, but strategy to foresee the right
one is still under investigation.
Difficulty to Design Efficient Heuristics: our heuristic
based on FMU graph knowledge, aiming to group con-
nected FMUs on the same node with respect to load bal-

Session 10A: FMI II

DOI
10.3384/ecp17132673

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

681

Figure 11. IDEAS benchmark with 442 FMUs run on clusters

ancing, requires in our testbed some accurate number of
nodes (5, 10 or 20 on our example) and does not achieve
better performance than round-robin distribution of FMU
families. An efficient heuristic remains hard to design
and our round-robin on FMU families algorithm appears
a good solution

6 Conclusion and Perspectives
With DACCOSIM generating Java files for Linux and its
Python add-in DacRun easily compiling, running and col-
lecting the results of a DACCOSIM application on clus-
ters, we have illustrated in this paper the capability of
our FMI-CS based environment to manage very wide co-
simulations. Our testbed is a realistic case study using
the OpenIDEAS library and involving the detailed model-
ing of 1000 buildings scattered on a distribution grid. We
have demonstrated the feasibility of scaling-up the multi-
simulation by pushing very far the limits of the simulation
and taking advantage of Porthos, the EDF cluster ranked
310th in the 48th edition of the TOP500 list published in
November 2016.

Work is currently being carried out to further improve
the capabilities of our co-simulation tools suite. Some
can be performed with the current FMI-CS 2.0 standard
(e.g. minimizing inter-FMU message sizes), while oth-
ers would require an evolution of the standard (e.g. event
handling of accurate hybrid co-simulation).

A collection of generic heuristics for FMU graph distri-
bution, when knowledge on co-simulation has been accu-
mulated, is also under development, to make easier large
scale deployments of more complex co-simulations.

References
R. Baetens, R. De Coninck, F. Jorissen, D. Picard, L. Helsen,

and D. Saelens. OPENIDEAS - An Open Framework for
Integrated District Energy Simulations. In Proceedings of
Building Simulation Conference 2015 (BS 2015), Hyderabad,
India, December 2015.

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß,

H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro, T. Neid-
hold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf. The
Functional Mockup Interface for Tool independent Exchange
of Simulation Models. In Proceedings of the 8th International
Modelica Conference, Dresden, Germany, March 2011.

B. Camus, V. Galtier, and M. Caujolle. Hybrid Co-Simulation
of FMUs using DEV and DESS in MECSYCO. In Proceed-
ings of the 2016 Spring Simulation Multiconference, Sympo-
sium on Theory of Modeling and Simulation (TMS/DEVS’16),
Pasadena, CA, USA, April 2016.

K. M. Chandy and J. Misra. Distributed Simulation: A Case
Study in Design and Verification of Distributed Programs.
IEEE Trans. Softw. Eng., 5(5), September 1979.

C. Dad, S. Vialle, M. Caujolle, J.-Ph. Tavella, and M. Ian-
otto. Scaling of Distributed Multi-Simulations on Multi-Core
Clusters. In Proceedings of 25th International Conference
on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE 2016), Paris, France, June 2016.

V. Galtier, S. Vialle, C. Dad, J.-Ph. Tavella, J.-Ph. Lam-Yee-Mui,
and G. Plessis. FMI-Based Distributed Multi-Simulation with
DACCOSIM. In Proceedings of the 2015 Spring Simula-
tion Multiconference, Symposium on Theory of Modeling and
Simulation (TMS/DEVS’15), USA, April 2015.

A. Kaci, H. N. Nguyen, A. Nakib, and P. Siarry. Hybrid Heuris-
tics for Mapping Task Problem on Large Scale Heteroge-
neous Platforms. In Proceedings of the 6th IEEE Work-
shop on Parallel Computing and Optimization (PCO 2016),
IPDPS Workshop 2016, Chicago, IL, USA, May 2016.

A. Ricci, M. Viroli, and A. Omicini. Give Agents Their Arti-
facts: The A&A Approach for Engineering Working Envi-
ronments in MAS. In Proceedings of the 6th International
Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS’07), Honolulu, HI, USA, May 2007. ACM.

P. Sadayappan and F. Ercal. Cluster-partitioning Approaches to
Mapping Parallel Programs Onto a Hypercube. In Proceed-
ings of the 1st International Conference on Supercomputing
(ICS 1988), Athens, Greece, June 1988. Springer-Verlag.

S. E. Saidi, N. Pernet, Y. Sorel, and A. Ben Khaled. Accel-
eration of FMU Co-Simulation On Multi-core Architectures.
In Proceedings of 1st Japanese Modelica Conference, Tokyo,
Japan, May 2016.

A. Secco, I. Uddin, G. P. Pezzi, and M. Torquati. Message Pass-
ing on InfiniBand RDMA for Parallel Run-Time Supports.
In Proceedings of the 22nd Euromicro International Confer-
ence on Parallel, Distributed, and Network-Based Processing
(PDP 2014), Turin, Italy, February 2014.

J.-Ph. Tavella, M. Caujolle, S. Vialle, C. Dad, Ch. Tan,
G. Plessis, M. Schumann, A. Cuccuru, and S. Revol. To-
ward an Accurate and Fast Hybrid Multi-Simulation with the
FMI-CS Standard. In Proceedings of the IEEE 21st Inter-
national Conference on Emerging Technologies and Factory
Automation (ETFA 2016), Berlin, Germany, September 2016.

B. P. Zeigler, T. G. Kim, and H. Praehofer. Theory of Modeling
and Simulation : Integrating Discrete Event and Continuous
Complex Dynamic Systems. Academic Press, 2000.

Scaling FMI-CS Based Multi-Simulation Beyond Thousand FMUs on Infiniband Cluster

682 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132673

Development of an open source multi-platform software tool for
parameter estimation studies in FMI models

Javier Bonilla1,3 Jose A. Carballo1,3 Lidia Roca1,3 Manuel Berenguel2,3

1CIEMAT-PSA, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas - Plataforma Solar de
Almería, Spain, {javier.bonilla,jose.carballo,lidia.roca}@psa.es

2Department of Informatics, University of Almería, Almería, Spain, beren@ual.es
3CIESOL, Solar Energy Research Center, Joint Institute University of Almería - CIEMAT, Almería, Spain

Abstract
This paper presents the current development of an open
source multi-platform software tool intended for estimat-
ing or optimizing parameters of Functional Mock-up In-
terface (FMI) compliant models. Parameter estimation
and optimization is a powerful tool in many engineer-
ing and science fields. Nevertheless, the effort and time
that must be devoted to coupling and integrating com-
plex modeling languages and tools together with analy-
sis and optimization methods and algorithms sometimes is
high. As a consequence of that, commonly the most con-
venient and easy-to-use optimization mechanisms are ap-
plied. Therefore, the focus on the development of this tool
is in facilitating such coupling while being customizable.
The main toolkit and libraries used in the development of
the tool are presented, all of them are open source. Two
application examples are also presented, one of them is
a parameter optimization study considering a steady state
model, while the other is a parameter estimation study of a
dynamic model against experimental data. Finally, current
tool limitations are presented, ongoing work and ideas for
future features are also commented.
Keywords: parameter estimation, parameter optimization,
model calibration, Functional Mock-up Interface (FMI),
open source software tool

1 Introduction
The application of optimization to complex dynamic mod-
els has become recently more usual in industry, as well as
in academia. Optimization can be online, such as optimal
control in the form of Model Predictive Control (MPC) or
offline, such as parameter estimation, state estimation or
parameter optimization.

In parameter optimization, also known as design opti-
mization, some parameters are optimized to improve the
system dynamics or response according to some crite-
ria. Parameter estimation, model calibration or parame-
ter identification, comprises estimating some unknown pa-
rameters in a particular model. To that end, several sim-
ulations are performed and results are compared against
experimental data. The unknown parameters are therefore
determined by numerical optimization algorithms. This

procedure is a powerful tool in many engineering and sci-
ence fields and has its origin in the least squares method
proposed by Gauss.

In order to apply optimization techniques to complex
dynamic models, a suitable modeling language, that can
deal with dynamic systems and the increasing complexity
of research and engineering needs, is advisable. Modelica
(Modelica Association, 2014b) is one of those modeling
languages, easing the model development, maintenance
and reuse thanks to the equation-based object-oriented
paradigm and other useful features. Nevertheless, there
are other commonly used modeling languages and sim-
ulation tools, being one of the most representative Mat-
lab/Simulink (The MathWorks Inc., 2016). For this rea-
son, the support of an independent standard devoted to
Model Exchange (ME) and co-simulation, such as FMI
(Modelica Association, 2014a), would be advisable when
considering the model interface for an optimization soft-
ware tool.

Even though there are modeling languages and tools
for developing complex dynamic models, as well as a
standard format to exchange those models, and advanced
methods for optimization, sometimes the time required to
couple all these tools is high. This task involves writing
scripts for bindings and using several programming lan-
guages and tools.

With the aim of facilitating the integration of these tools
and methods, an easy-to-use open source multi-platform
software tool which performs parameter estimation stud-
ies in Functional Mock-up Units (FMUs) is currently be-
ing developed. This software tool performs parameter
estimation studies using a global-search Multi-Objective
Genetic Algorithm (MOGA). The tool also supports lin-
ear and non-linear equality and inequality constraints.

This paper is organized as follows. Section 1.1 is a brief
summary of Modelica and FMI-based tools for parame-
ter estimation. Section 2 describes the still under devel-
opment software tool and its architecture. In Section 3,
two examples are presented. Section 3.1 shows a steady-
state parameter optimization study, whereas Section 3.2
presents a model calibration study against experimental
data from a Thermal Energy Storage (TES) tank. This
tank is used for research on solar thermal storage.

DOI
10.3384/ecp17132683

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

683

Graphical user interface
(GUI)

Dakota

Optimization library

FMI++

Simulation library

QuaZIP

A C++ / Qt ZIP library

FMU file

 Unzip file

Project info Project name

Model info FMU file

Simulation info
Numerical integrator,
experiment and outputs.

Optimization info Design variables, algorithm,
objectives and constraints.

Project info Project name

Model info FMU file

Simulation info
Numerical integrator,
experiment and outputs.

Optimization info
Design variables, algorithm,
objectives and constraints.

Inputs

R
eq

ue
st

si
m

ul
at

io
n

Si
m

ul
at

io
n

re
su

lts

Request

optim
ization

O
ptim

ization

results

Request simulation

Simulation results

Optimization
results

Design variables
(table, 2D and 3D graphs)

Optimization
results

Design variables
(table, 2D and 3D graphs)

Outputs

PRJ
Save project to file

Load project from file

Figure 1. Optifmus information exchange

1.1 State of the art
Most commercial Modelica tools have parameter esti-
mation and optimization libraries for Modelica models,
i.e. Model Design Tools (Elmqvist et al., 2005; Pfeiffer,
2012) in Dymola (Dassault Systemes, 2016) and corre-
sponding libraries in SimulationX (ESI ITI GmbH, 2016),
MapleSim (MapleSoft, 2016) and SystemModeler (Wol-
fram, 2016), among others. GenOpt (Wetter, 2001) is an
optimization program that can be coupled with Modelica
models compiled in Dymola. BuildingsPy (Berkeley Lab,
2016) is a Python package that can run Modelica simu-
lations using Dymola, additional Python packages for pa-
rameter estimation can be used by means of scripting, such
as those from SciPy.org (SciPy developers, 2017). The
OpenModelica tool (OSMC, 2016) includes the OMOp-
tim tool (Thieriot et al., 2011) for parameter estimation of
Modelica models in Windows platforms.

Modelica models can be also exported as FMUs and im-
ported in commercial and open source numerical compu-
tational tools such as Matlab/Simulink and Scilab (Scilab
Enterprises, 2015). Parameter estimation studies can be
performed by means of scripting in these tools. JModel-
ica.org (Åkesson et al., 2010) supports parameter estima-
tion of Modelica and FMI models also by scripting. The
RaPId Parameter Identification (RaPId) toolbox (Vanfretti
et al., 2016) is a modular and extensible toolbox for pa-
rameter estimation of FMI models in Matlab/Simulink.

2 Optifmus Software Tool
The under development software tool is called
Optifmus. Although it is at an early development
stage, it is functional with respect to FMU simulations
and parameter estimation studies using a MOGA. The
tool is composed of the following main elements.

• Graphical User Interface (GUI). The GUI allows
the user to provide all the required information:
model information (FMU file and parameters), sim-
ulation information (numerical solver and its config-
uration, inputs and simulation interval), optimization
information (algorithm and its configuration, param-
eters, objective functions and constraints). The GUI
also shows the obtained results. Results are pre-
sented in tables, 2D and 3D graphs.

• Optimization toolkit. This toolkit collects all the in-
formation introduced in the GUI and calls the FMU
simulator to perform the needed simulation runs and
carry the optimization out using the selected algo-
rithm. Optimization results are presented to the user
in the GUI.

• FMU simulator. The simulator performs the model
simulation according to the suplied data (model and
simulation information) and provides the results to
the GUI or to the optimization toolkit.

2.1 Software Architecture
Optifmus is being developed in C++ using open source
multi-platform libraries and tools. The following list
briefly describes the main libraries. Figure 1 shows the
information exchange between them.

• Qt toolkit (The Qt Company, 2016). It is a cross-
platform application framework used for developing
application software. The Qt Core and Qt Widgets
modules are used for the GUI. The Qt Charts module
is used for 2D graphs, whereas the Qt Data Visual-
ization module is used for 3D graphs.

• Breeze icons (KDE Community, 2016). The GUI
icons belong to this open source library.

Development of an open source multi-platform software tool for parameter estimation studies in FMI models

684 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132683

• FMI++ (Widl et al., 2013). The FMI++ library is
a high-level utility package for FMI-based software
development. It provides high-level features, which
ease the handling and manipulation of FMU mod-
els: an eXtensible Markup Language (XML) parser
and numerical integration capabilities. The FMI++
library relies on the Odeint library (Ahnert and Mu-
lansky, 2011), and optionally on SUite of Nonlinear
and DIfferential/ALgebraic Equation Solvers (SUN-
DIALS) (Hindmarsh et al., 2005), for the numerical
integration of FMUs.

• QuaZIP (Tachenov, 2016). It is a C++ wrapper for
accessing ZIP files. This wrapper uses the Qt toolkit
and therefore it is a multi-platform wrapper. It is used
in Optifmus to handle the extraction of FMU files.

• Dakota (Adams et al., 2016). The Dakota toolkit is
intended as a flexible, extensible interface between
simulation codes and a variety of iterative systems
analysis methods. Dakota is a powerful toolkit which
provides the following functionality: optimization,
uncertainty quantification, nonlinear least squares
methods, and sensitivity/variance analysis. Dakota
uses Sandia-developed libraries, as well as external
optimization and design of experiments libraries. For
further details consult Sandia Corporation (2016).
Dakota can be used as a standalone application or
as a C++ library.

Additionally, reading and writing operations of input
and result files in Comma-separated Values (CSV) or tra-
jectory mat format are performed by means of C functions
available in the source code of the OpenModelica tool.

3 Examples
In order to show the Optifmus capabilities and il-
lustrate how a parameter estimation study can be per-
formed, the following sections introduce two examples.
Section 3.1 shows a steady-state parameter optimization
study, whereas Section 3.2 shows a model calibration
study against experimental measurements from a real fa-
cility.

3.1 Parameter optimization
The general formulation for a optimization problem de-
scription is given by Equation 1. It can be formulated as
optimize (minimize or maximize) several objective func-
tions f (x) that depend on some parameters or design vari-
ables x subject to several constraints: upper and lower
bounds for design variables, xl and xu, equality con-
straints, g(x) and inequality constraints, h(x).

optimize f (x)

with respect to x ∈ R j

subject to xl ≤ x≤ xu,

g(x) = 0,
h(x)≤ 0,

(1)

where,
f (x) = { f1(x) · · · fi(x)},

x = {x1 · · ·x j},
xl = {xl,1 · · ·xl, j},
xu = {xu,1 · · ·xu, j},

g(x) = {g1(x) · · ·gk(x)},
h(x) = {h1(x) · · ·gn(x)}.

The example considered in this section, known as Srini-
vas’ problem, can be found in the Dakota User’s Manual
(Adams et al., 2016), section Additional examples→Mul-
tiobjective test problems→Multiobjective test problem 3.
The problem has two design variables, x1 and x2 with their
respective upper and lower bounds,

−20≤x1 ≤ 20,
−20≤x2 ≤ 20,

two objective functions, f1 and f2, which must be mini-
mized,

f1(x1,x2) = (x1−2)2 +(x2−1)2 +2,

f2(x1,x2) = 9x1− (x2−1)2,

and two inequality constraints h1 and h2,

h1(x1,x2) = x2
1 + x2

2−225≤ 0,
h2(x1,x2) = x1−3x2 +10≤ 0.

The first step is to generate a FMU file of this model,
most Modelica tools support exporting Modelica models
to FMUs. The Modelica code of this model is as follows.

model mogatest3
parameter Real x1 = 0 "Parameter x1";
parameter Real x2 = 0 "Parameter x2";
output Real f1 "Function f1";
output Real f2 "Function f2";
output Real h1 "Constraint h1";
output Real h2 "Constraint h2";

equation
f1 = (x1-2)^2 + (x2-1)^2 + 2;
f2 = 9*x1 - (x2-1)^2;
h1 = x1^2 + x2^2 - 225;
h2 = x1 - 3*x2 + 10;

end mogatest3;

The next step is to create a new project in Optifmus.
Currently, two kinds of projects can be created: simula-
tion and parameter estimation. Projects can be saved to
and loaded from files. Figure 2 shows the Optifmus
GUI for parameter estimation. The information that must
be completed is divided in groups in the GUI and it is de-
scribed as follows.

1. Project information. A descriptive name can be
given to easily identify the project.

2. Model information. A FMU file must be speci-
fied. Once the file is loaded, some information is

Session 10A: FMI II

DOI
10.3384/ecp17132683

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

685

Table 1. Numerical integrators

Numerical integrator Library Step size Order

Forward Euler Odeint Constant 1
4th order Runge-Kutta Odeint Constant 4
Adams-Bashforth-Moulton Odeint Constant Adjustable
5th order Runge-Kutta-Cash-Karp Odeint Controlled 5
5th order Runge-Kutta-Dormand-Prince Odeint Controlled 5
8th order Runge-Kutta-Fehlberg Odeint Controlled 8
Bulirsch-Stoer Odeint Controlled Controlled
4th Rosenbrock Odeint Controlled 4
Backwards Differentiation Formula (BDF) SUNDIALS Controlled Controlled
Adams-Bashforth-Moulton SUNDIALS Controlled Controlled

Figure 2. Optifmus GUI for parameter estimation.

displayed in the GUI. There are three buttons in this
group. The FMU info button shows some informa-
tion about the model, see Figure 3a. The structure
button shows the model structure, see Figure 3b. The
parameters button allows the user to give values to
the model parameters, see Figure 3c. Since in our
case, both parameters x1 and x2 are going to be cali-
brated, there is no need to give them values.

3. Simulation information. There are also three but-
tons in this group: numerical integrator, experiment
and outputs. The first one allows us to select the nu-
merical integrator, Figure 4a. The step size is only
needed if it is not controlled by the integrator. If it
is controlled, absolute and relative tolerance are used
instead. Some integrators allows the users to specify
the order whereas others have a fixed constant or a
controlled order. The FMI++ library can use the nu-
merical integrators given in Table 1 from the Odeint

and SUNDIALS libraries. The numerical integrator
(BDF) and tolerances (10−4) are left by default in
our example. The experiment window permits se-
lecting the simulation interval, start and stop times,
and matchs model inputs with data from files. Since
our model does not have inputs and it is a steady-
state model, this step can be omitted and thus leav-
ing the simulation interval by default, [0,1] seconds.
Section 3.2 shows how to use this window.

The outputs window, see Figure 4b, shows the model
outputs, furthermore allows us to specify the num-
ber of intervals, i.e. the number of points that will
be sampled for the output trajectory. The number of
points can be also set by a time step instead of by a
fixed number. Since our model is a steady-state one,
there is no need to sample more than one interval.
One interval means that values at the beginning and
end of the simulation are stored.

Development of an open source multi-platform software tool for parameter estimation studies in FMI models

686 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132683

(a) FMU information

(b) Model structure

(c) Model parameters

Figure 3. Model information

(a) Numerical integrator (b) Model outputs

Figure 4. Simulation information

4. Parameter estimation information. This GUI
group gathers all the information for the parameter
estimation study: parameters or design variables, op-
timization algorithm, objective functions and con-
straints.
• Parameters. The parameters to be calibrated can be

selected in the parameter window, see Figure 6. For
each parameter, it can be specified its initial value,
its lower and upper bounds, and if scaling is consid-
ered. If this is the case, the scaling type can be a
fixed value, logarithm scale or automatic. The two
first require a scale value. Consult Dakota documen-
tation for further information about scaling of design
variables (Adams et al., 2016).

• Algorithm. Currently, the only Dakota algorithm
considered in the tool is the MOGA from the Sandia-
developed JEGA library (Eddy and Lewis, 2001).
This is a multi-objective algorithm which supports
general constraints: bounded design variables, lin-
ear and nonlinear equality and inequality constraints.

The algorithm is highly configurable. Figure 5 shows
the window to configure the algorithm. The options
selected in our case are those indicated in Dakota
documentation for this example. The number of
model evaluations is set to 2000.

• Objectives. The objectives can be selected in the ob-
jectives window, see Figure 7. For each objective the
following options are available: criterion (maximize
or minimize), trajectory reduction, weight, scaling
type and value. The trajectory reduction option re-
duces the whole trajectory for each objective func-
tion to a single value in each simulation run. This
is required because the optimization algorithm needs
a single value per objective function and simulation
run. The following options are available: root mean
of squares, mean of absolute values, max, min or last
value. The weight value is used if the option to use
weights, and therefore transform the multi-objective
problem to a single-objective problem, is checked.

Session 10A: FMI II

DOI
10.3384/ecp17132683

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

687

Figure 5. Optimization algorithm configuration

Figure 6. Selected design variables

Figure 7. Objective functions

Figure 8. Linear inequality constraints

Figure 9. Nonlinear inequality constraints

Development of an open source multi-platform software tool for parameter estimation studies in FMI models

688 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132683

f1

f2

11.0 63.6 116.3 168.9 221.6
-217.6

-163.4

-109.1

-54.9

-0.7

Figure 10. Srinivas’ problem - 2D graph

Figure 11. Srinivas’ problem - 3D graph

The scaling option has the same meaning than for
design variables, but there are some limitations for
objective functions, consult Dakota documentation
for further details. In our example, for both objec-
tive functions the criterion is minimize. Since this is
a steady-state model, reductions are set to last simu-
lation values. Scaling is not used and weight are not
enabled because this is a multi-objective optimiza-
tion problem.

• Constraints. The tool supports linear and nonlinear
equality and inequality constraints. Scaling options
are also available. Linear constraints with respect to
design variables can be directly specified in the ap-
propriate tab in the constraint window. In our exam-
ple, the linear constraint h2 was defined in the Mod-
elica code, but this was not necessary since it can
be directly defined in the GUI, see Figure 8. On the
other hand, it can be also defined in the model as in
our example. Nonlinear constraint functions must be
defined in the model, in our example h1, then both or
only one limit per constraint must be set in the GUI,
see Figure 9.

Once all previous information is defined, the optimization
process can be performed hitting the calibration button,
see Figure 2. The stop button allows us to stop the cur-
rent optimization process. When the calibration process
is completed, the results button will be enabled to show

Figure 12. Srinivas’ problem - optimization results

information about the optimization results. Our optimiza-
tion example took less than 5 seconds for 2000 model
evaluations in a conventional laptop (4 x Intel Core i5 2.60
GHz, 8 Gbytes of RAM). During the process, messages
and log information are shown in the GUI.

Optimization results are shown in the results window,
see Figure 12. The MOGA algorithm provides all the solu-
tions found in or close to the Pareto front. In our case, the
MOGA algorithm found 421 solutions after 2000 model
evaluations. Design values, objective functions and con-
straints for each solution are shown in a table. In the result
window, any design variable, objective function or con-
straint can be selected to be plotted in 2D or 3D graphs.
Figure 10 shows a 2D graph of f2 with respect to f1, which
is the Pareto front of our problem. Figure 11 shows a 3D
graph of f1 with respect to x1 and x2.

3.2 Model calibration
This section presents the calibration of a TES tank dy-
namic model that it is under development. This kind of
tanks is used in solar thermal power plants in order to store
thermal energy and dispatch it at night or under unfavor-
able meteorological conditions. A complete description
of the model is out of the scope of this paper, but a brief
summary is given in the following lines. The storage fluid
is commonly molten salts, which can reach high tempera-
tures.

The dynamic model considers two control volumes and
dynamic mass and energy balances for molten salt and the
the inert gas in the facility, nitrogen. Tank geometry, slope
and dimensions are considered in the model. The pump
inside the tank is also modeled, assuming a simplified ge-
ometrical form. The position of the level meter and ther-
mocouples in the tank are also taken into account. The
model considers different kinds of heat transfer processes:
convection, conduction and radiation between molten salt,
gas, tank walls, roof, floor, pump, insulation and founda-
tion. The variables of interest are tank level, together with
molten salt and gas temperatures.

Session 10A: FMI II

DOI
10.3384/ecp17132683

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

689

Figure 13. Tank calibration experiment

Molten salt tank foundation designs are commonly out-
side of standards for foundations, since these standards
do not cover the temperature range were TES systems
operate. The modeled tank has several foundation lay-
ers made of concrete with steel fibers and a compacted
light expanded clay aggregate. The thermal insulation is
usually made of several layers from different materials.
The outer thermal insulation layer is frequently covered
with an aluminum jacket for weather protection. For all
these reasons, thermal conductivities in the insulation and
foundation are difficult values to estimate. In this model,
those thermal conductivities are assumed as mean constant
values and have been calibrated using the Optifmus
tool. Needed measurements are available from experi-
mental campaigns carried out in the facility. It is located at
CIEMAT - Plataforma Solar de Almería (PSA). Therefore,
our model calibration problem can be formulated as mini-
mizing the differences between molten salt and gas exper-
imental and simulated temperatures by tuning the mean
insulation and foundation thermal conductivities.

The steps to perform the calibration are similar to those
in Section 3.1, for example setting the project (step 1)
and model (step 2) information. The remaining steps are
briefly summarized in what follows.

3. Simulation information. The experiment window is
used to match model inputs with experimental data
stored in files, see Figure 13. The values in the in-
put file can be visualized thanks to a plotting tool in-
cluded in Optifmus. In case the input file is over-
sampled, a factor can be used to reduce the number of
samples. Model inputs can be also fixed to constant
values in this window if needed. Time values can be
read from the loaded file or a number of time inter-
vals between the start and stop times can be speci-
fied in the GUI. In our example, the simulation in-
terval is set to [41500,55000] seconds. The number
of samples is reduced by 1/7 in order to reduce the

calibration time, since samples were taken each five
seconds. Model inputs and time are matched to file
data. The numerical integrator is left by default. The
number of intervals is set to 500 in the output win-
dow in order to capture several points in the output
trajectories.

4. Parameter estimation information. There are no
constraints in our example, the remaining configura-
tion options are described as follows.

• Parameters. Insulation and foundation mean ther-
mal conductivities (kins,k f ou) are the design vari-
ables, guess initial values are 0.15 W/(mK) . They
are bounded in the [0,1] interval.

• Algorithm. The MOGA algorithm is used with its
default values, besides the number of model evalua-
tions (1000) and the seed (1) in order to obtain repro-
ducible results.

• Objectives. The differences between experimental
and simulated molten salt and gas temperatures are
the two objective functions (Tms,di f f ,Tgas,di f f), they
must be minimized. The trajectory reduction was set
to root mean square values, therefore both objective
functions provide the mean temperature difference in
the trajectory. There is no need to use scaling since
both objective functions represent temperature dif-
ferences. Weights are not used because we are con-
sidering a multi-objective minimization problem.

The calibration process took 21 minutes and found 157 so-
lutions in or close to the Pareto front for 1000 model eval-
uations. Figure 14 shows 10 of those solutions, where the
objective functions give the mean temperature difference
between experimental data and simulation results. Fig-
ure 15 shows the Pareto front.

The first solution in Figure 14, and pointed out by the
arrow in Figure 15, was used to compare the model results
against a different set of experimental data. All figures
shown in this section were created in the Optifmus plot-
ting tool. The system was exposed to several mass flow
rate steps in this experiment, see Figure 16. Figure 17
shows experimental and simulated tank levels. Horizon-
tal lines point out the position in height of the thermo-
couples. The gas experimental temperature corresponds
to that from the highest-placed thermocouple, whereas
the molten salt temperature is obtained from the highest-
placed thermocouple immersed in molten salts. Figure 18
shows the experimental and simulated molten salt temper-
atures. Notice that there is no experimental molten salt
temperature until the tank level reaches the first thermo-
couple position. This is why the experimental temperature
is set to a constant value at the beginning of the simulation.
Figure 19 shows the experimental and simulated gas tem-
peratures. Notice that the molten salt level reaches the last
thermocouple at the end of the simulation, therefore there
are no available measurements for gas temperature.

Development of an open source multi-platform software tool for parameter estimation studies in FMI models

690 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132683

Figure 14. Tank model calibration results

Tms_diff

Tg
as
_d
iff

1.458 1.534 1.610 1.686 1.762
1.934

2.012

2.089

2.166

2.244

Figure 15. Tank model calibration Pareto front

4 Optifmus limitations
The current main Optifmus limitations are listed here.

• The software tool has been tested only in Linux. It is
planned to be tested in Windows and Mac platforms.

• Only ME FMUs version 1.0 and 2.0 are supported.

• Only continuous real design parameters, objectives
functions and constraints are supported.

• All the MOGA options are configurable from the
GUI besides the niching type and the use of surro-
gate models which are not supported.

5 Ongoing work and future ideas
Ongoing work is summarized in the following list.

• Optimize the code to improve speed.

• Unit support when setting parameter values.

• Load FMI++ logs in the Optifmus GUI.

• More graphic configuration options.

• Include an option to simulate the model with the pa-
rameters of the selected row in the result table.

Figure 16. Tank simulation - mass flow rate

Figure 17. Tank simulation - levels

Figure 18. Tank simulation - molten salt temperatures

Figure 19. Tank simulation - gas temperatures

• Dakota offers many more algorithms for parameter
estimation and optimization. One of the ongoing
tasks is to implement several of those algorithms.

As future ideas to improve the software tool, the following
will be considered and studied.

• Dakota is a powerful toolkit, other features that could
be added to the tool are: parameter studies, sensi-
tivity analyses, design of experiments, uncertainty
quantification, and model simplification by means of
surrogate models.

• The development of an Application Programming In-
terface (API) independent of the GUI could be useful
for integrating FMI optimization capabilities in other

Session 10A: FMI II

DOI
10.3384/ecp17132683

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

691

tools. It could be applied to offline optimization, as
well as to online optimization, for example in MPC.

• Parallelization of the software tool could drastically
reduce the optimization time. Dakota offers capabili-
ties for parallelization. If we consider parallelization,
as well as an API, executable programs could be gen-
erated and executed in high-performance clusters to
further reduce the computational time.

Acknowledgments
This work has been funded by the National Plan Project
DPI2014-56364-C2-1/2-R (ENERPRO-EFFERDESAL)
of the Spanish Ministry of Economy, Industry and Com-
petitiveness and ERDF funds.

References
Brian M. Adams, Mohamed S. Ebeida, Michael S. Eldred, Gian-

luca Geraci, John D. Jakeman, Kathryn A. Maupin, Jason A.
Monschke, Laura P. Swiler, J. Adam Stephens, Dena M.
Vigil, and Timothy M.Wildey. Dakota, A Multilevel Paral-
lel Object-Oriented Framework for Design Optimization, Pa-
rameter Estimation, Uncertainty Quantification, and Sensitiv-
ity Analysis: Version 6.5 User’s Manual, 2016.

Karsten Ahnert and Mario Mulansky. Odeint - Solving or-
dinary differential equations in C++. In AIP Conference
Proceedings, volume 1389, pages 1586–1589, 2011. ISBN
9780735409569. doi:10.1063/1.3637934.

Johan Åkesson, Karl-Erik Årzén, Magnus Gäfvert, Tove
Bergdahl, and Hubertus Tummescheit. Modeling and Opti-
mization with Optimica and JModelica.org—Languages and
Tools for Solving Large-Scale Dynamic Optimization Prob-
lems. Computers and Chemical Engineering, 34(11):1737–
1749, 2010.

Berkeley Lab. BuildingsPy - Modelica Buildings Library,
2016. URL http://simulationresearch.lbl.
gov/modelica/buildingspy/.

Dassault Systemes. Dymola 2017 FD01, 2016. URL http:
//www.dymola.com.

John Eddy and Kemper Lewis. Effective Generation of Pareto
Sets Using Genetic Programming. In ASME 2001 Design
Engineering Technical Conferences and Computers and In-
formation in Engineering Conference, number 1, pages 1–9,
Pittsburgh, PA, 2001.

Hilding Elmqvist, Hans Olsson, Sven Erik Mattsson, Dag
Brück, Christian Schweiger, Dieter Joos, and Martin Otter.
Optimization for Design and Parameter Estimation. In Proc.
4th International Modelica Conference, 2005.

ESI ITI GmbH. SimulationX 3.8, 2016. URL http://www.
simulationx.com/.

Alan C. Hindmarsh, Peter N. Brown, Keith E. Grant, Steven L.
Lee, Radu Serban, Dan E. Shumaker, and Carol S. Wood-
ward. SUNDIALS: Suite of Nonlinear and Differential/Al-
gebraic Equation Solvers. ACM Transactions on Mathe-
matical Software, 31(3):363–396, 2005. ISSN 0098-3500.
doi:10.1145/1089014.1089020.

KDE Community. Breeze icons, 2016. URL https://
github.com/KDE/breeze-icons.

MapleSoft. MapleSim 2016, 2016. URL https://www.
maplesoft.com/products/maplesim/.

Modelica Association. Functional Mock-up Interface for Model
Exchange and Co-Simulation, Version 2.0, 2014a. URL
https://www.fmi-standard.org/downloads.

Modelica Association. Modelica Specification, version 3.3 Re-
vision 1, 2014b. URL http://www.modelica.org/
documents.

OSMC. OpenModelica 1.9.7, 2016. URL http://www.
openmodelica.org/.

Andreas Pfeiffer. Optimization Library for Interactive Multi-
Criteria Optimization Tasks. In Proc. 9th International Mod-
elica Conference, pages 669–680, Munich, Germany, nov
2012.

Sandia Corporation. Dakota Packages, 2016. URL https:
//dakota.sandia.gov/content/packages.

Scilab Enterprises. Scilab: Open Source software for numerical
computation, 2015. URL http://www.scilab.org/.

SciPy developers. SciPy.org - Python-based ecosystem of open-
source software for mathematics, science, and engineering,
2017. URL http://scipy.org/.

Sergey A. Tachenov. QuaZIP - Qt/C++ wrapper for ZIP/UNZIP
package, 2016. URL http://quazip.sourceforge.
net/.

The MathWorks Inc. MATLAB R2016b, 2016. URL http:
//www.mathworks.es/products/matlab/.

The Qt Company. Qt - Cross-platform software development for
embedded & desktop, 2016. URL https://www.qt.io.

Hubert Thieriot, Maroun Nemer, Mohsen Torabzadeh-Tari, Pe-
ter Fritzson, Rajiv Singh, and John John Kocherry. Towards
Design Optimization with OpenModelica Emphasizing Pa-
rameter Optimization with Genetic Algorithms. In Proc. 8th

International Modelica Conference, pages 756–762, 2011.

Luigi Vanfretti, Maxime Baudette, Achour Amazouz, Tetiana
Bogodorova, Tin Rabuzin, Jan Lavenius, and Francisco José
Goméz-López. RaPId: A modular and extensible toolbox
for parameter estimation of Modelica and FMI compliant
models. SoftwareX, 5:144–149, 2016. ISSN 23527110.
doi:10.1016/j.softx.2016.07.004.

Michael Wetter. GenOpt - A Generic Optimization Program.
Seventh International IBPSA Conference, (1):601–608, 2001.

Edmund Widl, Wolfgang Muller, Atiyah Elsheikh, Matthias
Hortenhuber, and Peter Palensky. The FMI++ library:
A high-level utility package for FMI for model ex-
change. 2013 Workshop on Modeling and Simulation
of Cyber-Physical Energy Systems, MSCPES 2013, 2013.
doi:10.1109/MSCPES.2013.6623316.

Wolfram. SystemModeler 4.3, 2016. URL http://www.
wolfram.com/system-modeler/.

Development of an open source multi-platform software tool for parameter estimation studies in FMI models

692 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132683

Innovations for Future Modelica

Hilding Elmqvist1 Toivo Henningsson2 Martin Otter3
1Mogram AB, Magle Lilla Kyrkogata 24, 223 51 Lund, Sweden, Hilding.Elmqvist@Mogram.net

2Lund, Sweden, toivo.h.h@gmail.com
3Institute of System Dynamics and Control, DLR, Oberpfaffenhofen, Germany, Martin.Otter@dlr.com

Abstract
This paper discusses language innovations for future

Modelica versions, on the one hand for generally appli-

cable language elements, and on the other hand to im-

prove modeling of multibody systems with contacts, and

media modeling. In a companion paper new algorithms

are proposed to handle much larger models than can be

treated today. All these innovations are developed and

evaluated with the experimental modeling and simula-

tion environment Modia. Modia is based on Julia, a

powerful programming language with strong focus on

scientific computing, meta-programming and just-in-

time compilation that allows very fast development. The

modeling language is directly defined and implemented

with Julia’s meta-programming constructs and is de-

signed tightly together with the symbolic and numeric

algorithms. This approach is very well suited for inno-

vation and experimenting with evolutions of modeling

capabilities in Modelica.

Keywords: Modelica, Modia, Julia, modeling, simula-
tion

1 Introduction

The objective is developing and testing innovations for

future Modelica versions with reasonable effort both

from a language point of view as well as for new sym-

bolic and numeric algorithms that are tightly designed

together with the language elements. To achieve this

goal, an experimental modeling and simulation environ-

ment called Modia is under development. Modia uses a

Modelica-like language. It shall be both simpler and

more powerful than Modelica 3.3 (Modelica Associa-

tion, 2014) and takes into account the experience gained

with Modelica in the last 20 years.

New algorithms have been already developed and

test-implemented in Modia and are described in the

companion paper (Otter and Elmqvist, 2017). For exam-

ple, arrays defined in a model stay as arrays in the gen-

erated code, even if (array) equations need to be differ-

entiated. This is a pre-requisite to handle much larger

models than what can be treated with current Modelica

tools.
In addition to equations, Modelica has a function con-

cept for procedural programming of tasks, such as table

look-up, media calculations and control system imple-

mentations. The function part of Modelica is, however,

not rich enough. There are no advanced data structures

such as union types, no matching construct. Type infer-

ence is missing with the implication that there are pres-

ently separate blocks for adding Reals, Integers and

Complex numbers. The evolution of Modelica has

slowed down since it’s a too large task to make a full

algorithmic language. Instead of inventing all such fea-

tures, it makes sense to use another language as a base.

Julia (Bezanson, et al., 2017) is a very promising lan-

guage design effort with focus on scientific computing

and has many of the properties needed to complement

the equational style for modeling. Julia also allows def-

inition of real equations (expression = expression). Fur-

thermore, advanced meta-programming features are

available which are suitable for symbolic treatment of

equations before just-in-time compilation.

Julia allows developing a modeling language together

with a public reference implementation so that language

features and symbolic/numeric algorithms are designed

tightly together. Native Julia functions are used in mod-

els and equations use Julia syntax.

Examples of other research oriented language designs

for modeling are: SOL (Zimmer, 2010), Hydra (Giorgi-

dze and Nilsson, 2009) and Modelyze (Broman and
Siek, 2012). There is also one experimental simulation

package for Julia called Sims (Short, 2012). Sims does

not make any structural and symbolic processing

though, but has event handling. It is based on ideas from

Modelyze and Hydra.

This paper introduces major language constructs of

Modia and proposes new language features for future

Modelica versions. Other aspects of Modia and its im-

plementation are given in (Elmqvist, et al., 2016). Mo-

dia is available from https://github.com/ModiaSim.

2 Modia Language Design

2.1 Model with differential equations

Modia is a domain specific language extension of Julia

by means of structured macros, that is, the Julia parser

is used to parse Modia models.

DOI
10.3384/ecp17132693

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

693

A simple first order example model is shown below:

@model FirstOrder begin

 x = Variable(start=1)

 T = Parameter(0.5, "Time constant")

 U = 2.0

@equations begin

 T*der(x) + x = u

 end

end

@model is a call to the Modia macro called model. The

first part after begin is used for variable and component

declarations by means of calling constructors. The sec-

ond part inside the @equations macro contains differ-

ential and algebraic equations as well as connections. #

starts a Julia comment. Semicolons can be omitted in

Julia.

The constructor Variable is used to declare x with

a start value of 1. In general it constructs instances of

ordinary variable types and arrays of those. It is a Julia

composite type which in addition to its value also allows

specifying type, min, max, variability, start value, info,

etc. The constructor Parameter is a specialization of

the Variable constructor which sets the variability to pa-

rameter, that is, a quantity that is changeable before sim-

ulation starts but constant during simulation. There is

also a special short hand notation to define parameters

by just giving a default value. This notation is used to

define the parameter u. The operator der() denotes the

time derivative of its argument.

The corresponding Modelica model is:

model FirstOrder

 Real x(start=1);

 parameter Real T=0.5 "Time constant";

 parameter Real u = 2.0;

equation

 T*der(x) + x = u;

end FirstOrder;

Modia uses the Julia way to declare variables with con-

structor calls. The benefit with respect to current Mod-

elica is a simpler syntax since value, variability, info,

etc. are all given in the constructor calls. This allows to

easily extending the language with new attributes/prop-

erties in the future.

2.2 Coupled models

In order to couple models, the interfaces need to be de-

fined. For simplicity of the language and its implemen-

tation, this is currently described as a @model (and

might be improved in the future by a dedicated @con-

nector macro):

@model Pin begin

 v = Float()

 i = Float(flow=true)

end

Float is a specialization of Variable with fixed type

Float64. The flow variable, i, is marked with an attrib-

ute flow=true. Such a Pin can be used to define the

terminals p and n of an electrical resistor:

@model Resistor begin

 p = Pin()

 n = Pin()

 v = Float()

 i = Float()

 R = Parameter(info="Resistance")

@equations begin

 v = p.v - n.v # Voltage drop

 0 = p.i + n.i # KCL within component

 i = p.i

 R*i = v # Ohm’s law

 end

end

An electrical component library has been developed

containing also Capacitor, Inductor, VoltageSource, etc.

A low-pass filter can then be defined as a set of con-

nected components:

@model LPfilter begin

 R = Resistor(R=100)

 C = Capacitor(C=0.001)

 V = ConstantVoltage(V=10)

@equations begin

 connect(V.p, R.p)

 connect(R.n, C.p)

 connect(C.n, V.n)

 end

end

The function connect has the same meaning as in Mod-

elica. Note, that no ground component is needed because

the missing ground can be automatically handled with a

new algorithm described in (Otter and Elmqvist, 2017).

Modia is used to evaluate whether this simplification is

reliable and transparent for the user. The diagram of a

corresponding Modelica model is shown in Figure 1.

Figure 1. Low pass filter (without ground object)

2.3 Inheritance

There are several electrical components that share the

property of having two Pins. Such components are

called OnePorts. Similarly to Modelica, it is possible to

describe the common properties once and inherit them.

The common properties are:

@model OnePort begin

 p = Pin()

 n = Pin()

 v = Float()

 i = Float()

@equations begin

 v = p.v - n.v # Voltage drop

 0 = p.i + n.i # KCL within component

 i = p.i

 end

end

The Resistor model can then be simplified:

@model Resistor begin

Innovations for Future Modelica

694 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132693

 @extends OnePort()

 @inherits i, v

 R = Parameter(info="Resistance")

@equations begin

 R*i = v # Ohm’s law

 end

end

The @extends macro incorporates all declarations and

all equations from OnePort. The OnePort variables

can be accessed by this.v and this.i in the equa-

tions of the Resistor. The @inherits macro enables

to directly use variables i and v.

2.4 Type and size inference

The Modelica Standard Library (Modelica Association,
2016) contains similar models operating on different

data types. One example is switches, which based on a

Boolean signal select between two Real, two Booleans,

or two Complex numbers. There is a desire in the Mod-

elica community to unify this situation by means of type

inference.

To experiment with type and size inference, such a

feature is included in Modia: Variable constructors do

not need to specify type and size. Types and sizes can

be inferred from the environment of a model or start val-

ues provided, either initial conditions for states or ap-

proximate start values for algebraic constraints.

A generic switch that can be applied to matrices and

strings as well, can be then defined as:

@model Switch begin

 sw = Boolean()

 u1 = Variable()

 u2 = Variable()

 y = Variable()

@equations begin

 y = if sw; u1 else u2 end

 end

end

2.5 Variable Declarations

There are, however, cases when size and type inference

based on start values is not natural, for example, when

algebraic equations form a linear system of real simul-

taneous equations. In such a case, the solution is inde-

pendent of any start value and only size needs to be

given.

It is possible to provide type information in variable

declarations using the type parameter T in the Varia-

ble constructor or its short version Var:

v1 = Var(T=Float64)

It is unspecified if the variable v1 is a scalar or array of

Float64. It is possible to provide information that a

variable is of array type with a certain number of dimen-

sions:

array = Var(T=Array{Float64,1})

matrix = Var(T=Array{Float64,2})

The size can be fixed using the size attribute:

scalar = Var(T=Float64, size=())

array3 = Var(T=Float64, size=(3,))

matrix3x3 = Var(T=Float64, size=(3,3))

The size is given with the tuple constructor according to

the result of the Julia size function. Empty tuple, (),

means scalar. A vector size is given as a tuple with the

size. Such a tuple with one element needs a comma to

distinguish it from an expression within parenthesis.

When the size attribute is given, T denotes the array el-

ement type.

There is also a FixedSizeArrays module for Julia

(Danish, 2014) which gives faster code since stack allo-

cation is possible and garbage collection avoided. The

corresponding Modia declarations are then:

fixedArray3 = Var(T=Vec{3,Float64})

fixedMatrix3x3 = Var(T=Mat{3,3,Float64})

SI units can be given using the Julia SIUnits module

(Fisher, 2013). It has predefined types such as: Meter,
KiloGram, Second, Ampere, Kelvin, Mole,

Candela, Radian, Steradian, Joule, Cou-

lomb, Volt, Farad, Newton, Ohm, Siemens,

Hertz, Watt, Pascal. A Modia variable with unit

Volt is declared as:

v2 = Var(T=Volt)

There is an option in the SIUnits module to use units

with shorter names (m, kg, etc) (and * is not needed be-

tween literal and identifier), for example:

m=2.5kg

length=5m

However, this feature is not useful since unit m would

then be in the same name space as the variable m. Inves-

tigations are being made to allow a local scope for units

after literals using a syntax with []:

m=2.5[kg]

length=5[m]

2.6 Type Declarations

To avoid repeatedly typing type and size information,

it’s possible to define alternative variable constructors

outside the @model macro:

Float3(; args...) = Var(T=Float64,

 size=(3,); args...)

Voltage(; args...) = Var(T=Volt;

 args...)

The notation "; arg... " denotes a list of keyword

arguments which are just passed to the Variable con-

structor using the same notation. This means that a 3-

vector with start attribute and a three-phase Voltage

variable can be declared as:

v3 = Float3(start=zeros(3))

v4 = Voltage(size=(3,), start=[220.0,

 220.0, 220.0]Volt)

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132693

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

695

2.7 Redeclaration of submodels

With the "replaceable" language element, Modelica has

a powerful concept to exchange submodels on a lower

level. However, it is complicated to understand and dif-

ficult to implement for tools. Furthermore, it is not pow-

erful enough for certain applications, because redeclara-

tions cannot be controlled by variables and they must be

planned in advanced, because only models can be re-

placed that are marked to be replaceable.

A simpler and more powerful concept for redeclara-

tions has been tested in Modia and follows naturally

from the constructor style of declaration using expres-

sions, as shown in the following example:

MotorModels = [Motor100KW,

 Motor200KW,

 Motor250KW] # Modia models

selectedMotor = motorConfig() # Int

@model HybridCar begin

 @extends BaseHybridCar(

 motor = MotorModels[selectedMotor](),

 gear = if gearOption1; Gear1(i=4)

 else Gear2(i=5) end)

end

In model BaseHybridCar every submodel can be re-

placed without being marked. In particular new motor

and gearbox models are provided. The motor model is

selected from an array of Modia models via an integer.

The gearbox model is selected based on a logical condi-

tion. Such flexible types of redeclarations cannot be for-

mulated in Modelica 3.3.

2.8 Multi-mode Modeling

Several attempts have been made to generalize the se-

mantics of Modelica to allow mode changes, for exam-

ple (Mattsson, et al., 2015). However, only a limited

classes of problems could be handled. One reason is the

imposed restriction that the equations are only processed

once, code is generated and this code should hold for all

mode changes. There are academic simulation proto-

types that dynamically process and switch equations

during run-time, such as (Zimmer, 2010; Höger, 2014).

The question is how to incorporate such ideas in to Mod-

elica and Modelica tools with the goal to solve real-

world industrial problems.

First investigations have been carried out in Modia to

experiment with changing model structure. Consider the

model of an electrical motor with a load in Figure 2. The

shaft between motor and load breaks at a certain time.

Figure 2. Electrical motor, load and breaking shaft.

The breaking shaft can be modelled as follows using

conditional equations:

@model BreakingShaft begin

 flange1 = Flange()

 flange2 = Flange()

 broken = Boolean()

@equations begin

 if broken

 flange1.tau = 0

 flange2.tau = 0

 else

 flange1.w = flange2.w

 flange1.tau + flange2.tau = 0

 end

 end

end

Figure 3 shows the angular speeds of the two inertias

when the shaft breaks at time = 100.

Figure 3. Angular speeds of inertias

The set of model equations and the DAE index is chang-

ing when the shaft breaks. The Modia environment

makes new symbolic transformations and just-in-time

compilation for each mode of the system. The final re-

sults of variables before an event is used as initial con-

ditions after the event.

Mode changes with conditional equations might in-

troduces inconsistent initial conditions causing Dirac

impulses to occur. This more general problem is treated

in (Benveniste, et al., 2017).

2.9 Other features

Other features, such as type and size inference, time

events, synchronous controllers, state events, multi do-

main models are exemplified in (Elmqvist, et al., 2016).

There are also ongoing development and experimenta-

tion regarding nested simulations, etc.

3 Model Examples

3.1 Multibody modeling

Multibody models uses vector and matrix equations. Be-

low, a tiny multibody library is defined with similarities

to package MultiBody of the Modelica Standard Library

Innovations for Future Modelica

696 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132693

(Modelica Association, 2016). First, convenient Varia-

ble constructors involving SIUnits are defined.

Position(; args...) =

 Var(T=Meter; size=(), args...)

Velocity(; args...) =

 Var(T=Meter/Second; size=(), args...)

Acceleration(; args...) =

 Var(T=Meter/Second^2; size=(), args...)

Angle(; args...) =

 Var(T=Radian; size=(), args...)

AngularVelocity(; args...) =

 Var(T=Radian/Second; size=(), args...)

AngularAcceleration(; args...) =

 Var(T=Radian/Second^2; size=(),

 args...)

Force(; args...) =

 Var(T=Newton; size=(), args...)

Torque(; args...) =

 Var(T=Newton*Meter; size=(), args...)

Mass(; args...) =

 Var(T=KiloGram; size=(), min=0,

 args...)

Based on these scalar Variable constructors, vector and

matrix constructors can be defined.

Axis3(; args...) =

 Var(T=SIPrefix; size=(3,), args...)

Position3(; args...) =

 Position(size=(3,); args...)

Velocity3(; args...) =

 Velocity(size=(3,); args...)

Acceleration3(; args...) =

 Acceleration(size=(3,); args...)

Rotation3(; args...) =

 Var(T=SIPrefix; size=(3,3),

 property=rotationGroup3D, args...)

AngularVelocity3(; args...) =

 AngularVelocity(size=(3,); args...)

AngularAcceleration3(; args...) =

 AngularAcceleration(size=(3,); args...)

Force3(; args...) =

 Force(size=(3,); args...)

Torque3(; args...) =

 Torque(size=(3,); args...)

Inertia3(; args...) =

 Var(T=KiloGram*Meter*Meter, size=(3,3);

 property=symmetric, args...)

It should be noted that Rotation3, the type for rotation

matrices, has a special property:

property=rotationGroup3D

In particular this means that the element declared in this

way is a 3x3 rotation matrix that has 9 elements with 6

implicit constraints between them. In case kinematic

loops are present, this property of rotation matrices

would lead to redundant constraint equations that are

difficult to handle. As discussed in (Elmqvist and Matts-

son, 2016), a tool can, however, automatically remove

this redundancy of a kinematic loop in a pre-processing

step, provided the rotation matrices are marked, as done

above. Compared to current Modelica, the benefit is that

no special operators Connections.branch/.root/.isRoot

etc are needed anymore. Note, these operators are awk-

ward, difficult to understand and it is easy to make mis-

takes.

Other properties can be defined as well. In particular,

the Inertia3 constructor specifies the matrix to be sym-

metric. This can enable better user interface for setting

parameters.

The coupling semantics is defined by Frames.

@model Frame begin

 r_0 = Position3()

 R = Rotation3()

 f = Force3(flow=true)

 t = Torque3(flow=true)

end

A Prismatic joint has two Frames. Axis of translation is

given by a vector parameter n.

@model Prismatic begin

 n = Axis3(value=[1,0,0],

 variability=parameter)

 frame_a = Frame()

 frame_b = Frame()

 s = Position(start=0*Meter)

 v = Velocity(start=0*Meter/Second)

 a = Acceleration()

 f = Force()

@equations begin

 v = der(s)

 a = der(v)

 frame_b.r_0 = frame_a.r_0 +

 frame_a.R’*(n*s)

 frame_b.R = frame_a.R

 frame_a.f = -frame_b.f

 frame_a.t + frame_b.t =

 cross(n*s, frame_b.f)

 # d'Alemberts principle

 f = -dot(n, frame_b.f)

 f = 0*Newton # Not driven

 end

end

A Revolute joint has similar structure.

@model Revolute begin

 n = Axis3(value=[0,1,0],

 variability=parameter)

 frame_a = Frame()

 frame_b = Frame()

 phi = Angle(start=0)

 w = AngularVelocity(start=0)

 a = AngularAcceleration()

 tau = Torque()

 R_rel = Rotation3()

@equations begin

 R_rel = n*n’ + (eye(3) - n*n’)*cos(phi)

 - skew(n)*sin(phi)

 w = der(phi)

 a = der(w)

 frame_b.r_0 = frame_a.r_0

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132693

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

697

 frame_b.R = R_rel*frame_a.R

 frame_a.f = -R_rel'*frame_b.f

 frame_a.t = - R_rel'*frame_b.t

 # d'Alemberts principle

 tau = -dot(n, frame_b.t)

 tau = 0*Newton*Meter # Not driven

 end

end

The skew function is defined as:

skew(x) = [0 -x[3] x[2];

 x[3] 0 -x[1];

 -x[2] x[1] 0]

Gravity is defined by the following function:

gravityAcceleration(r) =

 9.81*[0,-1,0]*Meter/Second^2

A Body has one Frame. The parameter r_CM gives the

vector from the frame to center of mass.

@model Body begin

 r_CM = Position3(variability=parameter)

 m = Mass(variability=parameter)

 I = Inertia3(variability=parameter)

 frame = Frame()

 r_0 = Position3()

 R = Rotation3()

 v_0 = Velocity3()

 a_0 = Acceleration3()

 w_a = AngularVelocity3()

 z_a = AngularAcceleration3()

 g_0 = Acceleration3()

 W = Var(T=Float64, size=(3,3))

@equations begin

 r_0 = frame.r_0

 R = frame.R

 g_0 = gravityAcceleration(r_0 + R'*r_CM)

 # Translational kinematic differential

 # equations

 v_0 = der(r_0)

 a_0 = der(v_0)

 # Rotational kinematic differential

 # equations

 W = der(R)*transpose(R)

 w_a = [W[3,2], W[1,3], W[2,1]]

 z_a = der(w_a)

 # Newton/Euler equations

 frame.f = m*(R*(a_0 - g_0) +

 cross(z_a, r_CM) + cross(w_a,

 cross(w_a, r_CM)))

 frame.t = I*z_a + (cross(w_a, I*w_a) +

 cross(r_CM, frame.f))

 end

end

The coordinate systems must be fixed for multibody dy-

namics. This is done by using a World object:

@model World begin

 frame = Frame()

@equations begin

 frame.r_0 = zeros(3)*Meter

 frame.R = eye(3,3)

 end

end

A simple sliding mass model is shown below:

@model TranslationalBody begin

 world = World()

 j = Prismatic(n=[1,1,1]/sqrt(3),

 v = Velocity(start=1*Meter/Second))

 body = Body(r_CM=[0.5,0,0]*Meter,

 m=1.0*KiloGram,

 I=1e-3*eye(3)*KiloGram*Meter^2)

@equations begin

 connect(world.frame, j.frame_a)

 connect(j.frame_b, body.frame)

 end

end

3.2 Functions and data structures

One of the reasons for developing Modia on top of Julia

is to have direct access to Julia algorithmic features, i.e.

much more powerful functions and data structures than

available in current Modelica.

One of the limitations of current Modelica is a con-

venient way of handling collisions of many objects for

DEM (Discrete Element Modeling). The problem is that

there are n*(n-1)/2 potential contacts possible for n ob-

jects. The user can of course not explicitly make these

connections.

One approach is that each object registers its position.

After that, the forces between each pair of objects in

contact are calculated. Then each object retrieves the

sum of the forces acting on the object. This force is used

in the equations of motion. In (Elmqvist et al., 2015), the

information about each object and the above calcula-

tions are handled in C/C++. A problem is that there is

no convenient method in current Modelica to make sure

all objects have registered their position before forces

are extracted. An elaborate scheme involving in-

ner/outer construct together with flow variables was

used.

An experimental feature has been included in Modia

to solve this problem. The built-in operator

allInstances(v) creates a vector of all the variables

v within all instances of the class where v is declared. It

can be seen as a specialization of the proposed Modelica

array constructor: [c.v for c in class Class], (Elmqvist,

et al., 2015b). This construct did not make it into Mod-

elica 3.4 due to concerns about self-reference and mu-

tual recursive loops. The allInstances operator is re-

ferring to the class where it’s used but has a more re-

stricted semantics.

Consider modeling a set of spherical balls moving on

a plane. We will assume the same radius for simplicity

and a force law of a spring-damper during contact. A

Modia model is shown below.

@model Ball begin

 r = Var()

 v = Var()

 f = Var()

Innovations for Future Modelica

698 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132693

 m = 1.0

@equations begin

 der(r) = v

 m*der(v) = f

 f = getForce(r, v, allInstances(r),

 allInstances(v), (r,v) -> (k*r + d*v))

 end

end

The force is dependent on the position and velocity of

all Balls, that is, the allInstances operator is used on

both r and v. The force law is provided as an anony-

mous function: (r,v) -> (k*r + d*v).

A set of Balls can easily be modelled by just instanti-

ation. The contact handling is automatic:

@model Balls begin

 b1 = Ball(r = Var(start=[0.0,2]),

 v = Var(start=[1,0]))

 b2 = Ball(r = Var(start=[0.5,2]),

 v = Var(start=[-1,0]))

 b3 = Ball(r = Var(start=[1.0,2]),

 v = Var(start=[0,0]))

end

In this case with three balls, the operator

allInstances(r) expands to [b1.r, b2.r, b3.r].

The force contributions from all other balls are calcu-

lated according to the spring-damper model by function

getForce:

const k=10000

const d=100

const radius=0.05

function getForce(r, v, positions,

 velocities, contactLaw)

 force = zeros(2)

 for i in 1:length(positions)

 pos = positions[i]

 vel = velocities[i]

 if r != pos

 delta = r - pos

 deltaV = v - vel

 f = if norm(delta) < 2*radius;

 -contactLaw((norm(delta)-

 2*radius)*delta/norm(delta),

 deltaV) else

 zeros(2) end

 force += f

 end

 end

 return force

end

The described technique opens up the possibility for fur-

ther important optimizations. In order to avoid O(n2)

complexity when deciding which objects that are in con-

tact, space partitioning by quad-trees or oct-trees can be

used, see (Elmqvist et al., 2015). This requires recursive

data structures that are available in Julia.

1 http://doc.modelica.org/om/Modelica.Media.html

3.3 Media Modelling

The Modelica.Media library within the Modelica Stand-

ard Library1 provides a large set of packages and func-

tions to compute media properties of one and two-phase

media dedicated for simulation. Although the Media li-

brary is powerful, it has conceptual limitations for the

modeling of media with multiple substances that have

multiple phases. Furthermore, the details of the library

are difficult to understand and difficult to support by

Modelica tools due to the extensive use of replaceable

packages and functions. There have been several at-

tempts to simplify the approach and making media mod-

eling more powerful.

Julia allows a fresh view on this difficult topic and it

seems that multiple dispatch and other Julia features al-

low a surprisingly simple way to model complex media:

Following the Modelica.Media library design, a me-

dium has the following orthogonal properties:

1. Medium states that define the independent variables

of the medium. A medium may have different types

of independent variables. For example, it might

have as independent variables pressure p and tem-

perature T or pressure p and specific enthalpy h. In

Julia they would be described as types.

2. Medium constant data that defines constants for

every instance of a specific medium. For example a

simple medium may have a constant d_const for the

mean density. In Julia constant data would be de-

scribed as constants in a module.

3. Medium immutable data that defines constants spe-

cific to an instance of a specific medium that cannot

be changed once the medium is instantiated. Typi-

cally reference points such as h_offset may have a

default value, but might be changed for particular

medium instances. In Julia such data would be de-

scribed as immutable types.

4. Medium functions that define properties of a me-

dium as function of the medium constant and immu-

table data and the medium states. For example den-

sity(medium,state) computes the density for a

medium using the given state description.

Below is a sketch of a new Media library design:

module Media # Interface of media models

 # Possible medium states

 type State_pT

 p::Float64

 T::Float64

 end

 type State_ph

 p::Float64

 h::Float64

 end

 # Possible medium functions

 density(medium,state)=error(..)

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132693

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

699

 specificEnthalpy(medium,state)=error(..)

 setState_pT(medium,p,T)=error(..)

 setState_ph(medium,p,h)=error(..)

 ...

end

In a generic module Media, the supported medium states

and the supported medium functions are collected. The

default implementation of the functions for every me-

dium are error messages. However, also concrete func-

tions could be added here that hold for every medium.

A specific medium is implemented with a Julia mod-

ule, as shown here for a simple water model:

module SimpleWater

 import Media

 # Constants of medium

 const cp_const = 4184.0

 const cv_const = 4184.0

 const d_const = 995.586

 const T0 = 273.15

 # Variables specific to an instance

 immutable Medium

 h_offset::Float64

 Medium(;h_offset=0.0) = new(h_offset)

 end

 # Functions of medium

 Media.density(

 m::Medium,

 state::Media.State_pT) = d_const

 Media.specificEnthalpy(

 m::Medium,

 state::Media.State_pT) =

 cp_const*(state.T - T0) + m.h_offset

 Media.setState_pT(m::Medium, p, T) =

 Media.State_pT(p,T)

 Media.setState_ph(m::Medium, p, h) =

 Media.State_pT(p,

 T0+(h-m.h_offset)/cp_const)

 ...

end

In a Modia model Julia data structures and functions can

be used. As a result, it is possible to instantiate a medium

model at some place with

medium1=SimpleWater.Medium()

medium2=SimpleWater.Medium(h_offset=10.0)

and then propagate this medium through all connected

fluid component models:

@model FluidPort begin

 # contains medium, p, h, ...

end

...

port = FluidPort()

...

port.medium = SimpleWater.Medium()

Inside a component model, medium properties are com-

puted. The implementation of such a component model

neither knows which concrete medium model is used,

nor which independent states the medium has, so the

component model can be used for all media that provide

an implementation of the used functions:

state = setState_ph(port.medium,

 port.p,

 port.h)

d = density(medium,state)

h = specificEnthalpy(medium,state)

Julia selects the concrete functions to be called based on

the medium type and the state type. This is the key in-

novation that makes media modeling suddenly so sim-

ple: a function is (statically) selected based on the types

of several arguments.

4 Implementation

The Modia implementation is made in Julia which pro-

vides meta-programming capabilities which are suitable

for symbolic treatment of the equations.

4.1 Meta-programming in Julia

Languages such as Modelica and Modia require sym-

bolic transformations of equations into executable code.

A mathematical expression is conveniently represented

by an AST (abstract syntax tree). The Julia language

(Bezanson, et al., 2017) allows creation of “quoted” ex-

pressions encapsulated as, ʺ:(…)ʺ.

julia> equ = :(0 = x + 2y)

:(0 = x + 2y)

Such an expression is stored as an AST. The AST can

be shown by using a built-in function, dump():

julia> dump(equ)

Expr

 head: Symbol =

 args: Array(Any,(2,))

 1: Int64 0

 2: Expr

 head: Symbol call

 args: Array(Any,(3,))

 1: Symbol +

 2: Symbol x

 3: Expr

 head: Symbol call

 args: Array(Any,(3,))

 typ: Any

 typ: Any

 typ: Any

equ is of type Expr which has three fields: head, args

and typ. equ.head is the Symbol = representing the

equality of the two expressions of the equation. The

right hand side is the sum of two expressions: x and 2y.

The operator + is represented as a function call:

equ.args[2].head. Which function to call is defined in

equ.args[2].args[1]. The operands of the + operator are

equ.args[2].args[2] and equ.args[2].args[3].

 A new AST can be built using the Expr constructor.

For example, solving an equation of the form:

0 = x + expression

can be done as follows:

Innovations for Future Modelica

700 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132693

julia> solved = Expr(:(=),

 equ.args[2].args[2], Expr(:call, :-,

 equ.args[2].args[3]))

:(x = -(2y))

It is also possible to create a quoted expression referring

to parts of equ by the use of “interpolation”, $().

julia> solved = :($(equ.args[2].args[2]) =

 - $(equ.args[2].args[3]))

:(x = -(2y))

The result is presented as a quoted expression. By as-

signing the variable y, it’s possible to calculate x using

the eval function on the AST solved:

julia> y = 10

10

julia> eval(solved)

-20

julia> @show x

x = -20

4.2 Symbolic Transformations of Modia

Models

The following list shows some of the structural and sym-

bolic transformations which are performed by the Modia

implementation:

 Instantiation

 Flattening

 Alias elimination

 Type and size inference

 Removal of singularities

 Index reduction and BLT of array equations

 Symbolic differentiation of matrix equations

 Symbolic solution of matrix equations

 Partial state selection and tearing

 Transformation to a special index one DAE

 Determining sparseness structure of Jacobian

Modia supports type and size inference, that is, the Var-

iable constructor does not need to specify type and size.

However, Pantelides algorithm and removal of singular-

ities require that types and sizes of variables and equa-

tions are known. Types and sizes are inferred from the

start values provided and by propagation. The left and

right hand sides of equations are evaluated with given

start values and the type and size inference of Julia is

used to determine the size and types of variables and

equations.

There are useful application models where structural

symbolic algorithms fail and may lead to strange error

messages during symbolic processing or to run-time er-

rors. For example, if an electrical circuit is not grounded,

the potentials of the electrical Pins can float, that is, the

system equations are underdetermined. On the other

hand, the equations are overdetermined regarding cur-

rents. Such singularities needs to be removed before fur-

ther structural processing. Details of such a technique is

described in the companion paper (Otter and Elmqvist,
2017).

The Pantelides algorithm and other structural index

reduction algorithms are designed for scalar variables

and equations. So Modelica tools typically symbolically

expand array equations into a set of scalar equations in-

volving the variable elements. This is not feasible if

large array equations are used, for example, for flexible

bodies or other discretized partial differential equations.

Generalizations of BLT and Pantelides algorithms to di-

rectly handle array equations can be found in (Otter and
Elmqvist, 2017).

Pantelides algorithm determines which array equa-

tions that needs to be differentiated. Special care are

needed when performing symbolic operations on array

and matrix equations since matrix multiplication is not

commutative. Solving for unknowns are done by a set

of rewrite rules. As an example, the right division oper-

ator, /, or the left division operator, \, is used depending

on whether the unknown is on the right or left side of a

multiplication operator. Special rules can be used for ro-

tation matrices to replace division by multiplication with

the transpose of the rotation matrix.

4.3 Numeric Solution of Modia Models

Numeric treatment and transformation of the resulting

differential algebraic array equations to index one form

is described in the companion paper (Otter and
Elmqvist, 2017).

5 Outlook

The Modia experimental language gives new possibili-

ties for creation of new innovative language elements

and algorithms to model and simulate more complex

models than is possible in current Modelica.

The suggested innovations of the companion paper

(Otter and Elmqvist, 2017) can be directly utilized in

current Modelica tools. A change in the Modelica lan-

guage is not needed for them. Part of the proposed inno-

vations in this paper for new language elements, such as

type inference, marking of rotational matrices in combi-

nation with new algorithms, or the allInstances(..) oper-

ator, could be included in a fully backwards compatible

form in a future Modelica 3.x version.

The use of native Julia for the algorithmic part would

simplify the Modelica effort considerably since Model-

ica does not need to be extended with new features in

functions. This means that evolution of Modelica could

be focused on the equational modeling aspects.

Contributions to Modia for language design and for

improved symbolic and numeric algorithms are wel-

come.

References

Benveniste A., Caillaud B., Elmqvist H., Ghorbal K., Otter

M., and Pouzet M. (2017): Multi-Mode DAE Models -

Challenges, Theory and Implementation. Lecture Notes on

Computer Science, submitted for review.

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132693

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

701

Bezanson J., Edelman A., Karpinski S. and Shah V.B.

(2017): Julia: A Fresh Approach to Numerical Computing.

SIAM Review, Vol. 59, No. 1, pp. 65-98.

http://julialang.org/publications/julia-fresh-approach-

BEKS.pdf; see also: http://julialang.org/

Broman D., Siek J. G. (2012): Modelyze: a Gradually Typed

Host Language for Embedding Equation-Based Modeling

Languages, University of California at Berkeley, No.

UCB/EECS-2012-173, www2.eecs.berke-

ley.edu/Pubs/TechRpts/2012/EECS-2012-173.html.

Danish D. (2014): FixedSizeArrays, https://github.com/Si-

monDanisch/FixedSizeArrays.jl

Elmqvist H., Goteman A., Roxling V., Ghandriz T. (2015):

Generic Modelica Framework for MultiBody Contacts and

Discrete Element Method. Proceedings 11th International

Modelica Conference, Versailles.

http://www.ep.liu.se/ecp/118/046/ecp15118427.pdf

Elmqvist H., Olsson H., Otter M. (2015b): Constructs for

Meta Properties Modeling in Modelica. Proceedings 11th

International Modelica Conference, Versailles.

http://www.ep.liu.se/ecp/118/026/ecp15118245.pdf

Elmqvist H. and Mattsson S.E. (2016): Exploiting Model

Graph Analysis for Simplified Modeling and Improved Di-

agnostics. Proceedings EOOLT '16, April 18, Milano, It-

aly.

Elmqvist J., Henningsson T. and Otter M. (2016): System

Modeling and Programming in a Unified Environment

based on Julia. Proceedings of ISoLA 2016 Conference

Oct. 10-14, T. Margaria and B. Steffen (Eds.), Part II,

LNCS 9953, pp. 198-217.

Fisher K. (2013): SIUnits. https://github.com/Keno/SIUnits.jl

Giorgidze G., Nilsson H. (2009): Higher-Order Non-Causal

Modelling and Simulation of Structurally Dynamic Sys-

tems. In Proceedings of the 7th International Modelica

Conference, pages 208–218, Como, Italy.

http://www.ep.liu.se/ecp/043/022/ecp09430137.pdf.

Höger C.: Dynamic structural analysis for DAEs. In Pro-

ceedings of the 2014 SCS Summer Simulation Multicon-

ference, 2014.

Mattsson S.E, Otter M., and Elmqvist H. (2015): Multi-Mode

DAE Systems with Varying Index. Proceedings 11th Inter-

national Modelica Conference, Versailles.

http://www.ep.liu.se/ecp/118/009/ecp1511889.pdf

Modelica Association (2014): The Modelica Language Spec-

ification, Version 3.3 Revision 1, https://www.model-

ica.org/documents/ModelicaSpec33Revision1.pdf

Modelica Association (2016): The Modelica Standard Li-

brary, Version 3.3.2, https://github.com/modelica/Model-

ica

Otter M., and Elmqvist H. (2017): Transformation of Differ-

ential Algebraic Array Equations to Index One Form.

Modelica Conference 2017, Prague, May 15-17.

Short T. (2012): Sims - A Julia package for equation-based

modeling and simulations.

https://github.com/tshort/Sims.jl.

Zimmer D. (2010): Equation-Based Modeling of Variable

Structure Systems. PhD Dissertation, ETH Zürich. http://e-

collection.library.ethz.ch/eserv/eth:1512/eth-1512-02.pdf.

Innovations for Future Modelica

702 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132693

Hierarchical Semantics of Modelica

Christoph Höger1

1Institute of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Germany
christoph.hoeger@tu-berlin.de

Abstract
We present a definition of syntax and semantics for Model-
ica’s hierarchical lookup. By using a context-independent
encoding of the static semantics of free variables, it be-
comes possible to define the evaluation of references within
a calculus based on substitution. Hence, all steps of evalua-
tion have a concrete syntactic representation. We augment
the calculus with a terminating evaluation and a semantics-
preserving translation to a basic λ -calculus.
Keywords: Semantics, Classes, Compilation

1 Introduction
In current Modelica, there is no way to express the defini-
tion of a variable as a purely syntactic property, indepen-
dent of the context in which it might be used. Its definition
is obtained as part of the dynamic semantics of the flat-
tening process. This effectively renders static analysis of
models and packages impossible. Furthermore, there is
no formal method to obtain its meaning from the a found
definition in the context of a simulation model, as the dy-
namic semantics of hierarchical elements are defined only
informally.

This paper attempts to improve this situation by the
means of a compositional core calculus of classes, MCL.
In this language, we define syntactic elements for the ex-
pression of static properties of variables in a class. The se-
mantics of Modelica-style hierarchical classes is integrated
within the framework of the classic λ -calculus. This inte-
gration is inspired by the treatment of modules by Pierce
(2005). For the evaluation, we focus solely on the problems
mentioned above. For a discussion of the relation between
model elaboration and the λ -calculus, we refer to earlier
work(Höger 2016). In a final step, we present a translation
that replaces the hierarchical elements with semantically
identical non-hierarchical terms. This shows how a hier-
archical model can be translated into a simpler functional
language.

The rest of this paper is organized as follows: An intro-
duction into Modelica’s scoping and hierarchical organiza-
tion leads to the definition of the hierarchical core calculus
of MCL. This is followed by a graphical interpretation
of the hierarchical environment and consequently its se-
mantics. The paper concludes with a transformation of the
hierarchical aspects to more basic elements of the language.
This transformation is shown to be faithful in the sense that
it preserves the evaluation semantics.

2 Modelica Scoping and Hierarchies
In its simplest form, a Modelica class serves as a container
for a sequence of declarations. These may introduce con-
stants, parameters, unknowns or declare components that
are instances of other classes. The meaning of variables
in the right-hand sides of these declarations is somewhat
intricate as the example in Listing 1 shows.

The declaration of the constant x in class A refers to
two free variables, y and z. Class A is a child of class B,
which is in turn a child of C in the class-hierarchy. Hence it
“sees” all declarations1 of its parent classes. In the classical
sense, B is part of A’s lexical scope. Therefore, z is found
directly in the surrounding scope. Note that the definition
of constant z (the literal 21) is syntactically placed after A.
The scope of a binding is independent from the order of
declarations. Variable y is not defined inside B. The next
candidate is C, where it is defined as modelicaB.z.

Such a composite name gives access to elements down-
wards the hierarchy. In a first step, B is found as before
in the scope of C. The result of this search is then used to
search for z, which is defined as 21. Hence the result of
evaluating C.B.A.x should yield 42.

Although this kind of scoping might seem pretty stan-
dard, there is a subtle difficulty embedded in this seemingly
simple principle. In Modelica, there is no (syntactic) differ-
ence between looking up a class (e.g. B) and its fields (e.g.
z). What might seem like an elegant unification, turns out
to be a source of major complication in combination with
inheritance.

2.1 Inheritance and Modifications
Lexical scoping as it is used above is still a pretty straight-
forward matter: After all, the environment in which to look
for the definition of a variable is determined by the syn-
tactical composition of classes. The complexity rises dras-
tically however, once inheritance (expressed as extends
statements) comes into play:

class D
extends C.B(z=2);
constant Integer x = A.x;

end D;

class C . . . end C;

1At least the ones with the proper variability

DOI
10.3384/ecp17132703

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

703

Listing 1. Hierarchical Lookup

class C
constant Integer y = B.z;
class B

class A
constant Integer x = y + z;

end A;

constant Integer z = 21;
end B;

end C;

C.B.A.x

z

B.z
y

In the class D above, with C left unchanged, what is the
value of D.x? Since A is inherited in D from C.B, it is
tempting to assume the answer is, again, 42. Instead, the
returned value is 232.

The reason for this is shown in Listing 2. In the first step,
A is found to be inherited from the base class C.B. This
lookup succeeds immediately without further involvement
of inheritance. Hence, A.x is resolved by looking for x in
B. This class contains the same definition of x as before.
Accordingly z and y need to be looked up again. Variable z
is again looked up in its immediately enclosing scope. This
time, this scope is not provided by A, but by the inheriting
class D. Therefore the resulting value is 2.

In an interesting twist, y is not subject to this modifi-
cation. Since its lookup passes through C and only then
returns to the definition of z the inheritance is discarded.
The resulting value is therefore found in the lexical scope
of A, and hence yields 21. The overall evaluation yields 23.

This example demonstrates an important fact about
Modelica-classes. The site of the definition of a free vari-
able is not a syntactic property of the class. Instead, it
depends on the context in which this class is used.

2.2 The Principle of Open Recursion
This context is the result of evaluating all relevant super
classes. Therefore, the definition of lookup has to be part
of the evaluation of classes and vice versa. In Modelica
there is no explicit ordering between declarations. Due
to the existence of inheritance and because classes are
looked up in the same way as other declarations, such an
ordering cannot be found without knowledge of the context
of the class. Both the construction of the context and the
evaluation of class references are recursively linked.

In classical object-oriented languages, this principle is
called open recursion(Aldrich and Donnelly 2004): Each
method has access to a special variable (often called this
or self). Methods are always invoked from a concrete
object (sometimes called the reciever of a message). This
object then becomes the definition of the special variable
during evaluation of the method’s body (the special vari-
able is late bound). Free variables in the method are inter-
preted by method invocation on the special variable. This

2as discussed in https://trac.modelica.org/Modelica/ticket/2013

principle yields an implementation of recursion, since the
method itself is an element of the receiving object. It is
open, since the method might be part of different concrete
objects (and invoke different siblings on each). Hence, it is
possible to change the behavior of all methods of an object
by exchanging only one method. The same concept can be
used to explain the lookup inside Modelica’s classes, when
it is applied not only to one, but possibly many special
variables.

class D
constant Integer z = 2;
extends up(1).C.B;
constant Integer x = this.A.x;

end D;

class C
constant Integer y = this.B.z;
class B
class A

constant Integer x = up(2).y + up(1).z;
end A;

constant Integer z = 21;
end B;

end C;

In the listing above, references to the context have been
codified by two kinds of special variables: this denotes a
reference to the immediately enclosing class, while up(i)
expresses access to the i-th enclosing class (hence up(0)
is the same as this, but less readable). The benefit of such
a form lies in the fact that it eliminates any free variables
and still allows to use the class in different contexts.

3 MCL
In order to focus the discussion on the hierarchical seman-
tics by the means of such special variables, it is useful to
define a minimal calculus and ignore the any feature of
Modelica that does not directly contribute to the discus-
sion. To this end we define MCL, a small core calculus
that embeds hierarchical term into the classical minimal
λ -calculus. Besides the more concise representation, such
a reduction allows to express the complete domain of dis-
course. In the following sections, all relevant elements
can be expressed in the form of expressions in the core

Hierarchical Semantics of Modelica

704 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132703

Listing 2. Hierarchical Lookup with Inheritance

class D
extends C.B(z=2);
constant Integer x = A.x;

end D;
class C

constant Integer y = B.z;
class B

class A
constant Integer x = y + z;

end A;

constant Integer z = 21;
end B;

end C;

D.x

A.xz

B.z
y

language. There is no need to resort to externally (and
imprecisely) defined entities like tables, environments or
universes of classes.

3.1 Notational Conventions
Languages are defined in a simple BNF-form: Nontermi-
nals (e.g. t, v are expressed with the same small italic
letters as meta-variables of the corresponding syntactic sort
(e.g. we will use t to denote both the set of terms and a
variable from that set). Productions (e.g. t ::= λx.t | x)
map a nonterminal (to the left of the ::=) to clauses con-
sisting of nonterminal and terminal symbols. Clauses are
separated by a | . Each clause is one possible derivation
of the left hand side. Terminal symbols (e.g. ,true,if) are
written in a non-proportional font.

Partial functions are univalent relations {x 7→ y}. These
relations can be augmented using the ⊕-operator, borrowed
from the specification language Z:

p⊕q ∧
= {x 7→ y | x 7→ y ∈ p and x /∈ dom(q)}∪q

JtK∆ denotes the function ∆ applied to t. In order to
enhance readability, these (recursive) functions are defined
using pattern matching on their arguments: Jt1 t2K∆ means
the application of ∆ to one term formed by the juxtaposition
of two (possible distinct) terms (i.e. the term representing
the application of t1 to t2). If multiple arguments are passed
to a semantic function, they are separated by commas.
Meta variables are bound in the patterns or corresponding
where-clauses. When necessary, we consider each function
as overloaded on different syntactic sorts, e.g the function
Π can be applied to recursive definitions F as well as the
fields of a class F .

Sequences are abbreviated by an overline over the name
of the contained meta variables, e.g. t describes a sequence
t1 . . . tn. The empty sequence is ♦. Non-empty sequences
are written as pairs of a value and the remaining sequence,
separated by a double colon, e.g. s :: t describes the se-
quence s, t1, . . . , tn. The operator × maps a semantic func-
tion on a sequence, e.g. f ×F yields a sequence where

every element is the result of applying f to the correspond-
ing element in Φ.

In order to not confuse meta-level equality (e.g. of terms)
with its object-level counterpart (e.g. in an equation), we

write a ∧
= b to indicate the former (and a

∧
6= b for the oppo-

site).

3.2 Syntax
The syntax of MCL distinguishes between hierarchical
terms h and proper terms t (Figure 1). There are five
variants of hierarchical terms: The special variables up(i)
refer to the i-th enclosing class. Literal classes C are a
list of fields F bracketed in special curly braces, {|F|}.
A class field can either contain a hierarchical class (e.g. a
child class) (L = h) or a value (l = t. We presume that
each class-label L can be distinguished from each label l:
L∩ l ∧

= /0. A hierarchical node v denotes a class containing
the fields F as a hierarchical child of the enclosing class
denoted by π , written {|F in π|} (the environment is
thus encoded as a list of nodes and each node contains its
own environment). Explicit Modifications {|h with F|}
override the fields defined in the class described by hterm
with the fields in F .

Access to the field L of a class requires an explicit no-
tion of the corresponding super class in a reference R:
h1.super(h2).L. Here, h1 refers to a class extending h2
which in turn describes the definition-site of the declaration
labeled with l. The access reads as: “Get the field labeled
with L in the class h2 extended by h1”. This makes the
interface of a class immediately visible (since all inherited
fields have to be defined locally as forward references)
and is a necessary precondition for a substitution-based
semantics. If no super class shall be referenced directly,
both parts of a reference are equal. Since this is a common
case, we introduce the abbreviation h.L ∧

= h.super(h).L
to enhance the readability.

Terms t consist of the standard elements of the λ -
calculus extended with non-strict conditional, and an ex-
plicit fixed point operator fix (which ranges over multiple,

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132703

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

705

Core Terms:

t ::= x | v | t t | t ◦ t | r | if t then t else t
r ::= h.super(h).l

Values:

v ::= b | λx.t | fix x in F | true | false | Z | Q

F ::= x = λy.t

Hierarchical Terms:

h ::= up(i) | C | ν

| {|h with F|} | R
R ::= h.super(h).L

ν ,π ::= {|F in ν|}

C ::= {|F|}

F ::= L = h | l = t

Figure 1. MCL basic syntax

mutually recursive functions in F). Values v ⊆ t are the
evaluated normal forms. Builtin primitives b are booleans,
rational numbers, integers and strings. The corresponding
binary operators are summarized in ◦.

A value field can be accessed from a class using a
notation similar to the class-selection: A reference r ∧

=
h1.super(h2).l refers to the field labeled with l in class
h2 extended by h1. Again we allow the convenient abbrevi-
ation h.l ∧

= h.super(h).l
Capture-avoiding substitution of variables by a partial

function p is written as [p]t. The usual conditions for fresh-
ness of bound variables have to apply to the codomain of
the partial function. Substitutions do not pass over refer-
ences, i.e. [p]r ∧

= r. We write JtKfv to denote the set of free
variables in a term. Variables are bound by abstraction and
the mutually recursive functions (plus their arguments) of
a fixed-point. In all other cases, the set of free variables is
the union of the free variables of all sub terms.

A context is a term with a “hole” into which another term
is plugged. This hole is expressed as a special variable �.
By convention � is never bound in any term. Plugging a
term t into a context s is then obtained via substitution
[� 7→ t]s.

4 The Hierarchical Environment
The semantics of hierarchical terms can be seen as the re-
duction to a normal form of evaluated classes. We will
motivate this normal form by a somewhat informal inter-
pretation of the process. For reasons that will become clear
in a moment, call an evaluated class a node (expressed by
the syntactic sort ν). Nodes are created as the combination
of a literal class C with an environment.

The environment inside a node has one additional entry,
mapping 0 to the node itself. All other entries link back
to the original environment (just one level higher). In a
certain sense, this definition forms an inverted view of the
syntax tree, as each node gives access to an ordered set
of children (which may be its parents in the syntax tree).
Environments are forests of such trees and literal classes
are node labels. (Hence the name node for the elements of
this structure.)

Evaluation of hierarchical terms can be defined by the
resolution of special variables and the three mutually recur-

sive operations, selection, search and evaluation. During
evaluation, a special variable i is resolved in a given envi-
ronment E to the i-th entry of the environment.

JE,up(n)Keval
∧
= E(n)

JE,h.LKeval
∧
= JJE,hKeval,LKselect

JE,CKeval
∧
= {|C in E|}

JE, tKeval
∧
= . . .

Composite names (e.g. up(2).z) are evaluated from left
to right by selecting the label. Evaluating a literal class
with a given environment yields a context by appending
that literal class to the current environment. We ignore the
evaluation of proper terms for now.

Jν ,LKselect
∧
= JJν ′Kenv ⊕{0 7→ ν},hKeval

when Jν ,LKsearch
∧
= ν

′,h

In order to select a field from a class, its definition has to
be found in the class itself or in a super class. The resulting
term is then evaluated under a new environment (obtained
via env from ν ′). By setting the 0-th environment entry
to the receiver, the special variable this is given a new
meaning. If the definition is found in the receiver itself, i.e.
ν

∧
= ν ′, the change has no effect.

Jν ,LKsearch
∧
=

ν ,h if L = h ∈ JνKclass

ν ′,h′ if ν extends hS

Jh,JνKenvKeval
∧
= νS

JνS,LKsearch
∧
= ν

′,h′

A definition is searched recursively: If the field is a
literal child, its right hand side is searched. Otherwise,
the super classes of the context are evaluated and search
continues there.

4.1 Graphical Interpretation
As an example, consider the classes C and D from above
and the evaluation of D.x. Since all classes in that example
have a unique name, this name is used in abbreviations as

Hierarchical Semantics of Modelica

706 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132703

a subscript, i.e. νC is the obtained from evaluating class C,
EC is its environment and CC denotes its literal class.

To support the interpretation of class values as nodes in
a tree, they are drawn as directed graphs. Each node can
be interpreted as such a directed graph with edge labels
to indicate the ordering of its enclosing classes. A node
label indicates the literal class. The order of nodes in an
environment is drawn as graphs with two kinds of vertices.
Each entry is represented by a circular node that is labeled
with a natural number and has exactly one outgoing edge
to the corresponding element of the environment. The
top-level environment is drawn as follows:

Eroot
∧
= . 0

(1)

Creating new nodes from a literal classes inside an envi-
ronment is achieved by adding a new node (labeled with
the literal class), replacing the special nodes with edges
from that node to their respective target and increasing their
label by one:

{|CD in Eroot|}
∧
= νD

∧
= D .1

(2)

A node implies an environment on its immediate chil-
dren (function env). This environment is obtained by map-
ping the node itself to 0 and adding an entry for each
outgoing edge:

JνDKenv
∧
= ED

∧
= D .

0 1

1
(3)

Classes C and B are evaluated in a similar style to D in 2:

νC
∧
= {|CC in Eroot|}

∧
= C .1

(4)

νB
∧
= {|CB in EC|}

∧
= B C .1

2

1

(5)

Using these classes, a simple evaluation can be pro-
cessed as follows:

JνC,yKselect
∧
= JEC,up(0).B.zKeval
∧
= JJνC,BKselect,zKselect
∧
= JνB,zKselect

∧
= JEB,21Keval

∧
= 21

(6)

Similarly, the super class of D can be evaluated:

JED,up(1).C.BKeval
∧
= JJνroot ,CKselect,BKselect
∧
= JνC,BKselect

∧
= νB

(7)

With these observations it is now possible to understand
the evaluation of D.x. In a first step, the field is found in
the node itself:

JνD,xKsearch
∧
= νD,this.A.x (8)

There is no field A in CD. The search continues in the
super class, νB. Here, the field is found:

JνD,AKsearch
∧
= JνB,AKsearch by (7)
∧
= νB,CA

(9)

CA is found in the super class νB. The evaluation envi-
ronment is constructed from both the super class as well as
the extending class:

ES
∧
= JνBKenv ⊕{0 7→ νD}

∧
= D

0

C

1

.

2

1

1

(10)
Evaluation of the literal class then appends CA to the

nodes of the environment. This node in turn has its own
environment as usual:

EAS
∧
= JνASKenv

∧
= A

0

D

1

C

2

.

3

1

2

3

1

1

(11)
Resolving up(2) and up(1)in EAS yields νC and νD,

respectively. Hence, y and z can be selected:

JEAS,up(2).yKeval
∧
= JνC,yKselect by (11)
∧
= 21 by (6)

(12)

JEAS,up(1).zKeval
∧
= JνD,zKselect by (11)
∧
= JED,2Keval

∧
= 2

(13)

This demonstrates two important aspects: First, the mod-
ification in CD has affected the evaluation as intended. And
second, the inheritance is “forgotten”, when the lookup
passes the correspoding lexical scope. The evaluation of y
takes place in νC without further changes. In conclusion,
the result is 23, as expected:

JνD,xKselect
∧
= JED,this.A.xKeval by (8)
∧
= JJνD,AKselect,xKselect by (3)
∧
= JJES,CAKevalKselect by (9)
∧
= JEAS,up(2).y+up(1).zKeval by CA
∧
= JEAS,21+2Keval

∧
= 23 by (12,13)

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132703

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

707

VAL

v ⇓ v

OP

v3
∧
= (arithmetic)v1 ◦ v2
t1 ⇓ v1 t2 ⇓ v2

t1 ◦ t2 ⇓ v3

IF-TRUE
t1 ⇓ true t2 ⇓ v

if t1 then t2 else t3 ⇓ v

IF-FALSE
t1 ⇓ false t3 ⇓ v

if t1 then t2 else t3 ⇓ v

APP
t2 ⇓ v1

t1 ⇓ λx.t3
[x 7→ v1]t3 ⇓ v2

t1 t2 ⇓ v2

FIXAPP
t1 ⇓ fix x in F t2 ⇓ v2

x 7→ λy.t3 ∈ JFKΠ

[JFKµ]([y 7→ v2]t3) ⇓ v
t1 t2 ⇓ v

NODE

ν ⇓h
ν

ROOT

{|F|} ⇓h {|F in ♦|}

HSELECT

h1 ⇓h
ν1 h2 ⇓h {|F in π|}

L 7→ h3 ∈ JFKΠ Jν1,π,h3KΦ ⇓h
ν3

h1.super(h2).L ⇓h
ν3

SELECT

h1 ⇓h
ν1 h2 ⇓h {|F in π|}

l 7→ t ∈ JFKΠ Jν1,π, tKφ ⇓ v
h1.super(h2).l ⇓ v

MOD

h ⇓h {|F1 in π|}
dom(F2)⊆ dom(F1)

JF3KΠ

∧
= JF1KΠ ⊕ JF2KΠ

{|h with F2|} ⇓h {|F3 in π|}

Figure 2. Evaluation semantics

4.2 Dynamic Semantics
Figure 2 depicts the rules of the dynamic semantics of MCL
in big-step or natural(Kahn 1987) style. A term t evaluates
to a value v, iff both are related by a reduction relation
t ⇓ v. Erroneous terms are identified by not being related
to some value. All elements of ⇓ are defined inductively
by inference rules.

In order to simplify the notation of sequential constructs,
it is useful to define a mapping between concrete syntax and
partial functions. Each sequence can be seen as a partial
function, mapping its left-hand elements to the correspond-
ing right-hand side. This conversion is implemented with
the function Π.

JFKΠ

∧
= {x1 7→ λy1.t1}⊕ . . .⊕{xn 7→ λyn.tn}

where F
∧
= x1 = λy1.t1, . . . ,xn = λyn.tn

J♦KΠ

∧
= /0

Jl = t :: FKΠ

∧
= JFKΠ ⊕{l 7→ t}

JL = h :: FKΠ

∧
= JFKΠ ⊕{L 7→ h}

JFKµ

∧
= {xi 7→ fix F in xi | xi ∈ dom(JFKΠ)}

Rule APP is the standard application via substitution. OP
implements binary operators on builtin primitives; it is
actually a family of rules with one element for each builtin
operator. Rules IF-FALSE and IF-TRUE implement non-
strict conditionals.

Mutually recursive functions F ∧
= xi = λyi.ti are imple-

mented via the explicit fixed point term fix x in F, the
special function µ and rule FIXAPP. In order to evaluate
a recursive function, first the argument has to be evalu-
ated. This argument is then substituted into the body of
the function, followed by a substitution of the group itself,
as defined by µ . Due to the nature of natural semantics,
divergence cannot be distinguished from a stuck term.

The hierarchical semantics of MCL is embedded into the
proper evaluation (but not vice-versa). In a certain sense,
classes play the role of modules. Evaluation of a hierar-
chical term h to a hierarchical class ν

∧
= {|F in π|} with

parents π1 . . .πn is written h ⇓h ν . Rule SELECT augments
the evaluation relation ⇓. Hierarchical nodes are already in
normal form (rule NODE). An empty literal class evaluates
to a root node (rule ROOT).

4.2.1 Selections and Inheritance

Selecting a child class via HSELECT or SELECT relies on
the search of the corresponding definition. This is imple-
mented by a partial function from labels to hierarchical
terms. Depending on the context, either a class label L
or a value label l is looked up. Notably, this definition
of the search operation is not recursive. It relies on the
encoding of inherited fields as references from this to the
corresponding super class.

MCL does not allow for unqualified inheritance of names:
Instead of a single extends statement, all inherited fields
have to be explicitly present in the base class. The def-
inition then forwards to the super class with the second
argument of the reference:

A = this.super(up(1).Y).A;
a = this.super(up(1).Z).a;

In the example above, class A and the value a are in-
herited from classes Y and Z, which are found in the outer
scope. The delegation is resolved by either HSELECT or
SELECT. Multiple levels of inheritance are then expressed
by a chain of such delegations. This style decouples the set
of inherited elements from the definitions in the super class
and allows for a more selective approach (e.g. it becomes
possible to express the resolution of multiple inheritance
of fields with the same name).

Hierarchical Semantics of Modelica

708 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132703

J_,_,νKΦ

∧
= ν

Jν ,π,up(0)KΦ

∧
= ν

J_,π,up(n+1)KΦ

∧
= πn+1

J_,♦,up(n+1)KΦ

∧
= up(n+1)

Jν ,π,{|F|}KΦ

∧
= {|F in ν :: π|}

Jν ,π,{|h with F|}KΦ

∧
= {|Jν ,π,hKΦ with f ×F|}

where JL = hKK f
∧
= L = Jν ,π,hKΦ

Jl = tK f
∧
= l = Jν ,π, tKφ

Jν ,π,h1.super(h2).LKΦ

∧
= Jν ,π,h1KΦ.super(Jν ,π,h2KΦ).L

Jν ,π,h1.super(h2).lKφ

∧
= Jν ,π,h1KΦ.super(Jν ,π,h2KΦ).l

Jν ,π,xKφ

∧
= x Jν ,π,λx.tKφ

∧
= λx.Jν ,π, tKφ Jν ,π, t1 t2Kφ

∧
= Jν ,π, t1Kφ Jν ,π, t2Kφ . . .

Figure 3. The Fold Function

In order to adhere to the principle of open recursion
between fields of a class, the special variables in a found
term are resolved using the fold operators Φ : h×ν×h→ h
and φ : h× ν × t → t before evaluation. These mutually
recursive functions (Figure 3) take three arguments: An
evaluated class ν represents the tip of the environment (i.e.
the self-instance), π is the list of hierarchical parents of the
super class containing the definition of the current term,
and the third argument is the input that is being folded. Φ

expects and returns an hierarchical term h while φ works
on plain terms t.

In the case of plain terms, the result of folding is simple:
φ is applied on the sub terms or returns its input unchanged
if the argument is primitive. Value references are processed
by folding the hierarchical sub terms with Φ.

Folding hierarchical terms resolves the special variables
up(i) (thus implementing the environment directly via sub-
stitution): The special variable up(0) (the this-variable)
is replaced with the self -instance (the first entry of the
environment). Other special variables are looked up ac-
cordingly. If the environment is empty, the result is left
unresolved. References and modified classes are folded
by folding their corresponding sub terms. In the case of
modifications this ensures that a modified field is evalu-
ated in the context of the modification site (and not in the
context of the modified class). Literal classes are turned
into nodes by storing the environment alongside their fields.
Contrary to modifications, their fields are not subject to
further folding. This ensures that child classes retain their
own context, when a field is selected from that child class.
Nodes are left unchanged by the fold function.

4.3 Modifications and Redeclarations
MCL supports both redeclarations and modifications. The
former are implemented via overriding of inherited meth-
ods (thus, there all fields are considered replaceable). Mod-
ifications differ from overriding in their scope — modifica-
tions live outside of the modified class. Each modified field
must exist in the modified class. It is not possible to add a
field via a modification. The modification of a class h with
a sequence of fields F results in a class containing the mod-
ified fields merged with the result of the evaluation (rule
MOD). Merging is implemented by lifting the fields into

partial functions, augmenting the original function with the
new fields and lowering the result into a sequence of fields.

5 Translation of References
The specification of Modelica require the evaluation of
names only when necessary; i.e. the lookup of classes,
functions, types and variables is always driven by the at-
tempt to flatten a particular class. We take a slightly differ-
ent stance, and demand that all references can be looked
up strictly. The goal is to replace all references (inside
a certain term) with their definitions (and transitively all
references in them). The resulting term is then free of any
hierarchical references and can be evaluated as usual. This
technique allows to consider lookup and flattening as com-
pletely separate parts of the semantics (and gives reason to
consider the former as part of the static semantics).

5.1 Evaluation of Hierarchical Terms
The definition of ⇓h is algorithmic, a naive implementa-
tion will however not always terminate due to the open
recursion. In particular, evaluating the subterms of a class
reference might require evaluation of the same class refer-
ence:

{| class A = this; x = this.A.x |}.x

In the example above, a naive interpreter will repeatedly
attempt to evaluate the class reference this.A.x. This is
not a particularity of MCL, as the following example shows:

class A
model B extends C; end B;
model C extends B; end C;
B.Foo b;

end A;

This simple model cannot be flattened (as there is no class
definition for the component b). Yet, the attempt drives the
leading free implementations OpenModelica (in version
1.11.0) and JModelica (version 1.17) into an endless loop,
eventually ended by a stack overflow. In a realistically
sized model, the user can only speculate what causes such
a crash and, should the relevant loop be optimized to a
tail-recursive implementation, might not even encounter a
crash but a “frozen” implementation.

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132703

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

709

Thus it is necessary to restrict the computation of ref-
erences in a way that guarantees termination and retains
a valid result for a meaningful subset of the terminating
nodes. It is hardly constructive to reject all recursive rela-
tions between classes, as for instance recursive functions
would fall under the same rule (functions are specialized
classes in Modelica). Instead, the restriction should only
prevent divergence during lookup. This can be achieved by
only attempting to evaluate an hierarchical reference once
for any given environment.

We assume that each literal class is labeled with a unique
identifier from a set L ⊆ N. We write F i to indicate a
class with id i. The syntactic depth of a literal class is
the number of syntactically visible enclosing classes. It
is easy to see that this number is invariant during evalu-
ation (otherwise, special variables might be invalidated).
Each node is only valid when it has precisely the correct
amount of enclosing classes for its literal class. A node
that fulfills this requirement is called context correct. The
set of context correct nodes is not finite, though. Con-
sider two distinct literal classes F1 and F2 with depths 0
and 1, then {|F2 in {|F1 in ♦|}|} is context correct.
But so is {|F2 in {|F2 in {|F1 in ♦|}|}|} and so
on. Obviously, hierarchies with the repeated occurance of
the same literal class are problematic. It is thus necessary
to find a syntactic criterion to rule out such strange loops.

The directed graphs used in Section 4 can be formalized
as directed multigraphs (V,E) with vertices V ⊆ L repre-
sented by the labels of literal classes and edges as triples
of one outgoing and one incoming vertex together with a
natural number E ⊆ L×L×N. The identity of an edge is
defined by its source, its destination and its number. The
usual terms from (multi) graph theory (reachability, cycles,
etc.) apply.
Definition 1 (Graph Representation of Nodes and Envi-
ronments). The directed multigraph of a node is the ver-
tex labeled with the literal class of the node linked to the
graphs of all parents by ordered edges. The graph of an
environment (i.e. a list of nodes) is the union of the graphs
of each node (where the union of graphs is the union of
their components).

J{|Fu in π|}Kgr
∧
= ({u}∪V,P∪E)

where P ∧
= {(u, pi, i) | pi

∧
= JπiKL }

(V,E) ∧
=

⋃
i∈1...|π|

JπiKgr

The set of possible results of this transformation is finite,
when both the set of labels and edges are finite. Both
conditions are trivially fulfilled by graphs created from
context correct nodes, since each node is in itself a finite
structure, the syntactic depth of each node is limited by the
syntactic structure of the source program, and each source
program is labeled by a finite set of labels.

Multigraphs that do not contain any cycles and have a
distinguished root node can be unambiguously transformed

into a node, when the outgoing edges of a each node are
labeled consecutively with the numbers ranging from 1 to
the depth of the corresponding literal class. Such a graph is
said to be context correct. This transformation is bijective.
Definition 2 (Admissible Lookups). A node is admissi-
ble, iff its graph representation is a context correct, rooted
multigraph. An environment π is admissable, iff all con-
tained nodes are admissable and the lookup of a label
L in an environment is admissible iff the environment is
admissible:

ν admissible ⇐⇒ JνKgris rooted and context correct
π admissible ⇐⇒∀i ∈ 1 . . . |π| πi admissible

〈ν :: π ·L〉 admissible ⇐⇒ ν admissible∧π admissible

If all nodes are rejected that do not meet these simple
criteria, the set of admissible nodes is finite. This allows to
evaluate any hierarchical term without in a finite amount
of steps (by checking for repetitions). As a side effect,
all strange loops (i.e. classes that contain themselves) are
ruled out, but classes that merely refer to each other are
still allowed.
Lemma 1 (Finiteness of Admissible Lookups). For any
given finite labeling of literal classes, and a finite maxi-
mal depth of classes the set of admissible lookups is finite.
admissable nodes is finite.

Proof. Admissible nodes are finite due to their injective
mapping to a context correct, rooted multigraph over the
(finite) labeled vertices. Admissible (finite) environments
and lookups are products of finite sets.

Evaluation of hierarchical terms can be implemented in
a terminating, total function H. This function follows the
definition of ⇓h by construction. The sole difference lies in
the “memory” G, a set of admissible lookups. No lookup
is ever repeated, hence the function terminates.

JG,νKH
∧
= ν

JG,{|F|}KH
∧
= {|F in ♦|}

JG,{|h with F2|}KH
∧
= {|F3 in π|}

if JG,hKH
∧
= {|F1 in π|}

dom(F2)⊆ dom(F1)

JF3KΠ

∧
= JF1KΠ ⊕ JF2KΠ

JG,h1.super(h2).LKH
∧
= JG′,Jν1,π,hLKΦKH

if JG,h1KH
∧
= ν1

JG,h2KH
∧
= {|F in π|}

L 7→ hL ∈ JFKΠ

〈ν1 :: π ·L〉 admissible /∈ G

G′ ∧
= G∪{〈ν1 :: π ·L〉}

JG,hKH
∧
= in any other case

Hierarchical Semantics of Modelica

710 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132703

5.2 Lookup of References
The definition of H immediately yields an algorithm for the
lookup of references, L. A lookup is successful if both the
super class and the base class can be evaluated successfully,
the resulting environment is admissable and it contains a
matching element. The result of a successful lookup maps
the environment and looked up label to the folded result
term. An error is indicated by the mark .

Jh1.super(h2).lKL
∧
= 〈ν1 :: π · l〉 7→ Jν1,π, tKφ

if J /0,h1KH
∧
= ν1

J /0,h2KH
∧
= {|F in π|}

l 7→ t ∈ JFKΠ

JrKL
∧
= otherwise

This allows to to lookup all references in a term, includ-
ing those references that occur transitively as the result of
a successful lookup. Such an exhaustive search is achieved
by repeated applications of a one-step search function G to
an intermediate result set R:

J KG
∧
=

JRKG
∧
=

 if ∃[� 7→ r]s ∈ img(R) s.t. JrKL

∧
=

R∪{JrKL | [� 7→ r]s ∈ img(R)} otherwise

The exhaustive search terminates, when a fixed point is
reached. This is guaranteed due to the finite set of admissi-
ble environments. G is also inflationary. This guarantees
the existence of the conditional fixed point starting from a
set R (see Pepper and Hofstedt 2006, chapter 10).
Lemma 2 (Fixed Point of G). The ascending Kleene chain
of G has a least fixed point.

Proof. The partial functions (and error marker) obtained
by G form a complete partial order (cpo) under the subset
relation, i.e. R1 ≤ R2 ⇐⇒ R1 ⊆ R2 with as top element,
i.e. R ≤ , because the set of admissible environments (the
domain of each R) is finite and adding a top element to
a cpo yields a cpo. Function G is also Scott-continuous
(the least upper bound of any chain is the set-union in the
absence of errors and the error otherwise).

5.3 Transformation
A reference must be evaluated in order to look up its corre-
sponding definition. This does not introduce any errors, if
the underlying search result is indeed a fixed point, though
(as all contained references have already been evaluated at
least one). The definition of a reference might (after sev-
eral steps of lookup) depend on the reference itself. This
implicit recursion has to be transformed into a proper fixed
point. In order to do so, all definitions have to be regarded

as functions, since MCL does not allow for any other recur-
sive definitions. This is easily achieved by wrapping them
into a “thunk” (a function taking an unused argument).

Function C maps each found definition to a structurally
similar term where all references are replaced with their
corresponding name. It is assumed that the lookup result is
arbitrarily ordered.

Definition 3 (Transformation). The transformation re-
places all references with a recursive function that is ob-
tained by the lookup closure of its definition. The closure
replaces each references with the name of its definition.

JR, tKC
∧
= t if r /∈ t

JR, [� 7→ r]tKC
∧
= [� 7→ xi 0]JR, tKC

where R ∧
= {L1 7→ t1, . . . ,Ln 7→ tn }

JrKL
∧
= Li 7→ ti

{x1 . . .xn } fresh in img(R)

JRKC
∧
= {xi 7→ λy.ti | ti ∈ img(R),y /∈ JtiKfv }

JtKγ

∧
= t if r /∈ t

J[� 7→ r]sKγ

∧
= [� 7→ (fix xr in FR) 0]JsKγ

if JFRKΠ

∧
= JRKC

and JRKG
∧
= R

and R ∧
= J{〈ν :: π · l〉 7→ t }KGn

and JrKL
∧
= 〈ν1 :: π1 · l1〉 7→ t1

J[� 7→ r]sKγ

∧
= otherwise

5.4 Example
Our running example can be encoded in MCL as νroot.D.x.
For this term, the exhaustive lookup yields the result:

R ∧
= {

〈νD :: Eroot ·x〉 7→ JνD,Eroot ,this.A.xKφ ,

〈νA :: ES ·x〉 7→ JνA,ES,up(2).y+up(1).zKφ ,

〈νC :: Eroot ·y〉 7→ JνC,Eroot ,this.B.zKφ ,

〈νD :: Eroot ·z〉 7→ JνD,Eroot ,2Kφ ,

〈νB :: EC ·z〉 7→ JνB,Ec,21Kφ}

After closing this complete result, the translation yields:

(x0 in fix
x0 = y. (x1 0) ;
x1 = y. (x2 0) + (x3 0) ;
x2 = y. (x4 0) ;
x3 = y. 2 ;
x4 = y. 23 ;

) 0

This term then evaluates to 23, as expected.

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132703

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

711

5.5 Correctness
The correctness of γ depends on the closure of a term by
a complete lookup result. The most important step is an
observation about a symmetry between the evaluation of a
term containing hierarchical references and that of a fixed
point constructed from the lookup result R of that term:
Both evaluations only differ in the presence or absence of
rule SELECT, which is replaced by specific instances of
FIXAPP (with a group of recursive definitions generated
from R).
Lemma 3 (Correctness of C). The closure of a complete
lookup result is equivalent to the lookup of references.

When R is complete, i.e. JRKG
∧
= R

∧
6= , a term t ap-

pears on the image of R, i.e. 〈ν :: π · l〉 7→ [� 7→ t]s ∈ R,
and t evaluates with n applications of rule SELECT, i.e.
Jν ,π, tKφ ⇓n−SELECT Then the application of R as a fixed
point evaluates to an equivalent result n applications of
rule FIXAPP to R:

[JRKµ◦C]JR, tKC ⇓n−FIXAPP−R JR,vKC

Proof. By natural induction over n. The base step (n =
0) follows by a straightforward induction over ⇓, since
SELECT is not applied in the derivation. The inductive step
also requires a nested induction over ⇓. In the case of t ∧

= r,
the completeness of R is used to apply one step of rule
FIXAPP (and thus the outer induction hypothesis).

The correctness of the overall transformation is defined
as the preservation of the semantics of the transformed
term: When a term evaluates and the transformation yields
no error, then the transformed term yields a value that is
equal to the transformation of the original result.
Theorem 4 (Correctness of γ). The transformation γ pre-
serves the semantics of terms.

t ⇓ v∧ JtKγ

∧
= s =⇒ s ⇓ JvKγ

Proof. By induction over t. The fundamental case is t ∧
= r.

By construction of γ, JrKL
∧
= 〈ν :: π · l〉 7→ Jν ,π,sKφ ∈

R. Inversion of the evaluation yields Jν ,π,sKφ ⇓ v. The
conclusion then follows via rule FIXAPP and Lemma 3.

6 Discussion
We have given a definition of an explicit, context-
independent syntax and semantics for the lookup of names
in Modelica classes. Classes (hierarchical terms) can be
translated by a terminating evaluation of all references.
This translation maintains the original semantics.

6.1 Related Work
The semantics of Modelica has been subject to surprisingly
little research. The work of Kågedal (1998), has a much
broader scope. It does however not discuss open recursion

nor redeclarations and is considerably outdated when it
comes to modern Modelica. Satabin et al. (2015) use a
style comparable to ours, but favor a global environment
(called class table) over our substitution based approach.
Interestingly, they also notice the difficulty to separate the
static semantics of a model from its dynamics, but solve
this problem by restricting their input language. In particu-
lar, no short class definitions or redeclarations are consid-
ered. It is also somewhat unclear if their approach allows
for the late binding of modifications. Despite these differ-
ences, the presented techique may solve the open question
of how to obtain the values for our special variables in the
first place.

6.2 Conclusion
The definition of Modelica’s hierarchical elements by spe-
cial variables allows to express their static semantics. Treat-
ing classes and their interactions like modules with open
recursion allows for a precise reasoning of the outcome of
redeclarations and modifications. Last but not least, the
difficulties that come with the uniform treatment of classes
and components are now obvious and might have an in-
fluence on the design of future versions of Modelica. The
correct translation of hierarchical references in a terminat-
ing process while maintaining the semantics of inheritance,
modifications and redeclarations is a feature that, to our
knowledge, has not been solved before. It allows a clear
separation between the static and dynamic semantics of
names in Modelica.

References
Aldrich, Jonathan and Kevin Donnelly (2004). “Selective

open recursion: Modular reasoning about components
and inheritance”. In: SAVCBS 2004 Specification and
Verification of Component-Based Systems, p. 26.

Höger, Christoph (2016). “Modeling with monads: exten-
sible modeling semantics as syntactic sugar”. In: Pro-
ceedings of the 7th International Workshop on Equation-
Based Object-Oriented Modeling Languages and Tools.
ACM, pp. 15–24.

Kågedal, David (1998). “A Natural Semantics specification
for the equation-based modeling language Modelica”.
In: LiTH-IDA-Ex-98/48, Linköping University, Sweden.

Kahn, Gilles (1987). “Natural semantics”. In: Annual Sym-
posium on Theoretical Aspects of Computer Science.
Springer, pp. 22–39.

Pepper, Peter and Petra Hofstedt (2006). Funktionale Pro-
grammierung – Sprachdesign und Programmiertechnik.
Springer.

Pierce, Benjamin C., ed. (2005). Advanced Topis in Types
and Programming Languages. MIT Press.

Satabin, Lucas et al. (2015). “Towards a formalized Mod-
elica subset”. In: Proceedings of the 11th International
Modelica Conference, Versailles, France, September 21-
23, 2015. 118. Linköping University Electronic Press,
pp. 637–646.

Hierarchical Semantics of Modelica

712 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132703

Towards a Standard-Conform, Platform-Generic and Feature-Rich
Modelica Device Drivers Library

Bernhard Thiele1 Thomas Beutlich2 Volker Waurich3 Martin Sjölund1 Tobias Bellmann4

1PELAB, Linköping University, Sweden, {bernhard.thiele,martin.sjolund}@liu.se
2ESI ITI GmbH, Germany, thomas.beutlich@esi-group.com

3Chair of Construction Machinery, TU Dresden, Germany, volker.waurich@tu-dresden.de
4Institute of System Dynamics and Control, DLR, Germany, tobias.bellmann@dlr.de

Abstract
There are many cases where simulation applications need
to interact with their environment. Typical examples are
Human-in-the-Loop (HITL) simulators (including flight,
driving, and marine training simulators), Hardware-in-
the-Loop (HIL) simulators, but also offline process simu-
lators which cannot operate in a completely self-contained
manner and therefore need to be coupled to external ap-
plications. Embedded control applications are another re-
lated area requiring interaction between applications and
their environment. The Modelica_DeviceDrivers library,
which had its first release as open-source library in 2012,
tries to cater to such use cases. This paper describes the
library for the first time and reports about the numerous
challenges that the project experienced to meet its goal of
supporting several platforms and tools within a standard-
conform, platform-generic, feature-rich, and easy-to-use
Modelica library. Furthermore, the paper gives an in-
sight into the inner mechanics of the library’s communica-
tion and serialization functionalities, the various supported
hardware interfaces and the possibilities to generate code
for embedded systems.
Keywords: human-in-the-loop, hardware-in-the-loop,
real-time simulation, embedded control application, Mo-
delica external C

1 Introduction
The most common usage of Modelica models is for off-
line simulation experiments. However, in many cases si-
mulations need to interact with their environment or other
software components. Typical examples are Human-in-
the-Loop (HITL) simulators (including flight, driving, and
marine training simulators), Hardware-in-the-Loop (HIL)
simulators, but also offline process simulators which can-
not operate in a completely self-contained manner and the-
refore need to be coupled to external applications. Furt-
hermore, Modelica can be used for developing (model-
based) control applications that also require interaction
with their environment.

There are different approaches for enabling the above-
mentioned applications in the context of Modelica. Se-
veral development environments offer tool chains for real-

time simulation and/or model-based development of em-
bedded control applications. Some of these environments
can be coupled with Modelica tools, by wrapping code
that is generated from Modelica tools into respective third-
party tool-internal representations which can be connected
to hardware devices in the respective development en-
vironment. For example, such customized solutions are
available in Dymola1 via its DymolaBlock interface to the
MATLAB/Simulink2 tool chain, OpenModelica3 via cu-
stomized tool chains (Worschech and Mikelsons, 2012),
or SimulationX4 via Code Export for Simulink/Simulink
Coder2 or HIL environments like dSPACE DS10065, NI
VeriStand6 or ETAS LABCAR7 (Blochwitz and Beut-
lich, 2009). Furthermore, it may also be possible for
a Modelica tool to generate Functional Mock-up Units8

(FMUs) which can be imported into compatible simulator
environments (e.g., the dSPACE SCALEXIO5 HIL simu-
lator).

Instead of embedding the (FMI-) compiled Mo-
delica model into a simulator environment, the Mo-
delica_DeviceDrivers (MDD) library uses a different ap-
proach. The MDD library provides access to external de-
vices by utilizing Modelica’s external function interface
for interfacing to the C API of various device drivers di-
rectly from Modelica models (see Section 2).

Historically, the origins of the MDD library can be tra-
ced back to the ExternalDevices library (Bellmann, 2009),
an internal DLR9 Modelica library developed for the in-
teractive simulation and visualization of Modelica mo-
dels. The ExternalDevices library already supported UDP
and shared memory communication as well as several

1Dassault Systèmes, https://www.3ds.com
2The MathWorks, https://mathworks.com
3Open Source Modelica Consortium (OSMC), https://www.

openmodelica.org
4SimulationX by ESI, https://www.simulationx.com
5dSPACE, https://www.dspace.com
6National Instruments, http://www.ni.com
7ETAS, http://www.etas.com
8FMI development group, https://www.fmi-standard.

org
9Deutsches Zentrum für Luft- und Raumfahrt (DLR), German Ae-

rospace Center, http://dlr.de

DOI
10.3384/ecp17132713

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

713

input devices (keyboard, 3Dconnexion SpaceMouse10,
and game controller). Additionally, it featured a model-
integrated real-time visualization system, the foundation
of the later DLR Visualization library (Hellerer et al.,
2014).

However, the ExternalDevices library only suppor-
ted Microsoft Windows and was developed and tested
using only the Dymola tool, which caused unintentio-
nal incompatibilities with other Modelica tools. In the
further course of development, it was decided to split
the ExternalDevices library into the commercial DLR
Visualization library and an open-source cross-platform
hardware interface library, the Modelica_DeviceDrivers
library. The library is available from its GitHub
project site at https://github.com/modelica/
Modelica_DeviceDrivers/. This paper is based on
MDD v1.5.0.

2 Modelica_DeviceDrivers
The MDD library allows Modelica models to access har-
dware devices by using the Modelica external C interface
calling the appropriate C driver functions provided by the
underlying operating system (see Section 2.1).

The library is organized in several layers as indicated
in Figure 1. It provides two high-level drag & drop block
interfaces.

1. The Blocks components are compatible to Mo-
delica v3.2, using when sample() for periodically
calling Modelica functions from the Function Layer.

2. The ClockedBlocks components use the synchro-
nous language elements extension introduced in
Modelica v3.3 and are compatible with the Mo-
delica_Synchronous library (Otter et al., 2012). Due
to this support, the MDD library formally depends
on the Modelica_Synchronous library, but in practice
the Modelica_Synchronous library (and tool support
for the synchronous language elements extension) is
only required for this ClockedBlocks interface.

2.1 Cross-Platform Support
As of MDD v1.5.0, Windows and Linux are supported as
main platforms, but prototypical work also targets popular
embedded systems boards directly (see Section 4.2).

When accessing hardware devices, a Modelica model
or application calls Modelica functions from the Function
Layer (see Figure 1). These Modelica functions pro-
vide a generic interface to the underlying C Code Layer,
which is accessed by Modelica’s external function inter-
face. The platform differentiation is handled in the C
Code Layer which uses preprocessor directives for condi-
tional inclusion/exclusion of platform-specific code (#if,
#else, #endif, etc.) similar to the code fragment below.

103Dconnexion, https://3dconnexion.com

Modelica (external C) functions grouped into following packages:
- Packaging (packaging data for the communication devices)
- Communication (UDP, shared memory, etc.)
- HardwareIO (data acquisition)
- InputDevices (keyboard, joystick, etc.)
- OperatingSystem (real-time synchronization, etc)

Blocks
Drag & Drop blocks using
traditional when sample() then
style for calls to the Function
Layer.
- Blocks.Examples:
 Executable examples

Block Layer

ClockedBlocks
Drag & Drop blocks using the
Synchronous Language Elements
extension of Modelica 3.3 for calls
to the Function Layer.
- ClockedBlocks.Examples:
 Executable examples

Function Layer

C-Code Layer
The glue C-code interfaced by the External C-Function Layer.
Contains the operating system specific C-code. The C-code is
available within the Resource folder of this library.

Windows Linux Other

Figure 1. MDD layered architecture.

#if defined(_MSC_VER) || defined(__CYGWIN__
) || defined(__MINGW32__)

#include <windows.h>
/* Windows specific code goes here */
#elif defined(__linux__)
#include <unistd.h>
/* Linux specific code goes here */
#else
#error "Modelica_DeviceDrivers: Unsupported

compiler or platform"
#endif

2.2 Extended Tool Support
Back in 2009, the library was developed using the Dymola
tool. With MDD v1.4.0, considerable development efforts
have been spent on the Modelica compliance of the library
in order to better support SimulationX and OpenModelica.

Since OpenModelica v1.11.0 Beta 1 the MDD
SerialPackager blocks as well as the Communication

blocks are finally supported by OpenModelica. For achie-
ving this, it was necessary to change parts of the MDD
library (under the constraint of maintaining backwards
compatibility), and at the same time, to extend the abi-
lities of respective tools (partly by providing support for
non-standard Modelica constructs). This is discussed in
more detail in Section 3.2.3.

2.3 Library Structure
Figure 2 shows a screenshot of the package brow-
ser view with loaded MDD library. The first two
sub-packages Blocks and ClockedBlocks provide the
drag & drop blocks which correspond to the Block
Layer of Figure 1. The remaining sub-packages (ex-
cept Utilities and EmbeddedTargets) provide the
Function Layer. Both layers use sub-packages for sub-
dividing the provided functionality into different groups.
Package EmbeddedTargets contains highly target speci-

Towards a Standard-Conform, Platform-Generic and Feature-Rich Modelica Device Drivers Library

714 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132713

fic function and blocks for supporting restricted embedded
systems like the Arduino microcontroller (see Section 4).

Figure 2. MDD library structure.

Furthermore, Figure 2 gives an indication about the rela-
tion between the Block Layer and the Function Layer.
Typically, a device driver block will instantiate the corre-
sponding external object from the Function Layer. Mo-
delica’s external objects allow external functions to access
the internal memory (created by the constructor) be-
tween calls to external functions, i.e., the device hand-
lers are maintained in memory in order to access them
in subsequent simulation phases. Modelica also guaran-
tees that both the constructor and destructor functi-
ons of an external object are called exactly once, ena-
bling a reliable one-time initialization and termination of
hardware devices, usually during the initialization and ter-
mination phase of the Modelica simulation model, re-
spectively. For example, the JoystickInput block cre-
ates an instance of the external object GameController.
The package GameController_ collects functions that
can operate on external objects of type GameController.
This package provides the function getData, which takes
a GameController object as argument and returns the va-
lues of the axes and buttons of its associated hardware de-
vice.

A good way of learning how to use the Block Layer
interface of the library is by exploring the Examples

package. Care has been taken to provide self-explanatory
usage examples for the provided device driver blocks.

2.4 Interfaces
MDD library functionality can be accessed by drag &
drop of blocks from the Blocks and ClockedBlocks sub-
packages, or by direct calls to the underlying functions.

An example, which directly uses the Function Layer
for accessing a game controller, is given below:

model GameControllerExample
import

Modelica_DeviceDrivers.InputDevices.*;
parameter Integer id = 0 "0 = first

attached game controller";
GameController gc = GameController(id);
discrete Real axesRaw[6];
Integer buttons[32], pOV;

equation
when sample(0, 0.1) then

(axesRaw, buttons, pOV) =
GameController_.getData(gc);

end when;
end GameControllerExample;

The code above creates an external object named gc. The
constructor for this object takes the argument id. This ar-
gument allows specifying which controller to use if se-
veral game controllers are attached to the system. The
function getData is called periodically within a when-
clause. It takes the external object gc as argument and
returns vectors which contain the values read from the as-
sociated game controller. The vector is pre-dimensioned,
so that it can attune to controllers featuring as much as six
axes, 32 buttons and a POV (point of view) switch. The
actually available data depends on the connected game
controller hardware. Tests with the actual hardware are
needed for determining which vector entry corresponds to
which physical axis or button.

Figure 3 shows how game controllers can be acces-
sed by simply dragging & dropping a JoystickInput

block into the diagram view of a Modelica tool. While
Figure 3a uses the block found in the Blocks package,
Figure 3b uses the corresponding clocked variant from
ClockedBlocks. The additional blocks periodicClock
and assignClock are from the Modelica_Synchronous li-
brary. They associate a periodic clock to the variables and
equations within the JoystickInput block. As a result,
the underlying getData function will be called whenever
the associated clock ticks (i.e., every 0.1s in the presented
example).

(a) Using Blocks (b) Using ClockedBlocks

Figure 3. Accessing game controller devices by using
the JoystickInput block from the Blocks, or the
ClockedBlocks package.

The example models can be simulated, but real-time sy-
nchronization is required to slow the simulation speed

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132713

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

715

down, in order to synchronize the real-time inputs with
the simulation progress. The MDD library provides con-
venient support for (soft) real-time synchronization11. Ho-
wever, a user should consider that Modelica tools might
provide better (tool-specific) options for real-time syn-
chronization.

2.5 Features
The MDD library has grown to support a respectable
amount of hardware devices and associated features that
will be briefly presented in this section.

2.5.1 Input Devices

Standard input devices such as keyboard and game con-
trollers are ubiquitously available on the market, enabling
the user to build up interactive simulations quickly. MDD
provides blocks for using the generic keyboard and game
controller interface of Windows or Linux (see Figure 4).

Figure 4. Supported input devices from the Blocks package.

In addtion, more specialized hardware like the 3Dconnex-
ion SpaceMouse is supported for both platforms. Often,
these blocks will be used for interactive desktop simulati-
ons, but they can also become part of more involved (cost-
efficient) HITL simulation scenarios.

2.5.2 Communication

The most comprehensive and complex part of the library
is related to implementing support for communication de-
vices in Modelica and external C code.

Supported Devices Figure 5 gives an overview over the
supported devices.

Figure 5. Supported communication devices from the Blocks
package.

Cross-platform support for UDP and shared memory was
already available in the first released version of MDD.
Support for serial port communication is available since

11See documentation to block SynchronizeRealtime.

MDD v1.3 (Linux) and v1.4.0 (Windows). A client block
for TCP/IP socket communication was added in v1.4.0
(Windows) and v1.5.0 (Linux). Furthermore, support for
sending and receiving of Lightweight Communications
and Marshalling (LCM) datagrams12 was added in v1.5.0.
LCM is a set of libraries and tools for message passing and
data marshalling13, which is particularly targeted at low-
latency real-time applications for robotic systems (Huang
et al., 2010).

Basic support for the Controller Area Network bus
(CAN bus) is available by two different block sets. The
first is based on the CAN Layer2 API from Softing14 and
restricted to the Windows platform. The second uses the
SocketCAN interface provided by the Linux kernel.

Packaging Concept Communication devices like UDP
or shared memory use a common packaging concept in
order to send or receive data. Therefore, the same pack-
ager can be used with different communication devices.
Figure 6 shows an example in which a package consis-
ting of three variables of type Real followed by a vari-
able of type Integer is either transmitted using shared
memory or UDP blocks. Switching between the two com-
munication devices is achieved by simply replacing the
corresponding device block.

Figure 6. Simple switching of communication devices due to
common packaging concept in order to send or receive data.

The packages are constructed by using blocks from the
Packaging sub-package (see Figure 2). In the initial
design of MDD, it was expected that different packa-
ging concepts would be supported which share a com-
mon connector interface. However, as of MDD v1.5.0
the SerialPackager is the only available packager. It
allows periodically adding or retrieving fixed size vectors
to or from a package, respectively. Figure 7 shows the
available blocks for serializing Modelica variables of the

12LCM project, https://lcm-proj.github.io
13As of MDD v1.5.0, only the communications aspect of LCM is

considered.
14Softing, http://industrial.softing.com

Towards a Standard-Conform, Platform-Generic and Feature-Rich Modelica Device Drivers Library

716 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132713

predefined types Boolean, Integer, Real and String

into a “package”. The type Real can be packed either
as double-precision or (using a C static cast) as single-
precision floating-point number.

Figure 7. SerialPackager blocks for adding variables to a
package.

At the C side, a package is a C byte array in which C varia-
bles with respectively indicated types are simply successi-
vely appended in a data-flow prescribed order. For exam-
ple, in Figure 6 the resulting byte array starts with three
double values (3×8 bytes) followed by one int32 value
(4 bytes), resulting in a byte array of size 28. For the sake
of providing an illustrative example at the C language le-
vel the following C code snippet constructs a structurally
equal package named data (the example shall shed light
on the concept, it does not advocate a coding style using
magic numbers for array offsets):

double v1[3] = {1.1, 2.2, 3.3};
int v2 = 4;
unsigned char* data = (unsigned char*)

calloc(28, sizeof(unsigned char));
memcpy(&data[0], &v1[0], sizeof(v1));
memcpy(&data[24], &v2, sizeof(v2));

Figure 7 shows the blocks for adding variables to a
package, symmetrically, blocks are available for retrieving
variables from a package. Using these blocks is deemed
to be rather intuitive with the notable exception of the
packInt block. This block allows packing unsigned in-
teger values at the bit level. The number of bits used for
encoding is set by a parameter width, therefore the max-
imum value of the integer signal that can be encoded is
2width − 1. A parameter bitOffset allows to specify the
bit at which the encoding starts relative to the preceding
block. Since MDD v1.3 most blocks support specifying
the byte ordering (big-endian or little-endian format).

It is simple to use the SerialPackager blocks for de-
serializing data which has been serialized by it (see Fi-
gure 6). In practice, however, communication typically
needs to be established with a remote station that is un-
related to the Modelica model. As long as this remote
station periodically sends or receives structurally static,
fixed sized packages, it is usually quite convenient to es-
tablish a communication using the MDD blocks. If the
remote station uses a more dynamic protocol, it becomes
more difficult. In some cases using the Function Layer di-
rectly (instead of the Block Layer) can provide additional
flexibility for coping with more dynamic protocols. Ho-

wever, the main use-case for the SerialPackager con-
cept is periodically sent, structurally static data. These re-
strictions may be relieved in future versions of the MDD
library by providing alternative, well-established “Packa-
gers” that offer support for more flexible means of pack-
aging data, e.g., the data marshalling of the LCM library
or the efficient binary serialization format of the Message-
Pack library15.

Finally, it turned out that the SerialPackager blocks
were a major hurdle for extending the number of Modelica
tools which support MDD (see Section 3.2).

2.5.3 Hardware I/O
Package HardwareIO (see Figure 2) is intended for data
acquisition hardware like digital-analog converter (DAC),
analog-digital converter (ADC) and other interface hard-
ware. As of MDD v1.5.0, it contains only one sub-
package, which provides support for the Linux control and
measurement device interface “Comedi”. The Comedi
project develops open-source drivers, tools, and libraries
for data acquisition16. The project provides a common in-
terface for accessing supported data acquisition hardware
(see the website for supported hardware). The MDD li-
brary implements an interface to the Comedi user-space
library.

Figure 8 shows an example model, which uses the avai-
lable blocks. Configuration of the device is performed
in the Modelica record named comedi. The record con-
tains an external object dh of type ComediConfig which
contains the Comedi device handle and is passed through
a parameter to the other blocks (comedi.dh). Using
external objects in records is not standard-compliant to
Modelica v3.3 revision 1 (Modelica Association, 2014),
which is further discussed in Section 3.3.

Figure 8. Accessing data acquisition hardware via the Linux
control and measurement device interface “Comedi”.

Writing or reading raw integer values to DAC or from
ADC channels is provided by the blocks DataWrite

15MessagePack project, https://msgpack.org
16Comedi project, http://comedi.org

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132713

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

717

or DataRead, respectively. These blocks have each
a variant which works with physical values, instead
of the raw integer values (PhysicalDataWrite and
PhysicalDataRead). Blocks DIOWrite and DIORead

support digital input and output (DIO) channels.

2.5.4 Embedded Targets

MDD v1.5.0 introduced the new top-level package
EmbeddedTargets. The package is intended for platform-
specific targets, such as microcontrollers, that cannot so
easily share code with other devices due to memory or
hardware limitations. There exists first prototypical sup-
port for the Atmel17 AVR family of microcontrollers. A
prototype application is described in Section 4.2.

3 Modelica Standard-Compliance
Using a Modelica library-based approach for accessing
hardware devices from a simulation started as an expe-
riment, which relied on the Dymola tool and its support
for interfacing external C code. However, when trying to
extend the number of Modelica tools supporting the MDD
library, it became apparent that quite a few constructs that
were useful and appreciated by the initial authors of the
library were not supported by other tools and were partly
problematic in respect of compliance to the Modelica stan-
dard.

On one hand, this section reports on important develop-
ment efforts (starting with MDD v1.4.0) that have been
spent on the Modelica compliance of the library for better
supporting SimulationX and OpenModelica, and on the
other hand it addresses open issues which may be of in-
terest for future improvements to the Modelica standard,
or which may require possibly non-backwards compatible
revisions of the MDD library for achieving full Modelica
compliance.

3.1 Modelica’s External Function Interface
As the Modelica standard specification on the external
function interface improved over the years, standard-
conform libraries with external C code dependencies
could be created in a more satisfying way. For example,
Modelica v3.2 standardized the search directory structure
for the external C header files and libraries (Modelica As-
sociation, 2010, p. 153). Having a standardized directory
structure facilitated creating cross-platform libraries with
external C library dependencies. For example, the Mo-
delica code snippet below declares an include dependency
to the header file MDDKeyboard.h and linker dependen-
cies to the libraries X11 and User32:

function getKey
input Integer keyCode "Key code";
output Integer keyState "Key state";
external "C" MDD_keyboardGetKey(keyCode,

keyState) annotation(
Include = "#include \"MDDKeyboard.h\"",
Library = {"X11", "User32"});

17Atmel, http://atmel.com

annotation(__ModelicaAssociation_Impure=
true);

end getKey;

A Modelica tool will map this information to compiler-
and linker-dependent directives and thereby select the li-
braries that fit best for the respective platform.

3.1.1 Linking Platform-Dependent System Libraries

Having platform-specific system libraries like X11 (for Li-
nux only) and User32 (for Windows only) in one generic
Library annotation, proofed to be a significant develop-
ment difficulty. As a remedy, dummy libraries of the Li-
nux system libraries are provided in the Windows-specific
library directories win32 and win64, and vice versa. Furt-
hermore, the linking to system libraries on Windows was
simplified by the introduction of compiler-specific prag-
mas, e.g., in MDDKeyboard.h

#pragma comment(lib, "User32.lib")

understood by the Visual Studio compilers only. Howe-
ver, for GCC (including the MinGW and CygWin build
environments) the issue remains unresolved18.

3.1.2 Impure Functions

The above example function getKey features an ad-
ditional (vendor-neutral) annotation which declares the
function as “impure”. The intended meaning is that a
tool may not expect that the function returns the same
output for the same input, which is the typical case for
MDD functions that read values from external devices.
Indeed, Modelica v3.3 introduced the dedicated keyword
“impure” to cater for such cases. However, since not all
Modelica tools support this keyword, yet, the MDD li-
brary uses the Impure annotation which is understood by
Dymola, OpenModelica and SimulationX.

3.1.3 Modelica Standard Improvements

Future releases of MDD may benefit from improvements
on the external function interface, which are expected in
the (future) Modelica v3.4 standard:

• Compiler-specific sub-directories for the platform-
specific library directories, e.g., if Visual Studio 2015
is used as a Windows 64-bit compiler a Modelica tool
may first search directory win64/vs2015 for depen-
dent libraries19.

• The IncludeDirectory annotation accepts multiple
directories enabling a more convenient way to spe-
cify several external C header file dependencies dis-
tributed over different include directories20.

18Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/1668

19Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/1316

20Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/2103

Towards a Standard-Conform, Platform-Generic and Feature-Rich Modelica Device Drivers Library

718 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132713

However, a generalized build process18 of the external
code still misses the definition and (future) standardization
of build features such as compilation of several C source
modules, compiler flags (CFLAGS) or preprocessor defines
(CPPFLAGS)21.

3.2 The Serial Packager
The SerialPackager blocks are the core elements of
the block-based communication support provided by the
MDD library (see Section 2.5.2). They use a rather intri-
cate approach for propagating a “package” between con-
nected blocks.

3.2.1 Connector Definition

The definition of the SerialPackager input connector is
given below.

connector PackageIn "Packager input
connector"

input SerialPackager pkg;
input Boolean trigger;
input Real dummy;
output Boolean backwardTrigger;
output Integer userPkgBitSize;
output Integer autoPkgBitSize;

end PackageIn;

The definition of the output connector is similar, but with
reversed input and output causalities. Most notably con-
nector PackageIn contains an element pkg, which is an
external object of type SerialPackager. This external
object is passed between connected blocks (see Figure 6).
Within an “add” or “get” block the passed in external ob-
ject is used as an argument to external functions which
first add or retrieve data from the package and then pass it
on to the next block.

Due to the design of the SerialPackager connector
sharing both input and output variables it is impossible
to have more than one connect equation per connector.
However, Modelica offers no option to tell a user already
at modeling time about this maximal allowed connector
cardinality.

3.2.2 Basic Concept

The following simplified Modelica code snippet illustrates
the basic idea for adding the (Integer) value of an input
variable u to a package:

block AddInteger
PackageIn pkgIn "Input connector";
PackageOut pkgOut "Output connector";
IntegerInput u "Integer input connector";

equation
when initial() then

pkgIn.autoPkgBitSize =
pkgOut.autoPkgBitSize + 32 /* bit
size of int32 */;

end when;
when pkgIn.trigger then

21Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/2145

pkgOut.dummy = addInteger(pkgOut.pkg,
u, pkgIn.dummy);

end when;
pkgOut.pkg = pkgIn.pkg;
pkgOut.trigger = pkgIn.trigger;
pkgOut.backwardTrigger =

pkgIn.backwardTrigger;
pkgOut.userPkgBitSize =

pkgIn.userPkgBitSize;
end AddInteger;

The instantaneous equation invoking the addInteger

function is activated by the event trigger which is pro-
pagated through the connected packager blocks. The
dummy variables are used to establish data-flow depen-
dencies which ensure that the “addValue” functions of
connected blocks are invoked in the correct order. The
backwardTrigger event allows propagating a trigge-
ring event in the inverse connector direction. Its sup-
porting logic is omitted here for brevity. A Modelica
standard-conform alternative is provided by the variable
userPkgBitSize that allows propagating a user defined
package size, i.e., it is possible for a user to customize
the package size of the external data buffer of the commu-
nication device block (see Section 2.5.2). However, in the
default setting the necessary package size is deduced auto-
matically with the help of the autoPkgBitSize variable.
This approach is described in Section 3.2.4.

3.2.3 External Object Aliasing

A problem with the Block Layer of the SerialPackager
is that the pkg objects within the connectors are not ex-
plicitly created by calling an external object constructor
function as required in Modelica v3.3 (Modelica Associa-
tion, 2014, p. 165). Instead, they rely on aliasing through
(connect) equations to access an external object which has
been created at another place. In Figure 6 the pkg object
for the “add” blocks is created in the “Packager” block at
the top of the figure, while the pkg object for the “get”
blocks is created in the device block for reading from
shared memory (or UDP, respectively). While the concept
of external object aliases does not exist in Modelica v3.3,
equating two external objects may be interpreted as an as-
signment to an external object, which is forbidden. The
authors hope that future versions of the Modelica standard
will consider use-cases that the Modelica tools Dymola,
OpenModelica and SimulationX already support22.

A Modelica standard-conform implementation that
avoids the aliasing is to only rely on the Function Layer
provided by package SerialPackager_.

3.2.4 Automatic Buffer Size

The actual creation of the SerialPackager object is per-
formed in the “Packager” block, or, respectively, in the re-
ading device block (see above). The following simplified
code illustrates the basic concept.

22Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/1669

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132713

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

719

block Packager
PackageOut pkgOut(
pkg = SerialPackager(bufferSize),
dummy(start=0, fixed=true));

Integer bufferSize;
equation

when initial() then
bufferSize =
if pkgOut.userPkgBitSize > 0 then
pkgOut.userPkgBitSize else
pkgOut.autoPkgBitSize;

end when;
end Packager;

The difficulty here is that the bufferSize which is nee-
ded as an argument for the external object constructor
SerialPackager(bufferSize) needs to be computed
by solving the initial system of equations. This is not sup-
ported by all Modelica tools and its Modelica compliance
was discussed at the Modelica Issue Tracker with a ma-
jority opting to clarify the specification in order to forbid
it23, but on the other hand it was also discussed how the
Modelica standard could be extended to allow it24.

In the initial version of the MDD library the external
object was actually created within a when-clause, which
was clearly illegal in Modelica v3.3. As part of improving
the Modelica compliance of the library, the creation of the
object was moved into the component declaration.

3.3 External Objects in Records
The SocketCAN and the Comedi blocks use a Modelica
record as means for specifying general settings for a har-
dware device. The idea is that the settings are specified
once when creating an instance of the record and this in-
stance is passed as parameter to blocks using this device.
For example, the Comedi configuration record (stripped
from some elements for brevity) is defined as

record ComediConfig
parameter String deviceName =
"/dev/comedi0" "Name of Comedi device";

final parameter Comedi dh =
Comedi(deviceName) "Handle to comedi

device";
end record;

where dh is an external object. It is convenient to col-
lect configuration information in a record, since this al-
lows passing a complete set of related configuration set-
tings at once. The problem here is that passing an external
object as part of a record can be interpreted as the record
returning the object and assigning it to another external
object (which is forbidden in Modelica v3.3 but supported
by Dymola). However, similarly to the external object ali-
asing described in Section 3.2.3 it seems highly desirable
to consider use-cases as described above in some way, in
future versions of the Modelica standard.

23Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/1907

24Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/2037

3.4 Fixed Attribute of Strings
According to Modelica v3.3 the predefined type String

was designed without the fixed attribute (as opposed
to other predefined types Boolean or Integer). Howe-
ver, such a fixed attribute is particularly relevant for the
GetString block of the SerialPackager when retrie-
ving sampled String data from a package. This issue was
resolved by (future) Modelica v3.4 such that future Mo-
delica tools supporting Modelica v3.4 will no longer raise
a warning on the GetString block25.

4 Applications
This section describes several applications that were im-
plemented with the help of the MDD library.

4.1 Arduino

The Arduino26 is an open-source electronics platform that
features easy configurations to read the sensors, process
the data and send it to other devices via a serial connection.
Therefore, the Arduino can be utilized to provide sensor
data in a real-time Modelica model by means of the MDD
serial port implementation, as depicted in Figure 9. With
the help of potentiometers or other deflection sensors, cu-
stomized control devices can be built.

Figure 9. Setup to read potentiometer deflection during real-
time simulation with MDD serial port model27.

As an exemplary application, self-built pedals for a dri-
ving simulator can be equipped with a sensor in order to
measure the displacement. The pedal itself is a steel sheet,
mounted on a revolute joint and a shock spring. The mea-
sured deflection is transferred via a serial connection to a
Blocks.Communication.SerialPortReceive in order
to drive a virtual vehicle. Therefore, expensive or una-
vailable input devices can be substituted by custom con-
structions. By using a Bluetooth module with Serial Port
Profile (SPP) a wireless connection between Arduino is
handled in the same way as a serial port over USB con-
nection. No further modifications are necessary to imple-
ment a wireless control device.

4.2 Embedded Control
The EmbeddedTargets package (see Section 2.5.4) con-
tains blocks and functions to directly control I/O or clocks

25Modelica Issue Tracker, https://trac.modelica.org/
Modelica/ticket/1797

26Arduino, https://arduino.cc
27Autodesk screen shots reprinted courtesy of Autodesk, Inc.

Towards a Standard-Conform, Platform-Generic and Feature-Rich Modelica Device Drivers Library

720 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132713

in the AVR ATmega microcontroller family28. The advan-
tage of including this code into the MDD library is that it
makes it simple to write a model for a microcontroller that
works the same way in any Modelica tool since all the OS
support, real-time code, etc., is abstracted away. Provided
that the Modelica tool produces minimal C-code (uses mi-
nimal features outside of standard C: for example, no li-
near solver included if the system has no linear systems,
no OS or I/O functions, no threading models, etc.), and the
model itself does not use C-code that the embedded target
cannot support (such as file I/O), the code generator would
work on pretty much any embedded target supporting C.

The Modelica code itself tries to avoid the Integer con-
stants from the data sheets. Instead, enumerations such
as prescaler=1/128 or clock=2B are passed from Mo-
delica and the C code for the AVR target depends on
function inlining in order to remove dead code. For ex-
ample, the constructor for the clock takes an enumeration
that specifies the clock, which should be manipulated, and
after function inlining, the C code for other clocks is re-
moved. The blocks in the MDD library try to take user-
friendly constants such as frequency=100Hz or period
=0.1s for real-time synchronization; the Modelica code
then has logic to find good clock prescalers to create a ma-
tching frequency. The code does not use parameters since
they cannot be guaranteed to be evaluated in Modelica,
and the C-code depends on the C-compiler (AVR GCC)
being able to inline and eliminate dead code from C-code
such as the constructor. An example of this is the timer
external object in the microcontroller, which becomes one
or two bitset instructions when the function is called with
a constant input:

function constructor "Initialize timer"
input Types.TimerSelect timerSelect;
input Types.TimerPrescaler clockSelect;
input Boolean clearTimerOnMatch;
output Timer timer;
external "C" timer = MDD_avr_timer_init(

timerSelect, clockSelect,
clearTimerOnMatch)

annotation(Include = "#include \"
MDDAVRTimer.h\"");

end constructor;

static inline void* MDD_avr_timer_init(int
timerSelect, int clockSelect, int
clearTimerOnMatch)

{
static const uint8_t

clockSelectTable0[7] = {...},
clockSelectTable1[7] = {...},
clockSelectTable2[7] = {...};

switch (timerSelect) {
#if defined(TCCR0)

case 1: /* Timer 0 */
TCCR0 |= ...;
break;

28As of MDD v1.5.0, only ATmega16 and ATmega328P (=Arduino
Uno) are supported. The code can easily be extended, but requires
checking the data sheets in order to write to the correct bits.

#elif defined(TCCR0B)
case 1: /* Timer 0 */

TCCR0B |= clockSelectTable0[clockSelect
-1];

TCCR0A |= ...;
break;

#endif
case 2: /* Timer 1 */

...
case 3: /* Timer 2 */

...
default:

exit(1);
}
return (void*)timerSelect;

}

One of the AVR examples included in MDD is the single
board heating system (SBHS29), shown in Figure 10.

Figure 10. The single board heater system running a real-time
control algorithm using firmware based on MDD code. There is
a programmer attached to the board to upload new firmware, but
the code runs without any computer connected to the SBHS.

The SBHS consists of a heater assembly, fan, tempera-
ture sensor, AVR ATmega16 microcontroller and associa-
ted circuitry. It was developed by IIT Bombay and is used
for teaching and learning control systems (Arora et al.,
2010). The MDD SBHS example uses pulse width modu-
lation (PWM) blocks to control the heater and fan, and an
analog-to-digital converter (ADC) block to read the tem-
perature. It combines these elements with a PID controller
with the goal to control the fan such that the temperature
settles at a setpoint of 45°C while a constant voltage feeds
the heater assembly.

4.3 DLR Demonstrators
At the DLR Institute of System Dynamics and Control, se-
veral simulator systems utilize the MDD library for inter-
system communication and querying of input devices.

The DLR Robotic Motion Simulator (Bellmann et al.,
2011) is a 7-axis driving and flight simulator based on an
industrial robot arm (see Figure 11). The main use of this
motion simulator is the evaluation of input devices such
as side-sticks, steering wheels, pedals, etc., as well as the
test and validation of control algorithms in terms of sta-
bility and real-time capability. The control architecture of
the simulator uses blocks from the MDD library in several
ways:

29SBHS, http://sbhs.fossee.in/

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132713

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

721

Figure 11. The DLR Robotic Motion Simulator.

• Input devices such as force-feedback steering wheels
are connected via CAN bus and integrated in the soft-
ware framework via the CAN blocks; the same ap-
plies for a force-feedback side-stick.

• Other, consumer based input devices such as pedals
or Airbus styled flight controls are connected via the
JoystickInput block.

• The control architecture for the robot consists of two
Modelica simulations on two different computers:
First, the real-time path planning running on a real-
time Linux system controlling the movements of the
robot, and second, the control panel running on a
standard Windows system. The control panel is used
to change parameters such as washout filter modes
(the washout filter maps the movement of road vehi-
cles / airplanes to the workspace of the simulator)
and gives an overview on the actual robot’s posi-
tion and telemetry. All real-time critical communica-
tion (e.g., the simulated road vehicle / airplane forces
and angular velocities inputs for the real-time path-
planning, or the control panel I/O) are communicated
via the UDP blocks and the serial packaging system.

Figure 12 shows the inside of the simulator cabin. The
instrumentation package can be adapted for different si-
mulation types or for testing different input concepts. An
on-board computer is used to query input devices, to dis-
play information on control screens, and to project the pi-
lot’s outside view visualization on the embracing concave
dome shell. These tasks are performed using Modelica
models, where the SynchronizeRealtime block is used
for real-time synchronization. In addition, communication
with the other simulation components is performed partly
via the UDP blocks.

Figure 12. View into the simulator cabin of the DLR motion
simulator. The instrumentation package is replaceable, so that
the simulator cabin can be easily adapted for different simulation
types, e.g., for driving or flight simulation.

Figure 13. DLR ROBEX technology demonstrator.

Figure 13 shows the ROBEX demonstrator which was
developed as a technology demonstrator for a science
exhibition. This demonstrator allows the user to command
a rover on a scientific lunar mission. The mission’s goal
is to pick up a sensor package from a nearby lander and
to place it on a marked position on the lunar surface. The
user controls the rover via an Android App, which runs
on a tablet computer in front of the simulator screen. On
the screen, the visualization of the rover is displayed. The
underlying Modelica simulation performs the multi-body
simulation of the rover and utilizes the DLR Visualization
library to display the rover and the scenery. It uses the
UDP blocks to communicate with the tablet computer and
the SynchronizeRealtime block to adjust the simulation
speed.

In very similar ways, the library is also used in several
other simulator and demonstrator systems, e.g., a drilling
rig training simulator, several desktop flight simulators, or
a rover software-in-the-loop development environment.

Towards a Standard-Conform, Platform-Generic and Feature-Rich Modelica Device Drivers Library

722 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132713

5 Outlook
The Modelica_DeviceDrivers library is a tried and tested
library, which can support a wide range of application sce-
narios. During its development, valuable experience on
interfacing Modelica with external C code has been gai-
ned. Thus, the source code can also serve as an example
for anybody who is interested in applications, which re-
quire a more complex integration of Modelica code with
external C code.

Considerable development efforts have been spent on
improving the Modelica compliance of the library. Still,
there are open issues and one may see the library as a
testbed, which stresses Modelica’s external function inter-
face to the limit. On one hand, experiences gained thereby
can provide inputs for further enhancements to the Mo-
delica standard specification, on the other hand, further
efforts in the library development can improve the level
of standard-compliance. However, since backwards com-
patibility is a strong objective in the library development,
non-backwards compatible changes for the sake of better
standard-compliance will not be introduced lightly.

Naturally, there is a large pool of conceivable feature
extensions to the library, due to the myriad number of avai-
lable external devices and communication protocols. A
frequent request is to extend the communication abilities
beyond the capabilities of the available SerialPackager.
There exists a huge choice of data serialization formats
that could be utilized for this purpose (e.g., LCM or Mes-
sagePack). Particularly, with regard to the Internet of
Things (IoT) technology becoming more important, im-
proving communication capabilities is a worthy goal. Si-
milarly, supporting embedded systems beyond the pro-
totypical work is very attractive in that perspective.

Acknowledgements
This work has been supported by Vinnova in the ITEA3
OPENCPS projects, and in the RTISIM project. Support
from the Swedish Government has been received from the
ELLIIT project, as well as from the European Union in the
H2020 INTO-CPS project. The Open Source Modelica
Consortium supports the OpenModelica development.

Finally, the authors would like to thank everybody who
has contributed to the library, either by providing feedback
and suggestions, or by direct contributions to the imple-
mentation of the library, particularly, Miguel Neves, Do-
minik Sommer, Rangarajan Varadan, and Dietmar Wink-
ler.

References
Inderpreet Arora, Kannan M. Moudgalya, and Sachitanand

Malewar. A low cost, open source, single board he-
ater system. In 4th IEEE International Conference on
E-Learning in Industrial Electronics (ICELIE), November
2010. doi:10.1109/ICELIE.2010.5669868.

Tobias Bellmann. Interactive Simulations and advanced Visu-
alization with Modelica. In Francesco Casella, editor, 7th

Int. Modelica Conference, Como, Italy, September 2009.
doi:10.3384/ecp09430056.

Tobias Bellmann, Johann Heindl, Matthias Hellerer, Richard
Kuchar, Karan Sharma, and Gerd Hirzinger. The DLR
Robot Motion Simulator Part I: Design and Setup. In
2011 IEEE International Conference on Robotics and Au-
tomation (ICRA), pages 4694–4701. IEEE, May 2011.
doi:10.1109/ICRA.2011.5979913.

Torsten Blochwitz and Thomas Beutlich. Real-Time Simula-
tion of Modelica-based Models. In Francesco Casella, editor,
7th Int. Modelica Conference, Como, Italy, September 2009.
doi:10.3384/ecp09430119.

Matthias Hellerer, Tobias Bellmann, and Florian Schlegel. The
DLR Visualization Library - Recent development and appli-
cations. In Hubertus Tummescheit and Karl-Erik Årzén, edi-
tors, 10th Int. Modelica Conference, Lund, Sweden, March
2014. doi:10.3384/ecp14096899.

Albert S. Huang, Edwin Olson, and David C. Moore. LCM:
Lightweight Communications and Marshalling. In 2010
IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS 2010), pages 4057–4062, October 2010.
doi:10.1109/IROS.2010.5649358.

Modelica Association. Modelica—A Unified Object-
Oriented Language for Physical Systems Modeling
v3.2. Standard Specification, March 2010. available at
http://www.modelica.org/.

Modelica Association. Modelica—A Unified Object-
Oriented Language for Systems Modeling v3.3 Revi-
sion 1. Standard Specification, July 2014. Available at
http://www.modelica.org/.

Martin Otter, Bernhard Thiele, and Hilding Elmqvist. A
Library for Synchronous Control Systems in Modelica.
In Martin Otter and Dirk Zimmer, editors, 9th Int. Mo-
delica Conference, Munich, Germany, September 2012.
doi:10.3384/ecp1207627.

Niklas Worschech and Lars Mikelsons. A Toolchain for
Real-Time Simulation using the OpenModelica Compiler.
In Martin Otter and Dirk Zimmer, editors, 9th Int. Mo-
delica Conference, Munich, Germany, September 2012.
doi:10.3384/ecp12076839.

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132713

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

723

724 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

modelica.university: A Platform for Interactive Modelica
Content

Michael M. Tiller1 Dietmar Winkler2

1Xogeny, USA, michael.tiller@xogeny.com
2University College of Southeast Norway, dietmar.winkler@usn.no

Abstract
The World Wide Web was conceived of as a medium for
the expression and exploration of scientific and engineer-
ing ideas. However, much of the innovation in web tech-
nologies is now focused on consumer facing applications.
Although science and engineering content is available on
the web (Wolfram Alpha, 2017), there are not that many
tools that allow engineers and scientists to create and build
scientific and engineering applications.

Fundamentally, HTML and HTTP are certainly suffi-
cient for the creation of scientific and engineering content
just as they are for the creation of online magazines and
websites. But while a number of "content management
systems" have been created to facilitate the publication of
prose, there are very few such tools that cater to making it
easy to create scientific and engineering content.

In this paper, we will present a platform which can be
thought of as a content management system for scientific
and engineering content. We will start by describing what
we believe to be the fundamental requirements for such a
system. From there, we will discuss two different appli-
cations built on this platform. The first is an interactive
tutorial for teaching the basics of the Modelica languages
and the other is an example application that involves cre-
ating interactive content for use in an engineering course
on hydro-electric power generation. This content will be
published on the modelica.university domain and
we are already collaborating with others to contribute ad-
ditional content to the site.
Keywords: Modelica, web, cloud, education, content man-
agement

1 Introduction
1.1 Background
The initial goal of this project was to recreate a previous
application entitled “Tour of Modelica” using a newer plat-
form for deploying web-based engineering tools and con-
tent. The previous version of the application was written
to provide a “tool free” experience for learning the basics
of Modelica. Similar efforts involving the OpenModelica
tool OMNotebook have also been undertaken (Palanisamy
et al., 2016).

Because the tutorial was web-based, it could be used
as part of an interactive, introductory tutorial at events

like the North American Modelica Users’ Group meet-
ings without requiring participants to install tools. Further-
more, the only prerequisite was a browser. So, the tutorial
was not just tool neutral, but OS neutral as well. During
live events, the tutorial material was used by participants
running Windows, MacOS and even iOS.

However, the tutorial was based on older infrastructure
and the decision was made to upgrade the tutorial. At the
same time, it was also decided to make the underlying plat-
form available for others to create web-based educational
content based on Modelica. The domain name model-
ica.university was registered for this new site.

1.2 Requirements
The underlying platform was created to support the cre-
ation of web-based engineering analysis tools. Many
lessons from the creation of proprietary tools were fac-
tored into the design of the infrastructure that supports the
deployment of these applications. In this section, some
high level requirements for the platform (based largely on
the experience of developing earlier tools) will be enumer-
ated.

1.2.1 Hypermedia

The success of the web is, in part, due to the ability of
hypertext to link together content from different sources.
For most users and developers of web content, this is most
typically associated with HTML (W3C, 2016).

However, it should be noted that the concept of hyper-
text has since been generalized to the more general term
“hypermedia”. The concept of hypermedia extends the
idea of describing links and relationships not just between
text and content within that text, but to data in general. In
hypermedia, a URL is used to refer to a “resource”. Those
resources represent data of some kind and may have poten-
tially multiple different potential representations (e.g., an
image resource could be represented as either a JPG or a
GIF image). This modern conception of hypermedia and
the use of hypermedia as an architectural style for building
network based applications was formalized in (Fielding,
2000).

But in order to support this, formats besides HTML
are required. This is because HTML is focused on be-
ing a declarative way to represent documents (hence the
presence of elements like (image), <h1> (header)

DOI
10.3384/ecp17132725

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

725

and <p> (paragraph). But in order to generalize the
approach to data, a whole range of new formats like
HAL (Kelly, 2016), Collection+JSON (Amundsen, 2013)
and Siren (Swiber, 2016) were developed.

The most essential aspect of these formats is that they
allow generalized data (in most cases serialized as either
XML (Maler et al., 2008) or, more commonly, JSON
(ECMA International, 2011)) to express hypermedia con-
cepts like relationships to other resources and/or actions
that can be performed on these hypermedia resources.

At the dawn of the World Wide Web, hypermedia was
recognized as an essential component for the expression
and exploration of scientific and engineering ideas. Our
experience shows that the power of applying hypermedia
concepts to science and engineering is still not fully real-
ized and our goal was to not only include it as a require-
ment for managing scientific and engineering content, but
to exploit it even further than most existing platforms.

1.2.2 API

Nearly all web applications require some kind of API to in-
teract with. Generally speaking, the two main functions of
an API are to provide information and the carry out tasks.
The term “Command Query Responsibility Segregation”
(CQRS) refers to an architectural style where these two re-
sponsibilities are clearly and cleanly delineated (Fowler,
2011).

As such, it is no surprise that our API requires both
of these functions. An API is generally just the “mid-
dle man” between the client (e.g., the web application)
and one or more sources of information leveraged by the
server (e.g., databases, file systems). The query function-
ality allows the web application to request information
from those sources via the API. The command function-
ality allows the web application to request tasks to be per-
formed by the server. The main difference between the
command and query functionality is that queries are, gen-
erally speaking, idempotent, i.e., they don not change the
state of the server while the command functionality typi-
cally exists solely for the purpose of mutating the server
side state. Furthermore, querying functionality generally
relies on caching as an optimization to speed up the fetch-
ing of information and to ensure its “freshness” while com-
mands frequently invalidate caches as a result of mutation.

For our purposes, we need querying functionality to
provide us with text, images, models, simulation results,
etc.. We need the command functionality mainly to re-
quest computational tasks like simulations and optimiza-
tions to be performed.

1.2.3 Content Creation

A significant impediment to web and cloud adoption in
the world of science and engineering is the fact that there
is not much overlap in technical skills between engineers
and web developers. As such, engineers need to rely on
web developers to help them with creation of web based
tools. Of course, HTML is relatively easy. But to move be-

yond simple static markup requires a wider range of skills.
Unfortunately, people with those skills tend to be drawn
to more “consumer oriented” projects with the potential
to reach very large markets (social networking, advertis-
ing, search engines, games, etc.). As a result, the rate of
innovation and adoption in the engineering sector has tra-
ditionally been and continues to be slow.

In order to break this cycle, it is essential to develop
technologies that make it easy to turn people with special-
ized scientific or engineering skills into content creators.
Of course, this is nothing new. But, again, many of the de-
velopment resources are focused on empowering broader
sections of society and less on science and engineering.

In reducing the learning curve for non-experts, there are
two important aspects to consider. The first is easing the
creation of content. This means being able to easily make
scientific and engineering content accessible through the
APIs, e.g., connecting the API to existing data sources or
computational capabilities. The other aspect is the visual-
ization of the underlying content in the web browser. For
the purposes of this project, we require that both of these
are facilitated to some extent.

1.2.4 Third Party Tools

While modelica.university is being hosted pub-
licly, the infrastructure it is build on was developed to sup-
port proprietary tools and applications. Many of those ap-
plications are intended to be hosted on private networks. It
is quite common that customers insist that all data remain
on private networks. In those cases, it is impossible to rely
on third party services hosted on the public Internet (e.g.,
Amazon EC2, Google Cloud Platform, Digital Ocean).

So none of the software libraries used by the model-
ica.university infrastructure rely on services that
are hosted exclusively on the public Internet. However
the requirement to avoid public services was relaxed for
this project to make deployment easier and more cost ef-
fective.

1.2.5 Job Processing

In our earlier discussion on APIs, we mentioned the need
to perform “computational tasks”. But for scalability rea-
sons, it is frequently important to delegate these compu-
tational tasks away from the API server. Without such
delegation, the response of the API server itself could be
slowed down considerably by CPU intensive tasks running
on the same machine. Furthermore, numerical tools are
often written in languages like FORTRAN, C++, Python,
Julia, etc., while web servers, databases and other back-
end services are written in languages like Javascript, Java
and so on. To address both the scalability and interoper-
ability, it is often convenient to introduce message queues
or worker queues. These provide a way to link together
various services in a scalable way while avoiding the ten-
dency toward monolithic architectures. The term “mi-
croservices” (Susan Fowler, 2016) refers to an architec-
tural style which is very much aligned to these require-

modelica.university: A Platform for Interactive Modelica Content

726 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132725

ments.

2 Content Management Platform
Now that we have elaborated some of the requirements
for the application, we will quickly review how we have
addressed those requirements in our implementation.

2.1 Backend
The term “backend” refers to aspects of the application
not handled in the web browser. This includes the web
server that serves the application, databases, authentica-
tion, “memcache”, etc..

2.1.1 API

We start our discussion of the backend with the API it-
self. For modelica.university, we leverage the
Heisman API framework. Heisman is a proprietary frame-
work developed by Xogeny for creating hypermedia APIs.
The main feature of this framework is the ability to define
so-called “resources” using an intrinsically hypermedia-
oriented structure. Once defined, an HTTP based API can
automatically be synthesized for those resources. The em-
phasis on hypermedia semantics means that resources are
able to easily express not just data about themselves but
also relations to other resources as well as actions that can
be performed by resources.

The fact that an HTTP based API can be automatically
synthesized is important because it avoids having to write
a great deal of boilerplate code to handle pedantic HTTP
specific details like status codes, caching, etags, accept
header processing and so on.

We have taken an “API first” approach to application
development. As we will discuss shortly, once the re-
sources are defined and the API is automatically generated,
a generic API browsing application is already available for
the API.

2.1.2 Resources

The resource oriented approach to application develop-
ment means that resources need to be defined with hyper-
media semantics in mind. Our definition of resources is
largely inspired by the Siren hypermedia format. Specif-
ically, a resource is described by three distinct types of
information.

The first type of information a resource can provide is
the “properties” of the resource. This is the true data asso-
ciated with the resource. For example, if the resource rep-
resents results from a time-domain simulation, the “prop-
erties” might be the values of the independent and depen-
dent variables.

The second type of information a resource can pro-
vide about itself is metadata. The metadata for a re-
source includes a textual description of the resource
as well as zero or more textual “classes” that identify
(in some domain specific way) what the resource repre-
sents. For example, if the resource represented simula-
tion results, the set of textual classes might include the

string “simulation_result”. It may also include
the name of a more specialized class, e.g., a resource
might include “drive_cycle_result” and “sim-
ulation_result” where the former is a specialized
form of the latter.

The final, and arguably most important, type of infor-
mation associated with a resource is “links”, which convey
how one resource relates to other resources. The ability to
“link” to other resources is the essence of hypermedia. The
link between resources is always associated with one or
more “relations”. Relations, like classes, are typically do-
main specific names although the Internet Assigned Num-
bers Authority (IANA) has defined a collection of stan-
dard link relations (Internet Assigned Number Authority,
2017). For example, the item relation is used to define
the relationship between a (collection) resource and any
other resource “contained” in it. Similarly, the collec-
tion relation may appear on each item resource to link
back to the enclosing container resource.

2.1.3 Domain Specific Resources

The term “resource” is an abstraction used to refer to any
kind of data that might be accessed over a network. To
help understand what a resource is and how they relate to
our application, we will provide several concrete examples
for discussion in this section.

Static Content A very common type of resource is a
file. In fact, web servers like the Apache or NGINX web
servers treat files precisely as hypermedia resources by
providing a way to refer to those files as network address-
able streams of bytes. Heisman also provides a means to
serve files as network addressable resources. However, in
our application the contents of the file are only part of the
resource. We also allow the metadata and link information
to be associated with a file. Just by associating such infor-
mation with the files, it becomes possible to quickly and
easily define a rich range of structural information about
the resources associated with an application. This hyper-
media oriented information can be supplied within the file
itself (by serializing it as a Siren instance) or programmati-
cally via special handler routines registered with the server
that add hypermedia annotations to those files.

This ability to annotate files with hypermedia informa-
tion means that much of the content being managed by the
content management system can be represented by files
that are statically served directly from a file system. This
capability is important because it helps us address the re-
quirement that creation of content should be easy and intu-
itive for people who are not programmers or web develop-
ers. Using this functionality, much of the application can
be built simply by dragging and dropping files into direc-
tories. We will demonstrate this further in the context of
both applications discussed later. It is worth noting that
content served from the filesystem is also much easier to
version control vs. content stored in a database.

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132725

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

727

Dynamic Content In addition to static content, most ap-
plications depend on the ability to create and manipulate
data dynamically in response to user actions. For exam-
ple, each time a simulation is performed we might wish
to store those simulation results away for retrieval later.
In some cases, we might want a resource to represent a
very specific type of data (e.g., simulations performed by
a given user) with specific fields (e.g., model simulated,
user who requested the simulation, time request was made,
time required to complete the simulation). In other cases,
we might require a way to create, manipulate and query
arbitrary (schema free) data. While the former often re-
quires specialized resources to be created, Heisman pro-
vides a standard collection resource to handle the latter.

Job Brokers The final resource type used in these ap-
plications is essential for handling requests for computa-
tional work. In both applications, the computational work
required is running simulations. Because nearly every
scientific or engineering application will require one or
more types of computationally intensive analyses, Heis-
man includes already implemented resources called “job
brokers”. These job brokers provide an API for request-
ing work to be done, tracking the status of that work and
reporting back the successful result or an error message.
The code is independent of the task to be performed. This
means that a job broker can be easily created and asso-
ciated with one or more specific computational tasks re-
quired by the application.

The hypermedia semantics allow us to cross reference
job requests with job results. In other words, for a given
simulation result we can follow the links associated with
that result to find the original request and vice-versa. Such
cross referencing of resources can be used for traceability
and to determine provenance of data.

2.2 Communication
The capabilities described so far rely on several differ-
ent communication mechanisms. In this section we will
quickly summarize each of these.

The web application running in the browser relies on
hypertext transfer protocol (HTTP) (Fielding et al., 1999)
for invoking queries and commands. These HTTP re-
quests are received and acted upon by code on the server
that maps these requests to the underlying resources refer-
enced in the requests.

The “job broker” resource uses a tool called Redis (San-
filippo and Noordhuis, 2017) to implement message and
worker queues. It is via Redis that messages are sent be-
tween the API server and the workers that perform any
CPU intensive computations.

2.3 Deployment
Desktop tools are typically compiled into binaries and dis-
tributed via “installers”. In contrast, web applications are
deployed (often, continuously) to servers where they can
then be accessed via a web browser. This simplifies the
install process for the user (since they only have to enter a

URL in a web browser), but the process of deploying soft-
ware to these servers safely and efficiently adds a whole
new dimension to the software development process1

An important technology for the deployment of net-
work services is called “Docker”. Technically, Docker is
a tool designed to make it easy to access the special Linux
process groups called “containers”. But this explanation
does not adequately explain Docker’s role or capabilities.

Conceptually, Docker is a technology for creating ex-
tremely resource efficient virtual (Linux) machines. The
efficiency comes from Docker’s use of kernel level fea-
tures in Linux that isolate groups of processes while al-
lowing them to share large amounts of read only data in
memory and/or on the file system.

The backend server for modelica.university is
a Node (Node.js Foundation, 2017) application written in
TypeScript (Microsoft, 2017). To generate a Docker im-
age, the dockergen Node package (Tiller, 2017) is used.
The dockergen script creates a Dockerfile which
specifies how the application should be packaged for de-
ployment to a Docker host. Once a Docker image is built,
it can be run as a container on a Docker host. Since this is
a public application, we can take advantage of commercial
Docker hosting services.

The actual application is made up of several distinct
Docker images executed using the “compose” functional-
ity of Docker. In addition to the API server image, the
backend consists of several other images. One image
runs the Redis server. Another image runs a NGINX web
server to act as a reverse proxy. A third image runs the
API server. The final image executes the workers for the
computational tasks processed via the worker queue. With
Docker, it is quite simple to activate multiple containers
running the worker image. This allows us to easily scale
up the number of workers during periods of high load. An-
other advantage of Docker that all the machines in a clus-
ter are securely firewalled within the same network. Only
ports that have been explicitly opened to machines within
the cluster are accessible outside the cluster.

3 Application 1: Tour of Modelica
3.1 Objective
Now that we have discussed how the underlying infras-
tructure is implemented, let us get into the details of the
first application. As mentioned previously, the “Tour of
Modelica” application is a reimplementation of an earlier
web application. The application is structured in the form
of chapters and lessons. In each lesson, the user is pre-
sented with some introductory material about a specific
aspect of the Modelica language and starting from some
sample code is asked to carry out several modeling tasks.
After completing the exercises, the user moves on to the
next lesson and/or chapter.

1So much so, that the term “DevOps” was coined to refer to the
combined set of development and operational skill required to deploy
web applications.

modelica.university: A Platform for Interactive Modelica Content

728 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132725

To complete each task, the user must be able to edit,
compile and simulate Modelica code. The code editing is
done in the browser, but the compilation and simulation
is requested via the API and performed by a worker that
uses OpenModelica (Open Source Modelica Consortium,
2016) to compile and simulate each model.

3.2 Content
The content for the application consists primarily of
lessons, chapters, lesson text and sample models. All of
these can be represented as static resources using the func-
tionality previously discussed in 2.1.3.

content/
chapter1/

chapter1.json
lesson1/

lesson1.json
lesson1.html
lesson1.mo

lesson2/
...

...
chapter2/

...
training.json

Figure 1. Fragment of the files system.

A fragment of the file system content is shown in Fig-
ure 1. All content is rooted in a directory named con-
tent. The files are organized by chapters and lessons
although this is strictly a convention. Files ending in the
.json suffix are interpreted as hypermedia resource de-
scriptions. These JSON files contain the metadata, prop-
erties and links discussed previously. Let us look at the
lesson1.json file to as an example of how one such
resource might be described:

{
"title": "Simplest Model",
"properties": {}
"class": ["lesson", "start"],
"links": [

{ "rel": ["text"],
"href": "./lesson1.html" },

{ "rel": ["source"],
"href": "./lesson1.mo" },

{ "rel": ["task"],
"href": "resource://simulate" },

{ "rel": ["chapter"],
"href": "../chapter1.json" },

{ "rel": ["training"],
"href": "../../training.json" }

],
"query": {

"rel": {
"training/*": { "embed": true },
"chapter/*": { "embed": false },

"source/data": { "embed": false },
"text/data": { "embed": false },
"task": { "embed": true }

}
},

}

From this description, we can see that this resource is ti-
tled “Simplest Model” and has no properties. Because this
resource is a lesson, we include the lesson class in its
description. It also has the start class which we can use
in our application to locate the first lesson. The links
section provides (respectively) links to the HTML markup
for the lesson text, the initial model source, the job broker
that will run the simulation, the chapter that this lesson be-
longs to and the training.json file which describes
all the chapters that are part of the “Tour of Modelica” ap-
plication. The query section describes what information
about the resource should be returned from each HTTP
request2. By default, all resources have a “default query”
that describes what information about that resource is to
be returned for each HTTP request. The query section
here is defining the default query. Note that clients (e.g.,
our web application) are free to specify their own query
with each request. In this way they can request more or
less information to be provided, depending on their needs.

This is a lot of information. Furthermore, nearly all of
it is essentially repeated from one lesson to the next where
only a few details are changed. Fortunately, Heisman pro-
vides a way for us to programmatically augment the con-
tents of resources represented by files on the file system.
In this way, we are able to write code to automatically fill
in all the information based conventions like the directory
structure or the lesson name. In fact, the only thing we
cannot figure out automatically is the title. As a result, the
task of creating a new lesson resource becomes as easy as
creating a file that contains:
{

"title": "Simplest Model"
}

A similar process is used to augment information about
other types of content on the file system (e.g., chapters).
This relatively small amount of upfront work to define
specialized handlers greatly simplifies the process of con-
tent creation and making the process accessible to non-
programmers. In addition, allowing data to describe its
relationship to other data means that that information and
logic does not need to be coded into the client. This makes
development of the client easier and more general.

3.3 Visualization
3.3.1 Generic Browser
There are many aspects about the operation of a web
browser that most users are not aware of. One of those

2In our API, the primary response content type is Siren. Because
Siren allows related resources to be embedded in a response or simply
linked to, our query format must specify which approach to use for each
matching resource. Hence the embed field.

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132725

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

729

aspects is the Accept header. This is a header included
with an HTTP request that lets the server know what types
of content it expects back. The default Accept header
for Google Chrome looks like this:

Accept: text/html,application/xhtml+xml,
application/xml;q=0.9,image/webp,*/*;q=0.8

This is essentially a list of content types the browser
understands. But it also defines the clients order of prefer-
ence for the different content types. The Accept header
is useful to the server because it is possible that a given
resource could be represented in multiple formats and the
Accept header provides a clue as to which format is pre-
ferred.

The Accept header is important in API development
because it can be used to determine whether the request
that the API is handling is coming from a browser or from
Javascript code. If our server sees that the request is for
HTML, it will respond to the request by serving up a page
that loads an embedded browser application. That web
application is actually a generic graphical user interface
for Siren APIs that comes bundled with the server. We will
talk about the user interface application in greater detail
shortly.

This is part of the “API first” philosophy discussed ear-
lier. As a result of following this philosophy, every API
developed in this way automatically comes with a graph-
ical user interface. Furthermore, remember that Heisman
automatically synthesizes an HTTP API based on the re-
sources that are registered with it. What this means, in
practice, is that once you describe your resources, you im-
mediately and automatically get both an HTTP API and a
web application.

3.3.2 Custom Visuals
As mentioned previously, Simran is the web application
that is launched when browsing the API. Simran is a pro-
prietary technology used by Xogeny to create web based
UIs for scientific and engineering applications.

Simran is really a browser running in a (web) browser.
Generally speaking, web browsers like Chrome or Firefox
are used for browsing HTML or other widely used content
types. If you are a scientist or engineer, the problem is that
web browsers do not understand more technical formats
(e.g., Modelica models, .mat files, FMUs).

The API browsing application compensates for this by
providing a web application that is extensible. Because
the browser application is built around the notion of hyper-
media (primarily in the form of Siren representations) and
not hypertext (i.e., HTML), we can represent many differ-
ent content types and the relationships between them. In
a sense, this is a lower level alternative to HTML.

That, by itself, may not sound that useful. But it be-
comes more useful because of the plugin system. Via the
plugin API, it is possible to extend the browsing applica-
tion with any number of specialized visual components.
While the base browser application is a generic browser

that renders all Siren resources essentially the same, when
enhanced via plugins the browser application is able to
provide custom rendering for different content types based
on the metadata, properties or relations of the resource.

For example, using just the base browser, our “Tour of
Modelica” application is shown in Figure 2.

There we can see the first lesson and its related re-
sources rendered using metadata. Furthermore, we can
click on links to follow the various resources. But each
resource will be visualized in the same generic way. How-
ever, after we provide a plugin with custom visuals for
lessons and chapters, putting the same URL in our web
browser will yield a rendering of the lesson like the one
shown in Figure 3.

The plugin system is based on React (Facebook, 2017).
Normally, each React component independently specifies
what “properties” it understands when instantiating a com-
ponent. We turn this around a bit and standardizes these
properties to conform to a canonical representation of a
hypermedia resource. As a result, all React components
are “equivalent” in the sense that they are instantiated with
the same set of properties but with different values. But,
through the plugin system we have the freedom to cus-
tomize which component to use for each hypermedia re-
source. In this way, we are essentially creating a browser
that can easily be extended to understand any kind of sci-
entific or engineering content instead of being limited to
just those standardized in the HTML specification by the
W3C.

In the case of the “Tour of Modelica” site, the plugin de-
fines custom renderers for lessons, chapters and the train-
ing overview. In addition, it leverages some standard and
easily reusable visuals provided by the built in browser for
applications and application suites.

For each application, the application developer can de-
cide what types of content the browser should be capable
of understanding and then simply add those visuals to their
plugin. This modular approach to visualization makes it
very easy to create a custom user interface for a particu-
lar domain and/or reuse components developed for other
applications.

The authors would like to acknowledge the contribution
of the moijs project for providing syntax highlighting
and checking for the embedded Modelica editor as well as
the CodeMirror project (Haverbeke, 2017) for the editor
widget itself.

3.3.3 Mobile

Consumers of web applications and web content are in-
creasingly consuming this content from mobile devices.
Support for phones and tablets mainly involves making
sure that layout of content makes sense for small form fac-
tor screens. In some cases, some content may be hidden
on small displays. With modelica.university we
have made every effort to support mobile devices.

modelica.university: A Platform for Interactive Modelica Content

730 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132725

Figure 2. Generic rendering of Tour resources

4 Application 2: Hydro-Electric
Power System

4.1 Objective
The second application example is a student exercise that
is part of the Master’s course “Object-oriented Modelling
of Hydro Power Systems” at University College of South-
east Norway. The course starts with an introduction to the
fundamentals of Modelica. Later on it moves on to model
specific parts of a hydro-electric power system.

Typical modeling problems are:

• Waterway configuration

• Water hammer investigations

• Droop control behavior of the turbine governor

Being able to solve such problems interactively using
only the browser as a tool without having to immediately
understand Modelica code improves the physical under-
standing of the system. Once the physical understanding
is there, creating more complex models and scenarios is
easier for the students to achieve.

4.2 Content
The contents of this application are the different main
problems and each with multiple configurations. For ex-
ample, for the Waterway application different examples
with a number of interconnecting pipes are given where
the levels of the pipe ends need to be verified and checked

that they make sense. This is sometimes not as easy as
it sounds since pipes might connect to reservoir models
which have a different height reference. So the student is
given a set of parameters for the different pipe segments of
other components of the water way and has to determine
if the setup “makes physical sense”.

For the Water hammer problem, one can investigate the
influence of closing time of a valve depending on the pipe
diameters and flow rates. The content would also provide
certain restrictions like allowable maximum pressure in
the pipes.

The Droop control (Wikipedia, 2017) problem contains
data that describes the droop settings of one or more tur-
bine controllers and lets one investigate the respective fre-
quency dependent power productions.

The typical data structure of the content is shown in
Figure 4.

4.3 Visualization
The real benefit for the second application will be the vi-
sualizations of the problems and especially solutions.

The Waterway problem is much more intuitively solv-
able when the students is presented with a sketch of the
physical setup of the different pipe levels and other wa-
terway components. Here the student can at once see a
possible flow in the parameter set.

For the Water hammer problem a different method of
visualization can be used. For example interactively show-
ing unsuitable closing times by emphasising the pressure
plots of setups that violate the restrictions. As the student
changes parameters live (e.g.,via a slider), they get the plot

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132725

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

731

Figure 3. Custom rendering of Tour resources

results presented live based on a real simulation done in
the background. The executed models can be supplied as
Modelica source files or FMUs.

The Droop control problem can be visualized by provid-
ing interactive droop setting behaviours including limits
and again reacting on parameters that can be interactively
set.

Figure 5 shows a typical plot of the power sharing be-
havior of three generators with different droop settings.

5 Related Efforts
The pace of innovation in the web development landscape
is breathtaking. It is nearly impossible to keep track of all
the new technologies that emerge almost on a daily basis.
The authors drew inspiration from many amazing projects,
including:

• Jupyter A tool for interactive data science and
scientific computing across all programming lan-
guages (Project Jupyter, 2017)

• Nextjournal - An interactive writing and program-
ming environment for every stage of research from
experimentation to publication (Nextjournal, 2017)

• "What Can a Technologist Do About Climate
Change? (A Personal View)" - Bret Victor’s
sprawling essay on technologies that can help ad-
dress climate change (Victor, 2015).

• Modelica in Action - An interactive notebook for
compiling and simulating Modelica (Bonvini, 2017).

• Modelica by Example - An interactive book about
Modelica (Tiller, 2016).

6 Conclusions
By leveraging the power of hypermedia and a wide array
of open source technologies, we were able to build the
modelica.university site and our two sample ap-
plications. We gained several insights as a result of this
work.

6.1 Middleware
Creating a site like this involves creation of the underlying
content, implementation of the necessary analysis capabil-
ities, an HTTP API and a domain specific web application
to support user interaction. But most of the domain spe-
cific work here is at the edges, i.e., content creation and
visualization. Through their API synthesis and browser
architectures, the Heisman and Simran packages allow de-
velopment resources to remain focused on those domain
specific edges. This adds efficiency to the development
process while providing a tremendous amount of reusabil-
ity. Together, these two packages form the foundation of
Xogeny’s Aperion platform.

6.2 Current Status
At this point, modelica.university implements the
two applications described in this paper. Our experiences

modelica.university: A Platform for Interactive Modelica Content

732 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132725

content/
waterway/

waterway.json
setup1/

setup1.json
setup1.html
setup1.mo

setup2/
...

...
waterhammer/

waterhammer.json
long-ww/

long-ww.json
long-ww.html
long-ww.fmu

...
droopcontrol

...
hydro-power.json

Figure 4. Fragment of the files system.

with these applications further reinforces the importance
of the requirements outlined at this start of this paper. We
are confident that with each additional application, the
platform will gain more and more capability as a browser
for scientific and engineering content.

6.3 Future Plans
In terms of content, we hope that others will contribute
more content in diverse subject areas to help us further
validate our approach, refine our requirements and, ulti-
mately, provide meaningful educational content for sci-
ence and engineering students.

As for the platform, we feel its further development
will be largely driven by use cases involving model-

0 50 100 150 200 250 300

Total Load [MW]

40

20

0

20

40

60

80

100

120

G
e
n
e
ra

to
r

P
o
w

e
r

[M
W

]

Power Sharing Versus Total Load

Generator A

Generator B

Generator C

upper power limit

lower power limit

Figure 5. Example of a droop control visualization

ica.university and other proprietary projects. Now
that the basic pieces of the architecture are implemented,
there are countless optimizations we would like to make
to improve responsiveness. There are also many types of
content we would like to provide custom visualizations for
(e.g., time series data, version trees, diagram authoring).

References
Michael Amundsen. Collection+JSON - Hypermedia Type,

2013. URL http://amundsen.com/media-types/
collection/.

Marco Bonvini. Modelica in action: compile and simulate
models, 2017. URL http://marcobonvini.com/
modelica/2017/01/02/modelica-in-action.
html.

ECMA International. Standard ECMA-262 - ECMAScript
Language Specification. 5.1 edition, June 2011.
URL http://www.ecma-international.org/
publications/standards/Ecma-262.htm.

Facebook. React - v15.4.2, 2017. URL https://facebook.
github.io/react/.

R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter,
P. Leach, and T. Berners-Lee. Hypertext Transfer Protocol
– HTTP/1.1, 1999. URL https://tools.ietf.org/
html/rfc2616.

Roy Thomas Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis, 2000.
AAI9980887.

Martin Fowler. CQRS, 2011. URL https:
//martinfowler.com/bliki/CQRS.html.

Marijn Haverbeke. CodeMirror, 2017. URL https://
codemirror.net/.

Internet Assigned Number Authority. About Us, 2017. URL
http://www.iana.org/about.

Michael Kelly. JSON Hypertext Application Language,
2016. URL https://tools.ietf.org/html/
draft-kelly-json-hal-08.

Eve Maler, Tim Bray, Jean Paoli, François Yergeau, and Michael
Sperberg-McQueen. Extensible markup language (XML) 1.0
(fifth edition). W3C recommendation, W3C, November 2008.
http://www.w3.org/TR/2008/REC-xml-20081126/.

Microsoft. TypeScript - Javascript that scales, 2017. URL
https://www.typescriptlang.org/.

Nextjournal. Nextjournal, 2017. URL https://
nextjournal.com/.

Node.js Foundation. About Node.js, 2017. URL https://
nodejs.org/en/about/.

Open Source Modelica Consortium. Openmodelica, December
2016. URL https://openmodelica.org/.

Session 10B: Modelica Language & Tools

DOI
10.3384/ecp17132725

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

733

A. Palanisamy, M. Sjölund, and P. Fritzson. Generat-
ing OpenModelica Web Books Including Mathematical
Typesetting from OMNotebooks, 2016. URL http:
//www.modprod.liu.se/filarkiv/1.672879/
OpenModelica2016-talk15-Arunkumar-GeneratingOpenModelicaWebbook.
pdf.

Project Jupyter. Project Jupyter, 2017. URL http://
jupyter.org/.

Salvatore Sanfilippo and Pieter Noordhuis. Redis, 2017. URL
https://redis.io/.

Susan Fowler. Production-Ready Microservices: Building
Standardized Systems Across an Engineering Organization.
December 2016. URL http://shop.oreilly.com/
product/0636920053675.do.

Kevin Swiber. Siren: a hypermedia specification for repre-
senting entities, 2016. URL https://github.com/
kevinswiber/siren.

Michael M. Tiller. Modelica by Example, 2016. URL http:
//book.xogeny.com/.

Michael M. Tiller. Generate a Dockerfile for any NodeJS
application, 2017. URL https://www.npmjs.com/
package/dockergen.

Bret Victor. What Can a Technologist Do About Climate
Change? (A Personal View), 2015. URL http://
worrydream.com/ClimateChange/.

W3C. HTML 5.1, 2016. URL https://www.w3.org/TR/
html/.

Wikipedia. Droop speed control, 2017. URL https://en.
wikipedia.org/wiki/Droop_speed_control.

Wolfram Alpha. Wolfram Alpha, 2017. URL https://www.
wolframalpha.com/web-apps/.

modelica.university: A Platform for Interactive Modelica Content

734 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132725

Object-oriented modelling of a flexible beam including geometric
nonlinearities

Davide Invernizzi1 Bruno Scaglioni2 Gianni Ferretti2 Paolo Albertelli3

1Politecnico Di Milano, Dipartimento di Scienze e Tecnologie Aerospaziali
Via La Masa 34, 20156 Milano, Italy

2Politecnico Di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria DEIB
Via Ponzio 34/5, 20133 Milano, Italy

3Politecnico Di Milano, Dipartimento di Meccanica, Via La Masa 1, 20156 Milano, Italy

Abstract

In this paper, an efficient approach for the modelling and
simulation of slender beams subject to heavy inertial loads
is presented. The limitations imposed by a linear formu-
lation of elasticity are overcome by a second order expan-
sion of the displacement field, based on a geometrical ex-
act beam model. In light of this, the nonlinearities of the
elastic terms are shifted as inertial contributions, which
yields an expression of the equations of motion in closed
form. Thanks to the formulation in closed form, the pro-
posed model is implemented in Modelica, with particu-
lar care to the suitability of the model with respect to the
Modelica Multibody library. After describing the model
formulation and implementation, the paper presents some
simulation results, in order to validate the model with re-
spect to benchmarks, widely adopted in literature. In
the context of modern multi-domain modelling, the mod-
ular and object oriented approaches are the state-of-the-art
paradigms upon which complex models are built. In this
respect, multibody dynamics is frequently only one of the
domains involved, nevertheless several real-world appli-
cations can be found where multibody modelling plays a
crucial role in the design of systems, analysis and model-
based control architectures. In this framework, modelling
techniques and tools have evolved towards the insertion
of flexible bodies into the models (MSC Software Cor-
poration, 2017; Claytex Services Ltd; Dymore Solutions,
2016; Spacar, 2016; Heckmann et al., 2006; Ferretti et al.,
2014).

Flexible multibody systems can be divided in two main
branches according to the linear or nonlinear constitu-
tive laws employed to model flexible elements. In the
first case, the strain-displacement relationships are as-
sumed to be linear and strain components to remain
small. Nevertheless, several occurrences can be found
where elastic bodies may undergo large overall motion
while strains are kept small. Traditionally, linear elas-
ticity has been accounted for using the so called floating
frame of reference approach (short, FFR), which is natu-
ral way to include flexibility in the rigid multibody frame-
work(Shabana, 1998). Indeed, the displacement field is

decomposed as the sum of an arbitrary large motion of
a suitably selected frame, superposed to an elastic dis-
placement field which is assumed to be small with re-
spect to the overall motion. Thus the elastic displacement
field may be computed accurately through a modal expan-
sion, which is extremely efficient from a computational
point of view. Furthermore, component mode synthesis
techniques, like the well-known Craig-Bampton method
(Craig and Bampton, 1968), has been widely adopted in
multibody simulation tools and specifically in the context
of Modelica, both in commercial (Claytex Services Ltd;
Heckmann et al., 2006) and open-source (Ferretti et al.,
2014; Bascetta et al., 2015) libraries. By means of this
technique, complex geometry can be included in the anal-
ysis even tough an external finite element modeling tool
is required. Although the concept of floating frame is
simple, in practice there are several issues to be handled.
The selection of the floating frame is not unique and ac-
curacy of the results is strongly affected by the choice of
the modal basis (Schwertassek et al., 1999a), (Heckmann,
2010). Furthermore, the use of linear elasticity may lead
to erroneous results when the inertial contribution of the
floating frame motion is large enough to produce high
loads in bodies with high stiffness. A well-known ex-
ample is the rotating beam around a fixed axis: the cou-
pling among the axial, flexural and torsional motion, ne-
glected by the linearized theory, is crucial in order to cor-
rectly predict the behavior of the structure (Berzeri and
Shabana, 2002; Sharf, 1995; Lugrís et al., 2008; Absy and
Shabana, 1997). On the other hand, the flaws of this the-
ory pushed the multibody community toward the develop-
ment of new approaches, closely related to the nonlinear
finite element method (Géradin and Cardona, 2001). In
this case the domain is divided in sub-domains or finite el-
ements which are connected at nodes to ensure elements
compatibility, the nodal displacements and rotations are
referred to a common frame, which is selected as the iner-
tial frame. From a theoretical point of view this approach
is challenging when considering structural elements such
as beams, shells, plates and in particular when large dis-
placements and rotations are considered. Geometrically
exact models for these elements have been developed in

DOI
10.3384/ecp17132735

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

735

the last decades (Pai, 2007) and are the state-of-the-art
to deal with large displacements small strains problems.
Nonetheless special care is required for the computation
of elastic terms and for the interpolation scheme of spa-
tial rotations in a finite elements framework (Jelenić and
Crisfield, 1998). Moreover, a large number of degrees of
freedom is required to obtain accurate solutions and the
expression of the elastic contribution is highly nonlinear
even in the case of small strains. The use of such approach
within the Modelica multibody library is difficult because
the closed form expression of the discretized equations of
motion is not manageable even for simple elements like
beams.

Within the FFR method, several approaches have been
proposed in the reference literature that overcome the
shortcomings of the standard linear approach by account-
ing for geometrically nonlinear effects (Wallrapp and
Wiedemann, 2003; Bremer, 2008; Banerjee, 2016). As
already mentioned, the classic linear approach may pro-
vide erroneous results due to a-priori linearization of the
kinematics and of the elastic energy, even if the strains are
small. This problem has been deeply studied (Absy and
Shabana, 1997) and different techniques have been devel-
oped to consistently linearize the equations of motion, so
that all the relevant terms are retained while keeping the
standard linear elastic terms.

In this work, a general framework to include geomet-
rically nonlinear effects within the FFR approach is pre-
sented. The approach is based on a second order expan-
sion of the displacement field, which can be derived from
geometrically exact models of simple structural elements.
Then, the displacement field is written in terms of a set
of generalized deformation variables for which the elas-
tic terms are linear. Thanks to this substitution, the stan-
dard linear elastic theory can be exploited and the non-
linearities are expressed as inertial contribution, which can
be computed in closed form. Hence, the existing FFR for-
mulation can be employed with minor changes, which is
particularly efficient when small elastic deformations are
expected: few degrees of freedom are usually required.

The proposed formulation has been applied to slender
structural elements which are usually modeled as beams.
In the standard approach, a linearized model is adopted to
describe the deformation field in the floating frame, such
as the Euler-Bernoulli or the Timoshenko beam model.
This approach greatly simplifies the computation of the
elastic terms but limits the correctness of the results by
neglecting nonlinear effects, e.g. the geometric stiffen-
ing induced by the centrifugal acceleration for fast rotat-
ing beams. Within the Modelica framework, the standard
linear approach has been implemented in (Schiavo et al.,
2006), while in (Heckmann et al., 2006) a second order ap-
porximation of the deformation field is presented together
with a Ritz-Galerkin discretization (Ritz, 1909). With re-
spect to (Heckmann et al., 2006), in this work the defor-
mation field is expanded starting from a geometrically ex-
act description of the beam kinematics ((Schwertassek and

Wallrapp, 1999)) and the model is discretized according
to a finite element approach. Finally, the Craig-Bampton
reduction is applied to obtain a computationally efficient
set of equations. The model is implemented in Model-
ica following an approach similar to (Ferretti et al., 2014)
and two validation benchmarks taken from literature are
reproduced, showing trustworthy agreement between sim-
ulation results and literature data.

The paper is organized as follows: In section 1 the mod-
elling framework is described for the generic flexible body
and the equations of motion are formulated. Section 2
goes into details of the beams by describing the mathe-
matical formulation pointed out in the previous section. In
section 3 the implementation and the simulation results are
described. In particular, the results are compared with two
well known literature benchmarks. Section 4 concludes
the paper.

1 Equations of motion of a flexible
boby

Within the FFR approach, the absolute position p of a
generic point of the flexible body is composed by the sum
of three contributions

p = r+u0 +u f , (1)

where r is the vector describing the position of the refer-
ence frame {Oi,xi,yi,zi} with respect to the inertial frame
{Ow,xw,yw,zw}, u0 is the undeformed position of the
point with respect to the local reference frame and u f is
the deformation field, as shown by Figure 1. The compo-
nents of u0 resolved in {Oi,xi,yi,zi} are named material
coordinates.

In order to obtain the equations of motion, the principle
of virtual work is exploited, i.e.:

δWe = δWi (2)

where δWe and δWi are the external and internal virtual
works. According to the FFR approach, the virtual dis-
placement related to (1) can be computed as follows:

δp = δr+δφ ×
(
u0 +u f

)
+δu f (3)

where δφ is the virtual rotations vector of {Oi,xi,yi,zi}
while δu f is the virtual variation of the deformation field
with respect to the local reference frame of the body.

Figure 1. Flexible body reference frames

Object-oriented modelling of a flexible beam including geometric nonlinearities

736 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132735

The external and internal virtual works for a generic
flexible body can be defined as:

δWe =
∫

V
δp · (−ρa+ f) dV +

∫
AN

δp · tdA (4)

δWi =
∫

V
δB : JdV (5)

where ρ is the density of the body, B ∈ R3x3 and J ∈ R3x3

are the Jaumann strain and stress tensor respectively (see
(Pai, 2007) for more details). By using the indicial nota-
tion, the double inner tensor product ":" is defined by:

∫
V

δB : JdV =
∫

V

3

∑
i=1

3

∑
j=1

δBi jJi j dV. (6)

Moreover, f is the body force per unit volume and t the
surface traction per unit area, V is the volume of the body
and A is the unconstrained portion of the body surface.

It must be pointed out that the Jaumann strain tensor
is related to the deformation gradient F ∈ R3x3 as follows
(see (Hodges, 2006)):

B = U− I U2 = FT ·F (7)

where I is the identity tensor and U is the right stretch
tensor.

It must be pointed out that the Jaumann strains are an
objective strain measure suitable for large displacements-
small strains analysis since they are co-rotated engineer-
ing strains. As a consequence, in a linear elastic frame-
work the reduced material stiffness matrix can be derived
from standard experiments (Pai, 2007). The term of δWe
relative to inertial virtual work can be expanded by substi-
tuting (3) in (4), thus obtaining:

−
∫

V
δ p ·ρ

(
v̇+ω×v+ ω̇×

(
u0 +u f

)
+ (8)

+ω× (ω×
(
u0 +u f

)
)+ ü f +2ω× u̇ f

)
dV

where v and ω are the body translational and angular ve-
locities of the FFR.

In the classic linear approach, the deformation field
measured in the FFR is assumed to be infinitesimal such
that the computation of the internal virtual work can be
approximated with the standard linear theory:

∫
V

δB : JdV ≈
∫

V

3

∑
i=1

3

∑
j=1

δεi jσi j dV (9)

where εi j =
1
2 (Fi j +Fji)− δi j is the infinitesimal defor-

mation tensor, and σi j the conjugated stress tensor, both
resolved in the undeformed basis {Oi,xi,yi,zi}. The cor-
responding components of the deformation gradient are:

Fi j = δi j +
∂u f i
∂u0 j

(10)

where δi j are the components of the identity tensor:

δi j =

{
1 i = j
0 i 6= j . (11)

As already mentioned in the introduction, the classic
linear approach may lead to erroneous results since sev-
eral terms are a-priori neglected. Instead, a consistent ap-
proximation of (5) is based on the decomposition of the
deformation gradient such that

Bi j ≈
1
2
(Fi j +Fji)−δi j (12)

where Fi j = ∑
3
k=1 RikFk j and Rik is the rotation matrix de-

scribing the orientation of a suitable frame with respect to
the local reference frame. Under the small strains assump-
tion, the aforementioned frame can be selected such that
F̂i j ≈ δi j, even if displacements are large (see (Bauchau
et al., 2016) for more details).

Within this framework, a second order approximation
of the deformation field is considered in this paper. In
particular, it is possible to operate a change of variables
such that elastic forces can be derived from standard lin-
ear theory whereas geometrical effects are computed as an
inertial contribution. In order to perform such change, the
following assumptions are introduced:

• the deformation field u f depends on a finite set of
physical deformation functions dp = dp(u0), i.e.,
u f = u f (dp,u0). Physical deformations depend only
on a reduced set of material coordinates u0, e.g., in
beam models, the reference axis displacements and
the cross-section rotation angles are functions of the
reference axis coordinate alone;

• the physical deformations dp can be expressed in
terms of generalized deformation functions dg, i.e.,
dp =dp(dg,u0), such that the deformation gradient F
(and thus elastic forces) are linear in dg when strains
(but not displacements) are small;

• the nonlinear relation u f = u f (dp(dg),u0) is ex-
panded up to the second order in terms of the gen-
eralized deformations.

It is worth remarking that these assumptions are not re-
strictive as they hold true for geometrically nonlinear
models of beams, plates and shells. On the other hand,
it is not trivial to obtain the relationship among physi-
cal and generalized deformation variables (Schwertassek
et al., 1999b).
Assuming that the generalized deformations are expanded
by means of a Ritz-Galerking approach (Ritz, 1909), i.e.,

dg = Φ(u0)q(t), (13)

the displacement field, up to the second order, reads:

u f = Sq+G(q)q, (14)

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132735

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

737

where Φ(u0) are spatial mode functions, q is a vector of
generalized coordinates and S(u0) is the standard matrix
of shape functions obtained with linear models. The ma-
trix G(q) linearly depends on q and allows to account for
geometrically nonlinear terms:

G(q) =

 qT G1
qT G2
qT G3

 (15)

where Gi = Gi(u0) is a symmetric matrix depending
only on the material coordinates. Adopting the ap-
proximation (14) in the definition of the internal and
external virtual works (4,5) leads to the derivation
of the equations of motion in the following form:

m(v̇−g)+md̃T
Cω̇ +CT

t q̈+ ω̃md̃T
Cω +2ω̃CT

t q̇+ ω̃mv1 = hr
e (16)

md̃C (v̇−g)+Jω̇ +CT
r q̈+ ω̃Jω +md̃Cω̃v+2ω̃CT

r q̇ = hθ
e (17)

Cg
t (v̇−g)+Cg

r ω̇ +Meq̈+Ctω̃v+(De +Dcr) q̇+Kq = h f
e −hct

e (18)

where the terms of the inertia and stiffness matrices in-
clude additional terms with respect to the classical linear
Newton-Euler approach(Shabana, 1998). In particular, the
generalized stiffness matrix is expressed as follows:

K = Ke +Kct +K1
g +K2

g +Kr
g (19)

and contains additional contributions relative the motion
induced stiffness (K1

g,K2
g) and the external action which

account for geometrically nonlinear effects. The motion
induced stiffness (Kr

g) contribution depends on the refer-
ence frame motion and accounts for the loss of stiffness
induced by the centrifugal acceleration (Kct). The afore-
mentioned terms appear in the equations of motion as a
consequence of the presence of the first order term in the
virtual variation of the generalized coordinates formula-
tion:

δu f = Sδq+G(q)δq (20)

which yields a contribution in the external virtual work
formulation

δWe = δW c
e +δWg (21)

where the standard terms of the external virtual work are
contained in δW c

e and the geometric contribution is de-
scribed by δWg. The complete derivation of the terms
is not reported here for the sake of brevity, it must be
however pointed out that all the terms of the geomet-
ric contribution can be computed as function of invari-
ants. The formulation described above enhances the clas-
sic linear FFR approach through the addition of further
terms, providing a simple solution for including geomet-
ric nonlinearities in the equations of motion. This can be
considered as a relevant advantage of the proposed for-
mulation. The nonlinearities are isolated in the inertial
terms, hence, a closed form expression for the geomet-
rical stiffening effects is derived, which is essential for
the application of the proposed approach in the context

of the Modelica framework. The definition of the stan-
dard terms

(
m, dC, Ct, J,Cr, De, Ke, Me, hr

e, hθ
e , hf

e
)

and
the computation of the corresponding invariants can be
found in (Bascetta et al., 2015).

2 Geometrically exact modeling of
slender beams

The method developed in Section 1 is applied to derive the
equations of motion of slender beams, for which the cross-
section plane is assumed to remain normal to the reference
axis during the deformation. The motion of the flexible
beam can be described in terms of three reference frames
as shown in Figure 2, frame {Ow,xw,yw,zw} is the world
reference frame, while the undeformed beam geometry is
represented by frame {Or,xr,yr,zr} where b1 is the di-
rection of the undeformed beam axis, b2 and b3 define the
cross section principal axis. Finally, frame {Od ,xd ,yd ,zd}
describes the motion of the beam cross-section. The out-
of-plane displacement are assumed to be negligible.

Figure 2. Beam reference frames

According to the reference frames described above, the
position of a generic point on the deformed beam, with
respect to the inertial frame, (see eq.1) is given by:

p = r+ xb1 +u+R ·ξ (22)

where u = u(x)b1 + v(x)b2 +w(x)b3 represents the vec-
tor of the cross-section translation dofs, ξ = yb2 + zb3

Object-oriented modelling of a flexible beam including geometric nonlinearities

738 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132735

and R(x) is the rigid rotation tensor of the cross-section
which can be parametrized by means of Euler angles
(θ(x), φ(x), ψ(x)). The deformation field, defined as u f =
u+R · ξ , is a nonlinear function of a set of physical dis-
placements dp = (u, v, w, θ , φ , ψ), as required by the first
assumption in Section 1.
As already mentioned, the Jaumann strain tensor B is cho-
sen as the strain measure. According to the small defor-
mations assumption, B can be consistently approximated
as:

B11 = e+ zk2− yk3

2B12 = 2B21 =−zk1

2B13 = 2B31 = yk1

B22, B33, B23, B32 = 0

(23)

where e represents the axial stretch, k1 the twisting cur-
vature and k2,k3 the bending curvatures. These quanti-
ties are called generalized strains and are nonlinear func-
tions of the physical displacements and their derivatives,
see (Hodges, 2006) for further details. The internal virtual
work is expressed in terms of the Jaumann strains Bi j in
(23) and their work-conjugate stresses Ji j as follows:

δWi =
∫

V
(δB11J11 +2δB12J12 +2δB13J13)dV. (24)

After substituting (23), the internal virtual work can be
compactly written by introducing the generalized axial
force F1 and moments M1, M2, M3 as follows

δWi =
∫ `

0
(δeF1 +δk1M1 +δk2M2 +δk3M3)dx. (25)

Assuming a linear elastic constitutive law for an isotropic
material, the generalized force and moment are related to
the corresponding strains as:

F1
M1
M2
M3

=

EA 0 0 0
0 GJ 0 0
0 0 EJyy 0
0 0 0 EJzz

e
k1
k2
k3

where EA, GJ, EJyy, EJzz are the axial, torsional, and
bending stiffness, respectively.

Thus, by substituting the constitutive law in the internal
virtual work expression:

∫ `

0
(δeEAe+δk1GJk1 +δk1GJk1 +δk2EJyyk2

+δk3EJzzk3) dx. (26)

It is clear that the above expression is linear in generalized
strains and has the same mathematical form of the clas-
sic linear approach. Nonetheless, it is valid also in the the
case of large displacements and small strains. In order to
adopt the described approach, a suitable change of vari-
ables is introduced, such that the elastic forces are linear
in these new variables, according to the second assump-
tion in Section 1.
The generalized strain components are written in terms
of a set of generalized deformation functions dg =(
ū(x), v̄(x), w̄(x), φ̄(x)

)
by defining:

e =
∂ ū
∂x

, k1 =
∂ φ̄

∂x
,

k2 =−
∂ 2w̄
∂x2 , k3 =

∂ 2v̄
∂x2 . (27)

As shown in (Schwertassek and Wallrapp, 1999), by
describing the physical variables in terms of gener-
alized strains (27) and expanding up to the second
order the corresponding relation, one can compute
the components of the deformation field u f as:

u f 1 = ū− y
∂ v̄
∂x
− z

∂ w̄
∂x
− 1

2

∫ x

0

[(
∂ v̄
∂x

)2

+

(
∂ w̄
∂x

)2
]

dx+

−y
[∫ x

0

(
φ̄

∂ 2w̄
∂x2 −

∂ ū
∂x

∂ 2v̄
∂x2

)
dx+ φ̄

∂ w̄
∂x

]
− z
[∫ x

0

(
∂ ū
∂x

∂ 2w̄
∂x2 + φ̄

∂ 2v̄
∂x2

)
dx− φ̄

∂ v̄
∂x

]
(28)

u f 2 = v̄− zφ̄ +
∫ x

0

[
∂ ū
∂x

∂ v̄
∂x

+
∫ x

0

(
∂ ū
∂x

∂ 2v̄
∂x2 − φ̄

∂ 2w̄
∂x2

)
dx
]

dx− 1
2

y

[(
∂ v̄
∂x

)2

+ φ̄
2

]
+

−z
[

∂ v̄
∂x

∂ w̄
∂x

+
∫ x

0

(
∂ ū
∂x

∂ φ̄

∂x
− ∂ w̄

∂x
∂ 2v̄
∂x2

)
dx
]

(29)

u f 3 = w̄+ yφ̄ +
∫ x

0

[
∂ ū
∂x

∂ w̄
∂x

dx+
∫ x

0

(
∂ ū
∂x

∂ 2w̄
∂x2 + φ̄

∂ 2v̄
∂x2

)
dx
]

dx− 1
2

z

[(
∂ w̄
∂x

)2

+ φ̄
2

]
+

+y
[∫ x

0

(
∂ ū
∂x

∂ φ̄

∂x
− ∂ w̄

∂x
∂ 2v̄
∂x2

)
dx
]
. (30)

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132735

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

739

The direction cosine matrix of the cross-section, ex-
panded up to the second order, can be defined accord-
ingly. A full treatise can be found in (Schwertassek et al.,
1999b).
Finally, the generalized deformations, namely: ū(x), v̄(x),
w̄(x) and φ̄(x) can be approximated as a linear combina-
tion of shape functions in terms of the generalized coor-
dinates q by means of the classical Ritz-Galerkin method
(Ritz, 1909), in particular:

ū = Φ1q v̄ = Φ2q (31)

w̄ = Φ3q φ̄ = Φ4q (32)

where Φ are rows of admissible shape functions. It is
worth to remark that the boundary conditions of the gen-
eralized displacements are the same of physical displace-
ments. In this work, a finite element approach is used to
discretize the beam domain. After the assembly proce-
dure, the Craig-Bampton (Craig and Bampton, 1968) re-
duction procedure is applied by projecting the equations

on the corresponding modal basis, which include con-
straint as well as normal modes. This is particularly ef-
ficient from a computational point of view since the final
model includes only a few degrees of freedom while pro-
viding satisfactory results. The deformation field (14) can
be written as: u f 1

u f 2
u f 3

=

 S1
S2
S3

q+

 qT G1
qT G2
qT G3

q

where

S1 = Φ1− y
∂Φ2

∂x
− z

∂Φ3

∂x
S2 = Φ2− zΦ4

S3 = Φ3 + yΦ4

G1 = −1
2

x∫
0

(
∂Φ2

∂x

T
∂Φ2

∂x
+

∂Φ3

∂x

T
∂Φ3

∂x

)
dx− y

 x∫
0

(
Φ

T
4

∂ 2Φ3

∂x2 −
∂Φ1

∂x

T
∂ 2Φ2

∂x2

)
dx+Φ

T
4

∂Φ3

∂x

+
−z

 x∫
0

(
Φ

T
4

∂ 2Φ2

∂x2 +
∂Φ1

∂x

T
∂ 2Φ3

∂x2

)
dx−Φ

T
4

∂Φ2

∂x

 (33)

G2 =

x∫
0

∂Φ1

∂x

T
∂Φ2

∂x
+

x∫
0

(
∂Φ1

∂x

T
∂ 2Φ2

∂x2 −Φ
T
4

∂ 2Φ3

∂x2

)
dx

dx− 1
2

y

(
∂Φ2

∂x

T
∂Φ2

∂x
+Φ

T
4 Φ4

)
+

−z

∂Φ2

∂x

T
∂Φ3

∂x
+

x∫
0

(
∂Φ1

∂x

T
∂Φ4

∂x
− ∂Φ3

∂x

T
∂ 2Φ2

∂x2

)
dx

 (34)

G3 =

x∫
0

∂Φ1

∂x

T
∂Φ3

∂x
+

x∫
0

(
∂Φ1

∂x

T
∂ 2Φ3

∂x2 +Φ
T
4

∂ 2Φ2

∂x2

)
dx

dx+

+y
x∫

0

(
∂Φ1

∂x

T
∂Φ4

∂x
− ∂Φ3

∂x

T
∂ 2Φ2

∂x2

)
dx− 1

2
z

(
∂Φ3

∂x

T
∂Φ3

∂x
+Φ

T
4 Φ4

)
. (35)

The terms of the direction cosines matrix are not reported
here for brevity, the procedure for the computation is sim-
ilar.

3 Model implementation and valida-
tion

3.1 Model implementation

The implementation of the model is similar to (Ferretti
et al., 2014), a component fully compatible with the stan-

dard Modelica multibody library has been developed. The
shape functions and the invariants which assemble the
terms of eq.(18) are collected in a Modelica record de-
fined as replaceable, in order to exploit the object-
oriented approach of the language and possibly instantiate
multiple flexible beams in the same model. The afore-
mentioned record has been calculated offline by means
of an external script written in Matlab (Mathworks, 2014)
starting from the geometric and material parameters of the
beam. The symbolic computation toolbox has been used
to solve eqs.(28,29,30).

Object-oriented modelling of a flexible beam including geometric nonlinearities

740 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132735

Figure 3. Diagram level scheme of the beam in a simple model

Figure 4. User interface of the beam model

The connectors are placed at the ends of the beam and
the number is limited to two. As an example of model
usage, fig. 3 shows a simple implementation containing
the beam, while fig. 4 shows the GUI of the beam model,
where the replaceable data record can be modified.

In the rigid body components of the multibody library,
the body coordinates are used as state variables when the
component is floating, this is carried out by selecting the
component as root of one connection tree (see (The Mod-
elica Association, 2009; Otter et al., 2003) for details).
Conversely, if the body is connected to a root, a branch
statement is declared and the kinematic is computed from
the states of the joints connecting the component to the
root tree. This mechanism is reproduced in the imple-
mentation described here, the FFR (placed in the FrameA
connector) is assigned as root of the connection tree if the
body is floating, if the body is part of a kinematic chain a
branch is declared between FrameA and FrameB. Fi-
nally, the 3D visualization of the component is provided
by means of the Advanced.Shape visualizer of the
standard multibody library.

3.2 Model validation
The model has been thoroughly validated by means of two
simulation scenarios. Initially, the well-known Princeton
beam experiment (Bauchau et al., 2016) has been repro-
duced in order to validate the quasi-static behaviour of the
model. The beam is subject to a lateral load in different
root orientations ranging from 0 to 90 degrees. The setup
is briefly shown in fig. 5 while the geometric and material
parameters of the beam are shown in tab. 1. This experi-
ment is particularly effective in order to validate the static
deflection of the beam as well as the coupled bending/tor-

sional behaviour, due to the different relative orientation
of the load and beam.

Figure 5. The Princeton beam experiment, reference scheme

Length 0.508 m
Height 3.2024x10−3 m
Width 12.377x10−3 m

Axial S 2.842x106 N
Shearing K22 0.6401x106 N
Shearing K33 0.9039x106 N
Torsional H11 3.103 Nm2

Bending H22 36.28 Nm2

Bending H33 2.429 Nm2

Table 1. Princeton beam parameters

The simulations have been carried out in three differ-
ent loading conditions, namely P1 = 4448N, P2 = 8896N
and P3 = 13345N and the results have been compared with
simulations performed in the software Dymore(Dymore
Solutions, 2016) where a geometrically exact beam theory
is implemented. A photogram of the animation is shown
in fig. 6, where the green arrow on the tip of the bent beam
represents the applied load. Moreover, a substrucutred in-
stance has been tested in order to show the difference in
performance and accuracy. The beam has been divided in
5 elements (6 dofs each) placed in series by simply con-
necting five instances of the model. Figs. 7 and 8 show the
absolute displacement of the transverse components of the
beam with respect to the beam root orientation, while fig.
9 shows the twisting angle in the same circumstances. The
continuous lines represent the Dymore solutions while the
triangles represent the simulations performed in Dymola
(Dynasim AB). As shown in the figures, the results of the
single element model are in good accordance with the ex-
act solution in the first loading case (blue), while five sub-
structuring elements are sufficient to correctly reproduce
the exact solution in the other loading cases. Indeed, in the

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132735

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

741

second and third case, large displacements are expected
and a single element with a second order approximation
is not adequate. As expected from a theoretical point of
view, the proposed model is slightly stiffer because shear
deformations are not included. It is also worth to remark
that a null twisting angle (fig. 9) would be predicted by a
linearized beam model whilst the coupling effect between
bending and twisting is correctly captured by the present
formulation even with a single element.

Figure 6. The Princeton beam experiment, simulation visualiza-
tion

Figure 7. The Princeton beam experiment, transverse tip dis-
placement (v)

Figure 8. The Princeton beam experiment, transverse tip dis-
placement (w)

Figure 9. The Princeton beam experiment, twisting angle

In order to validate the dynamic behaviour of the model,
the classical planar spin-up manoeuver benchmark has
been considered (Berzeri and Shabana, 2002; Valembois
et al., 1997; Shi et al., 2001; Wu and Haug, 1988). A flex-
ible beam rotates about one end with a prescribed angular
law, a diagram of the mechanism is reported in fig.10. The
law describing the time evolution of the angle θ is the foll-
wing:

θ(t) =

{
Ω

T

[
t2

2 +(T
2π
)2(cos(2πt

T)−1)
]
, t < T

Ω(t−T/2), t ≥ T
(36)

thus, the spin-up starts at t = 0 and ends at t = T , when a
constant angular velocity is reached, where it has been as-
sumed T = 15s in the considered experiment. This bench-
mark is widely used in literature in order to demonstrate
the effectiveness of the substructuring technique as well
as the robustness of nonlinear formulations. The follow-
ing geometrical data were assumed for the beam: length
L = 8m , cross sectional area A = 7.3 · 10−5m2, modulus
of elasticity E = 1.3359 · 1010N/M2, second moment of
inertia I = 8.218 · 10−9m4 and density ρ = 2766Kg/m3.

Object-oriented modelling of a flexible beam including geometric nonlinearities

742 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132735

The tip transverse deflection for a 20 seconds simulation
is here compared with the results obtained with a com-
pletely different approach, thoroughly described in (Boer
et al., 2011). A single element beam has been used by re-
taining two additional normal modes in order to increase
accuracy. Thus the number of active dofs is five, consid-
ering only the planar components of the end node defor-
mation. Fig. 11 shows satisfactory results in terms of ac-
cordance between the two approaches. Moreover, the dy-

namics shown here is in good accordance with the other
results in literature (see (Boer et al., 2011; Wu and Haug,
1988)), and the maximum tip deflection is similar to other
numerical results as shown in tab. 2. The proposed formu-
lation captures correctly the geometric stiffening effect in-
duced by the rotation and overcomes the shortcomings of
the standard linear approach, while keeping low the com-
putational effort.

Model Number of elements Max. deflection [m]
Present formulation 1 (5 dofs) 0.536

SPACAR, nonlinear beam 4 (8 dofs) 0.5388
SPACAR, superelement 4 superelements (8 dofs) 0.5375

Wu and Haung (Wu and Haug, 1988) 6 substructure 0.543

Table 2. Maximum tip deflection, comparison with other simulation results

Figure 10. Planar spin-up, scheme of the setup

Figure 11. Planar spin-up, tip transverse deflection

4 Conclusion
In this paper, an approximated dynamic model for flexi-
ble beams is presented, including geometrically nonlinear

phenomena. The equations of motion for a generic flex-
ible body are developed starting from the approximation
of the Jaumann strain tensor under the small strain hy-
pothesis. Assuming that the deformation field of the con-
tinuum model can be expanded up to the second order, a
closed form expression of the equations of motion is pre-
sented including only a few additional terms with respect
to the standard floating frame of reference approach. Sub-
sequently, the proposed formulation is applied to slender
structures. A second order model is consistently derived
from a geometrically exact beam model. The finite ele-
ment approach is adopted in order to discretize the beam,
finally the Craig-Bampton method is applied to reduce the
number of degrees of freedom. The theoretical model
is implemented in the Modelica framework by adopting
an efficient approach where the invariant terms are com-
puted offline and the resulting model is fully integrated
in the Modelica multibody library. The model is finally
validated by means of comparison with well known lit-
erature benchmarks, the numerical results are compared
with simulations obtained by means of completely differ-
ent approaches. The model is suitable to perform small
strains, moderate displacements analysis and can be em-
ployed in large displacements cases by means of substruc-
turing, which is naturally managed in Modelica. The pro-
posed model will allow to consider the realistic behaviour
of slender beams subject to high angular velocities, as well
as to correctly consider the geometrical nonlinear phe-
nomena in slender beams. The development of this model
constitutes a step forward in the state of the art of the flex-
ible multibody Modelica models, leading to more efficient
models for real-world applications. The beam model, as
well as the other flexible multibody models developed by
the authors are freely available upon request, hence, the
author would encourage possible users to contact them.

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132735

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

743

References
H.E. Absy and A.A. Shabana. Geometric Stiffness and Stability

of Rigid Body Modes. Journal of Sound and Vibration, 207
(4):465–496, 1997.

Arun K Banerjee. Flexible Multibody Dynamics: Efficient For-
mulations and Applications. John Wiley & Sons, 2016.

L. Bascetta, G. Ferretti, and B. Scaglioni. Closed-form Newton–
Euler dynamic model of flexible manipulators. Robotica (in
press), 2015.

Olivier A. Bauchau, Peter Betsch, Alberto Cardona, Johannes
Gerstmayr, Ben Jonker, Pierangelo Masarati, and Valentin
Sonneville. Validation of flexible multibody dynamics beam
formulations using benchmark problems. Multibody System
Dynamics, 37(1):29–48, 2016. ISSN 1573-272X.

M. Berzeri and A.A. Shabana. Study of the Centrifugal Stiff-
ening Effect Using the Finite Element Absolute Nodal Coor-
dinate Formulation. Multibody System Dynamics, 7(4):357–
387, 2002.

S.E. Boer, R.G.K.M. Aarts, J.P. Meijaard, D.M. Brouwer, and
J.B. Jonker. A two-node superelement description for mod-
elling of flexible complex-shared beam-like components. In
Multibody Dynamics 2011, ECCOMAS Thematic Confer-
ence, 2011.

Hartmut Bremer. Elastic Multibody Dynamics. Springer, 2008.
ISBN 9781402086809.

Claytex Services Ltd. FlexibleBody Library. Coventry, UK.

R. R. Craig and M. C. C. Bampton. Coupling of substructures
for dynamic analyses. AIAA Journal, 6(7):1313–1319, 1968.

Dymore Solutions. Dymore user’s manual, 2016.

Dynasim AB. Dymola. Lund, Sweden.

G. Ferretti, A. Leva, and B. Scaglioni. Object-oriented mod-
elling of general flexible multibody systems. Mathematical
and Computer Modelling of Dynamical Systems, 20(1):1–22,
2014.

M. Géradin and Alberto Cardona. Flexible Multibody Dynam-
ics: A Finite Element Approach. Wiley, Chichester, Great
Britain, January 2001.

A. Heckmann. On the choice of boundary conditions for mode
shapes in flexible multibody systems. Multibody System Dy-
namics, 23(2):141–163, 2010.

A. Heckmann, M. Otter, S. Dietz, and J. D. López. The DLR
FlexibleBodies library to model large motions of beams and
of flexible bodies exported from finite element programs. In
5th Modelica Conference, Vienna, Austria, September 4-5
2006.

Dewey Hodges. Nonlinear Composite Beam Theory. AIAA,
2006. ISBN 1563476975.

G. Jelenić and M. A. Crisfield. Interpolation of rotational vari-
ables in nonlinear dynamics of 3d beams. International
Journal for Numerical Methods in Engineering, 43(7):1193–
1222, 1998.

U. Lugrís, M. A. Naya, J. A. Peréz, and J. Cuadrado. Implemen-
tation and efficiency of two geometric stiffening approaches.
Multibody System Dynamics, 20:147–161, 2008.

Mathworks. Matlab, 2014.

MSC Software Corporation. ADAMS/Flex user’s manual, 2017.

M. Otter, H. Elmqvist, and S.E. Mattsson. The new Modelica
multibody library. In 3rd Modelica Conference, Linköping,
Sweden, November 3–4, 2003.

P Frank Pai. Highly flexible structures: modeling, computation,
and experimentation. AIAA (American Institute of Aeronau-
tics & Ast, 2007.

W. Ritz. Über eine neue Methode zur Lösung gewisser Varia-
tionsprobleme der mathematischen Physik. Journal für die
Reine und Angewandte Mathematik, 135:1–61, 1909.

F. Schiavo, L. Viganò, and G. Ferretti. Object-oriented mod-
elling of flexible beams. Multibody System Dynamics, 15(3):
263–286, 2006.

R. Schwertassek and O. Wallrapp. Dynamik flexibler Mehrkör-
persysteme. Vieweg, Wiesbaden, 1999.

R. Schwertassek, O. Wallrapp, and A. A. Shabana. Flexible
multibody simulation and choice of shape functions. Non-
linear Dynamics, 20:361–380, 1999a.

Richard Schwertassek, Oskar Wallrapp, and Ahmed A Shabana.
Flexible multibody simulation and choice of shape functions.
Nonlinear Dynamics, 20(4):361–380, 1999b.

A. A. Shabana. Dynamics of Multibody Systems. Cambridge
University Press, New York, 1998.

I. Sharf. Geometric stiffening in multibody dynamics formula-
tions. Journal of Guidance, Control and Dynamics, 18(4):
882–890, 1995.

P. Shi, J. McPhee, and G.R. Heppler. A deformation field for
Euler–Bernoulli beams with applications to flexible multi-
body dynamics. Multibody System Dynamics, 5:79–104,
2001. ISSN 1384–5640.

Spacar. user’s manual, 2016.

The Modelica Association. Modelica – A Unified Object–
Oriented Language for Physical Systems Modeling. Lan-
guage Specification Version 3.1, 2009.

R. E. Valembois, P. Fisette, and J. C. Samin. Comparison of
various techniques for modelling flexible beams in multibody
dynamics. Nonlinear Dynamics, 12:367–397, 1997. ISSN
0924–090X.

Oskar Wallrapp and Simon Wiedemann. Comparison of results
in flexible multibody dynamics using various approaches.
Nonlinear Dynamics, 34(1-2):189, October 2003.

S.C. Wu and E.J. Haug. Geometric non–linear substructuring for
dynamics of flexible mechanical systems. International Jour-
nal for Numerical Methods in Engineering, 26:2211–2276,
1988.

Object-oriented modelling of a flexible beam including geometric nonlinearities

744 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132735

Musculoskeletal Modeling of the Hand and Contact Object in
Modelica

Shashank Swaminathan1 Johan Andreasson2
1Novi, Michigan, USA, sh.swami235@gmail.com

2Modelon KK, Japan, johan.andreasson@modelon.com

Abstract
The paper's primary goal is to develop a mathematical
model that could be used towards the development and
improvement of orthotic assist gloves. The model is
constructed using component based modeling in the
object-oriented declarative language Modelica,
specifically the MultiBody Modelica library. Multiple
hand models currently do exist; however, they are
mainly causal, and require separate development and
validation of mathematical solvers before use. By using
Modelica, the model is constructed from the system’s
physical equations, thereby relieving issues regarding
validity of the model’s computational equations; the
acausality inherent in Modelica allows for model
development that more closely mirrors relations in the
physical world. The model is scoped to be able to model
the kinematics and dynamics of the hand when grasping
a spherical object – both bone structure and muscle
geometry and actuation are simplifications based off
anatomy literature. The contact model is developed as a
separate component from the hand system. The main
design goal of the contact model is to represent the
characteristics of a relatively rigid object that still
maintains a degree of friction and pliability on the
surface layer.

The main two grasps tested in the paper are the
prehensile and precision grasps (powerful and dexterous
grasps). The muscle actuation profiles per each finger
are adjusted until the desired dynamic profile is
achieved for each type of grasp. The main data points of
interests are the joint angles and contact forces for each
finger. Further verification of the model is done using
the animation automatically generated by the tool.
Simulation testing results indicate that the model can
successfully simulate contractions at all levels of
abstraction of the hand’s components (basic bone-joint
components, finger components, and the overall hand
system). The results also indicate that both prehensile
and precision grasps are possible, given appropriate
muscle actuation and finger orientation parameter
values.

Keywords—musculoskeletal model of hand; Modelica;
grasp model; orthotic gloves

1 Introduction
1.1 Relevant Background and Definitions
Patients recovering from a stroke, or those that have
Parkinson’s disease, amongst many others, typically
experience muscle weakness in the upper extremities.
The use of orthotic devices in such situations is an
effective method of returning a modicum of motor
control to patients. Multiple such orthotic devices have
been developed, including, but not limited to, gloves
(Radder et al, 2015), (Adler, 2016), braces (Linn et al,
2012), and soft-muscle pneumatic tubes (Yanchev,
2015; Polygerinos, 2015). However, many of these
devices, must be specially constructed per each patient,
and requires multiple rounds of testing and data
acquisition before completion. Constructing a
mathematical model would enable a better
understanding of the orthotic device, as well as optimize
its construction. The prerequisite to developing a model
of an orthotic device, is the development of a model for
the underlying system, the hand.

Hand modeling has been typically done as a system
of rigid bodies connected through revolute joints e.g.
(Griffin et al, 2000). The papers derive the full set of
equations of motion of the hand from this physical
concept e.g. (Tarmizi, 2009).

From (Marieb, 2000), neural impulses trigger
protein-based reactions that leads to overall muscle
contraction, proportional to the neural impulse strength.
Since the purpose of this paper is not to model the neural
aspects, we will abstract this as an actuation request for
a percentage of total muscle force.

In this paper also, the hand is modeled as composed
of rigid bodies connected by revolute joints. The joints
have restrictions on the total angle of rotation, and
muscle actuation is added to the fingers appropriately.

(Hicks et al, 2015) observes that mathematical
modelers have a dual responsibility of verifying and
validating both the physical equations in the model, and
the mathematical solving components of the model. We
aim to significantly reduce this challenge by keeping the
physics of the system well-removed from the
mathematics required to solve the models. This is
achieved by using Modelica (Modelica®, 2013) as the
modeling language to describe the physical equations of

DOI
10.3384/ecp17132745

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

745

the hand, and Modelica-supporting tools – specifically
Dymola (Dymola, 2017), OpenModelica
(OpenModelica, 2016), JModelica (JModelica, 2016),
and Wolfram SystemModeler (SystemModeler, 2015) –
to mathematically solve the model. The choice of
language was made due to Modelica's object-oriented
unique nature; the systems can be broken into
components, and each component's behavior can be
represented solely through its physical equations. The
separation of the physical and mathematical aspects of
the system, with the user only interacting with the
physical equations, and the tool handling the
mathematical portion, enables focus only on the validity
of the physical equations of the model.

The model utilizes the MultiBody library (Otter et
al.,2003), which contains many components dealing
with three-dimensional rigid bodies, further reducing
the user burden.

To check the performance, the hand model performs
prehensile (powerful) and precision (gentle) grasps
around spherical objects. The grasps are derived from
the taxonomy of grasps defined in (Cutkosky, 1990). To
investigate such motion, a model of a contact object is
also required; given the various levels of potential
abstraction available while developing the contact
object, this is addressed separately in the paper.

1.2 Objectives
The goal for the work described in this paper was to
build a prototype mathematical model of the hand, in
Modelica, that can describe the kinematic and dynamic
interaction between the bones, joints, and natural or
artificial muscles and tendons, such that it can be used
to:
1. Simulate the curling and extension motion of the

finger based on activation of the posterior muscles
and anterior muscles.

2. Simulate different types of grasping motions;
specifically simulate prehensile and precision
grasping motions around a spherical object.

3. Visualize the simulation of the finger motions
through three-dimensional animation.

4. Capture the contact forces on the fingers resulting
from muscle actuation around the spherical object.

In Section 2, the physiological considerations in
modeling the hand are discussed, including the
necessary assumptions made. In Section 3, a closer look
is taken at the hand model itself, involving both a
component-by-component inspection, as well as a
broader view at the package hierarchy. Section 4 follows
with detail on the structure of the contact model
developed in this paper. Sections 5 handles the
simulation of the models, as well as the corresponding
analysis. Section 6 provides the final remarks and closes
the paper.

2 Approach to the Physiology
The bones in the hand are treated as rigid bodies, and
joints are modeled as a set of revolute joints, the number
depending on the degrees of freedom in the joint's
motion.

The muscles in the hand are composed of numerous
sarcomeres (muscle fibers); these muscle fibers actuate
in unison to produce the overall muscle force. The
model of the muscle abstracts this actuation process into
one total force - the input to the muscle component is
the percent of the total muscle being actuated, and the
output is the product of the percent value and the
parameter value for the total muscle force (Marieb,
2000). This is done as sarcomeres actuate in an all-or-
nothing manner; hence, for the muscle to vary the force
of contraction, it must vary the total amount of
sarcomeres firing – in essence, activating a portion, or
percentage, of the total possible muscle force.

The muscle's complex structure is broken down into
multiple line segments moving between attachment
points, as an approximation to the curve, demonstrated
in Figure 1.

The attachment points function as the skin, limiting
the muscle to conform to the physiology of the hand
itself. The nature of skin as a dividing middle layer
between a bone and an object is included in the contact
model. It acts as a buffer layer between the direct contact
between the bone and object, serving to add a degree of
compliancy. The tendons are assumed to act in
conjunction with the muscles as massless bodies that
connect contracting muscles with appropriate bone
structures.

Figure 1: Finger Model Approximation schematic

3 Hand Model
3.1 Modeling Approach
The musculoskeletal aspect of the hand can be broken
down into component-based construction using bones
and muscles. The basic component considered to have
similar functional properties to the hand is called the

Musculoskeletal Modeling of the Hand and Contact Object in Modelica

746 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132745

Bone-Joint-Bone component; it is constructed using two
bones, a connecting revolute joint, and actuating
muscles on both the anterior and posterior side.

Figure 2: Bone-Joint-Bone Component Structure

A finger can be considered an extension of this idea;
rather than having two bones and one joint, there are
multiple bones, and multiple joints, between joints for
normal flexing motion as well as sideways motion.

Figure 3: Finger component structure

The hand itself can be thought of as the joint
workings of multiple fingers in unison, connected
through a bone structure representing the wrist.

Figure 4: Hand Model Structure

The modeling approach relies on the component
breakdown detailed above. By relying on the basic
Bone-Joint-Bone component structure, the finger bones
and the overall hand are constructed. Muscle
components are added as appropriate to actuate the
joints present.

3.2 Bone-Joint-Bone Component
This component (BJBC) represents the basic structure
of the bones and joints in the hand. The component is
constructed using two rigid bodies representing bones,
connected by a revolute joint representing a finger joint;
there are attachment points designated on the bones as
areas the muscle will actuate upon. The Double-Joint-
Bone (DBJBC) component is an extension of this idea,
with an additional degree of motion added to the joint,
to allow sideways motion.

Figure 5: Schematic of a Basic Muscle-Joint
component

3.3 Finger Component
The finger is constructed by fusing two BJBC’s and one
DBJBC, to make four bones (metacarpal and phalanges)
connected by three joints (metacarpophalangeal and
interphalangeal joints) – as seen in Figure 6A.

Figure 6A: Schematic of the Finger Bone Model

There are muscle components for both the anterior and
posterior side, connected to the bone at the attachment
points (as seen in Figure 6B).

Figure 6B: Schematic of the Finger Muscle Model

The finger model additionally contains elements that
model interface to a contact object, and is discussed in
the next section; this is shown in Figure 6C.

BONE JOINT BONE

BONE-JOINT-BONE COMPONENT

BJBC BJBC BJBC

ANTERIOR MUSCLES

POSTERIOR MUSCLES

FINGER COMPONENT

FI
N

G
ER

WRIST

HAND MODEL

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132745

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

747

Figure 6C: Schematic of the Full Finger Model

3.4 Hand Component
The model is created by instantiating multiple finger
components, each at a different position and orientation
relative to the inertial frame. The non-opposable fingers
each have axes of rotation rotated slightly (about 15
degrees) relative to each other, while the opposable
finger’s axis of rotation is almost opposite to the axes of
the other fingers.

Figure 7: The Hand Component

3.5 Package Structure
The overall PowerGrab library consists of one main

package, PowerGrabStructure (as seen in Figure 8),
and a separate package for test models, named
PowerGrabTestingRig (not shown in the figure). The
division was made so that the main models can be
assuredly independent of the testing models and other
older versions.

Figure 8: Package Structure

The PowerGrabStructure package contains the main

components of the library, including the bone structures,

the muscle components, and contact object models.
There also exist examples for each type of system,
namely the basic bone-joint system, the finger-and-
contact system, and the hand-and-contact system.

4 Contact Object
The contact object is modeled essentially as a semi-rigid
sphere – a combination of nonlinear spring and damper
systems that only exerts a force on the bone when a
contact event occurs (below is a diagram of the contact
object).

Figure 9: Spherical Object Contact Model

The object is represented as the combination of a point
defining the center of the contact object, and a connector
component between the object center and the potential
point of contact on the bone. Each connector component
details the contact dynamics between the contact object
and the specific bone segment the component is
connected to. Having separate connectors per each bone
segment allows there to be multiple contact points per
finger, one per each bone segment (for a maximum of 4
points per finger). However, as the connector follows a
straight line, the contact is restricted to occur at a single
point per each bone segment. Furthermore, as the
contact model is designed for a spherical object, later
models for other object shapes must be independently
developed.

4.1.1 Determining the point of contact

We define vector 𝑙" as the direct path from the base of
the bone to the center of the contact object. Next, we
define a vector perpendicular to the bone, 𝑙#, by
subtracting the projection of the vector 𝑙" along the
length of the bone from 𝑙". Should the magnitude of 𝑙#
fall below the radius of the object, we can then
determine that contact has occurred.

𝑙# = 𝑙" − 𝑙" ∙ 𝚤()*+ 𝚤()*+	

The actual implementation of this strategy in
Modelica is simplified using a relative position sensing

Musculoskeletal Modeling of the Hand and Contact Object in Modelica

748 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132745

component and a prismatic joint. A prismatic is attached
to the base of the bone, and is free to slide along the x-
axis, as resolved in the frame of the bone. Using a
relative position sensing component between the center
of the contact object and the nonmoving base end of the
prismatic joint, resolved in the frame of the bone, the
vector for the relative position of the center of the object
is found. The component of that vector along the bone
is determined (as the x-component of the vector, as it is
resolved in the frame of the bound), and is subtracted
from the overall relative position vector. This leaves us
with the component of the vector that is perpendicular
to the bone, which is the vector desired.

If and as the finger slips along the object, both the
number and location of contact points will be updated
accordingly.

4.1.2 Determining the force of contact

As the contact object is spherical in nature; this allows
for the following abstraction: the object is a spring that
has a relaxed length of 0, with a nonlinear stiffness that
becomes nonzero only when the stretched length is
below a certain threshold (thus creating a zone of
nonzero stiffness described by a threshold radius 𝑡𝑅).
The force equation is thus as follows:

𝐹0 𝑙# =
𝑘 𝑡𝑅 − 𝑙# ∗ 𝑙#, |𝑙#| ≤ 𝑡𝑅

0, |𝑙#| > 𝑡𝑅
	

Apart from the normal contact force between the
object and the bone, an additional force representing the
effect of skin on contact is also applied. This is
considered as a "buffer layer", as the skin will meet the
contact object before the bone, thus acting as a buffering
between the two. The skin is considered to have some
pliability, and is therefore modeled as a spring
connection between the contact object and the point of
contact on the bone. Due to modeling purposes, the skin
is assumed to be layered around the contact object rather
than the bone itself, as it allows for the approximation
that the skin-caused buffering force 𝐹89::+; 𝑙1 acts
in the same manner as the normal contact force, albeit at
a larger threshold range. This extension in force and
range is reflected in the parameters 𝑏𝐶 and 𝑏𝑅,
respectively.

𝐹89::+; 𝑙1
𝑏𝐶, 𝑙1 ≤ 𝑡𝑅 + 𝑏𝑅

0, 𝑙1 > 𝑡𝑅 + 𝑏𝑅
	

4.1.3 Determining the friction due to contact
The friction due to the contact between the bone and
contact object is represented as a damping on the sliding
motion across the surface of the contact object. The
magnitude of damping is 𝐹0 ∗ 𝑣A9;:BC+ . The normal
force magnitude is equal to the magnitude of the contact
force on the bone, and the surface velocity is determined
as the magnitude of the result of subtracting the vector

component of the relative velocity between the bone and
contact object that is parallel to the radius from the
overall relative velocity vector.

𝑣;+D = 𝑣()*+ − 𝑣)(E+CF	

𝑣A9;:BC+ = 𝑣;+D − 𝑣;+D ∙
𝑙#
𝑙#

𝑙#
𝑙#

5 Simulation
5.1 Component Testing
The purpose of the component tests is to determine if the
component’s performance conforms to the expected
result. To test the bone structure components, muscle
components are instantiated in the test models, to
actuate the bone structures.

5.1.1 Bone-Joint-Bone Component Test

The muscle actuation profile alternates between
actuating the anterior muscle and actuating the posterior
muscle, with small intervals of overlap. As seen in
Figure 10, the limits on rotation are -0.5 and 1.6 radians,
and the system can successfully reach those limits
following sustained muscle activation. As the desired
functionality is for the component to be able to undergo
such motion, we conclude that the Bone-Joint-Bone
Component can adequately support our needs.

Figure 10: (Unit Level) test of BJB component

5.1.2 Double-Bone-Joint-Bone Testing

Like the Bone-Joint-Bone component’s test, the DBJBC
component also utilizes muscle components to actuate
the bones in the system. As seen in Figure 11, we actuate
the side muscles using the same muscle activation
profile used for testing BJBC component, while keeping
the other muscles inactive. The following angular
displacement occurs in the Side Joint (note that the
limits on the angle of rotation is different between the
joints).

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132745

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

749

Figure 11: (Unit Level) test of the DBJB component:
Side joint actuation only

Of special interest is the relationship between

sideways motion and forward motion. It is reasonable to
expect that, due to coupled dynamics, forward motion
will cause motion sideways, and vice versa. In Figure
12, both the Forward Joint and the Side Joint are
actuated. For the Forward Joint, it is sequential
activation of the anterior and posterior muscles. The
Side Joint follows the same activation profile used in the
previous tests, and correspondingly experiences motion
as seen in Figure 12 (bottom graph). There are also
slight additional movements in the side joint, in
conjunction with change in direction of movement in the
forward joint, which can be attributed to the coupled
dynamics.

Figure 12: (Unit Level) test of the DBJB component,
with simultaneous side and forward actuation

Similar to the requirements for the Bone-Joint-Bone
component, the requirement for this component is to be
able to undergo such movement given appropriate
actuation, without too much deviation from smooth
motion. As such, we determine that this component is
suitable for use.

5.1.3 Finger Component Test

5.1.3.1 Finger Testing without Contact Object -
Results:

The finger muscles were sequentially actuated to
enable flexion and extension. The activation is done in

a square wave pattern, as seen in Figure 14 (bottom),
and alternates the anterior actuation with the posterior
actuation. The resulting joint angles (Figure 14 top)
indicate that the model successfully captures contracting
motion, with the finger curling when the anterior
muscles are actuated, and extending when the posterior
muscles are actuated. A screen capture of the animation
of the testing is seen in Figure 13.

These test results, in conjunction with the test results
shown in the previous section, indicate that the first goal
of the paper has been satisfied (to simulate the curling
and extending motion of the fingers through actuation
of the muscles.

Figure 13: Animation of No Contact Finger
Component Test

Figure 14: Curling and extension tests for Finger
model

5.1.3.2 Finger Testing with the Contact Object -
Results:

The previous test was repeated, but with the addition of
a spherical contact object placed in front of the finger.
The actuation profile is a staggered sequential activation
from the proximal phalange to the distal phalange. The
test’s goal is to have the finger curl around the contact
object when the object is positioned both directly in
front of the finger, and positioned in front with a small
offset to the side. As seen in Figure 15 below, when the
object is directly in front, the finger curls around the
object without slipping to the side. (Note that the middle

Musculoskeletal Modeling of the Hand and Contact Object in Modelica

750 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132745

phalange and distal phalange contact the object at the
same time, and that the side joint’s angle is constant at
zero).

Figure 15: Finger contacting spherical object “head-
on”

Figure 16 shows a screen capture of the animation of
the head-on contact with the spherical object.

Figure 16: Animation of the Finger contacting
spherical object “head-on”

The experiment is repeated with the object placed with a
small offset. As seen in Figures 17 and 18 below, the
finger still contacts the object, but proceeds to slide across
the surface for a short period.

Figure 17: Finger contacting spherical object with
offset

Figure 18: Animation of Finger contacting spherical
object (front and side views)

The finger, during each trial, undergoes motion that
conforms to expectation on how it should behave, and
so is considered successfully tested.

A limitation observed is that the frictional force
model, along with the high stiffness associated with the
object's normal force, causes computational strain on the
numerical solver during model simulation.

5.2 Hand Grasping Tests
The two grasps tested for in simulation were the

prehensile and precision grasps. The precision grasp is
a grasping motion that relies on relatively minimal
muscle actuation to lightly hold the contact object; a
prehensile grasp is when the muscles in the hand actuate
to fully grab, and squeeze, the contact object in question
(Cutkosky et. al., 1990).

The testing of the hand model, consisting of five
finger component instantiations, is similar to the contact
object test for the individual finger component. The
muscles of the hand actuate, and cause the hand to
contract. The purpose of the test is to determine if the
hand can both perform a prehensile circular grasp
around the ball, or a precision circular grasp around the
ball. Separate actuation profiles were used for the
prehensile grasp and the precision grasp.

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132745

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

751

Correspondingly, the object was placed at two different
locations, depending on the type of grasp.

The results of the prehensile grasp (Figure 19)
indicate that the fingers make and maintain contact with
little sliding through the testing – all except the little
finger – as indicated by the minimal movement in the
side-joint’s angle. The contact object’s small radius of
only 2.75 cm, in comparison to the fingers of average
length 15 cm with diameter 2 cm, was chosen to
demonstrate a typical hand grasp. The opposable fingers
can maintain a firm grasp on the object, like how actual
hands maintain holds on small objects. Some slipping
occurs because there is not enough friction between the
surfaces. The sliding motion could not be further
reduced by increasing the friction, as doing so caused
numerical issues; however, the slipping did not occur
indefinitely, due to the side joint’s resistance to motion
(as mentioned in Section 3.2.1).

Figure 19: Prehensile Grasp Simulation

For the precision grasp, only the proximal phalanges

were actuated, and the object was located closer to the
distal phalanges. As seen from the results in Figure 20,
contact occurs only as the distal phalanges – the little
finger does not contact the object entirely, as it does not
reach the object. Looking at the joint angles, we see that
the proximal joints’ motion stops soon after the distal
phalange contacts the object. The distal phalanges’ start
to bend backwards upon with the object, as reasonably
expected – once the distal phalanges stop bending
backwards, the proximal phalanges’ motion stops as

well. During the entire grasp, there is minimal slipping
exhibited at all the contact points.

The hand testing, for both the prehensile and the
precision grasps, displayed both the contracting motion
and the grasping characteristics desired.

Figure 20: Precision Grasp Simulation

6 Conclusions
6.1 Results Summary

Implication with respect to Paper Goals:

The primary goals of this study were to be able to:

1. Simulate the curling and extension motion of the
finger based on activation of the posterior muscles
and anterior muscles.

2. Simulate different types of grasping motions;
specifically - specifically simulate prehensile and
precision grasping motions around a spherical
object.

3. Visualize the simulation of the finger motions
through three-dimensional animation.

4. Capture the contact forces on the fingers resulting
from muscle actuation around the spherical object.

As seen from the results, goals 1, 2, 3 and 4 were
successfully achieved.

6.2 Development Review
The initial construction of the model was done in
Wolfram SystemModeler; the later models were
developed in Dymola, leveraging its user-friendly
refactoring and model creation capabilities. For
compilation, debugging, and simulation capability,
JModelica was used. OpenModelica was then separately
utilized for animation (with simulation). All three
services, apart from OpenModelica’s lack of a

Musculoskeletal Modeling of the Hand and Contact Object in Modelica

752 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132745

CVODES solver, did not require major tool-specific
code alterations to run. This allowed for smooth
transition between tools during model development and
testing. The non-tool-specific functionality of Modelica,
and the support for Modelica from the tools
SystemModeler, Dymola, JModelica, and
OpenModelica, were extremely useful for this
package’s creation.

6.3 Further Work
Much of this model was based off simplifications to

get the models and simulations running – future work
should focus on refining these model assumptions.

6.3.1 Musculoskeletal Model Improvement

Models of both the bone structure and the muscle
geometry can be improved from its current state. The
bone’s physical parameters, including bone lengths and
finger orientations, should reflect the actual structure of
the bones. Currently, most parameters were chosen from
an average of measurements taken of a group of
volunteers; parameters not gathered from measurements
were chosen arbitrarily. Using data selected from
studies on hand dimensions and appropriately large
ranges of volunteers would improve the validity of the
resulting forces and motion involved in grasping. The
muscles are currently modeled through linear line force
segments between a limited number of attachment
points to approximate the muscle’s curve – this could be
expanded by better representing the multiple interacting
muscles and tendons, and their corresponding muscle
geometries. Further improvements with the muscle
actuation dynamics are also possible.

6.3.2 Contact Model Improvements

The current contact model is based around a
spherical object; this should become more generalized,
for multiple geometrical shapes and surfaces.
Furthermore, the model currently assumes that each
interacting bone will have a maximum of one tangential
contact point, and that skin acts as a mere buffer – the
models should account for the hand’s relative flexibility
and pliability. Lastly, the friction model is constructed
as a type of surface damping, but it would be more
appropriate to include Coulombic friction as well. As
the contact object was developed in an ad-hoc manner,
improvements can be made by integrating standard
existing contact model approaches.

6.3.3 Testing Improvements

The testing of the hand grasping motion should be
improved such that the muscle actuation profiles are not
arbitrary pulses, but an imitation of natural activation
profiles. Moreover, future work should also integrate
experimental datasets from muscular grasps to make
testing result analysis more accurate.

References
Cutkosky, M. R., & Howe, R. D. (1990). Human Grasp

Choice and Robotic Grasp Analysis. In S. T. Venkataraman
& T. Iberall (Eds.), Dextrous Robot Hands (pp. 5-31).
Springer-Verlag.

Griffin, W. B., Findley, R. P., Turner, M. L., & Cutkosky, M.
R. (2000). Calibration and Mapping of a Human Hand for
Dexterous Telemanipulation. ASME IMECE 2000
Conference Haptic Interfaces for Virtual Environments and
Teleoperator Systems Symposium. Retrieved from
http://www-
cdr.stanford.edu/DML/publications/griffin_asme00.pdf

Adler A, “GM-NASA Space Robot Partnhership brings
“Power” Glove to Life”, GM Corporate News
announcement, 2017 July 6th,
http://media.gm.com/media/us/en/gm/home.detail.html/co
ntent/Pages/news/us/en/2016/jul/0706-gm-nasa.html

Linn D. M., Ihrke A. C., Diftler M. A., “Human grasp assist
device and method of use”, US Patent No. 8255079 B2,
2012.

Polygerinos P, , Galloway K. C., Savage E., Herman M., O’
Donnell K, and Walsh J. C., “Soft Robotic Glove for Hand
Rehabilitation and Task Specific Training”, 2015 IEEE
International Conference on Robotics and Automation,
May 2015, doi: 10.1109/ICRA.2015.7139597

Yanchev T, “Power Assist Gloves”,
https://www.youtube.com/watch?v=gzfZCTYREww 2015

van Nierop, O. A., van der Helm, A., Overbeeke, K. J., &
Djajadiningrat, T. J.P. (2007). A natural human hand
model. The Visual Computer, 24(1).
http://dx.doi.org/10.1007/s00371-007-0176-x

Gustus, A., Stillfried, G., Visser, J., Jörntell, H., & van der
Smagt, P. (2012). Human hand modelling: kinematics,
dynamics, applications. Biological Cybernetics, 106(11).
http://dx.doi.org/10.1007/s00422-012-0532-4

Wan Tarmizi, W. F. B., Elamvazuthi, I., & Begam, M. (2009).
Kinematic and Dynamic Modeling of a MultiFingered robot
Hand. International Journal of Basic & Applied
Sciences, 9(10). Retrieved from http://ijens.org/index.htm

Marieb, E. N. (2000). Essentials of human anatomy and
physiology (6th ed.). San Francisco: Benjamin Cummings.

Otter, M., Elmquist H, Mattson S. E., “The New Modelica
Multibody Library”, Proceedings of the 3rd International
Modelica Conference, Linkopig, 2003

Tiller, M. (2014). Modelica by Example. Retrieved from
http://book.xogeny.com/

Modelica® (2013) - A Unified Object-Oriented Language for
Physical Systems Modeling, Language Specification
https://modelica.org/documents/ModelicaSpec32Revisi
on2.pdf

Hicks J. L., Uchida T.K., Seth A., Rajagopal A., Delp S.L., “Is
my model good enough? Best practices for verification and
validation of musculoskeletal models and simulation
environment”, Journal of Bioengineering, Vol 137, Feb
2015.

Radder, B., Kottink AIR, van der Vaart N, et. al, “User-
centred input for a wearable soft-robotic glove supporting
hand function in daily life”, 2015 IEEE International

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132745

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

753

Conference on Rehabilitation Robotics (ICORR),
Singapore, 2015, doi: 10.1109/ICORR.2015.7281249

Dymola (2017) Copyright © Dassault Systèmes, 1992-2016
http://www.3ds.com/products-
services/catia/products/dymola/

SystemModeler (2015) Copyright © 2015 Wolfram Research,
Inc. http://wolfram.com/system-modeler/

OpenModelica (2016) Copyright Open Source Modelica
Consortium (OSMC) https://www.openmodelica.org/

JModelica (2016) from http://jmodelica.org/

Author’s Notes

I was first introduced to Modelica during an

internship at Xogeny in the summer of 2014, as a
freshman in high school. This led to me modeling a flat
linear motor I had previously built by hand. The linear
motor consisted of multiple solenoids sequentially
activated by an Arduino, to propel a cart down metal
tracks. It was developed in an ad hoc manner, and
adjusting the design was difficult; I felt that modeling
was a nicer way of doing these kinds of tasks.

When noticing elderly persons having trouble
opening doors and holding jars, I began thinking of ways
to devise an orthotic glove to assist them. To gain a
better understanding of the system, I decided to first
develop a mathematical model of the hand. I began
working on the PowerGrab project as a summer intern
at Modelon KK, under the supervision of Dr.
Andreasson. Since then, I have continued to work on
developing the code for the PowerGrab library, as well
as writing the corresponding paper, with the continued
guidance of Dr. Andreasson’s comments and feedback.

My Background:
Shashank was born in Michigan, USA, and is

currently a senior in high school. He was a summer
intern at Modelon KK and Modelon, Inc., and is
currently in the Wolfram Mentorship Program.

Musculoskeletal Modeling of the Hand and Contact Object in Modelica

754 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132745

Modelica Spur Gears with Hertzian Contact Forces

Markus Dahl1 Håkan Wettergren1 Henrik Tidefelt1

1Wolfram MathCore, Linköping, Sweden, {markusd,hakanw,henrikt}@wolfram.com

Abstract
To be able to capture the dynamics of entire systems
is one of the strengths of the Modelica language. This
article will examine the possibility of modeling spur
gears in the Modelica environment Wolfram System-
Modeler, and integrating them with other rotating
machinery elements, such as roller bearings and flexi-
ble shafts. The contact forces between spur gears are
based on the Hertzian Theory of Contact1

Keywords: Spur Gear, Hertz Contact Theory, Rotat-
ing Machinery

1 Introduction
Gear contact forces can be accurately modelled by
fem programs, but usually at a high computational
cost. The focus is usually on solving the force equa-
tions statically, where some dynamics might be lost.
A common way of calculating the dynamics is to add
a so called application factor to the static solution,
approximating the dynamic result. By using a Mod-
elica model instead, the dynamics can be included in
the model, replacing the application factor. To be
compatible with other libraries, the models here are
based on the MultiBody library from the Modelica
Standard Library. The choice of using a 3D mechani-
cal library instead of libraries such as PlanarMechan-
ics (Zimmer, 2012), is to be able to keep building on
these models to handle helical and other type of gears.

Another benefit of Modelica models is that they
can be used with other rotating machinery elements.
Let’s say that a wind turbine gear box should be an-
alyzed. This gear box contains inner and outer spur
gears, flexible shafts, and roller bearings. If a Mod-
elica model is used for this purpose, we can see both
how the spur gears affect the bearings, the shafts, as
well as how the shafts and bearings affect the gears.
Therefore, the dynamics of the entire system can be
captured and analyzed.

In Section 2, the gear geometry of a spur gear will
be introduced. Following that, Section 3 will be an
introduction to the Hertzian Contact theory. Section
4 will explain how this was implemented in Modelica.
Section 5 will go through some examples where the
gears were used. Finally a discussion of the results
will follow in Section 6.

1As found in Roark’s Formulas for Stress and Strain, 2002

1.1 Previous work
Several papers have been written regarding model-
ing gears in the Modelica language. Special attention
has been seen in the area of powertrains. One of the
original papers is (Otter et al., 2000) where the Pow-
erTrain package was presented.

The package PowerTrains contains 1-dimensional,
rotational mechanical systems. I.e. a lot of simplifi-
cations have been made to be able to model the com-
plete driveline. At that time it was a state of the art
approach. However, the very idealized components
in that library cannot be used for any advanced di-
mensioning or root cause analysis. The description
of the components are very simplified compared to
the special simulation tools that exist in each specific
machine element area.

During the years, several of the components have
been refined. One work is (van der Linden and
de Souza Silva, 2009) where a 3-dof elastic model
was used which included the elasticity of the support
bearings in the load direction, which was not possi-
ble in the standard gear model. The model was then
extended in (van der Linden, 2012) to also include a
Gear Contact Model. A later paper, (van der Linden,
2015) compared the results from a Modelica model
that investigated gear contact to tests.

A much more detailed approach was taken by
(Kosenko and Gusev, 2011) and further improved in
(Kosenko and Gusev, 2012), where the forces between
gears were modelled with high detail in a Modelica
environment.

2 Gear Geometry
This section describes the geometrical modeling of
two gear wheels that are in contact or in close prox-
imity. Starting with the geometry of a single gear
wheel, we then proceed with the geometry of the in-
teraction between two gear wheels, before going into
more advanced topics such as tip relief and the ge-
ometry involved in triggering events in a Modelica
model.

2.1 Geometry of a gear wheel
A gear is basically a toothed wheel aimed to transmit
rotation from one shaft to another. Spur gears, that is
the focus in this article, can be described as parallel-
axes gears without a helical angle. The gears can be of

DOI
10.3384/ecp17132755

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

755

a

b

p

r

θ
θr

θr

Figure 1. Involute of a circle. The involute (thick line) is
traced by mapping each angle θ to the point p by going the
distance θr along the circle from point a to point b, and then
going the same distance back along the tangent to point p.
Note the right angle at point p. The involute obtained by
this procedure creates an involute corresponding to a rear
flank of a gear tooth. Mirroring the procedure creates a
front flank, drawn with a dotted line.

Table 1. Gear wheel geometry parameters.

Parameter Description
z Number of teeth in gear
m Gear module
α0 = 20◦ Reference profile angle
x Profile shift factor

two types, inner gear (a ring with teeth on the inside)
and outer gear (a wheel with teeth on the outside. For
clarity of presentation, only outer gears are considered
in this section.

One of the main reasons for the broad use of gears
is the efficiency of the transmission, which depends
on shape of the teeth. The most common shape of a
tooth is a circle involute. A circle involute or simply
involute, is a curve following the end point of a tan-
gent that is rolled up from a circle. It is defined by
the geometry in Figure 1. The right angle at point
p, between the tangent of the circle and the tangent

rb

mz
2

α0

2π
z

πm

πm2 +
2xm

tan
α
0

π
z

Figure 2. Gear wheel geometry parameters in an outer
spur gear. The radius of the base circle, rb is easily derived
from the gear wheel parameters z, m, and α0. The effect
of the profile shift, x, is best understood in relation to a
straight gear reference profile, but the derivation is out of
scope in the current presentation.

c
rb

ra

θ

n̂
t̂

k̂

p
p

θrb
sb

front
rear

Figure 3. Intersection between gear flank and a tangent
of the base circle. Also showing the derived quantity sb,
and the additional parameter ra. Vector k̂ points to the
point on the tooth where the involute begins. The point p
is then obtained from the rolling angle, θ, and rb. The front
flank is where force is transmitted when applying torque in
counter-clockwise direction, and the rear flank when apply-
ing clockwise torque.)

of the circle involute, is a fundamental property of
involute curves.

There are four geometrical parameters that need to
be specified for a spur gear in our case, listed in Ta-
ble 1. These parameters are shown in Figure 2. From
these user-specified parameters, many other quanti-
ties are derived, see Figure 3. For example, one can
derive the tooth base thickness, sb, and also express
a standard choice of ra, as

sb =
(π

2 +2xtanα0 +z invα0
)
mcosα0 (1)

ra =m
(z

2 +x+1
)

(2)

where invα0 = tanα0−α0.
The signed rolling angle, θ, is related to the inner

product of the unit vectors k̂ and t̂,

< k̂, t̂ >= cos
(π

2 −θ
)

(3)

from which it can be solved reliably.

2.2 Line of contact
Contact between two gears always occur for either
front-front flank contact, or rear-rear flank contact.
For each of the two contact cases (front or rear), there
is a line of contact (LoC), along which the contact
between the teeth will be located. The front and rear
contact cases are analogous, and to avoid going into
details about sign conventions, only the front case
will be considered from here on. Using the wheel
positions, the distance between these points, aw can
be related to the angle of LoC, αw. See Figure 4.

aw = m

2 (z1 +z2) cosα0
cosαw

(4)

Here, the indices 1 and 2 mean gear wheel 1 and
gear wheel 2 respectively. The LoC normal (in two

Modelica Spur Gears with Hertzian Contact Forces

756 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132755

c1
rb,1

c2rb,2

LoC

n̂

aw
αw

Figure 4. Line of contact of two gears, for contact between
front flanks on the teeth (transmitting force when either
gear is driving with positive direction of rotation). The LoC
for contact between rear flanks is obtained by reflection in
the line through the gear centers.

dimensions), n̂, can then be expressed using the angle
αw, as

cosαw = (rb1 + rb2)
||aw| |

(5)

sinαw =±
√

1− cosα2
w (6)

n̂=
(

cosαw sinαw
−sinαw cosαw

)
aw
||aw| |

(7)

where the sign of sinαw reflects the choice between
LoC for clockwise or counter-clockwise rotation.

A point p on the flank of a tooth can now be de-
scribed using αw, the LoC, rb, and the center position
of the gears, ci.

In order to determine contact forces between two
gear flanks, we define an indentation depth, δ measur-
ing the amount of intersection between the teeth. The
depth is modeled using the points p1 and p2, where
the gear flanks intersect with the LoC.

2.3 Tip relief
To get a smooth contact force, a modification of the
tip is usually done, called a tip relief. This can be
done by removing a small portion of the tooth, as
shown in Figure 5. The LoC will be affected by this
modification, but the change is on the scale of 0.01

c

rb
θ

ra d
v(θ) c

0

Figure 5. Gear with tip relief (exaggerated).

modules, which makes the effect on the LoC negligi-
ble. The new tooth shape with tip relief can then be
calculated by the following standard equation:

v(θ) = q(θ−θa) (8)

where q is a coefficient to ensure that the amplitude
is obtained correctly, and θa is the maximum value
for the roll angle. How much of the tooth that is
removed can be specified by setting the distances c
and d, defining the tip relief amplitude and tip relief
length, respectively.

2.4 Tooth pair activation
A pair of teeth in contact are identified by one integer
index on each gear, i1 and i2. Together with the rota-
tions of the axes on which the gears are mounted, ϕ1
and ϕ2, the directions k1 and k2 pointing at the start-
ing points of the involutes on the base circles follow,
which in case of front flank contact are given by

k̂1 =
(

cosβ1

sinβ1

)
β1 =

sb,1
2rb,1

+ i1
2π
z1

+ϕ1 (9)

k̂2 =
(

cosβ2

sinβ2

)
β2 =

sb,2
2rb,2

+ i2
2π
z2

+ϕ1 (10)

As was shown in Figure 3, the rolling angles follow for
any given direction of the LoC. In Figure 6, the front
flanks corresponding to indices i1 and i2 are marked
with a thick line. As the gears rotate, the current
tooth pair will become disengaged, while other pairs
will become engaged. An index skip, i∆, is chosen by
upward rounding of the gear contact ratio. Depend-
ing on the direction of rotation, the next tooth pair to
follow when the current pair has become disengaged
is selected as

i′1 = i1± i∆ (11)
i′2 = i2∓ i∆ (12)

rb,1
ra,1

k̂1

θ1
θa,1

ε+ i 1

i 1
+2

i1−2

rb,2

ra,2
k̂2

θ2

θa,2

ε−

i 2

i2
+2i2−

2

Figure 6. Slack variables used to control tooth pair acti-
vation for front flank contact. Here, i∆ = 2, corresponding
to a configuration for a contact ratio between 1 and 2.

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132755

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

757

In Figure 6 where gear 1 rotates clockwise, the
change in i1 is with positive sign, while the change in
i2 is with negative sign. The slack angle ε+ measures
how much the rolling angle θ1 may decrease until it
is absolutely necessary to consider interaction for the
tooth pair i′1 and i′2. Analogously, when gear 2 rotates
clockwise, ε− measures how much the rolling angle θ2
may decrease until it is absolutely necessary to con-
sider interaction for the tooth pair in the opposite
direction. The slack angles are given by

ε+ = θ1 + i∆
2π
z1
−θa,1 (13)

ε− = θ2 + i∆
2π
z2
−θa,2 (14)

In the Modelica model presented in Section 4, the
tooth indices are updated such that the slack angles
are positive at all times. For robust simulation, it is
desirable to update indices with some margin until
it is absolutely necessary according to the slack vari-
ables. That is, we should avoid triggering the update
at the lower bound 0. When indices are updated be-
cause one of the slacks is getting too close to zero, that
slack variable will be reset to a large value, while the
other slack variable will be signifiantly reduced. We
will trigger based on the following conditions, where
γ is a positive constant which remains to be deter-
mined,

ε+ < γ

(
ε−− i∆

2π
z2

)
Trigger positive change in i1

(15)

ε− < γ

(
ε+− i∆

2π
z1

)
Trigger negative change in i1

(16)

In order to avoid endless event iteration when up-
dating the indices, it must be ensured that trigger-
ing a change in one direction does not reduce the
other slack so much that it satisfies the condition
for re-triggering a change in the opposite direction.
By equating the margin to the lower bound of zero
slack, with the margin to re-triggering a change in
the opposite direction, a natural choice of γ =

√
5−1
2

is obtained.

3 Hertz Contact Stress
To calculate the force between two gear teeth,
Hertzian Contact Theory has been used. At the point
of contact, the two teeth are approximated by two
cylinders with parallel axes, see Figure 7.

The indentation depth, δ, is related to the contact
force by

δ =
2F (1−ν2)(2

3 +log(4R1
b)+ log(4R2

b))
πLEmod

(17)

Figure 7. Contact between two cylinders with variables.

where F is the force, ν is the Poisson ratio, Emod is
Young’s modulus, L is the length of the cylinder, Ri

are the radii of the cylinders, and b is the contact
width2. The contact width is modeled by

b=
√

32F
πLEred(1

R1
+ 1

R2
)

(18)

Here, Ered is a combination of the two gear wheels’
material parameters

1
Ered

= 1
2

(1−ν2
1

Emod1
+ 1−ν2

2
Emod2

)
(19)

From (17) and (18), the force can be calculated as a
function of the indentation depth. The geometry of
the cylinders in contact will change when moving on
the LoC. This means that the curvature radii R1 and
R2 will be changing so that one of them will start
with a small radius and increase when moving along
the LoC, and the other will start with a big radius
and decrease when moving along the LoC.

The conditions for applying a force at the appropri-
ate time is to check if the distance between the wheel
center ci and the point pi is less than the top radius of
the gear ra,i. Additionally, we also check if δ is larger
than zero, i.e.

|c1−p1|< ra,1 (20)
|c2−p2|< ra,2 (21)

δ > 0 (22)

The effects of gear damping has not been included
in this model.

2As found in Roark’s Formulas for Stress and Strain, 2002,
Table 14.1.2

Modelica Spur Gears with Hertzian Contact Forces

758 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132755

4 Modelica Model
The implementation of the spur gear model in Mod-
elica is using the Modelica MultiBody library. This
means that there will be 3D animations for all mod-
els. For example, the contact force is visualized by
arrows between two teeth, as seen in Figure 8.

The topology of the model consists of a top layer
diagram where the layout is specified, i.e. how the
gear wheels are positioned and if a force should be
calculated between them. Figure 9 shows the Model-
ica diagram layer of a simple two wheel model with
contact between them.

The force between the two gear wheels is calcu-
lated inside the gearForceCalculation component.
The system of non-linear equations (17) and (18)
has multiple solutions, and the correct one is not

Figure 8. Two outer spur gears in contact, with arrows
representing the contact forces acting on the gears. At this
moment, two teeth pairs are in contact.

Figure 9. Model of two gear wheels in contact.

Figure 10. Model of the component where gear forces are
calculated, containing four ContactForcePoints.

differentiable at δ = 0. To handle this, the solu-
tion is approximated by a closed-form expression.
The gearForceCalculation class contains at least
four ContactForcePoint components, as seen in Fig-
ure 10. Each of these ContactForcePoints is respon-
sible for calculating one force pair on one matching
teeth pair. Since the gear ratio should be above one,
but less than two in the case of two outer spur gears,
two force pairs are needed. Two more force pairs
(ContactForcePoint components) are needed due to
the two flanks on each tooth. If a gear ratio over 2
is possible, as in the case of a planetary gear between
the ring and a planet, more ContactForcePoints can
be added to handle this.

The contact ratio will be calculated automati-
cally, depending on the geometry of the two gear
wheels in contact. This is used to assert that the
GearForceCalculation component is set up cor-
rectly.

Many parameters can be set by set user on the
GearForceCalculation component that will affect
the ContactForcePoints inside. The parameters are
listed in Table 2.

Table 2. GearForceCalculation parameters.

Parameter Description
m Gear module
L Contact width of wheels
zi Number of teeth in gear wheel i
xi Profile shift factor for gear wheel i
νi Poisson’s ratio for wheel i
Emodi

Young’s Modulus wheel i
ci Tip relief amplitude for wheel i
di Tip relief length for wheel i

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132755

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

759

5 Example Models
Figure 9 showed a simple example with two outer
gears in contact, and no other components in the sys-
tem. This can easily be expanded.

5.1 Effect of tip relief
Using the presented gear model, it is possible to com-
pute dynamic effects in gears such as the variation in
contact stresses. Figure 11 shows the contact stress
for one tooth during a contact. In this case the gear
wheel support is fixed in all translational directions,
which means that there are no external vibrations af-
fecting the result.

The contact starts with a transient, stabilizing to a
lower force level, where two pairs of teeth in contact.
Then the other pair of teeth goes out of contact and
only the current tooth takes all force. After a while, a
new teeth pair will go into contact, and the force level
will drop again. Finally the current teeth pair goes
out of contact, and the force drops to zero. The rea-
son for the transient is that all pair of teeth in contact
will have the same indentation depth, δ. Hence, when
a new pair of teeth goes into contact, the initial in-
dentation depth at the tip of the incoming tooth will
be that of the one pair of teeth currently in contact.
The gears will then quickly adjust to the same total
torque of two pairs of teeth. To avoid the transient,
the tip of the involute shape is modified with a tip
relief, as was shown in Figure 5.

Figure 12 shows the much smoother contact pres-
sure with tip relief.

5.2 Wind turbine gear box
A planetary gear box can be created by combining
inner and outer spur gears with flexible shafts. A
two-stage gear box is then connected to the planetary
gear box. A screenshot of the animation is shown in
Figure 13 and the model diagram is shown in Fig-
ure 14. This setup is capable of changing the angular
velocity from the slow rotation of the blades, around

Figure 11. Contact pressure between two teeth without
tip relief.

Figure 12. Contact pressure between two teeth with tip
relief.

Figure 13. Animation of the wind turbine gear box model.

10 rpm, to the fast rotation of the generator, around
1500 rpm.

The contact forces are calculated at many differ-
ent points in this system. In the planetary gear
there are forces between the center gear wheel (the
sun) and the three outer wheels (the planets), and
also between the three planets and the inner gear
wheel (the ring). With a possible contact ratio above
2, the GearForceCalculation components between
inner and outer gears (planet and ring) contain 6

Figure 14. A wind turbine gear box.

Modelica Spur Gears with Hertzian Contact Forces

760 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132755

ContactForcePoints. In total, the system contains
38 ContactForcePoint components, making it pos-
sible to simulate this system with gear forces at all
points and all rotational directions. The gear can
be driven by any wheel, both clockwise and counter-
clockwise. In addition to this, the wheels are con-
nected to flexible shafts that are fixed in a support.

In this setup, one could detect if there are any peaks
in forces between the gears, or if the flexible shafts
affect the gear in any significant way if the material
parameters for the beams changes. An example of
contact pressures in a steady state of the gear box
can be seen in Figure 17 on page 9.

5.3 Gear and bearings
Since rotating machinery elements affect each other
in various ways, it is important to be able to study
different elements together. An example of such and
interaction is when a system containing rotating flex-
ible shafts with bearings, that sets the gear wheels
in motion. The bearings contain cylindrical rollers,
which have Hertzian contact forces between the inner
and outer ring of the bearing. A 3D visualization of
the setup is shown in Figure 15.

Two flexible shafts are supported by roller bear-
ings. The bearings on the lower shaft are mounted on
flexible supports, that are fixed to the ground. The
lower shaft rotates at 600 rpm. One of the bearings
has an outer ring defect (top right bearing in figure
15). The visualization of the outer ring in this bearing
has been removed to give a better view of the rollers
inside the outer wheel. This defect will in this case

Figure 15. Two shafts with bearings, connected by spur
gears.

Figure 16. Acceleration in the vertical direction, with a
red highlighting at impact points, as predicted by the shock
pulse method.

cause an extra downward force to be applied at the
"12 o’clock" position when a roller passes this point.

Vibration analysis of a damaged bearing is usually
a quite complicated task. A frequency spectrum will
normally not show a small bearing defect. Instead
different kinds of shock pulse methods have been de-
veloped. The signals are normally at rather high fre-
quencies. In this example the time of impact has been
marked with red lines. As can be seen in figure 16, the
accelerations and impacts align at most points. This
analysis can also be done to investigate a damaged
gear.

The benefit of being able to do this simulation anal-
ysis is huge. Understanding where and how large a
damage is gives a better picture of what and when an
overhaul should be done, often saving a lot of money
as well as improving the overhaul. A typical example
of where this is vital is in paper machines where a
carefully planned overhaul may save millions of dol-
lars. Another example is in cruise ship machines,
where a dry-dock needs to be available for an over-
haul and passengers might need to rebook their trip
to other ships, depending on overhaul time.

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132755

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

761

6 Conclusions
With this implementation of a gear model, a high ac-
curacy causal model of contact forces can be put in a
multi-domain simulation environment. This can then
be used to find weak points in complex rotating ma-
chinery systems. Key points are summarized below.

• The physical accuracy is at the level where fac-
tors like shaft position, clearances, tip relief, mis-
alignment and vibrations by default are taken
into account. Essentially, this approach com-
bines the simplicity of drag-and-drop, and multi-
domain modeling in Modelica, as in (van der Lin-
den, 2012), with high accuracy calculations of
gears, as in (Kosenko and Gusev, 2012).

• The drag-and-drop capability of Modelica and
Wolfram SystemModeler, makes the creation of
a custom model very easy. All effort required
from a user is to parametrize the models.

• The formulation of the gear contact shown in
this paper is designed to be simple to expand
into more complex contacts. In other words it
is easy to take deviations from the ideal involute
gear into account. Tip relief was used here as
an example. Another effect of this is that the
gear formulation can also easily be expanded to
helical gears, bevel gears and worm gears. Effects
such as contact roughness, and manufacturing
errors can also be included in the future.

• Domain specific software, such as gear or bearing
design software, gives very accurate results for a
specific machine element, but are limited when
an extension outside the domain is needed. The
examples presented in this paper shows how ef-
ficient several different machine elements can be
combined, as well as coupling to other domains.
For instance, the applied torque in the models
was obtained using a pid controller.

• The wind turbine example showed how impor-
tant tip relief is for avoiding excessive wear. Us-
ing a software not able to include tip relief may
lead to a bad geometrical design and high costs
in the correction process. This is particularly
true if the wear is detected after some time in
operation.

• What is missing and can be included in future
work, is testing and verification of the modeling
results as done in (van der Linden, 2015), as well
as a speed up of the simulation time. Today, the
simulation time is around real-time for simple
models (2 spur gears in contact, both connected
on flexible shafts), and slower for more complex
models, depending on speed of rotation. Tooth

bending has been neglected in this model and
should be included in the future

References
Ivan Kosenko and Il’ya Gusev. Implementation of the

spur involute gear model on modelica. Proceedings of
the 8th International Modelica Conference, 2011. URL
https://www.modelica.org/events/modelica2011/
Proceedings/pages/papers/13_3_ID_117_a_fv.pdf.

Ivan Kosenko and Ilya Gusev. Revised and improved im-
plementation of the spur involute gear dynamical model.
Proceedings of the 9th International Modelica Confer-
ence, 2012. doi:10.3384/ecp12076311.

M. Otter, M. Dempsey, and C. Schegel. Package
PowerTrain: A Modelica library for modeling and
simulation of vehicle power trains. Modelica Work-
shop 2000 Proceedings, pages 22–32, 2000. URL
https://www.modelica.org/events/workshop2000/
index_html/proceedings/Otter.pdf.

F.L.J. van der Linden. Modelling of elastic gearboxes
using a generalized gear contact model. Proceed-
ings of the 9 International Modelica Conference, 2012.
doi:10.3384/ecp12076303.

F.L.J. van der Linden. Modeling of geared positioning sys-
tems: An object-oriented gear contact model with vali-
dation. Proceedings of the Institution of Mechanical En-
gineers, 2015. doi:10.1177/0954406215592056.

F.L.J. van der Linden and P.H. Vazques de Souza Silva.
Modelling and simulating the efficiency and elasticity of
gearboxes. Proceedings 7th Modelica Conference, 2009.
doi:10.3384/ecp09430052.

Dirk Zimmer. A planar mechanical library for teaching
modelica. Proceedings of the 9th International Modelica
Conference, 2012. doi:10.3384/ecp12076681.

Modelica Spur Gears with Hertzian Contact Forces

762 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132755

Figure 17. Contact pressure on teeth at three places in the wind turbine gear box. The first plot is showing the
pressure of one planetary wheel to the ring. The second plot shows the pressure between teeth in the first step in the
two-step gear box. Finally the third plot shows the pressure between teeth in the last step of the gear box. One can
easily see how the frequency changes from the planetary gear to the last step before the generator.

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132755

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

763

764 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Modeling of Roller Bearings

Dipl.-Ing. Tobias Weiser1 Univ.-Prof. Dr.-Ing. Burkhard Corves2

1KUKA Robotics GmbH, Germany, Tobias.Weiser@kuka.com
2Department of Mechanism Theory and Dynamics of Machines , RWTH Aachen, Germany,

corves@igm.rwth-aachen.de

Abstract
Modeling of multi-body system mechanics plays a central
role in the design of mechatronic systems. Roller bear-
ings contribute stiffness and damping to the system dy-
namics of a mechatronic system. This article shows the
stiffness modeling of selected types of roller bearings. The
kinematics of deformation of a roller bearing are shown.
Based on the principle of Hertz’ian contact stress the elas-
tic forces and torques are calculated. These forces are con-
sidered and implemented in the MultiBody Library.
Keywords: Bearing Stiffness, Bearing Modelling, Multi-
Body Library

1 Introduction
This document discusses the modeling of stiffness for var-
ious types of rolling-contact bearings for use in the sim-
ulation of multi-body systems. In addition to this macro-
scopic perspective, the modeling of stiffness is used for
rotordynamics. Beyond this, research in bearing modeling
deals with the effects on structure-borne noise. The study
(Ghalamchi et al., 2013) puts forward a simple model
based on Hertz’ian contact stress to calculate rotordynam-
ics for barrel roller bearings. A second application for
bearing modeling is damage diagnostics and the identifi-
cation of the causes of bearing damage. In the publication
(Tadina and Boltežar, 2011), the system-dynamic effects
of damage to the balls and running surfaces of ball bear-
ings are analyzed. The inner ring, the outer ring and the
rolling elements are modeled as rigid bodies. The balls are
elastically connected to the inner ring and the outer ring.
To test design measures to improve the contact pattern
of the bearing and its rolling elements, system-dynamic
investigations are carried out. To calculate the optimal
profiles for cylindrical roller bearings, the rollers are dis-
cretized in (Qian and Jacobs, 2014) using the slice model,
and the stiffness is modeled as a Hertz’ian contact.

The scope of this paper is to create a model for the stiff-
ness of selected types of single and double row roller bear-
ings. It will be used for modeling mechanisms like a robot
arm. The target is to simulate macroscopic system dynam-
ics of a mechanism.

Modelica provides a powerful library for simulating
multi-body systems like mechanisms - the MultiBody li-
brary. Therefore this approach extends the range of this
library. An internal bearing analysis is out of scope of this

model. Effects considering the rolling elements e.g. mass
effects are neglected.

2 Single-row bearings

For the modeling of roller bearings or ball bearings, the
elastic forces and torques are determined for both types
using the Hertz’ian contact stress.

Outer Ring

Inner Ring

jth rolling element of the ith row

r

z

R

Outer Ring

Inner Ring

r

z

Figure 1. Deformations of a bearing

For simulating the stiffness of a bearing in Modelica the
forces and torques in a bearing have to be derived.

First the change in angular position of the rolling ele-
ment j when rotating the bearing about the Z-axis with
the angle ϕ is calculated using the bearing geometry of
the pitch radius of the rolling elements R and the rolling
element radius RW .

DOI
10.3384/ecp17132765

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

765

r

z

y

x

y

Figure 2. Coordinate system of a double row bearing

∆ψ j =

R−RW cos(α0)

R
·ϕ, fixed outer ring

R+RW cos(α0)

R
·ϕ, fixed inner ring

(1)

We simplify in the next equation the angle ψ j of the
roller position of the jth roller according to the X-axis to
the angle ψ̃ j:

ψ̃ j = ψ j +∆ψ j (2)

For every rolling element j, the axial δz j and radial de-
formation δr j is calculated from the translational deforma-
tions δxm,δym,δzm and the angular deformations βxm,βym
of the bearing (Fig. 2) with the pitch radius R and the
bearing clearance rL.

δz j = δzm +R(βxmsin(ψ̃ j)

− βymcos(ψ̃ j)) (3)
δr j = δxmcos(ψ̃ j)+

δymsin(ψ̃ j)− rL (4)

The contact angle under load α j of the rolling element j
can be calculated with the contact angle of the bearing α0,
the net effective radial (δ ∗

r) j and axial (δ ∗
z) j displacement

and the relative distance A0 between the raceway groove
curvature centers of the inner ai and outer ao bearing ring
in case of no load:

(δ ∗
z) j = A0sin(α0)+δz j (5)

(δ ∗
r) j = A0cos(α0)+δr j (6)

tan(α j) =
(δ ∗

z) j

(δ ∗
r) j

(7)

Then we obtain the distance between the raceway
groove curvature centers under load A j:

A j =
√

(δ ∗
z)

2
j +(δ ∗

r)
2
j (8)

Depending on the type of the rolling element W , the
total elastic deformation is δW (ψ j),(W = B : ball,R :

roller).

Ball :

δB, j =

{
A j −A0, δB j > 0

0, δB j ≤ 0 (9)

Roller :

δR, j =

{
δr jcos(α j)+δz jsin(α j), δR j > 0

0, δR j ≤ 0 (10)

The load Q j on each rolling element j depends on
the type of roller bearing W and is calculated with the
Hertz’ian exponent n. For elliptical Hertz’ian contact (ball
- elastic half-space) we assume n = 3/2. For a rectan-
gular contact (cylinder - elastic half-space) we assume
n = 10/9. Depending on the geometry and the material
properties of the roller we denote the load Q j on each
rolling element j with the Hertz’ian stiffness constant Kn
for ball (B) and roller bearings (R):

Q j = Kn ·δW (ψ̃ j)
n (11)

Then we yield the forces and torques on a bearing with
Z rolling elements and ψ̃ j as the angular position of each
rolling element (Lim and Singh, 1990a,b; Gunduz, 2012).

Fxbm
Fybm
Fzbm
Mxbm
Mybm
Mzbm

=
Z

∑
j=1

Q j

cos(α j)cos(ψ̃ j)
cos(α j)sin(ψ̃ j)

sin(α j)
Rsin(α j)sin(ψ̃ j)
−Rsin(α j)cos(ψ̃ j)

0

 (12)

For roller bearings we obtain with α j = α0 (Lim and
Singh, 1990a) the forces and torques:

Fxbm
Fybm
Fzbm
Mxbm
Mybm
Mzbm

 = Kn

Z

∑
j=1

(δR, jcos(α0))
n

cos(α0)cos(ψ̃ j)
cos(α0)sin(ψ̃ j)

sin(α0)
Rsin(α0)sin(ψ̃ j)
−Rsin(α0)cos(ψ̃ j)

0

 (13)

The rotation about the Z-Axis is free because the torque
about the Z-axis Mzbm in equations 12 and 13 is zero.

3 Double-row bearings
Besides single-row the force and torque balances for
double-row ball and roller bearings are determined in this
section. Three possible configurations for the double row
bearings exist (Figure 3). The bearing arrangement co-
efficent c3 considers these configurations. The calcula-
tions of the radial (δr)

i
j and axial displacement (δz)

i
j of

Modeling of Roller Bearings

766 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132765

O X Tandem

Figure 3. Bearing Arrangements (Matek et al., 2013) (Gunduz,
2012)

each rolling element j in row i (equations 3,4) have to
be extended by the kinematics of the double row bear-
ing with the row coefficent c1, the bearing clearance rL,
the distance between the two bearing rows e, the trans-
lational deformations δxm,δym,δzm, the angular deforma-
tions βxm,βym of the bearing and the angular position ψ̃ i

j
of each rolling element.

c1 =

{
1, for i = 1, left row

−1, for i = 2, right row (14)

(δz)
i
j = [δxm + c1βyme]cos(ψ̃ i

j)+

[δym − c1βxme]sin(ψ̃ i
j)− rL (15)

(δr)
i
j = δzm +R

[
βxmsin(ψ̃ i

j)−βymcos(ψ̃ i
j)
]

(16)

Next the equations of the net effective radial (δ ∗
r)

i
j and

axial (δ ∗
z)

i
j displacement of equation 5 and 6 are extended

for the double row bearings. With the bearing arrangement
coefficent c3 (Figure 3) we calculate the net radial (δ ∗

r)
i
j

and axial (δ ∗
z)

i
j effective displacements and the loaded dis-

tance Ai
j between the raceway groove curvature centers of

the inner ai and outer ao bearing ring of the rolling element
j in the row i.

c3 =

[left row, right row] ,arrangement
[1,−1] , Back-To-Back, O
[−1,1] , Face-To-Face, X
[1,1] , Tandem

(17)

(δ ∗
r)

i
j = A0cos(α0)+δ

i
r j (18)

(δ ∗
z)

i
j = δ

i
z j + c3(A0sin(α0)+δ

i
z0) (19)

Ai
j = (

√
(δ ∗

z)
i
j)

2 +((δ ∗
r)

i
j)

2 (20)

In general, the following relation applies to the forces
Fxbm,Fybm,Fzbm and torques Mxbm,Mybm,Mzbm on the
double-row ball bearing. For simplification we introduce
the parameter R∗.

Fxbm
Fybm
Fzbm
Mxbm
Mybm
Mzbm

 =
2

∑
i=1

Z

∑
j=1

Q j

cos(α i
j)cos(ψ̃ i

j)

cos(α i
j)sin(ψ̃ i

j)

sin(α i
j)

R∗sin(ψ̃ i
j)

−R∗cos(ψ̃ i
j)

0

 (21)

R∗ = R sin(α i
j)− c1 e cos(α i

j) (22)

For bearings with rollers as rolling elements, the angu-
lar offset α

j
i assumed to be zero. Therefore, the following

applies:
α

i
j = α0 (23)

The equations for the forces Fxbm,Fybm,Fzbm and torques
Mxbm,Mybm,Mzbm are thus as follows for each rolling ele-
ment j in row i introducing the parameter R̃ for simplifi-
cation.

Fxbm
Fybm
Fzbm
Mxbm
Mybm
Mzbm

 =
2

∑
i=1

Z

∑
j=1

Q j

cos(α0)cos(ψ̃ i
j)

cos(α0)sin(ψ̃ i
j)

sin(α0)

R̃sin(ψ̃ i
j)

−R̃cos(ψ̃ i
j)

0

 (24)

R̃ = Rsin(α0)− c1ecos(α0) (25)

e e=0

x

y

i=1 i=2

Figure 4. Conversion of a double row roller bearing to a cross
roller bearing

A cross-roller bearing is modeled as a double-row bear-
ing for which the distance e between both bearing rows is
zero (see Fig. 4). For each row the correct angle offset ψ̃ i

j
for each rolling element has to be considered.

4 Implementation
The integration is carried out in the MultiBody library.
In the preceding chapters, the relationship of the forces
and torques on a roller bearing has been described. The
motion equations and the elastic forces and torques of the
bearing are determined using Lagrange’s equation of the

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132765

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

767

second kind. Here T is the kinetic energy, Q are the gen-
eralized forces (Hardtke et al., 1997). The generalized
forces Q consist of conservative Qk and non-conservative
forces Qn. In this model non-conservative forces don’t ex-
ist. With the vector of generalized coordinates q and the
potential energy U(q) we denote:

d
dt

(
∂T
∂ q̇i

)
− ∂T

∂qi
= Q (26)

Q = Qk +Qn (27)
Qn = 0 (28)

Qk(q) = −∂U(q)
∂q

(29)

The vector of generalized coordinates q are the deforma-
tions on the bearing and we yield the vector of the forces
on a rolling element F(q) with the auxiliary parameters
for coding FBearing,MBearing:

q = [δxm,δym,δzm,βxm,βym]
T (30)

F(q) = [FBearing,MBearing]
T (31)

FBearing =
[
Fxbm,Fybm,Fzbm

]T (32)

MBearing =
[
Mxbm,Mybm,0

]T (33)

The force and torque relationships for single-row and
double-row bearings are described in chapter 2 and chap-
ter 3, respectively. For calculation of the potential energy
U(q), the following applies in general for the energy over
the force F(q) with the vector of generalized deformations
q and finally we yield for the conservative force Qk:

Figure 5. Input parameter mask in Dymola

∂U
∂qi

=
∂

∂qi

(∫ q

0
F(qi)dqi

)
(34)

∂U
∂qi

= F(qi) (35)

Qk = −F(q) (36)

The equations 35 and 36 show that the relationships of
the forces and torques can be directly incorporated into the
equations of motion.

The force and torque equilibrium then is:

import Modelica.Mechanics.MultiBody.Frames;
// Force and torque equilibrium
frame_a.f = -F_Bearing;
frame_b.f = -Frames.resolve2(

Frames.relativeRotation(frame_a.R,
frame_b.R),

frame_a.f);

if fixedRotationAtFrame_a then
Connections.root(frame_a.R);
frame_a.R = Frames.nullRotation();

else
frame_a.t = -M_Bearing;

end if;

if fixedRotationAtFrame_b then
Connections.root(frame_b.R);
frame_b.R = Frames.nullRotation();

else
frame_b.t = -Frames.resolve2(

R_rel,frame_a.t);
end if;

The calculation of the forces Fxbm,Fybm,Fzbm and
torques Mxbm,Mybm,Mzbm on a bearing is realized in the
sub-function calculateBearingForce(). The deformations
r_rel_a,R_rel between the f rame_a and f rame_b of the
bearing block are required for calculating bearing forces
and torques. The angles βxm,βym,ϕ are calculated as con-
secutive rotations out of the rotation matrix R_rel . The
vector angles represents these angular deformations.

angles = [βxm,βym,ϕ]
T (37)

r_rel_a = Frames.resolve2(frame_a.R,
frame_b.r_0 -

frame_a.r_0);
R_rel = Frames.relativeRotation(

frame_a.R,frame_b.R);
angles = Frames.axesRotationsAngles(R_rel,

{1,2,3},0);

/* Determine forces and torques at frame_a
and frame_b */

q = {r_rel_a[1],r_rel_a[2],r_rel_a[3],
angles[1],angles[2]};

(Fx,Fy,Fz,Mx,My) =
Functions.calculateBearingForce(
myLager,angles[3],q);

f_Bearing = {Fxbm,Fybm,Fzbm};
m_Bearing = {Mxbm,Mybm,Mz};
Mz = 0;

For the transformation of the forces and torques in the
equations of motion the Jacobi matrix J is required. This
matrix describes the kinematics on the bearing and is de-
termined by means of the deformation q. The Cartesian
deformations δim, i = x,y,z are modeled as sliders and the

Modeling of Roller Bearings

768 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132765

rotations βim, i = x,y are modeled as consecutive rotation
about x,y with the rotation axis vector zi using the rotation
matrices Rx,Ry (see Fig. 2).

zi = ex,ey (38)

J =

[
Jvi
Jωi

]
(39)

Ji =

{
zi , translational motion
zi ×p∗

i , rotational motion
(40)

Jωi =

{
0 , translational motion
zi , rotational motion

(41)

The possible singularity of the Jacobi matrix for rotation
about the x and y axes by 90o is ignored since small de-
formations are expected.

The mass and inertia of the inner and outer ring of the
bearing are modeled with the block "‘Body"’ of the Multi-
Body.Parts library. Each body is attached to f rame_a and
f rame_b respectively. The dynamics of the rolling ele-
ments are neglected since only macroscopic effects of the
system dynamics will be modeled.

Deriving a stiffness matrix K(q) is not required for the
equations of motion in equation 26. If required, the stiff-
ness matrix K(q) can be calculated by means of the par-
tial differentiation of the force and torque vectors F(q) ac-
cording to the generalized coordinates of the bearing de-
formation q in equation 30.

K(q) =
∂F(q)

∂q
(42)

5 Simulation Results
The parameters from table 1 are used to simulate the stiff-
ness forces and torques with varying preload Fxm and a
partial rotation ϕ = 360/Z of the bearing.

Parameter Value Unit
R 34.45 mm
e 10 mm
Z 15

Kn 395000 N/mm
3
2

α0 45
rL 0 mm
A0 0.52 mm

n 1.5
δz,0 0 mm

Table 1. Parameters of a double row roller bearing

Figure 6 shows a periodicity for the forces and torques
within a bearing rotation. For each bearing rotation, the
force and torque progression is repeated by the number of
rolling elements. To assess the effects of parameter exci-
tations on the system dynamics of the manipulator, further

0 100 200 300 400
−100

0

100

200

300
Bearing forces and torques

Angle in (°)

F
or

ce
 in

 (
N

)

F
xbm

F
ybm

F
zbm

0 100 200 300 400
17

18

19

20

Angle in (°)

T
or

qu
e

in
 (

N
m

)

M
xbm

M
ybm

Figure 6. Bearing stiffness forces, bearing angle position vary-
ing

testing of the overall system of the manipulator is neces-
sary. Next a simple example of a pendulum is shown. A
stiff revolute joint and a bearing with its parameters in ta-
ble 1 as a revolute joint are compared. The point mass is
1kg and the length of the pendulum is 1m. Figure 7 shows
the model in initial configuration. The reaction forces and
torque in figure 8. show the difference between the rigid
and the elastic suspended joint of the pendulum.

x

y

1

x

y

2

Figure 7. Pendulum, 1: rigid suspension 2: elastic suspension

6 Conclusion and Outlook
In this work the calculation of the stiffness forces and
torques of single- and double-row bearings are shown.
The following bearing types are considered:

• Single row ball bearing

• Single row roller bearing

• Double row ball bearing

• Double row roller bearing

• Cross roller bearing

Session 10C: Mechanical Systems Modelling

DOI
10.3384/ecp17132765

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

769

0 0.2 0.4 0.6 0.8 1
−5

0

5

10

15
Bearing forces and torques

Time in (s)

F
or

ce
 in

 (
N

)

 F
xr

F
yr

F
zr

F
xbm

F
ybm

F
zbm

0 0.2 0.4 0.6 0.8 1
−0.5

0

0.5

1

1.5

Time in (s)

T
or

qu
e

in
 (

N
m

)

M

xr

M
yr

M
xbm

M
ybm

Figure 8. Forces and torques on the bearing and on the revolute
joint and the displacement

The stiffness forces and torques are implemented in the
MultiBody library of Modelica. A simulation shows the
influence of loads and bearing position.

a b

Bearing

a b

ActuatedBearing

Figure 9. Bearing with 1 DOF and actuated bearing

According to equation 12 and figure 2 the bearing
model yields a free rotation about the Z-axis. For multi-
body systems and actuated mechanisms it will be impor-
tant to consider the drivetrain. The scope of the future
work is to develop an actuated bearing similar to the ac-
tuated joint in the Modelica MultiBody library. Further
modeling and simulation of different mechanisms like a
robot arm will be performed and validated.

References
Behnam Ghalamchi, Jussi Sopanen, and Aki Mikkola. Simple

and versatile dynamic model of spherical roller bearing. In-
ternational Journal of Rotating Machinery, 2013, 2013.

Aydin Gunduz. Multi-dimensional stiffness characteristics of
double row angular contact ball bearings and their role in
influencing vibration modes. PhD thesis, The Ohio State Uni-
versity, 2012.

Hans-Jürgen Hardtke, Bodo Heimann, and Heinz Sollmann.
Lehr-und Übungsbuch Technische Mechanik Bd. II, Kine-
matik. Kinetik-Systemdynamik-Mechatronik, Fachbuchver-
lag Leipzig, 1997.

Teik C. Lim and Rajendra Singh. Vibration transmission through

rolling element bearings, part i: bearing stiffness formulation.
Journal of sound and vibration, 139(2):179–199, 1990a.

Teik C. Lim and Rajendra Singh. Vibration transmission through
rolling element bearings, part ii: system studies. Journal of
sound and vibration, 139(2):201–225, 1990b.

Wilhelm Matek, Dieter Muhs, Herbert Wittel, and Manfred
Becker. Roloff/Matek Maschinenelemente: Normung Berech-
nung Gestaltung. Springer-Verlag, 2013.

Weihua Qian and Georg Jacobs. Dynamic simulation of cylin-
drical roller bearings. Technical report, Lehrstuhl und Insti-
tut für Maschinenelemente und Maschinengestaltung, RWTH
Aachen, 2014.

Matej Tadina and Miha Boltežar. Improved model of a ball bear-
ing for the simulation of vibration signals due to faults during
run-up. Journal of sound and vibration, 330(17):4287–4301,
2011.

Modeling of Roller Bearings

770 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132765

Cabin Thermal Needs: Modeling and Assumption Analysis

Florent Brèque Maroun Nemer
MINES ParisTech, PSL Research University, Center for energy Efficiency of Systems

5 rue Léon Blum, Palaiseau, 91120, France
florent.breque@mines-paristech.fr

Abstract
Interest for cabin thermal needs has strongly increased
for the past 10 years, particularly due to heating.
Indeed, the development of electric and hybrid vehicles
stressed the need to rethink the cabin thermal design
and the HVAC, this high-consuming auxiliary, which
can dramatically decrease the vehicle electric range.
Thus, this paper presents a detailed transient and
mono-zonal model of a car cabin in order to predict the
thermal needs. The model is developed using the
MODELICA language via the DYMOLA environment.
It considers conduction, convection, radiation heat
transfers as well as the HVAC and water vapor
impacts. The different assumptions of the model are
discussed and important considerations usually not
discussed are highlighted. The thermal loads are also
analyzed. Finally, the heating and cooling thermal
needs are computed for steady state mode and for
convergence mode as well as for varying recirculation
ratios. This work is useful to better understand the
whys and wherefores related to the cabin thermal
needs.

Keywords: thermal model, vehicle cabin, cabin
thermal needs, HVAC, heating, Air-conditioning,
electric vehicle.

1 Introduction
For the past ten years, the electric vehicle
developments and deployments have strongly
accelerated. However, one of the major concerns with
those vehicles is their low range. Hence, a lot of effort
has been made to improve the vehicle range. It
appeared that a major load for the battery is actually
the HVAC system, which can consume as much energy
as the motor in some conditions. Thus, additional
development is necessary to decrease the HVAC
energy consumption. One solution is to use a heat
pump instead of the electric heaters typically used.

The work presented in this paper is part of a project
which aims at developing a heat pump technology for
electric vehicles. The project focuses particularly on
the frosting issue with regards to the evaporator.
Another important aspect of the project is to evaluate
the gains that can be obtained from using heat pumps

and evaluate other thermal strategies. In order to do so,
a detailed thermal model of the cabin is required.
Different models have already been presented in the
literature. They are of different types.

A first category is composed of the CFD models
(Versteeg and Malalasekera, 2007). Some authors use
those models to evaluate the thermal comfort (Fujita et
al., 2001; Kataoka and Nakamura, 2001; Sevilgen and
Kilic, 2012). Others study the impact of specific
aspects such as the windows opening, the glazing
properties or the air quality (Al-Kayiem et al., 2010;
Fujita et al., 2001; Zhu et al., 2010).

On the other hand, lumped models, also called
mono-zonal model, have been developed. Here, the
cabin air is modeled by a single node and is therefore
considered homogeneous (Marcos et al., 2014;
Wischhusen, 2012). Those types of models are mainly
used to study the impact of some factors on the thermal
load (Li and Sun, 2013; Torregrosa-Jaime et al., 2015)
but can also be used for studying HVAC control
(Sanaye et al., 2012).

Finally, an intermediary approach between the two
previous exists and is called the zonal approach. It
consists in defining several air lumped nodes in a
single air volume and linking them in order to
exchange mass (Boukhris et al., 2009). The challenge
here is then to use or develop a proper flow model
between the nodes (Daoud and Galanis, 2008; Inard et
al., 1996). It can be seen as a simplified CFD approach
in some cases. For vehicle applications, this approach
is sometimes used but usually only with two nodes in
the cabin (Torregrosa-Jaime et al., 2015; Wischhusen,
2012).

Based on this review, it clearly appears that the most
relevant category of models to study the cabin thermal
needs takes the mono-zonal approach. It is therefore
the one that will be developed in this paper.

Regarding the thermal need analysis, several authors
have studied it (Iskandar, 2010; Li and Sun, 2013;
Marcos et al., 2014; Mezrhab and Bouzidi, 2006;
Torregrosa-Jaime et al., 2015). However, they focused
on air-conditioning needs (since it was the important
aspect for conventional cars) but neglect heating needs.
Furthermore, they have studied a limited number of
cases and the assumptions have not been discussed.

DOI
10.3384/ecp17132771

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

771

Consequently, the aim of this paper is to address those
issues.

To do so, a model is developed using the
MODELICA language via the DYMOLA environment.
First, an overview of the top level model is presented
in this paper. Then the main models are presented.
Through the model descriptions, the different
assumptions of the model are discussed and important
considerations usually not discussed are pointed out.
Then, in the result section, the steady state mode is first
analyzed, followed by the convergence mode, which
correspond to the initial transient warm-up or cool-
down phase. The thermal loads are analyzed for the
steady state case and, for both mode, a sensitivity
analysis is performed. Finally, cooling and heating
thermal needs are computed.

2 Mathematical model

2.1 Model overview
Figure 1 is a view of the cabin top level model in the
DYMOLA environment. It is composed of several
models. First, the cabin model itself includes the
thermal network and the cabin air node (moist air). The
HVAC model handles the recirculation air flow and the
heating/cooling of the air. It is operated by a controller
which either adjusts the thermal power to reach the
targeted cabin air temperature or imposes a constant
thermal power depending on the user choise. The
atmosphere model imposes the weather conditions.
Finally 5 records are used here as an interface for
model parameterization.

Figure 1. Cabin top level model in DYMOLA.

Figure 3 is a schematic of the complete model. It can
be observed that the model is divided in two parts.

First, there is the thermal network. It includes the
heat transfer exchanges with the exterior. In addition,
two cabin internal nodes are defined and connected

between each other and to the walls. The first
corresponds to the cabin air and the second to the
internal solid mass (seats, dash board…).

Second, a fluid flow network is represented. It
represents the moist air flows. It is particularly of
interest since it computes the properties of the
recirculation air, it determines the water vapor
condensation rate in the evaporator and also computes
the water vapor mass balance in the cabin taking into
account passenger water vapor generation.

This model is described in more details in the
following sections.

2.2 Atmosphere model
Basically, the atmosphere model is quite simple. It is
here to provide 5 inputs: outside air temperature,
outside air humidity, solar direct and diffuse flux as
well as the sun direction vector. One can directly
provides this information as parameters. Instead of
giving directly the solar vector, it is also possible to
write a latitude and longitude with the date and time.
Then, using calculation from (ASHRAE, 2009), the
solar vector is computed.

It can be noted here that the atmosphere variables
are transferred to the other models via the
‘inner’/’outer’ method.

2.3 Wall model
The wall model presented in Figure 2 is the thermal
network between the cabin interior and the outside
environment (all thermal components are from the
MSL Thermal library).

Figure 2. Wall model in DYMOLA.

Based on Figure 2, the thermal balance at the outer
wall node ௪ܶ

௨௧ applies as follow (by convention,
heat flow is positive when heat goes from outside
into the cabin):

Atmosphere

Cabin
HVAC

Controler

inner
convection

inner
radiation

outer
convection

outer
radiation

conduction

inner
Cp

outer
Cp

solar fluxes
calculation

absorbed flux

transmitted flux

Cabin Thermal Needs: Modeling and Assumption Analysis

772 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132771

Figure 3. Schematic of the model.

௨௧	ܥ
௪ ∙

݀ሺ ௪ܶ
௨௧ ሻ

ݐ݀

ൌ	 ሶܳ௩,௨௧
௪ ሶܳ

ௗ,௨௧
௪ െ ሶܳ

ௗ
௪ ሶܳ

௦,௦
௪

ൌ	݄௩௨௧ ∙ ௪ܣ ∙ ൫ ܶ
௫௧ െ ௪ܶ

௨௧ ൯		

			݈݈ܽݓߝ
ݐݑ ∙ ݈݈ܽݓܣ ∙ ߪ ∙ ൬ܶ݁݊ݒ

ܴܫ 4
െ ݈݈ܽݓܶ

ݐݑ 4൰

	െ	
1

ܴௗ
௪ ∙ ቀ ௪ܶ

௨௧
െ ௪ܶ

 ቁ 			 			 ሶܳ ௦,௦
௪

(1)

Similarly, the thermal balance at the inner wall node

௪ܶ
 is expressed as follow:

	ܥ
௪ ∙

݀ ቀ ௪ܶ
 ቁ

ݐ݀
				

ൌ ሶܳ
ௗ
௪ െ ሶܳ

௩,
௪ െ ሶܳ

ௗ,
௪

ൌ
1

ܴௗ
௪ ∙ ൫ ௪ܶ

௨௧ െ ௪ܶ
 ൯		

െ			݄௩ ∙ ௪ܣ ∙ ൫ ௪ܶ
 െ ܶ

൯		

െ݈݈ܽݓߝ
݅݊ ∙ ݐെ݈݈݅݊ܽݓܨ ∙ ݈݈ܽݓܣ ∙ ߪ ∙ ൬݈݈ܶܽݓ

݅݊ 4
െ ݏݏܽ݉ܶ

ݐ݊݅ 4
൰

(2)

In eq. (1), the solar flux ሶܳ ௦,௦
௪ is computed via a sub-

model described in section 2.4. In addition, the
convection coefficient ݄௩ and ݄௩௨௧ are given in

section 2.5. The wall thermal resistance ܴௗ
௪ and the

thermal capacitances ܥ	
௪

 and ܥ	௨௧
௪

 are

determined by basic calculations taking into account
the multilayer structure of the wall. It is done in a
generic way such that both opaque body (with an inner
skin, a lining material and a outer skin) and glazing
surfaces can be handled by the same model.

An interesting aspect here is that the radiation heat
transfer has been considered both for inner and outer
wall surfaces. The outer surface exchanges by radiation
with a so called environment IR temperature ܶ௩

ூோ .
Determining this temperature is not trivial. Depending
on the surfaces, it could be equal to the outside air
temperature, but it also could be equal to the sky
temperature, which can be far lower than the outside
temperature for clear skies. In addition, during
summer, the floor sees the road which can have a very
high temperature compared to the air. In the model,
those aspects are configurable. For the clear sky
temperature, the correlation from (Swinbank, 1963) is
used.

Furthermore, in eq. (2), one can observe that the
internal radiative heat exchange is between the wall
and the internal mass (the seats, the dashboard”,…) via
a view factor. First, this view factor is not easy to
determine. In addition, the radiative heat exchanges
between the walls themselves are not considered.

The impact of those different assumptions are
evaluated in the results section.

Session 10D: HVAC Systems

DOI
10.3384/ecp17132771

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

773

2.4 Solar fluxes computation sub-model
This sub-model included in the wall model aims at

computing the absorbed solar flux ሶܳ
௦,௦
௪ by the wall

and the transmitted solar flux through the wall
ሶܳ
௦,௧௦
௪ (for glazing). The following equations,

extracted from (ASHRAE, 2009) are used.
The direct solar flux ܫ	received by a surface with a

normal ሬ݊Ԧ is given by (with ௦ the scalar product
between the solar vector ݏԦ and ሬ݊Ԧ and ܫ௦ the solar flux):

݊ܫ ൌ ݏ݊ ∙ (3) ݏܫ

Then, the total diffuse flux ݊ܦ received is:

݊ܦ ൌ ݄ܦ ∙ ൬
1 ߠݏܿ

2
൰ ߩ ∙ ݄ܩ ∙ ൬

1 െ ߠݏܿ

2
൰ (4)

With ܦ the horizontal diffuse flux, ߠ the angle
between ሬ݊Ԧ and the vertical, ߩ the albedo and ܩ the
global flux.

Finally, the solar fluxes are given by eq. (5) and (6).

ሶܳ
ݏܾܽ,݈ݏ
݈݈ܽݓ

ൌ ݈ݏߙ ∙ ݈݈ܽݓܣ ∙ ሺ݊ܫ (5)	ሻ݊ܦ

ሶܳ
ݏ݊ܽݎݐ,݈ݏ
݈݈ܽݓ

ൌ ݈ݏ߬ ∙ ݈݈ܽݓܣ ∙ ሺ݊ܫ (6)		ሻ݊ܦ

2.5 Convection sub-model
The wall model also includes a convection sub-model.
The convection in this thermal problem is quite
complicated. Indeed, the geometry is complex and
natural and forced convection can be mixed. A detailed
analysis of the convection correlations has been
conducted here.

First, it can be noted that the cabin walls are often
assumed to be flat plates. Hence, the general
correlations for flat plates (see (Bergman et al., 2011))
are often used. For instance, eq. (7) is for forced
parallel and turbulent flow and eq. (8) is for natural
convection over a vertical plate. All applicable flat
plate correlations have been implemented in the code.

In addition, for internal convection, correlations of
the form of eq. (9) (Abou Eid, 2016) and used in
building applications have also been evaluated. The
coefficients c and n are adjusted depending on the
situations (floor, ceiling, vertical walls, mixed
convection…).

Finally, for external correlations around the vehicle
(car, bus or train), several authors (Fujita et al., 2001;
Kataoka and Nakamura, 2001; Li and Sun, 2013;
Mezrhab and Bouzidi, 2006; Zhang et al., 2009) use
their own specific correlation in the general form of eq.
(10) (with a, b and c constants). Most of the authors
define a minimum value which is applied for low
velocities.

 3/18.0 PrRe037,0 LLNu (7)

2

27/816/9

6/1

Pr/492.01

387,0
825.0

 L

L

Ra
Nu

 (8)

ncab
air

wall
inconv TTch (9)

c
conv vbah (10)

In order to give an idea on how the correlations
compare, Error! Reference source not found. plots
the computed coefficients. It appears that the general
trends are similar except for the laminar correlations
and Li’s correlation. However, the coefficients can be
multiplied by 1.5 from one correlation to the other. The
impact of those correlations is evaluated in the result
section. By default, the (Fujita et al., 2001) correlation
and the eq. (9) with c=3 and n=1/3 (mixed convection)
are used.

2.6 Passenger model
As shown in Figure 3, the model takes into account the
passenger thermal loss ሶܳ

௦௦
௦௦ and the passenger water

vapor generation ሶ݉ ௪
௦௦. According to (ASHRAE,

2009), it is assumed that a person emits 70W of
sensible heat and 35W of latent heat. The latent heat is
converted to a mass flow rate in the model and not
added in the thermal network. Only the mass flow rate
is injected in the cabin volume and is then considered
for the mass and energy balances. The number of
passengers can be adjusted.

2.7 Cabin model
The cabin model is shown in Error! Reference

source not found.. It includes the wall and passenger
models that just have been presented. In the figure,
only one wall model appears. However, an important
feature here is that it is actually a vector of walls. Thus,
the number of walls, opaque or transparent walls, can
be varied. This allows adjusting to the exact vehicle
configuration.

Figure 4. Cabin model in DYMOLA.

passengers

Walls[n]

Cabin air
volume

Internal
mass

Cabin Thermal Needs: Modeling and Assumption Analysis

774 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132771

Figure 5. Convection coefficients from the different correlations for external forced convection.

In this model, the energy balance applies for the
internal mass node ܶ௦௦

௧ :

௧ܥ ∙
݀൫ ܶ௦௦

௧ ൯
ݐ݀

	ൌ

ሶܳ ௩௧ 				 	 ൫ ሶܳ
௦,௧௦
௪ ሶܳ

ௗ,
௪ ൯

ௐ

ୀଵ

		
(11)

With :
ሶܳ ௩௧ 			ൌ 			 ݄௩௧ ∙ ௦௦ܣ ∙ ൫ ܶ

 െ ܶ௦௦
௧ ൯ (12)

An assumption that can be discussed here is the
approach with the internal mass and the way the
radiation problem is treated. It follows the approach
used in (Marcos et al., 2014) where a “base” node is
defined. The internal mass is assumed to be a black
body and to receive all the radiation heat fluxes: the
solar transmitted flux as well as the IR flux from the
inner surface of the walls. It is useful to consider this
internal mass since it has a strong impact on transient
results. In addition, due to the complex shape of the
internal masses and their high emissivity and
absorptivity, it makes sense to assume a black body
here. Those points are discussed in the result section.

Then, the energy balance is applied to the air
volume:

ܸ
 ∙ ቆݑ

 ∙
ߩ߲

ݐ߲
 ߩ

 ∙
ݑ߲

ݐ߲
ቇ			

ൌ			 ሶ݉
௪ ∙ ݄

௪ 			െ 			 ሶ݉
௧௨ ∙ ݄

											 ሶ݉ ௪
௦௦ ∙ ݄௪,௩ଷ° 			 			 ሶܳ ௦௦

௦௦

							 ሶܳ
௩,
௪

ௐ

ୀଵ

			െ 		 ሶܳ ௩௧ 		

(13)

With ݄௪,௩ଷ° the enthalpy of water vapor at 37°C.

In addition to the energy balance, the mass balances
also apply:

ܸ
 ∙

߲൫ߩ
൯
ݐ߲

			ൌ	

ሶ݉
௪ െ ሶ݉

௧௨ 	 ሶ݉ ௪
௦௦

(14)

ܸ
 ∙ ቆݔ௪ ∙

ߩ߲

ݐ߲
 ߩ

 ∙
௪ݔ߲

ݐ߲
ቇ 			ൌ

ሶ݉
௪ ∙ ௪௪ݔ െ ሶ݉

௧௨ ∙ ௪ݔ 		 ሶ݉ ௪
௦௦

(15)

A key point here is of course the water vapor mass
balance which will determine the humidity ratio in the
cabin air and impact the HVAC either by requiring
additional fresh air to avoid mist and/or by adding a
cooling load to the evaporator.

2.8 HVAC model
The HVAC can be seen as an external component of
the cabin. Therefore, one could want to focus on the
cabin and not to consider at all the HVAC for the
determination of thermal cabin needs. However,
considering the HVAC is actually required here to
properly compute the thermal cabin needs, which
translate into the HVAC thermal loads. Indeed,
knowing the water vapor condensation rate at the
evaporator is important since it can strongly impact the
total A/C needs. Moreover, this condensation rate is
required when addressing the cabin dehumidification
needs, which also translate into cabin needs. In
addition, the thermal needs are strongly dependant on
the recirculation ratio, which is controlled by the
HVAC.

Figure 6 is a view of the HVAC model. It is
composed of a recirculation box and a cooling/heating
element. The recirculation box is made of valves (from
MSL Fluid library) whose openings are adjusted to

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140

C
o
n
ve
ct
io
n
 c
o
ef
fi
ci
en

t
 (
W
.m

‐2
.K
‐1
)

Vehicle speed (km.h‐1)

Session 10D: HVAC Systems

DOI
10.3384/ecp17132771

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

775

control the recirculation ratio as desired (a PI is used
here in the controller of the Figure 1). The model
handles the mixing of the fresh air with the recirculated
air via basic mass and energy balances.

Figure 6. HVAC model in DYMOLA.

The cooling/heating element is composed of a fan, a
cooling HX and a heating HX. The fan model is the
‘PrescribedPump’ model from MSL Fluid library and
the heating HX is modeled with a ‘DynamicPipe’ from
the same library. Only the cooling HX is modeled via
an ad hoc pipe which is able to handle water vapor
condensation. To do so, the sensible heat exchange
ሶܳ
௦௦
௩ is computed as follow:

ሶܳ
௦௦
௩ ൌ 				 ݄௩

௩ ∙ ௩ܣ

∙

ۉ

ۈ
ۇ ܶ

௫ െ ܶ
௩	௨௧

݈݊ ቆ ܶ
௫ െ ுܶ

௪

ܶ
௩ ௨௧ െ ுܶ

௪ቇ
ی

ۋ
ۊ
	

(16)

Then, the water vapor condensation rate ሶ݉ ௪ௗ is
given by (when ݔ

௫ ௦௧൫ݔ ܶ௩
௪൯	; null otherwise):

ሶ݉ ௪ௗ ൌ 		
݄௩
௩ ∙ ௩ܣ
ߩ
௫ ∙ ܿ,

	∙

ۉ

ۈ
ۇ ݔ

௫ െ ݔ
௪

݈݊ ቆ
ݔ
௫ െ ௦௧൫ݔ ܶ௩

௪൯
ݔ
௪ െ ௦௧൫ݔ ܶ௩

௪൯
ቇ
ی

ۋ
ۊ

(17)

Then, it comes:
ሶܳ
௧௧
௩ ൌ 	 ሶܳ௦௦

௩ 			 ሶ݉ ௪ௗ ∙ ௩ (18)ܮ

At this point it can be noted that the controller of the
HVAC (see Figure 1) can adjust the evaporator
sensible cooling power and the heating power to obtain
proper cabin air temperature and humidity (and hence
to satisfy the cabin needs: (heating, cooling,
dehumidifying). It is also possible to impose both
sensible cooling power and heating power. Then, using
eqs. (16) to (18), the ܶ௩

௪ is computed followed by
ሶ݉ ௪ௗ and ሶܳ ௧௧

௩.
Here, it can be noted that the heat-pickup (or loss) in

the air distribution system (dashbord and
recircirculation channel) has been neglected.

2.9 Model parameters
The model requires a full list of parameters. There are
not presented in detail here due to conciseness
considerations. Basically, the car geometry is described
by the wall areas and orientations. In addition,
thicknesses and thermal parameters are required. For
the following results, parameters from a mid-size car
are applied (main parameters given in Table 1).

Table 1. Geometry and thermal parameters.

Parameter Value

Glazing areas 2 m2

Opaque areas 9.9 m2

Lateral insulation thickness 75 mm

Floor insulation thickness 15 mm

Roof insulation thickness 13 mm

Internal thermal capacity 75 kJ.K-1

Total wall thermal capactity 155.4 kJ.K-1

Glazing transmittivity 0.85

Wall outer absorptivity 0.85

In addition to those parameters, when one wants to
compute the cabin thermal needs, operating condition
parameters are required. Those parameters are
presented in Table 2. As we will see, some of those
parameters strongly influence the results. They are in a
sense arbitrary and depend more on the manufacturer
philosophy (specifications), but they have to be
carefully considered by one who wants to study
thermal needs due to their strong influence.

In addition to the parameters given in Table 2, the
target cabin temperature is set to 23°C. The number of
passengers is 0 for heating and 4 for AC. No sun is
considered for heating and the sun is defined by ܫௌ ൌ
700	ܹ.݉ିଶ	 and ܦ ൌ 117	ܹ.݉ିଶ for A/C. The
vehicle speed is set to 45 km/h. And the initial
condition is a cabin at 	 ܶ

௫௧ (all thermal nodes).

Cooling
HX

Heating
HX

fan

Cabin Thermal Needs: Modeling and Assumption Analysis

776 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132771

Table 2. Operating conditions.

ݎ݅ܽܶ
 ݐݔ݁ ߮ ݃ݎܽݐݐ

ሶ݉ ݎ݅ܽ
 ݊ݓ݈ܾ
Stab.

ሶ݉ ݎ݅ܽ
 ݊ݓ݈ܾ

Conv.
ሶ݉
௦

Deshum.

∆ ܶ
௩

(°C) % min (kg.h-1) (kg.h-1) (kg.h-1) (°C)
-20

85
20

245 400

Same
as
ሶ݉ ݎ݅ܽ
 ݊ݓ݈ܾ

(no

recirc)

No

-15 236 390
-10

95

225 360
-5 210 330
0

15
200 310

5 185 290 3
10

10
180 285 5

15 187 290
10

20 195 300
15

95
10

187 290 187
min 10

20 195 300 195
25 248 390 124

N/A

30 85 330 533 88
35 65

15
378 608 59

40 55 400 632
48

45 35 20 408 640

2.10 Model validation
The experimental validation of the model is being
carried out at the moment. Hence, the results were not
available for this paper but they will be presented in a
following paper. The first tests conducted with a crane
cabin (and not a car cabin, due to industrial partner
needs) were very encouraging since the cabin
temperature was predicted within +/-1°C. The first
tests suggested that the thermal parameters need to be
filled carefully and that the analysis conducted in this
paper are valid.

3 Model results

3.1 Reference cases – steady state

To start the analysis, let’s have look at the thermal
loads at 0°C and 40°C (the other parameters are as
given in section 2.9) in steady state.

Figure 7 presents the thermal loads at 0°C. The total
heating need is 2.3 kW. It can be observed that the
fresh air is responsible for more than half of the needs.
Then, the heat transfer occurs more through glazing.

For the air-conditioning case at 40°C presented in
Figure 8, the load split is more complex. The total
cooling load is 2.9 kW. 1/3 is due to the solar, 1/3 due
to fresh air and the last third due to heat exchange with
the exterior temperature through wall and due to the
passengers. Because the recirculation ratio is high, the
fresh air sensible load is low. However, the high
humidity level results in an important fresh air latent
load. It is important to take into account this load since
the A/C system will have to overcome it.

Figure 7. Thermal loads (W) at 0°C.

Figure 8. Thermal loads (W) at 40°C.

3.2 Sensitivities – steady state
In this section different assumptions were varied for
the two reference cases (at 0°C and 40°C).

First, the different correlations presented in section
2.5 were tested. Using flat plate natural convection
correlation for the internal surfaces can decrease by
10% the thermal needs. For external surfaces, the
sensitivity to the correlations is less than +/-3%.

Several cases were tested to evaluate the
dependence on radiative assumptions. The IR
environment temperatures have been assumed to be all
the sky temperature or all the outside air temperature.
A case with a road at 80°C has also been considered.
The view factors between each wall and the internal
mass have been varied from default value to 1. For all
those cases, the sensitivity was less than +/-3%. A case
with no radiative heat exchange inside the cabin has
been considered. It decreased by 7% the thermal
heating need and 5% the cooling needs for the
reference case using the mixed convection correlation
for the inner convection. However, if pure natural

Total = 2293 W

Total = 2878 W

Session 10D: HVAC Systems

DOI
10.3384/ecp17132771

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

777

convection conditions prevail, neglecting the inner
radiation decreases by 17% the heating and cooling
needs. Hence, internal radiation needs to be taken into
account.

The impacts of the conditions selected in section 2.9
have also been analyzed via the following cases:

 Case 1: 25% increase in blown air flow rate (with
same recirculation rate as default case)

 Case 2: recirculation rate at 50%

 Case 3: target cabin temperature set at 20°C

 Case 4: stationary vehicle
The results are presented in Table 2. It is clear that
those operating conditions have strong impacts on the
results, far more important than the majority of
previous modeling sensitivities. Therefore, it means
that, when talking about the cabin needs, the related
considered conditions should be clearly stated,
particularly the recirculation rate considered and the
blown air flow rate.

Table 3. Sensitivities to operating conditions

Thermal needs (W) and relative gap (%).

Text Case 1 Case 2 Case 3 Case 4

0°C
2622 1638 1982 2079

14.3% -28.6% -13.6% -9.3%

40°C
2786 4126 3102 2937

-3.2% 43.4% 7.8% 2.1%

3.3 Cabin needs – steady state
The thermal cabin needs in steady state conditions are
presented in Figure 9. Between 5 and 20°C, the
dehumidification (cooling and heating at the same
time) is taken into account.

Based on the previous discussion, needs for varied
recirculation ratio from 0 to 100% is added to the
curves (without taking into account dehumidification
needs). It corresponds to the grey bands.

For the dehumidification zone, the required heating
is between 1 to 2 kW. Then, at -10°C, it increases up to
3.6 kW. Those numbers are the same order of
magnitude as the average traction power for an urban
trip (taking into account stops), though lower. Thus, it
appears clearly here why the heating is so damageable
for electric vehicle range for a basic case using electric
heaters. The A/C needs are also high but the they
increase less with respect to the temperature above
25°C because of the high recirculation ratio considered
and the A/C system has a better COP then the electric
heaters.

Figure 9. Steady state thermal needs.

3.4 Reference cases – convergence
Similarly to what has been done for steady state, two
reference cases, based on operating conditions
described in section 2.9 at 0°C and 40°C, are analyzed.
Figure 10 is a plot of the cabin air temperature during
the warm-up. 4 kW heating is required to reach the
targeted temperature within the targeted duration. The
heating power is applied continuously during the
simulation and that is why the temperature exceeds the
target at the end of the simulation. For normal cases,
once the targeted temperature is reached within a
certain interval, a real HVAC control algorithm would
decrease the thermal power and converge
approximately towards the steady state required power
(values presented previously). Here, the controller is
not modeled in details and just a constant-power
transient is analyzed.
 The results for the cool-down at 40°C are presented
in Figure 11. Here, 3.5 kW were required to reach the
proper temperature within the required duration.

Figure 10. Warm-up transient cabin air temperature.

Figure 11. Cool-down transient cabin air temperature.

0

10

20

30

0 10 20 30

C
ab
in
 a
ir

te
m
p
er
at
u
re
 (
°C
)

Time (min)

15

25

35

0 10 20 30

C
ab
in
 a
ir

te
m
p
er
at
u
re
 (
°C
)

Time (min)

Cabin Thermal Needs: Modeling and Assumption Analysis

778 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132771

A rapid change of slope can be observed on both
curves. It separates two transient phases. The first one
corresponds to the air capacity and the second one to
the wall and internal capacities. This separation is not
so obvious in practice since the HVAC power also
integrates a transient phase, which smoothes the
curves.

3.5 Sensitivities – convergence
A sensitivity analysis with regards to the thermal
capacitances has been conducted. It appears that the
internal mass has 3 times more influence than the wall
capacitances, but the dependency is not so important
since an increase by 50% of the internal mass
capacitance results in an increased less than 7.5 % of
the required power.

On the other hand, the assumption with an internal
mass separated from the air cabin by a convection
resistance has been analyzed. Integrating directly the
internal mass capacitance to the air (i.e. without
convection resistance) increases by 9% and 28%
respectively the heating needs and the cooling needs.
In addition, if the inner radiative couplings are
considered between the walls and the air (instead of
between the walls and the internal mass), the cooling
needs are increased by 15%. Of course, those two
approaches do not represent the reality, but this
analysis emphasizes the fact that the internal mass has
to be considered properly.

Furthermore, a sensitivity analysis on the conditions
given in Table 2 is conducted with the following cases:

 Case 1: targeted temperature at the end of the
convergence 2°C lower than steady state.

 Case 2: required duration to reach proper cabin
temperature is 10 min instead of 15 min initially.

 Case 3: initial condition: vehicle parked under sun
(and so initial cabin temperatures higher than
outside temperature).

Results are presented in Table 3. The two first cases
have impacts around 10%. On the other hand, taking
into account a case with the cabin under sun for hot
cases increased by more than 40% the thermal needs.

Table 4. Sensitivities to operating conditions.

Thermal needs (W) and relative gap (%).
Text Case 1 Case 2 Case 3

0°C -10.0% 12.5% N/A

40°C -8.6% 8.6% 42.9%

3.6 Cabin needs – convergence
The thermal needs for convergence are presented in
Figure 12. In addition to the ‘with or without
recirculation’ grey band, a point at 40°C corresponding
to the case with a parked vehicle under the sun is added
since it increases a lot the needs.

For the convergence mode, the heating needs are
roughly twice the needs for the steady state mode. The
increase is less important for the cooling needs.

Those results suggest that, for an electric vehicle,
the usage will have a strong influence on the thermal
needs and, thus, on the vehicle range. Indeed, if the
vehicle is used only for urban trip, short distances but
lots of time at low speed or even stopped, the HVAC
consumption will be high due to convergence mode.

Figure 12. Convergence thermal needs

4 Conclusion
A transient thermal model of a vehicle cabin has

been developed. Different model assumptions have
been discussed and analyzed. The results showed that
the model is not so sensitive to some non trivial
modeling aspects such as the convective correlations.
However, it appeared that neglecting the inner
radiation or the internal thermal node can have an
important impact in some cases (up to 15 to 25%
approximately). On the other hand, it appeared that, if
one wants to determine the thermal cabin needs, the
considered arbitrary conditions actually dramatically
influence the results. In addition, it is important to
consider the dehumidification needs and the latent heat
generated in the evaporator.

The model allowed establishing the thermal needs
for the steady state case as well as for the convergence
mode. The heating needs for the convergence mode are
roughly twice the needs for the steady state mode. In
addition, the thermal needs are of the same order of
magnitude as the traction needs. The results clearly
indicate that the thermal needs are damageable for
electric vehicle range, particularly the heating, and that
the vehicle usage is determinant.

In future work, the proposed model will be
integrated in an electric vehicle model in order to study
different thermal strategies such as the use of a heat
pump, pre-conditioning and thermal storage. The
model can also be used to evaluate improved cabin
thermal design.

Session 10D: HVAC Systems

DOI
10.3384/ecp17132771

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

779

Acknowledgements
This work received financial support from the French
National Research Agency (ANR) under the ELEC-HP
project (grant number ANR-11-VPTT-005).

Nomenclature

Symbol Name [unit]

A Area [m2]

pc Specific heat [J.K-1.kg-1]

F View factor [-]

h Enthalpy per unit mass [J.kg-1]

L Length [m]

lvL Latent heat of vaporization [J.kg-1]

m Mass flow rate [kg.s-1]

Nu Nusselt number [-]

rP Prandtl number [-]

Q Heat transfer rate [W]

R Thermal resistance [K.W-1]

aR Rayleigh number

eR Reynolds number [-]

T Temperature [K]

t Time [s]

u Internal energy per mass [J.kg-1]

V Volume [m3]

v Velocity [m.s-1]

ix Mass ratio of the species i in a
mixture [kg.kg-1]

Greek symbols

 Absorptivity [-]

 Relative humidity [-]

 Emissivity [-]

 Density [kg.m-3]

 Stefan’s constant [-]

 Recirculation [-] or transmissivity [-]

Subscripts or Superscripts

abs Absorbed

air Related to moist air

blown Blown

cab Cabin

cond Conduction

conv Convection

env Environment

evap Evaporator

ext Exterior

IR Infrared

In Inner side

HX Heat exchanger

mix Mixed

out Outer side

pass Passengers

return Return

sat Saturation

sol Solar

trans Transmitted

w Related to water

wall At or through wall surface

References
Abou Eid, R., 2016. Rapport - Passenger comfort and HVAC

thermal load in a tramway.

Al-Kayiem, H.H.., Sidik, F.B.M.., Munusammy, Y.R.. A..
L., 2010. Study on the Thermal Accumulation and
Distribution Inside a Parked Car Cabin. Am. J. Appl.
Sci. 7, 784–789.

ASHRAE, 2009. ASHRAE Handbook—Fundamentals.

Bergman, T.L., Lavine, A.S., Incropera, F.P., Dewitt, D.P.,
2011. Fundamentals of Heat and Mass Transfer, 6th
ed. John Wiley & Sons.

Boukhris, Y., Gharbi, L., Ghrab-Morcos, N., 2009. Modeling
coupled heat transfer and air flow in a partitioned
building with a zonal model: Application to the winter
thermal comfort. Build. Simul. 2, 67–74.
doi:10.1007/S12273-009-9405-8

Daoud, A., Galanis, N., 2008. Prediction of airflow patterns
in a ventilated enclosure with zonal methods. Appl.
Energy 85, 439–448.
doi:10.1016/j.apenergy.2007.10.002

Fujita, A., Kanemaru, J. ichi, Nakagawa, H., Ozeki, Y.,
2001. Numerical simulation method to predict the
thermal environment inside a car cabin. JSAE Rev. 22,
39–47. doi:10.1016/S0389-4304(00)00101-6

Inard, C., Bouia, H., Dalicieux, P., 1996. Prediction of air
temperature distribution in buildings with a zonal
model. Energy Build. 24, 125–132. doi:10.1016/0378-
7788(95)00969-8

Iskandar, B.S., 2010. Study on the Thermal Accumulation
and Distribution Inside a Parked Car Cabin Hussain H
. Al-Kayiem , M . Firdaus Bin M . Sidik and
Yuganthira R . A . L Munusammy Department of
Mechanical Engineering , University Technology
PETRONAS ,. Ashrae Stand. 7, 784–789.

Kataoka, T., Nakamura, Y., 2001. Prediction of thermal
sensation based on simulation of temperature
distribution in a vehicle cabin 30, p, 195–212.

Cabin Thermal Needs: Modeling and Assumption Analysis

780 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132771

Li, W., Sun, J., 2013. Numerical simulation and analysis of
transport air conditioning system integrated with
passenger compartment. Appl. Therm. Eng. 50, 37–45.
doi:10.1016/j.applthermaleng.2012.05.030

Marcos, D., Pino, F.J., Bordons, C., Guerra, J.J., 2014. The
development and validation of a thermal model for the
cabin of a vehicle. Appl. Therm. Eng. 66, 646–656.
doi:10.1016/j.applthermaleng.2014.02.054

Mezrhab, A., Bouzidi, M., 2006. Computation of thermal
comfort inside a passenger car compartment. Appl.
Therm. Eng. 26, 1697–1704.
doi:10.1016/j.applthermaleng.2005.11.008

Sanaye, S., Dehghandokht, M., Fartaj, A., 2012.
Temperature control of a cabin in an automobile using
thermal modeling and fuzzy controller. Appl. Energy
97, 860–868. doi:10.1016/j.apenergy.2012.02.078

Sevilgen, G., Kilic, M., 2012. Three dimensional numerical
analysis of temperature distribution in an automobile
cabin. Therm. Sci. 16, 321–326.
doi:10.2298/TSCI1201321S

Swinbank, W.C., 1963. Long-wave radiation from clear
skies. Q. J. R. Meteorol. Soc. 89, 339–348.
doi:10.1002/qj.49708938105

Torregrosa-Jaime, B., Bjurling, F., Corberan, J.M., Di
Sciullo, F., Paya, J., 2015. Transient thermal model of
a vehicle’s cabin validated under variable ambient
conditions. Appl. Therm. Eng. 75, 45–53.
doi:10.1016/j.applthermaleng.2014.05.074

Versteeg, H., Malalasekera, W., 2007. An introduction to
computational fluid dynamics: The finite volume
method, PEARSON Pr. ed.

Wischhusen, S., 2012. Modelling and Calibration of a
Thermal Model for an Automotive Cabin using
HumanComfort Library. Int. Model. Conf. 253–263.
doi:10.3384/ecp12076253

Zhang, H., Dai, L., Xu, G., Li, Y., Chen, W., Tao, W.Q.,
2009. Studies of air-flow and temperature fields inside
a passenger compartment for improving thermal
comfort and saving energy. Part II: Simulation results
and discussion. Appl. Therm. Eng. 29, 2028–2036.
doi:10.1016/j.applthermaleng.2008.10.005

Zhu, S., Demokritou, P., Spengler, J., 2010. Experimental
and numerical investigation of micro-environmental
conditions in public transportation buses. Build.
Environ. 45, 2077–2088.
doi:10.1016/j.buildenv.2010.03.004

Session 10D: HVAC Systems

DOI
10.3384/ecp17132771

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

781

782 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Simulative Comparison of Mobile Air-Conditioning Concepts for

Mechanical and Electrical Driven Systems

Arnim von Manstein 1 Dirk Limperich1 Shivakumar Banakar2
1 Daimler AG, Germany, {arnim.von_manstein, dirk.limperich}@daimler.com

2Mercedes Benz R & D India Pvt. Ltd., India, Shivakumar.banakar@daimler.com

Abstract

Ever increasing energy demand and the stringent

emission norms have resulted in the need for developing

more efficient automotive systems. Fuel economy and

emission targets are the two important driving factors in

the development of an automobile. Efficiency of a

Mobile Air-Conditioning system (MAC) has a

considerable impact on the fuel economy of an

automobile. This study involves simulative comparison

of MAC concepts for mechanical & electrical driven

systems. System models are developed for MAC

concepts using Dymola simulation tool. Drive cycles

considered in this study correspond to the real time

driving scenarios and ambient conditions. From this

study the conclusions are drawn about the most efficient

ways to reach the thermal comfort for the passenger

cabin in an automobile.

Keywords: Energy Efficiency; MAC; HVAC; LV; HV;
MHEV; PHEV; BEV; Compressor; Dymola.

1 Introduction

MAC systems were considered to be an optional

equipment in the past for the automobiles. Nowadays

they have become an integral part of all the cars that are

produced. In the recent time momentum has gained for

the development of hybrid & electric vehicles which

means that vapor compression refrigeration systems will

become a necessity for passenger cabin cooling as well

as battery cooling. The UN estimated the sale of more

than one billion cars with MAC system in 2015 which

has resulted in 2.3 gigatons of carbon dioxide adding

into the environment (Lemke et al. 2011). In order to

reduce the world wide emission caused by automobiles

there are two ways. One is to reduce the direct emissions

of cars. For example implementing stringent emission

norms, use of alternative powertrain concepts, reducing

weight by replacing heavy cast iron components are

very simple and effective methods (Slattery et al. 2010).

The second way would be to reduce the indirect

emissions by changing for example refrigerants of the

refrigeration cycle. Especially for the second way the

European Union set in the directive 2006/40/EC the way

to reduce the Global Warming Potential (GWP) of

refrigerants. It is set that from January 2017 only

refrigerants with a GWP of lower than 150 are allowed

to be sold in Europe (Europäische Union 6/14/2006). In

order to fulfill this directive there are two alternatives,

one is R1234yf (2, 3, 3, 3-Tetrafluorpropen) with a

GWP of 4 and the other is R744 (CO2) with a GWP of

1.

The refrigerant loop in a MAC system consists of an

evaporator, compressor, condenser and expansion

valve. The low temperature, low pressure vapor is

compressed by a compressor to a high temperature and

high pressure vapor. This vapor is condensed into high

pressure liquid in the condenser, by rejecting heat to a

low temperature ambient air and then passes through the

expansion valve. Here, the high pressure liquid is

throttled down to a low pressure liquid and passed on to

an evaporator, where it absorbs heat from the cabin air

and vaporizes into a low pressure vapor. Then it reaches

compressor suction line and the cycle repeats. In order

to increase the efficiency, Daimler AG, Germany,

introduced at early stages for example internal heat

exchanger (IHX). There the refrigerant is subcooled

after it exits the condenser. Therefore you can reach

lower temperatures after expansion to increase cooling

capacity on the one hand and ensure compressor safety

on the other side due to its superheating effect after the

refrigerant exits the evaporator. By ensuring superheat

at the compressor suction, we can eliminate liquid lock.

A key component of a MAC system is the

compressor. This refrigerant compressor is driven in

state of the art automobiles with a belt drive directly

from an Internal Combustion Engine (ICE). With hybrid

powertrain such as Mild Hybrid Electric Vehicle

(MHEV), Plug-in Hybrid Electric Vehicle (PHEV) and

Battery Electric Vehicle (BEV), the compressor is

driven by an electric motor via the necessary voltage

level. Especially for MHEV there are changes in the

automotive industry to reduce this voltage level limit up

to 60V. The further reduction in voltage level with

electrification of the powertrain is known and also the

new voltage level already described in detail (Coppin,

Potteau 2015).

With this electrification and with the implementation

of stringent emission norms to reduce emission of

carbon dioxide, have resulted in the tremendous changes

for MAC.

DOI
10.3384/ecp17132783

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

783

2 Experimental Procedure

System simulation techniques play a very important

role in the development and evaluation of various

concepts for MAC system. So far the simulation

predictions were mainly used to determine whether the

designed MAC system is able to achieve thermal

comfort for the customer at certain boundary conditions.

 Going a step further the car manufacturers are

interested in studying the system behavior under real

time operating conditions of the customer. For sure

testing with prototypes is very important testing set up,

but lot of what if scenarios can be addressed through

simulation studies in the early stages of concept

development and concept evaluations.

In this study we will limit ourselves to a comparison

of MAC system driven by a mechanical compressor and

an electrical compressor. Because, already there are

large number of scientific papers that discuss the overall

efficiency of ICE and hybrid powertrain, such as

(Carpetis 2000). These concepts are evaluated using

Dymola simulation tool. In general this study will result

in an overall discussion about what is the most efficient

way to reach thermal comfort in an automotive cabin.

In our special use case we evaluate two types of

compressor that come along in automotive application:

1. Regular mechanical compressor driven by belt

drive

2. HV electrical compressor with a voltage level

around 400V

Fortunately, there are several reports about World’s

climate conditions such as the FAT 224. In order to

reduce complexity we just take MAC system operation

into consideration and will provide data for the ambient

air temperature of 22°C, 29°C and 35°C.

As mentioned, these systems are operated by

customers in different ambient and driving conditions.

Most severe conditions for MAC systems are higher

ambient temperatures at low car speed.

Daimler AG has selected one drive cycle (MBVT),

which was created using the real time data from vehicles

operating in various driving scenarios and ambient

conditions all over the world.

The MBVT is a mixed drive cycle with ≈ 50% inner

city driving, ≈ 35% interstate and ≈ 15% highway

(Autobahn) profile. Additional parameters in the drive

cycle include time/speed gradients, acceleration,

deceleration and the pitch. The stop phases are

calculated to be roughly about 4.5 mins.

The MAC system investigated in this study is based

on a series production S-Class system which is operated

in both systems with a hydrofluoroolefin refrigerant

(such as R134a/R1234yf). This set up is described in

detail in Section 3.

3 System Description and Simulation

Model

The vapor compression refrigeration system

components configurations that we have used for

investigation in our study corresponds to the series

production S-Class car. Table 1 describes geometrical

parameters of all components used in the system.

Table 1. Component details & geometrical parameters

Component Description Geometry

Condenser

Cross flow,

Fin & Tube

heat

exchanger

with 2 layers

Height

(mm)
453.10

Width

(mm)
640

Depth

(mm)
12

HTA (m2) 2.0158

Volume

(m3)

5.552E-

4

Evaporator

Air cooled,

Cross flow,

Fin & Tube

heat

exchanger

Height

(mm)
223

Width

(mm)
303

Depth

(mm)
50

HTA (m2) 1.199

Volume

(m3)

0.0011

78

Internal

Heat

Exchanger

Concentric

tube in tube

heat

exchanger

Length

(mm)
498

HTA (m2)
0.0837

2

Expansion

Valve

Thermal

Expansion

Valve with

superheat

feedback

Capacity

(ton)
2.0

Compressor

1

Swash plate

variable

displacement

compressor

Capacity

(cc)
170.0

Compressor

2

Scroll

compressor

Capacity

(cc)
33

Simulation models of the components of refrigerant

loop are developed using a multi-engineering dynamic

simulation tool Dymola (version 2015 FD01) and Air-

conditioning Library (version 1.9). The snapshot of the

system model developed in Dymola is as shown in

Figure 2. In the first step heat exchangers like

Condenser, Evaporator & IHX (Internal Heat

Exchanger) are modelled using the templates from air-

conditioning library and geometrical data. The

developed heat exchanger models are then calibrated

and validated using the calibration toolbox within

Simulative Comparison of Mobile Air-Conditioning Concepts for Mechanical and Electrical Driven Systems

784 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132783

Dymola and experimental data from suppliers. The

compressor model is as described below.

Figure 1. Compressor model variables

Where,

n = Compressor speed

π = Compressor pressure ratio

d = Relative displacement

mdot = Refrigerant mass flow rate through compressor

P = Compressor power consumption

 Efficiencies of the compressor i.e., isentropic

efficiency, volumetric efficiency and effective

isentropic efficiency are modeled as a function of

compressor speed, relative displacement and pressure

ratio. Correlations for the compressor efficiencies are

developed using the measured data from the supplier.

Range of the compressor measurement data used for the

modelling is shown in Table 2. The standard deviations

in isentropic efficiency & volumetric efficiency models

are found to be 4.81% & 2.9% respectively. Compressor

performance parameters like mass flow rate, power

consumption and compressor discharge temperature are

computed using these efficiency values.

Figure 2. Representation of a compressor model

developed in Dymola.

Table 2. Details of the compressor measured data used

for modelling.

Parameters π n (rpm) d

Range 2.5 to 8.4 700 to 8000 0.35 to 1.0

Figure 3. System model developed in Dymola simulation

tool.

The validated component models were then

integrated to develop the system model as shown in

Figure 2. Two variants of the system models were

developed; “System A” with engine driven mechanical

swashplate compressor and “System B” with battery

driven electric scroll compressor; keeping all other

components same. The system simulations were carried

out in the subsequent stage to evaluate and compare the

performance of these two systems.

As previously described (Dermont et al. 2016) the

main challenges in simulating the real time conditions

are the stop phases, where the mechanical swash plate

compressor, during a vehicle stand still at a traffic light,

is shut off. In order to mimic the stop phase of the

compressor in simulations, the compressor speed was

limited to 10 rpm. Because of the very low rpm of the

compressor, refrigerant mass flow in the system is of the

order of 10E-4 kg/s which results in a zero-mass flow

scenario. Flow reversal was observed in some of the

components of the system during the stop phase which

resulted in lots of numerical problems in the simulation.

Numerical problems in the simulations were caused

by the flow reversal that was observed at the outlet of

the condenser. This was found to be because of the

dynamic enthalpy value that was assigned in the flow

source charge, which is connected at the outlet of

condenser. The flow source charge is used to ensure
fixed quantity of charge inside the system. To fix these

numerical problems, the enthalpy input in the flow

Isentropic Efficiency

Volumetric Efficiency

Effective Isentropic Efficiency

Compressor ModelInputs Outputs

mdot

P

n

∏

d

Session 10D: HVAC Systems

DOI
10.3384/ecp17132783

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

785

source charge was assigned a constant value. Simulation

cases were re-simulated again using Dymola 2017

FD01, where the handling of zero flow simulation was

found to be better. It was observed that the simulations

were faster and smoother in the new version of Dymola

as compared to the previous versions.

4 Results & Discussion

After developing the system models, simulations

were done using the MBVT drive cycle for 3 different

ambient temperatures and 2 different air mass flows

over the evaporator at each ambient temperature. The

details of the boundary conditions are as shown below

in Table 3.

Table 3. Details of the comparison study for each

temperature and air massflow rate

MBVT

T_ambient

= 22°C

T_ambient

= 29°C

T_ambient

= 35°C

[kg/min] [kg/min] [kg/min]

1,5 2 2 3 4 6

Results are described in the following section.

4.1 Ambient Temperature 22°C

The simulations at 22°C ambient temperature and

55% relative humidity were done with an air mass flow

of 1,5 kg/min over the evaporator. At 29°C ambient

(40% humidity) with a massflow of 2 kg/min and at

35°C (40% humidity) with 4 kg/min. The following

simulation results are showing data of the mechanical

and electrical system in one graph for each evaluation

criterion. The relevant criteria for this paper are:

- Pressure (suction and discharge) [bar]

- Evaporator air outlet temperature [°C]

- Refrigerant Massflow [kg/h]

- Cooling capacity [kW]

- Coefficient of performance (standardized) [-]

In Figure 4, we can see that the suction and discharge

pressure reach their aimed ratios for both the systems.

For the electrical system both suction & discharge

pressures run more stable, especially for the suction

pressure. This fluctuating pressure from the mechanical

system can result for example in pulsation which have a

negative impact on the acoustics of such a system.

Figure 4. Suction and discharge pressure of both system

as a function of time

There are two main aspect visualized in Figure 5. The

first one is that the massflow for mechanical system

experiences large variations. This is caused by the fact

that the compressor is being driven via the belt drive of

the ICE. Also in the simulation model, the compressor

speed was reduced to a minimum of 10 rpm at stop

phases. A complete stand still of the mechanical

compressor was not achievable with this Dymola model.

This leads us to the second main aspect of Figure 5. Due

to the reduction of compressor speed resulting in a

reduction of massflow, the air outlet temperature of the

evaporator couldn’t be kept constant. For longer

periods, for example during long phases of traffic signal,

it is observed that the temperature increases

dramatically. This will result in a massive discomfort in

the passenger cabin as compared to the electrical

system. The electrical scroll compressor was operated

during all stop phases in the drive cycle that results in

maintaining the thermal comfort of the passengers.

Figure 5. Evaporator air outlet temperature and massflow

as a function of time

For the electrical system in general it is evident that

it runs more stable compared to the system with the

mechanical compressor at 22°C ambient temperature.

This hypothesis is affirmed in Figure 6. The massive

variation of the cooling capacity of the mechanical

system is again linked to the stop phases. During the

Simulative Comparison of Mobile Air-Conditioning Concepts for Mechanical and Electrical Driven Systems

786 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132783

stop phase it will decrease because of the reduced

compressor speed. Additionally, the temperature of the

evaporator increase, as the ambient air at 22°C is blown

over it. Once the system starts again, the system tries to

reach the evaporator air set point temperature of 3°C.

Figure 6. Cooling capacity and COPs as a function of

time

Also the variation in COP of the mechanical system

can be explained with the stop phases. There it is

important to know that mechanical compressors in

automotive application have a variable displacement

which is controlled via parameters of the refrigeration

loop. So once the car starts after a stop phase the loop

tries to reach the evaporator air set temperature. The

speed of the compressor is fixed to the given profile so

the only chance to increase the capacity is to increase

the compressor displacement. This is also shown in

Figure 4 with the graph of the massflow. There it is

noticeable how the massflow is changing due to the

changes in the displacement. Because of the design of

the variable displacement compressor it is found to be

operating in a more efficient mode at lower speed and

full displacement. After the set point is achieved the

displacement decreases and it runs afterwards in a rather

inefficient mode in comparison to the scroll compressor.

In Figure 6 the COP is standardized because at stop

phases when the mechanical compressor is shut of we

still gain the cooling capacity which is stored in the

refrigerant loop. But in the meantime you lose thermal

comfort in the vehicle cabin so it is needed to take this

also into consideration in calculation of the COP. So the

factor ε is introduced for calculating COPs. Its graph is

plotted for the air outlet temperature over the evaporator

in Figure 7.

𝐶𝑂𝑃𝑠 = 𝐶𝑂𝑃 × 𝜀

where,

𝜀 =
𝜗𝑒𝑣𝑎𝑝_𝑠𝑒𝑡

|𝜗𝑒𝑣𝑎𝑝_𝑜𝑢𝑡 − 𝜗𝑒𝑣𝑎𝑝𝑠𝑒𝑡
| + 𝜗𝑒𝑣𝑎𝑝_𝑠𝑒𝑡

Figure 7. Correction factor (ε) for each temperature of the

air at the evaporator outlet

4.2 Ambient Temperature 29°C

The following graphs for 29°C ambient are pretty

similar to those of 22°C ambient. In Figure 8 we see that

both systems attaining the same high pressure level and

due to the constant speed of the electrical compressor

the suctions pressure is in stable conditions.

Figure 8. Suction and discharge pressure of both system

as a function of time

In Figure 9 the advantages of an electrical system are

evident. Constant refrigerant massflow and evaporator

air exit temperatures are observed for most part of the

system operation. Thermal comfort in the cabin is also

maintained for most part of the drive cycle.

Session 10D: HVAC Systems

DOI
10.3384/ecp17132783

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

787

Figure 9. Evaporator air outlet temperature and massflow

as a function of time

By visual comparison the system with an electrical

compressor operates with a better COPs for most part of

the drive cycle. The large peaks for the system with

mechanical compressor are due to the stored cooling

capacity in the system. Additionally, it is observed from

Figure 8 that the high pressure for the mechanical

system decreases during the stop phases.

Figure 10. Cooling capacity and COP as a function of

time

In order to compare both systems in terms of

efficiency we compare the classic COP without

standardization regarding cabin comfort:

𝐶𝑂𝑃𝑒 =
∑ 𝐶𝑂𝑃𝑒𝑛

𝑡
𝑛=1

𝑡
 ; 𝐶𝑂𝑃𝑠𝑚 =

∑ 𝐶𝑂𝑃𝑚𝑛
𝑡
𝑛=1

𝑡

𝐶𝑂𝑃𝑣 =
𝐶𝑂𝑃𝑒

𝐶𝑂𝑃𝑚
 = 1,2851 ≈ 128,5%

So even under severe conditions the electrical

compressor system runs at 29°C in a higher COP by

28,5% compared to the mechanical compressor system.

The work that is needed over the driving cycle for the

mechanical conferred to the electrical is higher by 57%.

Although there is just an overall advantage of 28% the

difference is with variation of the cooling capacity.

4.3 Ambient Temperature 35°C

In the end the simulations where done at an ambient

temperature of 35°C. In statistics this might be the most

severe temperature for Germany for example. But in

southern parts of Europe and for example in the western

region of the United States of America these

temperatures occur more often. It is easy to detect that

now both systems operate at the upper end of their

capacities. In Figure 11 the suction pressure stays in the

same regions except during the stop phases, but the high

pressure differs a lot. This can be explained to the

different compressor types. As previously described the

mechanical compressor is a piston type and the electrical

is a scroll one.

Figure 11. Suction and discharge pressure of both system

as a function of time

Although the exciting air temperature over the

evaporator is almost kept constant for the electrical

system you can easily see by analyzing the plotted

massflow that the compressor is also varying the speed.

The massive differing shows that even if the scroll

compressor is independent of the belt drive of the ICE it

regulates dynamically for this high load case.

Figure 12. Evaporator air outlet temperature and

massflow as a function of time

As a last the COPs in Figure 13 interestingly are no

longer higher for the electrical system. This is also due

Simulative Comparison of Mobile Air-Conditioning Concepts for Mechanical and Electrical Driven Systems

788 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132783

to the compression technique of the mechanical

compressor. Piston type compressors have an optimum

operation ratio at almost full stroke with 100%

displacement. The average displacement over this

driving cycle for the mechanical system is at 50%.

Figure 13. Cooling capacity and COPs as a function of

time

Simulations plots are described for one evaporator

air massflow rate at each ambient temperatures. All the

plots aren’t added to this paper but they do show similar

behavior in general. The conclusion all in all stays the

same.

5 Conclusion

For future investigation simulation tools such as

Dymola will be mainly used for efficiency analysis and

system optimizing operations. The comparative study

outlined this strategy and justified this procedure. This

simulation will be moreover expand in an even wider

temperature range to complete the virtual behavior of an

automotive A/C-loop. Especially transient simulations

will become more and more sufficient. By simulating a

mechanical compressor at all ambient temperatures and

even an electrical at severe conditions the changes in the

massflow are tremendously. By simulating just steady

state conditions you can’t visualize those changes that

are also important for NVH (Noise Vibration and

Harshness) analyses and cabin comfort for the customer.

The shut-off phases of the mechanical system are the

main issue as stated in chapter 3. For this point of view

we could show that the system driven with an electrical

scroll compressor has 20% higher COPs at 29°C than a

system with a mechanical (belt driven) compressor. In

terms of increasing the system efficiency, the

hybridization of passenger cars is also a big chance for

the thermal management of the cabin and powertrain. A

validation of the simulation model is of course

applicable and will be done as a next step.

Acknowledgements

The authors would like to thank and gratefully

acknowledge the support received from RD/KIT and

RD I/CCS departments at Daimler AG & MBRDI

respectively.

Publication bibliography

Carpetis, C. (2000): Globale Umweltvorteile bei Nutzung von

Elektroantrieben mit Brennstoffzellen und/oder Batterien im

Vergleich zu Antrieben mit Verbrennungsmotor. Edited by

Deutsches Zentrum für Luft und Raumfahrt e.V. Institut für

Technische Thermodynamik. Stuttgart (STB-Bericht, 22),

checked on 10/12/2016.

Coppin, Oliver; Potteau, Sébastien (2015): 48-V-Hybrid-

Systemarchitektur zur Reduzierung der CO2-Emissionen. In

ATZ elektronik 10 (02).

Dermont, Pieter; Limperich, Dirk; Windahl, Johan; Prölss,

Katrin; Kübler, Carsten (2016): Advances of Zero Flow

Simulation of Air Conditioning Systems using Modelica. In :

Deployment of high-fidelity vehicle models for accurate real-

time simulation, 2011-02-05: Linköping University

Electronic Press (Linköping Electronic Conference

Proceedings), pp. 139–144.

Europäische Union (6/14/2006): Richtlinie 2006/40/EG des

Europäischen Parlaments und des Rates vom 17. Mai 2006

über Emissionen aus Klimaanlagen in Kraftfahrzeugen und

zur Änderung der Richtlinie 70/156/EWG des Rates.

2006/40/EG, revised L161/12.

Lemke, Nicholas; Mildenberger, Julia; Graz, Martin (2011):

Unterstützung der Markteinführung von Pkw-Klimaanlagen

mit dem Kältemittel CO2 (R744). Prüfstandsmessungen und

Praxistest. Im Auftrag des Umweltbundesamtes. Edited by

Umweltbundesamt. Dessau-Roßlau (Texte, 64). Available

online at http://www.uba.de/uba-info-medien/4184.html,

checked on 6/25/2015.

Slattery, B. E.; Edrisy, A.; Perry, T. (2010): Investigation of

wear induced surface and subsurface deformation in a

linerless Al–Si engine. In Wear 269 (3-4), pp. 298–309. DOI:

10.1016/j.wear.2010.04.012.

Nomenclature

A/C Air Conditioning

BEV Battery Electric Vehicle

COP Coefficient of Performance

COPs Coefficient of Performance standardized

GWP Global Warming Potential

ICE Internal Combustion Engine

IHX Internal Heat Exchanger

MAC Mobile Air Conditioning

MBVT Special Daimler Driving Cycle

MHEV Micro Hybrid Electric Vehicle

Session 10D: HVAC Systems

DOI
10.3384/ecp17132783

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

789

NVH Noise Vibrations and Harshnes

PHEV Plug-In Hybrid Electric Vehicle

RPM Rounding Per Minute

n Compressor speed

π Compressor pressure ratio

d Relative displacement

mdot Refrigerant mass flow rate through compressor

P Compressor power consumption

Simulative Comparison of Mobile Air-Conditioning Concepts for Mechanical and Electrical Driven Systems

790 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132783

Duty Cycle for Low Energy Operation of a Personal Conditioning
Device

Rohit Dhumane Jiazhen Ling Vikrant Aute Reinhard Radermacher

Center for Environmental Energy Engineering, University of Maryland, College Park, 4164 Glenn L. Martin Hall
Bldg., MD 20742, USA

{dhumane,jiazhen,vikrant,raderm}@umd.edu

Abstract
The Roving Comforter (RoCo) is an innovative personal
thermal management technology that provides ultimate
personal thermal comfort for individuals in inadequately
or even unconditioned environments. It is a miniature heat
pump system mounted on a robotic platform capable of
autonomously following individuals to deliver comfort by
directing hot or cold air through automatically controlled
nozzles. This allows buildings to relax their thermostats
up to 4°F (2.2°C), leading to energy savings anywhere be-
tween 10 to 30% depending on climatic conditions. Since
RoCo is a portable device, it needs to be operated on bat-
tery. A smaller battery pack will require frequent charging
making it inconvenient for the users, while a bigger battery
pack will add to the weight of the device leading to higher
power consumption during motion. To address this prob-
lem, a multi-physics model for the operation that incorpo-
rates thermodynamics, electricity and mechanics of RoCo
is developed and two duty cycles analyzed. Strategies for
the operation of RoCo are provided from the observations
of results.
Keywords: Battery, Air-conditioner, Duty-cycle

1 Introduction
Climate change and global warming have been hot top-
ics of discussion over past few decades. The greenhouse
gas emission from human activities has lead to disrup-
tion of several natural systems leading to rising sea-levels,
increased ground instability in mountains and change in
seasonal winds. The United Nations IPCC has identified
the building industry as the one with the most climate
mitigation potential (Intergovernmental Panel on Climate
Change Fourth Assessment, 2007).

Building Heating, Ventilation and Air Conditioning
(HVAC) account for 13% of energy consumption in
the United States (United States Department of Energy,
2011). Much of this energy goes into maintaining narrow
indoor temperature ranges that building operators consider
necessary for comfort but are really not necessary for oc-
cupant comfort (Zhang et al., 2011).

Hoyt et al. (2015) demonstrated the potential of energy
savings from extending thermostat set-points in the build-
ing. They concluded that if it were possible to relax the

Figure 1. Current prototype of RoCo

temperature range in either the hot or cold direction, to-
tal HVAC energy is reduced at a rate of 10% per °C. To
enable expansion of building set-point temperatures, it is
necessary to provide supplementary Personal Condition-
ing System (PCS) operating at significantly lower energy
consumption.

PCS offer dual benefits of energy saving and increased
comfort. As a result, several PCS have been developed
and are summarized in the review articles by Zhang et al.
(2015) and Veselý and Zeiler (2014). However, except
for the desk and ceiling fans, they are not commercially
available. This can be attributed to a variety of factors
unique to the designs like poor thermal performance, low
energy efficiency, high cost and poor aesthetics. To ad-
dress these issues and to achieve the benefits of PCS, an
innovative robotic personal conditioning device called the
Roving Comforter (RoCo) shown in Figure 1, is being de-
veloped (Du et al., 2016).

2 System Description
In technical terms, RoCo is a vapor compression system
mounted on an autonomous robotic platform and deliver-
ing comfort by directing hot or cold air using its automat-

DOI
10.3384/ecp17132791

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

791

Figure 2. Conceptual representation of RoCo in operation

ically controlled nozzles. It is a heat pump on wheels.
RoCo stores its condenser heat in a compact phase

change material based thermal storage which needs to be
recharged before its next cooling operation. Thus RoCo
operates in two modes and it is necessary to size the bat-
tery to deliver multiple operating cycles. Figure 2 shows
the schematic of the two alternating modes of RoCo. The
left schematic in Figure 2 shows the onboard vapor com-
pression system using R134a as the refrigerant. The cool-
ing operation is terminated when the PCM surrounding
the condenser is completely melted. Before the next cool-
ing operation, there is a need to re-solidify the PCM.
This PCM recharge is achieved by a gravity assisted ther-
mosiphon operation. Details of this recharge operation
and its modeling are discussed in Dhumane et al. (2016).

The current prototype has separate battery packs for its
robotic platform and vapor compression system. For the
new prototype, a single unified battery pack is desired. An
innovative nozzle design which permits nozzle rotation us-
ing motors in both horizontal and vertical plane is being
developed for the new prototype. To understand various
power draws for a single unified battery pack a duty cycle,
representative of a worst-case operation of the new RoCo
prototypes incorporating all the modifications is conceptu-
alized. Simulations are carried out for the operation of var-
ious components to come up with strategies for increased
the battery operation time.

3 Component Modeling
The model for the current simulation is shown in Figure 3.
The top portion of the model contains components for
modeling the vapor compression cycle. The compressor
pumps the refrigerant in the circuit. A non-adiabatic tube
element accounts for heat losses from the refrigerant be-
tween the compressor and the condenser. The condenser
consists of inlet and outlet headers, and four refrigerant
tubes immersed in PCM (See Figure 2 to understand the
tube layout). The headers are modeled by lumped refriger-

ant control volumes. The four refrigerant circuits formed
by each of the refrigerant tube immersed in the PCM are
assumed to be symmetric. To avoid computational ex-
pense, only one of these refrigerant circuits is modeled.
Flow splitter and flow mixer components are used to ac-
complish this. The splitter component divides the refrig-
erant mass flow rate into four equal parts and the mixer
merges it back to resume the original mass flow rate for
the next component in the refrigerant circuit. The PCM
blocks interact with the refrigerant control volume using
the HeatPort interface. The refrigerant then flows through
receiver, valve and evaporator before reaching the compressor.
Component models for refrigerant tube connecting various com-
ponents are also included.

The bottom left portion contains the battery model and a
power load component. The latter needs power draw as an input.
The components which draw current from the battery are Com-
pressor, fan, nozzle, robotic platform and on-board electronics.
The power consumption from all of them is added and provided
as input for the power load component. It then determines the
current draw from the battery. This section discusses equations
involved in calculating the power consumption from all these
components.

3.1 Vapor Compression System Components

RoCo is a heat pump on wheels and detailed modeling for vapor
compression cycle is carried out using components from CEEE
Modelica Library (CML) (Qiao et al., 2015). Compo-
nents used from the library are compressor, evaporator, pipe, re-
ceiver and fixed orifice expansion device.

3.2 Phase Change Material Heat Exchanger

The condenser consists of helical refrigerant tubes surrounded
by the phase change material (PCM). The PCM melting is a
complex phenomenon due to the fact that the solid-liquid bound-
ary moves depending on the rate of heat transfer and hence its
position with time forms part of the solution. The rate of heat
transfer varies progressively during the melting due to varying
effects of conduction and natural convection. It decreases in at
early times, attains a minimum, then rises again to a maximum
and subsequently decreases (Sparrow et al., 1977). The helical
nature of the refrigerant tube further increases the complexity by
making the problem 3D. Due to strong non-linear nature of the
problem, a simple 2D problem of melting in a square cavity may
take several days on a personal computer (Wang et al., 2010). Fi-
nally, the two-phase refrigerant circuit exchanging heat with the
PCM adds difficulty in convergence.

The model used in the current work is a trade-off for accu-
racy, complexity and usability. The PCM block is taken as a
lumped control volume to eliminate the momentum equation.
Two components are used to model PCM: PCMConductor
and PCMCapacitor which are PCM analogous versions
of HeatCapacitor and ThermalConductor from the
Thermal package of Modelica Standard Library.
Temperature transforming model by Cao and Faghri (1990) is
used to model the energy equation since it also captures temper-
ature glide over melting without much oscillatory effects. A heat
transfer coefficient vs melt fraction profile based on the various
heat transfer regimes discussed in Sparrow et al. (1977) is used
and fitted to match experimental data.

Duty Cycle for Low Energy Operation of a Personal Conditioning Device

792 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132791

pCMCapacitor

C

pCMConductor

RPMTransfer

PT1

T=3

2100

RPM
Evaporator

RH

duration=0

Tair

duration=0

mdot

duration=0

Splitter
Mixer

cellParameters

ground

V

voltageS
ensor

A

currentSensor
batteryStack

ns

np

loadload

P
angle

offset=0

coefficient_rolling_friction

offset=0

acceleration

offset=0

robot

add

+1

+1

+1
+

fanAndElectronics

k=10

Nozzle

offset=0

ad
d +

+
1

+
1

PCM

compressor

valve

receiver

battery

nozzle

fan and onboard
electronics

robotic platform

evaporator

header

tube

Figure 3. Schematic of System Model for RoCo.

3.2.1 PCM Capacitor
The PCM Capacitor block includes a HeatPort and models
the heat storage of PCM. The equations for temperature trans-
forming model use scaled temperature (T ∗ [K]) as input. It is
defined as:

T ∗ = T −Tm (1)

where Tm [K] is the mid-point of the temperature glide and T
[K] is the lumped PCM temperature. The specific enthalpy (h
[Jkg−1]) is calculated by:

h = c(T ∗+ s) (2)

The specific heat capacity (c [Jkg−1 K−1]) and the source term
(s [K]) are defined as:

c =

cs, T ∗ <−δT
cs+cl

2 + hsl
2δT , −δT ≤ T ∗ ≤ δT

cl , T ∗ > δT
(3)

where, δT [K] is the temperature range over which the PCM
melts.

s =

{
δT, if T ∗ ≤ δT
cs
cl

δT + hsl
cl
, T ∗ > δT

(4)

The if-else loops are implemented using NoEvent operator as
shown below for the specific heat capacity block.

if noEvent(T_star < -deltaT) then
c = c_s;

elseif noEvent(T_star <= deltaT) then
c = (c_s + c_l)/2 + h_sl/(2*deltaT);

else
c = c_l;

end if;

The melt fraction (λ) of PCM is calculated from its enthalpy
value as:

λ = max(0,min(1,
h
hl
) (5)

where hl [Jkg−1] is the enthalpy at the point where the PCM just
turns liquid. The equation is simplified because of the fact that
the enthalpy scale is defined as zero for the point where the PCM
starts to melt. The melt fraction is made available for the PCM
capacitor block through the RealOutput interface.

3.2.2 PCM Conductor
PCM Conductor block connects the refrigerant control volume
of the condenser to the PCM Capacitor block. It extends
Modelica.Thermal.HeatTransfer.Interfaces.
Element1D block and provides for the heat flow, which is cal-
culated using CombiTable1D fitted function for heat transfer
coefficient as a function of melt fraction. The RealInput
interface is used to obtain melt fraction input from PCM
Capacitor.

Table 1 contains the anchor points given to the CombiTable
block used as input for the normalized heat transfer coefficient

Session 10D: HVAC Systems

DOI
10.3384/ecp17132791

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

793

as a function of melt fraction. The constant value used to mul-
tiply the normalized function to obtain heat transfer coefficient
(HTC) is 116 Wm2 K−1. These numbers are obtained by match-
ing the condenser pressure from simulation to the experiment
since there are no correlations to capture the behavior in litera-
ture. Pal and Joshi (2001) discusses the heat transfer variation
in the four regimes captured by Table 1. The initial heat transfer
occurs in a conduction dominated regime. Then there is a reduc-
tion in heat transfer coefficient with the appearance of small melt
layer because the velocity of the liquid PCM due to buoyancy
force is low. The melting then progresses to a convection domi-
nated regime where the velocity of liquid PCM increases causing
a higher rate of heat transfer. Finally, the magnitude of velocity
decreases as the temperature in the molten PCM becomes more
uniform with time due to natural convection stirring, leading to
reduced buoyancy force for convection.

Table 1. Input table for PCM Conductor block.

Melt Fraction Normalized HTC

0 1
0.2 0.9
0.4 1
0.7 0.9
1 0.8

3.3 Battery
Battery modeling is necessary to reduce the total weight and
cost, which are critical parameters in the design of RoCo. Accu-
rate prediction of the state of charge (SOC) of the battery is es-
sential to determine how long the battery will last with a typical
user case scenario. The battery capacity should be sufficient to
run the whole cooling operation with charging and discharging
operations without entering regions of overcharging and over-
discharging for longer operation.

There are a variety of methods for mathematical model-
ing of the battery which vary in complexity, computational re-
quirements and reliability of the prediction. The models based
on electrochemical principles which model first-principle phe-
nomena require significant computational resources and detailed
datasets for input (Marco et al., 2015). Equivalent circuit mod-
els have a good trade-off between exactness, complexity and us-
ability while still providing some insights into the battery state
(Einhorn et al., 2011b). As a result, the equivalent circuit ap-
proach is used for the current research. Modeling for the bat-
tery is carried out using the Electrical Energy Storage Library
(Einhorn et al., 2011a). The battery pack is modeled using the
model LinearDynamicImpedance from the battery stack
sub-package.

The battery model in the library involves modeling a single
cell as an effective resistance capacitor [R-C] circuit. By taking
inputs of the number of cells in series and number of cells in
parallel of the battery, the behavior of the battery can be modeled
by appropriate scaling of the cell model.

The state of charge of a cell (SOC) is calculated as:

SOC = SOC0 −
∆Q
C

(6)

where, ∆Q [C] is the charge removed and C [C] is the capacity
of the cell. SOC0 [C] is the initial state of charge of the cell.

α

Fa

Fd

Fg

Ff

Figure 4. Free Body Diagram for Robotic platform

The model provides inputs for modeling the capacity of the cell,
resistances and capacitances as variables using parameters for
calendaric aging and aging due to cycling. The charge removed
from the battery is calculated as shown in Equation (7).

∆Q =
∫ t

0
I dt (7)

Various components are available to model different types of
loads in the circuit, which determines the current I [A]. For
the present study, the component SignalPower is used. This
component takes power draw as input and creates loads on the
battery accordingly.

3.4 Platform
The power consumption from the motion of Robotic plat-
form is estimated from first-principles based approach used by
(Gonullu, 2013). The free body diagram of the platform is
shown in Figure 4. The total force required for motion (Ft [N]) is
the sum of gravitational force acting along the incline (Fg [N]),
the drag force by the air (Fd [N]), the force to overcome friction
(Ff [N]) and the force required to produce acceleration (Fa [N]).

Ft = Fg +Fd +Ff +Fa (8)

Since the platform operates at speeds of around 1 ms−1, the
drag force (Fd) can be neglected. If m [kg] is the total mass of
RoCo, g [ms−2] the acceleration due to gravity, the remaining

20

22

24

26

28

30

0 50 100 150 200

V
o
lt

ag
e

[V
]

Time [min]
Simulation Experiment

Figure 5. Comparison of simulation results to experimental for
the battery discharge test

Duty Cycle for Low Energy Operation of a Personal Conditioning Device

794 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132791

forces can be calculated as:

Fg = mg sin(α) (9)
Ff = fr mg cos(α) (10)
Fa = ma (11)

Finally, the net power for the motion of the platform (P [W])
is obtained as:

P = Ft v (12)

where v [ms−1] is the velocity of the platform.
Typical variations in the motion are changes in velocity, mo-

tion over different surfaces and on surfaces with different in-
clinations. A TimeTable block for each of acceleration (a
[ms−2]), rolling friction resistance of surface (fr) and inclina-
tion angle of surface with horizontal (α) is used to capture these
variations in the motion.

3.5 Fan
The fan operates continuously during the op-
eration of RoCo and can be modeled by
Modelica.Blocks.Sources.Constant. The power
measured from the experiment is given as input. The power
draw from on-board electronics is also constant and is lumped
together with the fan power.

3.6 Nozzle
The stationary nozzle modeled in Figure 1 can be housed with
two motors to rotate it along horizontal and vertical direc-
tions. The power consumed by the rotary nozzle is taken
as the maximum power draw of two DC motors used for its
motion. The transient power draw from the nozzle is given
by Modelica.Blocks.Sources.TimeTable block. The
nozzle is assumed to move continuously for a period of 10 sec-
onds, for every 5-minute interval.

4 System Model
The screenshot for the system model is shown in Figure 3. The
inputs for various components are discussed in this section. The
displacement volume and RPM for the compressor are provided
from manufacturer’s data. The efficiency is adjusted to match
the power consumption measured from experiment (Du et al.,
2016). For pressure drop calculations, values are calculated us-
ing various correlations (McAdams et al., 1942; Friedel, 1979;
Lockhart and Martinelli, 1949; Müller-Steinhagen and Heck,
1986) and nominal values selected based on the range calculated
from them. For refrigerant heat transfer coefficient, single phase
heat transfer coefficients are evaluated using Dittus and Boel-
ter (1985) correlation. Two phase heat transfer coefficient in
the evaporator is evaluated using Shah (1982) correlation. Con-
denser consists of helical coils inside the PCM. The single phase
liquid only heat transfer coefficient is calculated using Schmidt
(1967) correlation to be used as input to Shah (2016) correlation
for two phase heat transfer coefficient calculation. The air side
heat transfer coefficients are calculated using Wang et al. (2000).

The battery used in the prototype shown in Figure 1 consists
of 21 cells, consisting of 3 parallel lines of 7 cells of Samsung
ICR18650-26F in series (7s3p). Its capacity is 7.8 Ah. Ob-
taining the input parameters for battery requires results from ex-
tensive battery testing carried out primarily to obtain parameters
for the model which were not available in open literature. To

0

1

2

0 20 40 60 80 100 120
Time [min] Robotic Platform

0

1

2

0 20 40 60 80 100 120
Time [min] Nozzle

0

1

0 20 40 60 80 100 120

Time [min] VCC

Figure 6. Typical operation of RoCo with VCC always ON

address this, the resistance and capacitance values for the model
are taken from Muenzel et al. (2015) for Sanyo UR18650FM
since it has similar cell capacity and initial internal impedance as
Samsung ICR18650-26F. These two parameters are most
important for modeling overall battery performance as can be
seen from results of Einhorn et al. (2011b). For accurate predic-
tion of battery performance, a battery discharge test is conducted
using a constant power drawing circuit. The power draw of this
circuit is selected to be similar to that of RoCo during a steady
operation. The SOC vs OCV (Open Circuit Voltage) table is
modified in the model to match the experimental discharge pro-
file. The comparison of voltage discharge profile of simulation
and experimental case is shown in Figure 5.

The weight of the system applied to the platform is taken to
be 30 kg. RoCo is assumed to be moving upwards a slope with
10° incline. The coefficient of rolling friction is taken to be 0.05
which applies for poor condition stone paving to represent the
worst conditions.

Two duty cycles are considered for the operation. The logic
for the operation of various power draw sources in a two hour
time duration is shown in Figure 6 and Figure 7. In the first
one, the fan and compressor continue to operate for the whole
duration (hereby referred to as Cycle 01, see Figure 6) while
in the second one, they are stopped when RoCo is in motion
(hereby referred to as Cycle 02, see Figure 7). This is done to
avoid peaks in the power draws for battery. In the simulation,
the compressor and fan are first turned off. The platform motion
is started after a delay of 1 second.

5 Results and Discussion
The model is simulated using Dymola 2017 with Radau IIa -
order 5 stiff solver. The tolerance selected for the solver is 1e-6.
The simulation time on a PC with 16 GB RAM, 64-bit Operating
System and 3.5 GHz is 1159 seconds.

Figure 8 and Figure 9 show comparison of the simulated re-
sults with the experimental data. It can be observed that the sim-
ulation predicts the experimental trends to a reasonable extent.

Session 10D: HVAC Systems

DOI
10.3384/ecp17132791

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

795

0

1

2

0 20 40 60 80 100 120
Time [min] Robotic Platform

0

1

2

0 20 40 60 80 100 120
Time [min] Nozzle

0

1

2

0 20 40 60 80 100 120
Time [min] VCC

Figure 7. RoCo Operation with VCC turned off during motion

0

400

800

1200

1600

2000

0 40 80 120 160

P
re

ss
u

re
 [

k
P

a]

Time [min]

Expt Discharge Sim Discharge Expt Suction Sim Suction

Figure 8. Pressures at suction and discharge of compressor

The experimental setup uses a variable expansion valve which
is modulated by an operator. The valve model used in the simu-
lation assumes fixed opening and constant discharge coefficient.
These two effects lead to the deviations in measured pressures
and mass flow rates in the initial part of the operation. Another
factor for the deviation of discharge pressure in the initial 20
minutes (Figure 8) is from the inaccuracy of the heat transfer
coefficient.

The dynamic modeling for cycle 02 is complicated due to
cycling. So to model it, the power consumption profile of
compressor is extracted from cycle 01 results. For the portion
where RoCo is in motion, the values are set to zero in the pro-
file. This load is now given as an input to the battery using a
Modelica.Blocks.Sources.TimeTable block.

The results of power consumption can be seen in Figure 10.
It can be observed that in cases where all the components oper-
ate power exceeds 100 W. However, by turning off the fan and
compressor when RoCo is in motion, it is possible to limit the
power draw to 70 W.

For improved results, a few parameters from the simulation
are calibrated for a better match with the experimental data (Du
et al., 2016). A fixed opening valve is used in the model. Its

0

50

100

150

200

250

300

0 40 80 120 160

C
ap

ac
it

y
 [

W
]

Time (min)

Expt Evaporator capacity Sim Evaporator Capacity

Expt Compressor power Sim Compressor power

Figure 9. Cooling capacity and power consumption of RoCo

0

20

40

60

80

100

120

0 20 40 60 80 100 120

P
o
w

er
 [

W
]

Time [min]

Cycle 01 Cycle 02

Figure 10. Power draw during the two operating cycles

opening and flow coefficient are adjusted using the experimental
refrigerant mass flow rate. The suction and discharge pressure
from simulation also need to be noted during the txv parameter
calibration. Since the RPM and displacement volume of com-
pressor are available from manufacturer’s data, the valve as the
only component to significantly affect the refrigerant mass flow
rate, permitting the aforementioned adjustment. Calibration is
also needed for the battery, compressor power and PCM, which
is already discussed in the respective sections.

6 Conclusions
A first principle based multi-physics model is developed to
model the behavior of a portable air conditioning device. The
model is used to capture power consumption of new version of
the device for two different operating cycles. Based on the re-
sults of power consumption, it is observed that turning off the
VCC during the motion can reduce peak load on the battery by
up to 34%.

7 Acknowledgment
This research was supported by the Advanced Research
Projects Agency - Energy (ARPA-E) with Award Number DE-
AR0000530. We thank the members of Center for Environmen-
tal Energy Engineering (CEEE) and team members of the Rov-
ing Comforter Project for their support.

References
Y. Cao and A. Faghri. A numerical analysis of phase-change

problems including natural convection. Journal of heat trans-
fer, 112(3):812–816, 1990. doi:10.1115/1.2910466.

Duty Cycle for Low Energy Operation of a Personal Conditioning Device

796 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132791

R. Dhumane, Y. Du, A. Mallow, K. Gluesenkemp, J. Ling,
V. Aute, and R. Radermacher. Transient Modeling of a
Thermosiphon based Air Conditioner with Compact Thermal
Storage: Modeling and Validation. In 16th International Re-
frigeration and Air Conditioning Conference, Purdue, Indi-
ana, USA, 2016.

F. W. Dittus and L. M. K. Boelter. Heat transfer in auto-
mobile radiators of the tubular type. International Com-
munications in Heat and Mass Transfer, 12(1):3–22, 1985.
doi:10.1016/0735-1933(85)90003-X.

Y. Du, J. Muehlbauer, J. Ling, V. Aute, Y. Hwang, and R. Ra-
dermacher. Rechargeable Personal Air Conditioning Device.
In ASME 2016 10th International Conference on Energy Sus-
tainability collocated with the ASME 2016 Power Conference
and the ASME 2016 14th International Conference on Fuel
Cell Science, Engineering and Technology. American Society
of Mechanical Engineers, 2016. doi:10.1115/ES2016-59253.

M. Einhorn, F. V. Conte, C. Kral, C. Niklas, H. Popp, and
J. Fleig. A modelica library for simulation of electric
energy storages. In Proceedings of the 8th International
Modelica Conference; March 20th-22nd; Technical Uni-
veristy; Dresden; Germany, number 63, pages 436–445.
Linköping University Electronic Press, 2011a. ISBN 1650-
3740. doi:10.3384/ecp11063436.

M. Einhorn, V. Conte, C. Kral, and J. Fleig. Comparison of
electrical battery models using a numerically optimized pa-
rameterization method. In 2011 IEEE Vehicle Power and
Propulsion Conference, pages 1–7. IEEE, 2011b. ISBN
1612842488. doi:10.1109/VPPC.2011.6043060.

L. Friedel. Improved friction pressure drop correlations for hor-
izontal and vertical two-phase pipe flow. In European two-
phase flow group meeting, Paper E, volume 2, page 1979,
1979.

M. K. Gonullu. Development of a mobile robot to be used in mo-
bile robot research. Master’s thesis, Department of Mechani-
cal Engineering, Middle East Technical University, 2 2013.

T. Hoyt, E. Arens, and H. Zhang. Extending air temperature set-
points: Simulated energy savings and design considerations
for new and retrofit buildings. Building and Environment, 88:
89–96, 2015. doi:10.1016/j.buildenv.2014.09.010.

I. Intergovernmental Panel on Climate Change Fourth Assess-
ment. Contribution of Working Groups I, II and III to the
Fourth Assessment Report of the Intergovernmental Panel
on Climate Change, 2007. ISSN 14764687. URL http:
//www.ipcc.ch/publications{_}and{_}data/
ar4/syr/en/spms2.html{#}footnote5.

R. W. Lockhart and R. C. Martinelli. Proposed correlation of
data for isothermal two-phase, two-component flow in pipes.
Chem. Eng. Prog, 45(1):39–48, 1949.

J. Marco, N. Kumari, W. D. Widanage, and P. Jones. A cell-
in-the-loop approach to systems modelling and simulation of
energy storage systems. Energies, 8(8):8244–8262, 2015.
doi:10.1049/cp.2011.0421.

W. H. McAdams, W. K. Woods, and L. C. Heroman. Vaporiza-
tion inside horizontal tubes-II-benzene-oil mixtures. Trans.
ASME, 64(3):193–200, 1942.

V. Muenzel, A. F. Hollenkamp, A. I. Bhatt, J. de Hoog,
M. Brazil, D. A. Thomas, and I. Mareels. A Compara-
tive Testing Study of Commercial 18650-Format Lithium-
Ion Battery Cells. Journal of The Electrochemical So-
ciety, 162(8):A1592–A1600, 2015. ISSN 0013-4651.
doi:10.1149/2.0721508jes.

H. Müller-Steinhagen and K. Heck. A simple friction pres-
sure drop correlation for two-phase flow in pipes. Chemi-
cal Engineering and Processing: Process Intensification, 20
(6):297–308, 1986. ISSN 0255-2701. doi:10.1016/0255-
2701(86)80008-3.

D. Pal and Y. K. Joshi. Melting in a side heated tall enclosure by
a uniformly dissipating heat source. International Journal of
Heat and Mass Transfer, 44(2):375–387, 2001. ISSN 0017-
9310. doi:10.1016/S0017-9310(00)00116-2.

H. Qiao, V. Aute, and R. Radermacher. Transient modeling of
a flash tank vapor injection heat pump system–part I: model
development. International journal of refrigeration, 49:169–
182, 2015. doi:10.1016/j.ijrefrig.2014.06.019.

E. F. Schmidt. Wärmeübergang und Druckverlust in
rohrschlangen. Chemie Ingenieur Technik, 39(13):781–789,
1967. doi:10.1002/cite.330391302.

M. M. Shah. Chart correlation for saturated boiling heat transfer:
equations and further study. ASHRAE Trans.;(United States),
88(CONF-820112-), 1982.

M. M. Shah. Comprehensive correlations for heat transfer dur-
ing condensation in conventional and mini/micro channels in
all orientations. International journal of refrigeration, 67:
22–41, 2016. doi:10.1016/j.ijrefrig.2016.03.014.

E. M. Sparrow, S. V. Patankar, and S. Ramadhyani. Analysis
of melting in the presence of natural convection in the melt
region. Journal of Heat Transfer, 99(4):520–526, 1977. ISSN
0022-1481. doi:10.1115/1.3450736.

United States Department of Energy. Energy Efficiency and Re-
newable Energy. 2011.

M. Veselý and W. Zeiler. Personalized conditioning and its
impact on thermal comfort and energy performance – A re-
view. Renewable and Sustainable Energy Reviews, 34:401–
408, 2014. doi:10.1016/j.rser.2014.03.024.

C.-C. Wang, K.-Y. Chi, and C.-J. Chang. Heat transfer and
friction characteristics of plain fin-and-tube heat exchang-
ers, part II: Correlation. International Journal of heat and
mass transfer, 43(15):2693–2700, 2000. doi:10.1016/s0017-
9310(99)00333-6.

S. Wang, A. Faghri, and T. L. Bergman. A comprehensive nu-
merical model for melting with natural convection. Inter-
national Journal of heat and mass transfer, 53(9-10):1986–
2000, 2010. doi:10.1016/j.ijheatmasstransfer.2009.12.057.

Session 10D: HVAC Systems

DOI
10.3384/ecp17132791

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

797

H. Zhang, E. Arens, and W. Pasut. Air temperature
thresholds for indoor comfort and perceived air quality.
Building Research & Information, 39(2):134–144, 2011.
doi:10.1080/09613218.2011.552703.

H. Zhang, E. Arens, and Y. Zhai. A review of the corrective
power of personal comfort systems in non-neutral ambient
environments. Building and Environment, 91:15–41, 2015.
doi:10.1016/j.buildenv.2015.03.013.

Duty Cycle for Low Energy Operation of a Personal Conditioning Device

798 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132791

A Platform for the Agent-based Control of HVAC Systems

Roozbeh Sangi Felix Bünning Johannes Fütterer Dirk Müller

Institute for Energy Efficient Buildings and Indoor Climate, E.ON Energy Research Center, RWTH Aachen
University, Germany, rsangi@eonerc.rwth-aachen.de

Abstract
Attempts to develop efficient and environmentally friendly
building energy systems have led to modern complex en-
ergy concepts for buildings, which have consequently ini-
tiated a need for new control strategies for them. Multi-
agent control, which is known with other names like
agent-based control, offers a promising solution to this
challenge. To the knowledge of the authors, there are 96
platforms for multi-agent systems in different program-
ming languages available, which are mostly java-based
and mainly used in logistic applications, but there is no
platform in the modeling language Modelica, which is
widely used for simulation of dynamic systems, especially
buildings performance simulation. This lack motivated
the authors to develop a platform for agent-based control
of HAVC systems. The platform eliminates the depen-
dency of models developed in Modelica on an extra in-
terface, which is usually required to couple the models
to the platforms written in any programming languages
other than Modelica. This paper presents the structure
of the platform and explains how the agents’ communi-
cations work. The flexibility of the optimization objective
is ensured through the definition of readily interchange-
able cost functions. The applicability and functionality of
the platform are proved by applying the platform in the
control of building energy systems examples.
Keywords: Agent-based control, Building energy systems,
Control, HVAC, Modelica, Multi-Agent System

1 Introduction
The amount of energy used for heating and cooling in
the building sector is about one third of the total energy
consumed in the world. The finiteness of natural energy
resources on the one hand, and the ever-increasing de-
mand for energy in the world on the other hand, neces-
sitate the development of systematic approaches for im-
proving the efficiency of building energy systems as well
as minimizing the usage of primary energy resources and
the damaging impacts and harmful effects on the environ-
ment (Sangi et al., 2014). Taking into account that renew-
able energy sources for the building sector such as photo-
voltaics, heat pumps and combined-heat-and-power units
are becoming profitable, such components are installed in
private and commercial buildings with increasing quantity.
Often more than one of such components are operated in
parallel to increase cost effectiveness and the security of

supply.
Consequently, the complexity of building energy sys-

tems has severely increased in the recent past. There-
with the need for controlling concepts that can handle
such complexity has arisen. Besides concepts like Model-
Predictive control and Artificial Neural Networks (Afram
and Janabi-Sharifi, 2014), the concept of agent-based
control realized through Multi-Agent Systems (MAS)
promises good results in the area of HVAC control (Hu-
ber et al., 2015).

Multi-Agent Systems were successfully applied in the
areas of logistics and telecommunication in the past
(Verein Deutscher Ingenieure, 2010). Inherently this con-
cept is suited to solve complex control problems and is
therefore predestined for the control of complex energy
systems. For the development of such systems, tools for
multiple programming languages and programming en-
vironments are available (Allan, 2010), but not for the
object-oriented language Modelica.

Modelica is a modelling language commonly used for
the dynamic simulation of thermo-hydraulic systems. It
is receiving growing attention in the use of modeling and
simulation of building energy systems, as recent studies
indicate: In (Wetter et al., 2014) a Modelica library for the
simulation of building energy systems is introduced. (Ali
et al., 2013), (Perera et al., 2016), (Sangi et al., 2016) and
(Fuchs et al., 2016) use Modelica in order to model, sim-
ulate and investigate in building energy systems as well
as district heating systems. MAS will play an important
role in the control of future building energy systems (see
2.2). Consequently, a Modelica library for MAS will be
needed.

In the course of this work a library for the agent-based
control of building energy systems in the modeling lan-
guage Modelica is developed, implemented and finally
validated in a case study. The library allows "plug-and-
play" implementation of MAS into any model of a build-
ing energy system in the Modelica environment, thus al-
lowing the investigation in agent-based building energy
system control through dynamic simulation. It depicts a
solution that through UDP/IP-communication can be run
on distributed machines, enabling the user to integrate
both software and hardware into the optimization prob-
lem. Furthermore, the cost functions can be changed with-
out interfering with the agent system leading to a flexible
solution in which the individual user can optimize their en-
ergy system for an individual optimization goal with only

DOI
10.3384/ecp17132799

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

799

minor engineering effort.
In the following an overview on multi-agent system is

presented and the system structure is described. The de-
veloped library for agent-based control is also introduced
following by an example that demonstrates the application
of the library in building energy systems.

2 Overview on Multi-Agent Systems
2.1 The Concept of Agents and Multi-Agent

Systems
Agents The concept of agent-based control is a con-
cept which allows to control complex systems by splitting
the main objective of the system into smaller objectives
which so-called agents try to obtain by interacting with
each other. Although the concept is widely spread in the
scientific area, especially in the field of computer science
and information technologies, there is no unified defini-
tion of the term agent.

After the term first appeared in the context of a dis-
sertation in 1985, in which the term agent is connected
with the attributes of autonomy and problem-solving be-
haviour (Rosenschein, 1985), further attributes such as
proactivity and the ability to work towards higher goals
(Wernstedt, 2005), the ability to perceive the changes of
their surroundings and to react on them (Divenyi, 2013),
the ability of rational calculation and organization of ac-
tions to achieve higher aims as well as permanent active-
ness (Kirn, 2002), socialness and truthfulness (Bellifem-
ine et al., 2007) were defined by various authors.

In VDI 2653 agents are defined as encapsulated enti-
ties, hardware or software, with specified objectives. An
agent attempts to achieve these objectives through its au-
tonomous behaviour, in interacting with other agents and
their surrounding. In addition, several characteristics such
as autonomy, scope of action, interaction, encapsulation,
persistence, goal-orientation and reactivity are defined.

Multi-Agent Systems VDI 2653 describes Multi-Agent
Systems (MAS) as a set of agents interacting to fulfil one
or more tasks. Bellifemine describes MAS as entities that
can model complex systems and introduces the possibil-
ity of agents having common or conflicting goals. These
agents are able to interact with each other both indirectly,
by acting on the environment, or directly via communica-
tion and negotiation. Depending on their task they may
cooperate to reach a common goal or compete to achieve
their own aims. (Bellifemine et al., 2007)

An MAS can be used to control complex systems. One
advantage over a holistic control concept is the possibility
of splitting the often very complex control problem into
sub-problems and -tasks and dividing them between the
agents. This approach is beneficial for the developer as the
analysis of those sub-problems is more accessible than the
analysis of the holistic problem and thus also the imple-
mentation of the systems solving these problems. Further-
more, an agent-based approach has the advantage of being

more easily adjustable during the runtime of the system as
new agents can be implemented and added to the system.

2.2 Use of Multi-Agent Systems in energy-
system control

MAS have received growing recognition in various fields
over the past few years. Beginning in the fields of
computer science, such as Human Computer Interaction,
where agents help the user depending on their already ex-
isting experience with the software, or Information Re-
trieval, where agents search the Internet for specific in-
formation for their user, now agent-based systems have
also reached the field of logistics and telecommunication
(Verein Deutscher Ingenieure, 2010). As a consequence of
growing complexity in the various fields of science, MAS
also receive growing attention in the fields of chemistry,
biology, physics, sociology and economics (Kirn, 2002).
In recent years the field of energy generation and distri-
bution has become much more complex due to the in-
crease of renewable energies and the concept of smart-
and micro-grids. MAS depict a promising technology to
control the described energy systems.

Regarding the use of MAS to control classical smart-
and micro-grids, i.e. systems which generate and dis-
tribute electricity, a lot of research has been conducted (for
example (Jiang, 2006), (Kok et al., 2012), (Kuznetsova
et al., 2014), (Ye et al., 2015), (Karavas et al., 2015),
(Khan et al., 2016), (Radhakrishnan and Srinivasan,
2016), (Rahman et al., 2016), (Xydas et al., 2016), (Ansari
et al., 2016)). However, also the use of MAS for complex
energy systems for the generation and distribution of heat
or cold, such as building energy systems, HVAC systems
and district heating grids, has recently gained growing at-
tention.

In (Huberman and Clearwater, 1995) a market-based
MAS is used to distribute warm and cold air in an office
building. The system uses a double-blind auction proce-
dure in which agents bid to buy and sell warm and cold air.
The auction is managed by a central auctioneer. Experi-
ments with a real office building show an even temperature
distribution in the building without leading to excessive
actuator movement.

(Qiao et al., 2006) introduces an MAS which combines
the control of a building energy system with user interac-
tion. The system is built of personal agents, local agents
and central agents. Personal agents act as teachable assis-
tants which carry personal user information, such as pre-
ferred room temperature, humidity and the current loca-
tion of the user. Local agents act as mediators, policy en-
forcers and information providers. The tasks of the central
agent are decision aggregation and interfacing services.

A similar system based on personal agents, local agents
and central agents is used in (Yang and Wang, 2013). Per-
sonal agents are developed to predict user preferences by
learning their behaviours. Local agents act as mediators,
information providers, decision makers and control execu-
tors while the central agent facilitates collaboration be-

A Platform for the Agent-based Control of HVAC Systems

800 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132799

tween the local agents while regarding the overall sys-
tem goal. The functionality of the system regarding effec-
tive control of the building energy system while satisfying
occupants’ demands is proven with simulations and case
studies.

In (Wang et al., 2011) a system using only central and
local agents is used. The central agent contains the main
intelligence of the system. It calculates set point of tem-
perature, illumination and humidity based on user prefer-
ences and outdoor information using particle swarm opti-
mization. The local agents use fuzzy controllers to control
the actuators in order to reach said set points.

In (Wang et al., 2012) an indoor energy and comfort
management system based on information fusion and a
multi-agent control system is proposed. A multi-agent
building control system with particle swarm optimization
is built to achieve the smart building control goal, which
is to maximize the comfort index using minimum power
consumption.

(Davidsson and Boman, 2000) uses an MAS consisting
of personal comfort agents, room agents, environmental
parameter agents and badge system agents to control tem-
perature and illumination in a building. Following simula-
tion results, the system is able to reduce energy use while
maintaining user satisfaction.

In (Mokhtar et al., 2013) an already existing MAS
for building heat distribution control is updated with an
ARTMAP, a type of artificial neural network with learning
capabilities. Simulation results show the proposed intelli-
gent MAS is able to maximize the use of a ground source
heat pump effectively by profiling, predicting and coordi-
nating its usage with other energy resources.

(Mokhtar et al., 2014) uses a similar MAS based on
ARTMAP to control a building energy system based on
learned user preferences. Simulation results show that the
system provides better energy control and thermal comfort
management than a reference rule-based MAS.

In (Hurtado et al., 2015) an agent-based approach to
optimize the interaction of smart-grids and building en-
ergy systems is developed. Particle swarm optimization
is used to maximize comfort and energy efficiency. It is
shown that the operation of the building energy system
with the MAS allows the support of the voltage control in
the smart-grid.

(van Pruissen et al., 2014) presents a solution based on
electronic market principles called HeatMatcher. Heat-
Matcher is a P2P system based on PowerMatcher (Kok
et al., 2012), which is a general purpose coordination
mechanism for balancing supply and demand in electric-
ity networks. The system features trading of heat on two
different time scales depending on the inertia of the com-
ponents involved in trading. The MAS is tested with a
floor heating system connected to a heat pump and a boiler
and shows more energy efficient operation than a refer-
ence centralized controller.

In (Huber et al., 2015) an MAS based on consumer
agents and supply agents is introduced. Consumer agents

recognize heating or cooling demands and request them
from supply agents. Supply agents estimate the corre-
sponding costs. The control of the energy system is gov-
erned by negotiation between those agents. The system is
tested with a hardware-in-the-loop test bench consisting of
a central air handling unit and four rooms. Results show
basic functionality of the system.

The developed MAS within the course of this research
offers a flexible approach to the control of building-energy
systems. The MAS can, without any adaptation necessary,
be applied to any building energy system in the simulation
environment of Modelica. With only minor effort it can
also be used to control any energy systems, e.g. electrical
grids or district heating networks. Furthermore, the MAS
can also be used for real life applications beyond the scope
of simulation thanks to agent communication via UDP/IP
network protocol with only minor adaptation to the real
life building energy system necessary. Moreover, the sep-
aration of agent logic and cost functions allows changing
of the optimization goal for each individual user without
interfering with the agent system and empowers other de-
velopers to design own cost functions for their individual
optimization goal. To the best of the authors knowledge,
no other MAS offers this functionality.

3 System architecture
In the following sections the roles of different types of
agents, the system architecture, and the communication
architecture of the Modelica library will be discussed.

Room Agent Room Agent Consumer Agent

Broker

Producer Agent Intermediate Agent Producer Agent

Broker

Producer Agent Producer Agent

Figure 1. Structure of the Multi-Agent System

Session 10D: HVAC Systems

DOI
10.3384/ecp17132799

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

801

Room Agent

Broker

(for the room)

Intermediate Agent

(heating register)

Intermediate Agent

(cooling register)

Broker

(warm cycle)

Broker

(cold cycle)

Producer Agent

(heat pump)

Producer Agent

(glycol cooler)

Producer Agent

(boiler)

Room Agent

Broker

(warm cycle)

Intermediate Agent

(heating exchanger)

Producer Agent

(heat pump)

Broker

(hot cycle)

Producer Agent

(CHP unit)

Producer Agent

(boiler)

Figure 2. Cascading of the agent system with the help of the intermediate agent

3.1 Fundamentals
The agents are designed as state machines, which is a type
of event discrete system, meaning that one agent can take
on one state and change to a different state when a tran-
sition condition becomes true. For the implementation of
the state machines, the Modelica StateGraph library (Otter
et al., 2005) was used.

The contentual agent communication is based on
the FIPA ACL Message Structure Specification (FIPA,
2002a) and FIPA Communicative Act Library Specifica-
tion (FIPA, 2002b), which depict a common standard for
agent communication. Physical agent communication is
established via UDP/IP standard under the use of the Mod-
elica DeviceDrivers library (Thiele and Bellmann, 2015).
The UDP/IP standard allows communication outside of
the simulation environment of Modelica, giving the op-
portunity to operate agents on different machines and po-
tentially hardware-in-the-loop simulation. As UDP does
not guarantee message delivery, measurements to guaran-
tee delivery are implemented on the application level.

3.2 MAS structure
Figure 1 shows the structure of the MAS. The system is a
partially centralized market-based approach in which ca-
pacity adjustments of heat and cold are traded. There are
four different types of agents in the system: room/con-
sumer agent, producer agent, intermediate agent and bro-
ker.

Room/consumer agents represent entities in the system
which require heat or cold for their proper functioning
within a building energy system, for example rooms, stor-
age tanks or lab equipment which requires process heat.
Their task is to estimate a need for heat or cold and to
make a corresponding request to the broker. Room agents

use PID controllers to calculate a capacity request from a
deviation between the current room temperature and the
set point. The set point and an allowed deviation from the
set point can be set for each individual room agent in the
system, allowing the occupants of the room to adjust the
system according to their needs. Consumer agents can use
a variety of strategies to determine the capacity request.

Producer agents represent entities in the system which
supply heat or cold, for example boilers, CHP units, heat
pumps or chillers. Their task is to sell heat or cold to the
broker and to adjust capacity when a deal was successfully
made. In order to make an offer, they use a cost-function
which matches a capacity adjustment with a correspond-
ing price. The cost function is exchangeable, rendering the
optimization of the system performance towards different
optimization goals possible.

Intermediate agents are a hybrid of producer agents and
consumer agents. They act as a consumer in one market
and as a producer in another market. They can represent
heat exchangers in building energy systems. With the help
of the Intermediate agent, cascaded energy systems can be
controlled with the MAS system.

The broker is a purely virtual agent and is not connected
to any physical entity of the building energy system. It fa-
cilitates the trade of heat and cold by collecting requests
from room/consumer agents and asking for offers from
Producer agents. After collecting all offers, it chooses the
most cost effective supplier and requests a capacity adjust-
ment.

3.3 Trading procedure
In the following, the working principle of the whole con-
trolling process will be explained. The room agent notices
a temperature which is out of a certain range around the set

A Platform for the Agent-based Control of HVAC Systems

802 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132799

temperature and decides to take action. It sends a heating
or cooling request to the broker asking for a certain surplus
of heat or cold during a specified period of time. The bro-
ker waits for requests of other rooms for a certain time to
bundle individual requests to one big request. When a spe-
cific waiting time for more requests has expired, the broker
calls for proposals from each of the producer agents. The
producer agents check if they can supply the requested
amount of heat or cold and calculate a corresponding price
with the help of a cost function. Afterwards, all producer
agents send either an offer or a refusal to the broker. Based
on these proposals the broker chooses the best offers and
calculates a price for each request from the room agents.
This information is sent to the room agents which con-
firm their request. Based on these confirmed requests, the
broker then decides which offer is best-suited for the cor-
responding request and sends out "accept offer" or "reject
offer" messages to the producer agents. Producer agents
that received "accept offer" messages adjust their capacity
accordingly. The communication procedure between the
broker and the producer agents follows the FIPA Contract
Net Interaction Protocol specification (FIPA, 2002c).

The intermediate agent is important for the flexible use
of the agent system. It allows the cascading of the agents
and the interconnection of different heating circuits. In the
case of Figure 1, the Intermediate agent communicates as
a producer to the lower broker and as a consumer to the
upper broker. Thereby the two producers in the upper cir-
cle can be addressed although they are not part of the same
heating circuit. Two examples of the use of the interme-
diate agent are shown in Figure 2. On the left-hand side
of the figure an HVAC system is described in which each
room has a heating and a cooling register. The broker me-
diates between the room agent and the two registers. As
the registers need to be supplied with cold or heat them-
selves, they are each represented by an intermediate agent,
that ensures their supply by buying heat or cold from su-
perior markets. On the right-hand side an HVAC system
is described in which each room has only one heating de-
vice and no cooling device (common European residential
building). There are, however, two temperature circuits
with different temperature levels. These circuits surround
a heat exchanger represented by an intermediate agent. In
case of capacity shortage in the warm temperature circuit,
the hot temperature circuit can act as a heat producer by
transferring heat via the heat exchanger.

3.4 Cost functions
The cost functions are used by the producer agents to cal-
culate a corresponding price for a requested capacity ad-
justment. In the Modelica Library, producer agents and
cost functions are separate components, which means that
the cost functions are easily exchangeable, depending on
the optimization goal of the MAS. In the library cost func-
tions depending on fuel cost, exergy loss and primary ex-
ergy loss are available. For demonstration purposes fuel
cost functions are used in the following as these depict

the simplest form of available cost functions. The func-
tionality of the exergy cost functions has been proven in
(Bünning, 2015).

In the case of fuel cost functions, the cost per hour of
operation of a heat/cold producing entity is calculated as
following:

C(cap)
h

=
p
η
∗ cap (1)

In which cap represents the capacity, C(cap)
h denotes the

cost per hour as a function of the capacity, p stands for
the price of the fuel per kWh and η for a representative
efficiency factor of the device. The costs for a capacity
adjustment follows:

∆C
h

=
C(capnew)

h
− C(capcurrent)

h

=
p
η
∗ (capnew − capcurrent)

(2)

With the help of the calculated ∆C
h , producer agents de-

termine the costs of a capacity adjustment and make an
offer to the broker.

4 Modelica HVAC Agent-based Con-
trol Library

In the previous sections the development of communica-
tion and logic concepts, agent behaviour and cost func-
tions have been illustrated. These aspects are combined
and implemented in the Modelica programming language
resulting in the Modelica HVAC Agent Library.

Figure 3. Structure of the HVAC Agent-based Control Library

Session 10D: HVAC Systems

DOI
10.3384/ecp17132799

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

803

Figure 3 shows the structure of the library. It features
six different agents for the creation of MAS to control
building energy systems. For the producer agents, cost
functions with different calculation methods based on fuel
costs, exergy and primary exergy are available. The fuel
cost functions are applied within this study. The other cost
functions have been defined in order to be used in an ongo-
ing research project which aims at developing an exergy-
based control strategy for building energy systems. Fur-
thermore, the library offers an example agent system with
two room agents, one broker and two producer agents,
which will be discussed in the following section. Each
model of the library is documented regarding its use and
function and has its own icon.

Besides the HVAC related agents, agents implementing
a book trading example in reference to (Caire, 2009) are
included as well as examples to demonstrate agent com-
munication between two different machines.

5 Case study
A scheme of the system under investigation is shown
in Figure 4. The system consists of two rooms, each
equipped with a convective radiator. The rooms are con-
nected to weather data from the 2012 Test Reference Year.
Furthermore, the system features two heat supplies, a gas
boiler and an electric heating rod. The heating rod can be
run on electricity from the grid or on electricity provided
by an additional PV panel. The gas boiler has a maximum
capacity of 3 kW and the heating rod of 2 kW.

Both rooms are equipped with a room agent. Both heat
sources are equipped with producer agents. To complete
the MAS, a broker is used. As cost functions, the fuel
cost functions are used with parameters shown in Table 1.
Additionally, the cost function of the heating rod is con-
nected to a sensor which measures solar radiation. When
solar radiation reaches a value of 310 W

m2 , it is assumed
that sufficient electricity is provided by the PV panel and
therefore considered free of charge. Consequently the fuel
price for the heating rod becomes zero.

Table 1. Cost function parameters

p [Euro
kWh] η [−]

boiler 0.08 0.80
heating rod (grid) 0.35 1.00
heating rod (PV) 0.00 1.00

Besides the control via the agent system, each thermal
zone is equipped with a PID controller and a valve, which
allow the control of the room temperature to a limited de-
gree.

All physical components of the system are taken from
the AixLib library (RWTH-EBC, 2015). The simulation
is executed on Dymola 2016 (Dassault Systemes, 2016).

Room 1 Room 2

Boiler Heating Rod

Figure 4. Example heating system with agents

6 Results and discussion
The system was simulated for 28 days with the weather
data of the month of February of the 2012 Test Reference
Year. Figure 5 shows the behaviour of the outside air tem-
perature during the simulated time period. It can be seen
that the temperature ranges from +15◦C to -8◦C. The data
therefore offers situations of both high and low heating
requirement for the simulation.

Figure 6 shows the trend of the air temperature in both
rooms. The set point for the room temperature is 20◦C. It
can be seen that the temperatures are kept at a satisfactory
level between 19.5◦C and 20.5◦C during the vast majority
of time. Between these temperatures, the control of the
room temperature is governed by the PID controllers and
valves.

As soon as the room temperature reaches 19.5◦C or
20.5◦, the system leaves the control range of the PID con-
trollers and the room agents become active. In case of
19.5◦C further heat is requested by the agents, in case of
20.5◦C a reduction of heat supply is requested. It can be
ascertained that the reaction time of the agent system is
sufficient as the system rarely crosses the threshold tem-
peratures.

Figure 8 shows the capacities of the boiler and the heat-
ing rod, which are solely controlled by the MAS. It can

A Platform for the Agent-based Control of HVAC Systems

804 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132799

0 5 10 15 20 25
−10

−5

0

5

10

15

20

Time [d]

T
O

u
ts

id
e
 [
°C

]

Figure 5. Outside air temperatures

0 5 10 15 20 25
19

19.5

20

20.5

21

Time [d]

T
ro

o
m

 [
°C

]

Room 1 Room 2

Figure 6. Room temperatures

4 5 6 7
0

0.5

1

Time [d]

P
V

 A
c
ti
v
e
 [
B

o
o
le

a
n
]

Figure 7. Activeness of PV panel

be seen that the capacities vary based on the current heat
demand of the system. The figure also shows that the heat
supplies are used less during the first third of the month,
when the outside air temperature is generally higher. It
can further be seen that the boiler holds the greater share
of both heat supplies as it is mostly more cost effective.

Figure 9 shows a detailed segment of the heat supply
capacities between day 4 and 7. Figure 7 shows the cor-
responding activeness of the PV panel which determines
whether the electricity for the heating rod is considered
free of charge. A comparison of the figures shows the
effect of the different electricity prices on the MAS be-
haviour. When the heat supplies first become active be-
tween day 4 and 5, it can be seen that the heating rod is
only used once the PV panel is active. In the middle of
day 5 the heating rod is switched off as the electricity is
not free of charge any more. Shortly afterwards, the heat

supply is increased by the boiler as the PV is no longer
active. When the boiler reaches its maximum capacity in
the first third of day six, the heating rod is switched on,
although the PV is inactive, as the boiler is not able to sup-
ply more heat. It can further be seen that the other active
PV times, apart from the long period on days 4 and 5, are
not used to the fullest extent as no heat requests are made
during these times. Agents used to specifically survey PV
activeness could be introduced here.

The functionality of the system was validated in the
simulation. However, the MAS can also be used to con-
trol real life applications because the agents communicate
to each other beyond the border of the simulation software
framework as they use a UDP/IP protocol to communicate
via an Ethernet network. An example for this function-
ality is provided in the library. It shows the user how to
run an MAS on distributed machines. Such a distributed

Session 10D: HVAC Systems

DOI
10.3384/ecp17132799

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

805

0 5 10 15 20 25
0

1

2

3

Time [d]

C
a
p
a
c
it
y
 [
k
W

]

Boiler Heating rod

Figure 8. Heat supply capacities

4 5 6 7
0

1

2

3

Time [d]

C
a
p
a
c
it
y
 [
k
W

]

Boiler Heating rod

Figure 9. Detailed heat supply capacities

MAS offers much higher reliability compared to a central
control as the system is still functional in case an indi-
vidual producer or consumer agent fails. This means that
each entity in the energy system (e.g room, boiler, etc.)
is connected to one computer on which the corresponding
agent is running. Communication between agent and de-
vice needs to be developed individually as each building
energy system device has a different software interface. If
another entity is added to the system, it can be integrated
into the building energy system control with minimal ef-
fort by setting it up with its own agent and introducing
the agent to the broker. The concept is therefore highly
flexible and convenient.

The results show that the MAS is able to maintain a
system variable within margin while reducing the effort
in accordance to an optimization goal (in this case fuel
price). Although the system is developed and tested for
building energy simulation, it can be used and extended
to optimize any system in which forms of energy are dis-
tributed between components, such as chemical processes,
district heating systems and electricity smart grids. The in-
terchangeability of the cost function supports this diverse
application as any developer can set up own cost functions
for their needed domain.

7 Conclusion
A Modelica library for the agent based control of building
energy systems was introduced. The structure of the
Multi-Agent System was explained and the roles of
different types of agents were discussed. Furthermore,

the trading procedures of capacity adjustments and an
example of a type of cost function were introduced. The
MAS was tested with an example of a building energy
system in the simulation environment of Dymola. The
results have shown that the system is capable of keeping
a satisfactory room temperature while selecting the heat
supply with the most cost effective way of generating
heat. The library provides a flexible MAS that can be
applied to multiple domains in the energy field due to
exchangeable cost functions and that requires minimal
implementation effort. Moreover, UDP/IP communica-
tion between agents software environment allows real
life hardware application in the form of a distributed
agent system. Future research will be dedicated to the
development of model-predictive cost functions and the
application of the MAS to smart district heating grids.

Acknowledgement
The authors gratefully acknowledge the financial
support provided by the BMWi (Federal Ministry for
Economic Affairs and Energy), Germany, promotional
references 03ET1218A.

References
Afram, A. and Janabi-Sharifi, F. (2014). Theory and applications

of hvac control systems âĂŞ a review of model predictive
control (mpc). Building and Environment, 72:343–355.

Ali, M., Vukovic, V., Sahir, M. H., and Fontanella, G. (2013).
Energy analysis of chilled water system configurations us-
ing simulation-based optimization. Energy and Buildings,
59:111–122.

A Platform for the Agent-based Control of HVAC Systems

806 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132799

Allan, R. (2010). Survey of agent based modelling and simula-
tion tools. Technical report, Science and Technology Facili-
ties Council.

Ansari, J., Gholami, A., and Kazemi, A. (2016). Multi-agent
systems for reactive power control in smart grids. Inter-
national Journal of Electrical Power & Energy Systems,
83:411–425.

Bellifemine, F. L., Caire, G., and Greenwood, D. (2007). Devel-
oping Multi-Agent Systems with JADE. Wiley Series in Agent
Technology. Wiley.

Bünning, F. (2015). Development of a modelica-library for the
agent-based control of hvac systems. Bachelorthesis, RWTH
Aachen University.

Caire, G. (2009). Jade tutorial - jade programming for beginners.
TILAB.

Dassault Systemes (2016). Dy-
mola. http://www.3ds.com/products-
services/catia/products/dymola.

Davidsson, P. and Boman, M. (2000). Saving energy and pro-
viding value added services in intelligent buildings: A mas
approach. In Agent Systems, Mobile Agents, and Applica-
tions, pages 166–177. Springer.

Divenyi, D. (2013). Agent-based modeling of distributed gen-
eration in power system control. IEEE Transactions on Sus-
tainable Energy, 4:886–889.

FIPA (2002a). Fipa acl message structure specification.
FIPA (2002b). Fipa communicative act library specification.
FIPA (2002c). Fipa contract net interaction protocol specifica-

tion.
Fuchs, M., Teichmann, J., Lauster, M., Remmen, P., Streblow,

R., and Müller, D. (2016). Workflow automation for com-
bined modeling of buildings and district energy systems. En-
ergy.

Huber, M., Brust, S., Schütz, T., Constantin, A., Streblow, R.,
and Müller, D. (2015). Purely agent based control of building
energy supply systems. In ECOS - International Conference
on Efficiency, Cost, Optimization, Simulation and Environ-
mental Impact of Energy Systems.

Huberman, B. A. and Clearwater, S. H. (1995). A multi-agent
system for controlling building environments. In ICMAS,
pages 171–176.

Hurtado, L., Nguyen, P., and Kling, W. (2015). Smart grid
and smart building inter-operation using agent-based parti-
cle swarm optimization. Sustainable Energy, Grids and Net-
works, 2:32–40.

Jiang, Z. (2006). Agent-based control framework for distributed
energy resources microgrids. In IEEE/WIC/ACM Interna-
tional Conference on Intelligent Agent Technology.

Karavas, C.-S., Kyriakarakos, G., Arvanitis, K. G., and Pa-
padakis, G. (2015). A multi-agent decentralized energy man-
agement system based on distributed intelligence for the de-
sign and control of autonomous polygeneration microgrids.
Energy Conversion and Management, 103:166–179.

Khan, M. R. B., Jidin, R., and Pasupuleti, J. (2016). Multi-
agent based distributed control architecture for microgrid en-
ergy management and optimization. Energy Conversion and
Management, 112:288–307.

Kirn, S. (2002). Kooperierende intelligente softwareagenten.

Wirtschaftsinformatik, 44(1):53–63.
Kok, K., Roossien, B., MacDougall, P., van Pruissen, O.,

Venekamp, G., Kamphuis, R., Laarakkers, J., and Warmer,
C. (2012). Dynamic pricing by scalable energy manage-
ment systemsâĂŤfield experiences and simulation results us-
ing powermatcher. In Power and Energy Society General
Meeting, 2012 IEEE, pages 1–8. IEEE.

Kuznetsova, E., Li, Y.-F., Ruiz, C., and Zio, E. (2014). An inte-
grated framework of agent-based modelling and robust opti-
mization for microgrid energy management. Applied Energy,
129:70–88.

Mokhtar, M., Liu, X., and Howe, J. (2014). Multi-agent gaus-
sian adaptive resonance theory map for building energy con-
trol and thermal comfort management of uclan’s westlakes
samuel lindow building. Energy and Buildings, 80:504–516.

Mokhtar, M., Stables, M., Liu, X., and Howe, J. (2013). Intelli-
gent multi-agent system for building heat distribution control
with combined gas boilers and ground source heat pump. En-
ergy and Buildings, 62:615–626.

Otter, M., Arzen, K., and Dressler, I. (2005). Stategraph âĂŞ a
modelica library for hierarchical state machines. In In Pro-
ceedings of the 4th International Modelica Conference, pages
569–578.

Perera, D., Winkler, D., and Skeie, N.-O. (2016). Multi-floor
building heating models in matlab and modelica environ-
ments. Applied Energy, 171:46–57.

Qiao, B., Liu, K., and Guy, C. (2006). A multi-agent system
for building control. In Proceedings of the IEEE/WIC/ACM
international conference on Intelligent Agent Technology,
pages 653–659. IEEE Computer Society.

Radhakrishnan, B. M. and Srinivasan, D. (2016). A multi-agent
based distributed energy management scheme for smart grid
applications. Energy, 103:192–204.

Rahman, M., Mahmud, M., Oo, A., Pota, H., and Hossain, M.
(2016). Agent-based reactive power management of power
distribution networks with distributed energy generation. En-
ergy Conversion and Management, 120:120–134.

Rosenschein, J. (1985). Rational Interaction: Cooperation
among Intelligent Agents. PhD thesis, Stanford University.

RWTH-EBC (2015). Aixlib - a modelica model library for
building performance simulations. https://github.com/rwth-
ebc/aixlib.

Sangi, R., Baranski, M., Oltmanns, J., Streblow, R., and Müller,
D. (2016). Modeling and simulation of the heating circuit of a
multi-functional building. Energy and Buildings, 110:13–22.

Sangi, R., Streblow, R., and Müller, D. (2014). Approaches for
a fair exergetic comparison of renewable and non-renewable
building energy systems. In The 27th international confer-
ence on efficiency, cost, optimization, simulation and envi-
ronmental impact of energy systems. Turku, Finland.

Thiele, B. and Bellmann, T. (2015). Modelica DeviceDrivers.
https://github.com/modelica/Modelica_DeviceDrivers.

van Pruissen, O., van der Togt, A., and Werkman, E. (2014).
Energy efficiency comparison of a centralized and a multi-
agent market based heating system in a field test. Energy
Procedia, 62:170–179.

Verein Deutscher Ingenieure (2010). Vdi 2653 blatt 1.
Wang, Z., Wang, L., Dounis, A. I., and Yang, R. (2012). Multi-

Session 10D: HVAC Systems

DOI
10.3384/ecp17132799

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

807

agent control system with information fusion based comfort
model for smart buildings. Applied Energy, 99:247–254.

Wang, Z., Yang, R., and Wang, L. (2011). Intelligent multi-
agent control for integrated building and micro-grid systems.
In Innovative Smart Grid Technologies (ISGT), 2011 IEEE
PES, pages 1–7. IEEE.

Wernstedt, F. (2005). Multi-Agent Systems for Distributed Con-
trol of District Heating Systems. PhD thesis, Blekinge In-
stitute of Technology, Department of Systems and Software
Engineering.

Wetter, M., Zuo, W., Nouidui, T. S., and Pang, X. (2014). Mod-
elica buildings library. Journal of Building Performance Sim-
ulation, 7(4):253–270.

Xydas, E., Marmaras, C., and Cipcigan, L. M. (2016). A multi-
agent based scheduling algorithm for adaptive electric vehi-
cles charging. Applied Energy, 177:354–365.

Yang, R. and Wang, L. (2013). Development of multi-agent sys-
tem for building energy and comfort management based on
occupant behaviors. Energy and Buildings, 56:1–7.

Ye, D., Zhang, M., and Sutanto, D. (2015). Decentralised dis-
patch of distributed energy resources in smart grids via multi-
agent coalition formation. Journal of Parallel and Distributed
Computing, 83:30–43.

A Platform for the Agent-based Control of HVAC Systems

808 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132799

MoVE – A Standalone Modelica Vector Graphics Editor

Nicola Justus1 Christopher Schölzel1 Andreas Dominik1

1KITE, Technische Hochschule Mittelhessen, Giessen, Germany, {nicola.justus, christopher.schoelzel,
andreas.dominik}@mni.thm.de

Abstract
Modelica models can have a graphical icon defined as a
bitmap or vector graphics. Vector graphics have several
benefits, the most obvious being free scaling of images
from icon to poster size. With OpenModelica there already
exists one open source tool that can be used for editing
these vector graphics icon annotations, but it does not reach
the usability comfort of professional vector graphics editing
tools.

In this paper we present the Modelica Vector graph-
ics Editor (MoVE), a standalone open source editor for
Modelica’s vector graphics syntax that provides many con-
venience features inspired by the vector graphics editor
Inkscape. These features include grouping, snap to grid,
move to foreground/background, rotation handles, and
drawing perfect circles and squares as well as horizontal
and vertical lines when holding Shift.

We hope that MoVE, as a part of the Modelica Tool
Ensemble (MoTE), can enrich the open source ecosystem
of Modelica by simplifying the creation of more elaborate
vector graphics icons for Modelica models.
Keywords: JavaFX, vector graphics, open source, SVG,
Inkscape, MVC, MoTE, OpenModelica

1 Introduction
Modelica is a language for modeling complex physical
systems that also incorporates a graphical representation of
model components into the language itself. These graphical
representations come in the form of annotation statements
that can either contain a link to a bitmap image or define
an image using a vector graphics syntax (Modelica Assoc.,
2012). Vector graphics have the advantage that they are
freely scalable. This is interesting in any context where
a model might not only be displayed as a small icon on a
screen but also has to be presented to a larger audience on
a slide or a poster.

Unfortunately, creating vector graphic icons for Model-
ica models is not as easy as it could be. Standard vector
graphics tools such as Inkscape (Inkscape, 2016) provide a
rich set of features for precise and fast interaction, such as
grouping, rotation handles, sending elements to the front
or back, snap to grid, or drawing straight horizontal lines
and perfect circles when holding a modifier key. It would
be ideal, if we could use such a tool and save the resulting
image in Modelica notation. However, the Modelica an-
noations are not compatible with vector graphics formats

such as Scalable Vector Graphics (SVG) (Dahlström et al.,
2011), since there are both features in SVG that have no
equivalent in the Modelica syntax and vice versa.

There are many commercial tools for Modelica but
OpenModelica is the only open source choice for graphical
editing of Modelica models (Fritzson et al., 2005). This
graphical editor of OpenModelica is called OpenModelica
Connection Editor (OMEdit) (Asghar et al., 2011). It has
all features that are required to create vector graphic an-
notations, but does not provide the same level of user-
friendliness as Inkscape or related tools. For example,
non-standard rotation angles, fill patterns and line patterns
can only be changed via a properties dialog that has to
be opened separately for each component; the order of
Elements cannot be changed (although respective entries
exist in the context menu); drawing of straight horizontal
lines and perfect circles is not supported; and when we
began this project, OpenModelica did not even support
undo-redo operations for graphical manipulations. Further-
more OMEdit generates the icon annotation as one big line
of code. This is especially uncomfortable when the source
code is managed through a version control system.

In this Paper we therefore present the Modelica Vector
graphics Editor (MoVE), a new standalone open source
Modelica vector graphic editor with a streamlined interface
similar to Inkscape. In the following, we will first give a
bit more detail of the context in which MoVE was created.
In section two, we will then present an overview of the
technologies used to create the editor followed by a discus-
sion of the major design aspects in section three. Section
three presents the major features of MoVE and section four
explains current limitations leading to the conclusion in
section six.

1.1 Background and Related Work
Modelica Tool Ensemble

MoVE is part of the Modelica Tool Ensemble (MoTE) (Jus-
tus, Hoppe, and Schölzel, 2017). MoTE aims to provide
small user-friendly standalone appliations for editing and
simulating Modelica models. With this toolset we follow
the Unix philosophy to “make each program do one thing
well” (McIlroy, Pinson, and Tague, 1978). Separating the
different tasks needed for editing and simulating Model-
ica models leads to smaller applications that are easier to
maintain than a full-featured development environment like
OpenModelica. Additionally, users may choose to use the
tools that they like and substitute the tools they do not like

DOI
10.3384/ecp17132809

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

809

with other alternatives, leading to a more flexible ecosystem
that can accommodate different user needs. MoVE only
touches the main annotation statement of a model. To edit
other parts of the model, one can, for example, use the text
editor Atom (GitHub, 2016) which can provide type check-
ing, auto-completion and error highlighting when coupled
with Modelica | Editor (Mo|E), another tool in the MoTE
family. Instead one could also chose to use OMEdit or
the Eclipse plugin Modelica Development Tooling (MDT)
(Pop et al., 2006).

Inkscape

The main source of inspiration for MoVE was the afore-
mentioned vector graphics editor Inkscape (Inkscape,
2016). Inkscape is an open source application that can be
used to create professional and complicated vector graphic
images. It supports a rich set of features including align-
ment of elements or individual nodes, combination and
cutting of multiple paths, drawing with Bezier curves,
bold and italic text, importing shapes from a PDF-file, and
many many more. Features that are not already included
can be made available with a language-independent script-
ing API. These features are presented to the user mainly
through toolbars and hotkeys that make the interaction
fast and seamless. The native format of Inkscape is SVG
(Dahlström et al., 2011), which is an XML-based format
that can easily be interpreted by other tools.

MoVE does not nearly provide as many features as
Inkscape, but it tries to follow the same principles for us-
ability and precision.

2 Technologies
This chapter is a short overview over the technologies that
are used for implementing MoVE. Basically MoVE is writ-
ten in the programming language Scala using the graphical
user interface toolkit JavaFX.

2.1 Scala
Scala is a programming language for the Java Virtual Ma-
chine (JVM). This means that it is platform-independent
and that it is possible to use any Java library. Especially the
library JavaFX is useful for creating a modern Graphical
User Interfaces (GUIs). Scala merges object orientation
with functional programming, which allows to write code
faster and more flexible than in plain Java. It also brings
its own set of libraries such as a parser combinator library
(EPFL and Typesafe, Inc., 2016) that proved very useful
for this project.

2.2 JavaFX
JavaFX is a GUI toolkit for the Java programming lan-
guage. Because it is written for Java it runs on the JVM
and is also usable from Scala. JavaFX is the latest toolkit
for GUIs running on the JVM and incorporates many ideas
of modern GUI design. JavaFX provides a special format
for describing the structure of a UI. This format is called
FXML and based on XML. To develop GUIs using the

FXML format, Oracle provides a graphical editor for build-
ing the user interface by dragging and dropping interface
components, namely the SceneBuilder. This makes GUI
design much faster and leads to a clean separation of the
layout and the actual code.

3 Design
3.1 Parser
To load existing Modelica models we have created a simple
parser for Modelica source code. This parser is built using
the scala-parser-combinators library (EPFL and Typesafe,
Inc., 2016). This library allows combination of simple
parsers to create more complex ones. An external parser
generator is not necessary. MoVE ignores everything in
the source file, except the icon annotations of all models
defined in the file. This makes the parser (and MoVE)
mostly independent of future language modifications, thus
MoVE should work with future versions of Modelica. If the
icon annotations are modified, the parser has to be modified.
This should be a small effort. Additionally this assures that
MoVE interacts nicely with version control systems. Since
we only parse annotations, we can guarantee that we will
not change any other part of the model.

During the parsing process, the parser generates a
MoVE-specific abstract syntax tree. This tree is then trans-
formed into shapes, that are derived from the standard
JavaFX shapes. Finally this shapes are displayed in the
user interface.

3.2 Model–View–Controller
JavaFX is built around the Model-View-Controller (MVC)
software design pattern (Reenskaug, 1979). MVC splits
the application in three parts. The first part is the model1,
which represents the business data. The model updates the
view if someone changes the model. The second part is
the view, which displays the data and listens on updates to
the model. The third part is the controller, which connects
a model with the respective view. The controller is also
responsible for user interactions and transforms them into
commands for the model or the view. The typical MVC
workflow is depicted in Figure 1.

Because JavaFX already provides views, which contain
the data representation for shapes, MoVE is designed with
controllers and views. There are no explicit models. They
are hidden inside of the JavaFX shapes.

3.3 JavaFX Elements
To display Modelica’s graphical primitives (Modelica As-
soc., 2012), we have created a small set of JavaFX elements.
These elements are all derived from the standard JavaFX
shape elements and add additional properties and behav-
ior such as fill and stroke patterns. The JavaFX shapes

1Here, in section 3.2, the word ”model“ refers to source code of a
software project that is structured with the MVC-Pattern and not to a
Modelica model.

MoVE A Standalone Modelica Vector Graphics Editor

810 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132809

Figure 1. The Model-View-Controller (MVC) software design
pattern splits an application into three parts in order to increase
maintainability and extensibility (Frey, 2016).

provides the basic properties for rectangles, ellipses, lines,
paths, polygons, and images.

Furthermore, for abstracting the common behavior of
the shapes, they are all derived from a specific trait, which
provides the common behavior. For example, all shapes
that behave like a rectangle are derived from the trait Rect-
angleLike. A similar trait is defined for shapes that behave
like a path.

3.4 UI Overview

Figure 2. The user interface of MoVE is built with the JavaFX-
framework and consists of three main toolbars: tool selection
(left), tool properties (top) and zoom and size indicator (bottom).

The user interface contains 3 toolbars for interacting
with MoVE (Figure 2).

The top toolbar contains controls for specifying the color
of selected or newly drawn shapes. Going left to right this
toolbar starts with a selector for the stroke size, followed

by the color pickers for the fill color and stroke color. The
color pickers are followed by a selector for the LinePattern
and FillPattern. For these last two elements, all patterns
defined in chapter 18.6 from (Modelica Assoc., 2012) can
be selected.

The left toolbar contains the tools for selecting and mov-
ing as well as drawing the icon primitives. Going top to
bottom it starts with the arrow, which is used for selecting
and moving shapes. The arrow is followed by the tools for
drawing lines, paths, rectangles, polygons and ellipses, and
for inserting images, and text.

The bottom toolbar currently only contains two items:
an indicator for the size of the draw pane and buttons for
controlling the zoom. The magnifying glass with the minus
zooms out and the magnifying glass with the plus zooms
in.

4 Features
4.1 Code Generation
MoVE provides two code generators for the icon annota-
tion. The first generates the annotation as one big line and
writes it into the model. This is similar to OMEdit. The
second code generator generates pretty-printed code with
line breaks and indentations, which is more readable than
a big line (Listing 1). This style is also better supported
by version control systems as they can recognize which
lines or properties have changed instead of reporting only
a change of the whole annotation.

Listing 1. MoVE generates a well formatted icon annotation
with line breaks and indentation.

model Test
annotation(
Icon (

coordinateSystem(
extent = {{0,0},{200,125}}

),
graphics = {

Rectangle(
origin = {34,96},
lineColor = {0,0,0},
fillColor = {128,186,36},
lineThickness = 4.0,
pattern = LinePattern.Solid,
fillPattern = FillPattern.Solid,
extent = {{-14,8}, {14,-8}}

),
Ellipse(

origin = {75,91},
lineColor = {0,0,0},
fillColor = {128,186,36},
lineThickness = 4.0,
pattern = LinePattern.Solid,
fillPattern = FillPattern.Solid,
extent = {{-13,10}, {13,-10}},
endAngle = 360

)
})

);
end Test;

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132809

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

811

4.2 Grouping
MoVE supports grouping of multiple shapes through Edit
→ Group or by pressing Ctrl+G. Moving a shape which
is part of a group moves all shapes that are part of this
group (Figure 3). Ungrouping is also supported through
Edit → Ungroup or by pressing Ctrl+Shift+G. Note that
the groups are only used in MoVE and are discarded when
the model is saved, because this is not supported by the
icon annotation syntax of Modelica.

Figure 3. MoVE allows to group shapes together in the user
interface, so that they can be easily moved together. These groups
are lost when the annotation is saved.

4.3 Stacked Shapes
MoVE allows to move shapes into the background using
ContextMenu → In Background and to move shapes into
the foreground using ContextMenu → In Foreground (Fig-
ure 4). This allows easy modifying of the order of stacked
shapes.

Furthermore, MoVE also handles shapes with the fill
pattern FillPattern.None in an intuitive way. Shapes that
are behind the transparent filling can still be selected. The
transparent shape itself is only selected when the user clicks
on the visible border.

4.4 Export as Images
MoVE enables exporting of Modelica icons either as PNG
or as SVG (Figure 5). SVG is especially interesting because
SVG images can be further modified in Inkscape. This is
useful if the user likes to create a poster which contains a
graphic from a Modelica model.

4.5 Rotation
After a double click on a shape, four red anchors appear at
the corners of the shape (Figure 6). Moving the anchors
rotates the shape around its center. This is more intuitive
than rotating a shape by defining a specific degree value
through a separate property dialog.

Figure 4. The context menu for a shape contains controls for
rotation and stacking order.

Figure 5. SVG image exported from MoVE displayed in Google
Chrome.

Additionally to rotation by moving the anchors, it is
possible to rotate an element using the context menu:

• ContextMenu → Rotate 90° clockwise

• ContextMenu → Rotate 90° counter clockwise

• ContextMenu → Rotate 45° clockwise

• ContextMenu → Rotate 45° counter clockwise

4.6 Snap to Grid
MoVE operates on a customizable grid. The size of the grid
can be modified to fit the needs of the user. Via the menu
entry View → Enable snapping or by pressing Ctrl+A the
snap to grid function can be toggled. If activated, elements
will snap to the precise location of the grid lines when they
are moved close to such a line. This allows for a precise
alignment of individual elements.

MoVE A Standalone Modelica Vector Graphics Editor

812 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132809

Figure 6. Arbitrary rotations can be realized in MoVE by rota-
tion handles (red dots).

4.7 Config Files
MoVE uses simple text files as configuration files that
are placed inside of ~/.move. Application settings are
placed in the file ~/.move/move.conf and keyboard
shortcuts are read from ~/.move/shortcuts.conf.
Both files can be customized with any text editor.

4.8 Additional features
When holding down Shift while drawing a shape, it is pos-
sible to create straight horizontal or vertical lines, perfect
squares, and perfect circles (Figure 7).

Figure 7. When holding Shift, MoVE will create perfect squares
and circles and straight horizontal or vertical lines.

MoVE supports undo and redo using Edit → Undo / Edit
→ Redo or through the shortcuts Ctrl+Z and Ctrl+Shift+Z.
It is also possible to copy, paste and duplicate selected
shapes. Holding down Shift and selecting a shape selects
multiple shapes.

5 Limitations
5.1 Annotations
MoVE supports every icon annotation except properties
which are defined using a if-clause or a DynamicS-
elect statement, because the result of both statements is
a dynamic value, which is only defined at runtime. These
dynamic definitions do not fit into the scope of an editor
for static vector graphic images. If MoVE finds properties,
which are defined using this two statements, it warns the
user that this properties will be overwritten by a static value
after a save call (see Figure 8).

Figure 8. A Warning is displayed when opening a Model whose
icon annotation contains DynamicSelect and if-clause
elements in MoVE.

5.2 Line Scaling
The Modelica language specification does not define the
meaning of the thickness property of a line (Modelica
Assoc., 2012). The most intuitive definition would be to
assume that the thickness of a line is given in units of the
coordinate system of the icon. Both Dymola and OMEdit,
however, define the line thickness in terms of the coordinate
system of the users screen, so that lines scale automatically
when zoomed. At the moment, MoVE does not follow this
behavior, because it is unintuitive and cannot be reproduced
when the image is exported to SVG or Portable Network
Graphics (PNG).

5.3 Placing Connectors
MoVE currently does not support placing connectors in the
icon, because this would require parsing and altering con-
nector definitions in the model. Loading and saving models
with MoVE does not affect existing connector placements.
MoVE is only a graphical editor for the main annotation
statement of Modelica models and leaves the rest of the
code untouched. Connector placement would add another
layer of complexity to the tool that goes beyond its intended
scope.

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132809

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

813

We are currently working on another tool in the MoTE
family named Modelica Diagram Editor (MoDE), which
will be used for the graphical composition of Modelica
models and could also be used handle the connector place-
ment (Hoppe, 2016).

5.4 Inherited Annotations
Modelica allows inheritance of icon annotations. The in-
herited annotations are currently not displayed in MoVE.
This feature was postponed to future versions, because it
would require parsing of several files and inspection of
inheritance hierarchies.

6 Conclusions
In this paper we presented a new graphical editor for Mod-
elica icon annotations. In contrast to other open source
alternatives, the user interface of MoVE is specifically de-
signed to make editing and creating vector graphic icons
for Modelica models as easy and fast as creating a vector
graphic image with tools such as Inkscape. MoVE builds
on the modern platform-independent framework JavaFX.
It has many convenience features such as grouping, snap
to grid, move to foreground/background, rotation handles,
and drawing perfect circles and squares as well as horizon-
tal and vertical lines when holding Shift. It is also designed
to work well with version control systems so that changes
to individual elements can be captured. Except for dynamic
elements, it supports every part of the icon definition in the
Modelica language specification.

There are many possibilities for future improvement
which can be drawn from the feature set of Inkscape such
as component and node alignment or the combination and
cutting of multiple paths. Ideally, these features could be
brought to MoVE by a (partial) import of SVG graphics.
This would allow to create icons in Inkscape and convert
them into Modelica code so that they are used directly in
Modelica models. For this, one would need to define a
subset of SVG that is translatable to Modelica and some-
how restrict the user in Inkscape to only use this subset.
Futhermore, if MoVE should be able to place and display
connectors of the model, the parser needs to be extended
and additional parts of the model have to be altered.

We hope that this tool can enrich the open source ecosys-
tem of Modelica and will enable more elaborate vector
graphic icons for Modelica libraries. MoVE is part of a
larger ensemble of tools called MoTE, which also features
an integration of Modelica compiler features into a struc-
tured text editor.

The projects are open source and hosted on GitHub:
https://github.com/thm-mote/

References
Asghar, Syed Adeel et al. (2011). “An Open Source Model-

ica Graphic Editor Integrated with Electronic Notebooks
and Interactive Simulation”. In: Proceedings of the 8th

International Modelica Conference. Dresden, Germany,
pp. 739–747.

Dahlström, Erik et al. (2011). Scalable Vector Graphics
(SVG) 1.1 (Second Edition). W3C Recommendation
REC-SVG11-20110816. W3C. URL: https://www.
w3.org/TR/SVG/.

EPFL and Typesafe, Inc. (2016). scala-parser-combinators.
GitHub Repository. URL: https://github.com/
scala/scala-parser-combinators (visited
on 12/09/2016).

Frey, Regis (2016). The model, view, and controller (MVC)
pattern relative to the user. URL: https : / / en .
wikipedia.org/wiki/File:MVC-Process.
svg (visited on 12/07/2016).

Fritzson, Peter et al. (2005). “The OpenModelica Mod-
eling, Simulation, and Development Environment”. In:
Proceedings of the 46th Scandinavian Conference on
Simulation and Modeling (SIMS). Trondheim, Norway.

GitHub (2016). Atom. URL: https://atom.io (visited
on 11/01/2016).

Hoppe, Marcel (2016). Modelica Diagram Editor. URL:
https://github.com/THM-MoTE/MoDE (vis-
ited on 12/20/2016).

Inkscape (2016). Inkscape — Draw Freely. URL: https:
//inkscape.org (visited on 12/09/2016).

Justus, Nicola, Marcel Hoppe, and Christopher Schölzel
(2017). Modelica Tool Ensemble (MoTE). URL: https:
/ / github . com / thm - mote (visited on
03/28/2017).

McIlroy, M. D., E. N. Pinson, and B. A. Tague (1978).
“Unix Time-Sharing System: Foreword”. In: The Bell
System Technical Journal 57.6, pp. 1899–1904.

Modelica Association (2012). Modelica - A Unified Object-
Oriented Language for Systems Modeling. Language
Specification. Version 3.3.

Pop, Adrian Dan Iosif et al. (2006). “OpenModelica Devel-
opment Environment with Eclipse Integration for Brows-
ing, Modeling, and Debugging”. In: Proceedings of the
5th International Modelica Conference. Vienna, Austria,
pp. 459–465.

Reenskaug, Trygve (1979). Thing-Model-View-Editor —
An Example from a planningsystem. technical note. Xe-
rox PARC.

MoVE A Standalone Modelica Vector Graphics Editor

814 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132809

Mo|E – A Communication Service Between Modelica Compilers
and Text Editors

Nicola Justus1 Christopher Schölzel1 Andreas Dominik1 Thomas Letschert1

1KITE, Technische Hochschule Mittelhessen, Giessen, Germany, {nicola.justus, christopher.schoelzel,
andreas.dominik, thomas.letschert}@mni.thm.de

Abstract
The Modelica language is becoming increasingly popu-
lar among scientists and engineers as platform for mod-
elling physical or biological systems. Although Modelica
is maintained as non-proprietary language by the Mod-
elica Association, a considerable number of commercial
implementations and development environments is com-
plemented by a surprisingly small number of open source
tools.

In this paper, we present the communication service
Mo|E that connects any text editor as front-end with a
Modelica compiler as back-end. Based on the simple
HTTP communication protocol, editor plugins for a soft-
ware developer’s favourite text editor can be developed
easily, hence turning any editor into a lightweight Model-
ica development tool.

We also present a first implementation of a plugin for
the text editor Atom that exhibits features necessary for
efficient software development, such as display of com-
pile errors, code completion, go to declaration or view of
context-sensitive documentation. In addition, Modelica-
specific checking of the number of equations in a model is
supported.
Keywords: Modelica, open source, integrated development
environment, distributed systems, structured editor, EN-
SIME, OpenModelica, JModelica, MoTE

1 Introduction
Modelica is a powerful object-oriented programming lan-
guage that facilitates acausal description of physical sys-
tems. Although many commercial and open source tools
for developing or working with Modelica are available,
the OpenModelica suite (Fritzson et al., 2005) is the only
comprehensive set of tools for Modelica. OpenModelica
provides a standalone Modelica compiler, an Eclipse plugin
for developing Modelica inside of Eclipse (MDT), a graphi-
cal model editor for connecting components (OMEdit), and
a Modelica debugger. The primary tools for developing
Modelica are MDT and OMEdit. Both are full-fledged
integrated development environments (IDEs).

IDEs are well suited for working with big projects but
may have some disadvantages. They often are slow, diffi-
cult to use and and may be even scary for novice users. For
Modelica additional challenges arises from the differences

between Modelica compilers, such as JModelica or Open-
Modelica which silghtly differ in their understanding of
Modelica. In order to develop code compatible with differ-
ent compilers, the IDE should be able to compile models
using different compilers.

Today, when writing source code or any other type of
structured text, it is common to use a structured editor
which is aware of the document’s structure. Structured
editors are an essential part of most IDEs. Experienced de-
velopers usually prefer them to other – graphical – means
of input. A structure aware editor must be able to ana-
lyze the text given to it. Thus structure awareness means
awareness of the syntax and to some extend also of the
semantics of the texts it deals with. The structured editor
is deeply integrated with the IDE, rather than being just a
mere component.

In this paper we present Modelica | Editor (Mo|E), a de-
velopment environment for Modelica, centered on editing
and checking complex models, refraining form all issues of
model execution. A structured editor is its main component
and user interface.

A key concept of Mo|E is that the user may use a text
editor of her own choice, attach it to a service process that
provides syntactic and semantic analysis and transforms
the plain text editor to a structured editor.

Thus users may edit texts using the editor they are used
to and still benefit from automatic recompilation, code
completion, semantic highlighting, go to declaration, refac-
toring, and so on.

A central part of our solution is a server process that
mediates between the text editor and Modelica aware an-
alytical services. These services are provided by existing
Modelica compilers, and/or further existing or future tools
that may be plugged into this infrastructure (Figure 1). We
have enhanced one text editor to a Modelica editor, but
other text editors may be integrated with little effort. These
editors only have to provide a plugin that implements the
service API. This API provides a unique interface to differ-
ent Modelica compilers and eases the communication with
compilers and related tools, protecting users from complex
and differing command-line interfaces.

The design of Mo|E was inspired by the ENSIME project
(ENSIME Contrib., 2016) with its server process that me-
diates between text editors and Scala compilers.

Mo|E is an environment for developing Modelica models

DOI
10.3384/ecp17132815

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

815

using editors that are enhanced to be Modelica aware. It
was realized as part of the first author’s bachelor’s thesis
(Justus, 2016).

Editor Mo|E
server

OpenModelica

JModelica

CORBA

Python-
script

HTTP
Mo|E-protocol

Figure 1. Survey of the communication between a text editor
with a Mo|E-plugin, the Mo|E server and OpenModelica or JMod-
elica.

1.1 Structure of the Paper
Section 2 describes which technologies and standards
where used to implement Mo|E. Section 3 describes the
protocol between client and service process, the communi-
cation with OpenModelica as well as with JModelica. Sec-
tion 4 presents the key features of Modelica | Editor (Mo|E)
and their use in the text editor Atom. Finally, section 5
gives a summary and a short outlook on future extensions.

1.2 Naming
The name Modelica | Editor (Mo|E) alludes to the use of the
pipe character (|) in UNIX-like operating systems, which
establishes a pipeline between two programs. Mo|E can be
seen as such a pipeline between the Modelica compiler and
a structured editor. In contexts where special characters
like the pipe may cause problems, we chose the alternative
spelling Modelica–Pipe–Editor (MoPE).

1.3 Goals
Our goals for Mo|E are:

• Provide an extendable client server application which
makes it possible to develop Modelica inside existing
text editors.

• Provide a client implementation for the text editor
Atom as reference for other clients.

• Highlight syntax and type errors, perhaps while typ-
ing, inside the text editor.

• Provide code completion for models, data types, and
variables.

• Provide jump to the source of a model. This is better
known as “go to declaration”.

• Provide a view of the documentation of a model.

1.4 Background and Related Work
OneModelica (Samlaus, 2015) is a an Eclipse-based IDE
for Modelica models tailored to the domain of fluid dynam-
ics. It was realized using tools and techniques of Model
Driven Software Development. It may be compared to our
approach in that it restricts itself to syntax and static seman-
tics of the language and refrains from simulation issues. It
differs considerably in its technological base, which in the
years since its development has lost a lot of its attraction
and support, not without reason as we think.

Mo|E is the first tool in a more ambitious project called
Modelica Tool Ensemble (MoTE). MoTE aims at the pro-
vision of a collection of small user-friendly standalone ap-
plications for developing and executing Modelica models,
i.e. a lightweight development environment for Modelica.

Modelica does not differ in principle from other lan-
guages when it comes to development environments. How-
ever, due to its complex static and dynamic semantics,
it poses special challenges, mainly for the support of in-
cremental development (see e.g. (Höger, Lorenzen, and
Pepper, 2010) or (Broman, Fritzson, and Furic, 2006)).

We are well aware of these problems. Thus, at least for
the time being, MoTE and Mo|E do not include a Modelica
compiler or tools incorporating compiler features much
beyond parsing. Instead we rely on mature compilers like
OpenModelica and JModelica.

2 Technologies
2.1 Scala and Akka
Scala (EPFL, 2016) is a hybrid programming language that
combines object orientation with functional programming.
Because the Scala compiler generates bytecode for the Java
Virtual Machine (JVM), it integrates with many available
Java libraries. In addition, resulting compiled programs
are platform independent. The service process of Mo|E is
implemented in Scala.

Akka is a library for concurrent and distributed systems,
based on the actor model that facilitates concurrency by
providing a high level of abstraction (Allen, 2013). We use
Akka as a provider of communication services, such as an
implementation of the HTTP-protocol and for structuring
the system according the actor model.

2.2 OMC and CORBA
OpenModelica provides the Advanced Interactive Open-
Modelica Compiler (OMC), a server that provides an API
to query loaded Modelica code (Asghar et al., 2011).

The Common Object Request Broker Architecture
(CORBA) is used by the OpenModelica compiler server
OMC as interface to other applications and other program-
ming languages.

Mo|E A Communication Service Between Modelica Compilers and Text Editors

816 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132815

CORBA developed by the Object Management Group
(OMG) defines a standard for inter-process communication
modeled as interaction of distributed objects. Because
the public API of remote objects is defined in an Interface
Definition Language (IDL), processes may be implemented
in different programming languages (OMG, 2012).

2.3 Atom and the Electron Engine
Atom (GitHub, 2016a) is a text editor created by GitHub
in the style of Sublime Text (Sublime HQ Pty Ltd, 2016).
Basic design concepts of Atom include customization and
extensibility through plugins (called packages in the con-
text of Atom). Extending Atom is possible with JavaScript,
HTML and CSS by using the Electron Engine (GitHub,
2016c). This allows to rapidly develop extensions and to
implement communication protocols using AJAX requests.
Furthermore, Atom already includes a package for syntax
highlighting for Modelica (Chenouard et al., 2016), a sim-
ple API for completion suggestions (GitHub, 2016b) and a
plugin for clicking on text (Facebook, 2016), which is used
to implement go to declaration functionality.

We have created an Atom plugin as first reference im-
plementation of a Mo|E client.

3 Design
3.1 Mo|E – Editor Protocol
Clients are connected to the service process, by means of
Hypertext Transfer Protocol (HTTP)-based communica-
tion and JavaScript Object Notation (JSON) data represen-
tation. HTTP provides status codes, Uniform Resource
Identifiers (URIs) and content negotiation (Fielding and
Reschke, 2014). JSON is a compact text format, based on
the JavaScript Object Notation (Bray, 2014).

The communication flow follows several steps: Firstly,
the client connects to the service process using a connect
request that communicates the current project. In this
context a project is a directory containing Modelica source
files.

Secondly, after initialization the service process answers
with the respective project id. The unique project id identi-
fies the project in the client server communication.

Henceforth, the client uses this project id to request
further IDE functionality for this project from the service
process.

To finally finish a session, the client sends a disconnect
request that triggers the service process to delete all project-
related information and cached data.

The following sections describe each supported IDE
functionality in more detail.

3.1.1 Connecting to the server

As introduced in the preceding section, each client needs
to connect initially with the server. A connect request is
initiated through a POST request containing the respective
JSON object with the project description. The JSON object
contains the full path into the project directory and the

relative path to a directory that is used to store compiled
files:

POST /mope/connect

{
"path": <String>,
"outputDirectory": <String>

}

This project information is stored in the mope-
project.json file that is placed in the project direc-
tory.

If the request was successful, the server answers with
a project id. If not, the server answers with 400
BadRequest and a detailed error message.

3.1.2 Compiling Modelica source files & Modelica
script files

Compiling a Modelica source file is initiated through a
compile request. The request body contains the path to
the currently opened file. As a result of the request a model
is instantiated and type errors are retrieved:

POST /mope/project/0/compile

{ "path": <String> }

If the request was successful, the server answers with a
JSON array containing compiler errors:

{
"type": "Error" | "Warning", //type of

message
"file": <String>, //path to the file

which contains the error
"start": { //start of error

"line": <Number>,
"column": <Number>

},
"end": { //end of error

"line": <Number>,
"column": <Number>

},
"message": <String> //compiler error

}

Compiling a Modelica script file is initiated by sending
an analogous compileScript request:

POST /mope/project/0/compileScript

{ "path": <String> }

Although the request is called “compiling a Script file”,
the service process actually executes the script. This action
is intended for debugging purposes of smaller scripts and
not for scripts that simulate a model, since simulating a
model is time-consuming and may freeze or possibly even
kill the service process.

3.1.3 Checking a model
To check a model for its number of equations the client
sends a checkModel request with the model path. The
server calls the OpenModelica compiler to run check-
Model and answers with a string containing the results:

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132815

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

817

POST /mope/project/0/checkModel

{ "path": <String> }

This functionality is only available, if the OpenModelica
compiler is used.

3.1.4 Go to declaration
To retrieve the declaration of a model, the client sends a
declaration request. This request contains the model/-
class name as query string1:

GET /mope/project/0/declaration?class=[
Modelname]

The server answers with a JSON object containing the
file path and line number of the declaration:

{
"path": <String>, //absolute path to the

file
"line": <Number> //line number

}

If the project id is unknown or the query string is missing,
the server will answer with a 404 NotFound error.

3.1.5 Go to documentation
A model documentation can be retrieved using a doc re-
quest with the model name encoded as query string:

GET /mope/project/0/doc?class=[Modelname]

The server embeds the documentation in a template and
returns a HTML document that can be viewed in a web
browser.

If the project id is unknown or the query string is missing,
the server answers with a 404 NotFound error.

3.1.6 Code completion
For code completion the client sends a completion re-
quest with a JSON object that describes the position of the
cursor as file (name of current file), line and column number
(position of the cursor) and word (part of the expression to
be completed):

POST /mope/project/0/completion

{
"file": <String>, //absolute path to the

file
"position": { //position inside the file
"line": <Number>,
"column": <Number>,

},
"word": <String>

}

The server responds by sending an JSON array of possi-
ble completions for the expression:

{
//type of completion; 1 of the listed

strings

1A query string is a component of a URI, that starts with a ? (Berners-
Lee, Fielding, and Masinter, 2005).

"kind": "Type" | "Variable" | "Function"
| "Keyword" | "Package" | "Model" | "
Class" | "Property",

"name": <String>, //the completion
//OPTIONAL: list containing names of

parameters if kind=function
"parameters": [

<String>,
<String>,
...

],
//OPTIONAL: the class comment describing

the name attribute
"classComment": <String>,
//OPTIONAL: the type of name
"type": <String>

}

kind defines the type of the completion (such as package,
class, function, variable, etc.). name is the suggestion for
the subexpression.

The optional return values for parameters, classCom-
ment and type report the list of argument names if the
suggestion is a function, the documentation string if the
the suggestion is a class and the data type of the expression
(usually the data type of a variable), respectively.

If the given project id is unknown, the server answers
with 404 NotFound.

3.1.7 Display data type of a variable
To retrieve data type and documentation string of a variable,
the client sends a typeOf request with a body identical
to the body of the completion request. If the request
was successful, the server answers with a JSON object
containing the name, type, and documentation string of the
variable. Otherwise the server answers with 404 Not-
Found:

POST /mope/project/0/typeOf

{
"name": <String>, //name of property
"type": <String>, //type of property
//OPTIONAL: property comment
"comment": <String>

}

3.1.8 Disconnecting from the server
A session is terminated by a disconnect request, which
initiates the shutdown sequence for this project on the
server:

POST /mope/project/0/disconnect

The server returns 204 NoContent if the project id is
known or 404 NotFound elsewise.

3.1.9 Stopping the server
The client can stop the whole service process by sending
a stopServer request. The server answer is 202 Ac-
cepted.

POST /mope/stop-server

Mo|E A Communication Service Between Modelica Compilers and Text Editors

818 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132815

3.2 Communication with OpenModelica
The modeling and development environment OpenModel-
ica (OSMC, 2016) consists of a Modelica compiler (omc),
a graphical connection editor (OMEdit), an Eclipse plugin
(MDT) and a Modelica debugger (Fritzson et al., 2005). As
described in Chapter 2.2 the compiler enables querying for
model information via its CORBA interface that provides
several types of information:

• list of all models/classes by sending getClass-
Names,

• source file of a model by sending getSourceFile,

• documentation annotation of a model by sending
getDocumentationAnnotation,

• result of a model check for equations by sending
checkModel,

• documentation string of a model by sending get-
ClassComment,

• arguments of a function by sending getParame-
terNames,

• specialization of a class by sending getClassRe-
striction.

An additional difficulty arises from the fact that Open-
Modelica uses Modelica expressions as arguments for its
CORBA interface. As a result, the functions listed above
are not implemented explicitely in the CORBA interface.
Instead, OpenModelica only provides a single method in its
CORBA interface, namely sendExpression and sends
Modelica source code strings and API function calls as ar-
guments. Therefore, we create the function calls as strings
and interpolate them into the function argument, as shown
in Listing 1.

Listing 1. API function call through OpenModelica’s CORBA
interface.

val omc:OmcCommunication = ...
val fileName = "/tmp/model.mo"
val errors:String =omc.sendExpression(s"""

parseFile("$fileName")""")

3.3 Communication with JModelica
JModelica (Modelon AB, 2016) is a Modelica compiler
developed by Modelon AB (Åkesson et al., 2010). To allow
dynamic adjustments during execution, JModelica offers a
Python interface which enables code modification at run
time. In addition it enables compilation of Modelica code.
We are using this Python interface for compilation of the
models by delivering the Modelica source files to a custom
Python script, which calls the JModelica compiler, parses
JModelica’s output and encodes the output into JSON. The
resulting JSON is printed to stdout which is afterwards
parsed by the service process and finally decoded as Scala

Command Description
Mope: Disconnect Disconnect Atom from

the service process

Mope: Compile Project Compile the project

Mope: Run Script Execute the Modelica
script

Mope: Check Model Check the model for its
number of equations

Mope: Show Type Display the data type of
the variable below the
cursor

Mope: Open Documentation Open the documentation
of the type below the
cursor

Mope: Open Server Log Open the log file of the
service process

Mope: Open Server Config Open the configuration
file of the service process

Mope: Stop Server Stop the server

Table 1. List of commands implemented in the Atom plugin.

objects. The communication scheme is depicted in Fig-
ure 2.

Unfortunately JModelica does not offer access to the
parsed model or its abstract syntax tree. That is the reason
why code completion is restricted to local variables and
go to documentation is not yet supported in the presented
Mo|E Atom plugin.

Figure 2. Diagram of the communication between a text editor
(client) and JModelica.

4 Features
4.1 Client commands
Table 1 gives a full list of the commands available in the
Atom plugin.

4.2 Compiler Feedback
Modelica | Editor (Mo|E) provides instant compiler feed-
back for syntax errors and type errors. Background compi-

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132815

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

819

lation is automatically triggered when a file is saved and the
errors are highlighted in the editor with a red indicator at
the left side of the editor tab. Error messages are displayed
at the bottom of the tab (Figure 3). Alternatively automatic
compilation can be disabled and triggered manually.

As Mo|E supports JModelica and OpenModelica it is
possible to use either JModelica or OpenModelica or both
compilers for one project.

Figure 3. Compile errors are retrieved form the back-end (Open-
Modelica or JModelica) by the Mo|E server and highlighted in
the source code by the editor plugin.

4.3 Code Completion

Modelica | Editor (Mo|E) features enhanced code com-
pletion on keystrokes or by pressing Ctrl + Space.
Suggestions include classes, models, functions, model pa-
rameters and variables, keywords, built-in types as well as
local variables. The suggestions contain a type indicator,
documentation string and a link to the model’s documenta-
tion (Figure 4). The type indicator displays the type of the
suggestion (package, model, function or variable).

Figure 4. Code completion allows for selecting classes, mod-
els, functions, model parameters, variables, keywords or built-in
types from a list of suggestions retrieved by the Mo|E server.

4.4 Go to Declaration

Mo|E provides go to declaration by clicking on the mod-
el/class name while holding down Ctrl. The source file
of the model/class is opened in a separate tab. Go to decla-
ration is mostly used for discovering source code or when
editing multiple models that are linked to each other.

4.5 Documentation View

Mo|E embeds the queried documentation of a model in
a predefined template and provides the documentation as
HTML document. The implementation in the Atom plugin
opens the requested documentation in the default browser.
Furthermore it is possible to browse the model’s child
components using the links in the subcomponents section
of the documentation (Figure 5).

Figure 5. Example of a documentation display generated as
HTML page by Mo|E by embedding the retrieved documentation
string with a template page.

4.6 Type & Documentation String Display

Mo|E provides a command for displaying the type and
documentation string of the variable at the cursor position.
Type and documentation are displayed at the bottom of the
editor tab (Figure 6).

Mo|E A Communication Service Between Modelica Compilers and Text Editors

820 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132815

Figure 6. Data type and documentation string are displayed in
the editor window by the Atom plugin.

4.7 Execution of Modelica Scripts

If the OpenModelica compiler is used, Mo|E allows manu-
ally triggered execution of Modelica scripts and displays
error messages in the editor.

Figure 7. Compile errors of Modelica scripts are displayed in
the editor window by the Atom plugin.

4.8 Model Check

Mo|E supports checking of a model for the number of
equations (Figure 8), if the OpenModelica compiler is used.

Figure 8. Result of a model check, performed by the OpenMod-
elica back-end, is displayed as pop-up in the editor window by
the Atom plugin.

5 Conclusions
This paper presented a extendable client/server applica-
tion for developing Modelica in enhanced text editors like
Atom. It shows how a service process is used to sim-
plify communication with multiple Modelica Compilers
and provide IDE features to various text editors through
a simple interface. Text editors have to implement a
small number of basic HTTP calls, which should be a
minimal effort. A minimal setup with compilation and
code completion would only require four HTTP calls. In-
stallation instructions for Mo|E can be found at https:
//github.com/THM-MoTE/mope-server.

Mo|E is a base for further extensions. E.g. we intend to
implement plugins for different editors, such as Sublime
Text (Sublime HQ Pty Ltd, 2016), Visual Studio Code
(Microsoft Corporation, 2016) or vim (Moolenaar, 2016).
Including Visual Studio Code should not be a problem
because it uses TypeScript for its plugins, which is a super-
set of Atom’s JavaScript.

Mo|E is part of a larger ensemble of tools called MoTE
(Schölzel et al., 2016). MoTE will also include a vec-
tor graphic editor called Modelica Vector Graphics Edi-
tor (MoVE) (Justus et al., 2017) and a diagram editor called
Modelica Diagram Editor (MoDE) (Hoppe et al., n.d.). To-
gether with Mo|E these tools provide alternative user inter-
faces for the interaction with existing Modelica compilers,
which allow a simpler interaction than full-fledged IDEs
like OpenModelica.

The projects are open source and hosted on GitHub:
https://github.com/thm-mote/

References
Åkesson, J. et al. (2010). “Modeling and Optimization

with Optimica and JModelica.org — Languages and
Tools for Solving Large-Scale Dynamic Optimization
Problems”. In: Computers & Chemical Engineering 34
(11), pp. 1737–1749.

Allen, Jamie (2013). Effective Akka. Sebastopol, USA:
O’Reilly Media.

Asghar, Syed Adeel et al. (2011). “An Open Source Model-
ica Graphic Editor Integrated with Electronic Notebooks
and Interactive Simulation”. In: Proceedings of the 8th
International Modelica Conference. Dresden, Germany,
pp. 739–747.

Berners-Lee, T., R. Fielding, and L. Masinter (2005). Uni-
form Resource Identifier (URI): Generic Syntax. RFC
3986. IETF.

Bray, T. (2014). The JavaScript Object Notation (JSON)
Data Interchange Format. RFC 7159. IETF.

Broman, D., Peter Fritzson, and S. Furic (2006). “Types
in the Modelica Language”. In: In Proceedings of the
5th International Modelica Conference. Ed. by Ch.and
Haumer A. Kral. Vienna, Austria: The Modelica Associ-
ation, pp. 303–317.

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132815

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

821

Chenouard, Raphael et al. (2016). Modelica language
support in Atom. GitHub Repository. URL: https:
/ / github . com / modelica - tools / atom -
language-modelica (visited on 11/03/2016).

École Polytechnique Fédérale de Lausanne (2016). The
Scala Programming Language. URL: http://www.
scala-lang.org/ (visited on 11/01/2016).

ENSIME Contributors (2016). ENSIME. URL: http://
ensime.github.io/ (visited on 11/01/2016).

Facebook (2016). Hyperclick. GitHub Repository. URL:
https://github.com/facebooknuclide/
hyperclick (visited on 11/03/2016).

Fielding, R. and J. Reschke (2014). Hypertext Transfer Pro-
tocol (HTTP/1.1): Message Syntax and Routing. RFC
7230. IETF.

Fritzson, Peter et al. (2005). “The OpenModelica Mod-
eling, Simulation, and Development Environment”. In:
Proceedings of the 46th Scandinavian Conference on
Simulation and Modeling (SIMS). Trondheim, Norway.

GitHub (2016a). Atom. URL: https://atom.io (vis-
ited on 11/01/2016).

– (2016b). Autocomplete+ Package. GitHub Reposi-
tory. URL: https : / / github . com / atom /
autocomplete-plus (visited on 11/03/2016).

– (2016c). Electron — Build cross platform desktop apps
with JavaScript, HTML, and CSS. URL: http : / /
electron.atom.io/ (visited on 09/14/2016).

Höger, Christoph, Florian Lorenzen, and Peter Pepper
(2010). “Notes on the Separate Compilation of Model-
ica”. In: 3rd International Workshop on Equation-Based
Object-Oriented Modeling Languages and Tools. Ed. by
P. Fritzon et al. Oslo, Norway: Linköping Electronic
Conference Proceedings, pp. 43–53.

Hoppe, Marcel, Christopher Schölzel, and Andreas Do-
minik. MoDE – A Standalone Modelica Diagram Editor.
unpublished.

Justus, Nicola (2016). “Design and Implementation of a
Client/Server Application for Editing Modelica Inside
Various Text Editors”. BA thesis. Giessen, Germany:
Technische Hochschule Mittelhessen.

Justus, Nicola, Christopher Schölzel, and Andreas Dominik
(2017). “MoVE – A Standalone Modelica Vector Graph-
ics Editor”. In: 12th International Modelica Conference.
Prague, Czech Republic. to be published.

Microsoft Corporation (2016). Visual Studio Code -
Code Editing. Redefined. URL: https : / / code .
visualstudio.com/ (visited on 22/12/2016).

Modelon AB (2016). JModelica.org. URL: www .
jmodelica.org (visited on 11/01/2016).

Moolenaar, Bram (2016). welcome home : vim online. URL:
http://www.vim.org/ (visited on 12/21/2016).

Object Management Group (2012). Common Object Re-
quest Broker Architecture (CORBA). Part 1: CORBA
Interfaces. OMG document formal/2012-11-12. Ver-
sion 3.3.

Open Source Modelica Consortium (2016). OpenModelica.
URL: https://openmodelica.org (visited on
11/01/2016).

Samlaus, Roland (2015). “An Integrated Development En-
vironment with Enhanced Domain-Specific Interactive
Model Validation”. PhD thesis. Linköping University,
The Institute of Technology.

Schölzel, Christopher et al. (2016). Modelica Tool Ensem-
ble. GitHub Repository. URL: https://github.
com/orgs/THM-MoTE/ (visited on 12/22/2016).

Sublime HQ Pty Ltd (2016). Sublime Text: The text ed-
itor you’ll fall in love with. URL: https://www.
sublimetext.com/ (visited on 11/01/2016).

Mo|E A Communication Service Between Modelica Compilers and Text Editors

822 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132815

Traceability Support in OpenModelica using Open Services for

Lifecycle Collaboration (OSLC)

Alachew Mengist Adrian Pop Adeel Asghar

 Peter Fritzson

 PELAB – Programming Environment Lab, Department of Computer Science, Linköping University, Sweden,
{alachew.mengist, adrian.pop, adeel.asghar, peter.fritzson}@liu.se

Abstract

A common situation in industry is that a system model

is composed of several sub-models which may have

been developed using different tools. The quality and

effectiveness of large scale system modeling heavily

depends on the underlying tools used for different

phases of the development lifecycle. Available

modeling and simulation tools support different

operations on models, such as model creation, model

simulation, FMU export, model checking, and code

generation. Seamless tracing of the requirements and

associating them with the models and the simulation

results in the context of different modeling tools is

becoming increasingly important. This can be used to

support several activities such as impact analysis,

component reuse, verification, and validation.

However, due to the lack of interoperability between

tools it is often difficult to use such tools in

combination. Recently, the OSLC specification has

emerged for integrating different lifecycle tools using

linked data. In this paper we present new work on

traceability support in OpenModelica where the

traceability information is exchanged with other

lifecycle tools through a standardized interface and

format using OSLC. In particular, OpenModelica

supports automatic recording and tracing of modeling

activities such as creation, modification, and

destruction of models, import model description XML,

export of FMUs, and creation of simulation results.

Keywords: OpenModelica, traceability, OSLC, tool
interoperability, tool integration, model management,

Modelica

1 Introduction

Modeling and simulation tools have become

increasingly used for industrial applications. Such tools

support different activities in the modeling and

simulation lifecycle, like specifying requirements,

model creation, model simulation, Functional Mock-up

Unit (FMU) export (Blochwitz et al, 2011; FMI-

Standard.org, 2014), model checking, and code
generation. However, the heterogeneity and complexity

of modern industrial products often require special

purpose modeling and simulation tools for different

phases of the development life cycle. Seamless

exchange of models between different modeling tools

is needed in order to integrate all the parts of a

complex product model throughout the development

life cycle.

During the past decade, the Open Services for

Lifecycle Collaboration (OSLC) specifications (Open-

services.net, 2008) have emerged for integrating

development lifecycle tools using Linked Data (Heath

and Bizer, 2011). For traceability purposes, in

particular the OSLC Change Management specification

is relevant. In earlier work (Elaasar and Neal, 2013)

OSLC has successfully been demonstrated for

integration of modeling tools in general, and

traceability in particular.

OpenModelica (Fritzson et al, 2006) is an open

source modeling, simulation, and optimization tool for

Modelica (Modelica Association, 2012; Fritzson, 2014)

language. The OpenModelica Connection Editor

OMEdit (Asghar et al, 2010) is a graphical Modelica

model editing and simulation tool. It supports model

creation, deletion, FMU export/import, textual and

graphical model editing including connections

drawing, simulation, plotting, and documentation

presentation. In the previous version of OpenModelica

(Pop et al, 2014) the compiler supports traceability in

terms of tracing generated C code back to the

originating Modelica source code, but not in the OSLC

sense, and mostly used for debugging.

In this paper we present new traceability support in

OpenModelica where the traceability information is

exchanged with other lifecycle tools through a

standardized interface and format using OSLC. In

particular, OpenModelica supports automatic recording

and tracing of modeling activities such as creation,

modification, and destruction of models, import of

model description XML, export of FMUs, and creation

of simulation results to link models from various tools.
OpenModelica supports simple queries (traces to and

traces from) to present the traceability information to

the user.

The rest of this paper is structured as follows: In

Section 2 an overview of OSLC is given. The
traceability design and architecture is presented in

Section 3. An Example of integrated tools to trace

DOI
10.3384/ecp17132823

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

823

artifacts created during the system development

process is presented in Section 4. Section 5 describes

the traceability and model management workflow in

OpenModelica. The prototype implementation is

described in Section 6. Conclusions and future work

are presented in Section 7.

2 Open Services for Lifecycle

Collaboration (OSLC)

Open Services for Lifecycle Collaboration (OSLC)

(Open-services.net, 2008) is an open source initiative

for creating a set of specifications that enables

integration of development life cycle tools (e.g.,

modeling tools, change management tools,

requirements management tools, quality management

tools, configuration management tools). The goal of

OSLC is to make it easier for tools to work together by

specifying a minimum amount of protocol without

standardizing the behavior of a specific tool.

The OSLC specifications use the Linked Data model

to enable integration at the data level via links between

tool artifacts defined as Resource Description

Framework (RDF) (Manola and Miller, 2004)

resources (beside other possible representations such as

XML, JavaScript Object Notation (JSON) (json.org,

2016), Atom, and Turtle). The resources are identified

by HTTP URIs. A common protocol to perform

creation (HTTP POST) and retrieval (HTTP GET),

update (HTTP PUT) and delete (HTTP DELETE)

operations on resources is also specified.

3 Traceability Design and

Architecture

The traceability design and architecture is mainly being

developed in the INTO-CPS project (into-cps.au.dk,

2015) which contains a set of tasks. One of these is the

design of traceability and model management with the

following goals (Lausdahl et al, 2016):

 Checking the realization of requirements in models

 Enabling collaborative work by connecting

artifacts and knowledge from different users

 Decreasing redundancy by connecting different

tools to a single requirements source and allowing

a system-wide view that is not only limited to

single tools

The Provenance (PROV) (Moreau et al, 2013) and

OSLC standards presented in (Fitzgerald et al, 2015)

are used to support traceability activities. PROV is a

set of documents built on the notation and relation of

entities, activities, and agents.

The design and architecture of the traceability-

related tools has recently been developed in (Lausdahl

et al, 2016) and is shown in Figure 1. Any modeling

tool written in any programming language can use

these traceability standards to support the traceability

of activities performed within the tool and interact with

other tools.

Figure 1. Schematic architecture of the traceability-

related tools.

As depicted in Figure 1, the architecture is divided

into three parts:

 Modeling Tools – The modeling tools send

traceability information from activities that are

performed within the tools (e.g., model creation,

modification, import model description in XML) to

the daemon.

 Daemon – The daemon provides an OSLC

interface compliant with RESTful (Richardson and

Ruby, 2007) to store the traceability information

into the database and retrieve the traceability data

from the database. It is launched and terminated by

modeling tools.

 Neo4j Graph Database – The Neo4j database

(Neo Technology, Inc, 2007) is a graph database to

store the OSLC triples that make up the traceability

data.

4 An Example of Integrated Tools for

Cyber-Physical Model Development

OpenModelica has been successfully integrated with

the INTO-CPS tool chain to trace artifacts created

during the system development process from high level

requirements to simulation results. The tools involved

are Overture (Larsen et al, 2010), 20-sim (Controllab

Products B.V, 2013), Modelio (Favre, 2005) and RT-

Tester (Verified Systems International GmbH, 2012).

The tool chain as shown in Figure 2 is defined by the

connections between the system architecture and the

simulation via the model description XML file and the

FMU.

The SysML Connection diagram defines the

components of the system and their connections. The

internals of these block instances are created in the

various modeling tools and exported as FMUs. The

modeling tools support importing the interface

definition (ports) of the blocks in the Connection

diagram by importing a modelDescription.xml file

containing the block name and its interface definition

linked with requirements. All tools are storing
information in Git and sending information about

existing and created artifacts to the global database.

Traceability Support in OpenModelica Using Open Services for Lifecycle Collaboration (OSLC)

824 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132823

5 Traceability and Model

Management in OpenModelica

In the new work reported in this paper, OpenModelica

has been extended with support of traceability in the

OSLC sense, where traceability information is

exchanged with external tools through a standardized

interface and format. The implementation is based on

an architecture and a common interface defined in

(Lausdahl et al, 2016) for exchanging traceability

information.

The modeling activities that can be recorded

automatically and traced within OpenModelica are:

 Model description XML import (linked with

requirements)

 Model creation

 Model modification

 Model destruction

 FMU export

 Simulation result creation

The complete workflow for traceability artefacts within

OpenModelica and the different components that rely

on are shown in Figure 3.

The following summarizes the main workflow that

could be used to create and record traceability

information in OpenModelica during cyber-physical

model development process.

1. Commit model file entity to Git repository and

record the Git-hash

2. Create URIs of the activity based on the Git-hash

3. OSLC triples describing the activity are generated

using the URIs

4. OSLC triples are sent to the traceability Daemon

5. Retrieve the traceability information (traces to and

traces from)

The traceability information is represented in JSON

format. The modeling activities described by OSLC

triples represented in JSON format are sent from

OpenModelica to the daemon. These traces are then

sent through the daemon to the Neo4j database, where

they are stored. In order to view and analyze

traceability data, this is later retrieved (traces to and

traces from) from OpenModelica, through the

appropriate queries from the daemon to the database.

Figure 2. An Example of integrated tools to trace artifacts created during the system development process (Bandur et al

, 2016).

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132823

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

825

6 Prototype Implementation

We have implemented a prototype to demonstrate the

idea of exchanging traceability information for

integrating lifecycle modeling tools using OSLC. The

prototype is implemented based upon the design and

architecture presented in Section 3.

As mentioned, the implementation of this prototype

is an extension of OMEdit (Asghar et al, 2010) which

is implemented in C++ using the Qt Framework (Nokia

Corporation, 2011) graphical user interface library. For

presentation reasons, we have grouped the prototype

functionality into three categories: importing model

description XML, model management with Git

integration, and traceability support using OSLC,

which are described in the following subsections.

6.1 Import Model Description in XML

As a preparation for the extension to support tracing

for importing modelDescription.xml interface files, we

extended OpenModelica to support importing

modelDescription.xml (See Figure 4).

Figure 4. A screen shot of the model description XML

import operation.

OpenModelica can import model description XML

interface files (linked with requirements) created using

other system architectural modeling tools and create

Figure 3. Workflow of traceability of artifacts during the system development process in OpenModelica.

Traceability Support in OpenModelica Using Open Services for Lifecycle Collaboration (OSLC)

826 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132823

Modelica models from this information. The result is a

generated file with a Modelica model stub containing

the inputs and outputs specified in the model

Description.xml file. Then the user can create a

complete model using the GUI via drag and drop in the

editor. Hence, the traceability chain within

OpenModelica traces models linked with requirements

through model description xml import, model creation,

model modification, FMU export and simulation

results.

6.2 Model Management with Git Integration

One of the objectives of the traceability tooling is to

manage the development process in terms of modeling

activities within the modeling tools. In order to achieve

this objective access to the version control system is

required in OpenModelica. Therefore the

OpenModelica Connection Editor OMEdit has been

enhanced to support Git version control as shown in

Figure 5.

The OMEdit Git integration is currently in an early

stage of development but already supports some basic

functionality (See Figure 5) such as staging modified

tracing operations on files for commit, committing, and

reverting changes. It is useful to provide viewing of

status and version history which can be used for

creating the resource URIs for the modeling activities

on each new commit.

The implemented prototype also allows to create a

local Git repository by selecting Git -> Create New

Repository from the menu bar. Since the URI, as

presented in (Fitzgerald et al, 2015) is the combination

of the Git-hash and the unique path for every file in the

project, creating a Git repository for traceability

purposes automatically adds a structure (See the left

part of Figure 5) for models, simulation results, FMUs,

and model description XML files to the Git repository.

6.3 Traceability Support in OpenModelica

The traceability support in OpenModelica provides a

graphical user interface to interact with other lifecycle

modeling tools.

As already mentioned in Section 4, OpenModelica

supports traceability in the OSLC sense, where

traceability information is exchanged with external

tools through a standardized interface and format. The

implementation is based on the architecture and a

common interface defined in (Lausdahl et al, 2016) for

exchanging traceability information.

OpenModelica imports the modelDescription.xml

and creates a Modelica model according to the FMU

interface. The generated Modelica model is completed

with behavior for the SysML block and the final model

is exported in the FMU form. The generated FMU is

then used in a whole system simulation connected

according to the SysML connection diagram. The

Figure 5. GUI of Git Integration in OpenModelica and functions available to create traceability URI.

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132823

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

827

FMU master simulation algorithm component performs

the simulation via the INTO-CPS App. This whole

chain is traced using OSLC.

We have designed a graphical user interface shown

in Figure 6 which allows the user to record the

traceability information and send to the Daemon

(OSLC triples in JSON format), describing the activity

using the URIs generated in the GUI shown in Figure

5. The PROV and OSLC relations that are mainly used

in this work can be found in (Fitzgerald et al, 2015).

Figure 6. GUI to send traceability information to daemon.

These traces are then sent through the daemon to the

database via HTTP POST http://localhost:8080/

traces/push/json, where they are stored. Figure 7 shows

an example of traceability information sent from

OpenModelica to the daemon and visualized in the

Neo4j database.

Entities (e.g. Modelica files, FMUs,

modelDescription XML file) are shown in green,

actions (e.g. model creation, FMU export,

modelDescription XML import) are shown in yellow,

agents (e.g. users with the names "Alachew",
“Adrian”, “Peter”, and “Adeel”) are shown in blue,

and their relationships “what come from what” and

“what used what” (e.g. “wasGeneratedBy”,

“wasDerivedFrom”, “usedTool”) are shown with red

arrows.

In order to view and analyze traceability data, we

have also designed a graphical user interface shown in

Figure 8 which allows the user to query traceability

information (traces to and traces from) from the

daemon to the database (via HTTP GET):

 http://localhost:8080/traces/from/<URI>/json and

 http://localhost:8080/traces/to/<URI>/json

Figure 7. An example of traceability information sent from OpenModelica to the daemon and visualized in the Neo4j

database.

Traceability Support in OpenModelica Using Open Services for Lifecycle Collaboration (OSLC)

828 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132823

Figure 8. GUI to query traceability information (traces to

and traces from) from Neo4j database.

7 Conclusions and Future Work

This paper has presented a framework for traceability

and model management in OpenModelica, and its

integration with the Git version control system.

The new version of OpenModelica supports

traceability in the OSLC sense, where traceability

information is exchanged with external tools through a

standardized interface and format. The Modeling

activities that can be recorded automatically within

OpenModelica and traced are import of model

description XML linked with requirements, creation of

models, modification of models, destruction of Models,

export of FMUs, and creation of simulation results.

A first prototype to query traceability information

(traces to and traces from models or simulation results)

from the database and display to end-users in JSON

format is also complete. As future work, we also intend

to extend the OpenModelica tool to support

visualization and presentation of the traceability data

viewed both in the form of graphs and trees.

The OpenModelica model management with Git

integration is currently in an early stage of

development but is already being able to support end-

users to trace back all steps of the modeling process

and to revert each step in the development history, and

also model collaboration between end-users. Ongoing

work is focused on having fully functional Git

integration including showing two versions of the same

model in parallel.

Future work also involves computing the impact of

two different versions of the same model on simulation

results and merging the models in way that the

resulting model can be valid without modification.

Acknowledgments

This work has been supported by the European Union

in the H2020 INTO-CPS project. Support from

Vinnova in the ITEA3 OPENCPS project has been

received. The OpenModelica development is supported

by the Open Source Modelica Consortium. Special

thanks to Kenneth Lausdahl, Peter Niermann, Jos Höll,

Carl Gamble, Oliver Möller, Etienne Brosse, Tom

Bokhove, and Luis Diogo Couto for collaboration and

valuable input to traceability related tools design.

References

Adeel Asghar, Sonia Tariq, Mohsen Torabzadeh-Tari, Peter

Fritzson, Adrian Pop, Martin Sjölund, Parham Vasaiely,

and Wladimir Schamai. An Open Source Modelica

Graphic Editor Integrated with Electronic Notebooks and

Interactive Simulation. In Proc. of the 8th International

Modelica Conference 2011, pp. 739–747. Modelica

Association, March 2011.Linköping University, Sweden,

2010.

Victor Bandur, Peter Gorm Larsen, Kenneth Lausdahl,

Casper Thule, Anders Franz Terkelsen, Carl Gamble,

Adrian Pop, Etienne Brosse, Jrg Brauer, Florian Lapschies,

Marcel Groothuis, Christian Kleijn, and Luis Diogo Couto.

INTO-CPS Tool Chain User Manual. Technical report,

INTO-CPS Deliverable, D4.2a, December 2016.

Torsten Blochwitz et al. The Functional Mockup Interface

for Tool independent Exchange of Simulation Models. In

Proceedings of the 8th International Modelica Conference,

Dresden, Mar. 2011. doi: 10.3384/ecp11063105.

Controllab Products B.V. Modelling and simulation software

package for mechatronic systems http://www.20sim.com/,

January 2013.

Maged Elaasar and Adam Neal. Integrating Modeling Tools

in the Development Lifecycle with OSLC: A Case Study,

pages 154-169. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2013.

Jean-Marie Favre. Foundations of Model (Driven) (Reverse)

Engineering: Models – Episode I: Stories of The Fidus

Papyrus and of The Solarus. In Language Engineering for

Model-Driven Software Development, March 2005.

John Fitzgerald, Carl Gamble, Richard Payne, and Ken

Pierce.Methods Progress Report 1. Technical report,

INTO-CPS Deliverable, D3.1b, December 2015.

FMI-Standard.org (2014). Functional Mock-up Interface for

ModelExchange and Co-Simulation Version 2.0.

https://www.fmi-standard.org/ (accessed: 10th of

December 2016).

Peter Fritzson. Principles of Object Oriented Modeling and

Simulation with Modelica 3.3: A Cyber-Physical

Approach. 1250 pages. ISBN 9781-118-859124, Wiley

IEEE Press, 2014.

Peter Fritzson, Peter Aronsson, Adrian Pop, Hakan Lundvall,

Kaj Nyström, Levon Saldamli, David Broman, Anders

Sandholm. OpenModelica – A Free Open-Source

Environment for System Modeling, Simulation, and

Teaching. Proceedings of the 2006 IEEE Conference on

Computer Aided Control System Design, Munich,

Germany, October 4–6, 2006.

Tom Heath and Christian Bizer (2011) Linked Data:

Evolving the Web into a Global Data Space (1st edition).

Synthesis Lectures on the Semantic Web: Theory and

Technology, 1:1, 1-136. Morgan & Claypool, 2011. doi:

10.2200/S00334ED1V01Y201102WBE001.

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132823

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

829

into-cps.au.dk (2015). Integrated Tool Chain for Model-

based Design of Cyber-Physical Systems. http://into-

cps.au.dk/ (accessed: 10th of December 2016).

json.org. JavaScript Object Notation. http://www.json.org/

(accessed: 10th of December 2016).

Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John

Fitzgerald, Kenneth Lausdahl, and Marcel Verhoef. The

Overture Initiative – Integrating Tools for VDM.

SIGSOFT Softw. Eng. Notes, 35(1):1–6, January 2010.

Kenneth Lausdahl, Peter Niermann , Jos Höll , Carl Gamble

,Oliver Möller , Etienne Brosse , Tom Bokhove , Luis

Diogo Couto , Adrian Pop , and Christian König. INTO-

CPS Traceability Design. Technical report, INTO-CPS

Deliverable, D4.2d, December 2016.

Frank Manola and Eric Miller, editors (2004). RDF Primer.

W3C Recommendation. World Wide Web Consortium.

https://www.w3.org/TR/2004/REC-rdf-primer-20040210/

(accessed: 10th of December 2016).

Modelica Association (2012). Modelica: A Unified Object

Oriented Language for Physical Systems Modeling,

Language Specification version 3.3. https://modelica.org/

(accessed: 10th of December 2016).

Luc Moreau, Paolo Missier, James Cheney and Stian

Soiland-Reyes, editors and contributors (2013): An

Overview of the PROV Family of Documents.

https://www.w3.org/TR/prov-n/ (accessed: 10th of

December 2016).

Neo Technology, Inc (2007). Neo4j Database.

https://neo4j.com/ (accessed: 10th of December 2016).

Nokia Corporation (2011). Qt Project. https://www.qt.io/

(accessed: 10th of December 2016).

Open-services.net (2008): Open Services for Lifecycle

Collaboration – Lifecycle Integration Inspired by the Web.

http://open-services.net/ (accessed: 10th of December

2016).

Adrian Pop, Martin Sjölund, Adeel Ashgar, Peter Fritzson,

and Francesco Casella. Integrated Debugging of Modelica

Models. Modeling, Identification and Control,

35(2):93{107, 2014.

Leonard Richardson and Sam Ruby. RESTful Web Services

(First ed.), O'Reilly, 2007.

Verified Systems International GmbH, Bremen, Germany.

RTTester Model-Based Test Case and Test Data Generator

– RTTMBT: User Manual, 2015. https://www.verified.de/

products/model-based-testing/, Doc. Id. Verified-INT-

003-2012.

Traceability Support in OpenModelica Using Open Services for Lifecycle Collaboration (OSLC)

830 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132823

A Simulation Environment for Efficiently Mixing Signal Blocks
and Modelica Components

Ramine Nikoukhah Masoud Najafi Fady Nassif

ALTAIR ENGINEERING, FRANCE, ramin@altair.com

Abstract
There exist several specialized tools that provide environ-
ments for the development and simulation of either pure
Modelica models or pure signal based models. These en-
vironments have each their own advantages and flaws.
solidThinking ActivateTM has been developed to mix
these domains and take advantage of both of these ap-
proaches to system modeling. This paper presents this
mixed Signal-Modelica environment, and in particular the
efforts and challenges faced in its development.
Keywords: Modelica tool, Signal based tool, FMI

1 Introduction
The Modelica R© language1 and tools are successfully used
for modeling physical systems in industrial applications.
This success is primarily due to the ability of Modelica to
express mathematical equations corresponding to physical
phenomena in a natural way (Modelica Association; Peter
Fritzson).

For modeling complete systems, for example systems
including controllers, Modelica provides other features
that makes it go beyond a declarative language for ex-
pressing equations. Data types other than reals, algorithm
sections, Matlab-like matrix operations are introduced to
dispense of the use of other tools, in particular Matlab R©

and Simulink R© for handling models with control compo-
nents. Yet, still in many applications, the design process
requires using Modelica to model the physical plant and
exporting the model in the Matlab/Simulink environment
for controller design. The reason for this is in part the
limitations of the Modelica language, which is not well
suited for creating block diagrams, such as the ones used
in control applications, for which specialized tools such as
Simulink, Scicos (Campbell et al., 2010), and solidThink-
ing ActivateTM have been developed.

In an attempt to provide an environment for modeling
efficiently both blocks and physical components, in 2002
Modelica was introduced in the Scicos environment in the
framework of the publicly funded project RNTL (Réseau
National des Technologies Logicielles) Simpa (Simula-
tion pour le Process et l’Automatique). This Scicos ex-
tension (Najafi et al., 2004, 2005a,b; Nikoukhah, 2006;
Nikoukhah and Furic, 2009) allowed Scicos users to

1http://www.modelica.org.

mix both standard Scicos blocks and Modelica compo-
nents in the same environment. A similar extension was
later introduced in Simulink with the introduction of the
SimscapeTM language (Simscape).

Scicos/Modelica environment based on the Modelicac
compiler (Furic, 2007) provides a versatile modeling envi-
ronment, especially thanks to the Coselica library2. Even
though this extension allows Scicos users to use some
Modelica components in the construction of their models,
it has many limitations. For example Modelica libraries
cannot be automatically imported and used in Scicos.

Activate is a professional simulation tool developed by
Altair Engineering based on the open source academic
simulation software Scicos. As such, it inherits many
of Scicos features including the close integration with a
matrix-based scripting and programming language. In
Activate, the HyperMath Language (HML) has replaced
Scilab3 and NSP4. And for the Modelica extension, Scicos
Modelicac has been replaced with the MapleSimTM com-
piler developed by Maplesoft5 in Activate.

Activate and Scicos both use the same mechanism to
integrate Modelica: at compile time, they aggregate Mod-
elica components and create a Modelica program which
is then processed by the Modelica compiler providing
the C code corresponding to the simulating function of a
block replacing these Modelica components in the origi-
nal model6. The Activate environment however provides
specific features that has allowed taking the Modelica in-
tegration beyond what is available today in Scicos. This
paper presents this new modeling environment.

2 Motivations
It is widely agreed upon that for many applications Mod-
elica today does not provide a viable alternative to block-
based modeling tools such as Simulink, Scicos and Ac-
tivate. The limitations imposed by the language make it
difficult to provide the types of blocks that are needed

2http://www.kybdr.de/software.
3http://www.scilab.org
4https://cermics.enpc.fr/~jpc/nsp-tiddly
5http://www.maplesoft.com
6A noteworthy difference is that in Scicos this simulation function

represents a DAE (Differential Algebraic Equations) forcing Scicos to
use a DAE solver, whereas in Activate the simulation function is pro-
vided as a model-exchange FMU representing ODEs. This difference
however is not relevant to the presentation here.

DOI
10.3384/ecp17132831

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

831

Figure 1. Different modules in Activate and their interactions.

to model control systems. For example creating a sim-
ple multiplexer block capable of concatenating a variable
number of vectors and scalars of different data types is
complicated in Modelica. Same is true for the summa-
tion block and many other basic mathematical operations
(Elmqvist et al., 2016).

Other limitations come from the lack of a powerful sup-
porting math environment. The computation of model pa-
rameters, post processing of the simulation results, etc.,
require access to math and engineering libraries, which
could in theory be developed or interfaced in Modelica,
but would require an enormous and lasting effort. In
short it would amount to developing alternatives to Mat-
lab, Scilab, HML, or Nsp, including their specialized tool-
boxes in control, signal processing, communication, opti-
mization, etc. Some Modelica tools already use other lan-
guages, for example Maple and Python, for such support.

A reasonable solution to this problem is to base the sim-
ulation environment on a “User Language”, preferably a
matrix-based mathematical language such as Scilab, Mat-
lab, Nsp, Octave, HML, or even on non-matrix based
languages such as Python and LUA. The key point is to
give users the ability to interact with the simulation model
through this language for anything from block/component
creation, model construction, parameterization, compila-
tion, code generation and simulation to data collection,
post processing, optimization, and more. The Scicos en-
vironment was developed in this spirit with Scilab as User
Language. Matlab is the User Language for Simulink and
Simscape.

A very interesting effort in this direction is under-
taken in (Elmqvist et al., 2016), where a complete re-

implementation of Modelica is considered with Julia7 as
User Language. This undertaking is very ambitious in that
the Underlying Language is also used for defining the dy-
namics of blocks and components. The Activate/Modelica
environment presented here is developed with this consid-
eration in mind and follows the spirit of Scicos but uses
HML as the Underlying Language. It does not go as far as
defining dynamics of blocks in HML (except for embed-
ded code generation purposes (Chancelier and Nikoukhah,
2015)); but rather it makes a clear distinction between the
block/model creation and compilation, and runtime sim-
ulation. Model creation, evaluation and compilation, and
in general anything that can be done before the start and
after the end of runtime simulation are based strongly on
the User Language. On the other hand the block dynamics
need not be based on the User Language. The “standard”
(Signal) Activate blocks have in general their runtime sim-
ulation functions expressed in C, and the equations of Ac-
tivate physical components are expressed in Modelica.

This approach allows the Activate/Modelica environ-
ment to take advantage of existing technologies: Acti-
vate (synchronous semantics, block libraries, compiler,
Simulink import (Weis, 2015) facility) and Modelica (ex-
isting Modelica compilers, in particular the MapleSim
compiler, and existing Modelica libraries such as MSL).

3 Activate/Modelica environment fea-
tures

Activate is not a Modelica tool per se; it cannot be used
conveniently to build Modelica libraries. Its objective is to
propose a unique harmonious environment to allow mix-
ing regular Activate blocks and Modelica components in a

7http://julialang.org.

A Simulation Environment for Efficiently Mixing Signal Blocks and Modelica Components

832 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132831

same model. The user interface and behavior of Modelica
blocks and regular Activate blocks are designed to be as
similar as possible without being too different from user
interface of other Modelica tools. The Modelica compo-
nents are seen as regular Activate block in this environ-
ment.

3.1 Modularity
A key architectural element in Activate is modularity. The
diagram in Figure 1 shows different modules that consti-
tute Activate. There are three main modules, the graphical
user interface, the interpreter language, and the Activate
engine. The graphical user interface and the interpreter
can be replaced with similar modules fairly easily. For ex-
ample the HML interpreter can be replaced with another
interpreter, and alternative user graphical interfaces (for
example javascript based tools) can be considered. The
other module that can easily be replaced is the Model-
ica compiler. Currently the MapleSim compiler is used.
In Scicos, Modelicac was used. Other compilers may be
considered in the future.

The modularity between the engine and the graphical
user interface is enforced by the usage of file based ex-
changes. The model, once edited is saved in an XML for-
mat and the engine uses this file to proceed with the com-
pilation and simulation. The modularity of the interpreter
is guaranteed through the specification of a set of APIs
for the exchange with the graphical user interface and the
engine.

3.2 Double layer implementation
In the Activate environment, a model is constructed using
blocks. The compiler however does not operate on these
blocks; it interacts with Atomic Units (AU). In many cases
a block is associated with a single AU, but not always: a
block may produce a network of AUs. The AU or AUs
produced by a block may depend on the values of the
block parameters. Specifically, the choice of the AU(s),
their parameters, and the topology of the network is spec-
ified by an HML function associated with the block based
on the values of the block parameters.

The ability to programmatically instantiate an AU or a
network of AU(s) is an elementary feature in Activate but
provides a particularly useful functionality in the context
of Modelica components, as it will be described later.

Atomic unit (AU)

An AU may be presented as a "basic" block, but this would
be misleading. An AU has ports that are connected to
links, just like a block. It has parameters, like a block, but
these parameters are not in general the block parameters.
Consider for example the Activate block that implements
a transfer function. The block parameters are the numer-
ator and the denominator coefficients of the transfer func-
tion. The AU associated with this block operates in time
domain and implements the dynamics based on the state-
space realization of the transfer function. The parameters

of the AU in this case are the A, B, C, D matrices, which
are computed by the HML function associated with the
block.

In general an AU is a computational unit providing
APIs to be used by the simulator. The APIs are C func-
tions that are called by the simulator at different stages
of the simulation: computation of the output, of the state
derivative, of the next discrete state, etc. But the AUs can
also be Modelica components. An AU may also be virtual.

The creation of AUs from Activates blocks based on
a User Language script is a process that does not have
an equivalent in standard Modelica or in Simulink (S-
Functions). This process, which provides a clear sepa-
ration between the model at the graphical layer and at the
compiler layer, has been first implemented in Scicos.

3.3 Modelica components
In Activate, Modelica components are Activate blocks and
treated as such in the graphical editor. They are also
treated similarly at the evaluation phase, prior to com-
pilation. This means that certain properties of Modelica
components that are coded as annotations are handled by
the corresponding Activate XML file and HML evaluation
script. These properties include in particular the graphical
properties and the parameter descriptions. When a Mod-
elica library is imported into Activate, these component
annotations are used to create the Activate blocks. These
annotations are never directly used in Activate.

So, having the Modelica component as an Activate
block means that all graphical features, parameter defini-
tions, code instantiations, ..., are done in the usual Activate
way. The use of Activate block to instantiate the Model-
ica components provides facilities that allows for example
the creation of components with variable number of ports
or different data types based on block parameters. The
Activate block is thus a lot more versatile than a standard
Modelica component; even the internal Modelica code of
the block/component can be customized. At the extreme
case, the Modelica code itself could become a block pa-
rameter.

On the graphical editor, the visible difference between
a regular Activate block and a Modelica Activate block is
that the latter has special (implicit) ports. No connections
can be made between these ports and other Activate port
types. Two special interface blocks are used to interface
the Modelica world with the regular Activate world. One
has an implicit input port and a regular output port and
the other, the opposite (see Figure 2). Such connections
are meaningful only if the the connection on the Modelica
side is of type Modelica Signal.

Figure 2. Special blocks for Modelica-Activate world interface

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132831

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

833

Importing Modelica libraries

The import of a Modelica library is done by the MapleSim
compiler, which creates HML scripts, the execution of
which create the corresponding Activate library. An Acti-
vate library is a collection of XML files, HML functions,
image icons and palettes. The MapleSim compiler also
uses the definition of component icons described in Mod-
elica language to generate image files (svg format) to
be used by Activate as block icons. Certain features such
as dynamical icons (icons changing during simulation) are
not supported.

Currently, most but not all MSL (Modelica Standard
Library) blocks are imported and integrated in Activate
palettes.

3.4 Model compilation
Compiling a model consists of producing a structure to be
used by the simulator. This structure contains all the in-
formation needed by the simulator that can be computed
before the start of the simulation. It contains in particular
type and size information, and scheduling tables specify-
ing the condition and the order in which AU computational
functions are to be called during simulation. The same
structure is used for code generation.

Model evaluation

The evaluation is the first phase of model compilation. In
this phase, the model parameters are evaluated and the
HML function associated with the blocks are executed
producing the network of AUs associated with the model.
Note that this network of AUs, which retains a hierarchical
structure, does not in general present a one to one corre-
spondence with the original block diagram model.

At the end of model evaluation phase, all model and
block scripts and parameters are removed. They are used
in this phase to construct the AUs and evaluate the numer-
ical values of their parameters. They are not available or
needed for the rest of the compilation process, which deals
exclusively with the network of AUs.

Model flattening

Model flattening is the second phase of the compilation.
The hierarchical network of AUs produced by the model
evaluation phase is converted into a flat network of com-
putational units. All virtual AUs are removed and all Mod-
elica AUs have been replaced with computational AUs (in
particular derived from an FMU produced by the Model-
ica compiler).

A simple example is provided in Figure 3. This model
contains an electrical circuit, modeled for the most part
using Modelica components. The regular Activate blocks
are the sine wave generator and the Scope. There are three
interfacing blocks connecting the Activate environment to
the Modelica environment.

The Modelica part is aggregated into a single block as
shown in Figure 4. This step is of course fully transparent
to the user and is presented here as an illustration of the

Figure 3. Simple Activate diagram containing Modelica com-
ponents.

way the mechanism operates. The newly created block
has one input and two outputs, as expected.

Figure 4. Equivalent Activate model after aggregation of Mod-
elica components.

The Modelica code corresponding to the Modelica part
is generated automatically by Activate and sent to the
Modelica compiler for compilation. The Modelica com-
piler then generates a corresponding FMU, which replaces
the Modelica part as shown in Figure 5. This step is of
course again transparent to the user and is presented here
as an illustration

Figure 5. Resulting regular Activate model with no Modelica
components.

Back-end compiler
In this phase, which consists of computing the scheduling
tables for the simulator, the structure contains no trace of
the Modelica components; they have been replaced with
computational AUs in the previous phase. So the introduc-
tion of the Modelica extension does not affect this phase.

4 Modelica integration through FMI
The way Activate handles the Modelica components is by
grouping them into a single Modelica model with inputs
and outputs that are clearly specified by special interfac-
ing blocks, as presented in the previous section. In the
Modelica code generated by the Activate compiler, the in-
terfacing blocks (shown in Figure 2) are instantiated as

Modelica.Blocks.Interfaces.RealInput
Modelica.Blocks.Interfaces.RealOutput.

The Modelica model is then compiled by the Modelica
compiler, which in turn generates a code executable in Ac-
tivate. This code is then imported in the Activate model as
an FMU to replace the Modelica part. The FMI has been

A Simulation Environment for Efficiently Mixing Signal Blocks and Modelica Components

834 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132831

chosen as the exchange format because it is a standard al-
ready supported both by Activate and MapleSim.

The FMI format is a rich interface format and quite
compatible with Activate and Modelica. There are how-
ever a few shortcomings that need to be considered. Some
challenges encountered in the usage of FMI standard in
this context is discussed in this section.

4.1 Choice of the FMI type: Model-Exchange
or Co-Simulation

The Modelica part of the Activate model is converted into
an FMU and imported as a regular Activate block. In the
exported FMU, both Model-Exchange and CoSimulation
implementations are available. Using the model-exchange
implementation allows taking advantage of different nu-
merical solvers of Activate. The co-simulation implemen-
tation is useful for complex models where different parts
of the model are needed to be simulated separately or even
in parallel. Currently only the model-exchange implemen-
tation is used in Activate.

4.2 FMI import preserving full output/input
dependency property

A challenge in importing the FMI generated from the
Modelica code (or more generally any FMI) in Activate
is the treatment of output/input dependencies. In the Ac-
tivate block (or more specifically its AU) output/input
dependencies are expressed as a vector of dependencies
specifying which inputs affect any of the outputs. So the
dependency is solely a property of an input port. The rea-
son is that an AU computes all of its outputs in the same
call, so all its dependent inputs must be up to date when
the call is made. An FMU on the other hand specifies
output/input dependencies as a matrix specifying which
output depends on which known variables including indi-
vidual inputs. The FMU provides routines that allow the
computation of output ports separately and take advantage
of variable caching.

A way to deal with this situation, which is the way the
Modelica extension is implemented in Scicos, is to simply
project the matrix of dependencies into a vector. This con-
servative approach properly assigns dependencies in Acti-
vate but "loses" information along the way. This may lead
in particular to detection of algebraic loops by the Acti-
vate compiler that are not true algebraic loops (artificial
algebraic loops). Even though there are ways to break al-
gebraic loops in an Activate model, it is not the best way
to deal with this situation. A very simple example that
illustrates this problem is shown in Figure 6.

After compiling the Modelica part, a model similar to
what is shown in Figure 7 is obtained in Activate. In the
generated FMU, there is a direct dependency between the
SignalCurrent input port (in) and the CurrentSensor
output signal (A). The dependency is depicted by a red
dashed line in Figure 7. If the dependency matrix is pro-
jected into a vector, both the output ports A and V are
considered depend on the input port in, which results in

Figure 6. A simple model mixing Modelica and Activate blocks

an artificial algebraic loop.

Figure 7. The model in Figure 6, after converting the Modelica
part into an FMU block.

There is no solution to this problem as long as the FMU
block implements a single AU. But as it was stated previ-
ously, Activate blocks can implement a network of AUs,
the topology of which can depend on block parameters. It
turns out that the matrix output/input dependency can be
properly implemented by a properly constructed network
of AUs to implement the FMU.

In this case the block parameters are provided by the
FMU XML file. By reading and parsing the XML inside
the FMU, the block generates a network of AUs, as shown
for example in Figure 8 in the case of a 2 input 4 output
FMU block. The network contains a central AU, always
present, and an AU associated with each output port. The
input dependency associated with an output is specified
in the AU associated with that output. In this particular
example it can be seen that the first output depends on
both inputs whereas the second output has no input de-
pendency, the third output depends only on the first input
and the last output depends on the second input.

The central AU includes the simulation APIs for state
derivative computation and discrete state updates and does
not have any input dependency. All the AUs in the net-
work use the same internal structure, which is instantiated
by the central AU. The central AU provides a pointer to
this structure to the other AUs through its output port.

In the case of the model in Figure 6, the network of
AUs is generated as in Figure 9. By using this network
to replace the FMU block, the resulting Activate model
contains no algebraic loop.

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132831

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

835

Figure 8. Automatically generated network of AUs from FMU
import for an FMU with two input and four output ports.

Figure 9. The network of AUs corresponding to the example in
Figure 6.

4.3 DAE support and constraints on states
The current FMI standard is powerful enough to be used
for implementing the Modelica extension in Activate for
many situations but some extensions would be particularly
useful.

Compiling complex Modelica models, in particular me-
chanical models, very often results in high index DAEs or
sometime ODEs and DAEs with constraints. Keeping the
constraints valid is important to avoid drift in the solu-
tion. In the current FMI specification, only ODEs are sup-
ported. Activate currently supports both DAEs, and ODEs
with constraints. But these solvers cannot be used for the
Modelica extension since the FMI does not support DAEs
and ODEs with constraints.

The DAE support is currently being considered for
FMI. ODEs with constraints, should also be considered.
If it is known that an ODE ẋ = f (x) satisfies a constraint
C(x) = 0, information that could be available in various
scenarios, then the solver should take advantage of this
information to reduce drift in the solution. The constraint
information may be provided as a residual function return-
ing the constraint value, i.e., C(x), or as a projection func-
tion such as JT (JJT)−1 where J = ∂C

∂x .
This FMI extension can be done in several ways. One

way would be to add one of these APIs to FMI interface:

fmi2Projection(fmiComponent c, double *J)
fmi2Constraint(fmiComponent c, double *C)

If the second API is used, then the number of con-
straints should also be declared as an attribute in the XML

file inside the FMU.
Another way is to add a new function to the set of FMI

APIs in order to bring back the solution on the constraint
after each completed integration step.

fmi2ApplyProjection(fmiComponent c)

This function would apply a near-minimal projection
to the continuous states in the model. This is of-
ten done via a Newton-based method, and terminates
when it achieves the desired precision. This method can
be applied on single-step solvers where memory of the
past solution is not used. It will be necessary to call
fmi2GetContinuousStates after the projection to ob-
tain the continuous states satisfying the solution. Having
this as a separate function allows the simulator to choose
when it is applied (e.g. at the end of an integration step,
internal to the step, after events, etc.).

A third way, which does not require adding a
new API, a projection is implicitly applied when
fmi2CompletedIntegratorStep is called by the sim-
ulator. This solution would work only with single-step
solvers. No error tolerance control can be used on the con-
straints in that case.

4.4 Handling input derivatives
Consider the simple example shown in Figure 10. In this
model the derivative of the input is required.

Figure 10. model requiring the derivative of inputs

When the time derivative of an input is required, the
derivative can be computed numerically inside the FMU,
but this does not always work for variable-step size solvers
since the derivative value is not necessarily stable as the
integrator step-size changes. Furthermore, at initial step or
just after an event that changes the internal model config-
uration, no derivative can be computed. If there are con-
straints that depend on these derivatives, the integration
step rapidly reduces to zero, stalling the simulation. In
FMI for CoSimulation, the derivative of inputs can be pro-
vided via the API fmi2SetRealInputDerivatives,
but nothing is available for ModelExchange FMI. The
only robust alternative currently is to add an extra input
port to provide the derivative of input from the environ-
ment, if available.

4.5 Using the Jacobian of the FMU
The numerical solvers often need the Jacobian of the
model for numerical integration. The Jacobian can ei-
ther be provided analytically or computed numerically. In

A Simulation Environment for Efficiently Mixing Signal Blocks and Modelica Components

836 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132831

complex models providing the analytical Jacobian is cru-
cial for obtaining reliable results. The FMU block8 may
provide directional derivatives of its state derivatives and
outputs with respect to its states and inputs. These direc-
tional derivatives can be used to compute the equivalent
linear model of the block. If an FMU block with nonlinear
dynamics defined as (1) provides its directional derivatives{

ẋ = f (x,u)
y = g(x,u), (1)

The matrices (A,B,C,D) as defined in (2) can be obtained
by repeated calls to fmi2GetDirectionalDerivative
function in FMI.

A = ∂ f
∂x B = ∂ f

∂u
C = ∂g

∂x D = ∂g
∂u

(2)

The (A,B,C,D) matrices are equivalent linear system of
the FMU block. The numerical solver, on the other hand,
needs the complete Jacobian of the entire model which
may be composed of other FMU blocks and other regular
Activate blocks. In order to obtain the complete Jacobian
of the model, Activate offers the following solutions.

• Computing a pure numerical Jacobian, i.e., ignoring
the local analytical linear system of blocks and com-
pute the complete Jacobian of the model using the
numerical differentiation method. This method usu-
ally works fine and it is fairly fast, but may fail for
complex stiff models.

• Mixing numerical and analytical Jacobian. In many
cases, the highly nonlinear part of the Jacobian of the
model is present in matrix A of the block. The ana-
lytically obtained matrix A of blocks may be used to
populate the Jacobian matrix of the model, then the
rest of the Jacobian matrix can be filled numerically.
This methods works fine, and is the default method
in Activate.

• Fully analytical method. This method which is more
complex than other two methods is useful if all
blocks provide their analytical equivalent linear sys-
tem matrices (A,B,C,D). Since this method does not
require calling the f (x,u) and g(x,u) function in (1),
it is useful when calling these functions is expensive.

5 Challenges
Activate is not a Modelica tool and cannot provide the
same Modelica functionalities as do pure Modelica tools
such as Dymola or OpenModelica. Modelica is an exten-
sion for the modeling and simulation environment Acti-
vate. Efforts have been made to provide a user-friendly
interface both for native Activate users as well as Model-
ica component users in this environment. There are cur-
rently a number of limitations in this extension.

8Only FMI-2.0 blocks provide directional derivative.

Modelica expressions, records and functions

The parameters of Modelica components present in an Ac-
tivate models follow the scoping rules of Activate. So the
records and functions used in the definition of parameters
in Modelica are not always consistent with the way Acti-
vate handles parameters. This creates a complex problem
for importing Modelica components. A translator of ex-
pressions is being developed to deal with this issue. For
importing models, the records should be converted into
HML scripts to be placed in Activate diagram contexts.
This is a complex task, in general, but solutions have been
found in special cases.

Initial equations

Initial equations in Modelica are global information that
are not related to a specific component. Adding such in-
formation, even in specialized Modelica tools, cannot be
easily done in the user interface and must be added textu-
ally. Since Activate does not provide a textual interface,
the addition of initial equations currently is not possible.
Various solutions are being considered but for the moment
Activate does not allow the definition of initial equations
in models. Initial equations in library components are of
course handled by the compiler as usual.

6 Conclusion
Activate provides a complete environment for modeling
systems with both physical components and signal based
control parts where the physical components are modeled
in Modelica. The integration of Activate and Modelica
is done by respecting the semantics of the two languages.
But there remain issues for going towards full Modelica
support. This paper has presented the Modelica extension
in Activate and the issues that remain open.

References
Stephen L. Campbell, Jean-Philippe Chancelier, and Ramine

Nikoukhah. Modeling and Simulation in Scilab/Scicos with
ScicosLab 4.4. Springer-Verlag New York, 2010. ISBN 978-
1-4419-5526-5.

Jean-Philippe Chancelier and Ramine Nikoukhah. A novel code
generation methodology for block diagram modeler and sim-
ulators scicos and VSS. CoRR, abs/1510.02789, 2015. URL
http://arxiv.org/abs/1510.02789.

Hilding Elmqvist, Toivo Henningsson, and Martin Otter. Sys-
tems modeling and programming in a unified environment
based on julia. In Proceedings of the ISoLA 2016 - 7TH Inter-
national Symposium On Leveraging Applications of formal
methods, verification and validation; 2016, pages 198–217,
2016.

Sébastien Furic. Using modelica under scilab/sci-
cos, 2007. URL http://www.scicos.org/
ScicosModelica/Formation/Documentation/
IntroductiontoModelica.pdf.

Session 11A: Modelica Tools & GUIs

DOI
10.3384/ecp17132831

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

837

Peter Fritzson. Principles of Object-Oriented Modeling and
Simulation with Modelica 3.3: A Cyber-Physical Approach.
Wiley, 2014. ISBN 9781-118-859124.

Modelica Association. The Modelica Language Spec-
ification, Version 3.3 Revision 1, 2014. URL
https://www.modelica.org/documents/
ModelicaSpec33Revision1.pdf.

Masoud Najafi, Azzedine Azil, and Ramine Nikoukhah. Ex-
tending scicos from system to component level simulation.
In Proceedings of the ESMc2004 international Conference;,
Paris; France; October, 2004, 2004.

Masoud Najafi, Sébastien Furic, and Ramine Nikoukhah. Sci-
cos: a general purpose modeling and simulation environment.
In Proceedings of the 4th International Modelica Conference;
Hamburg; 2005, 2005a.

Masoud Najafi, Ramine Nikoukhah, Serge Steer, and Sébastien
Furic. New features and new challenges in modeling and sim-
ulation in scicos. In Proceedings of the IEEE conference on
control application; Toronto; Canada; August, 2005, 2005b.

Ramine Nikoukhah. Challenges in integrating modelica in the
hybrid system formalism scicos. In Claude Gomez Shi Li,
Long-Hua Ma, editor, The Oxford Handbook of Innovation.
Tsinghua University Press, Beijing, 2006.

Ramine Nikoukhah and Sébastien Furic. Towards a full inte-
gration of modelica models in the scicos environment. In
Proceedings of the 7th International Modelica Conference;
Como; Italy; 20-22 September 2009, pages 641–645, 2009.

Simscape. Physical systems simulation. URL https://www.
mathworks.com/products/simscape.html.

Pierre Weis. Simport: A simulink model importer for scicos.
In Proceedings of The 3rd International Workshop on Simu-
lation at the System Level for Industrial Applications; Ecole
Normale Supérieure de Cachan, France, October, 2015.

A Simulation Environment for Efficiently Mixing Signal Blocks and Modelica Components

838 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132831

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of

Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United

States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this

manuscript, or allow others to do so, for United States Government purposes.

Component Development for Nuclear Hybrid Energy Systems

M. Scott Greenwood1
1Oak Ridge National Laboratory, USA, greenwoodms@ornl.gov

Abstract
A Nuclear Hybrid Energy System (NHES) uses a

nuclear reactor as the basic power generation unit. The

power generated is then used by multiple customers as

either thermal power, electrical power, or both. The

definition and architecture of an NHES can be adapted

based on the needs and opportunities of a given local

market. For example, locations in need of potable water

may be best served by coupling a desalination plant to

the NHES. Similarly, a location near an oil refinery may

have a need for emission-free hydrogen production.

Using the flexible, multi-domain capabilities of

Modelica, Argonne National Laboratory, Idaho

National Laboratory (INL), and Oak Ridge National

Laboratory (ORNL) are investigating the dynamics

(e.g., thermal hydraulics and electrical

generation/consumption) and cost of such a hybrid

system. This paper examines ongoing NHES work

including the modeling organizational layout,

highlighting a few subsystems, describing some of the

component development and providing results from a

study of multi-dimensional conduction model

development.

Keywords: thermal hydraulic, nuclear, economics,
hybrid systems

1 Introduction

Electricity markets in the United States are undergoing

significant shifts in the traditional market structure.

Factors such as mandates for renewable energy, overall

carbon reduction, and the emergence of cheap natural

gas have strained the profitability of primary baseload

electricity suppliers, including nuclear power plants.

As the typical nuclear power generating station

traditionally has only one customer—the grid—

diversification of the customer portfolio in an integrated

or hybrid manner may be advantageous. A

representative NHES is depicted in Figure 1.

Figure 1. A representative NHES demonstrating a

possible coupling scenario of both thermal and electrical

energy with additional systems (e.g., an industrial process

and energy storage system) (Bragg-Sitton et al. 2015).

A hybrid energy system approach, coupling base load

energy suppliers and energy customers (thermal and/or

electric), may be profitable and preferred in future

energy markets. Possible scenarios include producing

products that are more profitable than electricity or

mitigating the possible load-following need—and

subsequent cost increases—that significant renewable

penetration may impose on nuclear power plants. For

example, Figure 2 is a representative summary of the

Electric Power Research Institute’s (EPRI) recent study

on the impact of renewable energy generation on grid

variability (EPRI, 2015). Given current economic and

political trends, future electrical grids will require

highly variable operations that impose significant

technical and economic challenges for power producers.

Introducing hybrid energy systems may help create a

path to achieving highly variable markets that are

economically sound and do not compromise grid

reliability.

This paper presents background information on the

methodology being developed to evaluate the economic

merit of an NHES, with a focus on the development of

dynamic multiphysics models in Modelica that play a

key role in the economic evaluation. Additional

information beyond the scope of this paper can be found

in ORNL, 2016a, ORNL, 2016b, and ORNL, 2017.

DOI
10.3384/ecp17132839

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

839

2 The Tightly Coupled NHES

The reference hybrid energy system is referred to as a

“tightly coupled” system. This coupling indicates that

both the thermal and the electrical energy from the base

load power supplier are integrated with one or more

systems (e.g., industrial plant). The Modelica-based

system under development is presented in Figure 3. The

numbers in the figure correspond to the brief

descriptions in Table 1.

Figure 3. The tightly coupled NHES under development.

The blue lines indicate fluid, the red lines indicate

electricity, and the yellow lines indicate sensor/control

signals.

The dynamic model is used to provide non-economic

figures of merit—such as the ability to meet specified

energy demands and overall system stability and

reliability—to supplement the economic cost

evaluation.

Table 1. Description of the various subsystems

comprising a tightly coupled hybrid energy system.

Identifier Component Description Example

1 Primary Heat

System

Baseload heat and

power

Nuclear reactor

2 Energy

Manifold

Diverts energy to

subsystems

Steam distribution

3 Balance of

Plant

Primary electricity

producer

Turbine and condenser

4 Industrial

Process

Non-electric

commodity revenue

stream

Steam electrolysis or

desalination

5 Energy

Storage

Energy buffer to

increase overall

system robustness

Batteries and firebrick

6 Secondary

Energy

Energy makeup Gas turbine make-up

7 Switchyard Electrical load

distributor

Electricity distribution

8 Electrical

Grid

Electrical customer Large/small markets

9 Control

Center

Hub for sub-system

controls

Control/supervisory

systems

2.1 Economic Evaluation: Cost

An economic evaluation of NHESs will be performed to

investigate the minimum cost a hybrid system. This

information informs decision makers on the planning

and development of business/government agendas. To

evaluate the economic cost of a given hybrid system, the

Modelica model is coupled to the Reactor Analysis and

Virtual control ENvironment (RAVEN), a multi-

purpose software framework developed by INL that

allows for dispatching different software functionalities,

including surrogate model generation and optimization

routines (Rabiti et al., 2012). As outlined in Figure 4,

RAVEN supplies the dynamic model demand time

histories for specific subsystems along with subsystem

capacities (e.g., industrial process production capacity).

The system control logic then operates the overall

system to meet the supplied demand. At the end of the

simulation, various figures of merit (e.g., ability to meet

demand, reliability based on operation of components)

are passed to RAVEN. RAVEN then creates simplified

surrogate models of the dynamic system and performs a

cost-based optimization. This optimization generates

2050

Figure 2. Prediction of electrical grid variability for regions of the United States in 2050.

The color of the cells represents the variability. Regions approaching red and blue have

demands that will be difficult and expensive for the electrical grid to meet—especially

power producers operating under traditional market paradigms (EPRI, 2015).

Component Development for Nuclear Hybrid Energy Systems

840 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132839

new capacity parameters, and the process repeats until

convergence to an optimized system is achieved. Using

a high-performance computing cluster, this process is

applied for many different cases in parallel.

Figure 4. Modelica NHES dynamic model and RAVEN

cost optimization process diagram (ORNL, 2016a).

2.2 Electricity Demand Profile

The specific energy demand profiles that provide set

points to the dynamic model capture the variability of a

specific energy market. For example, in a region with

large solar power installations, the net electricity

demand—consumer demand minus renewable supply—

profile would show significant reductions in demand in

the middle of the day—the period with greatest

insolation. Figure 5 demonstrates a characteristic

demand profile and the associated contributions of each

of an example set of power producers over the course of

a year. The demand profile is fed to the Modelica model

using the combiTimeTable component in the

Modelica Standard Library (MSL), which uses a relative

path to an external text file to enable operation on the

cluster.

Figure 5. A one year electrical power demand profile

characteristic taken from the north-east region of the

United States (PJM, 2016). Each color represents the

respective contribution of a subsystem energy supplier

(ORNL, 2016b).

3 Dynamic Subsystem Models

Each of the subsystem models is built from a template,

which allows for replaceable classes, improved

interchangeability of control system approaches, and

quick introductions of alternative subsystem models

(e.g., replacing a steam electrolysis plant with a

desalination plant). Figure 6 shows the template used

when generating new subsystems and an example use

case of the primary heat system. The subsystem models

utilize the expandable connector signal bus for all

control and sensor signals. Data records are also used to

facilitate common reference values between

subsystems, their control schemes, and the overall

system.

Figure 6. Subsystem template (left) and example use of the

template (right).

3.1 Example Subsystems

In this section, the primary heat system, energy

manifold, and balance of plant are briefly presented to

better illustrate the physics-based modeling approach.

3.1.1 Primary Heat System

Figure 7 demonstrates the implementation of a primary

heat source option, which—in this case—is an integral

pressurized water nuclear reactor based on the

International Reactor Innovative and Secure (IRIS)

(Westinghouse, 2007). A few important physical

phenomena captured in the model include the two phase

dynamic interactions of the pressurizer, the generation

of steam in a helical coil steam generator, and the

behavior of a nuclear core. The nuclear core model is

shown in Figure 8, and this model integrates the coolant

flow geometry and behavior, fuel behavior, and point

kinetics neutronics behavior, with feedback from the

fuel and coolant temperature.

Models in the various subsystems use custom models,

models from the MSL, and ThermoPower models. See

Section 5 for more discussion on specific component

modeling efforts.

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132839

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

841

Figure 7. The Modelica model of the IRIS integral

pressurized water nuclear reactor being used as the primary

heat source subsystem.

Figure 8. Model of a nuclear sub channel incorporating the

neutronic behavior, non-uniform power generation, fuel

conduction model, and coolant sub channel flow model.

3.1.2 Energy Manifold

The current distribution system under consideration is a

purely thermal (i.e., steam/water) manifold (Figure 9).

The energy manifold relies on controller logic to actuate

distribution valves to handle large and slow power–set

point changes to other subsystems, as specified by the

demand profile. This actuation diverts hot steam coming

from the primary heat system to the desired destination.

The manifold also gathers return streams and directs the

flow back the primary heat system steam generator at

the proper temperature and pressure. Mixing and

splitting volumes then add thermal mass to the system,

dampening transient behaviors.

Figure 9. “Steam” energy manifold responsible for

directing thermal energy to connected subsystem models.

3.1.3 Balance of Plant

One of the connections to the energy manifold is the

balance of plant. The balance of plant is responsible for

generating the primary share of electrical energy in the

hybrid system. The current, simple model contains a

steam turbine for electrical power generation, a

condenser, and a control valve (Figure 10). The turbine

control valve is responsible for small, fast control

modulations.

Figure 10. Simple balance of plant model, which converts

steam thermal energy to electrical energy and returns

subcooled water back to the energy manifold.

Pressurizer

Nuclear Core

Steam

Generator

Component Development for Nuclear Hybrid Energy Systems

842 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132839

4 Preliminary Model Performance

A preliminary testing of the model reads the external

data that contains the time series electrical demand

profile and then feeds this data to the balance of plant

control system. The control system actuates the control

valve to match demand as much as the physical process

allows. Figure 11 demonstrates 10 hours of dynamic

turbine power operation based on a demand profile. The

power changes are accomplished via the manipulation

of actuators such as the turbine control valve position.

At approximately hour three, the power set point is

above the deliverable power. Situations like this period

of unmet demand are tracked to inform the economic

evaluation.

Figure 11. Preliminary test case demonstrating the ability

of the coupled hybrid system to track a variable electrical

demand profile by diverting flow to/from the steam

turbine. Note the unmet demand at hour three.

The current NHES model consists of 14,581 equations

and simulates a one-week period in approximately 2

hours using Dymola 2017 FD01 on a desktop computer

(16 GB ram, Intel Xeon CPU ES-1607 v3 3.10GHz).

Figure 12 presents the set point and measured electrical

production values of a week-long simulation.

Figure 12. Load following electrical power production

from the NHES model over a period of one week.

5 Component Development

The modeling activity uses components and connectors

from the MSL along with a few components from the

ThermoPower library. However, user experience has

identified various limitations to some components.

Therefore, several components have been improved or

remade for the needs of this project. A brief discussion

of two major components are presented in this section.

5.1 MSL: Dynamic Pipe to GenericPipe

There are many positive aspects of the current version

of the MSL DynamicPipe model. For example, the

flexibility of specifying the model structure and the

ability to easily change the number of discretized

volumes, flow, and heat transfer models is incredibly

useful. However, some significant limitations were

discovered when attempting to couple the dynamic pipe

with fuel and reactor neutronics models.

One primary issue was the inability to specify

temperatures or enthalpy distribution for the start values

of each control volume. The current DynamicPipe

assumes a linear distribution between the ports. Since

the neutronics model is highly sensitive to the

temperature of the coolant and fuel, simulations often

failed during the initial transient phase due to extreme

power fluctuations in the reactor core.

To more generalize the capabilities of a pipe model,

a new GenericPipe model was created. This model is

similar in structure to the DynamicPipe model, but it

removes some of its restrictions (e.g., added control of

initialization and geometry) and works towards a more

standard, organized approach to model development.

Figure 13–Figure 15 show a few parameter windows

displaying the new controls of GenericPipe along

with the modified structure for various closure models,

including heat transfer, pressure loss, and geometry.

This generic pipe can also be used to create simpler

versions with more refined parameters—including

DynamicPipe—to ease user interaction. For

comparison, a few examples provided in the MSL fluid

package (e.g., BranchingDynamicPipes) were

recreated using the GenericPipe model and then

benchmarked. Current tests using GenericPipe yield

the same solutions as the DynamicPipe model but with

computational speeds up to 30% faster.

Figure 13. Structure of the generic pipe model

demonstrating the expanded flexibility of the model.

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132839

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

843

Figure 14. “General” parameter tab of the generic pipe. Note the “Geometry” parameter allows for replaceable geometries

(e.g., straight pipe and shell and tube or plate heat exchanger).

Figure 15. Improved initialization control for the pipe model permits simple initialization schemes based on port values or

more precise schemes based on discretized volume states.

5.2 Custom: Thermal Library

The temperature response of a system is very important,

particularly in nuclear reactors. The nuclear fuel

temperature impacts not only the coolant flow behavior

but also the power of the reactor itself by altering the

behavior of the neutronics. To produce reasonably

accurate models of nuclear fuel, a generic multi-

dimensional discretized conduction model was created.

As part of this effort, the MSL Thermal package was

completely redone to create a standalone library, which

also includes a package of thermal resistances for

steady-state evaluations, fin efficiency calculations, etc.

(Figure 16). The created models are generic and can be

incorporated into cases that require thermal inertia or

dynamics of conduction in solids. An important aspect

of the library is the limited application of parameters

to only those variables which require the variable type

(e.g., initialization variables). All other parameters are

specified as type input to ensure the user has maximum

flexibility in model development. Additional features

such as radiation models will be added to the Thermal

package in the future.

5.2.1 Multi-Dimensional Conduction Models

Given the complex nature of multi-dimensional

models, additional discussion on a conduction model is

presented. Three different approaches were evaluated in

Figure 16. Thermal library with multi-dimensional conduction models, thermal resistance models, etc.

Component Development for Nuclear Hybrid Energy Systems

844 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132839

developing the conduction models: the “classical”,

“modelica”, and “mixed” approach.

The classical programming approach relied on a

replaceable “solution method” that defined the

connections between cells. This approach has limited

flexibility as equations (e.g., spatial differentiation of

the energy equation) are hard-coded to initial

assumptions such as geometry.

The modelica approach relied on independent, single-

node, models to specify the behavior of unit volumes

and the energy flow between cells; these models were

then connected using connect() statements. Figure 17

shows the diagram layer of this modelica method and

depicts the use of simpler models to build up more

complex models.

The mixed approach limits use of connect() and

instead applies models that are have built-in

nodalization which allows direct assignment of the

variables that must be shared between models. In other

words, the mixed method attempts to hard-code all

generally applicable features of the model and only rely

on the Modelica generated equations/connections when

necessary while avoiding the embedded assumptions of

the classical approach.

Figure 17. Diagram layer of Conduction_123D using

the modelica approach. This method creates multi-

dimensional conduction models by using independent

models to build more complex, standardized models.

Each of the approaches have successfully modeled the

needs of the hybrid energy system (e.g., fuel element

modeling and heat exchanger walls). Figure 18 shows a

surface plot of a fuel model with a fuel, gas gap, and

cladding region created using the conduction models.

Each of the regions have temperature-dependent

properties specified by the solid media package.

Figure 18. Surface plot of a non-uniformly heated fuel

element (fuel, gap, and clad) with external convection

created using the discretized conduction models.

Comparisons have shown that all three approaches

produce results comparable within a small and

reasonable margin of error (fractions of a degree

Kelvin), however, the computational resources of the

three approaches vary significantly. The classical

approach passes the translation process quickly—even

for a large number of discretizations—and then

simulates quickly. The modelica approach can complete

a simulation in similar or less time than the classical

approach; however, the time it takes for the modelica

approach to translate the model becomes more

significant as the number of nodes being used increases

(Figure 19).

Figure 19. Demonstration of the translation and simulation

times required for each of the methods of a discretized

conduction model. For a given number of nodes, the

modelica method requires far more translation time than

the classical or mixed method, whereas the simulation

times for each method remain similar.

The issue of translation time stems is primarily a result

of relying on connect(), and therefore the translator,

to generate the necessary equations for the solver.

Figure 19 demonstrates that for a fixed number of many

equations (e.g., 90,000), the classical approach—as

compared to the modelica method—can achieve a much

finer discretization scheme (6,100 vs. 1,500 nodes)

without compromising the translation time (50 s vs. 240

s). However, the mixed approach also generates ~90,000

 Fuel

Helium

Gap

Cladding

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132839

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

845

equations with 1,500 nodes but passes through the

translation phase in 25 s. This demonstrates that the

method in which the equations are generated, rather than

just the number of equations, is the primary controller of

translational time. The mixed approach resolves the

translational time penalty while also preserving efficient

simulations.

Figure 20. Demonstration of the relationship between the

number of equations generated, the discretization scheme,

and the required translation time for each of the discretized

conduction model methods. The method of equation

generation is the primary controller of translational time.

Although the modelica method adopts the best

practices of Modelica programming by not repeating

code, the ability to address the time for translation

required the use of an alternative mixed approach. The

findings of this study are important for the development

of any discretized model and will be applied to

additional physics of interest such as fluid flows and

neutron behavior.

6 Conclusion

As energy markets shift to a highly variable demand

profile, traditional base load power suppliers will be

required to modify their business models. A hybrid

energy system approach, coupling base load energy

suppliers and energy customers (thermal and/or

electric), may be profitable and preferred in future

energy markets. The detailed dynamic multi-physics

models discussed in this paper are being coupled to an

economic cost optimization study that will inform the

potential benefits and limitations of these hybrid

systems by providing critical dynamic physical data of

a potential hybrid system’s operation.

As part of NHESs development, various components

models are required to capture the important physical

responses of the system. Two key models are the pipe

model and thermal conduction models. This paper

discussed adaptations and improvements to a Generic

Pipe model and the creation of a new Thermal library.

The thermal library includes multi-dimensional

conduction models. Using these conduction models, an

investigation of proper model formulation has been

performed demonstrating a methodology to maximize

model flexibility while retaining computational

efficiency.

Acknowledgments

This project was funded by the US Department of

Energy’s Office of Nuclear Energy under the Office of

Advanced Reactor Deployment.

References

Bragg-Sitton, S.M., R. Boardman, M. Ruth, O. Zinaman, C.

Forsberg. 2015. Rethinking the Future Grid: Integrated

Nuclear Renewable Energy Systems. Report no. NREL/CP-

6A20-63207.

EPRI (Electric Power Research Institute). 2015. Program on

Technology Innovation: Fossil Fleet Transition with Fuel

Changes and Large Scale Variable Renewable Integration.

Technical report no. 3002006517.

ORNL (Oak Ridge National Laboratory). 2016a. Nuclear

Hybrid Energy System FY16 Modeling Efforts at ORNL.

Report no. ORNL/TM-2016/418. Oak Ridge, TN.

ORNL (Oak Ridge National Laboratory). 2016b. Nuclear

Hybrid Energy System Initial Integrated Case Study

Development and Analysis. Report no. ORNL/TM-

2016/707. Oak Ridge, TN.

ORNL (Oak Ridge National Laboratory). 2017. Nuclear

Hybrid Energy System Model Stability Testing. Report no.

ORNL/TM-2017/153. Oak Ridge, TN.

PJM. 2016. Estimated Hourly Load. Accessed November 4.

http://www.pjm.com/markets-and-operations/energy/real-

time/loadhryr.aspx.

Rabiti, C., A. Alfonsi, J. Cogliati, D. Mandelli, and R.

Kinoshita. 2012. Reactor Analysis and Virtual control

ENvironment (RAVEN), FY12 report. Technical report no.

INL/EXT-12-27351. Idaho Falls, ID: Idaho National

Laboratory (INL).

Westinghouse. 2007. Computer Models for IRIS Control

System Transient Analysis. Report no. STD-AR-06-04.

Component Development for Nuclear Hybrid Energy Systems

846 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132839

Modeling and simulation of fixed bed regenerators for a multi-

tower decoupled advanced solar combined cycle
Iván Mesonero Jesús Febres Susana López

IK4-TEKNIKER, Spain, {ivan.mesonero, jesus.febres, susana.lopez}@tekniker.es

 Abstract

Two dynamic models of fixed bed regenerators for
metallic and ceramic configurations have been
developed in Modelica. These models have been both
worked out within CAPTURE European project and
will serve as design tool for a fixed bed regenerative heat
exchange system. The present article describes in detail
both models and presents a case study that compares
experimental and simulation results for the testing of a
ceramic honeycomb regenerative matrix.
Keywords: fixed bed regenerator, ceramic honeycomb,
stacked wire cloths, solar Brayton cycle
1 Introduction
The recently granted EU R&D project CAPTURE
(http://www.capture-solar-energy.eu) pursues a new
concept of central receiver system based on the
Decoupled Solar Combined Cycle (DSCC) plant
concept (see Figure 1). In such a plant, a multi-tower
approach is employed with a solar Brayton cycle turbine
on the top of each tower.

Figure 1. CAPTURE plant configuration based on DSCC
concept
In CAPTURE project, a non-pressurized volumetric
receiver will be employed to feed the solar turbine using
a fixed bed regenerative heat exchange system for
connecting both pressurized and non-pressurized air
loops (see Figure 2). The fixed bed regenerative heat
exchangers are alternatively connected to the two
different air loops through a group of two-way on-off
valves. Thus, the system allows the continuous

operation of the receiver and the turbine through the
charging and discharging of a certain number of fixed
bed regenerators.

Two approaches have been defined and modelled for the
configuration of the fixed bed regenerator matrix
material, a metallic approach based on stacked wire
cloths, and a ceramic approach based on ceramic
honeycombs monoliths. For the analysis of both options,
one-dimension dynamic Modelica model of each
approach have been developed within CAPTURE
project and will be included in a free Modelica library.
These models had to be parametric and flexible enough
to allow the analysis of the effect of the design variables,
such as the material characteristics and the bed
geometry, in the behavior of the regenerative heat
exchange.

Besides the two presented models, Modelica models of
the receiver and the turbine shall be developed within
CAPTURE in order to completely simulate the plant
shown in Figure 2. This development will be carried out
during incoming phase of the project.

Figure 2. Main subsystems of a single module of
CAPTURE plant

DOI
10.3384/ecp17132847

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

847

2 Metallic regenerative bed model
A cylindrical regenerative bed has been modelled
(MetalicRegenerativeBed1D) considering the
following main assumptions:
 Regenerative beds are made by a randomly stacked

woven-screen matrix with plain square (see Figure
3).

Figure 3. 3D view of three randomly stacked screens
(plain square weave)
 The matrix is made of metallic materials and the

model takes into account the dependency of their
conductivity and specific heat capacity with the
temperature.

 One-dimensional fluid flow is assumed, including
only as heat transfer phenomenon the heat
convection between the fluid and the matrix, i.e.
radiative heat transfer is disregarded.

 One-dimensional heat conduction along the matrix
(parallel to the fluid flow) is assumed. Perfect
insulation is considered at the lateral area, thus heat
losses can only be taken into account through upper
and lower end of the matrix

2.1 Model structure
The model is mainly composed of two components that
represent the solid and the fluid phases of the
regenerative bed.

The model also includes a replaceable porosity function
for the calculation of the volumetric porosity1 of the
matrix (¶), which is required for further calculation in
equations (5) – (10). The following options are available
to be chosen from a drop down menu: ESDUPorosity,
NASAPorosity, ArmourCannonPorosity and
XuWirtzPorosity. All of them were described by (Li
& Peterson, 2006). However, some discrepancies were
found for the porosity calculation defined by Xu &
Wirtz, in consequence the original reference (Xu &
Wirtz, 2002) was chosen for this case in order to define
the necessary equations implemented in the code.

1 In here the volumetric porosity is defined as the ratio
between the void volume and the total volume of a porous
body.

The following equations (1, 2, 3 and 4) describe how to
calculate the porosity in each option.
 ESDU:

¶ = 1 − 0.25 ∗ ߨ ∗ ௗೢ
௧ (1)

 NASA:

¶ = 1 − 0.25 ∗ ߨ ∗ ݂ ∗ ௗೢ
௧ (2)

 Armour & Cannon:

¶ = 1 − ߨ ∗ ቀ ∗
ଶ∗ሺାሻቁ ∗ ට1 + ቀ

ଵାቁଶ

ܣ = ௗೢ

௧ ೢ
ܤ = ௗೢ

௧

(3)

 Xu & Wirtz:

¶ = 1 + ଷ.ଽாషర∗గ∗∗ቀ ೢ
ቁ

ܥ =

ೌೝ∗ଶ∗ௗೢ
ܥ = 123 ∗ ቀ ௗೢ

௧ቁସ − 384 ∗ ቀ ௗೢ
௧ቁଶ − 640

(4)

Where:
 ݀௪ is the wire diameter;
 pitch is the distance between two wires or the

aperture;
 ݂ is a factor that describes how compressed

are the meshes in the matrix;
 ݐ is the thickness of the mesh;
 ܮ is the regenerative bed length;
 ݊௬ is the number of layers in the matrix.

It must be noted that for the last two options the user
must provide the value of some more parameters, the
thickness of the wire mesh or the number of layers in the
matrix, as shown in Figure 4.

Modeling and simulation of fixed bed regenerators for a multi-tower decoupled advanced solar combined cycle

848 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132847

2.1.1 Solid phase
Solid phase component is an instance of the class
HollowCyliner that is a lumped parameter thermal
system in the radial direction (there is no radial variation
of the solid temperature). It is composed of an array of
nodes which are instances of the class
HollowCylinder_Lumped that represents one section
of the solid material along its axis. Each node consists
of two classes. One that describes the conduction along
the material, and other that represents the thermal inertia
of the material section.

In order to calculate the thermal characteristics of the
solid phase model, the material properties have to be
entered in the model. HollowCylinder class includes
a replaceable instance of a class that contains the
characteristics of the material of the regenerative bed.
This material can be selected in the “Solid” tab of the
main model. In addition, the regenerative bed total mass
can be entered as a parameter. If no value of the total
mass is used, it is calculated multiplying the material
density by the total volume of the solid.

If a new material is required, the material class has to be
declared as a Modelica package extended from the base
class PartialMaterial. This package must contain
the thermal and physical properties of the chosen
material. The minimal set of properties required consists
of the density, the thermal conductivity and the specific
heat capacity. All of them may be defined either as a
constant or as function of the temperature.

Since the model was meant to describe the behavior of
porous materials and more in concrete woven-screen
matrixes, this class takes into account the porosity of the
matrix and the conductivities of the solid and the fluid
in order to calculate the real thermal conductivity of the
matrix using the following equation (Martini, 2004):

݇௧௫

= ݇௦ ∗

ۉ
ۈۈ
ۈۈ
൮ۇ

1 + ൬݇௧݇௦ ൰
1 − ൬݇௧݇௦ ൰൲ − ሺ1 − ¶ሻ

൮
1 + ൬݇௧݇௦ ൰
1 − ൬݇௧݇௦ ൰൲ + ሺ1 − ¶ሻ

ی
ۋۋ
ۋۋ
ۊ

(5)

Where:
 ݇௧௫ is the thermal conductivity of the matrix;
 ݇௦ is the thermal conductivity of the gas in the

matrix;
 ݇௧ is the thermal conductivity of the matrix

material (solid).

The class defining the solid phase has an array of inputs
named thermalConductivity_medium in order to
have access to the instantaneous value of the internal
variable of the fluid phase
fluidPhase.heatTransfer.lambdas that is
exactly the instantaneous value of the thermal
conductivity of the gas in the different nodes along the
matrix.

2.1.2 Matrix materials
Apart from the basic partial models described in the
previous sections, four specific materials have been
added to the Materials library: DIN EN 10095, DIN
17742, DIN 17470 and DIN EN 10302. These
materials were chosen taking into account the expected
operating temperatures, their availability as meshed
material, thermal and mechanical properties, and
sintering possibility. In all cases, the specific heat
capacity and thermal conductivity are temperature
dependent values while density is assumed constant. In

Figure 4. Parameter dialog for the metallic regenerator model

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132847

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

849

addition, whether the material is sintered or not is not
taken into account in this version of the model.
However, the effect of sintering the material shall be
included in further versions as it influences the thermal
conductivity (Li & Peterson, 2006) and the mechanical
stability during the cycling regime, e.g. sintering
stabilizes an in-line stacked bed (unstable before
sintering) as a permanent link between wire meshes is
guaranteed.

Regarding this two last properties, the available
information from datasheets was fitted to polynomial
expressions (linear or quadratic) in most cases and
logarithmic expressions in others.

2.1.3 Fluid phase
Fluid phase component is an instance of the class
DynamicRegenerativeBedFluidPhase that is
based on the DynamicPipe class from the Modelica
Standard Library (Casella, 2009) that is the model of a
straight pipe with distributed mass, energy and
momentum balances providing the complete balance
equations for one-dimensional fluid flow. It treats the
partial differential equations with the finite volume
method and a staggered grid scheme for momentum
balances.

The main differences between the original
DynamicPipe and the
DynamicRegenerativeBedFluidPhase are the
following:

 Specific equations have been implemented under

the Detailed option of FlowModel. When the
Detailed option is selected, the relationship
between the mass flow rate and the pressure loss is
determined with experimental correlation for a flow
through an infinite randomly stacked woven-screen
matrix.

 Flow friction characteristics were originally defined
by Kays & London (Kays & London, 1998). They
determined experimentally the relationship between
the friction factor and the Reynolds number for
different porosity values of the matrix. But the
equations implemented within this model
correspond to the following approximation
determined by Martini (Martini 2004):

݀ = ೢమ ∗∗ೢ
ଶ∗మ∗ఘ∗ቀವర ቁ

log ௪ܥ =
ቐ

1.73 − 0.93 ∗ log ܴ݁ ݂݅ ܴ݁ < 60
0.714 − 0.365 ∗ log ܴ݁ ݂݅ 60 ≤ ܴ݁ < 1000
0.015 − 0.125 ∗ log ܴ݁ ݂݅ 1000 ≤ ܴ݁

(6)

Where:
 ݀ is the pressure drop along the matrix;
 ݉௪ is the fluid mass flow rate;
 ܮ is the length of the matrix;
 ܥ௪ is the factor of friction for matrix;
 ܣ is the area of flow;
 ߩ is the density of the fluid at regenerator;
 ܦ is the hydraulic diameter of the matrix;
 ܴ݁ is the Reynolds number.

 A new option was added to the list of classes that
describe the convective heat transfer within this
model with equation (7). It is especially suited for
gas flow through an infinite randomly stacked
woven-screen matrix being a correlation from
Organ (Organ, 2010) of experimental data from
wire screens and crossed rods simulating wire
screens from Kays & London (Kays & London,
1998).

 Main assumptions of the correlation are: perfect
stacking, i.e. screens touching is assumed, and
volumetric porosity between 0.602 and 0.832.

ݐܵ ∗ ଷݎܲ√ = ଵ.ଶହ
√ோ (7)

Where:
 ܵݐ is the Stanton number;
 ܲݎ is the Prandtl number;
 ܴ݁ is the Reynolds number.

Regarding the parameterization of the fluid phase
model, the hydraulic radius, ݎ, of the individual wire
screen and matrixes is determined by equations (8) and
(9) when porosity is calculated by the expression
defined by ESDU (Organ, 1997) (Kays & London,
1998):

ݎ = ௧

గ − ௗೢ
ସ (8)

ݎ = ௗೢ∗¶
ସ∗ሺଵି¶ሻ (9)

It is worth to mention also that for both correlations
(flow friction and convective heat transfer) the Reynolds

Modeling and simulation of fixed bed regenerators for a multi-tower decoupled advanced solar combined cycle

850 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132847

number in equation (10) is calculated with a velocity (vs) that is not the real velocity of the fluid along the matrix.
ܴ݁ = ఘ∗௩ೞ∗

ఓ

 =
ೢ

ಲ ∗
ఓ

 =
ೢ
ಲೝ∗¶ ∗

ఓ

(10)

Where:
 ߩ is the density of the fluid at the matrix;
 ܦ is the hydraulic diameter of the matrix;
 ߤ is the cinematic viscosity of the fluid;
 ݉௪ is the fluid mass flow rate;
 ܣ is the free flow area of the matrix;
 ܣ is the frontal area of the matrix;
 ¶ is the volumetric porosity of the matrix.
The reason for that is that the free flow area is calculated
as the product of the frontal area of the matrix and its
volumetric porosity. Usually, the volumetric porosity
and the screen porosity have different values, being the
second one bigger that the first one. Accordingly, the
computed values for the fluid velocity within the fluid
phase model will be bigger than the real ones.

3 Ceramic regenerative bed model
During the specification definition phase of CAPTURE,
the partners decided that the type of ceramic regenerator
to be modelled was to be a honeycomb with straight
channels (see Figure 5).

Figure 5. Cordierite honeycomb brick with high density
of straight channels.
This model (CeramicRegenerativeBed1D) is based
on the modelling approach presented by Muske et al
(Muske, 2000). Even though it was originally meant for
checkerwork regenerators, the model may be used for
other regenerators with the same type of geometry, i.e.

parallel straight channel geometry (two dimensions
honeycomb). Each channel of the regenerator is
modelled as a hollow cylinder tube, whose external wall
is assumed perfectly isolated. The radius of the fluid
channel, the internal radius ݎ, is one-half of the average
hydraulic diameter of the real fluid channels and the
outside radius is given by equation (11):

ݎ = ට
గ∗ఘ∗ே∗ + మ

ସ (11)
Where:
 ܰ is the total number of gas channels;
 ܦ is the hydraulic diameter of the gas channel;
 ݉ is the total mass of the bed;
 ߩ is the density of the bed material;
 ܮ is the length of the bed.

The following considerations were taken into account
when modelling the ceramic regenerative bed:
 The fluid velocity in the tubes is determined

assuming a uniform distributed fluid flow through
all channels.

 As in the metallic bed, the ceramic regenerative bed
model is constituted by two namely solid and fluid
phases.

 Regarding the solid phase, there is no radial
variation of the temperature (lumped parameter
model in the radial direction is assumed).

Note that for simulations where cycling regimes are
required, the last assumption is expected to be valid only
when the cycle time of the system is, at least, an order
of magnitude bigger than the characteristic time for
radial heat conduction in the material (Muske 2010)
which is defined by:

߬ = ሺିሻమ
ఈ (12)

Where:
 ߬ is the characteristic time for radial heat

conduction;
 ߙ is the thermal diffusivity of the bed material;
 ݎ is the radius of the gas channel in the tube;
 ݎ is the outside radius of the tube.

For the case of highly channeled honeycombs, the
reduced thickness of walls assures a good agreement
with the last assumption.
3.1 Model structure
Figure 6 shows the icon of the Modelica model of the
ceramic regenerator bed. Both heat and fluid ports are
taken directly from the Modelica Standard Library,
which means the model is compatible with any element
found in Modelica.Fluid and Modelica.Thermal.

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132847

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

851

Figure 6. Modelica ceramic regenerative bed model icon.
The model allows users to initialize the temperature of
the fluid and the solid elements. Initial values can be
input in the “Initialization” tab. If no value is passed to
the model, 24 ºC is used as default value for both
temperatures.

In order to define the geometry of the regenerative bed,
six parameters can be input in the “General” tab:
 The bed length: length in [m];
 The bed cross-section area: area_s in [m2];
 Channels cross-section area: area_c in [m2];
 Channels cross-section perimeter: perimeter_c in

[m];
 Number of channels: N_c;
 Segmentation perpendicular to heat conduction: nNodes.

Note that the model is discretised in finite volumes
(solid and fluid volumes) and the degree of
discretisation is defined by the nNodes parameter.
As mentioned previously, the model is composed, as can
be appreciated in Figure 7, by two components that
represent the solid and the fluid phases of the
regenerative bed.

Figure 7. Diagram of the ceramic regenerative bed
model.

3.1.1 Solid phase
The model presented in section 2.1.1 was used to model
the solid phase of the ceramic regenerator as this model
allows the user to work with non-porous material. There
is a Boolean parameter in the “Porosity” tab that
disables the use of the equations mentioned in section
2.1.1., making the model suitable to represent ceramic
materials.

3.1.2 Fluid phase
The fluid phase component is an instance of the
DynamicPipe class from the Modelica Standard
Library which is the model of a straight pipe with
distributed mass, energy and momentum balances
providing the complete balance equations for one-
dimensional fluid flow. It treats the partial differential
equations with the finite volume method and a staggered
grid scheme for momentum balances.
Most of the parameters that define the DynamicPipe
have been fixed and only three of them (the fluid
medium, the heat transfer model and the flow model) are
accessible from the GUI.

A new option was added to the list of classes for the heat
transfer that describes the convective heat transfer with
a correlation for rough pipes by Bhatti and Shah (Muske
2000).

4 Ceramic regenerative bed case

study
The case study proposed in this paper is centered on the
ceramic honeycomb approach for regenerative matrix.
The proposed model was verified against the
experimental results presented in a technical report
elaborated by SANDERS Associates in 1980 (Sanders,
1980). This report describes the application of the
regenerator in a solar prototype small plant as well as
the experimental set-up and test results of a ceramic
honeycomb regenerator manufactured for real
demonstration at laboratory level. Next paragraphs
describe the manufactured regenerator and the tests
performed that were be employed for the case study.
4.1 Ceramic regenerator description
The ceramic regenerator is a cylindrical matrix installed
inside an internally insulated cylindrical pressure vessel,
the complete system is called Thermal Storage Module
or TSM. Dimensions of the complete matrix are 914 mm
(36 inches) in diameter and 787mm (31 inches) in
length. Base material for the regenerator matrix are
cylindrical ceramic honeycombs logs from CORNING
with the same long as the complete matrix and a
diameter of 114 mm (4.5 inches). The shape of the logs

Modeling and simulation of fixed bed regenerators for a multi-tower decoupled advanced solar combined cycle

852 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132847

are modified in order to get the sectors that finally
conforms the complete regenerative cylinder. Figure 8,
Figure 9 and Figure 10 clarify above description.

 Figure 8. Typical Cordierite honeycomb cylinder for
catalytic converters in automotive application from
CORNING

Figure 9. Picture of the internal cross section of a ceramic
heat exchanger with the same manufacturing approach as
SANDERS’s regenerator (Sheindlin, 1986)

Figure 10. Diagram of the Thermal Storage Module
developed by SANDERS (Sanders, 1980)

The Cordierite log employed for manufacturing the
TSM is a square cell based honeycomb designated by
300/12, which corresponds to 300 cpsi (cells per square
inch) and 12x10-3 inches of wall thickness. The thermal
properties of the Cordierite material in the honeycomb
are summarized in Table 1
Table 1. Thermal properties of the Cordierite material in
the honeycomb

Temperature
ºC (ºF)

260
(500)

399
(750)

538
(1000)

815
(1500)

Specific heat
J/kg K
(BTU/lb ºF)

1005
(0.24)

1118
(0.267)

1193
(0.285)

1289
(0.308)

Thermal
conductivity
W/mK (BTU
in/h ft2 ºF)

1.44 (10) constant

Bulk density
g/cm3 (lb/ft3) 0.589 (36.4) constant

4.2 Test set-up and instrumentation
The test set-up is mainly composed of a ceramic
regenerator, a four-way valve, a gas burner, a
compressor, control valves and piping. The test
schematic can be seen in Figure 11.

The test set-up is equipped with sensors allowing the
analysis of the regenerator performance under different
test conditions. Principal sensors of interest for the
analysis are: air mass flow meter, air temperature
sensors, air pressure sensors and temperature sensors for
the measurement of the ceramic material in different
positions along the bed.

Figure 11. Test set-up schematic developed by
SANDERS (Sanders, 1980)

4.3 Test selection for the case study
For the model validation two different types of tests
were chosen, a single shot test and a cycling test. Both
tests are described in the next paragraphs.

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132847

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

853

4.3.1 Single shot test
This test is based on a sudden heating up (or cooling
down) of the regenerator with an air stream that flows
from top to bottom (or from bottom to top). The initial
temperature of the entire matrix is constant and
homogeneous.
The objective of the test is to analyze the thermal
performance of the bed in terms of thermocline
propagation along the matrix (transient response).

Table 2. Selected single shot test data

Air flow direction Upward
Air mass flow kg/s (lb/s) 0.19 (0.43)
Air temperature ºC (ºF) 702 (1295)
Initial homogeneous temperature in
the matrix ºC (ºF) 146 (295)

Figure 12 shows the original graph with the
experimental results of the selected test (Sanders 1980)
and the simulation results obtained overlapped. The
simulation results were obtained with the model
described on section 3 under the general test conditions
of Table 2, but it has not been possible to accurately
reproduce the variable inlet temperature of the
experimental data. Moreover, the initial temperature of
the entire regenerative bed was assumed homogeneous
but the report points out the existence of an initial
temperature profile along the bed due to experimental
difficulties in setting up initial test conditions.
Consequently, further analysis of the system transient
shall be performed in order to understand the
quantitative deviations. Nevertheless, a good
agreement, from the qualitative point of view, has been
achieved between the experimental and the simulation
results.

Figure 12. Experimental (black) and simulation (blue)
results of single shot test of the ceramic regenerative bed
model.

4.3.2 Cycling test
This test is based on a continuous cyclic operation
(charging and discharging) of the regenerator starting
from an initial steady state (constant temperature within
the entire matrix). During the charging phase, hot air
flows at atmospheric pressure, which simulates the heat
input of the solar receiver. In the discharging phase cold
air is blown in the opposite direction to simulate the inlet
from the process return (a pressurized air would
simulate compressor outlet of an air turbine).
The objective of the test is to analyze the performance
of the bed working in cycling conditions in terms of
thermocline evolution until the system becomes stable
(cyclic state).

Table 3. Selected cycling test data

Air flow direction Charging (Downward)
Discharging (Upward)

Air mass flow kg/s (lb/s) 0.19 (0.43)
Air temperature ºC (ºF) Charging 702 (1295)

Discharging 146 (295)
Air pressure

Atmospheric pressure
for charging and
discharging

Initial homogeneous
temperature in the
matrix ºC (ºF)

146 (295)

In the same way as for the single shot test, Figure 13
shows the experimental and the simulation results for
this test. The simulation results were obtained with the
model described on section 3 under the general test
conditions of Table 3. For this test the experimental data
for the inlet temperature of the air was not available so
it was assumed constant during each phase, charge and
discharge, of the cycle.

It can be appreciated in Figure 13 the very good
agreement between the experimental and the simulation
results for this test. The results are very similar
especially in the last cycles where probably the effect of
the different initial conditions applied was disappeared.

Modeling and simulation of fixed bed regenerators for a multi-tower decoupled advanced solar combined cycle

854 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132847

Figure 13. Experimental (black) and simulation (blue)
results of cycling test of the ceramic regenerative bed
model.
5 Conclusions
Two Modelica models have been described for the
dynamic simulation of two types of regenerative beds, a
metallic one based on stacked wire meshes, and a
ceramic one based on straight-channelled honeycomb.
These models will be used as design tool in CAPTURE
project and will support the evaluation of the
performance of fixed bed regenerative heat exchangers.

These models are part of a public deliverable of
CAPTURE project and will be included in a free
Modelica library. In addition, prototypes designed using
the presented models will be tested along 2018 in the
Plataforma Solar de Almería (PSA). This give the
chance for validating the model with real data coming
from operation of the regenerative beds.

A case study has been presented where experimental
results from the testing of a ceramic honeycomb
regenerator were compared with simulation results
obtained with the model developed for this regenerator
typology. The model provides a suitable representation
of the regenerative bed behaviour and constitutes a
useful tool for the design of these components.

Finally, the authors are currently working on the
metallic bed models in order to study the effect of
different configurations of the metallic meshes to assess
the feasibility of using this type of regenerators. In
addition, the metallic bed model is being extended to
include other stacking configuration (in-line and
staggered). These results will be presented in future
publications.
Acknowledgements
The authors would like to thank the European
Commission for partial funding of this work related to
CAPTURE project (H2020 research and innovation
programme, grant agreement No 640905).

References
R.B. Bird et all, "Transport phenomena", Wiley, New York,

1960
F. R. Casella et all. "Standardization of Thermo-Fluid

Modeling in Modelica.Fluid", Proceedings of 7th
International Modelica Conference, 2009, Como, Italy

S. Kakac et all, "Handbook of single-phase convective heat
transfer", Wiley, New York, 1987

W.M. Kays and A.L. London, "Compact Heat Exchangers",
Krieger Publishing Company, Malabar, Florida, 1998

C. Li and G.P. Peterson, "The effective thermal conductivity
of wire screen", International Journal of Heat and Mass
Transfer 49 (2006) 4095 -4105

W.R. Martini, "Stirling Engine Desing Manual", University
Press of the Pacific, Honolulu, Hawaii, 2004

Modelica Association, "A Unified Object-Oriented Language
for Physical System Modeling", 2012

K.R. Muske et all, "Model-based control of a thermal
regenerator. Part 1: dynamic model", Computers and
Chemical Engineering 24 (2000) 2519-2531

A. J. Organ, "The Regenerator and the Stirling Engine",
Mechanical Engineering Publications Limited, London and
Bury St Edmunds, UK, 1997

A. J. Organ, "Thermodynamics and Gas Dynamics of the
Stirling Cycle Machine", Cambridge University Press,
Cambridge, 2010

Sanders Associates Inc, Small solar electric system
components demonstration final report, JPL contract
955279, Nashua, New Hampshire, August 20, 1980

A.E. Sheindlin, High temperature equipment, Hemisphere
publishing Corp., Washington, 1986

J. Xu and R.A. Wirtz, "In-plane effective thermal conductivity
of plain-weave screen laminates", IEEE TCPT 25 (4)
(2002) 615-620

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132847

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

855

856 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Annual Performance of a Solar-Thermochemical Hydrogen

Production Plant Based on CeO2 Redox Cycle

Alberto de la Calle1 Alicia Bayon1

1CSIRO Energy, 10 Murray Dwyer Ct., Mayfield West, NSW 2304, Australia,

{alberto.delacallealonso,alicia.bayonsandoval}@csiro.au

Abstract

For the first time, a dynamic model of a 1-MWth thermo-

chemical hydrogen production plant is developed and im-

plemented for CeO2 redox cycle. The work explores how

the variables of the process like the direct normal irradia-

tion (DNI), temperature, pressure and degree of oxidation

affect the annual production of hydrogen. The model re-

veals that the thermal inertia of CeO2 is significantly high

to accomplish the oxidation without refrigerate the oxi-

dizer. The operation is optimized to obtain the maximum

amount of hydrogen in a year by only modifying the mass

flow rates at the inlet of the reactors. The flexibility and

adaptability of the model allows to test different system

configurations and optimize the hydrogen production.

Keywords: Solar fuels, Central receiver, High tempera-

ture, Dynamic modelling

1 Introduction

Solar energy is, by far, able to be massively ex-

ploited for delivering all of the world energy needs

utilizing only a few percent of the deserted ar-

eas (IRENA and IEA-ETSAP, 2013; Lewis and Nocera,

2007). Nevertheless, the storage of the thermal energy for

its use during the non-solar periods is required to couple

production/demand rate in the energy market. In this con-

text, the conversion of the solar concentrated source into

storable and transportable fuels is a remarkable alternative

to extent the commercialization of solar power technolo-

gies.

One attractive pathway is the solar thermal production

of hydrogen. Within all possible solar driven routes, so-

lar thermochemical H2O splitting offers a path to pro-

duce carbon-free hydrogen. Hydrogen is an energy car-

rier in addition to a commodity used for the several indus-

trial processes (Ramachandran and Menon, 1998). Never-

theless, direct thermolysis of H2O requires temperatures

well above 2000 K to obtain significant H2 concentrations

(Fletcher, 2001). In addition, to avoid the recombination

of the product gas H2 and O2 upon cooling, they need

to be separated at the dissociation temperature, which is

technically challenging (Fletcher, 2001). In this respect,

H2O-splitting thermochemical cycles have been investi-

gated to reduce the process operating temperature com-

pared to direct thermolysis. In addition, the need for

high-temperature product gas separation is eliminated, be-

cause H2 and O2 are produced in separate process steps.

Compared to multi-step cycles, two-step cycles promise

to reach higher process efficiencies due to higher operat-

ing temperatures and less irreversibilities (Abanades et al.,

2006).

Besides the environmental benefits of the thermochem-

ical cycles, several impediments must be confronted to the

economic realization which concerns the design of reactor

to reduce the radiation and conduction losses and mate-

rials development revealing satisfactory durability, reac-

tivity and efficiencies (D’Souza, 2013; Roeb et al., 2012).

Likewise, heat and mass transfer play a crucial role in the

building components and for the technological implemen-

tation of thermochemical reactors.

Up to date, 300 redox systems have been proposed al-

though only few tens of them have been performed ex-

perimentally mainly due to temperature and thermody-

namic limitations (Muhich et al., 2015). In terms of eco-

nomic assessment, a recent report has indicated that so-

lar fuels produced with 20% efficiency are likely to be

cost competitive (Kim et al., 2012). Upon all the possible

metal oxide candidates, Ceria (CeO2) is the most promis-

ing material so far studied during the last 50 years be-

cause it demonstrates faster hydrogen production kinet-

ics and high selectivity (Ackermann and Steinfeld, 2014;

Chueh et al., 2010; Furler et al., 2012; Gao et al., 2016;

Scheffe and Steinfeld, 2012). In this cycle, the nonsto-

ichiometric ceria, with fluorite-type structure, retain the

oxygen vacancies maintaining its cyclability. The reac-

tions involved in this process are:

CeO2 →CeO2−δ +
δ

2
O2(g) (1)

CeO2−δ +δ H2O(g)→CeO2 +δ H2(g) (2)

The thermal reduction (Equation 1) occurs at tempera-

tures not lower than 1500 °C accompanied by a low O2

partial pressure about 1 Pa (Chueh et al., 2010). This con-

dition requires a large amount of inert gas flowing into the

reaction media and, consequently, an enormous economic

penalty influenced by three factors: cost of inert gas, sep-

aration of O2 produced downstream and energy losses

transferred to the gas (Furler et al., 2012). In the low tem-

perature step, the exothermic water splitting (Equation 2)

DOI
10.3384/ecp17132857

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

857

takes place at lower temperatures commonly between 600

and 1000 °C.

The thermochemical efficiency was largely explored

in previous works (Bader et al., 2013; Ermanoski, 2015;

Ermanoski et al., 2013; Bulfin et al., 2015). In this con-

text, a maximum of 68% could be obtained if all the

CeO2 is reduced to Ce2O3 at 2200 °C with the sun as

only heat source. However, at 1500 °C only 2% con-

version is obtained in real conditions, lowering the effi-

ciency up to 1.72% from solar to fuel without heat recov-

ery (Furler et al., 2012). This value could be enhanced

to 20% if ideal heat recovery is applied (Ermanoski et al.,

2013). However, all the previous thermodynamic analy-

sis are based on steady-state simulations with the aim of

maximizing the reactor efficiency of the process giving an

single value of DNI without considering the variability of

the solar resource, heliostat field design and receiver per-

formance. The goal of this work is to provide insights

on the effect of the variability of the solar resource over

the annual performance emulating a solar production plant

based on a Ceria thermochemical water splitting cycle.

In the present paper, a new dynamic model of a solar

hydrogen production plant is developed for annual simu-

lations. The model is based on an object-oriented mod-

elling methodology following a modular and hierarchical

structure. The final model has been graphically imple-

mented by connecting different components which encap-

sulate the main thermodynamic processes that take place

in the plant. Modelica and Dymola 2017 were the lan-

guage and the simulation environment used in this work.

2 System description

A 1-MWth solar hydrogen plant is designed to be placed

in Geraldton (WA), Australia. Table 1 shows the system

design specifications. It consists of two rotatory reactors

(for reduction and oxidation), where a flow of particles of

CeO2 is recirculated in order to efficiently use the thermal

inertia of the reactors.

The thermal reduction (Equation 1) is endothermic and

takes place in a windowed reactor-receiver where the con-

centrated solar radiation directly heats the moving bed of

particles. Bader et al. (2013) suggests a concentration ra-

tio of 3000 to get a high efficiency ratio according the fol-

lowing equation:

Q̇sol,0 = AreaC0G0, (3)

The design parameters are defined as follows:

Q̇sol,0 = 106 W which is the design power at the re-

ceiver, G0 = 950 W/m2 that is the DNI and C0 = 3000

which is the concentration ratio. This expression allows to

obtain the diameter of the aperture (considered circular)

of the receiver at the design point (0.67 m).

In order to get a suitable concentration ratio at the re-

ceiver aperture, a secondary concentrator is placed to in-

crease the flux density of the radiation. A compound

parabolic concentrator (CPC) has demonstrated high per-

formance in this kind of processes (Pitz-Paal et al., 2011).

Table 1. System design specification.

Solar resource

Location: Geraldton (WA)

Longitude: 114.7°

Latitude: -28.8°

Local time zone: UCT+8

Heliostat field

Heliostat size: 2.44 x 1.84 m

Number of heliostats: 604

Mirror reflectivity: 0.95

Soiling factor: 0.95

Heliostat availability: 0.99

Solar tower

Design thermal power: 1 MW

DNI design value: 950 W

Tower height: 19.45 m

Receiver elevation: -10°

Receiver acceptance angle: 70°

CPC aperture diameter: 1.16 m

Reactor aperture diameter: 0.67 m

Flux shape factor: 0.87

Solar concentration ratio: 3000

These devices, based on non-imaging optics, collect radia-

tion entering the entrance aperture diameter (DCPC) within

angle of θCPC and direct it to the reactor aperture diameter

(Drea) with negigible losses (O’Gallagher and Winston,

1983). The relationship between the aperture angle and

the concentration ratio is:

CCPC =
1

sin2(θCPC)
, (4)

and the relationship between both (CPC and reactor) aper-

ture diameters is:

DCPC =
Drea

sin(θCPC)
. (5)

The typical values of the heliostat field concentrating ratio

rounds 1000. In this respect, a value of 3 for the CPC con-

centrating ratio is required to provide the required design

parameters. According this value, the acceptance angle

(i.e. 2θCPC) is 70° and the CPC diameter 1.16 m.

SolarPILOTT M (NREL, 2016) was used to design and

optimize the heliostat field. It allows fast generation and

optimization of solar fields according a series of design

parameters. Figure 1 shows the optimized solar field lay-

out for this study. In addition, SolarPILOTT M provides the

total optical efficiency of the solar field which includes

cosine error, reflectivity and soiling, blocking and shad-

ing, atmospheric attenuation and scattering and spillage

of a whole year as function of the zenith and azimuth so-

lar angles (Table 2). The efficiency factor is calculated

for a specific receiver, in this case, a 1.16 m side-squared

receiver. In order to compensate the difference between

Annual Performance of a Solar-Thermochemical Hydrogen Production Plant Based on CeO2 Redox Cycle

858 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132857

Table 2. Reference solar field optical efficency as a function of Zenith and Azimuth angles.

θzen \ θazi -150° -120 ° -90° -60° -30° 0° 30° 60° 90° 120° 150° 180°
0.5° 0.42947 0.42832 0.41992 0.40721 0.39708 0.39435 0.39443 0.39397 0.39521 0.40576 0.41858 0.42729
7° 0.37594 0.38236 0.39179 0.40135 0.40839 0.41095 0.40835 0.40135 0.39176 0.38262 0.37587 0.37355

15° 0.35315 0.36675 0.38640 0.40662 0.42085 0.42596 0.42087 0.40617 0.38656 0.36641 0.35311 0.34833
30° 0.30117 0.33196 0.37561 0.41417 0.43945 0.44756 0.43918 0.41437 0.37532 0.33190 0.30110 0.29084
45° 0.25081 0.30291 0.36867 0.41824 0.44617 0.45552 0.44604 0.41737 0.36826 0.30301 0.25063 0.23260
60° 0.20337 0.26952 0.34444 0.39892 0.43285 0.44481 0.43247 0.39877 0.34452 0.26885 0.20281 0.16978
75° 0.15311 0.20778 0.27510 0.33189 0.37052 0.37133 0.37056 0.33101 0.27444 0.20749 0.15253 0.11308
85° 0.09236 0.11869 0.14569 0.14285 0.15079 0.14289 0.15139 0.14214 0.14519 0.11818 0.09174 0.06352

Figure 1. Heliostat field layout.

both shapes, square and circle, a correction factor is ap-

plied. This shape factor, that is the fraction of the total

concentrated power in both shapes, has a value of 0.87.

The oxygen generated during the reduction of CeO2

should be removed in order to get an optimum reduction

performance. O2 is pushed out by a purge flow of high pu-

rity N2 allowing reach a very low oxygen partial pressure

inside the reactor.

The hydrogen production is accomplished at the oxi-

dizer and depends on the temperature, the reduction de-

gree of the moving particles of CeO2 and the amount of

water entering the reactor. In order to obtain a high pro-

duction of hydrogen, this plant considers CeO2−δ as the

limiting reagent (Equation 2). It is expected that the resi-

dence time of the CeO2−δ inside the oxidizer is sufficient

to achieve the complete oxidation. A small tank of CeO2

after the oxidizer allows a better management of the CeO2

particles in the cycle.

In order to achieve a higher system efficiency, several

heat recovery strategies were implemented. Two shell-

and-tubes heat exchangers placed at the input of both reac-

tors to recover the sensible heat of the gases. Furthermore,

it is assumed that steam lines are pre-heated up to 200

°C in order to prevent condensation. Finally, a solid-solid

heat exchanger is placed between both reactors (receiver

and oxidiser) to recover the sensible heat of CeO2 par-

ticles exiting the receiver as proposed in previous works

(Bader et al., 2013; Ermanoski, 2015; Ermanoski et al.,

2013; Bulfin et al., 2015).

3 Object-oriented modelling

The model described in this section follows an object-

oriented methodology based on equations. The main

physical and chemical phenomena were identified and en-

capsulated into independent and reusable modules. These

modules are connected creating hierarchical structures.

This approach allows to study different plant configura-

tion to improve the annual performance.

The model was implemented in Modelica language

(Modelica Association, 2016) and is fully compatible with

Modelica Standard Library (MSL). Modelica Fluid and

Modelica Thermal connectors were used to define rela-

tionships between components. The thermodynamic prop-

erties of fluids are obtained from medium models that ex-

tend from Modelica Media Interface (MMI). All the sub-

models are locally balanced ensuring robust modelling

and debugging (Olsson et al., 2008).

3.1 Subsystem modelling

The system model that reproduces the plant described in

§2, is presented in Figure 2. It consist on the following

sub-models: data source, sun, heliostat field, receiver, oxi-

dizer, tank, heat exchangers, pumps and valve. This model

also includes: fluid source, fluid boundary, thermal source,

real expression and medium sub-models.

General assumptions are summarized as follows:

• CeO2 particle properties are assumed to be quasi-

fluid.

• One-dimensional consideration within the direction

of heat and mass flows.

• Heat conduction and radiation are negligible in fluid

components. Axial heat flow is also negligible in

both fluids.

• Lumped thermodynamic properties are assumed in

fluid components.

• Chemical reactions only take place in receiver and

oxidizer.

Receiver and oxidizer sub-models are fully described

with complete set of equations in this work. The re-

maining models were obtained and adapted from exist-

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132857

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

859

Figure 2. Modelica component diagram of the system model.

ing libraries. In fact, this demonstrates the high re-

usability, extensibility and customizability of the mod-

elling methodology used. The models of data source, sun,

heliostat field and tank are been re-used from the open-

source SolarTherm library (de la Calle et al., 2016a) with

some adaptations and extensions. This library is available

at https://github.com/solartherm/solartherm

and consists on concentrating solar thermal (CST) compo-

nents that are used to perform the annual simulations and

the economic assessments of solar thermal plants. The

models of heat exchangers and pumps are utilized and

adapted from previous works of de la Calle et al. (2016b).

The models of fluid source, fluid boundary, linear pres-

sure drop valve, thermal source and real expression are

included on the MSL and medium models extends from

MMI.

A brief description of each one of the sub-models is

provided below:

3.1.1 Medium models

Two medium models were implemented to describe gas

mixture and Ceria properties. The gas medium is

used in both reactors and extends from the Modelica

Media IdealGases.Common.MixtureGasNasa. This

medium is composed of water, oxygen, hydrogen and ni-

trogen at its gaseous state and assumes ideal gas properties

provided by McBride et al. (2002).

The ceria medium model includes a function of the de-

gree of reduction (δ) explicit in temperature and oxygen

partial pressure (Ermanoski et al., 2013). In addition, the

medium includes a function for knowing the minimum re-

quired amount of water to achieve the oxidation based on

the water equilibrium and heat of reaction explicit in δ
(Bulfin et al., 2015).

3.1.2 Data source

This model encapsulates the extraction of weather data. It

uses a MSL’s CombiTimeTable with spline interpolation

such that derivatives are continuous. The raw file is a typ-

ical meteorological year data set in the TMY3-file format

(Wilcox and Marion, 2008). In order to be readable, the

file is modified being compatible with Modelica specifica-

tions (Modelica Association, 2016).

3.1.3 Sun

This model provides the sun position relative to

the plant location and the DNI in every time step.

Users can choose between different correlations such

as Duffie and Beckman (2013) or Blanco-Muriel et al.

(2001) for calculating the declination and solar hour an-

gles. The time variable matches with the local time where

0 s is 00:00 of 1st of January in this time zone. The DNI

is provided by a RealInput connector.

3.1.4 Heliostat field

This model calculates the total concentrated solar power

of the heliostat field (Q̇sol) as:

Q̇sol = NhelAhelηavηopG, (6)

Annual Performance of a Solar-Thermochemical Hydrogen Production Plant Based on CeO2 Redox Cycle

860 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132857

where the number of heliostats (Nhel), the heliostat area

(Ahel) and the heliostat availability (ηav) are design pa-

rameters (Table 1). Solar angles and DNI (G) are provided

by the SolarPort connector and the total optical efficiency

(ηop) is calculated using the MSL’s CombiTable2D with

spline interpolation and the Table 2 as input. The start-up

and the shutdown of the plant is automatically controlled

according the minimum starting power, minimum operat-

ing power and the deploy angle, which are model param-

eters (Appendix I).

3.1.5 Receiver

This model provides the dynamic amount of CeO2 re-

duced at the reactor. It is designed to perform annual sim-

ulations, therefore it is able to deal with zero-mass flow

rates and zero mass. It is a lumped parameter model which

assumes a single control volume (CV). The main particu-

lar assumptions are the following:

• Infinite thermal conductivity inside the reactor: same

temperature at shell, CeO2 and gas.

• Black body receiver approach: while radiative ther-

mal losses are considered only at the reactor aper-

ture, convective thermal losses are considered at all

the external reactor surface.

• Perfect mixer approach: both inner CeO2 particles

and gas are perfectly mixed with their respectively

accumulated masses.

• Pressure drop is neglected inside the reactor. The

same pressure is assumed in all the CV.

• Constant inner molar flow rate of CeO2 is assumed.

The residence time of CeO2 inside the reactor is con-

stant.

The gas mass inside of the reactor (mg) is determined

by the inner gas (ṁg,in), the outer gas (ṁg,out) and the gas

produced during the reduction (ṁgen,O2
):

ṁmmg = ṁg,in − ṁg,out + ṁgen,O2
. (7)

The gas pressure (p) is determined by means of the ideal

gas law:

pVg = mgkgT, (8)

where the specific gas constant (kg) depends on the mass

fraction of gases. The volume of the reactor (V) is constant

and filled with CeO2 (Vce) and gas (Vg):

V =Vg +Vce. (9)

The oxygen mass balance is calculated according the

mass fractions:

ṁmmg,O2
= ṁg,inXO2,in − ṁg,outXO2

+ ṁgen,O2
. (10)

The outer mass fraction is the same as the CV mass frac-

tion:

XO2
= max

(

0,
mg,O2

mg

)

, (11)

XH2O = 1−XO2
, (12)

where the maximum function is used to avoid numeri-

cal problems. The oxygen generated during the reduction

is calculated as function of the oxygen molecular mass

(MO2
) and the generated molar flow (ṅgen,O2

):

ṁgen,O2
= MO2

ṅgen,O2
. (13)

The generated molar flow depends on the degree of reduc-

tion (δ) and the inner CeO2 molar flow (ṅce,in):

ṅgen,O2
=

ṅce,inδ

2
. (14)

The amount of CeO2 (nce) inside the reactor is calcu-

lated by the molar balance:

ṅnnce = ṅce,in − ṅce,out , (15)

where the molar flow at outlet (ṅce,out) is calculated ac-

cording the following when-clause:

ṅce,out =

{

ṅce,in when nce ≥ nce,max,

0 elsewhen nce ≤ 0.
(16)

The maximum number of moles (nce,max) is calculated ac-

cording the maximum volume of CeO2 which is a model

parameter (Appendix I).

The mass of CeO2 (mce) is determined by its molar

mass (Mce) which depends on delta:

mce = Mcence, (17)

and the volume by:

Vce =
mce

ρce

. (18)

δ is calculated as function of the temperature and the

partial pressure of oxygen (pO2
). The maximum value of

δ is limited to 0.25 which is the maximum value possi-

ble to maintain the fluorite structure of CeO2. The partial

pressure is calculated as:

pO2
=

mO2

MO2

p. (19)

The temperature of the reactor is calculated according

to the global energy balance:

ηshQ̇sol − Q̇loss = ∆Q̇re +∆Q̇g +∆Q̇ce, (20)

where the concentrated solar power (Q̇sol) coming from

the heliostat field is attenuated by the shape factor (ηsh).

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132857

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

861

The heat loss (Q̇loss) is the sum of the radiative (Q̇loss,rd)

and convective losses (Q̇loss,rd):

Q̇loss,rd = Aapσξ
(

T 4
−T 4

amb

)

, (21)

Q̇loss,cv = Areα (T −Tamb) . (22)

The radiative losses are only applicable to the aperture

area of the reactor due to the lack of thermal insulation,

and the convective losses to the whole reactor. Emissivity

(ξ) and heat transfer coefficient (α) are model parame-

ters and the ambient temperature (Tamb) is an input of the

model.

The receiver mass contribution into the energy balance

(∆Q̇re) is mostly due to the thermal inertia of the metal

cover:

∆Q̇re = mreCp,reṪTT , (23)

where the mass (mre) and the specific heat capacity (Cp,re)

are model parameters. The gas contribution into the en-

ergy balance is determined by:

∆Q̇g = mgCp,gṪTT + ṁg,in (hg −hg,in) . (24)

where it is assumed that the outlet temperature is the same

as the temperature inside the reactor. The following equa-

tion calculates the CeO2 contribution into the energy bal-

ance:

∆Q̇ce = mceCp,ceṪTT + ṁce,in (hce −hce,in)−nce,inδ Qred.
(25)

where it is also assumed that the outlet temperature is the

same as the temperature inside the reactor and heat of re-

duction (Qred) depends on δ .

3.1.6 Oxidizer

This model dynamically provides the amount of hydrogen

produced. It is a lumped parameter model (1 CV) similar

to the receiver. The particular assumptions are the same

as for the receiver but in this case, due to the lack of an

aperture, only convection losses are been considered. The

main assumption is the complete oxidation of the CeO2.

The gas mass inside of the reactor is determined by

the inflowing gas, the outflowing gas, the gas produced

(ṁgen,H2
) and the consumed at the oxidation (ṁcon,H2O):

ṁmmg = ṁg,in − ṁg,out + ṁgen,H2
− ṁcon,H2O. (26)

The oxidizer pressure and the volume calculation are de-

termined by Equations 8 and 9.

The mass balances of nitrogen, hydrogen and water are

calculated according the mass fractions:

ṁmmg,N2
=ṁg,inXN2,in − ṁg,outXN2

, (27)

ṁmmg,H2
=ṁg,inXH2,in − ṁg,out XH2

+ ṁgen,H2
, (28)

ṁmmg,H2O =ṁg,inXH2O,in − ṁg,outXH2O − ṁcon,H2O. (29)

The outflowing mass fractions are determined by:

XN2
= min

(

1,
mg,N2

mg

)

, (30)

XH2
= max

(

0,
mg,H2

mg

)

, (31)

XH2O = min

(

1,
mg,H2O

mg

)

, (32)

where maximum and minimum functions are used for pre-

venting numerical problems.

The mass flows due to the oxidation are:

ṁgen,H2
= MH2

ṅgen,H2
, ṁcon,H2O = MH2Oṅcon,H2O, (33)

where the molar flows depends on the degree of reduction

of the inflowing CeO2:

ṅcon,H2O =
ṅce,inδ

2
, (34)

ṅgen,H2
= ṅcon,H2O. (35)

Equations 15-18 are used in this model to calculate the

CeO2 mass and volume dynamics. The temperature is cal-

culated according to the global energy balance:

− Q̇loss,cv = ∆Q̇re +∆Q̇g +∆Q̇ce, (36)

where Equations 22-24 provide the heat losses, the re-

ceiver mass contribution and the gas contribution to the

energy balance. The CeO2 contribution is determined by:

∆Q̇ce = mceCp,ceṪTT + ṁce,in (hce −hce,in)−nce,inδ Qox,ce.
(37)

where heat of oxidation is assumed as Qox =−Qred .

3.1.7 Tank

This model introduces the dynamics of a small storage ele-

ment which pressure is fixed parametrically. It is a lumped

parameter model which assumes a cylinder volume and an

ideally mixed fluid. The mass balance is:

ṁmm = ṁin − ṁout , (38)

and the energy balance is:

mḣhh = ṁin (hin −h)− Q̇loss, (39)

where shell capacitance is neglected. The convective heat

losses to the environment are only applied to the metal

surface that is in contact with the fluid.

3.1.8 Heat exchanger

This quasi-steady-state heat exchanger model allows

to calculate sensible heat transfer between two fluids

based on the mathematical development of Spakovszky

(2008) and whose implementation was performed by

de la Calle et al. (2016b). It is a lumped parameter model

which assumes that every state at the heat exchanger is lo-

cally steady. The model is able to manage zero-mass flow

rates.

Annual Performance of a Solar-Thermochemical Hydrogen Production Plant Based on CeO2 Redox Cycle

862 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132857

3.1.9 Pump

This ideal pump model provides a controlled mass flow

rate between two points in the same streamline.

3.1.10 Linear valve

This model calculates the mass flow rate that crosses

through the valve opening with a linear approximation of

the pressure drop.

3.1.11 Fluid source

This model provides an input boundary condition where

the mass flow rate, the specific enthalpy and mass fraction

are defined. It is used to simulate the inflowing gas at the

reactors.

3.1.12 Fluid boundary

This model provides an output boundary condition where

the pressure, the specific enthalpy and mass fraction are

defined. It is used to simulate the environment (fluid mod-

els).

3.1.13 Thermal source

This model provides a thermal boundary condition where

the temperature is defined. It is used to simulate the envi-

ronment (thermal models).

3.1.14 Real expression

It is a model used to connect experimental data as inputs

of the models in a graphical way.

3.2 Automatic control system

The automatic control system (ACS) is designed to guar-

antee the stability of the plant in annual simulations. This

system is made up by a series of on-off controllers which

control the circulation of the fluids inside the plant.

The ACS must prevent the reverse flow of gases at

valves. For this reason, the valves are only opened when

the pressure drop is higher than half of the nominal pres-

sure drop.

The gas source is opened since the heliostat field

reaches the start-up power and it is closed when the he-

liostat field is shut down and the reactor temperatures are

below a certain shutdown temperature.

The ceria pump starts when the heliostat field is started,

both gas valves are open and the receiver temperature is

higher than a minimum operating temperature. In order to

take advantage of the thermal inertia of the reactors, the

pump shut down when the heliostat field is shut down and

the receiver temperature is below the minimum operating

temperature.

4 Simulation

Dymola 2017 (Dassault Systemes, 2016) was the tool used

for the Modelica implementations and simulations. The

numerical solver used for the dynamic simulations has

been DASSL (Petzold, 1983) whose absolute and relative

tolerances were set to 10−4.

The model is a set of high-index differential and alge-

braic equations (DAEs) of 745 scalar variables. After the

translation, the model has 255 time-varying variables and

14 continuous-time states.

The numerical value of model parameters can be re-

viewed in Appendix I. The annual performance of the

plant is very sensible to the operating parameters. Few op-

erating parameters have been optimised: CeO2 mass flow

rate, inlet receiver gas flow rate and inlet oxidizer mass

flow rate and its composition. The optimization method

was the Simplex algorithm and the objective function was

the final hydrogen production.

The annual simulation was performed using weather

data for the Geraldton location provided by AUSTELA

(2016). The CPU-time for integration was 161 s for the

whole year simulated with 9997 state events mostly re-

lated with the ACS.

The amount of hydrogen produced during the simulated

year is 46.57 t. The variation in time of this production

is depicted in Figure 3, where the different seasonal rate

(winter-summer) can be observed . The solar to hydrogen

efficiency of the plant, defined as:

η =
mH2

HHV

Qsol

, (40)

where mH2
is the annual amount of hydrogen, HHV

is the hydrogen heating value and Qsol is the annual

amount of energy that reach the heliostat field, has a value

of 25.27%. This result is in line with previous works

(Bader et al., 2013; Ermanoski, 2015; Ermanoski et al.,

2013; Bulfin et al., 2015).

Figure 4 shows the simulation details of 5 days (from

28 August to 1 September). This week has one sunny day

(240), three partially cloudy days (241, 243 and 244) and

one completely cloudy day (242) (Figure 4(a)). The con-

centrated solar power by the heliostat field is shown in

Figure 4(b). The plant does not use all the available en-

ergy (Q̇raw) because a minimum start-up power and min-

imum operating power are applied. Although 1.2 MW of

peak power is reached 2 days, only few hour per day the

power is higher than 1 MW. At the day 242, the system

did not achieve the start-up power in the whole day and at

0 50 100 150 200 250 300 350
0

10

20

30

40

50

Day

H
yd

ro
ge

n
P

ro
du

ct
io

n
in

 M
as

s
[t]

Figure 3. Annual hydrogen production.

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132857

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

863

240 241 242 243 244 245
0

200

400

600

800

1000

Day

D
N

I [
W

/m
2]

(a) Direct normal radiation.

240 241 242 243 244 245
0

0.25

0.5

0.75

1

1.25

1.5

Day

H
el

io
ts

ta
t F

ie
ld

P
ow

er
 [M

W
]

Q

raw
Q

solar

(b) Heliostat field power.

240 241 242 243 244 245
0

500

1000

1500

2000

2500

Day

T
em

pe
ra

tu
re

 [° C
]

T

rd
T

ox

(c) Receiver and oxidizer temperatures.

240 241 242 243 244 245
0

0.4

0.8

1.2

1.6

Day

P
re

ss
ur

e
[b

ar
]

p
rd

p
ox

(d) Receiver and oxidizer pressures.

240 241 242 243 244 245
0

0.05

0.1

0.15

0.2

0.25

Day

D
eg

re
e

of
 r

ed
uc

tio
n

(δ
)

(e) Degree of reduction.

240 241 242 243 244 245
0

0.01

0.02

0.03

0.04

0.05

Day

X
H

2/X
H

2O
 [−

]

X
max

X
ox

(f) Relation between hydrogen and water mass fractions inside the

oxidizer.

Figure 4. Simulation details of 5 days.

days 243 and 244 the peak power barely reached 1 MW.

Figure 4(c) shows the CeO2 temperatures inside the re-

ceiver and the oxidizer. The operating reduction tempera-

ture is ranged between 1850− 1950 ◦C and the operating

oxidation temperature is around 1000− 1100 ◦C. When

the plant is shut down, the temperature decreased quickly

and 32 hours after is close to the ambient temperature.

The pressure inside both reactors is shown in Figure 4(d).

While the receiver works at ambient pressure, the oxidizer

nominal pressure has been set to 1.5 bar in order to assure

higher pressure than ambient when the hydrogen produc-

tion is large. The degree of reduction is depicted in Fig-

ure 4(e), where peaks of 0.25 can be observed. For achiev-

ing the total oxidation of the CeO2, a minimum amount

of water per hydrogen released is required inside the ox-

idizer (Bulfin et al., 2015). In Figure 4(f) is depicted as

xmax (the mass fraction of hydrogen into water) and it lim-

its the amount of hydrogen produced at the oxidizer with

the water used. The figure shows that in the whole simu-

lation, the hydrogen released (xox)is lower than the maxi-

mum amount expected at the equilibrium.

5 Conclusions

In this work, a dynamic model of a solar hydrogen plant

based on the CeO2 redox cycle has been presented. The

model has been developed with an object-oriented mod-

elling methodology that it allows the re-used of several

work previously developed. The system is design to study

the transient behaviour of the plant in annual simulations.

It was implemented with the Modelica language and sim-

Annual Performance of a Solar-Thermochemical Hydrogen Production Plant Based on CeO2 Redox Cycle

864 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132857

ulated with Dymola 2017. A basic automatic control sys-

tem based on on-off controllers to guarantee the system

stability was included.

The model predictions are reasonable and some usual

simulation problems like zero-mass flows were solved

with effectiveness. The computational effort of the model

is low, therefore it can be used in optimization and control

studies.

Increasing the model accuracy should be the objective

of next works. The model reveals that thermal inertia of

the CeO2 is too much high to accomplish the oxidation

without extract heat flow from the reactor. The results sug-

gest to review the assumptions related with heat losses and

design a cooling systems at the oxidizer. The optimization

of the plant through few operating parameters has demon-

strated the flexibility of the system to be improved. Future

studies should include operating cost and advanced oper-

ating strategies.

Acknowledgement

This work was performed as part of the ASTRI, a project

supported by the Australian Government, through the

Australian Renewable Energy Agency (ARENA).

Appendix I: Model parameters

References

Stéphane Abanades, Patrice Charvin, Gilles Flamant, and

Pierre Neveu. Screening of water-splitting thermochemi-

cal cycles potentially attractive for hydrogen production by

concentrated solar energy. Energy, 31:2469–2486, 2006.

doi:10.1016/j.energy.2005.11.002.

Simon Ackermann and Aldo Steinfeld. Diffusion of oxy-

gen in Ceria at elevated temperatures and its application to

H2O/CO2 splitting thermochemical redox cycles. The Jour-

nal of Physical Chemistry Cournal of, 118, 2014.

AUSTELA. The NREL System Advisor Model for

Australian CSP Stakeholders (SAM), 2016. URL

http://www.austela.org.au/projects .

Roman Bader, Luke J. Venstrom, Jane H. Davidson, and Woj-

ciech Lipiński. Thermodynamic analysis of isothermal redox

cycling of ceria for solar fuel production. Energy and Fuels,

27(9):5533–5544, 2013. doi:10.1021/ef400132d.

Manuel Blanco-Muriel, Diego C. Alarcón-Padilla, Teodoro

López-Moratalla, and Martín Lara-Coira. Computing

the solar vector. Solar Energy, 70(5):431–441, 2001.

doi:10.1016/S0038-092X(00)00156-0.

B. Bulfin, F. Call, M. Lange, O. Lübben, C. Sattler, R. Pitz-Paal,

and I. V. Shvets. Thermodynamics of CeO2 thermochemical

fuel production. Energy and Fuels, 29(2):1001–1009, 2015.

doi:10.1021/ef5019912.

William C Chueh, Christoph Falter, Mandy Abbott, Danien

Scipio, Philipp Furler, Sossina M Haile, and Aldo Ste-

infeld. High-flux solar-driven thermochemical dissocia-

tion of CO2 and H2O using nonstoichiometric ceria. Sci-

Heliostat field

Start-up power: 0.6 MW

Shutdown power: 0.3 MW

Deploy angle: 8°

Ceria pump

Mass flow rate: 2.5 kg/s

Shutdown Temperature: 1000 °C

Ceria Heat exchanger

Heat transfer coefficient: 500 W/(m2 K)

Area of exchange: 5 m2

Receiver

Reactor mass: 500 kg

Diameter: 0.67 m

Lenght: 0.34 m

Maximum CeO2 volume: 25%

Emitance: 0.88

Convective coefficient: 10 W/(m2 K)

Oxidizer

Reactor mass: 500 kg

Diameter: 0.67 m

Lenght: 0.34 m

Maximum CeO2 volume: 25%

Convective coefficient: 500 W/(m2 K)

Tank

Diameter: 0.5 m

Height: 0.5 m

Convective coefficient: 10 W/(m2 K)

N2 Source

Gas Mass flow rate: 0.25 kg/s

Shutdown temperature: 700 °C

N2 valve

Design pressure drop: 0.05 bar

Closing pressure drop: 0.025 bar

N2 Heat exchanger

Heat transfer coefficient: 500 W/(m2 K)

Area of exchange: 5 m2

H2O Source

Gas Mass flow rate: 0.71 kg/s

H2O Mass fraction: 0.45

Shutdown temperature: 400 °C

H2O valve

Design pressure drop: 0.5 bar

Closing pressure drop: 0.25 bar

H2 Heat exchanger

Heat transfer coefficient: 500 W/(m2 K)

Area of exchange: 5 m2

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132857

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

865

ence (New York, N.Y.), 330(6012):1797–801, dec 2010.

doi:10.1126/science.1197834.

Dassault Systemes. Dymola 2017 - Dynamic Modeling Labora-

tory, 2016. URL www.3ds.com.

Alberto de la Calle, Jim Hinkley, Paul Scott, and John Pye. So-

larTherm : A New Modelica Library and Simulation Platform

for Concentrating Solar Thermal Power Systems. Proc. 9th

EUROSIM Congress on Modelling and Simulation, pages 1–

2, 2016a. doi:10.1109/EUROSIM.2016.162.

Alberto de la Calle, Lidia Roca, Javier Bonilla, and

Patricia Palenzuela. Dynamic modeling and simula-

tion of a double-effect absorption heat pump. Inter-

national Journal of Refrigeration, 72:171–191, 2016b.

doi:10.1016/j.ijrefrig.2016.07.018.

Lawrence D’Souza. Thermochemical hydrogen production from

water using reducible oxide materials: a critical review. Ma-

terials for Renewable and Sustainable Energy, 2(1):7, feb

2013. doi:10.1007/s40243-013-0007-0.

John A. Duffie and William A. Beckman. Solar Engineering

of Thermal Processes. Wiley, New York, USA, 4th edition,

2013. ISBN 9780470873663. doi:10.1002/9781118671603.

Ivan Ermanoski. Maximizing Efficiency in Two-step Solar-

thermochemical Fuel Production. Energy Procedia, 69:1731–

1740, 2015. doi:10.1016/j.egypro.2015.03.141.

Ivan Ermanoski, Nathan P. Siegel, and Ellen B. Stechel. A

New Reactor Concept for Efficient Solar-Thermochemical

Fuel Production. Journal of Solar Energy Engineering, 135

(3):031002, 2013. doi:10.1115/1.4023356.

Edward A. Fletcher. Solarthermal Processing: A Review. Jour-

nal of Solar Energy Engineering, 123(May 2001):63, 2001.

doi:10.1115/1.1349552.

Philipp Furler, Jonathan R. Scheffe, and Aldo Steinfeld. Syn-

gas production by simultaneous splitting of H2O and CO2via

ceria redox reactions in a high-temperature solar reac-

tor. Energy & Environmental Science, 5(3):6098, 2012.

doi:10.1039/c1ee02620h.

Xiang Gao, Alejandro Vidal, Alicia Bayon, Roman Bader,

Jim Hinkley, Wojciech Lipiski, and Antonio Tricoli. Ef-

ficient ceria nanostructures for enhanced solar fuel produc-

tion: Via high-temperature thermochemical redox cycles.

Journal of Materials Chemistry A, 4(24):9614–9624, 2016.

doi:10.1039/c6ta02187e.

IRENA and IEA-ETSAP. Technology Brief 4: Thermal Storage.

Technical Report January, 2013.

Jiyong Kim, Terry a. Johnson, James E. Miller, Ellen B.

Stechel, and Christos T. Maravelias. Fuel production

from CO2 using solar-thermal energy: system level anal-

ysis. Energy & Environmental Science, 5(9):8417, 2012.

doi:10.1039/c2ee21798h.

Nathan S Lewis and Daniel G Nocera. Powering the planet:

Chemical challenges in solar energy utilization. PNAS, 104

(42):15729–15735, 2007.

Bonnie J. McBride, Michael J. Zehe, and Sanford Gor-

don. NASA Glenn Coefficients for Calculating Thermody-

namic Properties of Individual Species. Technical Report

NASA/TP-2002-211556, National Aeronautics and Space

Administration (NASA), Cleveland OH, USA, 2002.

Modelica Association. Modelica Specification 3.3, 2016. URL

www.modelica.org/documents .

Christopher L. Muhich, Brian D. Ehrhart, Ibraheam Al-Shankiti,

Barbara J. Ward, Charles B. Musgrave, and Alan W. Weimer.

A review and perspective of efficient hydrogen generation

via solar thermal water splitting. Wiley Interdisciplinary

Reviews: Energy and Environment, pages n/a–n/a, 2015.

doi:10.1002/wene.174.

NREL. The Solar Power Tower Integrated Layout

and Optimization Tool (SolarPILOT), 2016. URL

http://www.nrel.gov/csp/solarpilot.html .

J. O’Gallagher and R. Winston. Development of com-

pound parabolic concentrators for solar energy. Interna-

tional Journal of Ambient Energy, 4(4):171–186, oct 1983.

doi:10.1080/01430750.1983.9675885.

Hans Olsson, Martin Otter, Sven Erik Mattsson, and Hilding

Elmqvist. Balanced Models in Modelica 3.0 for Increased

Model Quality. In Proc. 6th International Modelica Confer-

ence, pages 21–33, Bielefeld, Germany, 2008.

Linda R. Petzold. A description of DASSL: a Diferential/Al-

gebraic System Solver. Scientific Computing, pages 65–68,

1983.

Robert Pitz-Paal, Nicolas Bayer Botero, and Aldo Steinfeld. He-

liostat field layout optimization for high-temperature solar

thermochemical processing. Solar Energy, 85(2):334–343,

2011. doi:10.1016/j.solener.2010.11.018.

R. Ramachandran and R. K. Menon. An overview of industrial

uses of hydrogen. International Journal of Hydrogen Energy,

23(7):593–598, 1998. doi:10.1016/S0360-3199(97)00112-2.

Martin Roeb, Martina Neises, Nathalie Monnerie, Friede-

mann Call, Heike Simon, Christian Sattler, Martin

Schmücker, and Robert Pitz-Paal. Materials-Related As-

pects of Thermochemical Water and Carbon Dioxide Split-

ting: A Review. Materials, 5(12):2015–2054, oct 2012.

doi:10.3390/ma5112015.

Jonathan R. Scheffe and Aldo Steinfeld. Thermodynamic Anal-

ysis of Cerium-Based Oxides for Solar Thermochemical Fuel

Production. Energy & Fuels, 26(3):1928–1936, mar 2012.

doi:10.1021/ef201875v.

Z. S. Spakovszky. Unified Engineering: Thermodynamics and

Propulsion, 2008. URL web.mit.edu/16.unified.

S. Wilcox and W. Marion. Users manual for TMY3 data

sets. Technical Report NREL/TP-581-43156, The National

Renewable Energy Laboratory (NREL), Golden CO, USA,

2008.

Annual Performance of a Solar-Thermochemical Hydrogen Production Plant Based on CeO2 Redox Cycle

866 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132857

Applying the Power Plant Library ClaRa for Control Optimisation

Friedrich Gottelt1 Timm Hoppe1 Lasse Nielsen2

1XRG Simulation GmbH, Germany, {gottelt, hoppe}@xrg-simulation.de
2TLK Thermo GmbH, Germany, l.nielsen@tlk-thermo.com

Abstract
This paper presents the current state of the open-source
Modelica library ClaRa which enables the user to solve
complex power plant simulation tasks. The library can
be used to help control experts to develop and test con-
trollers without disturbing the daily operation of the ap-
plying power plant. This reduces project risks and costs
significantly. As a use case the analysis and optimisation
of a Benson boiler power control is presented. The pre-
sented solution reduces the impact of soot blowing on the
power output by 57 %.
Keywords: Power plant, Clausius-Rankine cycle, open-
source library, control optimisation, soot blowing, simu-
lation

1 Introduction
The global energy markets are in a phase of significant
changes due to increasing power production from renew-
able sources like solar and wind power, see (International
Energy Agency, 2015). These renewables are usually fluc-
tuating energy inputs as they depend on local weather. In
order to ensure a stable grid operation conventional power
suppliers have to outbalance these fluctuations. This intro-
duces new modes of operation to new and existing power
plants. The questions and challenges that arise from these
new operation modes can be solved at low costs with the
help of system simulation. Therefore, it is very likely that
activities in this field will grow in both, university-based
and industry research and development.

The most recent Modelica library in this field is the li-
brary ClaRa which was developed from 2011 in a Ger-
man collaboration1 of Hamburg University of Technology,
TLK-Thermo GmbH and XRG Simulation GmbH. Its first
official release of version 1.0.0 dates from March 2015
(see (Brunnemann et al., 2012; Gottelt et al., 2012) for an
introduction to ClaRa and a control-related application).
The aim of this development was to provide a library that
is both, suitable for beginning and advanced researchers in
the field of simulation with Modelica. This leads to spe-
cial requirements with respect to usability and flexibility
which are described in section 2. Currently the library is
under ongoing development within the follow up project
Dynstart2. New features, for example a parameter based

1Funded by the German Ministry for Economic Affairs and Energy
under reference number FKZ 03ET2009

2Funded by the German Ministry for Economic Affairs and Energy

initialisation concept, have been added and the library is
going to be enhanced to handle extra-low-loads, start-up
and shut-down processes. To illustrate the potential of the
library, the challenging task of a soot blowing simulation
is presented as use case in this paper.

2 Overview of the Library ClaRa
2.1 Scope of Library
The library ClaRa was created to enable simulation of
large steam power plants with coal dust firing. At the
heating side the library comprises models for the complete
fuel handling process from the grinding via the fuel com-
bustion to the flue gas cleaning. At the water steam side
the library features models for the cooling of the combus-
tion chamber to the electrification of the steam in the turbo
generator.

The library is intended to be the centre of a whole fam-
ily of Modelica libraries in the field of electricity pro-
duction and consumption. Any extension of ClaRa will
be handled in a separate, so-called ClaRa_AddOn. This
avoids the constant growing of the library, limits its scope
and reduces the effort of library maintenance since not all
add-ons must be fully compatible to each other. Espe-
cially the last mentioned aspect eases the library devel-
opment by external developers. Two ClaRa_AddOns are
currently under development in close collaboration with
the ClaRa developers: ClaRa_Control supplies blocks for
an efficient implementation of state of the art power plant
process control including the start-up and shut-down pro-
cessing. Transient widens the scope of ClaRa by the en-
ergy distribution and allows for the simulation of strongly
coupled electric grids, gas grids and district heating grids
as well as its economic evaluation (Andresen et al., 2015).

Consequently, also the ClaRa library makes use of two
external libraries, namely the open source library Fluid-
Dissipation (Vahlenkamp and Wischhusen, 2008, 2009)
providing functional descriptions of pressure losses and
heat transfer and the free-of-charge version of the TILMe-
dia (Schulze, 2014) providing media data for water, CO2
and gaseous flue gas and air mixtures.

2.2 Structure of Library
The structure of the library follows a functional approach
rather than structuring according to the used media. For

under reference number FKZ 03ET7060E

DOI
10.3384/ecp17132867

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

867

example, a steam-heated shell-and-tube heat exchanger
for the preheating of feedwater will be found in the same
package HeatExchanger as a flue gas to fresh air heat
exchanger.

Table 1 gives an overview of the top level package
structure. Herein, the UsersGuide provides a brief in-
troduction to the library as well as developer’s contact
data and information on the license model and the revi-
sions. The package Examples provides a number of in-
troductory examples making new users familiar with the
capabilities of the library. The package Basics con-
tains basic models and other internally used codes like
functions, records and interfaces. Most users will not get
in touch often with this package. In contrast, the pack-
age Components contains all the component models re-
quired to build up a power plant model.

Table 1. ClaRa library structure

UsersGuide Information on basic modeli-
ing concepts, contact and li-
cense

Examples Introducing examples

Basics Basic models and informatics

Components Models for turbo machines
and electrical machines,
connection pipings, heat
exchanger, mass storage and
steam separation, valves, coal
grinding, furnace, flue gas
cleaning, and sensors, i.e. "the
core of the library"

SubSystems Conceptual package aiming at
supporting team work

Visualisation Auxiliaries for the visualisa-
tion of results

StaticCycles Static models for the calcula-
tion of consistent initial guess
values

The package SubSystems contains some exam-
ples for the definition of subsystems. This package
is still somewhat conceptual since it does not feature
a complete set of reasonable sub systems but rather
aims at introducing ideas for an efficient team work.
The package Visualisation provides means to vi-
sualise the results using both, Modelica-based annota-
tions and third party post processing tools. The section
2.5 gives a brief overview of the options. Finally, the
package StaticCycles contains simplified, static and
parameter-based models of most of the power plant com-
ponents. Details on this package and the idea for its ap-
plication within ClaRa’s dynamic modelling approach are
discussed in section 2.6

2.3 Overview of Component Modelling
One aspect of the ClaRa modelling concept is to provide
as much physics as applicable to achieve a close to reality
model behaviour of single components as well as whole
power plant models. Different modelling approaches are
used throughout the library, for example a finite volume
approach for pipes, flow models for valves, zonal mod-
els for reservoirs and characteristic maps for compressors
and pumps while almost all components are using balance
equations.

The different models are reasonably modular in struc-
ture avoiding doubled code and providing high code trans-
parency. Another aspect in model structuring is to gain
flexibility in the model application. The structuring is
done according to the following concepts:

Models at different levels of detail are provided as
separate classes, they can be exchanged in many cases
(e.g. via Dymola’s context menu "change class...") since
they have equal interfaces. However, its internal structure
is significantly different providing a differently detailed
view into the component.

For instance, a pipe can be modelled applying an inte-
grated, slim set of balance equations (as described in (Ve-
lut and Tummescheit, 2011)) or its balance equations can
be discretised applying a finite volume approach. The first
mentioned approach will be very efficient for the simu-
lation of water hammer effects but loosing information
about the internal, local fluid temperature and pressure
distribution. The latter mentioned approach is very ro-
bust for reverse flow and off-design conditions and gives
detailed information about local and temporal effects like
steaming but will be less efficient for very long pipes.

Physical effects at different levels of insight are
provided to allow to apply a single class to be instantiated
in different contexts. For instance, the pressure loss of a
valve might be calculated either considering supercritical
or subcritical flow conditions. In other cases, if the valve’s
specific behaviour is not of particular interest it might be
sufficient to simply consider a linear hydraulic correlation.
All this is handled in different replaceable models.

Basic models are reused by instantiation to form
new component models. For instance, a shell-and-tube
heat exchanger model is a compound of the shell’s vol-
ume, the tube’s volumes and the separating wall. ClaRa
provides basic models for these sub-compounds which
makes the models very easy to understand and to maintain
and allows users to easily create new component models.

The component list is complete for most tasks around
evaluation of the normal power plant operation of both
once-through boilers and circulation boilers. Heating can
be realised either by coal dust firing or heat recovery (other
heat sources like solar energy or biomass firing will be
subject to ClaRa_AddOns). However, future releases will
increase this content further, e.g. there will be a cooling
tower enabling studies on the performance of the cold side

Applying the Power Plant Library ClaRa for Control Optimisation

868 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132867

of the process.

2.4 Media Supported
ClaRa is shipped with a non-profit version of the TIL-
Media featuring four different media types3. For pure
mediums like water/steam there are table based and spline
interpolated data available which are very encouraging
concerning simulation speed and simulation stability, see
(Schulze, 2013). The flue gas is described by a gas-vapour
mixture with eight substances similar to humid air. A mix-
ture of real fluids for application in CO2 separation pro-
cesses is supported as well as pure CO2 for ORC applica-
tions.

The calculation of substance properties within TILMe-
dia is applied by external C code for faster simulation
speed and reusability. The robust media formulation has
also a positive effect on the initialisation of ClaRa mod-
els because media evaluation outside of the range of va-
lidity is handled by extrapolation or limitation to numer-
ical range of validity to prevent division by zero or infin-
ity. Significant less crashes were experienced compared to
work with other media libraries.

2.5 Visualisation and Usability
The usability is a key point to ease new users the introduc-
tion to the library. Therefore, ClaRa component models
feature well-structured parameter dialogues that make ex-
tensive use of Modelica’s dialogue structuring annotations
like "tab" and "group". This helps the user to distinguish
between expert settings and fundamental, geometric set-
tings of a component. Where applicable, descriptive fig-
ures help to understand the technical context.

Modelica libraries often provide only brief documenta-
tion thus implying that the source code is self-declarative.
Although this might be true for certain libraries available
it is often an obstacle for those who are less familiar ei-
ther with commonly used modelling techniques or the pro-
gramming language used. ClaRa provides a comprehen-
sive documentation for these users aiming at deepening
the understanding of the work and improving the con-
fidence in the library by granting a maximum of trans-
parency. The documentation gives detailed insight into
the underlying theory and explains expert user settings and
spent validation efforts.

In order to help users to keep track of very complex
power plant process designs a number of visualisers can
be included into the models, see Figure 1. These items
help to better understand the current state of the process
by visualising important process variables (pressure, tem-
perature, spec. enthalpy and mass flow and levels) and
highlighting critical values like negative or zero flows.

2.6 Global Initialisation
The initialisation of a large differential-algebraic system
of equations is a challenge that has been discussed in

3There are more media available at costs for a commercial TILMedia
license

Figure 1. Screenshot of ClaRa visualisation

the Modelica community from the very beginning, e.g.
(Mattsson et al., 2002; Bachmann et al., 2006; Najafi,
2008). Since initialisation can often be a time-consuming
and frustrating task, especially for beginners, a library’s
quality can also be measured in its features that support
the user in getting robustly and reproducibly initialising
models. For ClaRa’s implementation five aspects are con-
sidered to ease the initialisation process: First, a new user
will expect to get some kind of guidance in the task of
initialisation, i.e. it should be clear for which variables
the user should provide estimation values and for which
not. Second, the library should support the homotopy
concept that was proved to be advantageous according to
(Casella et al., 2011). Third, the available initialisation
options shall provide a flexibility to initialise models in
arbitrary combinations. Fourth, the initialisation should
be reliable, i.e. it should not be sensitive to smaller model
changes. This point also refers to the accuracy that esti-
mated values must have. Finally, taking the system topol-
ogy into account is a valuable feature that would signifi-
cantly improve the initialisation process. The last point is
not straightforward since it counteracts the modular mod-
elling principles Modelica is based on.

If we take a look on a dynamic, 0D T-join for exam-
ple. The volume normally is initialised by applying es-
timation values for the state variables, i.e. pressure and
specific enthalpy provided by the user as parameters. In
principle, these parameters are defined locally and they
are completely independent from its neighbouring compo-
nents. However, from a technical point of view it is clear
that it would be useful to take the neighbours into account
since the mixer’s specific enthalpy will be the weighted
mixing enthalpy of the two inlet enthalpy flows coming
from the upstream components.

The ClaRa approach to take this kind of informa-

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132867

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

869

tion about the system topology into account is the
StaticCycle package. This package contains a set of
stationary models which can be used to create a simpli-
fied, static and parameter-based mimic of the dynamic cy-
cle. The result is a consistent, load depending set of pa-
rameters for mass flow, pressure and specific enthalpy or
temperature for the complete cycle. Linking the results of
this static cycle to the respective initial guess values in the
dynamic cycle allows to give flexible and consistent ini-
tial values at all dynamic components considering system
topology and the possibility to use a cascaded initialisa-
tion with values of upstream neighbouring components.
This feature allows for a very robust initialisation with au-
tomated adaptation on varying design points.

Overview of the StaticCycle package features:

• parameter based

• signal connectors

• different input/output combinations for different as-
sembly yield four differently coloured connectors.
Equally coloured connects match

• connectors are error proof with respect to wrong con-
nections (e.g. outlet-outlet connection, blue-red con-
nection)

• functionality for load dependent initialisation (table
based)

Figure 2 shows an exemplary cut-out of a
StaticCycle circuit with visualised signal flow
directions and corresponding parameters. Blue arrows
indicate the local flow direction. In this example the
heat exchanger calculates for the outlet at position 1 the
enthalpy according to the energy balance, passes through
the mass flow from the inlet and receives a pressure value
at the blue outlet connector. In contrast, at the red steam
inlet connector (position 2) mass flow and pressure are
defined via user input and passed over to the upstream
valve. The red inlet connector receives a value for the
enthalpy. In the red-connected steam valve a nominal
pressure drop is assigned so that the component passes
pressure and mass flow to the red outlet connector of
the T-split which itself provides a value for the enthalpy.
The green outlet connector of the T-split provides values
for mass flow, enthalpy and pressure for the top valve
component which serves as a pressure break because this
components also receives a pressure signal at its blue inlet
connector while sending parameters for mass flow and
enthalpy for the downstream component.

In the following an example of a simple tube is used
to illustrate the StaticCycle’s work with fixed=false
parameters to determine parameters that are passed over
from neighbouring components.

6
ṁ
h

?p

-
p

� hṁ �̇m h p

6

ṁ
p

?

h

�
h

-ṁ p

�h

�

h

6

h

{1

{2

Figure 2. StaticCycle component example cut-out. Blue
arrows indicate mass flow direction, black arrows indicate signal
flow directions

model tube
blueConnector_inlet inlet(p=p_in); //

send pressure to upstream component
blueConnector_outlet outlet(m_flow=

m_flow, h=h_in); // send mass flow
and enthalpy to downstream component

parameter Real Delta_p_nom; // nominal
pressure loss

final parameter Real m_flow(fixed=false);
final parameter Real h_in(fixed=false);
final parameter Real p_in = p_out+

Delta_p_fric;
final parameter Real Delta_p_fric =

m_flow / m_flow_nom * Delta_p_nom; //
pressure loss calculation

initial equation
outlet.p=p_out; // get pressure from

downstream neighbour
inlet.m_flow=m_flow;
inlet.h=h_in; //get the enthalpy and

mass flow from the upstream
neighbour

end tube;

As can be seen, parameters calculated or set by the com-
ponent are set via the connector’s modifier, e.g. inlet.p. In
contrast, parameters that are set by neighbouring compo-
nents are made available by parameters that apply the fixed
= false feature. The corresponding internal values are set
in an initial equation environment, ensuring that the results
can be used as initial values for the dynamical simulation
of the main model.

3 Use Case for Control Analysis and
Improvement

3.1 Scope of Work
The idea of this generic use case is to illustrate ClaRa’s
capabilities to model power plants at the state of the art
including the full complexity of common condensation
power plants due to extensive feedwater preheating and

Applying the Power Plant Library ClaRa for Control Optimisation

870 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132867

F
lu
e

G
a
s

F
re
sh

 A
ir

C
o
ld

W
a
te
r

1

S
H
1

S
H
2

S
H
3

E
co

R
H
2

R
H
1

H
P

T
u
rb

in
e

IP T
u
rb

in
e

L
P

T
u
rb

in
e

2

3

4

4
5

6

7

8
R
a
w

C
o
a
l

Figure 3. P&ID of simulation model

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132867

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

871

exhaust gas cleaning and cooling technologies. The use
case also aims at proving Modelica’s power to analyse
complex processes at a physical level and its interaction
with control structures. System simulation tools are used
to analyse and improve a power plant’s unit control to bet-
ter handle disturbances due to soot blowing.

3.2 Model Description
The dynamic power plant model analysed in this paper is
a generic once-through steam generator and has a nominal
electrical power output of 600 MW, see Figure 3. The de-
sign life steam pressure is about 270 bar at a temperature
of 600 ◦C. The combustion chamber has an overall height
of approx. 80 m and is heated with three coal dust-fired
burners (1) at three different burner levels. The chamber’s
walls are cooled with evaporating water which is super-
heated in three convective heating surfaces (SH1-SH3) to
the live steam conditions. The layout comprises one re-
heating (RH1-RH2) to 520 ◦C at 52 bar after the high
pressure turbine stage. The model discretises the boiler
in height by using an arrangement of 14 different com-
ponents including the hopper, the burners, the radiation
zone (2), the convective heat exchangers and the spray in-
jectors (3) for steam temperature control. Each of these
models is parametrised with detailed geometry informa-
tion and connected to neighbouring components according
to the piping and instrument diagram. The heat exchange
between combustion chamber and walls is implemented
with detailed correlations for radiative and/or convective
heat transfer. The flue gas is post processed with respect
to NOx, SOx and ash and is used to preheat the fresh air
carrying the coal dust from the mills. In order to repro-
duce the impact of soot blowing to the process at several
positions steam and cool water can be introduced to the
combustion chamber.

The steam is expanded in nine turbine stages with
bleeds for several preheaters (4). The models for con-
denser (5) and feed water tank (6) are taking non-ideal
phase separation into account and the resulting water lev-
els are controlled by valves and pumps applying PI con-
trollers.

The controlling system is build up applying the upcom-
ing ClaRa_AddOn ClaRa_Control and based on a Ger-
man guideline for unit control of conventional and nuclear
steam power plants, (VDI/VDE, 2003). This guideline,
defining a baseline for the power plant control, is the start-
ing point for numerous implementation in German power
plants.

The purpose of the model discussed in this paper is to
analyse soot blowing of the evaporator furnace and its im-
pact on the controlling system. The soot blowers (7,8) are
modelled as a dynamical gas volume with an additional
connector for water/steam inlet. The inflowing water is
mixed ideally with the gas mass flow and the enthalpy of
evaporation is considered by the dynamical energy bal-
ance. An effect of the soot blowing on the fouling coeffi-
cient, which is a parameter that reduces the heat transfer

to the heating surfaces, is not considered. An approach to
model variable fouling factors which are affected by soot
blowing is presented in (Gierow et al., 2015). This simpli-
fication is acceptable since the focus of the investigation
is on the short-term energy and mass transfer of steam and
water from the water steam cycle to the furnace and its im-
pact on the control performance of the power plant. The
medium-term improvement of the local efficiency of the
heat transfer is of minor interest here.

The resulting power plant model consists of 9212 com-
ponents with 28264 equations and 1606 differentiated
variables.

3.3 Scenario Description

Figure 4. Soot blower injection mass flows

The underlying scenario to analyse the improved con-
trol strategy comprises two soot blowing events occurring
during normal power plant operation. Heating surfaces in
coal fired power plants tend to foul due to the high ash
and slag content of the combustion air. Particles stick to
the heating surfaces and cause a rising heat transmission
resistance over operation time. Thus, the heat transfer to
the water steam cycle is reduced. Soot blowing is a mea-
sure to clean the tube bundles and evaporator walls dur-
ing operation by spraying steam or water through special
lances onto the heating surfaces. This measure uses the
combined effect of a thermal shock and the kinetic energy
of the water/steam jet to reduce fouling and improve the
heat transfer.

In general, two different soot blower types can be dis-
tinguished: The soot blowers for the tube bundles are fed
with steam which is extracted ahead the intermediate pres-
sure turbine. This rededication of steam has a direct im-
pact on the electric power production and its control. In
contrast, the soot blowers for the evaporator walls are fed
with external water at 20◦ C which has a more indirect ef-
fect on the power production as the water injection cools
down the furnace and thus reduces the steam production.

In figure 4 the soot blower injection mass flows are

Applying the Power Plant Library ClaRa for Control Optimisation

872 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132867

shown. The convective blowers are active two times over
a timespan of 15 min with a mass flow of 20 kg

s and 10 kg
s ,

respectively while the wall blowers are active for time
spans of 5 min with a mass flow of 17 kg

s .

3.4 Analysis and Improvement of the Control
Strategy

The plant is run in "steam generator control" mode and
natural sliding pressure which means that the power out-
put controller acts on the fuel mass flow and the turbine
valve is fully opened. Therefore, deviations in fuel mass
flow or disturbances on the steam generation have direct
impact on pressure and generator output. Compensation
of the generator power output by the fuel mass flow only
takes effect with a delay.

A basic model based unit control strategy according to
the German guideline for power plant unit control VDI
3508 (VDI/VDE, 2003) is implemented. The control is
sketched in Figure 5, the basic control in black, the addi-
tions of the improved control in green. In the figure three
sub-figures may be distinguished, starting from top to bot-
tom we find the unit feed forward control and the process
predictor in sub-figure a), the feedback controllers in sub-
figure b) and the process itself in sub-figure c). Further-
more, three different line types are used: solid lines for
internal control signals, dashed lines for measurement sig-
nals and dot-dashed lines for process input signals. For the
sake of simplicity only the turbo generator power output
control and the soot blowing control are sketched in the
figure.

In the following the basic control set up is explained
in detail. The turbine valve is fully opened by setting the
turbine valve opening set value yT,set to 100 %. In subfig-
ure a) the target power output is fed into the output limiter
which applies a limiting according to static and dynamic
limits. From that value the fuel feedforward block gen-
erates a load dependent value of the firing power Q̇F,FF .
The firing power is input to the simplified process model,
referred to as the predictor in the further course, and to the
process itself via a recalculation of the firing power into
a corresponding fuel mass flow ṁF . The predictor calcu-
lates a corresponding expectation value of the generator
power P̂G. In detail the predictor works as follows. From
the fuel forward signal ˙QF,FF a transfer function calculates
the expected steam generation of the boiler ˆ̇mSt,G. The ex-
pected steam mass flow to the turbine ˆ̇mT is subtracted
from that value and the result serves as input to an inte-
grator block from which the expected live steam pressure
p̂LS is obtained. By multiplication with the set value of
the turbine valve opening yT,set the steam mass flow to the
turbine is calculated. The turbine is modelled with a first
order transfer function block, thus receiving the expected
power output P̂G.

However, the real process will be disturbed e.g. by foul-
ing of heating surfaces which leads to a deviation between
the ideal and the real process. In subfigure b) it can be
seen that this deviation in power generation is calculated

from the difference of the expected value P̂G and the mea-
sured value PG. The difference is input to the feedback
controller of the power output which is a conventional PI-
controller. It corrects the feed forward value Q̇F,FF by the
value deviation ∆Q̇F .

Furthermore, in subfigure b) the feedback controller of
the convective tube bundles soot blowing mass flow can be
found. From the required soot blowing mass flow ṁSB,set
the measured soot blowing mass flow ṁSB is subtracted.
The difference is input to the soot blowing mass flow con-
troller which is a conventional PI controller.

Applying the concept of a model based unit control the
process will be controlled in open loop as long as the pro-
cess reacts as predicted. Thus, the control effort of the
feedback control is significantly reduced compared to a
conventional control system in which load changes are
acting on the set value of a feedback controller. However,
a disturbance like soot blowing has to be outbalanced by
the power feedback controller. In case of the tube bundle
soot blowing, intermediate pressure steam is consumed.
Thus, the steam mass flow to the turbine is reduced and the
generated electric power drops. The power feedback con-
troller raises the fuel mass flow to compensate the power
generation drop, but it takes effect with a delay. Poor con-
trol accuracy is the result.

To improve the behaviour of the model based unit con-
trol during soot blowing of the convective tube bundles
some additions have been made, marked green in Figure
5. The set value of the required soot blowing mass flow
ṁSB,set is introduced as positive disturbance signal to the
predictor’s expected steam mass flow to turbine ˆ̇mT . To
overcome the delayed reaction of the boiler on changes of
the fuel mass flow, the disturbance signal to the predictor
is activated prior to the starting time of the soot blowing
process. This is done by delaying the soot blowing set
point signal to the soot blowing mass flow controller with
a delay block. The predictor reacts on the mass flow dis-
turbance signal and raises the expected power output. In
consequence, the feedback control outbalances the distur-
bance and raises the control signal. Thus, the coal mass
flow rises and at the start time of the soot blowing addi-
tional steam is produced, which then can be consumed for
the soot blowing. A drop of the produced power can be
compensated.

The presented modifications acting on the feedback
control are very efficient and easy to implement. A physi-
cal signal, the soot blowing steam mass flow, can be used
directly as a disturbance signal without complicated recal-
culation. It is also independent of the load point as the
signal is added to the boiler predictor of the unit control.
The predictor’s output is a load dependent rise of the gen-
erator power. The approach to derive an improvement of
an existing control system from a profound analysis of the
system of question rather than applying purely control-
theoretical approaches has the advantage that the ideas
can be easily understood and discussed with the power
plant’s operating personnel. This eases the acceptance of

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132867

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

873

G

1

1

Target power output

a)
 U

ni
t f

ee
d

fo
rw

a
rd

 c
on

tr
o

l
b)

 U
ni

t f
ee

db
ac

k
co

nt
ro

l
c)

 P
ro

ce
ss

PREDICTOR STEAM CYCLE

Power output controller
Soot blowing

mass flow controller

Target output limiting

Fuel feedforward

Fuel mass
flow control

Delay

Figure 5. Model-based unit control and convective sootblowing control

such optimisation projects. System simulation prior to the
commissioning can help to reduce technical and economic
risks.

For the sake of completeness it shall be mentioned that
an implementation of the disturbance signal in the feedfor-
ward control would require a load dependent recalculation
of the physical signal, the steam mass flow rate, to a cor-
responding firing power signal.

Analogous additions also improve the control be-
haviour during steam generator wall soot blowing. As cold
water is injected by the wall blowers the mass flow of cold
injection water has to be expressed as a corresponding re-
duction of the steam mass flow to turbine. This is done
by multiplication of the cold water mass flow with a load
independent factor. The result is input as a disturbance
signal to the predictor in the previously described manner.

In the following the simulation results are discussed.
Figure 6 shows the flue gas outlet temperatures of the first
superheater bundle during the soot blowing events for both
control strategies. As can be seen, the impact of the soot
blowing on the flue gas temperatures is higher for the wall
blowers compared to the convective blowers. The reason
behind this is that the convective blowers are fed with hot
steam taken from the hot reheating pipe and the wall blow-
ers are fed with cold water from an external reservoir. Due
to the huge amounts of evaporating water the flue gas tem-
perature is being reduced which results in less steam pro-
duction. In comparison to the original control strategy,
the improved one shows a significant reduction of flue gas
temperature oscillations during wall soot blowing.

Figure 7 shows the intermediate pressure turbine mass
flow during the soot blowing process with and without the

Applying the Power Plant Library ClaRa for Control Optimisation

874 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132867

Figure 6. Impact of soot blowing on flue gas temperatures

improvement of the controller system. The steam for soot
blowing of convective heating surfaces is taken directly
from before the intermediate pressure turbine. The control
improvement raises the steam generation such that we see
less reduction of steam mass flow through the turbine. The
soot blowing induced mass flow oscillations are of lower
amplitude and the system reaches a steady state faster with
the modified control strategy especially during the soot
blowing of the furnace walls with cold water, because a
swing up of the turbine mass flow is prevented.

Figure 7. Impact of improved control on IP turbine flow during
soot blowing

In Figure 8 the generator output for both control strate-
gies are shown. The improvement in quality of control by
the additional disturbance value is visible here too and re-
sults in lower amplitudes and a faster reaching of a stable
state. The greater impact of the wall soot blowing with
cold water in comparison to the convective soot blowing
with hot steam manifests in higher amplitudes.

In the following, simulation results of the wall soot
blowing process with cold water are discussed in detail,

Figure 8. Impact of improved control on generator output dur-
ing soot blowing. The results corresponds to a reduction of pri-
mary control from 10.7 MWh to 4.6 MWh.

which is significantly improved by the alternative control
strategy. Figure 9 shows the fuel mass flows of mills and
burners, soot blowing mass flow and first superheater flue
gas outlet temperature during the period of wall soot blow-
ing without control improvement. When the soot blowing
process is started, the flue gas temperature inside the fur-
nace reacts with an initial drop due to the fed in cold soot
blowing water and its evaporation, which can also be seen
in the superheater outlet temperature. This results in a re-
duced mass flow inside the turbine forcing the power con-
troller to increase the fuel mass flow at mill inlet. The
mass flow at burner inlet reacts time shifted due to mass
storage effects in the mill. When the increased but de-
layed fuel mass flow is burned, the flue gas temperature is
rising again until the first soot blowing process is immedi-
ately stopped, which causes a temperature step up above
the initial temperature. The power controller then reduces
the coal mass flows until the second soot blowing, causing
a comparable temperature characteristic which transitions
into a swinging state when the soot blowing process has
ended.

Figure 10 shows the same variables during the same
time span for the soot blowing process with the improved
control strategy. In comparison to Figure 9 it can be seen
that the power controller raises the fuel mass flow already
before the soot blowing process is started. This is caused
by the disturbance signal of the pressure steam mass flow
being activated 50 s prior to the soot blowing process. By
the time the soot blowing process starts, the increased fuel
mass flow already enters the burner levels resulting in a
shorter and not so big initial flue gas temperature drop.
In addition, the flue gas temperature only swings with a
lower amplitude compared to the case without improve-
ment and reaches a stable state in a significantly shorter
time span which results in a higher quality of control. Be-
cause of the higher flue gas mass flows and a change of the
heat transfer coefficients due to the fed in water, the super-

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132867

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

875

Figure 9. Fuel mass flows of mills and burners, soot blowing
mass flow and superheater outlet temperature during wall soot
blowing without control improvement

heater outlet temperature tunes in to a lower temperature
during soot blowing.

Figure 10. Fuel mass flows of mills and burners, soot blowing
mass flow and superheater outlet temperature during wall soot
blowing with control improvement

Figure 11 shows the impact of the alternative controller
system on generator output at different power plant loads.
In order to ensure, that the enhancement of control quality
can be achieved at varying loads and not only the one dis-
cussed previously, additional simulations have been car-
ried out for 100% and 65% load. As can be seen, the same
improvements are obtained at all load points shown in the
diagram where the best results are obtained for nominal
load. The ClaRa library is an appropriate tool to carry out
such additional comparisons very comfortably.

Power plants which participate at the secondary con-
trol power market, must guarantee the offered power at
any time during operation. While control power is being
called, the plant operators would like to avoid fluctuations

Figure 11. Impact of control optimisation on generator output
during soot blowing at different loads

in power output, occurring for example during soot blow-
ing processes which are a common routine, because un-
derfulfillment would be charged with penalties and over-
fulfillment will not be compensated. This makes a higher
quality of control beneficial. When the operators offers
positive control power during full load operation, the plant
only could be run with a certain margin to its maximum
load under consideration of load fluctuations. If the de-
viations in power output during soot blowing cause the
highest amplitudes in the current power plant operation
schedule it can be seen, that an improved control strategy,
like the one proposed in this paper, enables the operator
to run the plant at a higher load and making more profit
while maintaining the needed margin to maximum load
for secondary control power.

4 Conclusion

The current state of the library ClaRa for the simulation
of power plants has been presented to be one of the most
complete and complex open source library for the simula-
tion of Clausius Rankine cycles. Due to its deep insight at
equally high transparency it addresses both new and ex-
perienced users. The library is open to be extended in
the future, by both new component and physics models
within the ClaRa (which is work in progress by the au-
thors) as well as in terms of new libraries, the so-called
ClaRa_AddOns. The latter mentioned path allows the
scope to be widened to new fields like biomass or solar
heated applications.

As a use case the optimisation of a power plant unit con-
trol has been outlined. The results prove the outstanding
opportunities that are introduced by system simulation al-
lowing to understand complex processes better by evaluat-
ing unmeasurable process variables and to test innovative
control concepts without risks.

Applying the Power Plant Library ClaRa for Control Optimisation

876 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132867

5 Outlook
The further development of the library will, amongst oth-
ers, introduce so-called six-equation-models for extra pre-
cise calculation of two phase flow conditions in pipes.
Furthermore, all models are under permanent review with
respect to zero flow and other non-design conditions. The
library is planned to be extended by special header com-
ponents enabling stress evaluation.

References
L. Andresen, P. Dubucq, R. Peniche, G. Ackermann, A. Kather,

and G. Schmitz. Status of the transient library: Transient
simulation of coupled energy networks with high share of
renewable energy. In Proceedings of the 11th International
Modelica Conference, Versailles, France, 2015.

B. Bachmann, P. Aronsson, and P. Fritzson. Robust initialization
of differential algebraic equations. In Proceedings of the 4th
International Modelica Conference, Vienna,Austria, 2006.

J. Brunnemann, F. Gottelt, K. Wellner A. Renz, A. Thüring,
V. Roeder, C. Hasenbein, C. Schulze, G. Schmitz, and J. Ei-
den. Status of ClaRaCCS: Modelling and Simulation of Coal-
Fired Power Plants with CO2 Capture. Proceedings of the
9th International Modelica Conference, Munich, Germany,
pages 609 – 618, 2012.

F. Casella, M. Sielemann, and L. Savoldelli. Steady-state initial-
ization of object-oriented thermo-fluid models by homotopy
methods. In Proceedings of the Modelica Conference 2011,
Dresden, Germany, 2011.

C. Gierow, M. Hübel, J. Nocke, and E. Hassel. Mathematical
model of soot blowing influences in dynamic power plant
modelling. In Proceedings of the 11th Modelica Conference,
2015.

F. Gottelt, K. Wellner, V. Roeder, J. Brunnemann, G. Schmitz,
and A. Kather. A Unifieded Control Scheme for Coal-Fired
Power Plants with Integrated Post Combustion CO2 Capture.
In Proceedings of the In 8th IFAC Conference on Power Plant
& Power System Control, Toulouse, France, 2012.

International Energy Agency. Tracking Clean Energy Progress
2015. Technical report, 2015.

S.E. Mattsson, H Elmqvist, M. Otter, and H. Olsson. Initializa-
tion of Hybrid Differential-Algebraic Quations in Modelica
2.0. In Proceeding of the 2nd International Modelica Confer-
ence, Oberpfaffenhofen, Germany, 2002.

M. Najafi. Selection of variables in initialization of modelica
models. In Proceedings of the 2nd International Workshop on
Equation-Based Object-Oriented Languages and Tools, Pa-
phos, Cyprus, 2008.

C. Schulze. Table based calculation of thermophysical proper-
ties for simulation of thermodynamic systems. In Proceed-
ings of the ITI Symposium, 2013.

C. Schulze. A Contribution to Numerically Efficient Modelling
of Thermodynamic Systems. PhD thesis, Technische Univer-
sität Brauschweig, 2014.

T. Vahlenkamp and S. Wischhusen. FluidDissipation - A Cen-
tralised Library for Modelling of Heat Transfer and Pressure
Loss. In International Modelica Conference, Bielefeld, Ger-
many, 2008.

T. Vahlenkamp and S. Wischhusen. FluidDissipation for Appli-
cations - A Library for Modelling of Heat Transfer and Pres-
sure Loss in Energy Systems. In Proceedings 7th Modelica
Conference, Como, Italy, September 2009.

VDI/VDE. VDI/VDE Guideline 3508: Unit control of thermal
power stations. Association of German Engineers (VDI) /
German Association of Electrical Engineering and Informa-
tion Technology (VDE), 2003.

S. Velut and H. Tummescheit. Implementation of a
Transmission Line Model for Fast Simulation of Fuid
Flow Dynamics. In Christoph Clauß, editor, Pro-
ceedings of the 8th International Modelica Conference;
March 20th-22nd; Technical Univeristy; Dresden; Ger-
many, Linköping Electronic Conference Proceedings, 2011.
doi:http://dx.doi.org/10.3384/ecp11063446.

Session 11B: Power Plants & Energy Systems

DOI
10.3384/ecp17132867

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

877

878 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Interactive FMU-based Visualization for an Early Design
Experience

Volker Waurich1 Jürgen Weber2

1Chair of Construction Machines, TU Dresden, Germany, volker.waurich@tu-dresden.de
2Chair of Fluid-Mechatronic Systems, TU Dresden, Germany, weber@ifd.tu-dresden.de

Abstract
User experience is an eminent part of holistic product de-
sign. Especially in the field of mobile machinery, the
driver’s impression of the machine handling is crucial for
successful design. To get an early understanding of the
ergonomic aspects of a new concept of operation, func-
tional prototypes can be applied. This paper presents the
tools to develop a functional prototype using free software
and low-cost hardware. This includes prototyping of con-
trol devices, interfaces to the Modelica-based simulation
models and a generic visualization using a game engine.
In order to speed up the process of functional prototyping,
an approach to automatically visualizing FMUs based on
a scene description file is presented. The application of in-
teractive simulation was used to support the development
of a novel control device for excavators in a student project
at TU Dresden.
Keywords: visualization, OpenModelica, engineering ed-
ucation, construction machines, rapid prototyping

1 Introduction
The operation of mobile machinery, e.g. excavators,
puts ambitious requirements on the driver. Therefore,
the ergonomic aspects of the control environment are
an important selling point. The innovation of new
operating concepts should be supported by an early
design experience. In a student project at Technische
Universität Dresden, a collaboration of students from the
fields of Technical Design, Mechanical Engineering and
Media Computer Science developed an innovative control
concept for mobile excavators. The project was initiated
by an OEM of mobile machinery. Although the actual
project results are confidential, the applied methods and
tools shall be presented and serve as a motivation for
similar projects.

To support the design process, a prototypic control
device was engineered to get a haptic experience. With
the help of novel rapid prototyping technologies, as
3d-printing or lasercutting, complex designs can be
realized quickly and cheaply. Since the required ma-
chines became affordable, public workspaces, so-called
makerspaces spread out more and more. Due to that,
even with a small budget, realistic prototyping is possible.

Another innovation is the availability of easy-to-use,
low-cost microcontrollers. Using different sensors, e.g.
potentiometers, motion concepts of the prototypes can
be tested. Utilizing functional prototypes during an early
design phase, facilitates more profound impressions of
the product than using CAD-models or plastic proto-
types. Machine tools and electronics are available in
Makerspaces and easy to apply for students. With an
easy-to-use connection to virtual environments based on
simulation models, the design process can be enhanced
further. With the help of the OpenModelica tool chain, an
FMU-visualization has been developed which allows an
automated generation of appealing 3d environments.

This paper covers the different aspects of developing
functional prototypes with a high level of automation
and tool support. For the presented use-case of the
machine control development, only freely available
software (i.e. open-source Modelica-tool OpenModelica
and the free gaming engine unity), low-price hardware
and cheap prototyping technologies that are becoming
widely accessible, are applied. This paper is meant to be a
motivation for combining physical prototyping and virtual
mockups within the training of engineers. As experience
has shown, the development of functional prototypes
creates a high level of self-motivation and perfectionism
among participants.

In chapter 2, the applied methods of physical rapid pro-
totyping are presented. Chapter 3 discusses the means
of developing interactive Modelica models. Afterwards,
the basic idea behind a generic FMU-visualization is pre-
sented and the tools for visualizing the simulation models
are introduced in chapter 4. The presented approach is
compared to existing visualization workflows. Chapter 5
describes the manufacturing of a control device. Finally,
chapter 6 concludes the paper and gives an outlook on fu-
ture work.

2 Physical Prototype Manufacturing
2.1 Makerspaces for Higher Education
In recent years, affordable technologies for rapid proto-
typing have spread widely. Various libraries and higher
educational institutions like Saxon State and University

DOI
10.3384/ecp17132879

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

879

Library Dresden (slu) offer public access to rapid proto-
typing machines in so called makerspaces. Makerspaces
are collaborative work spaces which provide rapid proto-
typing tools and the knowledge to utilize them. Typically,
projects in the field of model making and electronics
can be realized using the facilities of a makerspace. The
interest in makerspaces emerges and despite the lack
of long-term investigation, the impact on engineering
education has been promising among many universities
(ISA, 2016). Ongoing studies will give an overview of
how the overall impact of academic makerspaces has
to be assessed. At least with regard of the presented
student project, a high level of motivation to realize the
projects and to acquire the necessary knowledge has been
observed.

In order to develop a control device for an excavator,
3D printers and foam cutters have been used to produce
haptic prototypes. The production costs are very low and
therefore are best suited to use them in student projects.
Project participants from the field of technical design de-
veloped design drafts which have been modelled in CAD-
software. The printed 3D prototypes give a spatial im-
pression and provide enough stability to integrate joints
and sensors.

2.2 Application of Sensors and Micro-
controllers

Besides machine tools, makerspaces offer a range of elec-
tronic components and easy-to-use microcontrollers such
as Arduino (Ard). With these low-cost controllers, sen-
sor concepts can be set up easily and data can be pro-
cessed and transferred to a computer. In the presented
project, buttons, rotary and translational potentiometers
have been set up to map the functionalities of a conven-
tional excavator control. The sensors have been attached
in the joints of 3D-printed control devices in order to ac-
cess the control device condition. The Arduino reads the
sensors and transfers the signals to a computer, either via
USB-connection or with an additional Bluetooth module.
The messages can be processed by SerialPortReceive of
the Modelica_DeviceDrivers library. When using the Ar-
duino IDE, users write C-like code, compile and transfer
it directly to the board and are able to monitor serial con-
nection communication. There is a vast amount of doc-
umentation and tutorials available that simplifies micro-
controller programming for students outside this subjects
area. The following Arduino code can be applied to trans-
fer signal data of the Arduino’s analog pin 1 via USB-
connection with a sample time of 0.1 s.
byte buf[2];
unsigned long lastSignal = 0;
unsigned long interval = 100; //ms
int value = 0;

void setup() {
Serial.begin(9600);

}

void loop() {
while(millis() - lastSignal > interval)
{

lastSignal += interval;
value = analogRead(1);
buf[0] = lowByte(value);
buf[1] = highByte(value);
Serial.write(buf,2);

}}

3 Modelling of Interactive Simulation
Environments

3.1 Model Interaction
The use-case of models involving external inputs dur-
ing runtime became much more accessible by Mod-
elica_DeviceDrivers library (M_DD) (Bellmann, 2009).
The library interfaces various input devices and commu-
nication protocols. Hence, Modelica models can be en-
hanced with direct user-inputs or connected to other pro-
cesses during runtime. A realtime synchronization is pro-
vided as well. For the presented demonstrator, the serial
port implementation was utilized in order to communicate
with an Arduino microcontroller. M_DD supports packing
and unpacking of byte-messages which allows to access
data e.g. sensor signals via a serial port connection. Open-
Modelica supports serial communication and packaging
both in simulation mode and in FMUs. Figure 1 displays
the graphical model view of an excavator model, that is
controlled via serial communication. The message proto-
col is modelled with unpackInt-models, that split incom-
ing messages into a sequence of integer variables. These
integer variables are converted to real variables and condi-
tioned to fit the excavator interface. The excavator model
has been taken from a Modelica-library by the Chair of
Construction Machines, TU Dresden.

Figure 1. Model of an excavator and a serial port interface using
Modelica_DeviceDrivers library

Interactive FMU-Based Visualization for an Early Design Experience

880 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132879

The following listing shows the parametrization of a
model to read a two-byte message sent by an Arduino,
whereas the parameters baud, sampleTime userBufferSize
and Serial_Port have to be adapted to the sending con-
troller. The width parameter of the UnpackUnsignedInte-
ger model has to be set to 16 bit in order to deserialize the
two byte value, sent from the microcontroller.
model arduino
Modelica_DeviceDrivers.Blocks.Communication
.SerialPortReceive
arduinoRead(
baud=Modelica_DeviceDrivers.Utilities
.Types.SerialBaudRate.B9600,
parity=0,
enableExternalTrigger=false,
startTime=0.0,
autoBufferSize=false,
userBufferSize=2,
sampleTime=0.1,
Serial_Port="COM5");

Modelica_DeviceDrivers.Blocks.Packaging
.SerialPackager.UnpackUnsignedInteger
unpackInt(
bitOffset=0,
width=16,
nu=1);
equation

connect(arduinoRead.pkgOut,
unpackInt.pkgIn);

end arduino;

3.2 Realtime Capabilities
Realtime requirements restrict the model to simulating
within a specified interval of time. Hard realtime criteria
demand a deterministic execution time whereas soft
realtime allows the simulation to exceed the time limit
occasionally. In the presented use case, soft realtime
criteria are assessed. Nevertheless, for realtime appli-
cation, it is favourable to reduce the simulation time.
Modelica compilers allow different kinds of performance
optimization for simulations. The time integration method
has a big influence on the execution time, depending on
the number of iterations and step sizes. In most realtime
applications, explicit, fixed step methods are preferable.
The lack of stability and the necessity of small step sizes
lead to the development of more sophisticated methods
e.g. inline integration (Elmqvist et al., 1995). Besides
that, the evaluation of parameters is an effective option to
increase simulation speed. There are various optimization
techniques to improve calculation of algebraic loops,
e.g. structural methods like tearing (Elmqvist and Otter,
1994) or reshuffling (Waurich et al., 2014). Calculations
of jacobi matrices can perform differently dependenig
on whether numerical, symbolical or colored jacobians
are used. Automatic parallelization is also a feature to
speed up simulation. Of course, the operating system,
the hardware and the C/C++ compiler influence the
simulation time as well.

The excavator model consists of a multi body system
and some simple hydraulic components (cylinders, valves,
flow sources). In most cases, the BLT-matrix of a me-
chanical model is dominated by a linear system of equa-
tions. Hence, parallelization of BLT-blocks will not im-
prove the simulation speed. The present model benefits
mostly from the evaluation of parameters. The dominat-
ing system of equations with 437 equations including 9
tearing variables is reduced to a system with 379 equa-
tions including 7 tearing variables. The amount of single
equations reduces from 1208 to 1162. This results in a
simulation speed-up of 1.33. This is sufficient to run the
simulation without exceeding the realtime limits on a Win-
dows 7 desktop computer with i7-3930K processor. The
FMU was compiled using OpenModelica and gcc 5.3.0 as
FMU 2.0 model exchange.

4 A Generic Visualization of FMUs
4.1 The Functional Mock-Up Unit
In order to exchange simulation models and to use them
across various software, the Functional Mock-Up Inter-
face was developed (Blochwitz et al., 2012). The Model-
ica language and its tools are highly involved in the devel-
opment and application of FMI. The FMI-standard fea-
tures two variants, i.e. model-exchange without internal
time integration and co-simulation that includes a time in-
tegration solver. The black-box models that provide the
FMI-API are called Functional Mock-Up Units and con-
tain the functional behaviour of a simulation model that
can be accessed via interface variables. The model vari-
ables are listed in the modelDescription.xml. The
connections and relations of these model variables are hid-
den from the user since FMUs are compiled as a shared
library. This is very useful since it protects intellectual
property but it is cumbersome if information of the model
structure is of interest. Hence, a generic visualization of
FMUs is not possible in general.

4.2 Existing Approaches to Visualize Multi-
body Models

Commercial Modelica-tools offer built-in visualization
features for multibody systems based on the Mod-
elica.Mechanics.MultiBody.Visualization.Advanced
models. Visualization comprises both subsequent and
concurrent visualization of simulation. This visualization
is possible since the tools have full access to the model
information and the variables that are used to visualize
the shapes. Another approach would be to add dedicated
animation objects to the Modelica model and let them
communicate with an external visualization software, e.g.
in the commercial DLR Visualization library (Hellerer
et al., 2014). Also the Modelica3D implementation by
Höger relied on Client/Server communication (Hoeger
et al., 2012). Yamaura et al. (Yamaura et al., 2016) de-
scribed a comprehensive framework of different tools that
exchange model variables via UDP communication with

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132879

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

881

a corresponding Unity model. This approach combines
the physical model capabilities of engineering tools like
Simulink and Dymola with the highly developed gaming
engine Unity which offers much more visualization
and graphical modeling features than any simulation
software. Another promising implementation for discrete
time simulations was presented by (Bijl and Boer, 2011)
, that is designed on a database which feeds the 3D
visualization. The use of appealing 3D visualization and
the potential of 3D game engines is described as well.
An entirely different concept was presented in (Elmqvist
et al., 2015) in which even the modeling is performed
in a 3D visualization environment that provides direct
feedback on the model structure of a multibody system.
This visualization uses the web interface of the simulation
tool Dymola.

Since there was no free Modelica tool that features
visualization in an integrated manner, the open-source
Modelica Compiler OpenModelica and its graphical ed-
itor OMEdit have been enhanced to visualize results of
simulations. Therefore, the OpenModelica Compiler has
to extract all necessary information about the visualiza-
tion shapes from its internal model representation. Hence,
the animation of Modelica.Mechanics.MultiBody models
can be provided without adding dedicated visualization
objects to the model.
Instead of implementing a new OpenModelica-specific
API to transfer visualization variables between simulation
and animation-software, the authors decided to choose
an already existing API, i.e. the FMI. By means of a
visualization scene description file that is generated by
the OpenModelica Compiler, the visualization software in
OMEdit can access relevant variables and maps them to
the corresponding animation shape properties. In the fol-
lowing chapters, the details of FMU-based visualization
are presented.

4.3 A Specification of Visualization
As described in the previous chapter, OpenModelica
1.11 is able to create a scene description XML-
file that contains the information about the Model-
ica.Mechanics.MultiBody.Visualizers.Advanced.Shape
objects within a model. The shape model contains the
basic visualization information like position, orientation,
scale and color. This approach was already mentioned in
(Waurich et al., 2016) and a proof of concept implemen-
tation was presented. The scene description XML-file
simply lists all instances of the Shape model and assigns
values to their parameters. The following exemplary
snippet of a scene description XML-file contains in-
formation about the model "shape1" which is of type
"cylinder". The position vector r is defined by constant
expressions and lies in the root "{0,0,0}" whereas the
length attribute depends on the component reference
"shape1.length".

<visualization>

<shape>
<ident>shape1</ident>
<type>cylinder</type>
<r><exp>0.0</exp>

<exp>0.0</exp>
<exp>0.0</exp>

</r>
<length>

<cref>shape1.length</cref>
</length>

</shape>
</visualization>

The shape parameters are either defined by an <exp>
tag which refers to a constant expression of type real or
to a <cref> tag, which stands for a reference given
by a string-type. <cref> elements have to be updated
during runtime. Shapes can be either geometric prim-
itives or CAD-files, like .stl or .dxf that are referenced
by their absolute path names in the scene description
file. Besides the shape models, there are more visu-
alization models that could be defined, e.g. Surface
or PipeWithScalarField, but the current imple-
mentation covers shape only. A XML Schema Defini-
tion is available at https://github.com/vwaurich/
visxml

4.4 The Visualization Architecture
No matter which frontend is used to display the 3D scene,
the mechanism to animate the shapes is identical as de-
picted in Figure 2. The visualization backend needs an
FMU and a corresponding scene-description file, both
generated by the OpenModelica Compiler. It has to be
ensured, that all variables which are used to visualize the
scene, are accessible in the FMU. This means that these
variables must be retrievable via fmiGetReal API. There-
fore, OpenModelica changes protected variables to public
if needed.

Figure 2. Overview of FMU-based visualization both with unity
and OMEdit frontend.

After the selection of an FMU, the visualization back-
end instantiates all shapes listed in the scene description
file. These can be either geometric primitives such as
cubes or spheres, or imported CAD-files. Constant shape
properties can be set directly during initialization of
shapes. In constrast, variable properties cannot be set
before the solution of the inital system of the FMU.

Unpacking, loading, instantiation, initialization and
simulation of the FMU is performed by the FMILibary

Interactive FMU-Based Visualization for an Early Design Experience

882 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132879

(FMI). For the Model Exchange FMUs, a simple Explicit
Euler solver with a default step size of 1ms is used. The
simulation is synchronized with realtime by the visualizer
backend itself. Hence, no synchronization on the model
side is necessary (e.g. from Modelica_DeviceDrivers
Blocks.OperatingSystem.SynchronizedRealtime).

Compared to other visualization approaches, the
generic FMU visualization has the following advantages:

• A specification of the visualization objects allows
different tools to create the same scene automatically.

• No model modifications have to be applied in order
to generate a visualization. No additional dependen-
cies have to be included. No additional equations are
added to the existing multi-body model.

• It is easy for simulation tools to generate scene de-
scription files. Based on this visualization formal-
ism, the visualization is independent of the simula-
tion software and does not rely on vendor specific
interfaces.

• It enables automatic integration of physical simu-
lation in graphical modelling software (as will be
shown for the gaming engine unity).

• The simulation and variable access is achieved via
shared memory communication and therefore does
not need (but can be extended for) simulation via a
network connection.

• It is helpful to visualize third party FMUs automati-
cally to get an understanding of their behaviour with-
out having access to the model itself.

• It is more convenient to add and edit advanced visu-
alization features in a proper visualization tool and
not in the simulation model by a Modelica-Editor.

4.5 OMEdit FMU-Visualization
The graphical connection editor OMEdit features basically
textual and graphical modeling views, result plotting and
algorithmic debugging. The lack of 3D animation hin-
dered the use for mechanical applications. The novel im-
plementation of a result-file based and FMU-based visual-
ization helps to get a better understanding of mechanical
systems.

Figure 3 displays the visualization view of OMEdit.
The visualization is implemented using OpenSceneGraph
and features the animation of mat-result files, csv-result
files and FMUs. In each case, a scene description file is
needed, to map the model variables to the shape proper-
ties.

Figure 3. Screenshot of the visualization perspective in OMEdit.

4.6 Unity FMU-Visualization
The implementation in OMEdit based on OpenScene-
Graph is not visually attractive and makes it very
cumbersome to enhance the scene with additional graphi-
cal objects. A gaming engine with graphical editor and
a huge asset store like unity (Uni), would allow an easy
setup of appealing graphical scenes as in Figure 4. Hence,
the mechanism of loading an FMU and a scene descrip-
tion file has been implemented in a unity plugin. The
user simply chooses an FMU via a dialog and the plugin
creates so called GameObjects for the corresponding
shapes. Besides that, an FMU-simulator GameObject
is created, which simulates the FMU and accesses the
necessary variables. This comprises everything to run the
scene either in the unity debugger or from a compiled
unity project.

Figure 4. Unity scene with an FMU-based excavator model that
is controlled by an Arduino board in realtime.

Next to the shape objects and the FMU-simulator, addi-
tional GameObjects can be added in order to create an ade-
quate environment. Accessing the FMU-inputs and FMU-
outputs from the unity model is possible via interface
functions of the FMU-simulator GameObject. Hence, the
FMU-generating simulation tool is only responsible for
the physcial simulation. The graphical modelling can be
performed by a special purpose tool. The FMU-simulator

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132879

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

883

plugin supports this separation by generating the basic
mapping between simulation and visualization automati-
cally. The unity user interface with FMU-selection dia-
log and loaded FMU-visualization is depicted in Figure 5.
Since the FMU has to be initialized to calculate the posi-
tion, orientation and color of the bodies, all shapes are still
in the root of the coordinate system.

Figure 5. Unity user interface with loaded FMU. The GameOb-
jects for the shapes and the FMU-Simulator are listed in the hi-
erarchy view, the .dae files are copied to the resources and the
inspector view displays all variables that are updated during run-
time.

When interchanging variables between the unity world
and the Modelica-based FMU, it has to be considered,
that the coordinate systems are different. Modelica uses a
right-handed system whereas unity relies on a left-handed
system. Furthermore, the y-axis should be used as
vertical since unity uses it as vertical by default (which is
essential since available skyboxes display a horizon in the
x-z-plane).

The FMU-simulator plugin automatically converts the
position and orientation of the Modelica-variables to the
left-handed system of the unity variables and switches the
vertical axis if desired. Another issue is the lack of stl-
file support in unity. It needs an stl-importer plugin or
the CAD-files have to be converted to a 3D data format
e.g. COLLADA. File conversion can be done manually or
scripted by tools like blender (Ble).

5 The Development of a Remote Con-
trol Device for an Excavator

The previous chapters depicted the necessary tools to set
up a functional prototype. To try out novel control con-
cepts, physical prototypes have been equipped with sen-
sors to measure the motion of the joints. The signals are
used to control the volume flow in and out of the cylinders.
Hence, the velocity of motion for the boom, the arm and
the shovel are controlled. Even inverse kinematics can be
tried out if the cylinders are controlled to follow cartesian
inputs to set the position of the shovel. Furthermore, as-

sistance systems are experienceable without implementing
them in fully operable systems. This simplifies the eval-
uation of acceptance and ergonomics. Even exceptional
control mechanisms like handheld controllers for remote
control are possible. Figure 6 shows the setup to control a
model in OMEdit via Bluetooth connection, which is han-
dled as an ordinary serial port.

Figure 6. Remote control setup to control an excavator model
in OMEdit via Bluetooth connection. The control device is a
printed box with 3 rotary potentiometers.

The unity editor allows further settings for camera posi-
tion (first or third person view) as well as lighting and ter-
rain modelling. In the unity asset store, various objects to
populate the scene can be downloaded for free or charged.

6 Conclusion and Outlook
This paper comprises a workflow for developing func-
tional prototypes that have been realized within a student
project at TU Dresden. The usage of Makerspace facil-
ities, low-budget electronics and free software together
in an interdisciplinary design project, was a successful
experiment. The motivation of students was huge and
both the familiarisation with novel technologies as well
as its application are valuable experiences. Besides the
individual learning success, the developed prototypes
are highly praised by the project initiator, an OEM of
excavators.

During the project, improvement opportunities have
been revealed. Basically, the development of a virtual
environment which can be controlled with external

Interactive FMU-Based Visualization for an Early Design Experience

884 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132879

hardware in realtime and based on the simulation of a
Modelica model needed improvement. Hence, an auto-
mated approach to setup visualizations of FMU-based
multi-body systems was implemented. The integration via
FMUs in the game engine unity leads to satisfying results.
More importantly, the scene description of FMUs enables
new generic interfaces to visualization tools and their
features. As a future extension, Modelica models could
be extended with contact-force-interfaces or collision
interfaces that could be generated automatically in a unity
project in order to interact with unitys physics engine
and feedback the results to the simulation model. In the
field of mobile machinery, interaction to soil or particle
models in unity would be very useful as well. Since Game
Engines feature comprehensive possibilities to model
environments, experimental grounds can be set up to test
e.g. assistance and automation systems. Through the
network protocol interfaces of M_DD, even web-based
services in mobile machines can be experienceable in
early design stages.

The scene description file is currently an OpenModel-
ica specific feature. Further support of this FMU exten-
sion would leverage the advantage of the unity-plugin and
the development of other FMU-Visualization-Add-Ons in
additional tools. A discussion about adding the scene de-
scription file as an optional extension to the FMI-Standard
would be highly appreciated by the authors.

References
The arduino webpage. www.arduino.cc. Accessed: 2016-

11-18.

The blender webpage. www.blender.org. Accessed: 2016-
12-08.

The fmilibrary webpage. www.jmodelica.org/
FMILibrary. Accessed: 2016-11-21.

The unity3d webpage. www.unity3d.com. Accessed: 2016-
11-18.

The saxon state and university library dresden (slub) webpage.
http://www.slub-dresden.de/en/service/
workplaces-workspace/makerspace/. Accessed:
2016-12-07.

Proceedings of the 1st International Symposium on Aca-
demic Makerspaces ISAM 2016, 2016. URL www.
project-manus.mit.edu/home/conference.

Tobias Bellmann. Interactive simulations and advanced visual-
ization with modelica. In Proceedings 7th Modelica Confer-
ence. LinkÃűping University Electronic Press, 2009.

Jonatan L. Bijl and Csaba A. Boer. Advanced 3d visualization
for simulation using game technology. In Proceedings of the
Winter Simulation Conference, WSC ’11, pages 2815–2826.
Winter Simulation Conference, 2011. URL http://dl.
acm.org/citation.cfm?id=2431518.2431853.

Torsten Blochwitz, Martin Otter, Johan Åkesson, Martin Arnold,
Christoph Clauss, Hilding Elmqvist, Markus Friedrich, An-
dreas Junghanns, Jakob Mauss, Dietmar Neumerkel, Hans
Olsson, and Antoine Viel. Functional mockup interface 2.0:
The standard for tool independent exchange of simulation
models. pages 173–184, 2012. doi:10.3384/ecp12076173.

Hilding Elmqvist and Martin Otter. Methods for tearing sys-
tems of equations in object oriented modeling. In In ESM 94
European Simulation Multiconference, 1994.

Hilding Elmqvist, Martin Otter, and Franşois E. Cellier. In-
line integration: A new mixed symbolicnumeric approach for
solving differential-algebraic equation systems. In Proceed-
ings of the 1995 European Simulation Multiconference, pages
23–34. Society for Computer Simulation International, June
1995.

Hilding Elmqvist, Alexander D. Baldwin, and Simon Dahlberg.
3d schematics of modelica models and gamification. In Pro-
ceedings of the 11th International Modelica Conference, Ver-
sailles, France, September 21-23, 2015, number 118, pages
527–536. Linköping University Electronic Press, Linköpings
universitet, 2015.

Matthias Hellerer, Tobias Bellmann, and Florian Schlegel. The
dlr visualization library - recent development and applica-
tions. In Proceedings of the 10th International Modelica
Conference; March 10-12; 2014; Lund; Sweden, number 96,
pages 899–911. Linköping University Electronic Press;
Linköpings universitet, 2014. doi:10.3384/ecp14096899.

Christoph Hoeger, Alexandra Mehlhase, Christoph Nytsch-
Geusen, Karsten Isakovic, and Rick Kubiak. Modelica3d
- platform independent simulation visualization. In Pro-
ceedings of the 9th International MODELICA Conference;
September 3-5; 2012; Munich; Germany, number 76, pages
485–494. Linköping University Electronic Press; Linköpings
universitet, 2012. doi:10.3384/ecp12076485.

Volker Waurich, Ines Gubsch, Christian Schubert, and Mar-
cus Walther. Reshuffling: A symbolic pre-processing al-
gorithm for improved robustness, performance and paral-
lelization for the simulation of differential algebraic equa-
tions. In Proceedings of the 6th International Work-
shop on Equation-Based Object-Oriented Modeling Lan-
guages and Tools, EOOLT ’14, pages 3–10, New York,
NY, USA, 2014. ACM. ISBN 978-1-4503-2953-8.
doi:10.1145/2666202.2666203. URL http://doi.acm.
org/10.1145/2666202.2666203.

Volker Waurich, Martin Großer, and Sebastian Voigt. Gener-
ische visualisierung von fmu-basierten modellen für die inter-
aktive simulation. In Tagungsband Workshop ASIM STS/G-
MMS 2016, pages 230–236. ASIM STS/GMMS, 2016. ISBN
978-3-901608-48-3.

Masahiro Yamaura, Nikos Arechiga, Shinichi Shiraishi, Scott
Eisele, Joseph Hite, Sandeep Neema, Jason Scott, and
Theodore Bapty. Adas virtual prototyping using modelica
and unity co-simulation via openmeta. In The First Japanese
Modelica Conferences, May 23-24, Tokyo, Japan, number
124, pages 43–49. Linköping University Electronic Press,
Linköpings universitet, 2016.

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132879

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

885

886 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

Using Modelica for advanced Multi-Body modelling
in 3D graphical robotic simulators

Gianluca Bardaro1 Luca Bascetta1 Francesco Casella1 Matteo Matteucci1

1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Milano, Italy,
{luca.bascetta,gianluca.bardaro,francesco.casella,matteo.matteucci}@polimi.it

Abstract
This paper describes a framework to extend the 3D robotic
simulation environment Gazebo, and similar ones, with
enhanced, tailor-made, multi-body dynamics specified in
the Modelica language. The body-to-body interaction
models are written in Modelica, but they use the sophis-
ticated collision detection capabilities of the Gazebo en-
gine. This contribution is a first step toward the simulation
of complex robotics systems integrating detailed physics
modelling and realistic sensors such as lidar and cameras.
A proof-of-concept implementation is described in the pa-
per integrating Gazebo collider and the Modelica Multi-
Body library, and the results obtained when simulating
the interaction of an elastic sphere with a rigid plane are
shown.
Keywords: Multi-Body Dynamics, 3D Robotic Simulators,
Autonomous Robotics, Autonomous Vehicles.

1 Introduction
The popularity of research on autonomous mobile robots,
including autonomous vehicles and mobile manipulators,
has been recently increasing due to the huge number of
potential applications, ranging from self-driving cars and
robots for logistics, to planetary explorations, search and
rescue missions, surveillance, humanitarian de-mining, as
well as precision agriculture activities such as pruning
vines and fruit trees (Paden et al., 2016; Roa et al., 2015;
Ko et al., 2015; Chitta et al., 2012).
The design and development of such systems, whose main
functionalities are perception, planning, and control, is a
multidisciplinary and complex work that has to be sup-
ported by virtual prototypes, allowing for a preliminary
design and testing of the corresponding algorithms in safe
operating conditions. However, due to the huge differ-
ences among the three mentioned skills a mobile robot
should own, the virtual prototype has to satisfy various re-
quirements. Considering, for example, the development of
perception algorithms, the most important characteristics
of the virtual prototype are a realistic description, mainly
from a geometrical and graphical point of view, of the
scene, and the availability of realistic models for the most
common commercial sensors, i.e., laser range finders and
cameras. On the other hand, testing a control algorithm,
e.g., an Advanced Driver Assistance System in a critical

situation, requires an accurate physical modelling of the
vehicle, including all (and sometimes even only) the phe-
nomena the designer knows to be relevant in the specific
application, e.g., cornering stiffness for lateral dynamics
control.

Nowadays there are many different, open source and
commercial, modelling and simulation environments that
are suitable to model vehicles and mobile robots.
A first family is represented by 3D robot simulators, like
for example Gazebo1, V-Rep2, Webots3, Morse4, that are
widespread in the robotics community. These simulators
allow for an easy development of complex natural/artifi-
cial simulation environments, they are already equipped
with models of perception devices, and they can be eas-
ily integrated with standard robot control middlewares like
ROS5. For these reasons, they are particularly suitable for
the development and testing of planning and perception al-
gorithms, and for the validation of the whole control soft-
ware before moving to field tests (Bardaro et al., 2014).
The physical simulation implemented in these tools is tar-
geted at real-time execution and ease of virtual prototype
set-up; this is obtained by providing the 3D kinematic
models for rotational and translational joints to assem-
ble robots and vehicles, and collision detection primitives
with simplified translational and rotational friction mod-
els. These building blocks are implemented with low level
C++ libraries, such as ODE (Drumwright et al., 2010) or
MuJoCo (Erez et al., 2015), and the experimenter is ex-
pected to use them in a black box fashion with little, if
any, way to alter their physical behaviour. Indeed, the dif-
ferential equations characterizing the physical behaviour
of each building block are hidden in the code, often un-
documented, and with no direct tool for altering their be-
haviour. This makes current 3D robotics physical simula-
tion fidelity and accuracy somehow limited, and requires
the coding of external plug-ins, e.g., using C++ custom
code, every time the phenomenon we are interested in
replicating is more complex that the one which can be ob-
tained assembling the available building blocks.
On the other side of the spectrum, a second family of sim-

1http://gazebosim.org
2http://www.coppeliarobotics.com
3http://www.cyberbotics.com
4http://www.openrobots.org/wiki/morse
5http://www.ros.org

DOI
10.3384/ecp17132887

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

887

ulators is represented by multi-body and/or multi-physics
simulators, like for example Modelica tools 6 such as Sim-
ulationX7, whose aim is to accurately represent the dy-
namic behaviour of the system, and that are thus particu-
larly suitable for accurate dynamic analysis, control sys-
tem development, and validation in repeatable and safe
operating conditions (D’Amelio et al., 2015). These sim-
ulators allow a general mechanism for physical systems
modelling, based on an high-level language for the defi-
nition of the differential equations describing the relevant
aspects of the simulation, but little, if any, support is avail-
able for geometrical and graphical simulation of the envi-
ronment and thus for the simulation of robot sensors such
as lidar and cameras.

In this paper we present an approach, inspired by the
idea already introduced in (Bardaro et al., 2016), to ex-
tend the multi-body modelling in the 3D Gazebo simula-
tor using Modelica and the MultiBody library (Otter et al.,
2003). This allows to introduce ad-hoc physical models
which are tailored to the specific needs of a particular
application in a convenient, declarative, equation-based
framework, leveraging on the basic infrastructure already
provided by the MultiBody library. On the other hand, we
are able to extend the level of simulation provided by the
Modelica framework by the 3D simulation capabilities of
the Gazebo simulator. In particular, this paper focuses on
adding customized body-to-body interaction models to the
standard components of the MultiBody library, combining
the advanced capabilities of collision detection provided
by the Gazebo framework with the flexibility provided by
the Modelica environment to define sophisticated, tailor-
made, equation-based physical models. It must be em-
phasised, however, that this topic is not important per se,
instead it represents a proof-of-concept of the possibility
of integrating the two simulation environments in order to
set up a new one that is able to better address graphical
and physical aspects as well. As a consequence, the con-
tribution of this paper is not related to an innovative or
improved interaction model, but to the framework that al-
lows to extend Modelica modelling capabilities by the 3D
Gazebo simulation.

The paper is structured as follows. Section 2 describes
the design of the modelling framework. In the follow-
ing Section 3, a proof-of-concept implementation is de-
scribed, and the results obtained with a simple sphere-to-
plane interaction simulation are presented. Section 4 con-
cludes the paper with an outlook to further developments.

2 Design of the modelling framework
The rationale behind the design is to let Gazebo and the
Modelica tool each perform the tasks at which they ex-
cel, for which they already have good built-in support,
and which are more conveniently programmed by the end-
user.

6http://www.modelica.org
7http://www.simulationx.com

Modelica will then be used for the accurate and tailor-
made dynamic modelling of the multi-body objects for
which the standard modelling approach of the physical en-
gine embedded in Gazebo is not adequate. Modelica could
also be used to represent low-level sensing, actuation and
control, such as electric motors and drives, pneumatic ac-
tuation, low-pass signal filtering, etc., which are not cov-
ered by Gazebo, when their accurate modelling is essen-
tial to assess the success or failure of higher-level control
functions.
All other tasks, such as building and managing the scenes,
simulating other objects for which ad-hoc dynamic mod-
elling is not required, simulating vision-based sensing,
and providing geometrical information about object col-
lisions, will be managed by Gazebo.

The present paper focuses on the integration between
Gazebo and Modelica to provide accurate ad-hoc physi-
cal modelling where needed. How the resulting physical
model can then be integrated in the Gazebo environment,
together with all the other objects and functions simulated
by Gazebo, goes beyond the scope of this paper and will
be addressed in future works.

The basic framework for the modelling of multi-body
objects is provided by the Modelica MultiBody library,
which allows to build modular models of multi-body sys-
tems by the connection of link and joint models. Since the
Gazebo engine also uses corresponding primitives, auto-
matically generating the Modelica code of the model cor-
responding to any Gazebo multi-body object is a straight-
forward task. The availability of flexible link models com-
patible with the MultiBody library, e.g., those described
in (Ferretti et al., 2014), allows to easily take into account
flexibility in all those cases where this is crucial to repli-
cate the system dynamic behaviour. This is a feature that
could be very useful in the case of soft or flexible robots
and which is still not present in Gazebo.

A key ingredient of any multi-body model of robots or
autonomous vehicles is the modelling of the interaction
between different bodies, in particular the tyre-road inter-
action in vehicles and the interaction between hands or
grippers and objects to be manipulated for robots. For
this purpose, Gazebo provides so-called collider objects,
which take as input the position of the reference frames
of any two objects, possibly having a complex shape, and
returns information about the presence or absence of con-
tact points, their location, the depth of penetration, and the
normal vectors to the object surface at the contact point.
Gazebo can also compute the resulting interaction forces
and torques, according to some standard embedded model;
the idea in the context of this paper is to ignore this in-
formation and use Modelica instead to compute them, ac-
cording to a tailor-made equation-based physical model
that is appropriate for the specific simulation scenario.

The Modelica code of the base model for two-body in-
teraction, PhysicalInteraction, is listed in the ap-
pendix. The model extends the PartialTwoFrames
model of the MultiBody library. It gets the position and

Using Modelica for advanced Multi-Body modelling in 3D graphical robotic simulators

888 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132887

orientation of the two potentially interacting objects from
the two frame connectors and passes them to the col-
lisionDetectionModelica function. This in turn
converts the rotation objects into quaternions and calls the
external function collisionDetection, that passes
the two object ID strings and their position and orientation
to the Gazebo server. The collider in Gazebo responds re-
turning the number of contact points, the arrays of contact
points on both bodies, as well as the penetration depths
and the normals to the surface for each contact point.

This data is then passed to the replaceable function
computeInteraction, which uses the kinematic in-
formation to compute the forces and torques exerted on
body a by body b. As Modelica functions cannot gen-
erate events, a conditional equation is then written in
the PhysicalInteraction model, which applies the
forces and torques computed by the external function to
the connector if the penetration depth is positive, zero oth-
erwise. This allows to precisely compute the contact event
instant and handle the discontinuity properly, if the Mod-
elica solver provides proper event handling. Finally, the
corresponding forces and torques applied on body b by
body a are computed by Newton’s 3rd law.

In this context, the Gazebo tool only acts as a server,
providing the service of computing the kinematic infor-
mation regarding the collisions between any two objects
of interest. The physical simulation is carried out by the
code generated by the Modelica tool, which is the simula-
tion master. This means that the sequence of calls to the
Gazebo server does not correspond to a physical sequence
of points in time, but rather to the individual function calls
required by the Modelica solver, which might go back-
ward and forward in time to compute a solution, e.g., when
locating event instants or when a time step is rejected by
an adaptive step-size solver. As the Gazebo tool is not
the master of the simulation in this context, this is not a
problem. In fact, time is not even part of the data which
is communicated to the Gazebo server from the Modelica
side.

Specific physical interaction models can then be ob-
tained by extending the PhysicalInteraction class
and by redeclaring the computeInteraction func-
tion with the specific algorithm that computes the inter-
action forces and torques, based on the model of interest
for the end user. All the infrastructure provided by the
Modelica MultiBody library can be used to carry out this
task with ease, in particular the functions to resolve vec-
tors in different reference frames and all the functions im-
plementing vector algebra operations.

3 Proof of concept
In this section, a proof-of-concept implementation that
demonstrates the proposed approach is presented.

3.1 Implementation details
In order to avoid all the problems related to memory man-
agement, in this implementation the external C function

computeInteraction uses Unix IPC sockets to com-
municate with the Gazebo server. In the future, this mech-
anism will be substituted by some more efficient, shared-
memory based communication, e.g., by embedding the
Modelica model into an FMI and using external objects
to set up the communication framework.

A simple exemplary test case has been selected for the
demonstration, namely the interaction between an elastic
ball and a fixed, rigid plane. When the two bodies collide,
the force Fa applied on the sphere at the point of contact is
the sum of three components:

Fa = Fe +Fd +Ff .

The elastic force Fe is directed as the normal vector (which
points to the sphere’s centre) and its magnitude is com-
puted according to (Nassauer and Kuna, 2013)

Fe = ke
√

V d,

where ke is an elastic constant, d is the penetration depth,
and V is the volume of the spherical cap of height d

V = πd2
(

r− d
3

)
.

The damping force Fd is proportional to the normal com-
ponent vn of the relative velocity between the two bodies
at the point of contact and opposed to it, thus providing
dissipation each time the sphere hits the plane.

The friction force Ff depends on the tangential compo-
nent of the relative velocity vt at the point of contact, has
the opposite direction and a magnitude

−µFe
vt√

v2
t + v2

ε

;

where µ is the dry friction coefficient, vε is a small ve-
locity threshold, and the fraction is approximately equal
to one for vt � vε and approaches zero as vt → 0. This
model is not accurate at low relative velocities, since it
leads to a slow sliding at velocities around vε instead of
proper stiction. On the other hand, it has the nice prop-
erty of not becoming singular at zero relative velocity and
is perfectly adequate for the purposes of this demonstra-
tion. Other more sophisticated models that include stic-
tion, such as the one described in (Deur et al., 2004) could
be employed if needed.

As to the torques, only the friction force exerts a net
torque on the sphere’s frame connector, located at the cen-
tre of the sphere; the torque vector is simply τ = r×Ft .
For simplicity, the torsional torque due to rolling friction
has been neglected in this demonstrator.

3.2 Test cases and simulation results
The results of three sphere-to-plane interaction simula-
tions are here presented. The sphere represents a big in-
flated balloon, modelled as a hollow sphere of mass m = 1

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132887

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

889

Figure 1. Simulation 1 – Ball height over time.

kg, radius r = 0.5 m, moments of inertia J = 2
3 mr2, elastic

constant ke = 103 N/m2 and with a relatively low friction
coefficient µ = 0.1. Air friction is neglected. All the sim-
ulations start with the center of the sphere at a height of
1 m above the horizontal xy-plane, the z-axis pointing up-
wards.

The Modelica code was compiled into executable sim-
ulation code with the OpenModelica compiler8 version
1.12.0-dev, using a Runge-Kutta fixed time step integra-
tion algorithm with a time step of 1 ms, which is short
enough to correctly handle the elastic impacts, whose typ-
ical duration is about 10 ms.

The simulation were first tested by emulating the re-
sponse of the Gazebo server by a Modelica function. This
required to extend the Sphere2Plane physical inter-
action model, which uses the external function calling
Gazebo, and to redeclare the collisionDetection-
Modelica function so that it directly computes the con-
tact point locations, depths of penetration and normal vec-
tors, rather than calling the external function and getting
them from Gazebo. This function is implemented easily
in Modelica, as the geometry of the sphere-to-plane inter-
action is extremely simple. Eventually, the same simula-
tion results were obtained when using the Gazebo server,
thus validating the entire proof-of-concept implementa-
tion. Also, the qualitative behaviour of the system in the
three simulations corresponds to what one would expect
from physical intuition.

Many different simulations were run, in order to val-
idate each component (elastic, damping, friction) of the
interaction forces and torques separately. In this paper,
the results of three simulation experiments with realistic
choices of the interaction model parameters are reported.

In the first simulation, the plane is horizontal and the
sphere has zero initial velocity and angular velocity. As
expected, the ball falls onto the plane and bounces a few
times before getting to rest, due to the dissipative effect
of Fd . Figure 1 shows the vertical position of the sphere
centre over time.

The second simulation scenario is similar, save that the
plane is tilted by 45◦ along the y-axis. When the ball
hits the plane, it bounces off horizontally. Due to fric-

8https://openmodelica.org

(a) Trajectory of the sphere centre in the xz-plane

(b) Angular velocity of the sphere in the y-axis direction

Figure 2. Simulation 2 – Ball bouncing on a tilted plane.

tion, it also gets some angular momentum on the y-axis
during the bounce, and thus starts spinning slowly. It then
bounces a few more times on the tilted plane until dissipa-
tion causes it to remain in contact with the tilted plane and
to accelerate while rolling downwards. Figure 2(a) shows
the trajectory of the sphere’s centre in the vertical plane,
while Figure 2(b) shows the angular momentum over time,
which increases abruptly at each bounce and finally in-
creases with a constant slope once the sphere stops bounc-
ing and rolls down on the plane surface always remaining
in contact.

The last simulation considers again a horizontal plane;
in this case the sphere starts with a non-zero horizontal ve-
locity in the negative x-axis direction, spinning fast back-
ward around the y-axis. Every time the ball bounces on
the plane, the friction force slows down the spinning a bit,
and accelerates the sphere in the positive x-axis direction,
so that eventually the ball changes its horizontal direction
and rolls back to a point on the plane below the initial posi-
tion. Figure 3(a) shows the position of the sphere’s center
in the vertical xz-plane, while Figure 3(b) shows the angu-
lar momentum along the y-axis over time9.

4 Conclusions
In this paper, a proof-of-concept for the integration be-
tween the Gazebo 3D robotic simulation tool and Mod-
elica has been presented. The proposed framework al-

9The 3D videos generated by Gazebo of the three simulations are
available online at this URL: https://home.deib.polimi.
it/casella/gazebo/videos.html.

Using Modelica for advanced Multi-Body modelling in 3D graphical robotic simulators

890 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132887

(a) Trajectory of the sphere centre in the xz-plane

(b) Angular velocity of the sphere in the y-axis direction

Figure 3. Simulation 3 – Ball starting with a non-zero horizontal
velocity in the positive x-axis direction and spinning backward
around the y-axis.

lows to extend the basic 3D multi-body engine embedded
in Gazebo, by providing equation-based customized 3D
multi-body dynamics. The extension is very convenient
and easy to implement, as it leverages on the existing so-
phisticated collision detection functionality of Gazebo, on
the Modelica MultiBody library, and on the possibility of
describing an ad-hoc physical behaviour in a high level,
equation-based modelling environment. It also makes it
possible to perform equation-based multi-domain physi-
cal modelling, e.g., by adding Modelica models of physi-
cal sensors, actuators and low-level controllers to the me-
chanical model, and in general by modelling any kind of
physical behaviour beyond that of multi-body systems.

The framework has been demonstrated with a proof-
of-concept implementation, using IPC sockets to enable
the communication between the Gazebo tool and Model-
ica automatically generated simulation code. In particu-
lar, the results of the simulations of a simple system with
an elastic ball bouncing on a rigid plane with low fric-
tion have been presented. The obtained results are very
encouraging and suggest that it might indeed be possible
to propose these Modelica extensions, implemented with
the open-source OpenModelica compiler, as the preferred
way to extend the native Gazebo simulation engine.

To reach our final aim, further developments are un-
der investigation. First of all, we would like to validate
the concept with scenarios involving multiple object inter-
actions; currently we already generate Modelica simula-
tion code in the presence of multiple object, what has to

be validated is the collision between multiple objects han-
dled by Modelica. To improve on performance and ease
of deployment, we are currently encapsulating the Model-
ica model in an FMU to handle the communication with
Gazebo via shared memory and external object interface.
Once the FMU will be integrated with the Gazebo plug-in
mechanism, it will be possible to integrate the FMU-based
simulation into the master simulation loop of the Gazebo
tool in a seamless way and transparently to the designer of
the simulation.

Finally, we would like to experiment with hybrid sim-
ulations with some physical behaviour simulated by the
Gazebo physics engine and some physical behaviour with
special modelling requirements simulated by the Model-
ica/FMU code. This set-up could be necessary to han-
dle demanding simulation scenarios with many objects,
since we expect the Modelica-based simulation code to be
slower than the native and somewhat simplified Gazebo
simulation engine, so that using Modelica only where
needed could end up in much faster simulations.

References
G. Bardaro, D.A. Cucci, L. Bascetta, and M. Matteucci. A

simulation based architecture for the development of an au-
tonomous All Terrain Vehicle. In SIMPAR, pages 74–85,
2014.

G. Bardaro, L. Bascetta, F. Casella, and M. Matteucci. Advance-
ment in multi-body physics modeling for 3d graphical robot
simulators. In Workshop on Modelling and Simulation for
Autonomous Systems, pages 189–195, 2016.

S. Chitta, E.G. Jones, M. Ciocarlie, and K. Hsiao. Mobile ma-
nipulation in unstructured environments: Perception, plan-
ning, and execution. IEEE Robotics & Automation Magazine,
19(2):58–71, 2012.

E.L. D’Amelio, L. Bascetta, D.A. Cucci, M. Matteucci, and
G. Bardaro. A modelica simulator to support the development
of the control system of an autonomous all-terrain mobile
robot. In International Conference on Mathematical Mod-
elling, pages 274–279, 2015.

Joško Deur, Jahan Asgari, and Davor Hrovat. A 3D brush-type
dynamic tire friction model. Vehicle System Dynamics, 42(3):
133–173, 2004. doi:10.1080/00423110412331282887.

Evan Drumwright, John Hsu, Nathan Koenig, and Dylan Shell.
Extending Open Dynamics Engine for robotics simulation. In
Proceedings of the Second International Conference on Simu-
lation, Modeling, and Programming for Autonomous Robots,
SIMPAR’10, pages 38–50. Springer-Verlag, 2010.

Tom Erez, Yuval Tassa, and Emanuel Todorov. Simulation tools
for model-based robotics: Comparison of bullet, havok, mu-
joco, ode and physx. In Proceedings of IEEE International
Conference on Robotics and Automation (ICRA), 2015.

Gianni Ferretti, Alberto Leva, and Bruno Scaglioni.
Object-oriented modelling of general flexible multi-
body systems. Mathematical and Computer Mod-
elling of Dynamical Systems, 20(1):1–22, 2014.
doi:10.1080/13873954.2013.807433.

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132887

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

891

M. Ko, B.-S. Ryuh, K.C. Kim, A. Suprem, and N.P. Maha-
lik. Autonomous greenhouse mobile robot driving strate-
gies from system integration perspective: Review and appli-
cation. IEEE/ASME Transactions on Mechatronics, 20(4):
1705–1716, 2015.

Benjamin Nassauer and Meinhard Kuna. Contact forces of poly-
hedral particles in discrete element method. Granular Matter,
15(3):349–355, 2013. doi:10.1007/s10035-013-0417-9.

M. Otter, H. Elmqvist, and S. E. Mattsson. The new Modelica
MultiBody library. In Proceedings 3rd International Mod-
elica Conference, pages 311–330, Linköping, Sweden, Nov.
3–4 2003.

B. Paden, M. Cap, S. Zheng Yong, D. Yershov, and E. Fraz-
zoli. A survey of motion planning and control techniques for
self-driving urban vehicles. IEEE Transactions on Intelligent
Vehicles, 1(1):33–55, 2016.

M.A. Roa, D. Berenson, and W. Huang. Mobile manipulation:
Toward smart manufacturing. IEEE Robotics & Automation
Magazine, 22(4):14–15, 2015.

Using Modelica for advanced Multi-Body modelling in 3D graphical robotic simulators

892 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132887

A Listing of the PhysicalInteraction model

model PhysicalInteraction "Base class for all physical interaction models"
extends Modelica.Mechanics.MultiBody.Interfaces.PartialTwoFrames;
import Modelica.Mechanics.MultiBody.Frames;
parameter Integer maxContacts = 10 "Number of max contact points";
parameter String id_a = "" "Id of interacting object a";
parameter String id_b = "" "Id of interacting object b";
Real numberOfContactPoints "Number of actual contact points";
Real cp_a[maxContacts, 3] "Array of contact points on body a, resolved in frame_a";
Real cp_b[maxContacts, 3] "Array of contact points on body b, resolved in frame_b";
Real depth_a[maxContacts] "Array of penetration depths in body a";
Real depth_b[maxContacts] "Array of penetration depths in body a";
Real normals_a[maxContacts, 3] "Array of normals on body a, resolved in world frame";
Real normals_b[maxContacts, 3] "Array of normals on body b, resolved in world frame";
Real r[3] "Vector from frame_a to frame_b resolved in frame_a";
SI.Force f_a[3] "Interaction force applied on body a, resolved in frame_a";
SI.Torque t_a[3] "Interaction torque applied on body b, resolved in frame_b";

replaceable function collisionDetectionModelica
input Integer maxContacts "Maximum number of contact points";
input Real r_a[3] "Position vector of interaction frame of object a, resolved in world frame";
input Frames.Orientation R_a "Orientation of interaction frame of object a";
input String id_a "unique id for object a";
input Real r_b[3] "Position vector of interaction fram of object b, resolved in world frame";
input Frames.Orientation R_b "Orientation of interaction frame of object b";
input String id_b "unique id for object b";
output Real numberOfContactPoints "Number of actual contact points";
output Real cp_a[maxContacts, 3] "Array of contact points on body a, resolved in frame_a";
output Real cp_b[maxContacts, 3] "Array of contact points on body b, resolved in frame_b";
output Real depth_a[maxContacts] "Array of penetration depths in body a";
output Real depth_b[maxContacts] "Array of penetration depths in body a";
output Real normals_a[maxContacts, 3] "Array of normals on body a, resolved in frame_a";
output Real normals_b[maxContacts, 3] "Array of normals on body b, resolved in frame_b";

algorithm
(numberOfContactPoints, cp_a, cp_b, depth_a, depth_b, normals_a, normals_b) :=
collisionDetection(maxContacts, r_a, Frames.to_Q(R_a), id_a, r_b, Frames.to_Q(R_b), id_b);

end collisionDetectionModelica;

function collisionDetection
input Integer maxContacts "Maximum number of contact points";
input Real r_a[3] "Position vector of interaction frame of object a, resolved in world frame";
input Frames.Quaternions.Orientation Q_a "Quaternion of the orientation of interaction frame of object

a";
input String id_a "unique id for object a";
input Real r_b[3] "Position vector of interaction fram of object b, resolved in world frame";
input Frames.Quaternions.Orientation Q_b "Orientation of interaction frame of object b";
input String id_b "unique id for object b";
output Real numberOfContactPoints "Number of actual contact points";
output Real cp_a[maxContacts, 3] "Array of contact points on body a, resolved in frame_a";
output Real cp_b[maxContacts, 3] "Array of contact points on body b, resolved in frame_b";
output Real depth_a[maxContacts] "Array of penetration depths in body a";
output Real depth_b[maxContacts] "Array of penetration depths in body a";
output Real normals_a[maxContacts, 3] "Array of normals on body a, resolved in frame_a";
output Real normals_b[maxContacts, 3] "Array of normals on body b, resolved in frame_b";

external "C"
end collisionDetection;

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132887

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

893

replaceable partial function computeInteraction "Compute interaction torques and forces on frame_a,
resolved in frame_a"

input Real numberOfContactPoints "Number of actual contact points";
input Integer maxContacts "Maximum number of contact points";
input Real r_a[3] "Position of frame_a resolved in world frame";
input Real r_b[3] "Position of frame_b resolved in world frame";
input Real v_a[3] "Velocity of frame_a resolved in world frame";
input Real v_b[3] "Velocity of frame_b resolved in world frame";
input Frames.Orientation R_a "Orientation of frame_a";
input Frames.Orientation R_b "Orientation of frame_b";
input Real cp_a[maxContacts, 3] "Array of contact points on body a, resolved in frame_a";
input Real cp_b[maxContacts, 3] "Array of contact points on body b, resolved in frame_b";
input Real depth_a[maxContacts] "Array of penetration depths in body a";
input Real depth_b[maxContacts] "Array of penetration depths in body a";
input Real normals_a[maxContacts, 3] "Array of normals on body a, resolved in frame_a";
input Real normals_b[maxContacts, 3] "Array of normals on body a, resolved in frame_a";
output SI.Force[3] f_a "Equivalent force applied to frame_a, resolved in frame_a";
output SI.Torque[3] t_a "Equivalent torque applied to frame_a, resolved in frame_a";

end computeInteraction;

equation
(numberOfContactPoints, cp_a, cp_b, depth_a, depth_b, normals_a, normals_b) =
collisionDetectionModelica(maxContacts, frame_a.r_0, frame_a.R, id_a, frame_b.r_0, frame_b.R, id_b);

assert(numberOfContactPoints <= maxContacts, "Too many contact points");
(f_a, t_a) = computeInteraction(numberOfContactPoints, maxContacts,
frame_a.r_0, frame_b.r_0, der(frame_a.r_0), der(frame_b.r_0), frame_a.R, frame_b.R,
cp_a, cp_b, depth_a, depth_b, normals_a, normals_b);

if sum(depth_a + depth_b) > 0 then
frame_a.f = f_a;
frame_a.t = t_a;

else
frame_a.f = {0, 0, 0};
frame_a.t = {0, 0, 0};

end if;
r = Frames.resolve2(frame_a.R, frame_b.r_0 - frame_a.r_0);
zeros(3) = frame_a.f + Frames.resolveRelative(frame_b.f, frame_b.R, frame_a.R);
zeros(3) = frame_a.t + Frames.resolveRelative(frame_b.t, frame_b.R, frame_a.R) - cross(r, frame_a.f);

end PhysicalInteraction;

Using Modelica for advanced Multi-Body modelling in 3D graphical robotic simulators

894 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132887

A New Object-Oriented Approach for Integrating Discrete
Element Method into Modelica

Christian Richter1 Jürgen Weber2 Florian Ohser3 Thomas Beutlich4

1Chair of Construction Machines, TU Dresden, Germany, christian.richter1@tu-dresden.de
2Chair of Fluid-Mechatronic Systems, TU Dresden, Germany, weber@ifd.tu-dresden.de

3ESI ITI GmbH, Germany, florian.ohser@esi-group.com
4ESI ITI GmbH, Germany, thomas.beutlich@esi-group.com

Abstract
In this paper a new library for co-simulation of discrete
element method and Modelica models is presented. For
this a component-based approach is used that allows clo-
sed modeling and visualization of discrete element sys-
tems in a modelica tool. Translation into a native DEM
description language and co-simulation is done by a sepa-
rate compiler and backend. Usage and functionality are
shown in a simple use case of a bucket excavator digging
a hole.
Keywords: discrete element method, co-simulation, con-
struction machines

1 Introduction
Working process of construction and conveying machines
is characterized by the interaction with granular materials.
In order to allow prospective analysis of machine beha-
vior under real operating conditions, coupled simulations
are increasingly used. In these cases, particle-mechanical
behavior is reproduced by using discrete element method
(DEM). Up to now the creation and calculation of coupled
simulations between system models and DEM is very ex-
pensive and time-consuming. This effort can be signifi-
cantly reduced by using the new library presented in this
work, which uses a new component-oriented modeling ap-
proach for discrete element systems.

1.1 Discrete Element Method
The discrete element method (DEM) is a numerical met-
hod for simulating the behavior and motion of large num-
bers of discrete, interacting objects (Cundall, 1971). In
most cases, as done here, these objects are referred as
particles. Basis of the method is the calculation of for-
ces acting between the particles or between a particle and
an adjacent surface. The basic calculation cycle should be
explained briefly below.

After insertion every particle has an initial position and
velocity. The simulation loop starts by determining all
particle-particle and particle-wall contacts. After that the
forces and torques acting on every particle have to be cal-
culated. These forces result on the one hand from field
forces like gravity and on the other hand from the particle

deformation as a consequence of collision. For that diffe-
rent contact-models and force-deformation laws are used.
Figure 1 shows an example of such a contact model. By
summing up all single forces and torques, the translatio-
nal and angular acceleration of each particle can be obtai-
ned. The last step is solving the equations of motion. For
that the new positions and velocities are resolved by inte-
grating translational and angular acceleration. The whole
loop is repeated for a predetermined number of iterations.

Application of the
force-deformation law

for every contact

Contact Detection
between all particles

and walls

Solving the equations
of motion

for every particle

interparticle contacts

particle-wall contacts

contact forces

new positions

and velocities

Figure 1. DEM Computation Loop.

1.2 LIGGGHTS R©

One of the most used non-proprietary software applica-
tions for discrete element simulations is LIGGGHTS R©

(LAMMPS improved for general granular and granular
heat transfer simulations) (Kloss and Goniva, 2011). Main
advantages of it are:

• Open source

• Large number of available contact models

• Extensive import and export capabilities for geome-
try and results

• Various implementations and methods for paralleli-
zation of computation (MPI, OpenMP, CUDA)

Besides these points it also has some disadvantages:

• Command-oriented modeling-paradigm

• Complicated syntax

• Elaborate parametrization

• No graphical user interfaces

DOI
10.3384/ecp17132895

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

895

• No integrated visualization and post-processing ca-
pabilities

All these disadvantages will be eliminated with the solu-
tion presented here.

1.3 Earlier Solutions and Classification
Coupled simulation of Modelica-based machine models
and discrete element method has been a big field of rese-
arch in recent years. Several solutions have been develo-
ped till now. For a better understanding of the differences
between them, classification shown in figure 2 (Geimer
et al., 2006) should be used.

Core idea and principle of Modelica is to use an
equation-based approach for behavioral description and
linkage of different models from different physical dom-
ains. This is called a classic simulation. While this works
fine for some domains, like hydraulics or mechanics, this
won’t work for discrete element systems. To ensure fast
contact detection or force computation the specialization
of another simulation tool is necessary.

For coupling two different simulation tools special in-
terfaces must be developed. In 2010 we started with the
software-framework SARTURIS providing a network ba-
sed coupling of both domains(Kunze et al., 2010). Anot-
her coupling technique using functional mock-up units
(FMU) was presented in 2012 (Kunze et al., 2012). Ba-
sed on the functional mock-up interface, a FMU describes
a non-proprietary data format containing encapsulated si-
mulation models (Blochwitz et al., 2012). FMU’s can be
exported and imported by many simulation tools and used
for simulation coupling. Referring to figure 2 both so-
lutions are co-simulations. The biggest drawback is that
distributed modeling, as well as coupling of different in-
put and output values, is very time-consuming and error-
prone.

The solution presented in this paper allows a closed mo-
deling and an automatic coupling of DEM and Modelica.
A similar approach was used in (Elmqvist et al., 2015).
Additionally, the new library uses a component-based mo-
deling paradigm for discrete element models.

Number of
Modeling-

Tools

Number of
Integrators

=1

=1

>1

>1

"Classic"
Simulation

Modelseparation
for Simulation

Co-Simulation

Merging systems
of equations of

separately modeled
subsystems

Closed
Simulation

Distributed
Simulation

Closed
Modeling

Distributed
Modeling

Figure 2. Classification of coupled simulations.

2 Object-oriented design for DEM

As already mentioned LIGGGHTS R© follows a command-
oriented modeling-paradigm. This is typical for all DEM
applications. Usually the user writes an input script con-
taining the whole simulation process. The software reads
in this script and executes all commands in sequential or-
der.

One of the core ideas of Modelica is to use an object-
oriented design (OOD) for models. For transforming
LIGGGHTS R© functions into an OOD first an object-
oriented analysis (OOA) must be done. According to
(Coad and Yourdon, 1991) an object is defined as a real
world entity related to the problem domain, with “crisply
defined boundaries”. Objects are encapsulated with attri-
butes and behaviour. For identifying all objects it’s helpful
to start writing down all functionalities that should be in-
cluded in future objects. After that object classes and their
design parameters have to be defined fulfilling all these
functionalities. One principle is that all objects should be
self-explaining and easy to understand for the user. The
following table shows a selection of defined classes and
some of their functions.

Table 1. Selection of DEM object-classes and related functio-
nalities.

Object Functionalities

SimulationBox set timestep size
set contact model
set boundaries of spatial domain
get total particle count/mass

SingleParticle generate a single particle
set diameter
define material settings

ParticleSet load saved particle configurations
ParticleSource generate a particle stream
ParticleSink remove particles

set particle rate / mass rate
define material settings

RigidBody set position and velocity
get forces on body

RegionSensor get particle count/mass in region

As you can see not all of these objects are real world enti-
ties, so it would be better to speak of a component-oriented
than of an object-oriented design. In order to keep the ter-
minology as simple as possible it was decided to continue
speaking of an object-oriented approach.

After classes, functions and parameters are defined they
can be implemented in Modelica. Figure 3 shows the
structure of the new library and design of the single ob-
ject models.

A New Object-Oriented Approach for Integrating Discrete Element Method into Modelica

896 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132895

Figure 3. DEM Library in SimulationX R©.

3 Simulation coupling
3.1 System architecture
Above library allows the closed modeling of machine and
process models. In order to perform a distributed simula-
tion, models have to be subsequently separated again. For
a better understanding on how this is done figure 4 shows
the system architecture of all simulation components. This
structure is divided into front- and back-end.

The front-end essentially consists of the library and a
material database, which will be explained more in detail
in section 4.2. Each library object contains an internal net-
work client, which is capable to connect and communicate
via TCP/IP to a server.

The server is the root node of back-end-structure. It re-
ceives the messages coming from the components and for-
wards them to a special DEM-Slave with an attached com-
piler. The compiler is collects information about all ele-
ments in the model and translates them into LIGGGHTS
command sequences.

LIGGGHTS itself is not used as an executable but as a
shared library with a custom API. Data exchange is much
more simplified this way. Furthermore we modified some
basic LIGGGHTS function, e.g. for moving meshes, par-
ticles sources and sinks during simulation runtime.

Client 1

<<component>>

Frontend

Client 2

<<component>>

Client N

<<component>>

Material

Database

Backend

liggghtslib.dll

<<library>>

Slave/Compiler

<<component>>

Server

<<component>>

Figure 4. System architecture

3.2 Communication
For communication and data exchange between front- and
back-end C-functions accessed by external objects are
used. Every object has a TcpClient, which is responsible
for connecting to the server as well as sending and recei-
ving data. All data is stored in DataPackages acting like a
send and receive buffer.

TcpClient client = TcpClient();
DataPackage outPkg = DataPackage();
DataPackage inPkg = DataPackage();

During initialization all clients are connecting to the ser-
ver. After connection has successful established initial
data is exchanged. This may be for example some posi-
tional or geometric information.

parameter Boolean isConnected = false;
parameter Boolean isInitialized = false;

parameter String address = "localhost";
parameter Integer port = 1234;

initial algorithm
if isInitialized == false then

isConnected := connectToHost(
client, address, port);

end if;

setData(outPkg, {/*integer values*/},
{/*real values*/},
{/*string values*/});

if isConnected then
sendPackage(client, outPkg);
recvPackage(client, inPkg);

end if;

isInitialized:=true;

After initialization the main loop starts. Communication
between front- and back-end occurs at discrete equidistant
time values. For this we use a sample-function. At every
communication event current model values are pushed to
the server. After sending all output data the model waits
for the data coming fom the server. At the end of the si-
mulation loop some final data is transferred to the server.

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132895

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

897

parameter Real tc(quantity="Basics.Time",
displayUnit="s") = 0.0001;

Boolean commTrigger(start=false,fixed=true)
= sample(0, tc);

algorithm
if isConnected then
when commTrigger then

// set current data to outPkg
// send and receive packages
// extract data from inPkg

elsewhen terminal() then
// send final information

end when;
end if;

4 Pre-processing
4.1 Basic simulation settings
All basic simulation and communication settings are de-
fined in the SimulationBox. Similar to the World com-
ponent in Modelica.Mechanics.MultiBody package every
DEM model must contain one SimulationBox. This is en-
sured by an outer construct in the code.

outer DEM.Basics.SimulationBox simBox;

This way all objects have access to basic parameters like
host address and port.

equation
address = simBox.address;
port = simBox.port;

In order to keep computation costs low it’s necessary to
define boundaries for the DEM space. These boundaries
can be fixed (particles will be removed if they leave the
spatial domain) or dynamic growing.

4.2 Material definitions
The parameterization of the material properties of DEM
models is very complicated and presents a problem that
has not been completely solved. In order to increase the
operating convenience of the library, a material database
has been created, which contains parameter sets for the
most realistic description of different granular materials.
The valid parameter sets were determined by comparing
laboratory measurements and simulation. Various calibra-
tion tests were used. Among other things, the shear force,
the angle of inclination as well as the transit time of diffe-
rent granular substances were investigated. The selection
of the materials to be examined followed the possible fu-
ture application areas of the total solution. Sand and gravel
(construction machinery), hard coal, brown coal, iron ore
and potash (mining and conveyor technology) as well as
corn and wheat (agricultural machinery and food techno-
logy) were investigated.

For the representation of large rocks or boulders a
function was implemented, which allows the use of Mul-
tisphere materials. In this case, a composite of several sp-
heres is formed, which are inseparably connected to each

other. This function was not provided in the original work
package. It has been implemented since it means a consi-
derable added value for the user and thus for the marketing
of the final product. The interpolation of a stone by a Mul-
tisphere object is shown in figure 5.

Figure 5. Multisphere approximation of a stone

5 Post-processing
5.1 Visualization
Besides representing time-dependent state values in dia-
grams, 3D visualization is an important part of modern
post processing. For this the ModelicaServices package
comes with some models for animation and visualization
of certain predefined shapes such as cylinders, boxes or
imported STL- and DXF-geometries. The implementa-
tion of this package can vary from one Modelica tool to
another.

These capabilities are very limited to basic shapes and
not sufficient for the visualization of large particle sys-
tems. Though there is an animation body for spheres, it’s
not very advising to use it, because for n particles it would
be necessary to create n animation submodels. This would
increase the number of internal equations and downgrade
performance.

In our implementation we created a new animation
body called DEMPoints. We propose to extend Modeli-
caServices with such a model.

For large-scale systems up to one million particles 3D
representation itself takes a lot of computation costs. For
that reason it’s possible to switch between the options
splats, diamonds or spheres, which supply different levels
of details and performance.

5.2 Sensors
In discrete element simulations it’s often necessary to me-
asure particle specific values. For that we enhanced regu-
lar LIGGGHTS capabilities by some special sensor functi-
ons. Different shaped RegionSensors can be used to eva-
luate the number and mass of particles in a specific volu-
metric region. Sensor position and size can change during
simulation runtime. It’s also possible to attach sensors to
rigid bodies. One use case would be the measurement of
bucket filling level during the digging process of an exca-
vator.

To check if a particle is inside a specific region we use
a very simple and efficient algorithm. Consider there’s a
cuboid region sensor with the position vector xS, orienta-
tion matrix RS and dimensions lx, ly and lz. Now we want

A New Object-Oriented Approach for Integrating Discrete Element Method into Modelica

898 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132895

to find out if a particle P is inside the sensor region. First
thing we have to do is calculating the absolute difference
vector of the particles global position xP and the position
of the sensor xS (eq. 1). After that we transform this ab-
solute difference vector into the relative coordinates of the
sensor (eq. 2).

xPSabs = xP−xS (1)
xPSrel = RS ·xPSabs (2)

To determine if the particle is inside or not we have to
check the following logic equation.

insidecuboid =|xPSrel ,x|< 0.5 · lx ∧
|xPSrel ,y|< 0.5 · ly ∧ (3)
|xPSrel ,z|< 0.5 · lz

For spherical region sensors equation 2 can be omitted.
Checking is done as shown in equation 4 where r is the
radius of the sphere.

insidesphere =|xPSabs,x|< r ∧
|xPSabs,y|< r ∧ (4)
|xPSabs,z|< r

Just mention that there’s a second sort of sensors called
FlowSensors. They are used for measuring the number
and mass of particles passing two dimensional surfaces.
Computation algorithm for these kind of sensors is basi-
cally the same like for contact detection und shouldn’t be
explained here.

6 Use cases
6.1 Bucket Excavator
As first use case a bucket excavator digging a hole should
be simulated. The excavator itself was modeled as multi-
body system, which can easily be extended by hydraulic
or electric components. For all parts which should interact
with the granular material – in this case just the bucket –
the new library component CADPart was used. As next
step as pit of size 6.0 x 2.0 x 1.0 meters was generated
by using the PitGenerator element. The new library has a
direct interface to a database containing predefined mate-
rials, as described in section 4.2. So, the material chosen
for the pit was gravel. Figure 6 shows the 3D view of a
running simulation. As you can see particles are visuali-
zed directly in SimulationX R©.

6.2 Loaded Truck
The in figure 7 shown model of the truck allows to deter-
mine the hydraulic forces in the main cylinder of the truck
during the loading and unloading of bulk material by ta-
king the elastic suspension into account. It is also possi-
ble to determine the influence of the moving bulk material
of the drivability during different maneuvers and demon-
strates additional features and the capabilities of the de-
veloped library. In the background is a ParticleSource,

Figure 6. Excavator simulation

which the truck was being loaded with during the simu-
lation. For the ParticleSource it is also possible to chose
a predefined material of the database. Additionally, the
feature is demonstrated that accelerated, rotating and au-
tomatically increasing simulation rooms are supported du-
ring co-simulation. With the RegionSensors the number of
particles and the mass of the load can be evaluated which
interacts with the CADParts. The ground is a Plane for
the DEM simulation without any feedback to the system
simulation.

Figure 7. Loaded truck simulation

7 Conclusion and Outlook
In this work, a new concept was presented allowing the
closed modelling of machine models and discrete element
systems in one simulation tool. For that the command-
oriented modeling technique many DEM applications
work with was transferred into an object-oriented design
approach. This approach allows to perform DEM simu-
lations for inexperienced users who are not familiar with
the DEM. But even for very experienced users, the new
library will make it much easier to build up DEM models,
run coupled simulations and analyze and document the re-
sults.

By supporting additional LIGGGHTS R© features and
additional wizards the modeling could be simplified, the
possibilities expanded and the usebility of DEM models
improved.

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132895

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

899

Additional LIGGGHTS R© features could be the brea-
king and bonding of material. This field of DEM si-
mulation and the determination of the appropriate mate-
rial parameters is currently the content of some research-
projects. But the results of that projects are far away to
be used in coupled simulation. Additional wizards could
be developed for example to allow the user to vary ma-
terial parameters, create their own materials, or generate
a multisphere body. Furthermore, the analysis possibili-
ties of the LIGGGHTS R© results in SimulationX could be
expanded further in order to increase the added value of
the coupled simulation. For this and for all other enhan-
cements, we are looking forward to the feedback of future
users and interested parties.

Acknowledgements
This work is part of the project DEM-4-X funded by
the BMWi (Federal Ministry for Economic Affairs and
Energy, Project No.: 2055606KM4). The authors are dee-
ply grateful for the financial support.

References
Torsten Blochwitz, Martin Otter, Johan Åkesson, Martin Ar-

nold, Christoph Clauß, Hilding Elmqvist, Markus Friedrich,
Andreas Junghanns, Jakob Mauß, Dietmar Neumerkel, Hans
Olsson, and Antoine Viel. Functional Mockup Interface 2.0:
The Standard for Tool independent Exchange of Simulation
Models. In Martin Otter and Dirk Zimmer, editors, Procee-
dings of the 9th International Modelica Conference, Munich,
Germany, September 2012. doi:10.3384/ecp12076173.

Peter Coad and Edward Yourdon. Object oriented analysis.
1991.

Peter A. Cundall. A computer model for simulating progres-
sive, large-scale movements in blocky rock systems. In Proc.
Symp. Int. Rock Mech., volume 2, Nancy, 1971.

Hilding Elmqvist, Axel Goteman, Vilhelm Roxling, and Toheed
Ghandriz. Generic Modelica Framework for MultiBody Con-
tacts and Discrete Element Method. In Peter Fritzson and
Hilding Elmqvist, editors, Proceedings of the 11th Interna-
tional Modelica Conference, Versailles, France, September
2015. doi:10.3384/ecp15118427.

Marcus Geimer, Thomas Krüger, and Peter Linsel. Co-
Simulation, gekoppelte Simulation oder Simulationskop-
plung? Ein Versuch der Begriffsvereinheitlichung. O+P
Zeitschrift für Fluidtechnik - Aktorik, Steuerelektronik und
Sensorik, 50(11-12):572–576, 2006.

Christoph Kloss and Christoph Goniva. Open Source Dis-
crete Element Simulations of Granular Materials Based on
Lammps, volume 2, pages 781–788. John Wiley & Sons,
Inc., Hoboken, NJ, USA, 2011. ISBN 9781118062142.
doi:10.1002/9781118062142.ch94.

Günther Kunze, Andre Katterfeld, and Tina Grüning. Simula-
tion maschineller Erdbauprozesse. In 15. Fachtagung Schütt-
gutfördertechnik, Munich, Germany, October 2010.

Günther Kunze, Andre Katterfeld, Christian Richter, Hendrik
Otto, and Christian Schubert. Plattform- und Sofwareunab-
hängige Simulation der Erdstoff-Maschine Interaktion. In 5.
Fachtagung Baumaschinentechnik, Dresden, Germany, Sep-
tember 2012.

A New Object-Oriented Approach for Integrating Discrete Element Method into Modelica

900 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132895

Modeling and Simulation of Wheel Driving Systems based on
Terramechanics for Planetary Explanation Rover using Modelica

Hiroki Yoshikawa1 Takatsugu Oda1 Kenichiro Nonaka1 Kazuma Sekiguchi1

1Mechanical Systems Engineering, Tokyo City University, Japan, {g1681237, g1591201, knonaka,
ksekiguc}@tcu.ac.jp

Abstract
Planetary exploration rovers have to accomplish various
missions on uneven and loose terrain. In recent years,
systems of rovers adopting terramechanics which deter-
mine the force and moment characteristics of the wheel
on loose soil is studied. In this study, using Modelica lan-
guage, we construct a wheel model based on terramechan-
ics, and we identify the wheel characteristics as a linear
for a control. We conduct a numerical simulation of the
rover using a controller including the identified longitudi-
nal force model. It is shown that when the rover follows a
straight line on a plane, the longitudinal force model iden-
tified using known soil parameters has sufficient accuracy
on the wheel response based on terramechanics and could
be used as a control model. Keywords: terramechanics,
modeling, identification, space robots, control system

1 Introduction
In recent years, research and development of planetary ex-
ploration rovers in various configurations have been car-
ried out to investigate the planets. Planetary exploration
rovers have to achieve a stable traveling on uncertain and
severe terrain. The planet surface is covered with fine de-
posits, called regolith, and uneven terrain such as craters
and rocks. Various planetary exploration rovers have been
developed which is equipped with, for example, wheel
mechanisms with suspensions to adapt to the planetary
surface, crawler mechanisms to enhance the drawbar pull
or leg mechanisms to climb over steps (Seeni et al., 2008).
Also, NASA is planning to operate a hybrid rover "ATH-
LETE" which is equipped with wheel and leg mecha-
nisms.

When rovers move on planetary surface, it is impor-
tant to take into account of terramechanics which gov-
erns a relation between soft soil and the driving system
of rovers. In order to analyze the effect of the soil, a semi-
empirical model proposed by Bekker using the experimen-
tal results and a model using Discrete Element Method
(DEM) without dependence on wheel parameters are stud-
ied (Nakashima et al., 2010). Combining DEM with Finite
Element Method (FEM), the simulation using Soil Contact
Model (SCM) of Multi-Body System (MBS) which ana-
lyzes the more detailed soil movement is proposed (Krenn
and Gibbesch, 2011). The deformation of soil and the op-

timal wheel shape are analyzed through these simulations
to consider efficient travel on loose soil. However, it is not
suitable for the motion analysis of the rover, since it takes
large calculation time with FEM and DEM which handle
huge complicated elements in order to ensure reasonable
accuracy (Taheri et al., 2015).

As for the studies about the control based on terrame-
chanics, designing path (Ding et al., 2014) and analysis
of traveling performance while ascending (Ishigami et al.,
2007) is conducted. A slip ratio control of the wheels on
loose soil using sliding mode control for the rover model
considering terramecahnics is proposed (Gu et al., 2007).
In addition, another slip ratio control of the wheels using
PID control to adapt the parameters of terrain surface is
studied (Iagnemma and Dubowsky, 2004).

While it is desirable to conduct experiments in space
environments to verify these models, computer simula-
tions are preferred considering huge cost. However, it
is difficult to compensate for the differences of planetary
environments like gravitational field and so on (Pulecchi
and Lovera, 2006). To conduct a simulation with mini-
mized the error between the simulation model and the ac-
tual equipment is minimized, it is extremely effective for
comprehensive analysis through the more detailed rover
model and contact model of loose soil. The simulations
using Modelica language and modeling tool of physical
domains attract a lot of attention. We do not need to care
about causality to create the wheel model based on ter-
ramechanics such as slip ratio, sideslip angle and velocity
of wheel, since Modelica is an equation based language.
These features enable us to combine the wheel and rover
model effectively.

In previous our study, we conduct simulations consid-
ering the space environment using the fundamental con-
trol system and the robot model designed by Modelica.
In this study, using Modelica language we design a rover
model equipped with the terramechanics model to con-
duct a simulation with more detail model. We identify
the identified model which expresses the relationship be-
tween input torque and longitudinal force based on the
simulation results of the terramechanics model. Beca-
sue the terramechanics model is too complex to use in
a controller, we design the motion controller using the
identified model. We evaluate the effectiveness of iden-
tified model through numerical simulations. Therefore,

DOI
10.3384/ecp17132901

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

901

Limb 1

Limb 2

Limb 3

Limb 4

Limb 5 Limb 6

z

x

y

Figure 1. Leg-wheel mobile robot model with six joints of each
limb.

the identified model approximates the characteristics of
the terramechanics model.

2 Modeling controlled object
2.1 Leg-wheel mobile robot model
Figure 1 depicts a rover model of the controlled object
(Yoshikawa et al., 2016). We use a lunar exploration
rover "ATHLETE" developed by NASA/JPL as a refer-
ence model (Wilcox et al., 2007). This rover is equipped
with six limbs with six joints while wheels achieve a high
movement performance and accommodate a wide range of
tasks using the redundancy. We create this rover model by
using Modelica language to control the degree of freedom
of the leg-wheel mechanisms with similar movements of
ATHLETE. The coordinate system of the rover is attached
at the center of the body. The limb has a number to be
distinguished from the others in this coordinate system, as
depicted in Figure 1.

2.2 Wheel model based on terramechanics
2.2.1 Assumptions of the wheel model

We introduce terramechanics to the wheel model of the
controlled objects. We make reference to semi-empirical
model (Ishigami et al., 2007) (Wong, 2001) to the wheel
model based on terramechanics. Figure 2 depicts the rigid
wheel rolling on loose soil. The assumptions of the wheel
model are as follows:

• The contact surface between wheels and the ground
is flat.

• Radius r and width b of wheel have enough rigidity.

• Wheel rotation does not affect a frontal soil.

• The frontal soil is constricted and released at the rear
of the wheel.

θ

r

fθ

rθ

h
hλ

)(θτ x
mθ

xv

)(θσ

z

x

ω

W

Figure 2. Normal stress and shear stress distribution concept of
terramechanics while rolling (Ishigami et al., 2007).

• Lateral and vertical dynamics of wheels are not con-
sidered.

Figure 2 depicts the geometry of the wheel model based
on these assumptions; the empirical equation is described
in the following section.

2.2.2 Entry and exit angle of wheel
The forces generated from the wheel are calculated by
integrating a stress distribution developed between the
wheel and terrain surface. Entry angle θf and exit angle
θr are introduced in order to decide the dynamic contact
area of the wheel. The entry angle and exit angle are de-
fined as follows:

θf = cos−1(1− h
r
), (1)

θr = cos−1(1− λh
r
), (2)

where h is the sinkage of wheel and λ is the volume ratio
of soil.

2.2.3 Specific wheel angle θm

The normal stress distribution σ (the blue curve in Fig-
ure 2) arises in the normal direction of the wheel while
rolling. This normal stress distribution is approximated
by the parabolic curve. The maximum stress angle θm is
an angle at which the value of normal stress is maximum
as follows:

θm = (a0 +a1κ)θf, (3)

where a0, a1 is a constant value and κ is slip ratio. Slip
ratio is represented by using a translational velocity of the
wheel vx and angular velocity of the wheel ω :

κ =

(

rω − vx

rω

)
(rω > vx)(

rω − vx

vx

)
(rω < vx).

(4)

Modeling and Simulation of Wheel Driving Systems based on Terramechanics for Planetary Explanation
Rover using Modelica

902 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132901

2.2.4 Normal stress distribution model based on
bekker’s equation

The normal stress distribution model σ(θ) based on soil
pressure equation proposed by Bekker is divided into two
areas: the front parts of the specific wheel angle σf(θ)
(θm ≤ θ < θf) and the rear parts σr(θ) (θr < θ ≤ θm). The
normal stress distribution model of the wheel is defined as
follows:

σf(θ) = rn
(

kc

b
+ kϕ

)
[(cosθ − cosθf)]

n , (5)

σr(θ) = rn
(

kc

b
+ kϕ

)
[

cos{θf −
θ −θr

θm −θr
(θf −θm)}− cosθf

]n

, (6)

where kc is pressure-sinkage module depending on the vis-
cosity, kϕ is pressure-sinkage module depending on the
friction and n is the sinkage exponent depending on sink-
age of soil.

2.2.5 Shear stress model of wheel
Shear stress model is defined as follows:

τ = τmax(1− e− j/k), (7)
τmax = c+σ tanϕ , (8)

where c is the cohesion stress of the soil, ϕ is the internal
friction angle of the soil, j is the soil deformation and k
is the shear deformation modules. The shear stress of x
direction τx is obtained by assigning σ to Eq. (8):

τx = (c+σ(θ) tanϕ)(1− e− jx(θ)/kx), (9)

where kx is the shear deformation modules of x direction
and jx is the soil deformation of x direction as follows:

jx(θ) = r[θf −θ − (1−κ)(sinθf − sinθ)]. (10)

2.2.6 Vertical and longitudinal force of wheel
The vertical force Fz which is equal to the load of the
wheel is calculated by the summation of the normal and
shear stress of z direction as follows:

Fz = rb
∫ θf

θr
{τx(θ)sinθ +σ(θ)cosθ}dθ . (11)

The normal and shear stress of the wheel can be calculated
using the each contact angle θf and θr determined by the
sinkage of the wheel h. Then, the longitudinal force is
calculated by the summation of normal and shear stress of
x direction as follows:

Fx = rb
∫ θf

θr
{τx(θ)cosθ −σ(θ)sinθ}dθ . (12)

The rolling resistance torque Tx is calculated using the
shear stress as follows:

Tx = r2b
∫ θf

θr
τx(θ)dθ . (13)

 0

 100

 200

 300

 400

 500

 0 0.1 0.2 0.3 0.4 0.5L
o

n
g

it
u

d
in

al
 f

o
rc

e
F

x
 [

N
]

Slip ratio κ [−]
100
200

300
400

500
600

700
800

Figure 3. Relationship between slipratio and longitudinal force
with respect to load of the wheel.

2.2.7 Longitudinal characteristics
Figure 3 shows longitudinal force Fx with respect to the
slip ratio of the wheel when the load of it increases every
force 100N within 100N ∼ 800N. As the slip ratio in-
creases, the longitudinal force is saturated as Figure 3 in-
dicates. In addition, as indicated in Figure 3, for the same
slip ratio, the longitudinal force generated by the wheel
depends on the load. It indicates that the increasing ratio
of Fx decreases as the load grows.

3 Identification of the wheel model
3.1 Identified model
In this section, to design a rover controller in which the
identified model is additionally used, we identify the lon-
gitudinal force of the terramechanics model. We approx-
imate the longitudinal force generated at the wheel by a
linear first-order system. A step wheel torque is imposed
on the wheel, then the wheel response data on the longi-
tudinal force and the slip ratio is sampled. The identified
longitudinal force model is depicted in Figure 4. The iden-
tified model is separated into two blocks: one for calculat-
ing the slip ratio by the wheel torque and the other for
calculating the longitudinal force by the slip ratio. This
separation helps to capture the feature of the physical re-
lationship.

In the wheel model based on terramechanics, the wheel
sinkage which depends on load is decided by the opti-
mization. In order to identify the longitudinal force cor-
responding to the load change, we represent the parame-
ters of the first order system using a look up table (LUT).
Using the LUT in the identified model, we can consider
the generated force due to influences of soil deformation
caused by load change. Firstly, the gain KLUT and the time
constant TLUT are decided using the LUT. The reference
values of the LUT are the wheel load W and wheel torque
Tw. Secondly, the relationship between slip ratio κ and
longitudinal force Fx with respect to load change is de-
picted in Figure 5. Each point in this Figure represents the
reference results of the terramechanics model. To express
these relationships in an equation, we approximate it as
follows:

Fx(W,κ) = a(W)κ +b(W), (14)

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132901

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

903

Slip ratioTorque

LoadLoad

1),(

/),(

LUT

LUT

+sWTT

TWTK

w

ww)()(WbWa +κ

Longitudinal

force

W

w
T

W

κ x
F

Figure 4. Identification model from wheel torque to longitudinal force of wheel.

Table 1. Precision of identified model to responce of wheel
baced on terramechanics in the load 275,575,875 N.

Load 275N 575N 875N

Precision 82.1% 96.8% 96.2%

where a(W) and b(W) are the coefficient derived from
the quadratic expressions with respect to load change, as
shown in Figure 6 and Figure 7, respectively.

3.2 Verification of identification model
It is noted that the idetified model using LUT is an ap-
proximation which essentially includes interpolation error.
Figure 8 indicates the longitudinal force obtained by the
wheel based on terramechanics and the identified model
of it in the load W = 575 N which is the interporated re-
gion. A precision of identified model is calculated using
the following equation:

Fit =

1−

√
∑N

k=1[ŷ(k)− y(k)]2√
∑N

k=1[y(k)− ȳ]2

×100, (15)

where ŷ(k) is the output of identified model, y(k) is the
output obtained by the controlled object, ȳ(k) is the av-
erage of it and N is the number of data. In the case that
the load is not the reference results of the teramechanics
model, for example W = 275,575,875 N, the precision for
the step response of the wheel torque is shown in Table 1.
As a result, all of the precision is over 82%. If you need
to increase the precision, the degree of the approximate
expression will be changed more high degree. Therefore,
the identified model sufficiently approximates the longitu-
dinal force of the wheel even when the LUT refers to the
interpolated load.

4 Simulation
In this section, to evaluate the accuracy of the identified
model for the rover, we design the controller system using
the identified model, and confirm the response through the
numerical simulation.

4.1 Controller design
To verify whether the rover model with terramechan-
ics wheel model could be controlled using the identified
model through the numerical simulation, we construct the

 0

 10

 20

 30

 40

 50

−0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

L
o

n
g

it
u

d
in

al
 f

o
rc

e
F

x
 [

N
]

Slip ratio κ [−]
100

200

300

400

500

600

700

800

Figure 5. Reference results of the terramechanics model of
slip ratio and longitudinal force obtained by step input of wheel
torque and linear approximation of them.

−500

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000

C
o

e
ff

ic
ie

n
t

a
 [

−
]

Vertical load W [N]

Figure 6. Coefficient a of polynominal.

controller system: the identified model in section 3 is used
as the control model to calculate a wheel torque from a
velocity controller. Then, the torques are imposed on the
rover model (plant model in section2). The system calcu-
lates the wheel torque by feedback control so that the rover
achieves the target velocity. In vehicle motion controller,
we regard the rover as a mass point model for calculat-
ing the rover force on the CoG. To achieve the designed
motion, it is assumed that each wheel generate the same
longitudinal force as follows:

Fx,all/6 = f̃w, i, (16)

where Fx,all is whole longitudinal force of the rover, f̃w, i
is longitudinal force of each wheel and subscript i = 1 ∼ 6
indicates the limbs number. Each wheel torque Tw, i is
calculated using the inverse identified longitudinal force
model. Then, to realize the inverse model which is the
linear first order system, we add the second order filter in
front of it so that the model become the strictly proper

Modeling and Simulation of Wheel Driving Systems based on Terramechanics for Planetary Explanation
Rover using Modelica

904 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132901

Position

Velocity

Vehicle

motion

controller

Rover

model

Longitudinal

force all,xF

Load W

Torque iw
T ,

Inverse

identification

model

Bodyx

Bodyv

Target position

Target velocity
Bodyt,x

Bodyt,v

+

−

Figure 9. Controller system.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50

 0 200 400 600 800 1000

C
o

e
ff

ic
ie

n
t

b
 [

−
]

Vertical load W [N]

Figure 7. Coefficient b of polynominal.

−40
−30
−20
−10

 0
 10
 20
 30
 40
 50

 0 1 2 3 4 5 6 7 8

L
o

n
g

it
u

d
in

al
 f

o
rc

e
F

x
 [

N
]

Time [s]

identification model
terramechanics

Figure 8. Example of comparisom foward identified model with
terramechanics wheel model (W = 575 N).

model. Using the inverse model, we verify the simple
characteristics of the identified model when the model is
applyed to the rover model. The filter is defined as fol-
lows:

ω2
n

s2 +2ωns+ωn2, (17)

where ωn is natural angular frequency and set to be
342rad/s. The calculated wheel torque is imposed on each
wheel of the rover model which indicates the right block
depicted in Figure 9.

4.2 Simulation conditions
To verify the response of the wheel model, we conduct
a simulation that the rover tracks the target velocity on a
plane while keeping the initial posture of the rover. The
reference path is the straight line including an accelerat-
tion areas. In this simulation, we assume that the lunar
surface is covered with regolith uniformly. The parame-
ter of rover mass, target value, soil and wheel shape are
indicated in Table 2 (Ishigami et al., 2007).

Table 2. Parameter of rover, wheel and soil.

Parameter Value Unit

Rover mass M 1570 kg
Target position xt,Body 1.0×time m
Target velocity vt,Body 1.0 m/s
Wheel radius r 0.355 m
Wheel tread b 0.175 m
Cohension stress c 0.80 kPa
a0 0.4 -
a1 0.15 -
Pressure-sinkage module kc 1.37×103 N/mn+1

Pressure-sinkage module kϕ 8.14 × 105 N/mn+2

Soil deformation module kx 0.036 m
Sinkage exponent n 1.0 -
Friction angle ϕ 37.2 deg
Wheel sinkage ratio λ 0.90 -

4.3 Results and discussions

The simulation results using the identified model are
shown in Figure 10. Since the rover moves on a straight
line and arranges a symmetric leg position in this simula-
tion condition, we plot the results of the Limb1 ∼ 3. Fig-
ure 10 (a) through (h) depict the wheel torque, the wheel
resistance torque, the vertical force of each wheel, each
wheel sinkage, the slip ratio of each wheel, the longitudi-
nal force of each wheel, the velocity of the rover and the
desired longitudinal force, respectively.

As shown in Figure 10 (a), the identified model calcu-
lates the wheel torque considering the influence of resis-
tance torque, so that the rover enable the wheel to drive
smoothly. It is because the controller implicitly considers
the effect of resistance which is depicted in Figure 10 (b).

The inertia force due to the acceleration influences that
the load distribution of the wheel biases backward of the
rover. As a result, Figure 10 (c) indicates that, during
the acceleration, the vertical force of the Limb 3 increases
while that of the Limb 1 decreases. The load change af-
fects the change of the wheel sinkage h as depicted in Fig-
ure 10 (d). The wheel sinkage h is adapted to the vertical
force, so that the physical adequacy of the wheel model
based on terramechanics can be confirmed. The wheel
torque is calculated using the identified model, so that

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132901

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

905

Table 3. RMS error of longitudinal force.

Limb 1 Limb 2 Limb 3

RMS error 0.7 N 0.4 N 0.5 N

the wheel arises the different slip ratio, as shown in Fig-
ure 10 (e). Accordingly, the longitudinal force of the each
wheel is generated uniformly as depicted in Figure 10 (f)
even when the load of the each wheel is different. Fig-
ure 10 (g) indicates that the rover accelerates until the
translational velocity reaches 1.0 m/s. Figure 10 (h) de-
picts the actual and desired longitudinal force of limb 1
as a representative example. Table 3 shows the RMS er-
ror between the actual and desired longitudinal force in
limb 1 ∼ 3. This difference in the longitudinal force is
caused by the approximation error of the identified model.
The precision of the identified model tends to lower as the
load decreases, as shown in Table 1. Thus, since the load
of Limb 1 decreases during the acceleration, the RMS er-
ror becomes the largest. The maximum longitudinal force
reaches about 30N. Nevertheless, all RMS error is below
1.0N. Although the actual longitudinal force is not equal
to the desired, the influence is adequately suppressed by
the feedback control.

Each wheel can generate the desired longitudinal force
due to calculating the wheel torque corresponding to load
change. Moreover, through the use of the identified model,
the wheel torque considering the influence of loose soil
can be obtained without the optimal calculation for a de-
cision of the wheel sinkage. Therefore, it is shown that
the identified longitudinal force model based on the more
detailed model has the high accuracy when the model is
applied to the rover controller.

5 Conclusions

In this paper, we construct the wheel model based on ter-
ramechanics derived from semi-empirical model by using
Modelica language. In order to consider the longitudinal
force of the constructed wheel model, we approximate it
by the linear first order system. Designing the controller
using the identified model, we investigate the influence on
driving systems of the rover moving on loose soil. The
simulation results indicate that the identified model can
adapt the influence of load change and consider the soil
deformation, so that the identified model has a high ac-
curacy. With reference to the model used in the control,
it is important to simplify the structure and identify the
characteristic. Consequently, the use of the identified lon-
gitudinal force model contributes to a control design for
the rover.

As for the problems to be solved from now on, to en-
hance the mobility on loose soil, the lateral force of the
wheel should be identified to design a controller.

6 Acknowledgments
The authors gratefully acknowledge the support of Grant
in Aid for Scientific Research (C) No.15K06155 of Japan.

References
Liang Ding, Hai-bo Gao, Zong-quan Deng, Zhijun Li, Ke-rui

Xia, and Guang-ren Duan. Path-following control of wheeled
planetary exploration robots moving on deformable rough
terrain. The Scientific World Journal, 2014, 2014.

Kanfeng Gu, Yingzi Wei, Hongguang Wang, and Mingyang
Zhao. Dynamic modeling and sliding mode driving control
for lunar rover slip. In Integration Technology, 2007. ICIT’07.
IEEE International Conference on, pages 36–41. IEEE, 2007.

Karl Iagnemma and Steven Dubowsky. Traction control of
wheeled robotic vehicles in rough terrain with application to
planetary rovers. The international Journal of robotics re-
search, 23(10-11):1029–1040, 2004.

Genya Ishigami, Akiko Miwa, Keiji Nagatani, and Kazuya
Yoshida. Terramechanics-based model for steering maneu-
ver of planetary exploration rovers on loose soil. Journal of
Field robotics, 24(3):233–250, 2007.

Rainer Krenn and Andreas Gibbesch. Soft soil contact model-
ing technique for multi-body system simulation. In Trends in
computational contact mechanics, pages 135–155. Springer,
2011.

H Nakashima, H Fujii, A Oida, M Momozu, H Kanamori,
S Aoki, T Yokoyama, H Shimizu, J Miyasaka, and K Ohdoi.
Discrete element method analysis of single wheel perfor-
mance for a small lunar rover on sloped terrain. Journal of
Terramechanics, 47(5):307–321, 2010.

Tiziano Pulecchi and Marco Lovera. A modelica library for
space flight dynamics. In In Proceedings of the 5th Inter-
national Modelica Conference. Citeseer, 2006.

Aravind Seeni, Bernd Schafer, Bernhard Rebele, and Nikolai
Tolyarenko. Robot mobility concepts for extraterrestrial sur-
face exploration. In Aerospace Conference, 2008 IEEE, pages
1–14. IEEE, 2008.

Sh Taheri, C Sandu, S Taheri, E Pinto, and D Gorsich. A tech-
nical survey on terramechanics models for tire–terrain inter-
action used in modeling and simulation of wheeled vehicles.
Journal of Terramechanics, 57:1–22, 2015.

Brian H. Wilcox, Todd Litwin, Jeff Biesiadecki, Jaret Matthews,
Matt Heverly, Jack Morrison, Julie Townsend, Norman Ah-
mad, Allen Sirota, and Brian Cooper. ATHLETE: A cargo
handling and manipulation robot for the moon. Journal of
Field Robotics, 27(5):421–434, 2007.

Jo Yung Wong. Theory of ground vehicles. John Wiley & Sons,
2001.

Hiroki Yoshikawa, Takatsugu Oda, Kenichiro Nonaka, and
Kazuma Sekiguchi. Modeling and simulation for leg-wheel
mobile robots using modelica. In The First Japanese Mod-
elica Conferences, May 23-24, Tokyo, Japan, number 124,
pages 55–60. Linköping University Electronic Press, 2016.

Modeling and Simulation of Wheel Driving Systems based on Terramechanics for Planetary Explanation
Rover using Modelica

906 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132901

−5

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80

In
p

u
t

to
rq

u
e

T
w

 [
N

·m
]

Time [s]

Limb 1
Limb 2
Limb 3

(a) Wheel torque of each wheel.

−0.02

−0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 10 20 30 40 50 60 70 80

S
li

p
 r

at
io

 κ
 [

−
]

Time [s]

Limb 1
Limb 2
Limb 3

(e) Slip ratio of each wheel.

 0

 5

 10

 15

 20

 25

 10 20 30 40 50 60 70 80

 R
o
ta

ti
o

n
 r

es
is

ta
n

t
to

rq
u

e
T

x
 [

N
·m

]

Time [s]

Limb 1
Limb 2
Limb 3

(b) Rolling resistance torque of each wheel.

−10

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80

L
o

n
g

it
u

d
in

al
 f

o
rc

e
F

x
 [

N
]

Time [s]

Limb 1
Limb 2
Limb 3

(f) Longitudinal force of each wheel.

 300

 350

 400

 450

 500

 550

 10 20 30 40 50 60 70 80

V
e
rt

ic
a
l

fo
rc

e
 F

z
 [

N
]

Time [s]

Limb 1
Limb 2
Limb 3

(c) Vertical force of each wheel.

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 10 20 30 40 50 60 70 80

v
b
o
d
y
 [

m
/s

]

Time [s]

(g) Velocity of rover model.

 0.012

 0.014

 0.016

 0.018

 0.02

 10 20 30 40 50 60 70 80

S
in

k
ag

e
o

f
w

h
ee

ls
 h

 [
m

]

Time [s]

Limb 1
Limb 2
Limb 3

(d) Sinkage of each wheel.

−10

 0

 10

 20

 30

 40

 50

 10 20 30 40 50 60 70 80

L
o

n
g

it
u

d
in

al
 f

o
rc

e
F

x
 [

N
]

Time [s]

Limb 1

Fall/6

(h) Actual and desired longitudinal force of limb 1.

Figure 10. Rover driving simulation using longitudinal force model considring terramechanics for driving force distribution.

Session 11C: Mechanical Systems, Robotics & VR

DOI
10.3384/ecp17132901

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

907

908 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132

The Jet Propulsion Library: Modeling and simulation of aircraft
engines

Michael Sielemann1 Anand Pitchaikani2 Nithish Selvan2 Majed Sammak3

1Modelon Deutschland GmbH, Germany, michael.sielemann@modelon.com
2Modelon Engineering Pvt. Ltd., India, {anand.pitchaikani,nithish.selvan}@modelon.com

3Modelon AB, Sweden, majed.sammak@modelon.com

Abstract
The Jet Propulsion Library is a new Modelica library that
provides a foundation for modeling and simulation of jet
engines, and the model-based design of integrated aircraft
systems. It provides a fully rigorous foundation for sizing
and performance computations, and provides a number of
advantages over existing domain-specific solutions due to
the use of the Modelica language. This paper provides an
introduction and overview of the library and describes an
application in the design of a turbo fan engine.
Keywords: Turbo fan, turbo jet, turbo prop, turbo
shaft, performance, model-based design, sizing, sec-
ondary power

1 Introduction
The prime mover of an aircraft, the jet engine, is one of
the most important subsystem of an aircraft. Jet engines
provide primary power (thrust) and secondary power (to
drive flight control, air conditioning, cabin lighting and
so on) to the aircraft. Recently, the improvements in the
performance and efficiency of jet engines deliver a very
large share in the overall platform improvements (for both
commercial and military aircraft where for instance super
cruise requirements were met). They therefore strongly
affect aircraft value and, in case of commercial aircraft,
eventually airline competitive edge. The latter is not only
driven by costs, but even more so by environmental regu-
lations.

However, these power plant improvements become in-
creasingly difficult to achieve when focusing on the en-
gine in isolation. The reason is that the local improvement
potential has largely been leveraged in previous incremen-
tal design improvements, and only changes on global air-
craft level remain to substantially improve the total air-
craft package. For this reason aeronautical systems such
as aircraft and their subsystems are becoming more and
more integrated. This integration takes place along a
number of trends. We mention two of these. The first
one is the electrification of secondary power on-board air-
craft (Provost, 2002). This trend is also called the “More
Electric Aircraft” and has shaped industry road maps since
more than two decades. Historically, three different types
of secondary power were equal, namely, electric power,

hydraulic power, and pneumatic power. With the “More
Electric Aircraft” this is changing in favor of electric
power. The main reason lies in the anticipated develop-
ment potential of power electronics, which is all but ex-
hausted (like that of pneumatic and hydraulic power).

The second trend is more recent and is the electrifica-
tion of primary power. This is getting increasing interest
due to intrinsic limitations in turbofan technology (Kypri-
anidis et al., 2014) (be it geared or ungeared). Follow-
ing (Winter, 2013), the overall efficiency of a propulsion
system can be considered to be proportional to the prod-
uct of thermal and propulsive efficiency. To achieve ther-
mal efficiency improvements, the Overall Pressure Ratio
(OPR) and the Turbine Entry Temperatures (TET) of the
cycles are being increased in an incremental way since the
last few decades and are approaching peak values (approx-
imately 1900-2000K TET and around 45-50 cycle OPR).
Material limits, turbine cooling, emissions, and losses in
the last stage of the high pressure compressor may now
impose fundamental limits to the thermal efficiency. Im-
provements in propulsive efficiency are well achievable
via reduction in fan pressure ratio and increases in by-
pass ratio. However, these improvements are deterio-
rated by losses through lowered transmission efficiency,
increased nacelle weight and higher drag due to larger
frontal area (Larsson et al., 2011). When these limits in-
deed turn out to become fundamental ones, different and
more integrated concepts will become of interest. For in-
stance electric ones where power is stored in one way or
another on-board and possibly converted to electric power
by gas turbines or fuel cells and used to drive distributed
propulsion devices. Such aircraft with partially or fully
electrified primary power systems are called hybrid or
fully electric aircraft.

It is critical that the methods and tools supporting the
design of such systems keep pace with the increasing in-
tegration on the product side. Only with efficient and
robust prediction capabilities it becomes possible to es-
tablish model-based design for such solutions introducing
new technologies, and cover all relevant “what if” scenar-
ios.

It is therefore evident that if future propulsion systems
and technology are to achieve the environmental chal-
lenges and performance targets set, rigorous mathematical

DOI
10.3384/ecp17132909

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

909

analysis of the component physics as well as integrated
subsystem physics is important. There exists a critical re-
quirement to develop and adapt models at an appropriate
level of fidelity to specific components. One of the key re-
quirement is also to have a generic framework where the
user will be able to choose components and characteristics
of his choice before integration of the subsystem.

Given the importance of propulsion system simulation
as an academic and industrial engineering discipline, the
literature on the state of the art is too extensive to be
reviewed here. We therefore focus on selected refer-
ences and tools. First, Gasturb (Kurzke, 1995) is a user-
friendly and powerful domain-specific system simulation
software for gas turbines. It is mature and provides ex-
tensive functionality, but also restricted to the scope de-
fined by the authors. The model equations as implemented
in the software can hardly be accessed and adapted by
the user. Integration with other simulation and design
models is possible but mostly requires process integra-
tion and design optimization (PIDO) solutions1. EnVi-
ronmental Assessment (EVA) (Kyprianidis et al., 2008) is
an example of a domain-specific simulation software with
widened scope (engine system simulation and some as-
pects of aircraft sizing). Similar to Gasturb it is restricted
to the application scope envisioned by its original pro-
grammers however. Numerical Propulsion System Sim-
ulation (NPSS) (Nichols and Chamis, 1991; Lytle, 1999;
Jones, 2007, 2010) covers more than system simulation, as
it also works as integration hub between system and field
simulation. It can also be labeled as a domain-specific
software but it relies on an object-oriented (yet causal)
custom language in which component models are writ-
ten. Model equations as implemented can be accessed and
adapted by the user. Integration can also be established
via PIDO solutions, but alternatively non-propulsion sub-
systems can be modeled in the native NPSS language and
be integrated in a computationally more efficient and ro-
bust manner than via PIDO solutions. PRopulsion Ob-
ject Oriented SImulation Software (PROOSIS) (Alexiou
and Mathioudakis, 2005; Bala et al., 2007) is a similar
system simulation software. It provides the same bene-
fits in terms of access and customization (albeit using an
acausal language), and also allows integration using non-
PIDO approaches. A number of modeling libraries for
non-propulsion sub-systems have been mentioned infor-
mally but not documented in the literature (according to
the knowledge of the authors). In any case, a main limi-
tation of this platform is the use of an in-house modeling
language, which is not widely adopted or openly standard-
ized via a non-profit organization.

While connecting a wide array of tools for multi-
disciplinary design optimization of aircraft and sub-

1Process Integration and Design Optimization software typically
contains numerous CAD/CAE integration adapters that allow the user
to link different computation software in a GUI. They often also pro-
vide convergence, optimization, and surrogate modeling functionality,
which allows to automate analysis and design processes.

systems is feasible, integrating in a less fragile way based
on open standards such as Modelica and FMI would in-
crease flexibility and allowed to substantially increase
manageable problem size due to higher computational ef-
ficiency. Other proposed interfacing standards such as
ARP 4868 (SAE, 2001) are domain specific and work well
for model-based efforts in their respective disciplines but
not to couple analyses for unconventional designs. How-
ever, up to now nobody has proposed a plausible mod-
eling library in Modelica for jet engines. Such a library
could eventually be integrated one into a framework for
modeling and simulation of aircraft and their components.
This enabled time and resource efficient implementation
of model-based design processes via reuse of such model
assets; a key enabler for model-based design. Addition-
ally, this improved consistency of results.

The objectives of this paper are

1. To suggest a library for modeling and simulation of
aircraft jet engines and their sub-systems in Model-
ica for a broad range of applications ranging from
engine and sub-system conceptual design to detailed
analysis and design involving transient and real-time
simulation2.

2. To substantiate why the library can plausibly be ap-
plied to industrial-scale problems involving “com-
plex” models and “sophisticated” analyses

3. To apply the framework to an engineering problem,
namely, the computation of the full range of cycle
performance.

4. To provide an outlook on how a Modelica imple-
mentation for modeling and simulation of aircraft
jet propulsion provides additional value over existing
discipline-specific tools in the design and analysis of
unconventional systems.

2 Jet Propulsion Library: Overview
and implementation

The Jet Propulsion Library is a modeling framework for
gas turbines and jet propulsion of commercial and military
aircraft. The comprehensive set of components enables
cycle performance analysis and optimization of all types
of aerospace gas turbines. On-design and off-design per-
formance can be studied as well as steady-state and tran-
sient behavior based on a single model.

The physics of jet engines are governed by the bal-
ance equations of thermo-fluid dynamics, the conservation
equations of mass, energy and momentum. Thus, some

2We restrict the scope however to only cover system simulation,
i.e., all processes governed by ordinary differential equations (ODE) or
differential-algebraic equations (DAE). Processes governed by partial
differential equations are beyond the scope of the library, unless their
partial derivatives have been suitably discretized to match the formal
framework of an ODE or DAE (e.g., one-dimensional discretization of
the balance equations of thermo-fluid dynamics).

The Jet Propulsion Library: Modeling and simulation of aircraft engines

910 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132909

of the underlying principles have been documented else-
where (Elmqvist et al., 2003; Casella et al., 2006; Franke
et al., 2009a,b). These will not be repeated here. How-
ever, given the flow velocities in such engines some as-
sumptions commonly made in the mentioned articles are
not appropriate; for instance the assumption that the flow
velocity is small and that differences between static and
total quantities can be neglected. The following presen-
tation describes some of the differences to the established
approaches, and gives a small example of the sophistica-
tion in its implementation to address the previously men-
tioned challenges.

2.1 Why Modelica
At a first glance, domain specific simulation solutions in-
cluding sophisticated graphical user interfaces are very ap-
pealing. We believe however that the use of the generic
modeling language Modelica provides advantages that
may outweigh the benefits of the former.

First, this is due to the tool support to manage product
and model complexity. This relies on the object-oriented
nature of Modelica, and allows the tool to conveniently
filter what implementations fit in a placeholder on a given
model template. Manually choosing from a large library
can be surprisingly difficult as industrial size problems are
tackled. With Modelica, models can be built rapidly based
on pre-configured templates. Additionally, a model archi-
tecture can be used once implemented across the system
engineering V-cycle even as the user zooms into detailed
modeling involving dynamic and real-time analyses. This
facilitates creating and maintaining a holistic view even on
challenging systems.

Second, given the declarative and symbolic problem
description encoded in the Modelica language, a model
compiler can transform the model description (equation
system) into the form most suitable for a given analy-
sis. This is based on automatic symbolic transformations,
and allows executing the same model as dynamic simula-
tion, steady-state simulation, optimization, real-time sim-
ulation and so on.

Additionally (and this has already been indicated
above), using Modelica it is more straight forward to cover
all domains based on first principles. After all, Modelica
is one of the native languages of the aircraft sub-system
industry. A large community/eco-system exists based on
the Modelica language with many commercial and open
source model libraries.

Furthermore, interactions become more productive.
Based on the open standards, any given model can be
made available on multiple tools. This enables model-
based collaborations, independently whether based on
Modelica or FMI.

Finally, this approach provides full access to the mod-
els. After all, while complete documentation of black box
component models is great for many cases, reading the
actual model code including the exact equations used for
simulation in the engineering language Modelica enables

deeper understanding and customization.

2.2 Thermodynamic properties
In the following sections, the distinction between so-
called static and total quantities is very important. A static
pressure ps for instance is the actual pressure in the usual
sense, which is associated not with fluid motion but with
its state. Total and dynamic pressure in turn are closely
related to fluid flow, and are a measure of flow veloc-
ity. For incompressible fluids, Bernoulli’s equation states
pt = ps + pd = ps +1/2ρv2. Here, pd = 1/2ρv2 is called
the dynamic pressure, and pt total pressure. Total quanti-
ties are sometimes also called stagnation quantities as they
correspond to the value of the static or thermodynamic
quantities if the fluid flow was brought to rest (zero veloc-
ity) in a reversible way (isentropically). As we are deal-
ing with compressible fluids in the context of this paper,
Bernoulli’s equation does not hold. Instead, a compress-
ible formulation has to be used. The details are described
in the following sections.

The thermodynamic state is always defined by the static
properties such as static temperature and pressure. These
are the actual temperatures and pressure observed in the
real world. In gas turbine performance computations it is
however a tremendous simplification to express the com-
ponent level equations mostly in total or stagnation quan-
tities (Walsh and Fletcher, 2004). Like this, the exact flow
cross section areas and velocities are not necessarily re-
quired. There are however also component models, in
which the static quantities have to be computed such as
mixers and nozzles (Walsh and Fletcher, 2004). In many
cases the static quantities are also of interest and are there-
fore computed in the “output section” (using Modelica
parlance).

In any case, the scope of the thermodynamic property
computations in the Jet Propulsion Library therefore has
to cover both static and total quantities. Additionally, to
ensure accurate predictions, this has to be done in what is
called the “fully rigorous” way (Kurzke, 2007). From text
books, one is tempted use the following equation to relate
the total temperature Tt and pressure pt

Tt = Ts
pt

ps

γ−1
γ (1)

Or, likewise

pt

ps
=

(
1+

γ −1
2

M2
) γ

γ−1
(2)

However, the isentropic exponent γ is not constant
across larger temperature or pressure ranges. Therefore,
equations (1) and (2) are strictly speaking not applicable.
Following (Kurzke, 2007; Sethi, 2008), a fully rigorous
approach based on the so-called entropy function Φ can
be used instead.

Φ(T) =
∫ T

Tre f

cp

R
dT
T

(3)

Session 11D: Aerospace

DOI
10.3384/ecp17132909

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

911

Then, the change of the entropy function in an isentropic
process is equal to the logarithm of the pressure ratio,

Φ2 −Φ1 = ln
(

p2

p1

)
(4)

Based on this approach, we can compute the complete
set of the following six static quantities from any two of
them plus the complete set of total quantities,

• Mass flow rate w

• Cross section area Ae

• Static pressure ps

• Static temperature Ts

• Mach Number M

• Flow velocity v

Then, instead of using (2), we can compute the static
pressure (and the complete set of static quantities) from
the Mach Number as follows (Sethi, 2008) (note that this
procedure requires the solution of implicit equation sys-
tems and additionally the mass flow rate as input). First,
we compute the static temperature Ts from the following
implicit equation.

M =

√
2ht −hs (Ts)√
γs (Ts)RTs

(5)

Then, the static pressure can be computed explicitly in a
fully rigorous way via the following equation

ps =
pt

exp
(

Φt−φ(Ts)
R

) (6)

As written above, the complete set of six static quan-
tities can be computed from any two of them (and the
total quantities). Based on which set of two static quan-
tities is given, between zero and two numerical solutions
to implicit equations such as (5) are required to compute
the full set of static quantities. Therefore, the thermody-
namic properties involving rigorous computations of total
and static quantities are somewhat different to the state of
the art in Modelica (see references above), where the need
for solution of implicit equation systems is considered a
rare case, which can often be avoided by suitable model
reformulations.

To provide convenient access to the computation of to-
tal and static thermodynamic properties we have there-
fore decided to use a package structure similar to Mod-
elica.Media (Elmqvist et al., 2003) but tailored to the ap-
plication specifics. First, we apply the concept of the ther-
modynamic state record to both total quantities (which,
following the introduction to this section, are required in
all component models) and static quantities.

A typical function to compute a total thermodynamic
state record has the following interface.

replaceable partial function setTotal_pthtX
"Return total state as function of pt, ht

and composition X"
input AbsolutePressure pt

"Total pressure";
input SpecificEnthalpy ht

"Total specific enthalpy";
input MassFraction X[nS]

"Mass fractions";
output TotalState total

"Total state record";
end setTotal_pthtX;

Based on a given total thermodynamic state record any
total quantity can be computed, for instance total temper-
ature

TtIn = Medium.totalTemperature(
inlet_total);

Additionally, a static thermodynamic state record can
be computed from a given total state record and any two
quantities related to the static quantities (w, Ae, ps, Ts,
M, v as defined above). The rigorous procedure described
with (5) and (6) is for instance implement in such a func-
tion conforming to the following interface

replaceable partial function setStatic_Mnw
"Return static state as function of total

state, Mach Number Mn and mass flow
w"

input TotalState total
"Total state record";

input Real Mn
"Mach Number";

input MassFlowRate w
"Mass flow rate";

input Types.FlowRegime regime
= Types.FlowRegime.Subsonic

"Flow velocity regime";
output StaticState static

"Static state record";
end setStatic_Mnw;

Enumeration FlowRegime is optionally used to con-
strain the solution interval to sub-sonic, sonic, or super-
sonic results.

Based on this code structuring concept fully rigor-
ous thermodynamic properties are implemented in the Jet
Propulsion Library. See figure 1 for an overview. The un-
derlying model for the entropy function and other related
quantities can be exchanged to allow different represen-
tations and fidelity levels. The first one implemented in
Jet Propulsion Library utilizes the polynomial approach
of (Walsh and Fletcher, 2004) and does not capture disso-
ciation effects.

2.3 Connector definition
For the fluid connectors in the Jet Propulsion Library
we adapt the concept of stream connectors as proposed
in (Franke et al., 2009a,b). As defined there, the static
pressure and the static specific enthalpy are used as key
connector variables. Given the introduction to section 2.2
we instead opt for using the corresponding total quantities

The Jet Propulsion Library: Modeling and simulation of aircraft engines

912 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132909

Figure 1. Thermodynamic property functions: Static and total
state records plus functions acting on total state records to the
left and function acting on static state records to the right

on the connectors. Otherwise, the connector is identical
to the well-established and widely adopted fluid connec-
tors. The fluid connector carries flow and thermodynamic
state information such as pressure, mass flow rate, specific
enthalpy, and composition.

connector FluidPort "Fluid connector"
replaceable package Medium =

GasWithCombustionProducts
annotation(choicesAllMatching=true);

AbsolutePressure p
"Total pressure";

flow MassFlowRate m_flow
"Mass flow rate into the

component";
stream SpecificEnthalpy h_outflow
"Total specific enthalpy of exiting

fluid";
stream MassFraction X_outflow[Medium.nS]
"Mass fractions of exiting fluid";

stream ExtraProperty C_outflow[Medium.nC]
"Properties c_i/m in the connection

point";
end FluidPort;

Note how the Modelica naming convention is used for
the variables on the fluid connector.

Unfortunately the connector is still not directly compat-
ible with libraries using the standard fluid connector (e.g.,
from Modelica.Fluid) due to the use of a different pack-
age structure for the computation of the thermodynamic
properties. Therefore, a simple adapter component was
required if connections were to be made to the high speed
gas flow path models; for all other interfaces standard con-

nectors are used (fuel flow supply, shaft interfaces etc.).

2.4 Simulation modes: On-design, off-design,
transient

Since the beginnings, jet engine performance computa-
tions have always considered two main computation prob-
lems, design point performance computation (also called
on-design performance computations) on one hand and
off-design performance computations on the other (Walsh
and Fletcher, 2004).

For the design point performance computation, one set
of operating conditions has to be imposed. Then, the com-
ponent performance levels and sizes are selected. Ad-
ditionally, top level requirements are implemented (e.g.,
based on cruise at altitude on an ISA day). The design
point performance computation then allows to compute
important cycle parameters, and to define a specific de-
sign. This includes a possibly abstract or estimated engine
geometry, based on the fidelity of the analysis. Techni-
cally, the output of such a design point performance com-
putation are however scaling parameters on component
level.

Given a specific engine design (figuratively in terms of
an estimated or abstract geometry, or, more technically, in
terms of a complete set of component scaling parameters
for a given engine topology), the off-design performance
computation then allows to estimate the performance at
other key operating conditions (different altitude, Mach
Number, day type and so on). Here geometry is fixed
and operating conditions are changing. While the liter-
ature typically describes off-design performance compu-
tation as steady-state analysis, this may as well involve
transient simulation.

In order to provide complete functionality in relation to
the established methods, these two kinds of computations
were also implemented in the Jet Propulsion Library. They
can be selected as “simulation modes”.

A closer look at the literature (e.g., (Walsh and Fletcher,
2004)) reveals that the notion of on-design computations
is not directly compatible with the rules of balanced mod-
eling in Modelica (Olsson et al., 2008). Typically, the by-
pass ratio or flow split is imposed on a three-way junction
or splitter model. Following the rules of balanced mod-
eling, such a component may however only impose both
downstream pressures or impose one downstream pres-
sure and the bypass ratio or a flow rate. In on-design
computations it is however required for the scaling proce-
dure to impose both downstream pressures and the bypass
ratio. Off-design computations in turn are basically the
computations classically done in the Modelica language.
Therefore, the corresponding simulation problems (be it in
steady-state or transient mode) are fully compatible with
the concept of balanced modeling.

As the constraints of balanced modeling are imposed
for very good reasons (for instance, to improve debug-
ging messages and ensure “plug and play” compatibility
when selecting specific implementations during system ar-

Session 11D: Aerospace

DOI
10.3384/ecp17132909

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

913

chitecting for a given placeholder) it was not an option on
the design of the Jet Propulsion Library to rely on locally
unbalanced models. Instead, it was decided to restrict the
use of on-design computations to initial time and initial
equations. Like this, initial equations are used to com-
pute corresponding values of the component parameters
that have a fixed attribute equal to false. Based on this de-
cision both on-design computations and off-design com-
putations are in scope of the Library, and its component
and system models always remain balanced.

2.5 Component models
With the exception in the connector definition described
in section 2.3, the Jet Propulsion Library fully follows the
variable naming convention suggested in ARP5571 (SAE,
2005).

2.5.1 Boundary conditions

The types of boundary condition models in the Jet Propul-
sion Library are similar to those in other thermo-fluid
dynamics libraries. Most fundamentally, we distinguish
boundary conditions imposing a given mass flow rate,
and boundary conditions imposing pressure (obviously all
boundary conditions also impose quantities transported by
convection). These two kinds of boundary conditions are
also required for modeling and simulation of jet engines.
However, the prescribed variables may now change from
on-design to off-design computations. To provide full
flexibility to the user, four different flags are exposed on a
boundary condition. These allow to switch on and off the
prescription of pressure and mass flow rate for on-design
and off-design models respectively. To improve ease-of-
use, these four flags are only exposed to the user in the
category of advanced component parameters; normally (in
simple boundary condition parameterization mode), the
user only decides whether the boundary condition is nom-
inally a source or a sink.

• A nominal source prescribes both pressure and flow
rate for on-design computations, and pressure for off-
design computations, and

• A nominal sink prescribes neither pressure nor flow
rate in on-design computation, and pressure in off-
design computation.

Figure 2 shows a simple model diagram with such
boundary condition instances. Color-coding is used to il-
lustrate whether a component includes over-constrained
initial equations (nominal source with green outline) or
under-constrained initial equations (nominal sink with
blue outline). As long as the number of blue components
is equal to the number of green components the system
model will be well-posed (actually, any system is well-
posed by construction, the color-coding still helps users to
double-check their model build-up). The color-coding is
also used on other components such as the splitter men-
tioned in section 2.4 already. Quantities imposed for on-

Figure 2. Single component experiment with two boundary con-
ditions (the vectorized bleed port at the top is unconnected and
has length zero)

design and off-design have the corresponding letter writ-
ten in opaque font on the boundary condition, quantities
that are either imposed for on-design or imposed for off-
design have their corresponding letter written in slightly
transparent font.

2.5.2 Compressor
The compressor model is one of the component models
that contains the scaling factors mentioned in section 2.4.
For the compressor on-design performance computation,
the user typically prescribes isentropic efficiency ηdes and
pressure ratio πdes at the design point. The corrected mass
flow rate wc,des is not imposed directly as a parameter on
the compressor model but on the system model as a whole,
and then computed from boundary conditions or inlet as
well as design bypass ratio BPRdes (the same holds for the
corrected speed Nc).

The overall compressor performance in terms of isen-
tropic efficiency η (or specific work) and pressure ratio
π is encoded in performance maps (Walsh and Fletcher,
2004). Based on a particular point in the performance map
that is marked as the design point, four scaling parameters
are then computed as described by (Jones, 2007).

• Is. efficiency scaling factor sη ,des =
ηdes

ηdes,unscaled

• Pressure ratio scaling factor sπ,des =
πdes−1

πunscaled−1

• Corrected flow scaling factor swc,des =
wc,des

wc,unscaled

• Corrected speed scaling factor sNc,des =
Nc,des

Nc,unscaled

Here, quantities with index unscaled indicate the value
in the original, unscaled performance map. Based on this
procedure, one compressor map with its design point can
be scaled to represent another compressor (as described by
the target design point as prescribed by the user). As long
as the design points are close enough, the scaling gives a
reasonable approximation of the compressor behavior.

As indicated above, the compressor model requires that
the off-design performance is captured in the format of

The Jet Propulsion Library: Modeling and simulation of aircraft engines

914 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132909

a performance map. The format of this performance
map has to be easy to handle in an computing environ-
ment (Walsh and Fletcher, 2004), and avoid vertical or
horizontal lines in the table look-up (Jones, 2007). For
this reason we use beta or R-line maps3. The method de-
scribed by (Jones, 2007) in more detail. Basically, the
performance maps relates the important thermodynamic
variables like corrected mass flow rate, pressure ratio, cor-
rected speed and the efficiency of the compressor. A com-
pressor performance map using R-lines is shown in fig-
ure 3. R-lines are family of curves that are parallel to the
surge line and evenly spaced among each other. The R-
lines ensure unique result in the regions of low corrected
air flow where pressure ratio is almost a constant and re-
gions of constant air flow towards the highest air flow re-
gion for a given speed line (avoiding table look-up along
vertical or horizonal tangents).

Figure 3. R-line based compressor map with speed lines (solid),
r-lines (solid), and efficiency contours (dashed)

Other methods to capture the compressor performance
characteristics are described in the literature. One exam-
ple is the Map Fitting Tool (MFT) method (Sethi et al.,
2013). While Jet Propulsion Library currently only im-
plements the R-line or beta line methodology, the object-
oriented structure allows for the convenient addition of
such additional map format in the future.

Once the key component performance variables were
read from the performance map, the component computa-
tions continue as known from other thermo-fluid dynamics
libraries.

The compressor model also has a mechanical connec-
tor through which it can receive shaft power (for instance
from the respective turbine models).

The compressor model (like all components in the Jet
Propulsion Library) support the modeling of secondary air
systems. For instance, bleed can be extracted from this
compressor model, routed through an arbitrary network,

3The notion of using an auxiliary coordinate has at least two different
names; beta lines (Walsh and Fletcher, 2004), and R-lines (Jones, 2007).

and be supplied for turbine film cooling or for so-called
customer purposes. A bleed mass flow rate through the
bleed ports can be specified via constant or variable bleed
mass flow fractions in the model. In order to capture the
stage at which the bleed air is extracted, parameter corre-
sponding to the relative bleed enthalphy and the pressure
as a fraction of inlet and outlet conditions are used.

2.5.3 Turbine

The turbines models are built very similar to the compres-
sor models based on the off-design turbine performance
map and a set of scaling factors. For the on-design per-
formance computation, the user typically prescribes isen-
tropic efficiency ηdes and (uncorrected) shaft speed N at
the design point. The pressure ratio πdes, the corrected
mass flow rate wc,des are again computed from boundary
conditions and the system model (the pressure ratios at the
design point are for instance solved for such that the power
balances per shaft are fulfilled).

The turbine performance map used is as shown in fig-
ure 4. Given pressure ratio and speed, corrected flow and
isentropic efficiency can be uniquely determined in a tur-
bine map. This eliminates the need for R-lines as dis-
cussed in the compressor section. The format is again
based on (Walsh and Fletcher, 2004; Jones, 2007). The
four scaling parameters then computed from the perfor-
mance map design point and the jet engine design point
are similar to the ones used for the compressor and de-
scribed in section 2.5.2.

Figure 4. Turbine map with speed lines (solid) and efficiency
contours (dashed)

Again, once the key performance variables were read
from the map, the component computations basically
continue as known from other thermo-fluid dynamics li-
braries. This means for instance that the turbine model
also has a mechanical port through which expansion
power is supplied to the compressor through shafts. As
indicated before, the turbine model optionally provides
bleed ports which can receive secondary cooling air from
compressor stages or other sources. The resulting power

Session 11D: Aerospace

DOI
10.3384/ecp17132909

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

915

from the bleed air flows can be accounted for considering
the tip velocity of the turbine blades.

2.5.4 Inlet
A critical part of the inlet models are parametric predic-
tions of the ram pressure recovery ηram and the spillage,
bleed, and bypass drag (expressed via the corresponding
drag coefficient Cd,install). These effects can be modeled
using the correlations suggested by Kowalski (Kowalski
and Atkins, 1979). These are available in two different
flavors; a long (and more accurate) form of computation
involving 14 tables, and a short form involving 2 com-
pressed tables. The dimensional drag force due to captur-
ing air Dram is eventually computed from

Dram = w · v (7)

where the ram pressure recovery ηram indirectly influences
mass flow rate. The drag force due to installation Dinstall
is

Dinstall = 1/2ρv2Cd,install (8)

The given references contains more details about the im-
plementation.

2.5.5 Nozzle
The ideal gross thrust Fg,ideal of a nozzle can readily be
computed from the following equation

Fg,ideal = w · v+
(

ps,exit − ps,amb
)

Aeexit (9)

Here, ps,exit and ps,amb are the static pressures at the nozzle
exit section and the ambient respectively. Again, the crui-
cial question for sound model-based design application is
how much of the ideal results are achievable. This can be
expressed via a number of correlations. One of the quan-
tities to use for this purpose is the nozzle exit gross thrust
coefficient CFg . This coefficient is also used by Kowal-
ski (Kowalski and Atkins, 1979). Beyond CFg correlations
to approximate gross thrust Fg, this methodology also es-
timates the aftbody drag coefficient Cd,ab. The former for
instance is computed based on pressure ratio and area ra-
tio. Two variations for an axisymmetric nozzle as well as
2-D nozzle exists. Eventually, the actual gross thrust can
be computed

Fg =CFgFg,ideal (10)

The nozzle model in the library contains replaceable mod-
els to compute the contributions individually. This com-
pletes the short overview of exemplary component mod-
els.

2.6 Interface and template structure
Based on these component models, different cycles can be
built up using an interface and template model structure.
Different kinds of cycles such turbo fan, turbo jet, geared
turbo fan, turbo prop or turbo shaft have been disassem-
bled virtually into reusable sub-system and sub-assembly
models. Based on the object-oriented interface and tem-
plate structure they can be plugged together in a highly

flexible and efficient manner. An unmixed turbo fan for
instance consists of the inlet section, fan and compres-
sors, the combustor, the turbines, and the primary and sec-
ondary nozzles. An exemplary break-down for such a two
spool unmixed turbo fan thus is

• Inlet section

– Inlet
– Inlet frame duct
– Inlet engine duct

• Fan and compressor

– Fan
– Splitter
– Low pressure compressor
– High pressure compressor
– Fan duct

• Combustor

– Diffuser duct
– Burner

• Turbine

– High pressure turbine
– Low pressure turbine

• Primary and secondary nozzle sections

– Exhaust frame duct and exhaust tailpipe duct,
or bypass exhaust frame duct

– Nozzle

Different to the state of the art described in section 1,
this approach uses hierarchy and object-orientation to
manage variants and system complexity. Previous art lays
all element out on a flat level. With this approach, we
can conveniently exchange inlet section models from reg-
ular inlets to inlets with inlet particle separator, based on
available map data one can conveniently switch between
average and split fan models (averaging the core and by-
pass fan flow, or modeling them via separate fan models
using different maps), number of spools, as well as de-
tailed section models for compressor and turbine sections
(stage representation, inclusion or removal of case strut
ducts, inlet guide vane ducts, transition ducts, exit guide
vane ducts and so on).

An example breakdown of a turbo fan engine is illus-
trated graphically in figure 5. This figure shows the actual
view presented to the user in the graphical user interface of
a Modelica Integrated Development Environment (IDE).

Each type of component in the break-down above is
represented through a class hierarchy of interfaces, tem-
plates, and implementations. The implementations use the
atomic components described in section 2.5.

The Jet Propulsion Library: Modeling and simulation of aircraft engines

916 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132909

Figure 5. Top-level turbofan model breakdown shown on the
top, compressor break-down on the lower left, high pressure
compression section break-down on the lower right

3 Application example and results
A complete jet engine model was built using the Jet
Propulsion Library of the Pratt & Whitney JT9D. It was
created by configuring the two spool unmixed turbo fan
template model. Each component starting from inlets,
fans, compressors, turbines etc. is redeclared with param-
eterized models. The respective performance maps are
adapted from the open source distribution of the Toolbox
for the Modeling and Analysis of Thermodynamic Sys-
tems (T-MATS) as described by (Chapman et al., 2014).

Table 1 provides key cycle parameters at the design
point. These parameters are approximate but consistent
with the given source.

Table 1. Cycle design point parameters.

Parameter Value

Design point Sea level static
Day conditions ISA+15 ◦C
Inlet flow 698 kgs−1

Bypass ratio 5.2751
Turbine inlet temperature 1260 ◦C
Net thrust 223 kN

Figures 6, 7, and 8 show the compressor performance
maps. Following the principles described in section 2.5.2,
these maps are scaled based on the component design
point data given in tables 2, 3, and 4.

Table 2. Fan design point parameters.

Parameter Value

Efficiency 90.38 %
Pressure ratio 1.60306

Table 3. Low pressure compressor design point parameters.

Parameter Value

Efficiency 86.575 %
Pressure ratio 2.25

Table 4. High pressure compressor design point parameters.

Parameter Value

Efficiency 86.2469 %
Pressure ratio 5.67905

Figure 6. JT9D fan compressor map

Figure 7. JT9D low pressure compressor map

Session 11D: Aerospace

DOI
10.3384/ecp17132909

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

917

Figures 9 and 10 in turn show the turbine performance
maps. These maps are scaled based on the component de-
sign point data given in tables 5 and 6.

Table 5. High pressure turbine design point parameters.

Parameter Value

Efficiency 91.445 %
Shaft speed 8000 /min

Table 6. Low pressure turbine design point parameters.

Parameter Value

Efficiency 92.88 %
Shaft speed 3750 /min

In the following, exemplary simulation results are pro-
vided. For this purpose, two boundary conditions are im-
posed on this model, the aircraft Mach number and the
fuel flow rate. The design point simulation runs for a
sea-level static case. Basic sanity check results show a
reasonably good match of the sea level static thrust and
specific fuel consumption produced by the engine model
with published data (Saarlas, 2007). Then, the boundary
condition parameters are varied for off-design simulation.
The model was simulated to conduct a full factorial exper-
iment for inputs of inlet Mach numbers (0.5, 0.7 and 0.9)
and fuel flow that varied ±50% from the nominal value in
steps of 5%. The results of this full factorial experiment is
summarized in the two figures below.

Figure 11 plots the relationship between the low pres-
sure spool speed NL and thrust for different Mach num-
bers. The thrust is divided by δ = pt/pt,re f , the normal-
ized inlet total pressure. The low pressure spool speed is
divided by the square root of θ = Tt/Tt,re f , the normalized
inlet total temperature. These corrections are routinely
done to normalize the data (Walsh and Fletcher, 2004).
Higher Mach Numbers show lower corrected thrust due to
the inlet ram drag.

The corrected thrust specific fuel consumption trends
are shown in figure 12. Both plots are qualitatively very
similar to the charts given in the relevant literature such
as (Walsh and Fletcher, 2004; Saarlas, 2007). Illustrative
results of the transient simulation mode will be given in a
separate reference.

4 Conclusions
The Jet Propulsion Library provides a foundation for mod-
eling and simulation of jet engines, and the model-based
design of integrated aircraft system designs. It contains
fully models for sizing and performance computations,
and has a number of advantages over existing domain-
specific solutions due to the use of the Modelica language.

Figure 8. JT9D high pressure compressor map

Figure 9. JT9D high pressure turbine map

Figure 10. JT9D low pressure turbine map

The Jet Propulsion Library: Modeling and simulation of aircraft engines

918 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132909

Figure 11. JT9D corrected thrust vs. corrected low pressure
spool speed

Figure 12. JT9D corrected thrust specific fuel consumption vs.
corrected thrust

5 Acknowledgements
We acknowledge the contributions of Shashank Swami-
nathan who contributed to the interface and template struc-
ture described in section 2.6 as summer intern at Modelon,
Inc in 2016.

References
A Alexiou and K Mathioudakis. Development of gas turbine per-

formance models using a generic simulation tool. In ASME
Turbo Expo 2005: Power for Land, Sea, and Air, pages 185–
194. American Society of Mechanical Engineers, 2005.

Arjun Bala, Vishal Sethi, E Lo Gatto, Vassilios Pachidis, and
Pericles Pilidis. ProosisŮa collaborative venture for gas tur-
bine performance simulation using an object oriented pro-
gramming schema. In International Symposium on Air
Breathing Engines, 2007.

F. Casella, M. Otter, K. Proelss, C. Richter, and H. Tummescheit.
The modelica fluid and media library for modeling of incom-
pressible and compressible thermo-fluid pipe networks. In
Proceedings of the Fifth International Modelica Conference,
pages 631–640, 2006.

Jeffryes W Chapman, Thomas M Lavelle, Ryan May, Jonathan S
Litt, and Ten-Huei Guo. Propulsion system simulation us-
ing the toolbox for the modeling and analysis of thermody-
namic systems (t mats). In 50th AIAA/ASME/SAE/ASEE Joint
Propulsion Conference, 2014.

Hilding Elmqvist, Hubertus Tummescheit, and Martin Otter.
Object-oriented modeling of thermo-fluid systems. In Peter
Fritzson, editor, Proceedings of the Third International Mod-
elica Conference, pages 269–286, Linköping, Sweden, 2003.

Rüdiger Franke, Francesco Casella, Martin Otter, Michael
Sielemann, Sven-Erik Mattson, Hans Olsson, and Hilding
Elmqvist. Stream connectors—an extension of Modelica for
device-oriented modeling of convective transport phenom-
ena. In Francesco Casella, editor, Proceedings of the seventh
International Modelica conference, pages 108–121, Como,
September 2009a.

Rüdiger Franke, Francesco Casella, Michael Sielemann, Ka-
trin Proelss, Martin Otter, and Michael Wetter. Standard-
ization of thermo-fluid modeling in Modelica.Fluid. In
Francesco Casella, editor, Proceedings of the seventh Interna-
tional Modelica conference, pages 122–131, Como, Septem-
ber 2009b.

Scott M Jones. An introduction to thermodynamic performance
analysis of aircraft gas turbine engine cycles using the nu-
merical propulsion system simulation code. Technical Report
TM—2007-214690, NASA, March 2007.

Scott M Jones. Steady-state modeling of gas turbine engines
using the numerical propulsion system simulation code. In
ASME Turbo Expo 2010: Power for Land, Sea, and Air,
pages 89–116. American Society of Mechanical Engineers,
June 2010.

Edward J. Kowalski and Robert A. Atkins, Jr. A computer code
for estimating installed performance of aircraft gas turbine

Session 11D: Aerospace

DOI
10.3384/ecp17132909

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

919

engines. Technical report, National Aeronautics and Space
Administration, 1979.

Joachim Kurzke. Advanced user-friendly gas turbine perfor-
mance calculations on a personal computer. In ASME 1995
International Gas Turbine and Aeroengine Congress and Ex-
position. American Society of Mechanical Engineers, June
1995.

Joachim Kurzke. About simplifications in gas turbine perfor-
mance calculations. In Proceedings of the ASME Turbo Expo,
volume 3, pages 14–17, May 2007.

Konstantinos G Kyprianidis, Ramon F Colmenares Quintero,
Daniele S Pascovici, Stephen OT Ogaji, Pericles Pilidis, and
Anestis I Kalfas. Eva: A tool for environmental assessment of
novel propulsion cycles. In ASME Turbo Expo 2008: Power
for Land, Sea, and Air, pages 547–556. American Society of
Mechanical Engineers, 2008.

Konstantinos G Kyprianidis, Andrew M Rolt, and Tomas Grön-
stedt. Multidisciplinary analysis of a geared fan intercooled
core aero-engine. Journal of Engineering for Gas Turbines
and Power, 136(1):011203, 2014.

Linda Larsson, Tomas Grönstedt, and Konstantinos G Kypriani-
dis. Conceptual design and mission analysis for a geared tur-
bofan and an open rotor configuration. In ASME 2011 Turbo
Expo: Turbine Technical Conference and Exposition, pages
359–370. American Society of Mechanical Engineers, 2011.

John K Lytle. The numerical propulsion system simulation: A
multidisciplinary design system for aerospace vehicles. In In-
ternational Symposium on Air Breathing Engines, September
1999.

Lester Nichols and Christos Chamis. Numerical propulsion
system simulation-an interdisciplinary approach. In Confer-
ence on Advanced Space Exploration Initiative Technologies,
September 1991.

Hans Olsson, Martin Otter, Sven Erik Mattsson, and Hilding
Elmqvist. Balanced models in modelica 3.0 for increased
model quality. In Proceedings of the 6th International Mod-
elica Conference, 2008.

Michael John Provost. The more electric aero-engine: a general
overview from an engine manufacturer. In Power Electron-
ics, Machines and Drives, 2002. International Conference on,
number 487, pages 246–251. IEEE, 2002.

Maido Saarlas. Aircraft performance. John Wiley & Sons, 2007.

S-15 Gas Turbine Perf Simulation Nomenclature and Interfaces
Committee of SAE. Application programming interface re-
quirements for the presentation of gas turbine engine perfor-
mance on digital computers (ARP4868). Technical report,
Society of Automotive Engineers, 2001.

S-15 Gas Turbine Perf Simulation Nomenclature and Interfaces
Committee of SAE. Gas turbine engine performance presen-
tation and nomenclature for digital computers using object-
oriented programming (ARP5571). Technical report, Society
of Automotive Engineers, 2005.

Vishal Sethi. Advanced performance simulation of gas turbine
components and fluid thermodynamic properties. PhD thesis,
Cranfield University, April 2008.

Vishal Sethi, Georgios Doulgeris, Pericles Pilidis, Alex Nind,
Marc Doussinault, Pedro Cobas, and Almudena Rueda. The
map fitting tool methodology: Gas turbine compressor off-
design performance modeling. In Journal of Turbomachin-
ery. American Society of Mechanical Engineers, September
2013.

Philip P Walsh and Paul Fletcher. Gas turbine performance.
John Wiley & Sons, 2004.

Michael Winter. A view into the next generation of commercial
aviation (2025 timeframe). In AIAA Aerospace Today and
Tomorrow, 2013.

The Jet Propulsion Library: Modeling and simulation of aircraft engines

920 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132909

Virtual flight testing of a controller for gust load alleviation using
FMI for cosimulation

Reiko Müller1 Markus Ritter2

1DLR, Institute of System Dynamics and Control, Oberpfaffenhofen, Germany, reiko.mueller@dlr.de
2DLR, Institute of Aeroelasticity, Göttingen, Germany, markus.ritter@dlr.de

Abstract
During aircraft design and certification, one of the most
vital development tasks is the calculation of loads and
stresses, subsequent structural sizing and iterative mutual
adaptation with respect to the aircraft’s systems. In an ef-
fort to build up a so called virtual flight testing capabil-
ity in the DLR-wide project Digital-X (2012 - 2016), a
simulation of a flexible aircraft model coupled with CFD
based aerodynamics and a flight control system with in-
cluded Gust Load Alleviation (GLA) was developed and
subjected to a certification relevant gust encounter sce-
nario. Due to the diversity of modeling and simulation
tools present in the DLR, the Functional Mockup Inter-
face (FMI) 2.0 model interfacing standard has been suc-
cessfully employed to cosimulate the control system in-
side the enclosing simulation framework. Keywords: Vir-
tual flight testing, Gust load alleviation, Flight control,
FMI, Cosimulation

1 Introduction
An aircraft’s flight envelope expresses the admissible re-
gion of flight depending on the current state (e.g. variables
like angle of attack, Mach number and altitude), with upon
exceeding, the aircraft will no longer be flyable (high/low
speed stalling, buffeting). In analogy to this, the loads
envelope specifies the corresponding limits which the air-
craft structure can handle. With the advent of electronic
flight control systems, an appropriate means for regulat-
ing loads automatically was found and is used to limit the
maximum design loads to increase flight safety, as well
as the ones due to maneuvering or environmental distur-
bances like gusts. The benefits are manifold, as for exam-
ple structural stress and fatigue is reduced on the airframe,
passenger comfort is increased and overall aircraft perfor-
mance can be improved by structural design optimization.

In the following contribution, a novel application for
loads analysis is introduced, combining hitherto discon-
nected simulation steps and forming a high - fidelity "vir-
tual flight testing" - capability. In detail, an aircraft is
discretized as Finite Element Method (FEM) - model,
with the element’s elastic motion solved by methods from
Computational Structural Mechanics (CSM). The forces
and moments acting on the airframe due to aerodynam-

ics are calculated from the conservation laws of mass,
momentum, and energy. These have no closed form an-
alytical solution and can only be solved by employing
numerical methods from Computational Fluid Dynamics
(CFD). The Python - based software framework FlowSim-
ulator (Meinel and Einarsson, 2010) and CFD solver TAU
(Schwamborn et al., 2006) were developed and utilized in
the Digital-X project for multidisciplinary simulation of
transport aircraft with aerodynamics calculated by CFD
(Kroll et al., 2016). A Modelica - based flight control sys-
tem with added gust load alleviation functionality had to
be integrated in the FlowSimulator setup to conduct the
virtual flight tests by means of cosimulation using the FMI
2.0 - standard (Mod, 2014). The principal layout of this
approach is shown in figure 1. It benefits from the ad-

Aircraft
model

∫ ti+1
ti dt

Flight
control

FMI

fmi2DoStep

f
m
i
2
S
e
t

f
m
i
2
G
e
t

~ufeedback

~ureference~pext

~ucontrol

Figure 1. Integration loop of the controller using FMI for cosim-
ulation to conduct virtual flight tests. ~ureference contains con-
troller reference values e.g. from a Flight Management System
(FMS). As well, the aircraft model can depend on external pa-
rameters and inputs ~pext that are not part of the cosimulation
loop.

vantages of FMI, that are the time-savings due to omis-
sion of user-driven API development, interoperability for
various tools and efficient simulation and event/error han-
dling. Due to the large amount of simulations necessary
for design and tuning of the controller to a specific test
case, a second model based on a faster executing approx-
imative method was established using the loads analysis
software Varloads (Hofstee et al., 2003). The application
scenario is an encounter of a frontal vertical gust, with the
control objective of reducing the vertical accelerations and
loads on the structure.

The paper is structured as follows: In section 2, the gov-
erning equations of motion and the elastic deformation of
the aircraft are discussed. The two aerodynamic models
necessary for the controller synthesis as well as the high

DOI
10.3384/ecp17132921

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

921

fidelity simulation are derived in 2.1. The controller is
laid out in section 3, including the design in Modelica and
the gust load alleviation functionality in sections 3.1 and
3.3, along with the integration in the cosimulation setup in
section 3.4. Section 4 discusses the application to the gust
encounter scenario, while conclusions and an outlook for
future work are given in the final section 5.

2 Aircraft modeling
The motion of an aircraft through the air can be described
in different levels of detail. The simplest notion is of
a point on which the aircraft mass is concentrated, that
translates due to external forces and the weight, given by
the dynamic equilibrium of forces (d’Alembert principle).
When taking into account distributed masses and the ro-
tational movement of the aircraft, one arrives at the rigid-
body equations of motion, yielding six degrees of free-
dom. These are defined in aircraft mean body axes with
respect to a ground-fixed inertial Cartesian coordinate sys-
tem on a local tangent plane (flat earth assumption) with
uniform gravity, also known as the Newton-Euler equa-
tions (1): [

Mbb

(
~̇Vb +~ωb×~Vb

)
Ibb~̇ωb +~ωb× (Ibb~ωb)

]
= TT

rbΦ
T
gr
~Pext

g (1)

with
Mbb Mass matrix
Ibb Inertia tensor

~Vb = [uvw]T Body-fixed velocity vector
~ωb = [pqr]T Rotational velocity vector w.r.t. body

fixed system
Trb Transformation of Center of Gravity

(CG) to grid reference point

In (Waszak and Schmidt, 1988) the equations of motion
of the elastic aircraft are derived using the mean axis con-
ditions. These are fulfilled easily by using mode shapes
(eigenvectors) of an unconstrained (free-free) structural
model and ensure that the rigid body equations (1), and
the linear elastic equations of structural mechanics in a
modally reduced form (2), are inertially decoupled.

Φ
T
g f MggΦg f~̈u f +Φ

T
g f BggΦg f~̇u f

+Φ
T
g f KggΦg f~u f = Φ

T
g f
~Pext

g
(2)

with
Φgr Modal matrix rigid body modes
Φg f Modal matrix of flexible modes
~Pext

g Vector of external forces to structural grid points
Mgg Physical mass matrix
Bgg Damping matrix
Kgg Stiffness matrix
~u f Generalized coordinates of elastic modes

Hence equations (1) and (2) are only coupled by means
of the external forces ~Pext

g , which in the end allows that

Figure 2. Digital-X XRF-1 CFD computation mesh with control
surfaces and exemplary deflection of the horizontal tail plane
control surface of 5 degrees on top. A blending technique was
used to obtain a smooth transition at the boundaries of the ele-
vators, which are the only control surfaces used during the gust
encounter cosimulation.

both the large nonlinear motions of a maneuver, and the
small linear perturbation introduced by the flexible struc-
ture, be taken into account.

2.1 Aerodynamic models

The aerodynamic forces included in ~Pext
g are derived

from the conservation laws for mass, momentum and en-
ergy. While the continuity equation depicts the mass flow
through a control volume in the airflow, the Navier-Stokes
equations describe the equilibrium of forces, taking into
account viscosity, volume forces (e.g. due to gravity) and
the momentum flow through the volume. Compressibil-
ity of the flow field requires the introduction of the en-
ergy equations, formulating the equilibrium between en-
ergy flow through the volume, energy produced due to the
forces and moments, external energy contributions and in-
ner and kinetic energy of the medium.

In combination, these form an equation system to cal-
culate the forces / the pressure distribution on the aircraft’s
surface, for which however no closed form analytical solu-
tion exists. Numerical methods to solve this kind of prob-
lems are grouped under the term of Computational Fluid
Dynamics (CFD), with DLR’s TAU code being a compre-
hensive software environment for this task and therefore
an obvious choice as CFD - solver for the FlowSimulator

Virtual flight testing of a controller for gust load alleviation using FMI for cosimulation

922 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132921

framework (see description of the simulation setup in 3.4).
Due to the nature of turbulent flow, changes can happen on
a very small scale, which is why the computational grid for
numerically solving the Navier-Stokes equations also may
need a very fine resolution locally, to include all turbulent
phenomena. As can be seen in figure 2, a higher grid den-
sity has been applied especially at geometry changes or
regions of expected turbulence.

The complex grids in turn cause a large increase in com-
putation time for calculation of the aerodynamic forces
and moments, while during controller and aircraft design,
quite often thousands of simulation runs are performed,
e.g. to iteratively tune controller gains or to investigate air-
craft response to stresses dependent on multidimensional
parameter spaces. Due to their high demand on compu-
tational power, the Navier-Stokes equations are generally
not viable for these kind of tasks and have to be simpli-
fied. A first step is to solve only for the unknowns that
are most relevant to those applications, e.g. the pressure
distribution on the object’s surface.

Figure 3. Aircraft aerodynamic model composed of lift sur-
faces, for use in the Vortex Lattice Method (VLM) or Doublet
Lattice Method (DLM), generated by VarLoads. Blue panels
belong to the aircraft body, purple ones to the control surfaces.

In the beginning of the 20th century, Prandtl found that
for flows at higher Reynolds numbers Re > 105, the effect
of viscosity is approximatively limited to a thin bound-
ary layer encompassing the object’s body. Consequently,
the flow beyond the boundary layer can be considered as
inviscid and importantly, the pressure gradient through it
normal to the surface as zero (∂ p

∂ z ≈ 0). In order to ob-
tain the pressure distribution on the object’s surface, it is
therefore sufficient to calculate it in the inviscid flow just
outside of the boundary layer using the inviscid Navier-
Stokes or Euler equations. The assumption of isentropic
(no energy contribution/drain) and irrotational flow allows
to define a velocity potential function

~v = grad Φ =
[
u,v,w

]
=
[

∂Φ

∂x ,
∂Φ

∂y ,
∂Φ

∂ z

]
(3)

which is inserted into the Euler equations. These can

then be linearized around ~v, with the disturbance veloci-
ties

[
u′,v′,w′

]

~v =

u∞

0
0

+
u′

v′

w′

=

u∞ + ∂ϕ

∂x
∂ϕ

∂y
∂ϕ

∂ z

 (4)

to arrive at the unsteady Prandtl-Glauert equation:

(1−Ma2)
∂ 2ϕ

∂x2 +
∂ 2ϕ

∂y2 +
∂ 2ϕ

∂ z2 −
2U
a2

∂ 2ϕ

∂x∂ t
− 1

a2
∂ 2ϕ

∂ t2 = 0

(5)
When neglecting the time-dependent terms, the linear sec-
ond order Laplace equation for the Vortex Lattice Method
(VLM) (Hedman, 1966) is obtained:

(1−Ma2)
∂ 2ϕ

∂x2 +
∂ 2ϕ

∂y2 +
∂ 2ϕ

∂ z2 = 0. (6)

This method calculates a matrix of Aerodynamic Influ-
ence Coefficients (AIC) based on (6) to model lift dis-
tributed on an approximation of the aircraft consisting of
several lift surfaces as shown in figure 3. The unsteady
counterpart (in the frequency domain) for solving (5) is the
Doublet Lattice Method (DLM). External aerodynamic
and propulsive forces are added to the inertial forces by
means of the Force Summation method to calculate resul-
tant forces and moments on the aircraft. The loads anal-
ysis software VarLoads, which was jointly developed by
Airbus and DLR (Hofstee et al., 2003), implements all of
these modeling and simulation paradigms and was used
to prepare the model with simplified aerodynamics for the
controller synthesis.

3 Controller design and integration

The Flight Control System (FCS) or short "controller",
follows the classical cascaded design layout that is well
studied in both theory and practice (see e.g. (Brockhaus
et al., 2011)). This layout is based upon the fact that the
aircraft’s equations of motion can be separated into parts
that play a role on different timescales (timescale sepa-
ration principle). For example, the body-fixed rotational
rates [p q r]B as fast states are directly linked to the deflec-
tion of the control surfaces and resulting moments. On the
other hand, states referring to orientation and even more
position have a slower progression. This allows to dis-
sect the flight control system into smaller parts, as shown
in figure 4: The inner loop or Stability and Control Aug-
mentation (SCA) - block can be designed to stabilize the
aircraft and to dampen the dynamic aircraft modes (e.g.
phugoid, dutch roll - modes). The autopilot in turn gen-
erates a reference orientation for the modified plant of
the aircraft stabilized by the inner loop. It is designed to
achieve a high tracking precision for the desired trajectory
variables. The additional Gust Load Alleviation (GLA) is

Session 11D: Aerospace

DOI
10.3384/ecp17132921

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

923

arranged at the level of the SCA, since it is assumed here
that the gusts cannot be sensed ahead of the aircraft (e.g.
by LIDAR like in Hecker and Hahn (2007)) and necessi-
tate fast reactions of the controller / the control surfaces.

FMS Autopilot
SCA +
GLA

6-DoF
rigid body

ϕref,λref,href,

Ψref, . . .

αc,βc,µc,

V̇c, . . .

δA,δE ,δR,

δT ,δκ ,δgear

Figure 4. Structure of an electronic flight control system, con-
sisting of the FMS and the FCS with autopilot and inner loop
SCA. The framed blocks are the considered parts in this work.

As the scenario only considers a frontal vertical gust en-
counter, the GLA operates on the longitudinal dynamics,
and can symmetrically deflect ailerons and elevators to at-
tenuate the gust. Discrimination between inner and outer
ailerons and elevators as well as distributed spoilers are
incorporated in the GLA - layout, but only uniform and
symmetric deflections of likewise δA and δE act as inputs.
No actuator dynamics are modeled, due to their absence in
the aircraft model of the cosimulation. Acceleration mea-
surements are available at the Center of Gravity (CG) and
form the single feedback variable:

nz,m =
Lift

Weight
=

VK γ̇

g · cos(Φ)
+ cos(γ) (7)

with load factor nz,m, kinematic velocity VK , trajectory
pitch angle γ and roll angle Φ. The load factor is fed
into the parameterized GLA filter structure which gener-
ates control surface deflection commands, for the elevator
δ

g
E with a filter structure containing e.g. a tunable time-

constant. These are then super-positioned to the com-
mands of the flight controller:

δi = δ
c
i +δ

g
i , i ∈ [A,E]. (8)

Hence the autopilot and inner loop also contribute to the
load alleviation due to the gust, by acting to hold altitude
and speed.

3.1 Controller model in Modelica

The resulting Flight Control System (FCS) was imple-
mented in Modelica using Dymola 2016, and is shown in
figure 5. The Modelica Standard - and LinearSystems -
libraries provide all of the needed models, with which a
flight control library had been established. It consists of
modules arranged in longitudinal, lateral, inner and outer
loop controllers and is also prepared for use in conjunc-
tion with DLR’s FlightDynamics library (Looye, 2008).
The Dymola simulation tool makes use of the object ori-
ented features of Modelica, allowing easy testing and in-
terchange of different modules and furthermore offers an
implementation of the FMI standard.

In the diagram view depicted in figure 5, the middle
left and the lower center grey rectangular blocks represent

the FCS and the GLA respectively. The FCS consists of
four channels for the four individual control effectors of
the airplane (throttle, elevator, aileron and rudder). The
autopilot modes are set to speed -, altitude - and course
- hold, while the commanded sideslip angle βc is zero.
The inner loop receives orientation commands from the
autopilot and calculates corresponding rates and control
surface deflections. Each of the channels includes a set of
several cascaded linear controllers. To ensure robustness
over the flight envelope, multiple gust - and load - cases,
a robust controller synthesis process would normally be
appropriate. However, since only one gust encounter case
is considered in this study, a simple tuning of the controller
gains has been performed to minimize the effect on the
wing root bending moment (see section 3.3).

Figure 5. Modelica model of the longitudinal controller with
gust load alleviation.

3.2 Initialization of the FMU
Each of the four channel’s inner loops mentioned in the
last section contain either integrator or derivative blocks
with internal states that have to be initialized correctly to
avoid transient oscillations in the beginning of the simu-
lation. Furthermore the cosimulation must be compatible
with both aircraft models and their respective trim algo-
rithms. The given variables of the initialization process are
the reference inputs~ureference and feedback inputs~ufeedback
from the aircraft, while the unknowns are the FMU out-
puts ~ucontrol (see figure 1). Hence a two-step initialization
of the closed-loop simulation setup is performed:

• At first, the aircraft is trimmed separately for steady
horizontal flight at a given speed and altitude (see ta-
ble 1 for a set of characteristic state values), without
the controller. This yields values for e.g. α and Θ

and also for elevator deflection δE and throttle δT
1.

1The initial values of the lateral effectors δA and δR are zero.

Virtual flight testing of a controller for gust load alleviation using FMI for cosimulation

924 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132921

• In the second step, the Functional Mockup Unit
(FMU) outputs need to be set to the aircraft control
input values (~ucontrol) obtained in step 1. Yet due
to FMI design, which prevents variables with out-
put causality from the assignment of any value, addi-
tional trim parameters have to be defined.

Table 1. Trim values for aircraft model used for controller syn-
thesis

Property Unit Value

Mach number - 0.83
Altitude ft 35000
Reference velocity m/s 246.1
Aircraft mass kg 198540
Angle of attack ◦ 4.55
Gust gradient H m 85.9
Gust velocity in z - direction m/s −4.296

−+ kΘ GRC −+ kp

I ki

+
+

Θc

Θ

q

∆Θ Θ̇

Φ,V

qc ∆q q̇c

Figure 6. Inner loop pitch channel, with pitch angle Θ, pitch
rate q and GRC as transfer function containing the correction for
turning flight (increase in pitch due to rotated lift vector).

This second step is further explained using the example of
the inner loop pitch channel shown in figure 6: With given
δE,trim and Θtrim, the single degree of freedom is the initial
state value of the integrator. The trim pitch angle is added
to the autopilot command

Θc = ∆ΘAP +Θtrim, (9)

where ∆ΘAP is zero here due to initial h = hc. Likewise
the elevator command consists of

δE = q̇c +δE,trim +δE,GLA. (10)

With the constraint of steady state integrator initialization
(ẋint = 0), and similar provisions for the velocity channel,
the initial equation of the controller model has to be speci-
fied as shown in listing 1. By calling the initialize()
- method of the FMU, the controller can then match the
preceding aircraft trim.

Listing 1. Initial equation of the controller model

i n i t i a l equat ion
c o n t r o l l e r L o n g i t u d i n a l . y [1] = t r im_de_T ;
c o n t r o l l e r L o n g i t u d i n a l . y [2] = t r im_de_E ;

3.3 Synthesis of the GLA controller

The controller and GLA gains were adapted to the gust en-
counter scenario using the fast executing simplified model
of section 2. The single objective of this process was the
minimization of the bending moment around the aircraft’s
longitudinal x - axis (see figure 2) at the wing root station,
Mx. In contrast to the high-fidelity simulation, both the
elevators and the ailerons were actuated by the GLA. Fig-
ure 7 compares three gust encounters, one open loop, one
with flight controller only, and one combined with addi-
tional GLA. The undisturbed case is added for reference
and shows the bending moment at the trim condition.

The control objective is to reduce the initial maximum
amplitudes of Mx. This is satisfied by the FCS and the
GLA as expected, with the most notable difference in
the second peak at t ≈ 0.7 s. Due to several filter time-
constants, the GLA does not act against the first falling
peak, which is why the controller - and GLA - variants
reduce the moment about the same amount. At the sec-
ond rising gust peak, the GLA is able to reduce the mo-
ment around 45 %, however the GLA inputs generate an
increased preceding moment. Using this highest GLA -
peak, the reduction over the open loop case is still as large
as 39 % with the steady trim moment value as baseline.

Controller + GLA

Controller

Open loop

No gust

M
x
[N

m
]

t[s]

0 1 2 3 4 5 6

×106

4.5

5

5.5

6

6.5

Figure 7. Wing-root bending moment for uncontrolled and two
controlled gust encounter simulations.

3.4 Integration in simulation environment

The FlowSimulator framework allows to specify, integrate
and simulate all sub-models necessary for the controlled
coupled CSM - CFD application. A special FlowSimula-
tor - plugin called FSDynafly has been developed at DLR’s
Institute of Aeroelasticity to model the process chain for
the controlled cosimulation, see figure 8.

After initialization, the governing equations of motion
of the free-flying elastic aircraft (equations (1) and (2))
are solved by FSDynafly for the current time step. Their
outputs and the command references are passed on to the

Session 11D: Aerospace

DOI
10.3384/ecp17132921

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

925

Solve coupled
6-DoF and
structural

EOM
ẋ = f (ẋ,x)

Controller:
Calculate
thrust and

control surface
actuation

FMU

TAU: Motion module update

ua = H us
CFD mesh
deformation

fs = HT fa

TAU:
Calculate
aerody-
namic
forces

Figure 8. Time domain solution process of FSDynafly_6DOF
including the flight controller.

FMU to form the control error. The deflection commands
calculated by the FMU are mapped onto the structural grid
at the respective control surface positions, yielding modal
deformations us. An unstructured mesh has been built for
the Digital-X XRF-1 configuration using the meshing soft-
ware CENTAUR, with the control surfaces being cut into
the CAD geometry based on locations provided by Air-
bus. Each control surface thus has a separate boundary
marker in order to be deflected properly in the unsteady
gust encounter simulation. As the structural grid does not
coincide with the aerodynamic one, the deformations are
multiplied with the splining matrix H, which is built from
Radial Basis Functions (RBFs). It is then morphed ac-
cording to the deformations ua using the submodule FS-
Deformation, as is shown in figure 2 with the example of
the Horizontal Tail Plane (HTP) - deflection. In parallel,
another submodule of the CFD solver TAU calculates an
update of the aircraft motion, followed by the actual call
of TAU to solve for the new aerodynamic forces fa of the
next time step. To solve the equations of motion, these are
transformed back into forces fs relating to the structural
grid by multiplication with HT.

The controller interfaces to FSDynafly through the
Functional Mockup Interface (FMI), in the working prin-
ciple shown in figure 1. The FMI for cosimulation
methodology was adopted, since deployment as model ex-
change - type FMU would have been far more complicated
(e.g for integration and event handling). The complete
controller model shown in figure 5 is exported together
with the Sundials CVode ODE - solver compiled in a FMI
- compliant library (64-bit .so for UNIX - type target sim-
ulation environment). As the application and interfacing
layer of FSDynafly is written in Python, the DLR - de-
veloped Python FMI - API of PySimulator (Pfeiffer et al.,
2012) is used to address the FMU. Finally, a fixed-time
step master algorithm enables communication between the
two cosimulated models, a Python code representation is
given in listing 2.

Listing 2. Master algorithm for the cosimulation of aircraft with
the controller in Python (only the most relevant commands are
displayed).

Load t h e FMU
f c s = FMUInte r face . FMUInte r face (

" Cont ro l l e r_GLA . fmu ")
f c s . f m i I n s t a n t i a t e ()

Trim t h e a i r c r a f t
[x _ t r , u _ t r , d x _ t r] = a i r c r a f t . t r i m (

x0 , u0 , dx0 ,
ix , iu , i dx0)

S e t t h e t r i m p a r a m e t e r s i n t h e FMU . . .
. . . t o a c h i e v e u e q u a l t o u _ t r
f m u _ s e t R e a l _ i n V a l u e A n d R e f e r e n c e (

f c s , p a r s _ t r i m ,
[" t r im_de_T " , " t r im_de_E " ,

" t r im_de_A " , " t r im_de_R "] , u _ t r)
I n i t i a l i z e t h e FMU
f c s . i n i t i a l i z e ()
I n t e g r a t i o n loop
whi le a i r c r a f t O D E . s u c c e s s f u l ()

and s t a t u s == 0
and t <= s topTime :
S e t u t o u _ t r f o r t h e f i r s t . . .
. . . t i m e s t e p
i f t == t 0 :

u_ in = u _ t r
e l s e :

u_ in = u
E v a l u a t e a i r c r a f t r i g h t hand s i d e . . .
. . . and r e t r i e v e f e e d b a c k
der_x , o u t = a i r c r a f t O D E . f (
t , a i r c r a f t O D E . y , u_ in)
S e t c o n t r o l l e r r e f e r e n c e i n p u t s
f m u _ s e t R e a l _ i n V a l u e A n d R e f e r e n c e (

f c s , u _ r e f , [" h " , "V"] , u _ r e f . v a l)
S e t c o n t r o l l e r f e e d b a c k i n p u t s
f m u _ s e t R e a l _ i n V a l u e A n d R e f e r e n c e (

f c s , u_feedback ,
u _ f e e d b a c k . varNames , o u t)

I n t e g r a t e one s t e p f o r FMU
s t a t u s = f c s . d o _ s t e p (t , d t , True)
R e t r i e v e c o n t r o l l e r commands
u = fmu_ge tRea l_ f romValueAndRefe rence (

f c s , y_out , y_ou t . varNames)
S e t a i r c r a f t model i n p u t s
a i r c r a f t O D E . s e t _ f _ p a r a m s (u)
I n t e g r a t e one s t e p f o r a i r c r a f t
a i r c r a f t O D E . i n t e g r a t e (t + d t)
I n c r e m e n t t h e m as t e r t i m e
t = t + d t

End o f i n t e g r a t i o n

4 Vertical gust encounter simulation
As mentioned before, the only scenario covered in this
contribution is an encounter of a discrete vertical gust with
the assumption that all points in planes normal to the air-
craft’s velocity are affected (as defined in (Joint Aviation
Authorities, 1994)). The vertical velocity profile is shaped
according to equation (11)

wwind =
Uds

2

[
1− cos

(
V
H

π · t
)]

, (11)

and therefore denoted as "One-minus-cosine" - gust. The
parameters of this function are the design gust velocity
Uds, the gust gradient H, which is the distance parallel
to the aircraft’s flight path for the gust to reach its peak
velocity, and V · t as the distance traveled into the gust.

Virtual flight testing of a controller for gust load alleviation using FMI for cosimulation

926 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132921

Ctrl

Cosim

w
w

in
d
[m

/s
]

t [s]

0 0.2 0.4 0.6 0.8 1

0

1

2

3

4

5

Figure 9. One minus cosine gust definitions used for the com-
plete cosimulation and for the controller synthesis.

The gust parameters are slightly differing between the
high fidelity cosimulation and controller simulation as
shown in figure 9, similarly the angle of attack and HTP
trim values, see table 2. Furthermore, in the high fidelity
simulation results presented in the following, only the con-
trol surfaces of the horizontal tail plane were used as pri-
mary control surfaces to reduce the loads acting on the air-
frame. This was partly due to project time constraints and
availability of other control surface geometries like spoil-
ers and ailerons. The gains in overall load reduction can
therefore not be compared between the high- and lower fi-
delity models as of now, yet this was not the goal of this
specific application anyway.

Table 2. Trim values for high fidelity simulation, only values
differing from those in table 1 are listed.

Property Unit Value

Angle of attack ◦ 3.39
HTP trim angle ◦ 2.58
Gust gradient m 125
Gust velocity in z - direction m/s −5
Communication time stepsize s 0.01

Two gust encounter simulations are presented in the fol-
lowing, one without gust attenuation, and another one with
the flight controller in the loop. The results are shown
in figure 10 in terms of selected states measured in the
body fixed coordinate system with the pitch rate q, its time
derivative dq

dt , the velocity in the z - direction w and the ac-
celeration in the z - direction dw

dt .
As can be seen from the time function of the states plot-

ted, the actuation of the controller markedly reduces the
accelerations of the airframe’s center of gravity, thereby
reducing structural loads as well. A reduction of the heave
accelerations of more than 20% is achieved. This simu-
lation is a purely symmetric maneuver, meaning that no

t [s]

ẇ
[m

/s
2
]

q̇
[◦
/s

2
]

w
[m

/s
]

GLA onGLA offq
[◦
/s
]

0 2 4 6 8 10 12

−2

0

2

4

−2

0

2

−14

−12

−1

−0.5

0

0.5

Figure 10. Selected states of the aircraft as function of time,
showing a reduction of accelerations due to the gust load allevi-
ation.

distinctive lateral motions are excited during the gust en-
counter. Small but negligible lateral motions occur due to
non-negative values for Ixy , and Iyz of the tensor of inertia
of the aircraft. These entries can be attributed to the fact
that the mass model is not purely symmetric. The output
of the controller in terms of the time dependent rotation of
the horizontal tail plane’s control surface is shown in fig-
ure 11. The maximum deflection of the HTP is about 1.3◦.
This value is comparatively low, but the gust disturbance
velocity is small as well.

δ
H

T
P
[◦
]

t [s]

0 5 10 15

0

0.5

1

Figure 11. Controller output in terms of the rotation of the HTP
control surface.

Session 11D: Aerospace

DOI
10.3384/ecp17132921

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

927

5 Conclusion and outlook

In this contribution, a new methodology for loads analysis
and virtual flight testing of flight controllers is presented.
Usually disconnected simulation steps are combined into
a single process chain, including elastic structural aircraft
modeling, full Navier-Stokes aerodynamics and a flight
control system with gust load alleviation.

A flight controller with outer and inner loop, as well as
gust load alleviation system was set up in Modelica using
Dymola. It was tuned for a gust encounter scenario using a
Vortex Lattice Method (VLM) based aerodynamic model,
allowing the required large number of simulations during
controller synthesis. A final reduction of up to 45% in the
wing root bending moment was found there.

A setup for the cosimulation was developed in Python,
including a fixed-step master algorithm connecting the
simulation framework FSDynafly with the controller. By
employing the FMI standard to interface the controller,
dedicated API development for the dissimilar aircraft
models could be omitted. Furthermore the functionalities
of FMI for cosimulation allowed an easy setup and effi-
cient operation of the controlled high fidelity simulation.
Reductions in the vertical and the pitch accelerations of up
to 20 % were achieved, also consequentially leading to a
reduction in the structural loads.

After successfully completing this first proof of con-
cept, future work will be directed towards functionality
in larger simulation studies with multi-parameter or even
multi-model test cases and different scenarios (e.g. ma-
neuver loads, flight performance analysis). Ensuring the
robustness of the controller for the entire flight envelope
will be an important prerequisite for these applications,
and could be achieved by employing methods from robust
control design (e.g. H∞ or robust LPV control).

An immediate next step will be the addition of new con-
trol surfaces (ailerons and possibly spoilers) to the CFD
mesh, since currently the only means of controlling the
aircraft and the loads is the horizontal tail plane. Based on
the results of the simplified aerodynamics simulation, it is
expected that loads on the main wing can be further re-
duced by this approach. As well, it should be worthwhile
to incorporate additional design criteria in the controller
synthesis process. By treating it as a multi-objective opti-
mization problem, the investigation of trade offs between
e.g. load reduction, passenger comfort and flying qualities
is made possible.

6 Acknowledgments

This work was prepared during the course of DLR project
Digital-X. The authors would like to express their thanks
to the following colleagues for their support and input:
Martin Leitner, Hans-Dieter Joos, Andreas Pfeiffer and
Thiemo Kier.

References
Rudolf Brockhaus, Wolfgang Alles, and Robert Luckner.

Flugregelung. Springer, 2011. ISBN 9783642014437.
URL http://books.google.de/books?id=
2IKXH3skXBwC.

Simon Hecker and Klaus-Uwe Hahn. Advanced gust load alle-
viation system for large flexible aircraft. In Proceeding 1st
CEAS Konferenz, 2007.

Sven G Hedman. Vortex lattice method for calculation of quasi
steady state loadings on thin elastic wings in subsonic flow.
Technical report, DTIC Document, 1966.

Jeroen Hofstee, Thiemo Kier, Chiara Cerulli, and Gertjan
Looye. A variable, fully flexible dynamic response tool for
special investigations (VarLoads). In 2003 CEAS/AIAA/NVvL
International Forum on Aeroelasticity and Structural Dynam-
ics, 2003.

Joint Aviation Authorities. Joint aviation requirements. JAR-
25. Large aeroplanes. Civil Aviation Authority Printing &
Publication Services, Greville House, 37, 1994.

Norbert Kroll, Mohammad Abu-Zurayk, Diliana Dimitrov,
T Franz, Tanja Führer, Thomas Gerhold, Stefan Görtz, Ralf
Heinrich, Caslav Ilic, Jonas Jepsen, et al. DLR project
Digital-X: towards virtual aircraft design and flight testing
based on high-fidelity methods. CEAS Aeronautical Journal,
7(1):3–27, 2016.

Gertjan Looye. The new DLR flight dynamics library. In Pro-
ceedings of the 6th International Modelica Conference, vol-
ume 1, pages 193–202, 2008.

Michael Meinel and Gunnar O Einarsson. The FlowSimulator
framework for massively parallel CFD applications. PARA
2010, 2010.

Functional Mock-up Interface for Model Exchange and Co-
Simulation, Version 2.0. Modelica Association, July 2014.

Andreas Pfeiffer, Matthias Hellerer, Stefan Hartweg, Martin Ot-
ter, and Matthias Reiner. PySimulator-A Simulation and
Analysis Environment in Python with Plugin Infrastructure.
In Proceedings of the 9th International MODELICA Confer-
ence; September 3-5; 2012; Munich; Germany, pages 523–
536. Linköping University Electronic Press, 2012. 76.

Dieter Schwamborn, Thomas Gerhold, and Ralf Heinrich. The
DLR TAU-Code: recent applications in research and indus-
try. In ECCOMAS CFD 2006: Proceedings of the European
Conference on Computational Fluid Dynamics, Egmond aan
Zee, The Netherlands, September 5-8, 2006. Delft Univer-
sity of Technology; European Community on Computational
Methods in Applied Sciences (ECCOMAS), 2006.

Martin R Waszak and David K Schmidt. Flight dynamics of
aeroelastic vehicles. Journal of Aircraft, 25(6):563–571,
1988.

Virtual flight testing of a controller for gust load alleviation using FMI for cosimulation

928 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132921

The DLR Environment Library
for Multi-Disciplinary Aerospace Applications

Lâle Evrim Briese1 Andreas Klöckner1 Matthias Reiner1

1Institute of System Dynamics and Control, DLR German Aerospace Center, Oberpfaffenhofen, Germany,
Lale.Briese@dlr.de · Andreas.Kloeckner@dlr.de · Matthias.Reiner@dlr.de

Abstract
Environment models are vital elements for any type of
vehicle dynamics simulations, such as aircraft or satel-
lites. Recently, applications have been developed, where
these previously unrelated regimes of operation need to
be integrated, for example in end-to-end simulations of
launch vehicles. This paper therefore introduces the new
DLR Environment Library, which implements common
models of planets, geospheres, currents, kinematics, and
physical effects for such applications. It provides a set of
environment models with minimal dependencies, com-
plete compatibility to the Modelica Standard Library, and
convenient drag & drop usage. The DLR Environment
Library is expected to immensely aid developing end-
to-end simulation models integrating components from
DLR’s SpaceSystems and FlightDynamics Libraries. In
particular, it will importantly decrease modeling errors
due to its consistent environment models.

Keywords: environment modeling, gravitational models,
planet models, atmosphere models, kinematic state mod-
els, space mission simulation, multi-disciplinary modeling

1 Introduction
Modeling of environmental effects is highly relevant for
vehicle simulations, such as aircraft (Klöckner et al., 2013;
Looye, 2008), satellite (Reiner and Bals, 2014; Pulecchi
et al., 2006), or launch vehicle simulations (Acquatella,
2016). While these domains have mostly been treated
as independent in the past, latest developments point to-
wards even more integrated simulation needs. For in-
stance, reusable launchers will require accurate modeling
of aircraft-like and satellite-like flight phases. Especially,
combined multi-disciplinary simulations, including sev-
eral vehicle types like launch vehicles and satellites with
corresponding environmental conditions as well as ground
stations, are of great interest within end-to-end space mis-
sion simulations.

For several years, the Institute of System Dynamics
and Control at the DLR German Aerospace Center has
been developing Modelica-based libraries for the model-
ing and simulation of flight vehicles (DLR FlightDynam-
ics Library) and satellites (DLR SpaceSystems Library) as
shown in Figure 1. These libraries can operate either in-

DLR Environment Library

DLR Space
Systems Library

DLR Flight
Dynamics Library

DLR FlexibleBodies Library
DLR Visualization Library

Figure 1. An overview of the interaction of application-based
libraries with the new DLR Environment Library.

dependently from each other or in combination with other
libraries. For example, the DLR FlexibleBodies Library is
used for modeling flexible structures and the DLR Visual-
ization Library is used for visualizing multibody systems.

Although these libraries share one common need for the
modeling of environmental effects, there have been dif-
ferent application- and library-specific environment mod-
els for each library. Certainly, not every application re-
quires the same level of detail or the same type of environ-
ment models for the specific design regime. For example,
a satellite system in Low Earth Orbit (LEO) can neglect
gravitational effects of another planet and a flight vehicle
with a cruise flight altitude of 40.000ft is hardly influenced
by the solar radiation pressure, unlike spacecraft in a deep
space environment.

In general, most environment models are stored inside
subpackages of application libraries, providing just the
minimal amount of data needed for the realistic simulation
of the desired application. For this purpose, most environ-
ment models take into account gravitational acceleration,
atmospheric parameters, and specific influences which are
relevant for use cases as presented for example in Reiner
and Bals (2014), Looye (2008) or Pulecchi et al. (2006).
The advantages of application- and library-dependent en-
vironment models are clearly the reduction of the level of
detail and the simplification of complex environmental ef-
fects. This leads to a smaller amount of available models
for individual purposes and consequently to less required
maintenance.

DOI
10.3384/ecp17132929

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

929

Figure 2. Visualization of Envisat in an orbit simulation using the DLR Environment Library.

A major disadvantage of this strategy arises when mul-
tiple application-based libraries must be used for one com-
prehensive problem. The combination of several multi-
disciplinary libraries can then lead to redundancies or
discrepancies in the overall environmental formulation.
This is especially the case if two or more application li-
braries are combined for the end-to-end simulation of e.g.
reusable launch vehicles. For example, depending on the
specific application, coordinate systems or rotation se-
quences can be defined differently and therefore can lead
to often unmanageable errors. Also, different gravitational
models can result in mismatched data of the Inertial Mea-
surement Unit (IMU) of each system, finally increasing
the overall error between vehicles in a multi-disciplinary
simulation.

To prevent these problems, it has been decided to build
a common library, based on knowledge of environmental
effects inside application libraries. The overall goal of the
library is to provide a modular, non-redundant and user-
friendly formulation of environmental effects. It has to be
compatible with the Modelica Standard Library (MSL) as
well as the application libraries developed at the Institute
of System Dynamics and Control.

Within this paper, the new Environment Library is pre-
sented. In Section 2, an overview of the library is given,
including its purpose, its main characteristics, its basic
structure as well as the verification of its compatibility
with the MSL. Based on this section, some selected fea-
tures of the library are further introduced in Section 3. The
functionality of the models is demonstrated within Sec-
tion 3 with specific examples provided by the application
libraries mentioned before. The main advantages of the
proposed library are summarized in Section 4.

2 Overview of the Library
For multi-disciplinary end-to-end simulations regarding
all kinds of vehicles (from Earth-based flight and launch
vehicles to spacecraft in deep space environment), spe-
cific but consistent environmental conditions have to be
considered. The library is developed to fulfill these multi-
disciplinary requirements and is therefore based on envi-
ronment models from two application-related Modelica-
based libraries developed by the Institute of System Dy-
namics and Control:

• DLR SpaceSystems Library (SSL)
(Reiner and Bals, 2014), and

• DLR FlightDynamics Library (FDL)
(Looye, 2008; Klöckner et al., 2014a)

The library in its current version is fully tested within
the simulation environment Dymola 2017. Although it is
designed as a stand-alone library, it is based on the Mod-
elica Standard Library (3.2.2) and builds on the DLR Vi-
sualization Library (1.4) for optional visualization as pre-
sented in Figure 2 for an orbit simulation of the environ-
mental satellite Envisat. The DLR Visualization Library is
not required for the functionality of the provided environ-
ment models, but it enables drag & drop visualization of
all parts of the simulation. With the visual effects, a bet-
ter understanding of the overall model behaviour can be
provided, especially when flight dynamics are considered.

The main characteristics of this library regarding its ba-
sic structure and the implementation of the provided mod-
els were determined by considering the following goals.

The DLR Environment Library for Multi-Disciplinary Aerospace Applications

930 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132929

• Modularity
Models inside the library shall be able to work inde-
pendently. A limited amount of interdependent mod-
els is considered acceptable.

• Adaptivity
The library shall be able to grow and has to allow in-
dividual modification. The library shall adapt easily
to changes in other used libraries (e.g. MSL).

• Generality
The library shall be seen as a common ground for
multiple disciplines. It shall therefore provide mod-
els which can adapt to requirements of multiple dis-
ciplines without affecting unrelated disciplines.

• Reusability
Models provided by the library shall be usable in dif-
ferent domains, at the best as drag & drop models.

• User-friendliness
The library and its models shall be designed without
the need of intensive maintenance or without exces-
sive user interaction or configuration.

• Simplicity
The amount of configurable parameters shall be re-
duced as much as possible and conditional changes
of the model behaviour shall be implemented in sep-
arate models instead of using enumerated types.

2.1 Basic Structure of the Library
An overview of the top-level structure of the Environment
Library is shown in Figure 3. The library provides a docu-
mentation with information about the library itself includ-
ing contact information, references, release notes and a
tutorial for beginners. Additionally, examples to demon-
strate the functionality of the provided models are imple-
mented. Environment models are stored in the main sub-
packages. Further dependencies between the main sub-
packages are kept minimal in order to achieve maximum
modularity.

The main subpackages for the modeling of planets,
geospheres and currents are created based on an object-
oriented structure as shown in Figure 4. All main subpack-
ages contain the package BaseClasses in which partial
models for each discipline are implemented. These par-
tial models provide specific functions to be accessed from
anywhere within the simulation model corresponding to
the inner and outer concept in Modelica. From these
partial models, drag & drop models in the top-level of
each subpackage are extended. This planet-independent
library structure enables a highly modular, user-friendly,
object-oriented and consistent modeling of environmen-
tal conditions. These advantages are vitally important for
multi-disciplinary simulations regarding multiple vehicles
in different environments. Especially, many separate mod-
els instead of one general model containing all possible

1

2

3

4

5

6 M
ai

n
Su

bp
ac

ka
ge

s

Figure 3. An overview of the top-level library structure.

MSL Compatiblity

MultiBody.World (MSL)

MultiBodyWorld (copy)

Base Classes

PartialWorld PartialGeospheres PartialCurrents

Drag & Drop Models

Planet 1
Planet 2...

Geosphere 1
Geosphere 2...

Current 1
Current 2...

extends

extends

Figure 4. An overview of the object-oriented library structure.

environmental effects, offer a better understanding of the
overall model behaviour. A brief summary of these sub-
packages is given below:

• Planets 1
This subpackage contains generic MSL-based planet
models, providing relevant planet frames, the global
simulation time, the time-dependent rotation angle
of rotating planets, the planet constellation inside
the solar system as well as the advanced replaceable
gravityAcceleration function.

• Geospheres 2
Models which represent general geospheres (e.g. at-
mosphere) are included inside this package, provid-
ing inner models with replaceable functions similar
to the gravityAcceleration function to calculate
specific geospheric parameters as well as the mean
current of the geosphere.

Session 11D: Aerospace

DOI
10.3384/ecp17132929

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

931

• Current 3
Inside this package, components for modeling of ad-
ditional currents like user-defined wind are stored,
which are designed as drag & drop models to induce
currents (or wind effects in terms of the atmosphere)
to a connected body frame.

• Kinematics 4
The package Kinematics contains several functions
to describe kinematic relationships and coordinate
transformations as well as models for automatic state
selection for MSL-based bodies.

• Physical Effects 5
Inside the package PhysicalEffects specific mod-
els representing certain physical effects are imple-
mented which provide for example forces due to the
solar radiation pressure or information about the ge-
omagnetic field.

• VisualEffects 6
Several models to visualize the Earth, the Moon
and the Sun are implemented inside this package.
They are based on components in the DLR Visu-
alization Library. With the visualization software
SimVis (Bellmann, 2009) and the provided high-
resolution visualization data of the Earth, the simu-
lation results for a certain problem can be shown in a
realistic and easily recognizable way (see Figure 2).

Subpackage-specific functions are implemented inside
the Functions packages, whereas components which
are not intended for further usage are stored inside the
Internal packages. Using common base classes for all
drag & drop models, two possible modeling approaches
can be followed by the user (van der Linden et al., 2014).
First, the partial models from the BaseClasses pack-
ages can be placed inside generic simulation models such
that they can be replaced dynamically for each application
model. Second, the drag & drop models from the top level
can be used as fully functional and stand-alone compo-
nents of application models.

The Utilities package provides environment related
constants, enumeration types, icons as well as general
functions. Inside the subpackage User, individual user op-
tions can be stored as additional constants. Especially for
large files that cannot be saved inside the Resources folder,
like the visualization data of the Earth, a modifiable path
name to the source directory can be supplied and managed
by each user individually.

3 Selected Features of the Library
Within this section, some of the main subpackages and
features of the Environment Library are emphasized. Se-
lected use cases are provided in thematically related sub-
sections to demonstrate the functionality of the presented
models as well as the wide range of available model vari-
ants inside the library.

Drag &
Drop Models

Figure 5. An overview of the subpackage Planets.

3.1 The Planets subpackage
The Planets subpackage as shown in Figure 5 provides
planet models, which are compatible to the standard multi-
body world component of the MSL (Otter et al., 2003).
This facilitates the switching to enhanced world models
in application libraries without changing the application
library structure or code.

The model MultiBodyWorld with the replaceable
function gravityAcceleration is a modified copy of
the original world component with two important changes.
On the one hand, the parameters have been rearranged
in additional tabs without changing their content. This
is done in order to provide a better overview of the pa-
rameters inside the world component and to enhance the
user-friendliness of the overall model with a thematically
structured graphical user interface. On the other hand,
the equations to define the position and orientation of the
frame frame_b in the original world component are no
longer defined as equations. Instead, they are integrated
as variable declarations to the definition of the frame it-
self such that these values can be changed while using an
extends statement. With this new modeling approach for
an extended world model and its modified frame defini-
tion, moving planets within the solar system can be inte-
grated into the simulation taking into account their influ-
ences on each other.

From this modified world component a partial model
PartialWorld for planetary objects is extended introduc-
ing an additional frame and two internal functions to re-
solve any vector from the inertial frame frame_b to this
new moving reference frame. Because the world compo-
nent is defined as an inner model, it is possible to call
the two internal functions inside the PartialWorld from
anywhere inside the simulation model under the condition
that an outer command referencing the world component
is used. Although this modeling strategy is applicable to
any rotating planetary object, the implementation of the
Earth will be explained further in this section.

The DLR Environment Library for Multi-Disciplinary Aerospace Applications

932 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132929

The Earth component is extended from the partial
model PartialWorld. The frame frame_b is defined as
an inertial frame (Earth Centered Inertial, ECI), whereas
the new additional frame represents the Earth Centered
Earth Fixed (ECEF) coordinate system with an attitude
depending on the simulation time and the Earth’s angu-
lar velocity. Additionally, the parameter gravityType is
redefined with Earth-specific gravity types and the func-
tion gravityAcceleration is redeclared with the cor-
responding functions to calculate the gravity acceleration
vector of the Earth.

With this modeling concept, components from the MSL
can be used with the new world definition. This can be
demonstrated with the example Double Pendulum placed
on the Earth’s surface. The original world component
inside the MSL and the modified MultiBodyWorld are
based on the same gravity model and therefore provide the
same results as presented in Figure 6. Additionally, the
resulting acceleration of the component boxBody2 using
a more advanced gravitational model based on the Earth

is presented. It is shown, that the behaviour of the Dou-
ble Pendulum changes significantly over time depending
on the chosen gravitational model, demonstrating the con-
sequences of using different gravitational models within
end-to-end simulations.

Some planet-specific features implemented inside the
extended planet models are further introduced using the
Earth component as an example.

Absolute Simulation Time
The new world component adds an absolute simulation
time julianDate, which is initialized with parameters
provided by the user either in Julian date format or in
years, months, days and hours with minutes and seconds
as fractions.

Rotation of the Earth
The Earth’s rotation angle at a certain time is determined
as a function of the absolute simulation time as proposed
inside the Naval Observatory Vector Astrometry Software
(NOVAS) (Bangert et al., 2011). The transformation
matrix from the ECI frame to the rotating ECEF frame
can either be defined as a simplified rotation between
these frames using only the rotation angle (ERA) around
the Earth’s rotation axis (z-axis) with respect to the ECI
frame, or it can be calculated considering the nutation
and precession depending on the Julian date as well as
the difference in seconds between Universal Time and
Universal Coordinated Time (Bangert et al., 2011). The
leap seconds are automatically computed based on tabular
data (Astronomical Almanac, 2010), but can also be
provided by the user as input values.

Gravity Acceleration
To calculate the gravity acceleration vector g0 ∈ R3 with
respect to the inertial frame, the Earth model provides a
gravityAcceleration function comparable to the stan-

0 1 2 3 4 5 6 7 8
Time [s]

50

25

0

25

50

75

100

G
ra

vi
ty

 A
cc

el
er

at
io

n,
y

[m
/s

2] MultiBody.World (MSL)
MultiBodyWorld (Environment)
Earth with EGM96 (Environment)

Figure 6. Compatibility of the planet models with the MSL.

dard world component. The basic gravity types from the
original world component are still available to maintain
the compatibility to the MSL. Additionally, more precise
gravity models like the EGM96 (Lemoine et al., 1998) and
the Vinti Order 6 (Bate et al., 1971) gravity models can be
chosen for the calculation of the gravity acceleration vec-
tor gE ∈ R3 of the Earth. The EGM96 model uses terms
up to the second degree of the zonal harmonic coefficients
of the gravitational potential as discussed in Reiner and
Bals (2014). Those are only dependent on the symmetrical
mass distribution along the z-axis of the Earth. The Vinti
Order 6 potential function takes into account the perturba-
tion accelerations due to the Earth’s nonsphericity based
on Bate et al. (1971).

If needed, the gravity acceleration from the Moon and
the Sun can be considered inside the precise gravity mod-
els. Therefore, the current positions of the Moon rM and
the Sun rS with respect to the Earth are calculated ana-
lytically with low precision formulae for planetary posi-
tions (van Flandern and Pulkkinen, 1979). As an alterna-
tive, they can also be obtained from the DE405 ephemeris
files (Standish, 1998). Relying on the current Julian date
as an input parameter, the DE405 ephemeris coefficients
are extracted from an external C-code to calculate the po-
sitions of the Moon and the Sun.

The total gravity acceleration vector g0 is finally calcu-
lated as the sum of the gravity acceleration from the Earth
gE , the Moon gM and the Sun gS. The gravity acceler-
ation vectors gM and gS are calculated according to the
Equation (1) depending on the position rM,S ∈ R3 and the
gravitational constant GM,S of the Moon or the Sun.

gM,S = GM,S

 rM,S− rE∥∥rM,S− rE
∥∥3 −

rM,S∥∥rM,S
∥∥3

 (1)

The absolute gravity acceleration for different gravity
models is shown in Figure 7 for the given latitude of the
International Space Station (ISS). The position of the ISS
is calculated from orbital elements provided by NORAD
Two-Line Element sets (TLE) (NASA, 2011) for a given
point in time as implemented inside the SSL. The mod-
els provide very similar results, except for the expected
disturbances.

Session 11D: Aerospace

DOI
10.3384/ecp17132929

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

933

0 1000 2000 3000 4000 5000
Time [s]

60

40

20

0

20

40

60
La

tit
ud

e
[d

eg
]

0 1000 2000 3000 4000 5000
Time [s]

8.55

8.60

8.65

8.70

G
ra

vi
ty

 A
cc

el
er

at
io

n
[m

/s
2]

Point Gravity
EGM96
Vinti

Figure 7. Comparison between different gravity models (ISS).

3.2 The Geospheres subpackage
The subpackage Geospheres is implemented to provide
specific types of geosphere models, like atmosphere mod-
els which can be used in combination with flight or launch
vehicles, respectively.

All main geosphere models are extended from the par-
tial model PartialGeosphere. This model contains two
replaceable functions, which can be called from anywhere
inside a simulation model. Both functions require the po-
sition of an object with respect to the rotating reference
frame. The outputs of the function baseProperties are
the absolute pressure, temperature, density and speed of
sound, corresponding to the BaseProperties implemen-
tation inside the MSL package Media. The output of the
second replaceable function meanCurrent is the velocity
of the geosphere-specific current.

Similar to the implementation of planets, the user can
choose between two modeling concepts using either the
PartialGeosphere or the stand-alone geosphere models
from the top-level of this subpackage. The replaceable
functions baseProperties and meanCurrent can be re-
declared with advanced functions for each specific geo-
sphere model.

In terms of atmosphere models, geodetic parameters
such as latitude, longitude and altitude have to be calcu-
lated from the given input position. For this purpose, con-
sistent kinematic functions inside the Kinematics pack-
age are used (see Section 3.5) approximating the shape of
the planet according to the World Geodetic System ’84
(WGS’84) (NIMA, 2000). Optionally, the user can decide
if the geoid undulation between the calculated altitude and
the Mean Sea Level shall be taken into account. For this
reason, the geoid information based on the EGM96 model
is computed with an external C-code (Lemoine et al.,
1998).

In the Environment Library, different geosphere models
for the Earth’s atmosphere are implemented. For example,
a constant atmosphere with user-provided parameters or a
user-defined atmosphere with input values based on tabu-
lar data can be chosen. For the latter option, the tabular
data is interpolated using the altitude of the object. Other
geosphere components use standard atmosphere models as
explained in the following list:

• StandardAtmosphere (ISA)
Within this component, two atmosphere models cov-
ering several regimes are implemented. The Two
Zones Model by Schänzer (1969) can be chosen es-
pecially for flight vehicles with an altitude up to
40.000ft. The Three Zones Model (NASA, 2015) can
be used if atmospheric conditions between the tropo-
sphere and the upper stratosphere are needed. This
model is based on atmospheric measurements with
separate curve fits for the troposphere, the lower and
the upper stratosphere.

• StandardAtmosphere76
This component is based on the U.S. Standard At-
mosphere model from 1976 where the atmospheric
parameters can be determined for altitudes from -5
km up to 1000 km. For altitudes above 50 km, the
data for this atmosphere model is based on rocket
and satellite measurements (NASA, 1976).

• NRLMSISEAtmosphere
The NRL-MSISE-00 model is a highly accurate em-
pirical model developed by the U.S. Naval Research
Laboratory (NRL) (Picone et al., 2001). It is prim-
iraly used by spacecraft due to its accuracy in alti-
tudes above 100 km and its range from the ground to
the exosphere. The density and temperature at a cer-
tain position are computed using the NRL-MSISE-
00 database with an external C-code. As inputs, the
Julian date provided by the world component as well
as the geodetic parameters latitude, longitude and al-
titude are required.

For all atmosphere models, the mean current is based on
a logarithmic approach to determine the velocity vector in
the Earth’s boundary layer with respect to the ground. In
Figure 8, a comparison between the provided atmosphere
models is shown for the ascent phase of a generic launch
vehicle depending on its current altitude. All atmosphere
models provide similar results for the atmospheric den-
sity but significantly different results for example for the
temperature corresponding to the approximation methods
used inside particular atmosphere models. Especially in
multi-disciplinary simulations, one common atmosphere
model instead of many application-specific atmosphere
models for several vehicles can therefore reduce errors in
the overall model behaviour.

The DLR Environment Library for Multi-Disciplinary Aerospace Applications

934 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132929

0 10 20 30 40
Altitude [km]

80
60
40
20

0
20
40

Te
m

pe
ra

tu
re

 [°
C

]

0 10 20 30 40
Altitude [km]

0.0
0.2
0.4
0.6
0.8
1.0
1.2

D
en

si
ty

 [k
g/

m
3] ISA (Two Zones)

ISA (Three Zones)
U.S. 1976
NRL-MSISE-00

0 10 20 30 40
Altitude [km]

0

1

2

3

4

5

M
ac

h
[-

]

Figure 8. Comparison between different atmosphere models.

3.3 The Currents subpackage
Currents are used as a supplement to geosphere models as
presented in Section 3.2. While geosphere models provide
mean currents for any location with their internal function
meanCurrent, a current model provides simplified mod-
els of local flow velocities such as turbulence or gusts.
Each submodel (e.g. aircraft or spacecraft) can have its
own local current model. All currents retrieve the mean
current from the geosphere and add local effects to it.

A simple example is the continuous Dryden turbulence
model (MIL-STD-1797A, 1990), which adds a low-pass-
filtered white noise to the mean current (The MathWorks,
2016). Such an approach is illustrated in Figure 9 for a
user-defined wind profile, where the filtered noise is added
to the mean current from the geosphere model. This ap-
proach makes it possible to also cover distributed flow ef-
fects, such as wake vortices or delayed turbulence.

Like for the geosphere models, the user has the option
to also use local wind or gust effects based on tabular data,
which interpolates the velocity components according to
the position of the object connected to the current’s frame.

3.4 The PhysicalEffects subpackage
The subpackage PhysicalEffects provides stand-alone
drag & drop models to automatically induce forces and
torques due to physical effects on the attached frames. In
contrast to the previous subpackages, these models are not
based on a common partial model. However, all models
fulfill the same goals as defined in Section 2 for instance
in terms of modularity, simplicity and user-friendliness.
Selected features of this subpackage are described below.

0 20 40 60 80 100 120
Altitude [km]

20

10

0

10

20

30

G
lo

ba
l W

in
d

V
el

oc
ity

 [m
/s

]

turbulent
non-turbulent

Figure 9. Application of a turbulent current on a wind profile.

Gravity Gradient Torque
The gravity gradient torque is modeled as a torque τa that
acts on a connected frame with the position r0,a and the
rotational transformation matrix Ta. The torque is caused
by the allocation of the mass with respect to its center and
depends on the inertia tensor IB ∈R3x3 (Larson and Wertz,
1999). In Equation (2), the gravity acceleration vector
g0 ∈ R3 is a function of the position r0,a and the Julian
date tJ which is retrieved for the position of the connected
frame directly from the world component.

τa =

(
Ta g0(r0,a, tJ)

3∥∥r0,a
∥∥
)
×

(
IB Ta

−r0,a∥∥r0,a
∥∥
)

(2)

Solar Radiation Pressure
The effect of the solar radiation pressure is modeled as a
force fsp that acts on the connected frame. Shadows of the
Moon and the Sun are considered with the shadow factor
χsp ∈ [0,1] using a cylindrical shadow model. The equa-
tions are implemented as proposed in Montenbruck and
Gill (2000). Required parameters are the effective area
Asp of the solar radiation pressure and its normal vector
nsp as well as the coefficient of reflectivity of the material
ξsp ∈ [0,1] (total absorption to total reflection) as shown in
Equations (3) to (5). The distance between the Sun and the
frame is defined as dsp ∈ R3. The solar radiation pressure
p� is assumed to be constant for spacecraft near Earth.

csp,θ =
nsp∥∥nsp
∥∥ dsp∥∥dsp

∥∥ (3)

csp,R =

[
(1−ξsp)

dsp∥∥dsp
∥∥ +2 ξsp csp,θ

nsp∥∥nsp
∥∥
]

(4)

fsp =−χsp p� Asp csp,θ csp,R
AU2∥∥dsp
∥∥2 (5)

Geomagnetic Field
The geomagnetic field can be computed for a connected
frame by the GeoMagneticField component, using the
US/UK World Magnetic Model (WMM) from 2010 or
2015 (Maus et al., 2010). The model provides a magnetic
field vector Bm ∈ R3 that depends on the latitude, longi-
tude and altitude of the component as well as the current

Session 11D: Aerospace

DOI
10.3384/ecp17132929

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

935

Julian date provided by the world model. The output
vector is calculated in the local North-East-Down (NED)
frame which can be transformed to any other coordinate
system like ECI or ECEF with the provided functions
inside the package Kinematics (see Section 3.5). The
resulting geomagnetic field can be used for example in
simulations with magnetic actuators or Inertial Naviga-
tion Systems (INS).

Atmospheric Drag for Spacecraft
The atmospheric drag is caused by friction with the re-
mainder of the atmosphere depending on the altitude. Like
the solar radiation pressure, the atmospheric drag is mod-
eled as a force and torque element acting on the attached
frame which should be located at the center of mass of
the object. The density ρ of the atmosphere is provided
by the NRL-MSISE-00 model due to its accuracy in near
Earth orbit. The drag force fad and torque τad can be com-
puted using Equations (6) and (7) where vrel is the relative
velocity of the object with respect to the rotating Earth.

fad =−0.5 cd Aad ρ ‖vrel‖ vrel (6)

τad = 0.5 cd Aad ρ ‖vrel‖2
[

vrel

‖vrel‖
×Ta dcp

]
(7)

Required parameters are the drag coefficient cd , the effec-
tive area Aad and the vector from the center of pressure to
the center of mass dcp, resolved in the attached frame.

3.5 The Kinematics subpackage
The Environment library includes a comprehensive toolset
for coordinate transformations and kinematics simulation.
These can be used for MultiBody models to flexibly

• compute kinematic states in different notations,

• define different notations of continuous states, and

• constrain the kinematics to lower-order models.

In order to compute kinematic states of a MultiBody

model, functions are provided which transform the stan-
dard state set of a MultiBody frame (i.e. position r_0, at-
titude R.T, and rotational velocity R.w) to a broad variety
of different notations. The structure of the provided mod-
els and functions reflects this distinction in separate col-
lections of conversion functions. Since many notations,
such as WGS’84 positions or an aircraft’s attitude, are
given relative to the planet’s reference system, a further
discrimination is made between conversions in the inertial
and the world reference system (see Figures 10 and 11).

The conversion functions are used by the provided sen-
sor models, which retrieve the states of a frame. The im-
plemented functions to calculate the kinematic relation-
ships are also generalized such that they can be used to
compute the required parameters given in any other geode-
tic system instead of the WGS’84. The simplified and
user-friendly structure of the kinematic functions provides

Figure 10. An overview of the package Kinematics.

ECEFx

ECEFy

ECEFz

ECIx ECIy
ERA

lon

lat

North
East

Down

Figure 11. An overview of some basic coordinate systems.

a better overview for the user. Common functions can re-
duce errors due to different implementations of coordinate
systems within application-based libraries.

In addition to computing the states in a required nota-
tion, the library provides models to define the very same
notations as actual continuous time states of a MultiBody
model by simply dragging the component into a model and
connecting it to a frame connector. This is accomplished
by first, defining the desired states with stateSelect=

StateSelect.always, second, transforming the desired
states into standard MultiBody notation, and finally, set-
ting the frame variables to the result. As for the trans-
formation functions, there are components to set position,
velocity and attitude states independently from each other.

Finally, constraint models are provided, which interface
seamlessly with the standard MultiBody models. This in-
cludes a generalization of the quasi-steady flight kinemat-
ics inside the FDL to general MultiBody models. There-
fore, any six degrees of freedom (DOF) model can be
transformed effectively into a three DOF model removing
the rotational states. The transformation is accomplished
by explicitly setting R.w={0,0,0} and creating new un-
known variables for the orientation Q. The model thus in-
terrupts the usual flow of calculation (conceptually a dou-
ble integration from torques to rates and attitude) as shown
in Equations (8) to (10).

der(R.w):=f(t) ⇒ 0:=f(t), (8)
der(Q):=f(R.w) ⇒ no kinematics, (9)

t:=f(Q,R.w) ⇒ Q:=f(t). (10)

By rooting frame_a.R in the model, the kinematics
equations in the MultiBody components are disabled and
by setting R.w={0,0,0}, the dynamics equations implic-

The DLR Environment Library for Multi-Disciplinary Aerospace Applications

936 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132929

Figure 12. An overview of the structure of a simulation model
using the presented environment and kinematics models.

itly force the torques to be zero. In order to achieve a
well-defined model, external torque equations are required
to compute the unknown attitude variables Q.

As for the usage of the models provided by the subpack-
age Kinematics, the structure of a simulation model for
a generic vehicle is shown representatively in Figure 12 in
combination with the previously presented models within
the DLR Environment Library.

4 Conclusion
The DLR Environment Library is a Modelica-based li-
brary for modeling environmental effects for application-
specific libraries. Over the past years, environment mod-
els, optionally including planet definitions or atmospheric
parameters, have been developed independently and in a
smaller scale within each application library. These sepa-
rate developments have induced problems due to redun-
dant declarations, mismatched level of detail, accuracy
and precision within multi-disciplinary projects. With the
DLR Environment Library, these problems are solved, as
introduced in previous sections.

Especially, the new library and modeling concept based
on an object-oriented library structure provides several ad-
vantages as listed below:

• modular, reusable and comprehensible structure,

• easily adaptable to new requirements & applications,

• consistent definition of environmental conditions,

• simple, user-friendly and understandable models,

• reduced maintenance demands.

Although the development of general terrain, weather
and aerodynamic models is in progress, these packages
have been excluded from the content of this paper, since
the models are not yet fully implemented and tested inside
the Environment Library. The implementation of all plan-
ets within the solar system is also planned for the future.

Acknowledgements
We would like to thank Dr. Gertjan Looye (DLR Ger-
man Aerospace Center) for his contributions to former
implementations of environment models inside the DLR
FlightDynamics Library.

References
P. Acquatella. Launch Vehicle Multibody Dynamics Modeling

Framework for Preliminary Design Studies. 6th International
Conference on Astrodynamics Tools and Techniques (ICAAT),
2016.

Astronomical Almanac. The Astronomical Almanac for the Year
2011. United Kingdom Hydrographic Office, 2010. ISBN:
978-07-0774-103-1.

J. Bangert, W. Puatua, G. Kaplan, J. Bartlett, W. Harris, A. Fred-
ericks, and A. Monet. User’s Guide to NOVAS Version C3.1.
Technical report, U.S. Naval Observatory, 2011.

R. Bate, D. Müller, and J. White. Fundamentals of Astrodynam-
ics. Dover Publications, Inc., 1971. ISBN: 0-486-60061-0.

T. Bellmann. Interactive Simulations and advanced Visu-
alization with Modelica. In Proceedings of the 7th In-
ternational Modelica Conference, pages 541–550, 2009.
doi:10.3384/ecp09430056.

A. Klöckner, M. Leitner, D. Schlabe, and G. Looye. Integrated
Modelling of an Unmanned High-Altitude Solar-Powered
Aircraft for Control Law Design Analysis. In Advances in
Aerospace Guidance Navigation and Control - Selected Pa-
pers of the Second CEAS Specialist Conference on Guidance,
Navigation and Control, pages 535–548. Springer Berlin Hei-
delberg, 2013. ISBN 978-3-642-38252-9.

A. Klöckner, G. Looye, R. Müller, R. Kuchar, F. Re, and
M. Leitner. Object-Oriented Aircraft Modeling with the DLR
FlightDynamics library. In 9th AIRTEC 2014 International
Congress, 2014a.

A. Klöckner, F. L. J. van der Linden, and D. Zimmer. Noise Gen-
eration for Continuous System Simulation. In Proceedings of
the 10th International Modelica Conference, pages 837–846,
2014b. ISBN: 978-91-7519-380-9.

A. Klöckner, A. Knoblach, and A. Heckmann. How to Shape
Noise Spectra for Continuous System Simulation. In Pro-
ceedings of the 11th International Modelica Conference,
pages 411–418, 2015. ISBN: 978-91-7685-955-1.

W. J. Larson and J. R. Wertz. Space Mission Analysis and De-
sign, volume 3. Microcosm Press and Kluwer Academic Pub-
lishers, 1999. ISBN: 1-881883-10-8.

F. G. Lemoine, S. C. Kenyon, J. K. Factor, and R. G. Trim-
mer et al. The Development of the Joint NASA GSFC and
National Imagery and Mapping Agency NIMA Geopotential
Model EGM96. Technical report, National Aeronautics and
Space Administration (NASA), 1998.

Session 11D: Aerospace

DOI
10.3384/ecp17132929

Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

937

G. Looye. The New DLR Flight Dynamics Library. In Proceed-
ings of the 6th International Modelica Conference, volume 1,
pages 193–202, 2008.

S. Maus, S. Macmillan, S. McLean, B. Hamilton, A. Thomson,
M. Nair, and C. Rollins. The US/UK World Magnetic Model
for 2010-2015. Technical report, National Oceanic and At-
mospheric Administration (NOAA), 2010.

MIL-STD-1797A. Flying Qualities of Piloted Aircraft. U.S.
Department of Defense, 1990. Military Standard.

O. Montenbruck and E. Gill. Satellite Orbits - Models, Methods
and Applications. Springer Verlag, Heidelberg, 2000. ISBN:
978-3-642-63547-2.

NASA. U.S. Standard Atmosphere, 1976. Technical report, Na-
tional Aeronautics and Space Administration, 1976.

NASA. Definition of Two-line Element Set Coordinate System,
2011. National Aeronautics and Space Administration,
http://spaceflight.nasa.gov/realdata/
sightings/SSapplications/Post/JavaSSOP/
SSOP_Help/tle_def.html.

NASA. Earth Atmosphere Model, 2015. National Aeronautics
and Space Administration, https://www.grc.nasa.
gov/WWW/K-12/airplane/atmosmet.html.

NIMA. World Geodetic System 1984 - Its Definition and Re-
lationships with Local Geodetic Systems. Technical report,
National Imagery and Mapping Agency, 2000.

M. Otter, H. Elmqvist, and S. Mattsson. The New Modelica
MultiBody Library. In Proceedings of the 3rd International
Modelica Conference, pages 311–330, 2003.

J. M. Picone, A. E. Hedin, and A. C. Aikin D. P. Drob.
NRLMSISE-00 empirical model of the atmosphere: Statisti-
cal comparisons and scientific issues. Journal of Geophysical
Research, 107, 2001. doi:10.1029/2002JA009430.

T. Pulecchi, F. Casella, and M. Lovera. A Modelica Library for
Space Flight Dynamics. In Proceedings of the 5th Interna-
tional Modelica Conference, pages 107–116, 2006.

M. J. Reiner and J. Bals. Nonlinear inverse models for the con-
trol of satellites with flexible structures. In Proceedings of
the 10th International Modelica Conference, pages 577–587,
2014. doi:10.3384/ECP14096577.

G. Schänzer. Einführung in die Flugphysik. Institut für
Flugführung, TU Braunschweig, 1969. Lecture notes.

E. M. Standish. JPL Planetary and Lunar Ephemerides, DE405
/ LE405. Technical report, Jet Propulsion Laboratory, 1998.

The MathWorks. Dryden Wind Turbulence Model, 2016.
http://de.mathworks.com/help/aeroblks/
drydenwindturbulencemodelcontinuous.html.

F. L. J. van der Linden, C. Schlegel, M. Christmann, G. Regula,
C. I. Hill, P. Giangrande, J.-C. Maré, and I. Egaña. Implemen-
tation of a Modelica Library for Simulation of Electrome-
chanical Actuators for Aircraft and Helicopters. In Proceed-
ings of the 10th International Modelica Conference, pages
757–766, 2014. doi:10.3384/ECP14096757.

T. C. van Flandern and K. F. Pulkkinen. Low-Precision Formu-
lae for Planetary Positions. The Astrophysical Journal Sup-
plement Series, 41:391–411, 1979.

The DLR Environment Library for Multi-Disciplinary Aerospace Applications

938 Proceedings of the 12th International Modelica Conference
May 15-17, 2017, Prague, Czech Republic

DOI
10.3384/ecp17132929

	Session 1: Keynote 1
	Session 4A: Automotive I
	Development of an Integrated Control of Front Steering and Torque Vectoring Differential Gear System Using Modelica
	Virtual Occupant Model for Riding Comfort Simulation
	A Simulation-Based Digital Twin for Model-Driven Health Monitoring and Predictive Maintenance of an Automotive Braking System
	Improved Aerodynamic Prediction Through Coupled System and CFD Models

	Session 4B: Buildings I
	Coupled Simulation between CFD and Multizone Models Based on Modelica Buildings Library to Study Indoor Environment Control
	Co-Simulation between detailed building energy performance simulation and Modelica HVAC component models
	Aspects of FMI in Building Simulation
	Application of Richardson Extrapolation to the Co-Simulation of FMUs from Building Simulation

	Session 4C: Process & Chemical Engineering
	Development of a Thermodynamic Engine in OpenModelica
	Integrated Process and Molecular Design with Modelica Using Continuous-Molecular Targeting
	Dynamic Simulations of the Post-combustion CO2 Capture System of a Combined Cycle Power Plant
	Optimizing the start-up process of post-combustion capture plants by varying the solvent flow rate

	Session 4D: Control Systems I
	Framework for dynamic optimization of district heating systems using Optimica Compiler Toolkit
	Optimal Control of District Heating Systems using Dynamic Simulation and Mixed Integer Linear Programming
	Rapid development of an aircraft cabin temperature regulation concept
	Investigation of the Influence of Controller Approaches on Room Thermal Behaviour A Simulation Study

	Session 5A: Automotive II
	Powertrain and Thermal System Simulation Models of a High Performance Electric Road Vehicle
	Investigating the Effect of a Sonic Restrictor in the Intake of an Engine
	Engine thermal shock testing prediction through coolant and lubricant cycling in Dymola

	Session 5B: Buildings II
	Template based code generation of Modelica building energy simulation models
	Modelling and Simulation of Standardised Control Functions from Building Automation
	Modelling of Heat Pumps with Calibrated Parameters Based on Manufacturer Data

	Session 5C: Electrical & Power Systems I
	Simulation of Large Grids in OpenModelica: reflections and perspectives
	A Modelica-based Tool for Power System Dynamic Simulations
	A Modelica VSC-HVDC Average Value Model Implementation and its Software-to-Software Validation using an EMT Power System Domain Specific Simulator

	Session 5D: Control Systems II
	From system model to optimal control - A tool chain for the efficient solution of optimal control problems
	Nonlinear Model Predictive Control of a Thermal Management System for Electrified Vehicles using FMI
	Defining and Solving Hybrid Optimal Control Problems with Higher Index DAEs

	Session 6: Poster Session
	Large Scale Training through Spoken Tutorials to Promote and use OpenModelica
	EMOTH The EMobility Library of OTH Regensburg
	Simulating a Variable-structure Model of an Electric Vehicle for Battery Life Estimation Using Modelica/Dymola and Python
	Model Reduction Techniques Applied to a Physical Vehicle Model for HiL Testing
	Towards Virtual Validation of ECU Software using FMI
	Parameter Estimation based on FMI
	Generic FMI-compliant Simulation Tool Coupling
	FMI and IP protection of models: A survey of use cases and support in the standard
	Model-based virtual sensors by means of Modelica and FMI
	Dymola-JADE Co-Simulation for Agent-Based Control in Office Spaces
	Failure Modes of Tearing and a Novel Robust Approach
	Towards Adjoint and Directional Derivatives in FMI utilizing ADOL-C within OpenModelica
	PDEModelica and Breathing in an Avalanche
	Multirotor Aerial Vehicle modeling in Modelica
	Rotating Machinery Library for Diagnosis
	Modelling and Simulation of the passive Structure of a 5-Axis-Milling Machine with rigid and flexible bodies for evaluating the static and dynamic behaviour
	Modeling and Simulation on Environmental and Thermal Control System of Manned Spacecraft
	Modeling and simulation of complex ThermoSysPro model with OpenModelica - Dynamic Modeling of a combined cycle power plant
	A Power-Based Model of a Heating Station for District Heating (DH) System Applications

	Session 7A: Automotive III
	Model Based Design of a Split Carrier Wheel Suspension for Light-weight Vehicles
	Development of hierarchal commercial vehicle model for target cascading suspension design process
	Model Based Analysis of Shimmy in a Racing Bicycle

	Session 7B: Thermodynamic Systems
	Optimization-friendly thermodynamic properties of water and steam
	Modeling of a Thermosiphon to Recharge Phase Change Material Based Thermal Battery for a Portable Air Conditioning Device
	Extended Modelica Model for Heat Transfer of Two-Phase Flows in Pipes Considering Various Flow Patterns

	Session 7C: Electrical & Power Systems II
	Improved Model of Photovoltaic Systems
	Modelling of a Hydro Power Station in an Island Operation
	Periodic Steady State Identification of electrical circuits

	Session 7D: Control Systems III
	Discrete-time models for control applications with FMI
	Model-based Embedded Control using Rosenbrock Integration Methods
	Integration of complex Modelica-based physics models and discrete-time control systems: Approaches and observations of numerical performance

	Session 8: Keynote 2
	Session 9A: FMI I
	Improving Interoperability of FMI-supporting Tools with Reference FMUs
	The Embedded Simulation via FMI and its Application to the Simulation of Lifetime Tests Including Wear
	Integration Modelica with Digital Mockup Tool using the FMI

	Session 9B: Numerical & Symbolic Methods
	Solving large-scale Modelica models: new approaches and experimental results using OpenModelica
	Transformation of Differential Algebraic Array Equations to Index One Form
	Smart Processing of Function Calls to Achieve Efficient Simulation Code

	Session 9C: Acoustic & Medical Systems
	Integrative physiology in Modelica
	Sound Source Extension Library for Modelica
	Towards Medical Cyber-Physical Systems: Modelica and FMI based Online Parameter Identification of the Cardiovascular System

	Session 9D: Wind & Naval Engineering
	The DLR RailwayDynamics Library: the Crosswind Stability Problem
	The OneWind Modelica Library for Floating Offshore Wind Turbine Simulations with Flexible Structures
	Modelica Based Naval Architecture Library for Small Autonomous Boat Design

	Session 10A: FMI II
	FMI Go! A simulation runtime environment with a client server architecture over multiple protocols
	Building Parallel FMUs (or Matryoshka Co-Simulations)
	Scaling FMI-CS Based Multi-Simulation Beyond Thousand FMUs on Infiniband Cluster
	Development of an open source multi-platform software tool for parameter estimation studies in FMI models

	Session 10B: Modelica Language & Tools
	Innovations for Future Modelica
	Hierarchical Semantics of Modelica
	Towards a Standard-Conform, Platform-Generic and Feature-Rich Modelica Device Drivers Library
	modelica.university: A Platform for Interactive Modelica Content

	Session 10C: Mechanical Systems Modelling
	Object-oriented modelling of a flexible beam including geometric nonlinearities
	Musculoskeletal Modeling of the Hand and Contact Object in Modelica
	Modelica Spur Gears with Hertzian Contact Forces
	Modeling of Roller Bearings

	Session 10D: HVAC Systems
	Cabin Thermal Needs: Modeling and Assumption Analysis
	Simulative Comparison of Mobile Air-Conditioning Concepts for Mechanical and Electrical Driven Systems
	Duty Cycle for Low Energy Operation of a Personal Conditioning Device
	A Platform for the Agent-based Control of HVAC Systems

	Session 11A: Modelica Tools & GUIs
	MoVE A Standalone Modelica Vector Graphics Editor
	Mo|E A Communication Service Between Modelica Compilers and Text Editors
	Traceability Support in OpenModelica Using Open Services for Lifecycle Collaboration (OSLC)
	A Simulation Environment for Efficiently Mixing Signal Blocks and Modelica Components

	Session 11B: Power Plants & Energy Systems
	Component Development for Nuclear Hybrid Energy Systems
	Modeling and simulation of fixed bed regenerators for a multi-tower decoupled advanced solar combined cycle
	Annual Performance of a Solar-Thermochemical Hydrogen Production Plant Based on CeO2 Redox Cycle
	Applying the Power Plant Library ClaRa for Control Optimisation

	Session 11C: Mechanical Systems, Robotics & VR
	Interactive FMU-Based Visualization for an Early Design Experience
	Using Modelica for advanced Multi-Body modelling in 3D graphical robotic simulators
	A New Object-Oriented Approach for Integrating Discrete Element Method into Modelica
	Modeling and Simulation of Wheel Driving Systems based on Terramechanics for Planetary Explanation Rover using Modelica

	Session 11D: Aerospace
	The Jet Propulsion Library: Modeling and simulation of aircraft engines
	Virtual flight testing of a controller for gust load alleviation using FMI for cosimulation
	The DLR Environment Library for Multi-Disciplinary Aerospace Applications

