

MTAS: A Solr/Lucene based Multi Tier Annotation Search solution

Matthijs Brouwer

Meertens Institute

The Netherlands

matthijs.brouwer@

meertens.knaw.nl

Hennie Brugman

Meertens Institute

The Netherlands

hennie.brugman@

meertens.knaw.nl

Marc Kemps-Snijders

Meertens Institute

The Netherlands

marc.kemps.snijders@

meertens.knaw.nl

Abstract

In recent years, multiple solutions have become available providing search on huge amounts of
plain text and metadata. Scalable searchability on annotated text however still appears to be
problematic. With Mtas, an acronym for Multi-Tier Annotation Search, we add annotation
layers and structure to the existing Lucene approach of creating and searching indexes, and
furthermore present an implementation as Solr plugin providing both searchability and
scalability. We present a configurable indexation process, supporting multiple document
formats, and providing extended search options on both metadata and annotated text, such as
advanced statistics, faceting, grouping and keyword-in-context. Mtas is currently used in
production environments, with up to 15 million documents and 9.5 billion words. Mtas is
available from GitHub1.

1 Introduction

Many solutions providing search on both plain text and metadata rely on the inverted index based
Apache Lucene2. The existing and popular extension Solr offers additional features such as distributed
indexes, scalability, and load balanced querying to the construction of a sustainable and scalable
infrastructure for these types of search requirements. However, for annotated textual resources these
solutions appear less suitable due to the additional complexity introduced by the various annotation
layers and limited options available within Solr and Lucene. Also, results and derived statistics are
mainly based on numbers of documents, while often individual hits are required. There seems to be an
increasing demand for solutions to these problems.

Several approaches are already available, amongst others from the CLARIN community, e.g.
BlackLab, KorAP, SketchEngine, Corpus Workbench, PaQu, GrETEL, Corpuscle to name a few.
Various considerations have led us to develop a new initiative in this area, most notably scalability and
integrated metadata/annotation search. We provide an overview of functional requirements from our
infrastructure projects and scientific users, and elaborate on development decisions taken in relation to
existing solutions. After a short introduction of the implemented CQL support, we discuss
performance and capabilities of statistics, faceting, grouping and termvectors. We conclude with
performance, consistency checks and some suggestions on future work.

2 Requirements

In this section we describe the main high-level requirements that determine the general scope and
direction of Mtas development. While it is certainly true that, depending on the envisaged use case or
in comparison with other systems, additional requirements could be formulated that equally deserve
attention, a number of specific strategic, functional and operational requirements provides the main

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/
1 https://github.com/meertensinstituut/mtas
2 https://lucene.apache.org/

Matthijs Brouwer, Hennie Brugman and Marc Kemps-Snijders 2017. MTAS: A Solr/Lucene based multi tier
annotation search solution. Selected papers from the CLARIN Annual Conference 2016. Linköping Electronic
Conference Proceedings 136: 19–37.

19

foundation for our development ambitions. From a strategic perspective, multi tier annotation search
represents one of the key components that supports the data management life cycle in our domain.
Annotated text is essential to unlock (textual) data contents beyond the metadata level. Therefore we
consider it imperative that we build up internal knowledge and experience in this area. Moreover, in
order to achieve sufficient control and room for experimentation we strive for close collaboration with
system providers or, if close collaboration proves impossible, investment in independent system
creation. Close collaboration with researchers ensures that we invest in those functional areas that are
immediately of interest to the research community we work with. Finally, our operational
requirements are related to ease of deployment, testing and maintenance of the system. For example,
ease of integration of new collections and the ability to quickly deploy various instances of the system
for testing or production purposes are very important.

Besides the Nederlab project3 (Brouwer, et al., 2014) serving as one of the primary use cases and
application platforms for the system design, the development of Mtas is firmly situated in the
CLARIN domain as part of the Dutch CLARIAH project. One of the major requirements therefore is
the ability to include arbitrary (CMDI) metadata schemas in search processes. Considerable
experience is at hand in making metadata available in metadata search processes, e.g. in the CLARIN
VLO. This search domain however needs to be extended to include annotated text, containing
multiple, often interdependent, annotation layers. These layers consist of normalized and spell-
corrected texts, translations, lemma, part of speech (including feature lists), named entities, entity links
to external knowledge bases such as DBpedia, chapters, paragraphs, sentences and other hierarchical
annotations such as morphology or syntactic information. Given the myriad of annotation formats
encountered in the domain, the system should be configurable to cope with a fair amount of different
annotation formats.

At the level of individual annotation layers, support must be provided for multivalued attributes,
differentiation between multiple set values (e.g. to cater for multiple tag sets simultaneously occurring
in source documents) and full Unicode support at the value level. The system should support CQL
(Corpus Query Language), possibly extended with additional features for higher order structures, such
as for example hierarchies. The choice for Corpus Query Language is motivated by the fact that this is
commonly used by various systems in the community, albeit with local differences in interpretation.
Also, with the advances of the Federated Content Search program in CLARIN it is anticipated that
Corpus Query Language will be adopted to extend the current SRU/CQL (Search/Retrieval via URL
and Contextual Query Language) capabilities allowing for a more easy alignment with FCS activities.

With respect to result delivery, both (annotated) documents and keyword-in-context representations
must be delivered, as well as statistical information regarding absolute and relative frequencies and hit
distributions across result sets. Result set distributions must be calculated across each available
metadata dimension, including time intervals, and not only over single but also multiple metadata
dimensions, e.g. a distribution across both time and genre. Result sets may also be grouped according
to result characteristics, such as grouping of all adjectives preceding a noun, to assist in determining
collocations. Also, the system should be able to produce frequency lists across any result set and type
of annotation; word forms, part of speech, named entities, etc. Finally, the system should be highly
scalable, be able to work across multi-billion word corpora, be easily manageable and be freely
available for use to a wide user community under an open source license4.

2.1 Current solutions

A choice between search engines is often a balancing act between one’s requirements and depends
upon one’s functional scope, corpus size, available expertise or conditions of use. Several systems
designed for searching annotated text structures are currently available, each with its own strengths,
weaknesses and track record, e.g. BlackLab (Reynaert, et al., 2014), KorAP (Banski, et al., 2013),
Corpus Workbench (Evert & Hardie, 2011), Sketch Engine (Kilgarriff, et al., 2004), PaQu (Odijk,
2015), GrETEL (Vandeghinste, et al., 2014) and Corpuscle (Meurer, 2012).

Although many of these provide partial coverage of the listed requirements, as can be seen from our
findings listed in Table 1, none of them provides a balanced coverage to be immediately applicable to

3 https://www.nederlab.nl/
4 https://github.com/meertensinstituut/mtas

Selected papers from the CLARIN Annual Conference 2016

20

our projects at hand. It thus became clear that, if any of these existing solutions were to be used, they
would need to be modified to suit our needs. It should also be noted that the presented list is not
considered to be exhaustive, but indicates the functional scope of the project. Other, non-functional,
factors in the system choice were a preference towards a widely adopted and supported open source
framework with clear design principles an active community maintaining the framework. This allows
us to benefit from new insights gained and new progress made by the wider community and minimizes
the risk of getting stuck in a dead-end program. Should such a framework reach its end-of-life then
most likely it will be possible to secure a graceful migration path towards other systems.

As a development approach, new features were to be added using an iterative approach with short
development cycles. This helps to identify risks in early stages of development and prevents over-
engineering. ‘Gold plating’ is to be avoided, focusing on only delivering those features that are
relevant to the use cases and research questions at hand.

Looking at the requirements it becomes clear that the open source and scalability requirements
narrow the choice to only a limited number of systems. The Corpus Workbench is considered to be
nearing its end-of-life judging from the new developments at IMS. Initial tests with Neo4J indicated
that, even with adjustments, for graph databases such as Neo4j, performance and scalability is
expected to remain problematic: the more general graph structure prevented us to take full advantage
of the sequential nature of annotated text with reasonable response times. The Corpuscle system,
besides its small user community and our inability to locate the source code, is considered to a rather
exotic implementation being written in Common Lisp.

The BlackLab solution, being based also on Lucene, may seem to have some resemblances with our
approach, although in Mtas we choose to take a completely different approach to represent distinctive
annotation layers and hierarchical structure in Lucene. However, in our initial attempts to extend the
BlackLab functionality, starting with taking advantage of the advanced scalability, sharding and other
options provided by Solr, such as faceting, it became clear that the underlying architecture of the
system prevented us from doing so without significantly altering the underlying code base. Rather than
modifying the complete code base we choose to re-implement the system in such a manner that it was
interoperable with Solr from the start.

Solr/Lucene is fast, scales well, and has a large basis of users as well as developers. The latter
stands in sharp contrast to several existing corpus search and management systems, for which one or
few developers have the task of maintenance and further development if the system. With Solr/Lucene
one gets speed and scalability almost for free which makes it an interesting option as an
implementation basis. Also, we had already gained considerable experience using Solr/Lucene for
metadata and plain text indexing, it ties in well with existing infrastructure components and it provides
good options for scalability and large corpus maintenance through its sharding functionality. Sharding
refers to the possibility to create horizontal partitions of the data. Horizontal partition is a term that
originates from the database community and refers to splitting one or more tables by row. In Solr,
shards have one or more replicas and each replica is a core. A core refers to a single index and
associated transaction log and configuration files. In our use cases, individual collections or sub
collections can be indexed into separate cores and, using the sharding features, be addressed separately
or collectively.

Selected papers from the CLARIN Annual Conference 2016

21

C
o

rp
u

s
W

o
rk

b
en

ch

S
k

et
ch

 E
n

g
in

e

P
aQ

u

G
rE

T
E

L

B
la

ck
L

ab

C
o

rp
u

sc
le

N
eo

4
J

S
o

lr

S
o

lr
 +

 M
ta

s

Open source ✓  ✓ ? ✓ ? ✓ ✓ ✓

Highly scalable ✓ ✓   ✓ ? ✓ ✓ ✓

Distributed search ? ?    ? ✓ ✓ ✓

Arbitrary (CMDI) metadata schemas      ? ✓ ✓ ✓

Annotated text ✓ ✓ ✓ ✓ ✓ ✓   ✓

- full support annotations   ✓ ✓     ✓

- hierarchical structure   ✓ ✓     ✓

- configurable mapping of input format on index         ✓

- support FoLiA annotation format   ✓  ✓    ✓

- corpus query language (CQL) ✓ ✓   ✓ ✓   ✓

- full statistics  ?       ✓

- term vectors over any result document set ✓ ✓       ✓

- grouping ✓ ✓   ✓ ✓   ✓

- faceting         ✓

- keyword in context (kwic) ✓ ✓ ✓ ✓ ✓ ✓   ✓

Table 1: Overview findings native coverage of our specific requirements for several existing solutions
directed towards searching annotated text and/or structures.

3 Extending Lucene and Solr

Basic Lucene search functionality is based on the idea that data is grouped into documents. Each
document consists of several fields and each field can have multiple values. Using this approach for
metadata purposes, several values of genre, e.g. fictie and proza, can be associated with each
document. For fields containing textual data, position information is available for each value. To this
existing Lucene approach, we add annotations and structure by using prefixes to distinguish between
text and different annotations. Annotations and structure are stored together with text in a separate
designated type of Lucene field, thus providing simultaneous access to traditional Lucene fields for
storing metadata features and Mtas enabled content. This provides a direct solution to store and search
for annotations on individual words within a text, and only an adjusted tokenizer is needed to offer the
correct token stream to the indexer. Ranges of words, distinct sets of words (e.g. named entities) and
hierarchical relations are stored as a payload A payload, in Lucene terms, refers to an arbitrary array of
bytes associated with a Lucene token at a certain position. Several additional extensions are used
implementing different query strategies, most of them extend default Lucene methods. Our extension
assumes a basic tokenization enriched with annotations on both single and multi-token levels. In most
cases word level tokenization is used. It also possible to define other tokenizations, for example at the
morpheme level, and in this case words will usually span multiple tokens. Table 2 provides a
representation of various layers expressed in our index. Single and multi-token elements can be
distinguished in the position column and parent hierarchy may be derived from the parent column.
Prefixes displayed in this table are described through the configurable mapping (see 3.1).

Selected papers from the CLARIN Annual Conference 2016

22

Id Offset Position Parent Payload Prefix Postfix

72 1443 8100 0 5 s s

0 1515 1536 0 72

t Amsterdam

1 1515 1536 0 72

t_lc amsterdam

2 1605 1616 0 3 1.0 feat.spectype deeleigen

3 1540 1668 0 72 1.0 pos SPEC

4 1674 1683 0 72

lemma Amsterdam

53 5458 5617 0 72 0.885417 chunk NP

56 6122 6324 0 72

entity loc

5 1808 1822 1 72

t is

6 1808 1822 1 72

t_lc is

7 1894 1905 1 10 0.999891 feat.wvorm pv

8 1938 1949 1 10 0.999891 feat.pvtijd tgw

9 1984 1995 1 10 0.999891 feat.pvagr ev

10 1826 2037 1 72 0.999891 pos WW

11 2043 2052 1 72

lemma zijn

54 5625 5777 1 72 0.993895 chunk VP

…

48 5019 5105 0 49

dependency.dep

49 4880 5120 0 1 72

dependency su

47 4936 5014 1 49

dependency.hd

…

66 7550 7628 1 68

dependency.hd

67 7633 7714 4 68

dependency.dep

68 7410 7729 1, 4 72

dependency predc

…

Table 2 Sample representation of Mtas index showing offsets, positions and postfix information for
various prefixes.

Lucene uses an inverted index, storing the mapping from content, such as a word, to its location in a
document for quickly retrieving search results and location in a text. While the inverted index plays an
important role in most search operations, especially for dealing with multiple tiers in annotations it is
also necessary to use forward indexes. These play an important role in result delivery processes such
as keyword-in-context, lists and grouping functionality. We currently provide three main types of
forward indexes for each available document, based on position, parent id and object id. These indexes
are created and updated automatically when documents are added or deleted, or when cores are
merged or optimized5.

From a maintenance perspective, this approach provides the possibility to index collections
separately into separate cores and simply activate new cores using Solr. Alternatively, separate cores
can be merged into a single core as well. This is particularly useful when working with large data sets.
One of our projects aims to make large Dutch annotated text corpora available to the scientific
community. Using separate cores for the indexing process allows us to prepare these corpora in
parallel and perform additional checks on metadata and content before merging or adding the new core
to the set of Solr cores available for search and retrieval in the production environment.

3.1 Indexing and configurable mapping

The document indexing process itself is a complex process where the original text document is
converted to a stream of tokens with possibly multiple tokens on the same position, addition of
prefixes, interpretation of ranges and sets of positions as a token, assignment of unique subsequent ids

5 A special codec extending the default postings format is used. By using this codec, the required files for the forward index
are automatically constructed and managed.

Selected papers from the CLARIN Annual Conference 2016

23

to all tokens and finally the construction of individual payloads containing all the right references.
Depending upon the processed annotation structures and requested search capabilities, a series of
choices has to be made to index available documents. We provide a configurable tokenizer that has
been tested against FoLiA, a WPL Sketch Engine like format and TEI among others. Configuration of
this tokenizer can be specified in a separate file allowing search options to be adjusted and configured
for specific needs. The indexer can thus be instructed to use a different indexing strategy for each
individual file to be indexed. Also, the process may be instructed to differentiate between locally
available files and remote ones.

The configurable tokenizer is particularly useful in situations where documents using multiple
annotation formats are imported into the same index. Apart from the mapping challenges of multiple
tag sets, the relevant information content that needs to be extracted from the annotated documents
often occurs in different locations in the document. In our projects, by using configuration files put
together to match both specific document structure and user requirements, we are also able to collect
all information for more complex structures like e.g. entities, paragraphs and chunks from the
documents, and include this in the token stream.

The indexer can be instructed about which configuration file to use when indexing a specific
document type. In one of our current projects, this is used to index multiple annotation formats
produced by different annotation services. Here, users transfer their textual documents to a personal
workspace, request some processing service to work upon the document and the resulting annotated
document is automatically indexed using this system. Since many of the annotation services produce
different formats, this method at least provides the possibility of searching and retrieving such
annotations from one uniform index. This method is also considered useful in combination with our
archiving software allowing us to make the contents of the archive available not only at the metadata
level, but also at the annotated content level while maintaining the flexibility to allow multiple
annotation formats to be stored in our repository.

We also took direct advantage of this setup in one of our projects where three data sets were
indexed with part of speech encodings from three different tag sets. Rather than using a runtime query
expansion mechanism we decided to use one of the tag sets as a pivot, mapped all other tag sets onto
the pivot and indexed both the original tag and pivot tag sets values in our index. Each word is thus
annotated with multiple part of speech tags and in some cases, even multiple part of speech tags from

the same set (e.g. V  V-fin or V-infin).

4 CQL support

Using the new approach based on prefixes and adjusted payloads, the default query parsing
mechanisms of Solr and Lucene in most cases will not suffice. Our choice of query language support
is furthermore largely motivated by the idea that this should match closely with current practices in the
field. This reduces the learning curve for our potential end user community. This also has the practical
advantage that front-end development may reuse some of the visual query construction mechanisms
already available in the domain targeted at various proficiency levels (beginner, advanced, expert) of
end users. Therefore, we support Corpus Query Language introduced by the Corpus Workbench. A
CQL parser, based on JavaCC, has been developed mapping CQL queries onto the provided Mtas
query methods. Not only does this language seem to be easily apprehensible by users with more
specific search requirements, the syntax of this query language also directly matches the prefix/postfix
structure we incorporated into the Mtas index structure. A query for a word with part-of-speech
annotation noun, represented in the index as a single position token with prefix pos and postfix value
N, is expressed in CQL as

[pos="N"]

while the search for a paragraph, represented in the index as a multiple position token with prefix p,
can be performed using angular brackets

<p/>

Selected papers from the CLARIN Annual Conference 2016

24

The use of the and-operator & and the or-operator |, together with the use of parentheses, provides
advanced options for more complex conditions on single words. Multiple conditions may be lined up
into sequences, a question mark can be used to mark a part as optional; multiple occurrences of the
same part may be indicated with a single number or a minimum and maximum between curly
brackets, e.g.

[pos="LID" | lemma="the"][pos="ADJ"]{0,2}[pos="N"]

[pos="ADJ"]([word="," | word="and"][pos="ADJ"])?[pos="N"]

This can be even further extended by combining these constructed conditions on words and

sequences to a new condition by using containing or within operators, e.g.

<entity="loc"/> within (<s/> containing [lemma="amsterdam"])

The conventions to search for words at the beginning or end of multiple token annotations, e.g. an
adjective at the start of a sentence, or a noun within three positions before the end of a paragraph,
closely follow the syntax as known from other formats using this angle bracket notation.

<s>[pos="ADJ"]

[pos="N"][]{0,2}</p>

By using a dash, the position of a word in the original document can be referred to, e.g. to get the

first word of a document, or to query for an adjective within the first ten words

[#0]

[#0-9 & pos="ADJ"]

In addition to the standard CQL constructs shown above some additional extensions were made to
the allow operations that were encountered in specific use cases under consideration while developing
Mtas. One feature that was introduced is the ability to request the full prefix list from the system.
Although not directly expressed in CQL, it is highly useful to be able to automatically extract this list
given that the underlying index may contain arbitrary prefixes depending on the configuration settings
while indexing. This list also distinguishes between single and multiple positions allowing to adjust
any CQL query accordingly.

The not operator is supported by specifying an exclamation mark in front of the prefix

[!pos="ADJ"]

Many CQL implementations allow the user to put a word between double quotes as a short hand

notation for querying for a single word using the bracket notation. However, since Mtas offers the user
full freedom in choosing prefixes to distinguish the different annotation layers, such a notation would
be ambiguous without defining the default prefix to apply for such requests. Therefore, requests like
the following only can be formed when such a default prefix is provided

"the" [pos="ADJ"]?[pos="N"]

Furthermore, the multitude of annotation layers may result in queries not matching some results

because of annotations unknown to the user. For example, some texts may contain anchors, indicators
of some event occurring after the first and before the second word, that would for the following two
examples cause the second query to have matches that a user unfamiliar with these anchors would
have expected also to match the first query

[pos="ADJ"] [pos="N"]

[pos="ADJ"]<anchor/>?[pos="N"]

Selected papers from the CLARIN Annual Conference 2016

25

To overcome this problem, an optional ignore query can be provided together with each CQL
expression, to define everything that should be ignored when searching for sequences and recurrences.
By describing the anchor in such an ignore query, the first of the two expressions will now match
exactly the same expressions as the latter.

In some of our use cases, the use of a lexicon service to expand queries was required. Instead of
defining an explicit value between double quotes, we therefore allow the use of a variable as postfix
within the condition of a single position token, where a list of possible values for this variable should
be always provided, e.g.

[pos="ADJ"][lemma=$1]

where $1 will be replaced with items from a list, e.g.: {"horse", "cow"}

Although many of the basic queries for annotated texts seem to be covered by our implementation

of CQL, especially more complex queries involving syntactic phenomena, such as dependencies, are
expected to demand additional query language features to be able to take full advantage of the
capabilities of the index.

5 Result delivery

One of the primary use cases for the system, the Nederlab project, currently provides access, both in
terms of metadata and annotated text, to over 15 million items for search and analysis as specified in
Table 3. Collections are added and updated regularly by adding new cores, replacing cores and/or
merging new cores with existing ones. Currently, the data is divided over 23 separate cores. The
Nederlab underlying hardware platform is a Dell PowerEdge R730 - Xeon E5 - 2630L v3 (1.8GHz) - 8
x 16 GB - 2 x 2 TB HDD with 67 GB of the available 128 GB memory assigned to Solr.

For 14,663,457 of these
documents, as described in
Table 4, annotated text
varying in size from 1 to over
3.5 million words is included.
The remaining part of the
15,859,099 documents
mentioned in Table 3
concerns descriptions of
persons, volumes and other
items for which only
metadata is available.

On querying the index,
Solr allows to filter documents with conditions on metadata in regular fields. By providing a parser
plugin, this filtering is extended with the possibility to use CQL conditions on annotated text within
reasonable time. Searching for all 1,944,167 documents containing an adjective followed by a noun6
takes less than 4 seconds, searching for the 161.734 documents with a sentence containing both the
word amsterdam and the word rotterdam takes 6 seconds. Additional restrictions on metadata only
reduces the number of potential hits, and therefore result in faster search results.

Many of the features described below have been integrated into the working environment of one of
our main infrastructure projects where the translation of statistical information to a user-friendly
representation for the end user is performed using pie charts, time line views and other visualization
methods. Notice that, although we tried to use both illustrative and realistic examples, the quality of
the provided annotations in part of the resources is not quite up to standard, which may sometimes
lead to unexpected results.

6 Only 2.217.779 documents contain text with part of speech annotation.

 Total Mean Min Max

Solr index size 1,146 G 49.8 G 268 k 163 G

Solr documents 15,859,099 689,526 201 3,616,544

Table 3: Size and content of the Solr index consisting of 23 separate
cores within the Nederlab project (January 2017).

 Total Mean Min Max

Words 9,584,448,067 654 1 3,537,883

Annotations 36,486,292,912 2,488 4 23,589,831

Table 4: Number of available words and annotations for the
14,663,457 documents containing annotated text (January 2017).

Selected papers from the CLARIN Annual Conference 2016

26

5.1 Statistics

Whereas Solr only produces statistics on the number of documents, additional methods had to be
implemented to produce, within the (filtered) set of documents, statistics on the number of words and
the number of hits for specific CQL queries. Furthermore, computing statistics on the composition of
these numbers within documents should be possible, e.g. statistics on the number of hits for a CQL
query divided by the total number of words within each document.

Number of documents 138,152 Geometric mean 0.16290333781014

Sum 23894.977875106 Variance 0.002695471072453

Mean 0.17296150526309 Population variance 0.0026954515615442

Sum of squares 4505.2933656369 Standard deviation 0.051917926311179

Sum of logs -250690.38070139 Median 0.17269981462327

Maximum 0.45167923235093 Skewness 0.0043594322359785

Minimum 0.00070521861777151 Kurtosis 0.59294319460155

Quadratic mean 0.18058553060646

Table 5: Statistics for the number of adjectives followed by a noun divided by the number of nouns
within all documents containing an adjective followed by a noun, and with at least 2000 words,
computed in 53 seconds.

As illustrated in Table 5, several

statistical properties can be computed,
where more advanced items like
median, skewness, and kurtosis tend to
require more time, since not only a few
aggregations but all individual values
on document level have to be collected
from the participating cores.

Besides these properties, also
frequency distributions can be
retrieved that can be used to create a
graphical representation of the
distribution of the studied value. Figure
1 demonstrates such a distribution for
the example described in Table 5.

Figure 1: Frequency distribution for the number of
adjectives followed by a noun divided by the number of
nouns within all documents containing an adjective
followed by a noun, and with at least 2000 words,
computed in 56 seconds.

0

1000

2000

3000

4000

5000

6000

0

0
.0

2
4

0
.0

4
8

0
.0

7
2

0
.0

9
6

0
.1

2

0
.1

4
4

0
.1

6
8

0
.1

9
2

0
.2

1
6

0
.2

4

0
.2

6
4

0
.2

8
8

0
.3

1
2

0
.3

3
6

0
.3

6

0
.3

8
4

F
re

q
u

e
n

cy

Relative frequency

Selected papers from the CLARIN Annual Conference 2016

27

5.2 Faceting

Taking advantage of the available metadata,
statistics can be computed for each occurring value
of one or multiple metadata fields. This basically
extends the available Solr options for faceting with
the previously described statistical extensions.

Again, the mean number of adjectives followed
by a noun divided by the number of nouns is
computed, but now for all documents within a
decade. In Figure 2 this mean value is plotted for
each decade between 1270 and 2010 for all
documents containing at least one noun.

Besides based on classic metadata fields like
year of publication, faceting can also be based on
the number of words per document, which is
directly derived from the annotated text during
indexing. This is illustrated in Figure 3, where
instead of using decades, the values found are
grouped by and plotted against number of words.

Also, more advanced statistics are available,
e.g. the standard deviation as a measure of spread
around the mean value as has been illustrated in
Figure 4.

0

0.05

0.1

0.15

0.2

0.25

1270 1470 1670 1870

Year

 Figure 2: The distribution of the number of
adjectives followed by a noun divided by
the number of nouns: the mean value
computed over all documents with
publication year within the same decade is
plotted against all 74 adjoining decades
between 1270 and 2010 for all documents
containing at least one noun.

0
0.05

0.1
0.15

0.2
0.25

0

7
0

0

1
4

0
0

2
1

0
0

2
8

0
0

3
5

0
0

4
2

0
0

4
9

0
0

5
6

0
0

6
3

0
0

7
0

0
0

7
7

0
0

8
4

0
0

9
1

0
0

9
8

0
0

Number of words

Figure 3: The distribution of the number of
adjectives followed by a noun divided by the
number of nouns. The mean value computed
over all documents with size within the same
range of size 100 is plotted against all 100
adjoining ranges of document sizes between 0
and 10,000 for all documents containing at
least one adjective followed by a noun.

Selected papers from the CLARIN Annual Conference 2016

28

Figure 4: The distribution of the number of adjectives followed by a noun divided by the number
of nouns. The mean value and standard deviation computed over all documents within the same
genre is plotted for all genres, sorted ascending by mean value, for all documents containing at
least one noun.

Finally, in Figure 5 the evolution of the distribution for the mean sentence length of documents

within a decade is plotted, illustrating the possibility to study statistics over multiple dimensions.

Figure 5: Evolution over time of the distribution for the mean sentence length of documents within a
decade; Distribution is plotted for all documents containing at least one sentence and published in or
after 1650, necessary data computed in 198 seconds.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0
4

8
12

16
20

24
28

0

0.01

0.02

0.03

1
6

5
0

1
7

2
0

1
7

9
0

1
8

6
0

1
9

3
0

2
0

0
0

Sentence length

F
ra

ct
io

n
 d

o
cu

m
e

n
ts

w
it

h
in

 d
e

ca
d

e

Year

Distribution mean sentence

length documents within

decades over time

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30
1

6
5

0

1
6

9
0

1
7

3
0

1
7

7
0

1
8

1
0

1
8

5
0

1
8

9
0

1
9

3
0

1
9

7
0

2
0

1
0

Year

Selected papers from the CLARIN Annual Conference 2016

29

5.3 Grouping

The previously presented possibilities of faceting can be seen as statistically grouping results based on
metadata. Grouping of query results based on one or multiple annotation layers on the other hand
produces lists of occurring values with number of occurrences and documents, sorted by frequency in
descending order. These type of queries can be computationally quite expensive, especially for queries
with large numbers of hits and also large numbers of distinct associated values for the annotation
layer(s).

When grouping the occurring part-of-speech

annotations associated with a query for the words
de or het, the number of hits is large:
459,302,283 in 15,859,099 documents. However,
there are only ten distinct associated values for
the part-of-speech annotation layer, therefore
performing this grouping is still possible within
reasonable time. The result is illustrated in Figure
6 with, due to the large range, frequencies plotted
on a logarithmic scale for each of the occurring
values.

On grouping the occurring terms for adjectives

followed by lemma liefde and for adjectives
followed by lemma haat, the number of distinct
associated values for the occurring terms, 7,400 and 2,605, is much higher. But, since the numbers of
hits, 86,973 and 10,381, are substantially lower, performing such a grouping can still be performed
within reasonable time. The result, the most frequent adjectives for lemma’s liefde and haat, are listed
in Table 6 and Table 7

ADJ + “liefde” documents hits

grote 2,539 3,115

zyne 901 1,968

eene 1,213 1,867

vol 1,454 1,798

ware 1,337 1,749

myne 617 1,586

groote 1,182 1,504

christelijke 991 1,385

eeuwige 899 1,375

oude 1,038 1,166

Table 6: Grouping of the occurring terms for the
86,973 adjectives followed by lemma “liefde”.
Computing the 7,400 unique values took 295
seconds, the 10 most frequent values are listed
together with number of hits and documents.

ADJ + “haat” documents hits

vol 333 363

eeuwige 46 237

algemeenen 211 234

blinde 166 175

felle 149 160

diepe 122 133

fellen 117 128

doodelijken 115 121

onderlinge 105 115

ouden 100 113

Table 7: Grouping of the occurring terms for the
10,381 adjectives followed by lemma “haat”.
Computing the 2,605 unique values took 181
seconds, the 10 most frequent values are listed
together with number of hits and documents.

Taking advantage of the full possibilities offered by CQL, grouping can be used to retrieve more

complex results, e.g. all person or location entities occurring within sentences containing the word
rembrandt, as listed in Table 8 and Table 9. Notice the multiple token results in the list of person
entities.

Figure 6: Number of occurrences and documents
by grouping a query on “de” or “het” on the
associated part-of-speech over all documents,
computed in 209 seconds.

1.E+00

1.E+02

1.E+04

1.E+06

1.E+08

L
ID

V
N

W

S
P

E
C N

B
W

W
W V
Z

T
S

W

A
D

J

V
G ?

Words

Documents

Selected papers from the CLARIN Annual Conference 2016

30

 documents hits

rembrandt 3,475 15,009

rubens 354 506

van den 178 274

van gogh 173 206

vermeer 147 192

jan steen 130 156

van der helst 86 152

saskia 69 148

hals 83 144

shakespeare 100 138

Table 8: The 10 most frequent person entities
within sentences containing Rembrandt, computed
in 65 seconds.

 documents hits

amsterdam 407 696

nederlandse 153 216

nederland 143 178

nachtwacht 122 170

holland 96 132

leiden 82 125

un 61 122

land 96 118

rijn 92 118

hollandse 69 92

Table 9: The 10 most frequent location entities
within sentences containing Rembrandt,
computed in 77 seconds.

Finally, grouping does not need to be restricted to a single layer of annotation, as can be seen when
grouping on term, part-of-speech, and form for all occurrences of the lemma zijn. The 5 most frequent
combinations occurring in documents from 1800 are listed in Table 10.

term pos tense form documents hits

is WW present pv 913 77,542

was WW past pv 665 44,558

zijn WW present pv 251 24,159

zijne VNW - - 198 20,546

waren WW past pv 456 14,794

Table 10: The 5 most frequent combinations of term, part-of-speech and form when grouping for
occurrences of the lemma zijn in documents from 1800, computed in 29 seconds.

5.4 Termvector

A commonly requested feature for information retrieval systems working on text corpora is the ability
to extract term lists from retrieved result sets. Our solution is capable of delivering termvectors on any
of the annotation layers available in the index (words, lemmas, part of speech, named entities or
otherwise) and, combined with the statistical features described above, deliver information on the
distribution characteristics in the result set. The list of terms can be sorted on term or frequency, where
the latter is more computationally expensive and complex when retrieving results over multiple cores,
and can be restricted by a regular expression and/or a user defined set of words.

Selected papers from the CLARIN Annual Conference 2016

31

D
o

cu
m

en
ts

T
o

ta
l

M
ea

n

M
ed

ia
n

M
ax

M
ea

n

M
ed

ia
n

S
td

.
d

ev
ia

ti
o

n

K
u

rt
o

si
s

S
k

ew
n
es

s

Term Frequency Relative frequency

welke 4,170,151 12,242,628 2.94 1 3,996 0.0032 0.0021 0.0046 223.4 10.9

zijne 2,628,115 7,541,324 2.87 1 4,523 0.0030 0.0020 0.0036 56.1 5.29

hunne 2,291,385 5,237,717 2.29 1 3,994 0.0025 0.0016 0.0031 63.8 5.53

goede 2,268,787 4,081,615 1.80 1 1,318 0.0027 0.0015 0.0043 709.2 14.2

einde 1,954,052 3,351,655 1.72 1 893 0.0021 0.0012 0.0031 4932 27.3

Table 11: List of the 5 most frequent terms containing 5 letters and ending with e for all
14,663,457 documents. Besides the number of documents, and further statistics on the frequency,
also statistics on the relative frequency within the documents are computed in 172 seconds.

Computing data for the list in Table 11, describing the most frequent terms containing 5 letters and
ending with -e for all documents in all participating cores, took less than 3 minutes. Besides the
number of documents, statistics on both frequency and relative frequency are included. The total
length of the termvector, describing the total number of matching terms, is not computed by default,
since this potentially is a very heavy operation.

5.5 Document

Although computing the full termvector over a set of documents can be quite expensive, as noted in
the previous section, this type of computation is less excessive when only a single document is
involved. In Table 12, the frequency distribution for a Dutch translation of the bible is illustrated,
together with the ten most frequent terms for this document. Computing these results took
approximately 6 seconds.

words 2,409,382

unique 47,421

term frequency

ende 126,688

de 97,311

van 50,364

het 38,744

in 34,849

dat 33,020

die 30,010

den 29,271

te 27,758

en 26,516

Table 12: Frequency distribution for a single document: the frequency distribution for a Dutch bible
translation is computed within 6 seconds; the total number of words and total number of unique words
together with the 10 most frequent terms are listed and the distribution of the frequency of occurrence
is plotted, demonstrating behaviour as predicted by Zipf’s law.

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

N
u

m
b

e
r

o
f

u
n

iq
u

e
 w

o
rd

s

Frequency of occurrence

Frequency distribution

Selected papers from the CLARIN Annual Conference 2016

32

5.6 Keyword-in-context (kwic)

Using Mtas as a plugin, the default presentation of
results from Solr, providing (part of) the list of
matching documents and listing stored values for all
or limited set of fields is extended by providing the
option to list a set of matches to one or multiple CQL
queries. This keyword-in-context like functionality
provides the user with the option to investigate
specified annotations on or around the location of
hits within the annotated text. This includes multiple-
position tokens, positions and hierarchical structure,
as can be seen from the example in Figure 7 where
such a kwic result from a query for

[pos="LID"][pos="ADJ"]

"Amsterdam"

is visualized. The application of a forward index, as
described previously, makes the additional time
needed to generate these representations almost
always negligible compared to the time needed for the
execution of the query involved.

5.7 Consistency checks

When developing Mtas, no suitable reference sets of resources, queries and results were available to
test the provided functionality. Direct checks on consistency of the indexation process were therefore
limited to manual tests on relatively small documents. However, much of the tokenization process can
be tested indirectly with queries, using general knowledge on the structure of the resources. For
example

• For most documents, the number of words satisfying the condition of being contained within a
sentence, must equal the total number of words.

• For most part-of-speech annotated documents, the sum of the total number of words within each
occurring part-of-speech value, must also equal the total number of words.

Furthermore, many aspects of the implemented Mtas functionality could also be tested by
comparing results for specific queries. Consistency in these results from different methods, some of
them even being native Solr functionality, does indirectly provide a test on those methods themselves.
For example

• The number of documents for each term in the native Solr termvector should equal the number
of documents in the Mtas termvector result, and also the number of hits for each separate term
from the Mtas termvector should equal the number of hits in the Mtas statistics for a query to
this specific term.

• The number of documents in native Solr facets should equal the number of documents in the
corresponding Mtas facet, and also the number of hits within the Mtas facet response should be
reproducible by requesting Mtas statistics with corresponding conditions on the metadata.

Finally, for the implemented Mtas functionality, consistency checks were done in comparing query
results over separate cores with results where sharding was applied.

Figure 7:Keyword-in-Context result for a
query to an article and and adjective
followed by "Amsterdam"

div

... p

... s

... het

LID

drukke

ADJ

Amsterdam

N

Location

...

...

Selected papers from the CLARIN Annual Conference 2016

33

6 Performance

Performance measurements strongly depend on the number of documents, document size, type of
query performed and available hardware options 7 Together with differences in implemented
functionality, this makes it difficult to really compare Mtas performance with e.g. the solutions listed
in Table 1. We tried to provide some indication of the performance by including the required search
time in most of the previously introduced examples.

The advantages of a distributed setup in the process of adding and updating data have already been

mentioned. The influence of distribution on performance of our implemented system can be illustrated
more explicitly. For the graph in Figure 8, basic statistics for the number of sentences were computed
multiple times for a setup with a single core, and for setups with multiple cores.

Figure 8: Measurements of query time for basic statistics on the number of sentences against number
of matching documents for a single core setup, and for setups with multiple cores varying from two to
fourteen.

As can be seen from the graph, most measured times for setups with multiple cores lie below the

linear trendline from the single core setup. Total query time is likely strongly to be determined by disk
access speed, where the spread in time possibly is caused by the availability time being influenced by
disk access in the same location shortly before. The upper and lower limit in this band do not seem to
be heavily influenced by the number of cores and/or documents.

7 Underlying hardware platform is Dell PowerEdge R730 - Xeon E5 - 2630L v3 (1.8GHz) - 8 x 16 GB - 2 x 2 TB HDD;
currently, with 67 GB of the available 128 GB memory assigned to Solr.

0

2

4

6

8

10

12

0 5 10 15

T
im

e
 (

s)

Number of documents Millions

1 core 2 cores 3 cores 4 cores

5 cores 6 cores 7 cores 8 cores

9 cores 10 cores 11 cores 12 cores

13 cores 14 cores Linear (1 core)

Selected papers from the CLARIN Annual Conference 2016

34

Figure 9: Measurements of query time for computing a termvector against number of matching
documents for a single core setup, and for setups with multiple cores varying from two to fourteen.

Another illustration of performance for distributed queries is given in Figure 9, where the required

time to compute a termvector sorted by frequency is measured, again in a single and multiple core
situation. Again, most measured times for setups with multiple cores lie below the linear trendline
from the single core setup. Furthermore, we seem to be able to distinguish two levels in this plot that
can be explained by the algorithm used to efficiently compute a termvector over multiple cores. In this
approach, sometimes a second termvector has to be computed by individual participating cores to be
able to compute the required merged result, especially when the number of documents and/or
participating cores increases.

7 Conclusion and future work

We provide a scalable Solr/Lucene based solution, capable of performing CQL queries across a range
of annotation formats. Query capabilities have been extended into the statistical domain allowing
gathering of statistical information from the retrieved result sets. Our system supports retrieval of
termvectors across search results documents. Result delivery features key word in context, listings and
groupings.

Although most of the requirements for e.g. the Nederlab project are probably sufficiently covered

by the current implementation, multiple additional features seem to be desirable. By using technical or
performance related considerations and by watching the search and analysis techniques applied in the
research fields involved, several suggestions can be made:

• Exploring the hierarchical structure, already fully integrated in the index structure, is not
covered very well in the CQL query language. Further development, e.g. integrating an
additional query language to exploit this structure and possibly adjusting the index structure to
new types of queries, should preferably be done in collaboration with specialized researchers
and based on specific use cases.

• Queries containing CQL conditions seem to perform reasonably well, but little or no attention is
paid to including e.g. the number of hits in determining the score value for each document.

0

5

10

15

20

25

30

35

40

0 5 10 15

T
im

e
 (

s)

Number of documents

Millions

1 core

2 cores

3 cores

4 cores

5 cores

6 cores

7 cores

8 cores

9 cores

10 cores

11 cores

12 cores

13 cores

14 cores

Linear (1 core)

Selected papers from the CLARIN Annual Conference 2016

35

Within the use cases at hand, currently no clear thoughts seem to be available with respect to the
desired manners of weighing documents. Further adjustments to the scoring mechanism should
be accompanied by theory and/or explanations to guarantee acceptance and understanding.

• Within the research areas of use cases involved, new techniques concerning clustering and
analysis seem to gain popularity, especially when huge amounts of data are involved. Although
some experiments related to these techniques are planned, these projects all seem to rely on very
basic and often inefficient use of the possibilities offered by Mtas. Often, users plan to export
potentially very large result sets and analyze them with the external tools they are used to.
Integrating the computation of e.g. covariance matrices, and furthermore offering options to
reuse the found factorizations in further search requests, although probably still keeping the
cluster and factorization computations outside Mtas, seems a far more efficient approach,
probably also directly applicable by other research projects.

• Whereas currently in Mtas annotated text is assumed to contain a basic granularity on word
level, enriched with annotations on both single and multiple word level, some textual data does
not completely fit into this scheme. Fully including annotated text containing a translation for
example will be problematic, since translations will align probably on sentence or paragraph
level, but not (always) on the level of words. Including a decomposition of words into syllables
and morphemes also does not seem to fit the current structure.

• As illustrated in examples above, many statistical properties on the number of hits already can
be determined. Less attention is paid to e.g. the distribution of these properties within single
documents, bootstrapping methods and applying more advanced techniques in comparing
documents, although these techniques do seem to applied regularly in the research areas
involved.

• Producing termvectors over multiple cores is reasonably fast, but only regular expressions or
explicit lists can be used to restrict the outcome. There seems to be a need to reduce these
termvectors even further by using conditions on additional layers, e.g. only nouns. To achieve
this, without falling back on far less performing grouping methods, adjustments to the
indexation process have to be made. This may also improve the speed of other queries involving
conditions on multiple annotation levels on the same position or word.

• To get the most relevant terms, TF-IDF for termvectors should be made available as statistic
and sort condition, both on document level and for multiple documents within some
configurable reference set.

Important for all future development seems to be to focus on a combination of performance and more
advanced analysis techniques, preferably driven by use cases from active projects and in collaboration
with researchers with experience and basic knowledge of the algorithm involved.

Selected papers from the CLARIN Annual Conference 2016

36

References

Banski, P. et al., 2013. KorAP: the new corpus analysis platform at IDS Mannheim.. s.l., s.n.

Brouwer, M. et al., 2014. Nederlab, towards a Virtual Research Environment for textual data.. s.l., s.n.

Brugman, H. et al., 2016. Nederlab: Towards a Single Portal and Research Environment for Diachronic Dutch
Text Corpora.. s.l., ELRA, pp. 1277-1281.

Evert, S. & Hardie, A., 2011. Twenty-first century Corpus Workbench: Updating a query architecture for the
new millennium. Birmingham, s.n.

Kilgarriff, A., Rychly, P., Smrz, P. & Tugwell, D., 2004. Itri-04-08 the sketch engine. Lorient, s.n.

Meurer, P., 2012. Corpuscle – a new corpus management platform for annotated corpora. In: G. Andersen, ed.
Exploring Newspaper Language: Using the web to create and investigate a large corpus of modern
Norwegian. s.l.:John Benjamins.

Odijk, J., 2015. Linguistic research with PaQu.. Computational Linguistics in The Netherlands, Volume 5, pp. 3-
14.

Reynaert, M., Camp, M. v. d. & Zaanen, M. v., 2014. OpenSoNaR: user-driven development of the SoNaR
corpus interfaces.. s.l., s.n., pp. 124-128.

Vandeghinste, Vincent & Augustinus, L., 2014. Making a large treebank searchable online. The SoNaR case..
Reykjavik, s.n., pp. 15-20.

Selected papers from the CLARIN Annual Conference 2016

37

