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Abstract

Many ships today rely on Global Navigation Satel-
lite System (GNSS), for their navigation, where
GPS (Global Positioning System) is the most well
known. Unfortunately, the GNSS systems make the
ships dependent on external systems, which can be
malfunctioning, be jammed or be spoofed.

There are today some proposed techniques
where, e.g. bottom depth measurements are com-
pared with known maps using Bayesian calcula-
tions, which results in a position estimation. Both
maps and navigational sensor equipment are used
in these techniques , most often relying on high ac-
curacy maps, with the accuracy of the navigational
sensors being less important.

Instead of relying on high accuracy maps and low
accuracy navigation sensors, this paper presents an
idea of the opposite, namely using low accuracy
maps, but compensating this by using high ac-
curacy navigational sensors and fusing data from
both bottom depth measurements and magnetic
field measurements.

1 Introduction

Finding the way over great seas has been important
for thousands of years. The compass was invented
almost a thousand years ago, and the first nauti-
cal sea charts were used in Italy in the 13th cen-
tury. With a compass and a nautical sea chart, it is
possible to perform dead reckoning to estimate the
current location based on the previous location and
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the compass direction. In this technique, it is also
possible to compensate for the vessel’s drift and
sea current. But if one is not able to estimate the
drift and sea current accurately, the position error
starts increasing, as each estimation of the posi-
tion is relative to the previous one, which means
that the position error is accumulated over time.
This deficiency can be overcome in different ways.
By regularly determining the position compared to
known landmarks, the accumulation of error is re-
set. But if landmarks cannot be found because one
is on open water, either there is a need for increas-
ing the accuracy of the dead reckoning by using
better equipment (e.g. compass, logs (for speed),
gyro, accelerometers, inertial sensors), or there is
a need to use information about the environment
that can be seen out on open waters. During the
18th century the celestial navigation was invented,
which uses angle measurements to the sun, moon
and stars to greatly improve the long-term accu-
racy of navigation. Nowadays the celestial navi-
gation has almost completely been abandoned, be-
cause GNSS can determine the position accurately
and efficiently. The most common and oldest GNSS
system is GPS, but there are also other systems,
e.g. Galileo and Glonass.

The GNSS systems have made it very simple to
determine a vessels position with good accuracy,
but there are still some disadvantages. One im-
portant disadvantage is that the ship needs to rely
on external information from the GNSS satellites
which is sent to the GNSS receiver onboard. It is
quite simple to jam the radio reception from the
GNSS satellites, which results in that it is not pos-
sible to determine the position any more. Even
worse, it is possible to spoof the GNSS transmission
information with advanced equipment, resulting in
that an incorrect position is provided [8].
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If a dependency on the GNSS system is not de-
sired, and a more modern and a less time consum-
ing technique than the celestial technology from the
18th century is wanted, there might be some al-
ternatives. Some alternatives can be found in the
following research papers.

Reference [2] describes how systems on an air-
plane measure the elevation and compare it to a
known digital elevation map with a Particle Filter
(PF) algorithm. By doing so, the algorithm’s esti-
mation of the position eventually converges to the
correct position. A similar technique is used in [3]
for surface and underwater navigation, where the
bottom depth is compared to a high accuracy bot-
tom map with a PF algorithm. The same paper
also describes how almost the same PF algorithm
can be used to estimate the position by comparing
measured distances to the surrounding shore line
with a map of the same area. There is other in-
formation which can be used by particle filters for
positioning. The earth magnetic field surrounds the
earth, and is disturbed by ferromagnetic elements.
In an indoor environment, these disturbances are
normally bigger than the earth magnetic field it-
self [5], and both [4] and [5] suggest how to esti-
mate a position in an indoor environment with a
PF comparing magnetometer measurements to a
known magnetic map.

This paper presents an idea of how to perform
sensor fusion based on various types of PF calcu-
lations in order to estimate a ship’s position. By
using various types of measurements for the PF cal-
culations, and by relying on high accuracy naviga-
tion sensors, the probability of being able to obtain
the current position without having to rely on high
accuracy maps or GNSS data is high.

This paper is organized as follows: In Section 2,
first a brief discussion is given about Bayesian cal-
culations and how these can be used to estimate the
position of a ship. Then Particle Filters (PF) are
explained more in detail, and it is described how
e.g. bottom depth and magnetic fields can be used
for the Correction Step of the PF. Based on the
current available research, limitations and oppor-
tunities of this research is described in Section 3.
In Section 4 an idea of how to implement an algo-
rithm that correct the limitations is given. Further,
what has been implemented so far and what is left
of the implementation is presented. In Section 5,
concluding remarks are given.

2 Probabilistic position esti-
mation

2.1 Bayesian position estimation

The key problem we have is that we would like to es-
timate the position, but are not able to measure the
position directly. Instead we can measure other in-
formation, such as how the ship is moving, bottom
depth and magnetic field data. This can be mod-
eled as a Hidden Markov Model (HMM), where the
state (i.e. the position, attitude, velocity and accel-
eration) influences the data which can be measured.
Figure 1 illustrates how the state x(t) (i.e. posi-
tion) influences the data which can be measured,
denoted by y(t).

Figure 1: Each state (x(t)) in an HMM influences
the data which can be measured (y(t)). The posi-
tion is not possible to measure directly, but the
position will influence which bottom depth and
magnetic field vector that is measured. The state
in time ¢ (x(t)), contains the state position, atti-
tude, and acceleration. The measured quantities
(y(t)) which are influenced by the state, are at-
titude measurements, acceleration measurements,
bottom depth measurements, magnetic field mea-
surements, etc.

To get the best possible estimation of the state,
not only the present measurement is to be analyzed,
but all previous data. The equations for calculating
the probability of being in one state and going to
another state given the measurements at time ¢, are
given as follows:

p(@eg1 | Vi) = /Rn (i1 [ z)p(ze | Ye)day (1)

p(ye | 2e)p(wy | Yo_1)day
P(yt | Yt—l)

pxe | Ye) = (2)
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These equations are not analytically solvable,
and therefore a filter will instead be used for esti-
mation of the position. If the measurements and
transition functions would have been linear and
the measurement and process noise Gaussian, a
Kalman Filter would have been the optimal choice
to compute the position [6]. In our case the tran-
sition functions are non-linear and the measure-
ments have no Gaussian distribution, but instead
a highly multi-modal distribution. There are some
non-optimal extensions to Kalman Filters to han-
dle the issues with non-linearity and not having a
Gaussian distribution [1]. However, PF are more
flexible and have a built-in capability to handle
multi-modal distributions. Therefore, the PF al-
gorithm will be used in this paper.

2.2 Particle Filters for estimation of
the position

A Particle Filter (PF) is a Bayesian sequential
Monte Carlo method (SMC). It keeps track of
an object through a Probability Density Func-
tion (PDF), which may be non-Gaussian and even
multi-modal [1,7].

The objective of the PF is to evaluate p(X; |
Yo.t), where X; is the vector of all available states
in the time ¢, and Yj.; are all measurements up to
the time t. Instead of directly calculating p(X; |
Yo.¢), what has happened before time ¢ is modeled
into a large set of particles, where the number of
particles in each location and their weights estimate
how likely the position is. For each new time step,
the p(z; | Yy) is calculated for each particle.

Initially, the PF algorithm starts with a large
number of random samples (particles), where each
particle is given a weight that characterizes its qual-
ity. At the beginning, each particle has the same
weight. The estimated state is given by calculating
the weighted sum of all particles. There are three
important steps in the PF algorithm:

e Prediction
e Correction (Filtering)
e Re-sampling

During the Prediction Step, each particle is
moved according to a random value of the state
model including the modeled noise. In our case,

we have a good idea of how the ship is moving be-
cause of the navigational sensor equipment, which
measure the ship’s Reference Data (RD), estimat-
ing both the position via dead reckoning calculation
and the orientation. We also know the noise that
these sensors have. This will give us a PDF of to
where the state has moved, and for each particle we
then pick a random value from that distribution.

During the Correction step the weight of each
particle is regenerated according to the sensor read-
ings that can validate the probability of each state.
In our case, we use the bottom depth and/or mag-
netic field vector compared to maps, to estimate
how likely it is that each particle is in the correct
position. This step is also known as the filtering
step.

During the Re-sampling step new particles are re-
sampled randomly according to the PDF (including
weights) of the old particles. By this step, there will
be many new particles in states where the Correc-
tion step has judged the probabilities for the parti-
cles to be high, and few where the probabilities were
low. The old particles from the previous step will
not be used any more, and can now be discarded.

One cycle with the Prediction step, Correction
step and Re-sampling step is now complete, and the
algorithm continues with iterations for the newly
sampled particles, see figure 2.

The complete algorithm looks as follows:

1. Initialization

o t=0
e Generate N initial samples with an initial
distribution of the position.

2. Prediction:
Predict how the particles are moving to the
next position regards to the RD.

3. Correction (Filtering):
Compute the weights for each particle and nor-
malize the weights, i.e. compute how likely it
is that the particle is positioned where it is,
regards to measured bottom-depth.

4. Re-sampling:
Generate a new set of N particles according
to how the previous particles are distributed
including their weights.

5. Increase t, and iterate to step 2.
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Estimation of
true position
(weighted sum)

Initialization

Prediction

Output: x;

Correction

Reference Data of Y;

/

E.g.bottom depth or magnetic field of Y,

Figure 2: A block diagram of a Particle Filter.
After initialization, the particle filter iterates be-
tween Prediction, Correction and Re-sampling. Af-
ter the Re-sampling Step, a probability of each state
p(X}) is estimated from the particles. From this, a
weighted sum of all particles can be used as an es-
timation of the true position.

2.3 Depth data in the particle filter

Reference [2] describes how elevation can be used in
the PF for navigation of an airplane. In [3] almost
the same technique is used for the domain of naval
ships, where a PF is used for estimating the posi-
tion based on how the bottom depth measurements
varies when moving in a trajectory.

The state of the system is denoted as x;. The
state can contain different variables depending on
what sensors are available and how complex we
want the algorithm to be. [3] suggests using the
Cartesian position (X, Y) and the crab angle d for
x¢ (the crab angle § is the angle between the direc-
tion the ship is pointing towards and the direction
of the velocity of the ship).

z=(Xp Yy 6)" (3)
The following equation with discrete time with the
sample time A, model the state:

Xt + viAsin(er — 0t)
Y; + viAcos(pr — 0t)
St

+wy
(4)

In this equation u; = (vy @; 0; &;)7 is the in-
put signal, which consists of the speed vy, compass
angle ¢, the sensor azimuth angle ¢; relative to
the stern of the ship and the sensor elevation rela-
tive to vessel 0;. The w; is the process noise. The

Tepr = [T, up, wy) = (

range to the sea floor is measured in the direction
from the sonar sensor. The measurement relation
is given by the following equation [3]:

Yo = h(zp, ) + e = 1@, ¢ + o0 +6:) e (5)
where 7 (¢, ¢ + 1 +6:) is the range measured from
the position of x; with the azimuth angle ¢; + ¢
and elevation angle 6;. A sonar sensor that mea-
sures the range to the bottom typically has a fixed
elevation and azimuth, where the sensor normally
is pointing straight downwards.

We now have the model for how to go from one
state to the next state in function (4) and we have
the model for how the measured value y; depends
on the state in function (5).

If they would have been analytically solvable,
the Bayesian calculations in function (1) and func-
tion (2) would have been used for calculating the
position given all history. Now that they are not,
PF instead is used, according to the algorithm in
section 2.2.

2.4 Magnetic data in the particle fil-
ter

The earth is surrounded by a magnetic field, a phe-
nomenon, which has been used by compasses for
many decades. The compass needle points towards
the magnetic north, which might give the user the
idea that the magnetic field is horizontal to the sur-
face of the earth. The magnetic field is in fact more
accurately represented by its declination and incli-
nation [4]. The declination describes the horizontal
deviation of the magnetic field, and it is this field
which is measured by the compass. The inclination
describes the vertical deviation of the field, and this
is more or less neglected in the compass by, e.g., ar-
ranging the compass needle on a floating device on
a water bed. The magnetic field also varies depend-
ing on the time of the day, but the fluctuations are
relatively small with fluctuations between 10 nT
and 30 nT, which is less than 0.1% of the average
magnitude of 48.19 T [4].

Each ferromagnetic element disturbs this mag-
netic field, and these disturbances can for indoor
environments be even greater than the natural
magnetic field of the earth [5]. For ships, the lo-
cal ferromagnetic elements onboard the ship dis-
turb the compass. When navigating, bigger ships
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often have had a binnacle, which has two movable
compensating magnets trying to compensate for
the magnetic disturbances of the ship. There are
also techniques for manually correcting the com-
pass course depending on which direction the com-
pass points towards. For a long time, the compass
direction has been the desired sensor measurement,
and the disturbances the thing that is to be mini-
mized.

In [5] and [4], the disturbances are instead consid-
ered as a signal rather than as noise. For indoor en-
vironments, the many ferromagnetic elements cre-
ate a complex magnetic environment where the
magnetic vector varies greatly depending on where
the sensor is located. The magnetic field is also
quite stable if no major furniture or iron walls are
moved. In [5] and [4] all three dimensions of the
magnetic field vector are considered, i.e. not only
the magnetic intensity. This information is com-
pared to a magnetic map with a PF, and in con-
junction with some sort of odometry, such as wheel
encoders or inertial sensors, it has in [4] been pos-
sible to precisely localize a human or robot. In [5]
only cheap smartphone sensors are used, where the
3-axis magnetic field and acceleration are used for
determining the position of the user.

In [4], the following PF algorithm is presented.

1. Initialization

e Generate N particles and give them a ran-
dom starting position, heading and drift
rate.

2. Prediction - For each particle:

e Increase/decrease the drift rate, and up-
date the heading according to the drift.

e Update the heading according to mea-
sured heading changes.

e Update position according to traveled
distance and the heading.

3. Correction

e Check if each particle is within the
mapped area, and if so, calculate the
weight of each particle. The weight is
calculated by a likelihood function that
compares the difference between the mag-
netic field in the map, and the measured
magnetic field.

e Normalize the particle weights to sum 1.
4. Re-sampling
e Resample the particles

5. Iterate to step 2.

In [4], there are three different alternatives for
the likelihood functions calculating the weights.
The simplest function only measures and compares
the magnetic intensity, the second measures and
compares the horizontal and vertical magnetic field
component, and the third measures and compares
the full 3-dimensional magnetic vector. As can be
expected, [4] shows that the third algorithm per-
forms better than the second one, and the second
algorithm performs better than the first one. Es-
pecially the robustness and the time for filter con-
vergence have improved when going for higher di-
mensions.

Although [4] and [5] have explored indoor en-
vironments, the same algorithms are applicable for
outdoor environments. The magnetic field does not
fluctuate as fast as in indoor environments, but on
the other hand it is more stable, because no fur-
niture or building parts are moved around as in
the indoor environments. There are satellite maps
available covering the entire magnetic field of the
earth, and in some areas of the world, accurate
magnetic field maps have been created. Therefore,
the magnetic field is a good candidate to be used for
the PF algorithm when estimating a ship position,
at least as a complement to the bottom depth.

2.5 Using other data in the particle
filter

The bottom depth and the magnetic field are good
candidates to use for the PF algorithm when es-
timating the position, but there are other alterna-
tives. In addition to the bottom depth, [3] also uses
range measurements to land objects in another PF
algorithm. This range is measured by a radar, and
is compared to a sea chart database.

It is also possible to not only use the depth di-
rectly to the bottom. If the ship is equipped with
a sonar system, it is also possible to use multiple
bottom depth measurements covering a large area
at once. This will increase the performance of the
PF even further, as it will be possible to evaluate if
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the bottom readings matches the map with better
precision.

The strength of the PF algorithm is that it is
very flexible when it comes to which measurements
to use. The important thing is that the measure-
ments shall vary enough when changing position,
and that it shall have varied in the same way (or in
a predicted way) when the map was created, and
when doing the PF measurement. Other candi-
dates which could be used for the PF algorithm
are:

e Celestial navigation items such as star posi-
tions, where a star either is present in a pro-
posed direction, or is not.

e Gravitation, which vary depending on where
the ship is located on the earth.

e Various types of available bearing measure-
ments, depending on which sensors the ship is
equipped with. For instance, radio and radar
sources with known map locations can be used,
if the ship’s sensors are able to estimate the
bearing to that kind of sources.

3 Limitations with current re-
search

The papers referenced from this paper show that
it is possible to do accurate position estimations
if having sensors measuring data which has previ-
ously been mapped into accurate maps. Many of
the references also evaluate how accurate the posi-
tion estimation can become, when already having
accurate maps available. However, there are some
limitations with the current research.

The algorithms proposed in the studied research
papers require that there are highly accurate maps.
This is not the case out on open water, and not even
in most coastal areas. The reality is that differ-
ent areas have been mapped with various accuracy,
where highly trafficked areas more often have better
accuracy than less trafficked areas. The algorithm
for positioning in e.g. [4] assumes that it can get
the true bottom depth in any position of the map,
but from a normal sea chart it is more likely that
it is possible to compute some sort of likelihood
distribution of the bottom depth for each position.
In figure 3, a 1000 m wide part of a sea chart is

presented as an example with the position of in-
terest marked with an X. In figure 4 an example
of the bottom depth likelihood distribution is pre-
sented, which gives the algorithm an estimation of
the bottom depth, when no accurate bottom depth
is available. It should also be noted, that when cre-
ating a sea chart, the most important thing is that
there is no shallower area in the map than what is
presented. If there are indications that there are
bottom depths of 15 m, 18 m and 22 m in an area,
it is quite unlikely that there are any depths of 10 m
in the middle of these indications, but there could
be bottom depths of 30 m.

30,5

24

25

Figure 3: An example of a sea chart and the current
position of interest marked with a blue X. (The red
line marks the area surrounding a lighthouse in the
sea chart.)

Probability Density Function of a Sea Chart sample

8

Probability Density

o
25 30 35 40 5 50
Depth (m)

Figure 4: An example of how a bottom depth like-
lihood distribution could look like for the position
of interest in figure 3.

The user platforms that are most likely to have
a need for a system for accurate position estima-
tion techniques which eliminates the need for GNSS
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systems, are not a cheap platform with moderate
navigation systems. The most probable platform
is instead an advanced platform with accurate and
expensive navigation sensors, where the RD, bot-
tom depth and speed can be measured with high
accuracy. The extra expense for buying and inte-
grating a magnetometer sensor for measuring also
the magnetic field vectors are foreseen to be a mi-
nor investment on platforms like this.

The current research in this field has mainly fo-
cused on achieving good performance of the posi-
tioning systems when having limited performance
of the sensor suite, but nearly unlimited accuracy
of the map. In this paper, the goal is to investigate
if it is possible to do it the other way around. The
main research question is therefore: Is it possi-
ble to navigate accurately enough without
GNSS systems, only relying on high per-
formance navigation sensors and normal sea
chart and magnetic charts? In some areas,
the sea charts are accurate, and in other areas the
magnetic charts can be more accurate. It would
therefore be a good feature to be able to estimate
the position both with magnetic measurements and
bottom depth measurements at the same time, and
weighting the fusion between the two, depending on
which data that has the highest confidence level.
When both maps are not accurate enough, dead
reckoning can instead be used for a while until go-
ing into areas with enough accuracy in the maps.

4 Proposal of a new imple-
mentation

4.1 Proposed Implementation

The future goal is to implement something in line
with the following algorithm:

1. Initialization - Generate N particles and give
them a random starting pose around a manual
estimation of the starting position.

2. Prediction Step - Move each particle accord-
ing to the ship’s total navigation sensor suite
measurements including their probability dis-
tributions.

3. Correction Step - Calculate the weight for
each particle given all available sensors and

maps.
4. Re-sampling Step - Re-sample the particles.

5. Iterate to step 2).

The most interesting step in the algorithm is the
Correction Step, which will need the following parts
to work:

4.1.1 Map data

To make the PF algorithm operable, there must be
data supporting the likelihood calculations, which
estimates how likely it is that the current measure-
ment has been performed at each location. If the
goal is that the PF should be possible to use on
most places, it is important not to require high
accuracy maps. The best is if it is possible to
use the best available information in each area, i.e.
high accuracy maps where available and normal sea
charts for bottom depth information if only those
are available. To support the PF algorithm, a func-
tion is needed to create bottom depth values from
a sea chart database, including confidence estima-
tions. If the algorithm e.g. can read surrounding
bottom depth coordinates and surrounding bottom
depth curves (see figure 3), an estimation of the
bottom depth and confidence estimations can be
calculated. In the simplest form, only a single bot-
tom depth estimation is given from the function,
and almost as simple as this would be to let the
sea chart give an interval of valid bottom depths,
e.g. 20-30 meters. The best support for the PF
algorithm would be to give an accurate PDF esti-
mation (see figure 4) based on knowledge of how
sea charts are created. The same type of algorithm
would be needed for magnetic data.

4.1.2 Fusion of sensor data

On an advanced ship with high precision naviga-
tion sensors, it can be acceptable to use the nav-
igation sensors for dead reckoning without using
global positioning techniques for some time. It will
take a long time before the drift has become large
enough for resulting in a completely inaccurate po-
sition. When using the PF algorithm to correct the
position, it is therefore important to not spoil the
advantages of the already well working navigation
system, by lean to much against the estimation of

16

SAIS 2017



30th Annual Workshop of the Swedish Artificial Intelligence Society

the position from the PF compared to the dead
reckoning algorithm. If e.g. there is uncertain evi-
dence that estimates a particle is in the wrong po-
sition, it is better to let the particle remain, than
removing it. The worst thing that could happen
is if all particles at the correct position eventu-
ally is discarded, which could happen if the local
measurements have not been accurate enough, the
maps are not accurate enough, or the map mea-
surements have changed, e.g. due to some external
effect. To meet this challenge, we propose dividing
the particles into subsets in the beginning of each
Correction Step. Then the particles in each subsets
are corrected according to the correction rule in the
particular subsets. There are different alternatives
of how to divide the particles into sub-groups, when
using magnetic and bottom depth data for the PF
algorithm. We propose the following alternatives:

1. Divide the particles into three subsets, where
one subset of particles will be weighted ac-
cording to a PF algorithm working with bot-
tom depth, one subset of particles will be
weighted according to a PF algorithm work-
ing with magnetic fields, and the last subset
will have equal weights, where only the dead
reckoned position from the RD matters. The
size of each subset can then be determined
by the quality of the bottom depth and mag-
netic maps/measurements compared to RD ac-
curacy. The advantage is that e.g. bad mag-
netic measurements or maps not will damage
the subsets where magnetism is not taken into
consideration. The drawback is that it will
take longer time before the PF converges to
the correct position.

2. Divide the particles into two subsets, where
one subset of particles will be weighted ac-
cording to a PF algorithm working with both
bottom depth and magnetic fields at the same
time, and the other subset will have equal
weights, where only the RD matters. The size
of each subset including its internal subsets
can be determined by the quality of the bot-
tom depth and magnetic maps/measurements.
By combining both magnetic fields and bot-
tom depth into Y, the PF will be able to cal-
culate the probability density p(x; | Yy) very
efficiently. The drawback is that particles can

be discarded incorrectly if any measurements
or the maps are inaccurate.

3. By combining 1) and 2) and having four sets
of particles, the advantages can be taken from
each solution. If bottom depth is better than
magnetic fields in one area, the particles can
e.g. be divided according to table 1.

Table 1: Example distribution of particles

Subset Nbr of particles
Depth and magn. field 50%
Only bottom depth 20%
Only magnetic field 10%
No PF (only RD) 20%

In this way, the strength in combining data to
support the PF are used by half of the parti-
cles. The other half of the particles are more
carefully used, so that some particles will sur-
vive even if local measurement errors occur or
maps are inaccurate.

4.2 Present situation of the imple-
mentation

To start the investigation of the possible solutions,
a Python program has been created to explore the
possibilities with using depth measurements for the
PF, see figure 5 (left). In this program, a sea chart
is digitized into 10x6 squares by manually setting a
lower and upper boundary of the bottom depth in
each square. In the initialization of the program,
the ship is placed in an (for the algorithm) unknown
position, marked with a green dot. The program
then iterates through the following algorithm:

1. Initialization - Generate 1000 particles and
put them into a random square of the 60 avail-
able squares. This can be seen in figure 5 (left),
where some small blue dots can be seen in the
middle of each square, where the size of the
dots indicate how many particles are located
in each square.

2. Prediction Step - The user then moves the
ship by pressing some direction and speed in
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Figure 5: (left) In the initial state, the particles (indicated by the size of the blue dots) are randomly

distributed between all 60 squares.

The light blue dot in the middle of the sea chart indicates the

weighted sum of all particles, and is the current estimation of the true position of the ship. The green
dot to the lower right, indicates where the ship is located. The ship can then be moved by clicking the
GUI. (right) After 8 random steps, the square with the highest number of particles is the same square as
the ship. The weighted sum of all particles (the estimation of the position), is still in the wrong square.

the GUI (or alternatively the Automate but-
ton for a random movement). A random error
is added to both the direction and speed, and
then the ship is moved according to those val-
ues. Each particle is also moved according to
an estimation of the random movement. (If the
ship or particles hit the boarder of the map,
they stay on the border.)

3. Correction Step - When the ship has moved,
it will measure 10 random bottom depths in
the square, and removing the biggest and
smallest values in order to increase the resis-
tance against error measurements. Then it
starts comparing each particle’s square’s min-
imum and maximum depth to the measured
values by the ship. If the measurements are
within the interval, 10 is given as a weight for
the particle. If not in the interval, 2 is given.
Misplaced particles will then for each iteration
decline in number, in favor for well-placed par-
ticles.

4. Re-sampling Step - Next, 1000 new particles
are re-sampled according to the weighted sums
in each square.

5. Iterate to step 2).

After an example run of the program, about eight
moves from an initial location in south-east, mainly
in the direction north-west, the square with the

most particles is the same square as the square
where the ship is located, which can be seen in fig-
ure 5 (right). After 10 moves, the weighted sum
of all particles is located in the same square as the
ship, which is shown in figure 6.

*2tI@RPHH Y

Figure 6: After 10 random steps, both the square
with the highest number of particles and the
weighted sum of all particles are in the square where
the ship is located.

4.3 Further development of the im-
plementation

There are several ways of refining the program.
Some of the most important features are as follows:

e Adding support also for magnetic field maps.
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e Using data from a real sea chart database,
and creating a function for estimating bottom
depths from that data set.

e Evolving the Correction Step by implementing
the features in table 1 in section 3.

e Evolve the principles of how to be weighting
the different subsets to increase the stability
and the robustness. This can possibly be done
on-line using machine learning, by feeding the
”true position” from the GPS.

After finishing the implementation, a comparison
needs to be performed on data originating from a
real ship. The navigation performance can then be
compared to the GPS location of the same ship.

5 Conclusion

It has already been shown that PF algorithms can
be used for estimating positions [1,2,4, 6], at least
for other domains than for naval ships. In this pa-
per, an idea of how to use this knowledge in an al-
gorithm more suitable for real world scenarios has
been presented. A brief explanation of how to do
the implementation has been discussed, and the
present implementation has been presented along
with proposed future upgrades.

If it is possible to navigate accurately enough
without GNSS systems, only relying on high per-
formance navigation sensors and normal sea chart
and magnetic charts remains unclear. Further im-
plementation and testing with real ship data is first
needed.
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