
Multi-Task Representation Learning

Mohamed-Rafik Bouguelia Sepideh Pashami S lawomir Nowaczyk

⇤

Abstract

The majority of existing machine learning algorithms
assume that training examples are already represented
with sufficiently good features, in practice ones that are
designed manually. This traditional way of preprocess-
ing the data is not only tedious and time consuming,
but also not sufficient to capture all the different as-
pects of the available information. With big data
phenomenon, this issue is only going to grow, as the
data is rarely collected and analyzed with a specific
purpose in mind, and more often re-used for solving
different problems. Moreover, the expert knowledge
about the problem which allows them to come up with
good representations does not necessarily generalize to
other tasks. Therefore, much focus has been put on de-
signing methods that can automatically learn features
or representations of the data instead of learning from
handcrafted features. However, a lot of this work used
ad hoc methods and the theoretical understanding in
this area is lacking.

1 Motivation

Representation learning is concerned with automati-
cally transforming raw input data into representations
or features that can be effectively exploited in machine
learning tasks. Existing unsupervised approaches to
representation learning such as [1, 2, 3, 4, 5] yield
general features capturing dimensions of variation that
may or may not be essential to a given task. On the
other hand, supervised approaches to representation
learning such as [6, 7, 8, 9, 10] can be overly specific as
they allow to exclusively learn representations that help
to discriminate among class labels related to a specific
task. Nevertheless, such approaches have, especially
recently, been extensively studied in the deep learning
community [7, 11]. In this case, however, the learned
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representations cannot be directly applied to another
task as they are explicitly tailored for a specific task.

The motivation for this research comes from our
previous work on mapping of raw sensor data from
Volvo trucks into low-dimensional representation, both
in a supervised and unsupervised manner. Such a
representation is needed for predictive maintenance
solutions, as using the original raw data is not feasible.
The overall goal is to extract general features which
are suitable for more than one task, for example,
estimating remaining useful life of several different
components. Since those components can be related
to different aspects of the truck operation, the
representations that allow accurate predictions are
related, but not necessarily the same. Achieving
sufficient generality of the resulting features is not
possible given current state of the knowledge in the
field; more in-depth study of the underlying problem
is needed before practical solutions can be developed.

We will contribute with extending the current
representation learning methodology along two
separate but interdependent directions. The first
direction is considering training setup in which not
one, but rather multiple related tasks are provided.
This idea allows for a well-defined formalization of
concepts such as complexity, diversity or incongruity
among tasks to which the learned representation is
expected to be applied to in the future. The second
direction is aiming for a diverse set of representations,
with clear and well-defined purposes and motives,
instead of a single, all-encompassing one. Imposing
such a meaningful structure onto the result allows
for incremental generation and evaluation, as well as
for explicit tradeoff between accuracy, generality and
compression provided by the learned representation.

On the one hand, semi-supervised representation
learning methods, like the one proposed in [12], aim
to learn a representation based on few labeled data.
However, the labels are still related to a single task
and the result does not necessarily generalize well to
multiple related ones. In parallel to representation
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learning, there has recently been considerable progress
on the important problem of multi-task learning,
which exploits similarities across several learning
problems [13, 14]. The results show often significantly
improve performance compared to learning each task
independently. In the past few years different studies,
such as [15, 16, 17, 18, 19], have advocated that a repre-
sentation which captures properties that are invariant
across tasks can significantly improve the performance.
This generated an increasing interest in learning
representations from multiple tasks, perhaps most
noticeable in the computer vision domain. Nonetheless,
despite the empirical success, formal justifications of
why this works remain largely unexplored.

We formulate such multi-task representation learn-
ing problem as an extension of the classical supervised
machine learning problem. The latter states that,
given a set of training examples sampled according to
an unknown underlying distribution D, labelled by an
unknown function T , the goal is to find a hypothesisH
that minimizes the probability of H and T disagreeing.
The proposed extension states that, in addition to
underlying distribution of data examples, now DE,
there also exists an underlying unknown distribution
over tasks, DT . A number of training tasks, sampled
from this distribution, provide the (set of) labelling
for the training data. The goal is to produce a group
of representations with the lowest error on unseen
data across all the expected tasks. A measure of the
capacity (or expressive power) of a function family,
such as the VC dimension [20], can be generalized to
capture the essential complexity across multiple tasks.
This way measures for approximating the true error,
on unseen data across all the expected tasks, can be
modeled depending on the a priori assumptions about
the inherent difficulty of the particular problem in-
stance. Transformations of raw input into features can
be based on capturing different dimensions of variation
in data, and either being essential for a particular
class of tasks, or providing broad benefits by being
generally useful for many different tasks. Starting
from the establishment of theoretical foundations for
this problem, the end-goal is to create an algorithm
that efficiently produces such representations.
Representation learning has clearly demonstrated

early success with deep learning in application areas
such as computer vision, natural language processing
and speech recognition. However, replicating those
results in other domains has proven difficult, in part
due to lack of sufficient theoretical foundations. It

is well understood that the performance of machine
learning methods is heavily dependent on the choice of
the data representation (or features) on which they are
applied. Unlike traditional feature engineering which
requires labor-intensive effort, representation learning
allows computers to autonomously create specific
features which are appropriate for a particular problem.
A good representation of data can also provide a sub-
stitute for storing raw data when dealing with big data
in real-world applications. This research direction will
have major impacts in various domains, as it enables
building systems and algorithms that learn to perform
new tasks based on experience gained from previous
tasks. It will have major impact in a large number of
application domains where machine learning is a key
aspect; these includes text mining, patient healthcare
data analysis, social network analysis, multiple object
classification in computer vision, and predictive main-
tenance in the automotive industry, to mention but a
few. We believe that it is a promising line of research,
making progress towards real Artificial Intelligence.

2 Survey of the field and open
challenges

Representation learning is challenging primarily for
three general reasons: the immense space of possible
solutions that should be considered; the difficulty
in establishing a clear measurable objective for the
learning process; and the insufficient understanding
of how the properties of the problem instance
match against the parameters of the representation
learning process. This combination makes it hard
to design efficient algorithms for determining which
representation will ultimately be relevant for the
expected distribution of tasks, as well as to propose
a compelling theoretical foundation for such work.

The first of those main challenges is related to the
generation of representations. Necessarily, for a given
problem instance, a set of representations needs to be
considered; such family of representations is usually
generated by the same algorithm and corresponds to
a certain family of functions. An important question
for generating representations is that it is not clear
whether there exists a single family of representations
that is sufficient for all problems, or should multiple
families be used, depending on the problem instance.
Some comparative studies such as [21, 22, 23, 24]

30th Annual Workshop of the Swedish Artificial Intelligence Society

54 SAIS 2017



have been carried out for various application domains.
However, so far, the properties that can influence
the choice of one family of representations over
another are still unknown [25]. Another aspect closely
related to the generation of representations is about
encouraging diversity among the set of representations.
For example, it took quite some time after Breiman’s
2001 paper [26] before modern ways to measure the
diversity of trees within random forest were suggested.
A similar development is needed for representation
learning. A challenging aspect in this context is
to balance specificity and diversity in an optimal
way that leads to an improved accuracy. Promoting
diversity among representations is very important, yet,
it is not a well-studied aspect and there are no explicit
metrics in the literature that allow capturing the
diversity among a set of representations. To the best of
our knowledge, the only directly relevant paper in this
context is [27], which proposes a strategy to produce
an ensemble of diverse representations specifically for
the unsupervised case. This is done by controlling the
trade-off between minimizing reconstruction error and
maximizing diversity between reconstructions. A simi-
lar method has been applied in [28] for the problem of
fall detection. However, both of those results are spe-
cific for autoencoders only and not directly applicable
in a multi-task representation learning context.
The second main challenge is related to the eval-

uation of representations. One aspect that makes it
different frommost machine learning problems (such as
classification), is the difficulty in establishing a clearly
defined objective. The standard way of performing
this evaluation is to measure the representation or fea-
ture learning algorithm in terms of its usefulness with
respect to a particular task [23, 24]. This is typically
done at regular intervals (to enable early stopping), by
evaluating the performance of a cheap classifier trained
using the learned features. However, a first issue is
that regularly alternating between learning features
and training a classifier produces a substantial compu-
tational overhead. That raises the important question
of how to balance between extraction and classification
stages. One principled solution to this problem is to use
a tree of classifiers as proposed in [29]. In this solution,
test inputs traverse along individual paths, where each
path extracts different features for inputs that benefit
from them the most. Similar methods include those
proposed in [30, 31]. However, not only is this problem
NP-hard, but most importantly, such methods give an
incomplete evaluation of the features. In particular,

the extension to the case of multi-task representation
learning is challenging. As indicated in [25], these
issues strongly motivate the use of unsupervised evalu-
ation measures. For example, for auto-encoders [32, 33,
34], the reconstruction error on the test data can read-
ily be used as an evaluation measure. However, such a
measure can be unreliable because systems that learn
more features as the time goes tend to overfit and sys-
tematically produce a lower test reconstruction error.
Besides the accuracy, either with respect to a particular
task or to a group of tasks, however, one can imagine
a number of other criteria for assessing the quality and
usefulness of a representation. For example, data com-
pression has been studied in [35, 36], with the aim to
transform the data into a compact but expressive form.
Finally, the generality of representations across tasks
is an important aspect that needs to be taken into
account in multi-task representation learning; however,
there is not yet any formal definition of this property.
In particular, the aspect of balancing all those impor-
tant metrics, both when generating and evaluating a
multi-task representation, is usually not considered.

Finally, the third main challenge is understanding
properties of the problem instance from the perspective
of representation learning. There exist very few theoret-
ical studies which expose problem properties that are
relevant in the context of a multi-task representation
learning. For example, the recent work [15] establishes
theoretical results about the benefit of learning a rep-
resentation from multiple tasks compared to learning
from each task separately, based on basic properties
such as the sample size, the data dimensionality, and
the number of tasks. However, this work is only demon-
strated for the specific case of subspace learning (i.e.,
linear feature learning), and does not take into consider-
ation other relevant properties, such as the complexity
of tasks or the similarity between tasks. Most existing
multi-task representation learning methods such as [16,
17, 18, 19] assume that an expert can determine which
tasks are related, or they implicitly assume that the
available tasks are related and can be readily used to
perform a joint training. However, in real-word, this
assumption may not be always satisfied. Learning com-
mon representations across many unrelated or dissimi-
lar tasks can lead to poor representations that decrease
the performance compared to learning representations
from each task separately, as discussed in [37, 38].
Therefore, similarity among tasks is an important prob-
lem property that needs to be taken into consideration.
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3 Research questions

The challenges discussed above are very broad,
therefore, we propose the following five main research
questions as a good starting point.

1. What problem instance properties
require the generation of multiple diverse
representations over generating a single
multi-dimensional representation?

Usual representation learning methods assume that
the goal is learning a single low-dimensional represen-
tation of the data. However, in many cases it can be
more beneficial to create a set of several independent
representations. A set of multiple representations can
always be seen as one higher-dimensional representa-
tion; yet, having multiple representations provides an
explicit structure that can be exploited in various ways.
In particular, if a set of representations is expected
to be useful across a wide spectrum of tasks, such
a structure offers a convenient way of expressing the
trade-off between accuracy on each task and the diver-
sity of representations within this set. In this context,
the questions that need answering are when to learn
multiple representations, how many of them should be
created, and how to promote the diversity within the
set of representations on several different levels (e.g.,
on the algorithm, the mapping and the data levels).

2. How to generate a family of represen-
tations which ensures a good coverage of
the space of mapping functions that are
appropriate for a given problem instance?

In practice, the representations are necessarily gener-
ated according to some algorithm, which induces a par-
ticular family of representations. In order to establish
the theoretical foundations for the multi-task represen-
tation learning problem, it is crucial that one can mea-
sure whether this family is expressive enough to provide
sufficient coverage, appropriate for the given problem
instance. The way of connecting the expressiveness of
the family with the complexity of the expected tasks it
should be used on is going to be an important contribu-
tion. An essential research question is: can existing con-
cepts such as VC dimension be extended to capture this
match? One idea is to use different subsets of training
tasks to achieve high diversity of representations and to
get a reliable estimation of the expected coverage that
can be achieved. However, the actual concrete method

for doing that needs to be developed. Further, how to
generate a large set of non-redundant representations,
from simple to more complex ones, which are able to
approximate any and all of the expected future task?

3. Does identifying and grouping related
tasks, followed by learning multiple repre-
sentations separately for each group, lead to
improved outcome?

Existing results [15] establish the benefits of
learning a representation from multiple related tasks
compared to learning from each task separately. At
the same time, it has been shown that trying to
learn a common representation across unrelated or
dissimilar tasks can decrease the performance [37, 38].
Therefore, a natural question is whether it is possible
to automatically find an appropriate partitioning of
tasks that leads to learning better representations from
tasks within each group? Under what conditions are
such a step necessary? Establishing that will require
new advancements in determining how the similarity
among tasks should be measured, and which properties
of the problem instance affect it to a different degree.

4. How to evaluate representations in a
multi-task setting based on several aspects
such as the compactness of representations,
the accuracy relative to each individual task,
and the generality of across all tasks?

Being able to evaluate representations is absolutely
crucial, however, today in many cases it is done in an
ad hoc manner. There is a need to define measures
based on a well justified theoretical description of
the problem at hand. In this context, an important
question is, how can one establish conditions of
whether a representation or set of representations is
“good enough” for any given set of tasks? In particular,
a good representation can be defined as a one which
leads to a low prediction error (i.e., high accuracy)
over the whole population of data and expected tasks
(according to the unknown underlying distribution).
Hence, given reasonable assumptions, which evaluation
measures can be proven to be good approximations
of the true error in multi-task representation learning?
Moreover, as the data compression plays a non-
negligible role in the context of representation learning,
it is important to select a reasonably small number of
representations that are common across tasks, while
improving the accuracy relative to learning each task
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independently. Therefore, another question relates to
the number (or ratio) of representations that are “suf-
ficient” to improve the accuracy, across a set of tasks.
More generally, how can we quantify the expected
benefit of representation learning from multiple tasks?
Finally, how to balance all these different aspects of
the evaluation: the data compression (or compactness
of representations), the accuracy relative to each task,
and the generality of representations across tasks?

5. How to define the complexity of tasks
(in addition to other problem instance
properties) to address all the above questions
in a principled way?

In order to answer all the above research questions
in a principled way, problem instance properties
that potentially influence the choice of algorithms,
representation families and quality measures need to
be defined and formalized. The success of a set of
representations for a given problem instance is related
to the difficulty or complexity of tasks that one needs
to deal with. In this context, the complexity of tasks
is the most important property, which leads to an
important question: what would be a good measure
for the complexity of tasks? What is the equivalent of
VC dimension for a family of tasks? Necessarily, such a
measure needs to consider the similarity between tasks.
Even though each task within a training set can be
simple, if these tasks are very different, one may need
a quite diverse and expressive family of representations.
On the contrary, a much simpler family of represen-
tations can be sufficient for a set of very individually
difficult but overall similar tasks. Task complexity is of
course only one, even if arguably the most important,
property of the problem that needs to be studied.
Other examples include the amount of noise, the size
(and overlap) of data available for each task as well as
the dimensionality and the heterogeneity of the data.

4 Methods, approaches and
ideas

Defining relevant properties of the problem.
The starting point is to define the most relevant prop-
erties that can be used to describe a problem instance,
for example to investigate a measure for estimating
the complexity of expected tasks based on the avail-
able training tasks. One possibility is generalizing the

VC dimension [20], which is related to the inherent
complexity of a space, for a set of tasks. The goal is
to capture how difficult are the tasks we are expect-
ing to have to deal with in the future. Another is
a measure for modeling the similarity between tasks,
possibly modeled either based on a direct comparison
between parameters learned from the different tasks,
or based on how well the parameters learned from
one task, perform other tasks. Based on such proper-
ties one can describe the problem instance, together
with additional basic features such as the number of
tasks, the dimensionality of the original data repre-
sentation, the level of noise, and the data size per
task. Those properties can lead to an upper bound on
the performance of representations across tasks. For
example, the PAC learning framework [39] (Probably
Approximately Correct learning) enables mathemati-
cal analysis of machine learning which stipulates that
with high probability, a learned hypothesis (e.g., a
classification model) will have low generalization error
for a given classification task. PAC learning does not
take into consideration the possible existence of multi-
ple related tasks, nor does it concern itself with data
representations.
Generating representations. A strategy for gen-

erating adequate families of representations can be
based on efficient methods for generating large sets of
representations that are able to approximate or repre-
sent any function of certain properties. For example,
the field of Functional Data Analysis primarily focuses
on smooth functions, which is probably too broad for
our needs. The coverage of the space of functions
by the generated representations will be measured in
order to ensure a trade-off between the “exploration
of all possible representations” and the “exploitation
of the best generated representations”. In order to
produce more useful representations, new methods
for determining which tasks are related and therefore
can be automatically grouped together based on the
similarity, are needed.
Encouraging diversity among representa-

tions. The generation of representations should be
directed by an evaluation process which allows select-
ing, among all the possible representations, the ones
that fulfill a range of assessment criteria, in particular,
preservation of diversity among the generated repre-
sentations and generality of the representations across
tasks. First, on the algorithm level: if representations
are created by sufficiently different algorithms, they
are likely to be different. This can be done, for exam-
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ple, by explicitly controlling the bias and variance for
a family of algorithms. Second, on the mapping level:
representations are functions from one feature space to
another, and those functions can be compared based
on their mathematical properties, as defined in either
Hilbert or Banach spaces. Third, on the example level:
one can measure how do the relative positions change
for the data points in the training sets. All of these
can be done in either supervised and unsupervised
manner, or as a combination of both approaches.

Algorithm for multi-task representation
learning. The final goal, clearly, is an efficient al-
gorithm which benefits from the results of the other
work packages. The algorithm takes as input a dataset
and a set of tasks, and produces as output a set of
representations that are expected to generalize well
across unseen tasks.

5 Preliminary results

This idea builds on our previous work of evaluating sev-
eral approaches for both supervised and unsupervised
mapping of raw sensor data from Volvo trucks into
low-dimensional representation. Such a representation
is needed for predictive maintenance solution, as using
the original raw data is not feasible. The overall goal is
not to find the best low-dimensional representation tai-
lored to a very specific task, but rather to identify the
method for learning a widely applicable representation.

For example, general low-dimensional representa-
tions of the data are calculated to find various truck
configuration. Data originates from 79974 unique
Volvo trucks and is recorded during a full year. The
data of a single truck is represented with a bivariate
histogram, where the axes correspond to a pair of
sensors: turbocharger speed vs boost pressure. Each
task describes various truck configurations, e.g., engine,
gearbox, country of operation or brand, while the bi-
variate histograms describe the usage of the truck. We
have performed a comparison of techniques based on
t-distributed stochastic neighbor embedding (t-SNE)
and convolutional autoencoders (CAE) in a supervised
fashion over 74 different 1-vs-Rest tasks using random
forest. The results show that t-SNE is most effective
for 2D and 3D, while CAE could be recommended for
10D representations. Fine-tuning of the results shows
slight improvement using low-dimensional representa-
tion in comparing to the original data representation.
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