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Abstract
The modeling and simulation of free surface flows are
complex and challenging. Especially, the open channel
hydraulics are often modeled by the well–known and ef-
ficient Saint–Venant equations. The possibility of effi-
ciently reducing these partial differential equations into
ordinary differential equations with the use of orthogonal
collocation method is studied with the goal of application
in estimations. The collocation method showed the flexi-
bility of choosing the boundary conditions with respect to
the flow behavior. The results were comparable enough to
the selected finite volume method. Further, a significant
reduction in computational time in the collocation method
is observed. Therefore, the collocation method shows a
good possibility of using it for the real–time estimation of
flow rate in an open channel.
Keywords: orthogonal collocation, open channel, pris-
matic, flow estimation, dynamic modeling

1 Introduction
The real–time estimation of flow rates in fluid flows with
the use of mathematical models is a widely known practice
in the industry, especially in oil drilling processes, hydro
power industry and in agricultural industries. The sim-
plicity and the robustness of the mathematical model are
influential in estimation. However, the modeling and sim-
ulation of free surface flows are complex and challenging.
Especially, the open channel hydraulics are often mod-
eled by the well known and efficient shallow water equa-
tions, which are also known as the Saint–Venant Equa-
tions (SVEs). These are a set of nonlinear, hyperbolic
Partial Differential Equations (PDEs). These equations
are widely used throughout the history, yet the discretiza-
tion remains tricky which makes it difficult to solve.

Although the classical methods such as finite difference
and finite volume methods are of high precision, it needs
numerous spatial discretization points to obtain a realistic
solution and consumes a considerable amount of compu-
tational time. Hence, these numerical solvers could create
complications in applications of online state and param-
eter estimation. On the contrary, the collocation method,
which is a special case of the weighted residual method,
could lead to simple solutions with less computational

time. This method is commonly used in computational
physics for solving PDEs and in chemical engineering for
model reduction.

Therefore, the main aim of this work is to study the
possibility of reducing the PDEs into Ordinary Differen-
tial Equations (ODEs) efficiently, with a future goal of an
application in estimations. This paper describes the nu-
merical approach which is taken to solve the 1-D shallow
water equations in the reduced ODE form. Further, it in-
cludes the verification of the used numerical approach in
comparison to the other well–known and accurate numer-
ical schemes for selected case studies.

In this paper, the orthogonal collocation method is used
for converting the PDEs into ODEs, and then the ODEs
are solved using the Runge–Kutta fourth order numerical
scheme (for the discretization in the time domain). The
Lagrange interpolating polynomials are used for the ap-
proximation of the shallow water equations and the shifted
Legendre polynomials are used for the selection of col-
location points. For the case study, a prismatic channel
with a trapezoidal cross–section along the length is se-
lected as the open channel. Different numbers of colloca-
tion points were tested and the results are compared with
the numerical simulation results obtained from a classi-
cal finite volume method. The finite volume method used
in this study is a semi-discrete, second order and a cen-
tral upwind scheme developed by Kurganov and Petrova
(Kurganov and Petrova, 2007) for the spatial discretiza-
tion and the Runge–Kutta fourth order numerical scheme
for the temporal discretization.

2 Mathematical Model
There are a large number of versions of the SVEs, based
on the physical natures those are assumed upon (Chalfen
and Niemiec, 1986; Chaudhry, 2008). The SVEs are a
set of hyperbolic, non–linear PDEs, and the used version
of the SVEs in this study are derived with the assump-
tions listed below (Chaudhry, 2008; Litrico and Fromion,
2009).

• The pressure distribution is hydrostatic.

• The velocity of the flow is uniform over the cross
section of the channel.
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• The channel is prismatic i.e. the cross sectional area
perpendicular to the flow and the channel bed slope
do not change with the direction of the flow.

• The channel bed slope is small i.e. the cosine of the
angle it makes with the horizontal axis may be re-
placed by unity.

• The head losses in unsteady flow (due to the effect of
boundary friction and turbulence) can be calculated
through resistance laws analogous to those used for
steady flow.

• No lateral inflow rates are considered.

The Equations for a 1D, unsteady, prismatic, open channel
system, can be expressed as,

∂A
∂ t

+
∂Q
∂x

= 0, (1)

∂Q
∂ t

+
∂ (Q2/A)

∂x
+Ag

(
∂ z
∂x

+S f −Sb

)
= 0, (2)

where A(x,h, t) is the wetted cross sectional area normal
to the flow, h(x, t) is the depth of flow, Q(x, t) is the vol-
umetric flow rate, S f (Q,x,h) is the friction slope, z is the
absolute fluid level, which changes with the geometry of
the channel, g is the gravitational acceleration, t is the time
and x is the distance along the flow direction (Chow, 1959;
Chaudhry, 2008). The channel bed slope Sb(x) is calcu-
lated by − ∂ z

∂x , which is considered positive when sloping
downwards. The friction slope S f is calculated from the
Gauckler–Manning–Strickler formulae as shown in Equa-
tion 3 (Chow, 1959),

S f =
Q |Q|n2

M

A2R
4
3

, (3)

where nM is the Manning friction coefficient
(

1
ks

)
and R

is the hydraulic radius given by A
P . Here, ks is the Strick-

ler friction coefficient and P is the wetted perimeter. The
analytical solution for these equations exists only for the
simplified cases (Chalfen and Niemiec, 1986; Chung and
Kang, 2004; Bulatov, 2014), therefore, these are gener-
ally solved by numerical methods. Two different numer-
ical methods are considered in this study, the orthogonal
collocation method and the Kurganov and Petrova (KP)
Scheme, which are described in the following sections 2.1
and 2.2.

2.1 The Orthogonal Collocation Method
The states A and Q in the SVEs can be approximated by
the general polynomial interpolation, using the Lagrange
interpolating polynomial (Isaacson and Keller, 1966). The
Lagrange interpolating polynomial of nth order for a gen-
eral function f (x), at n+1 data points, is given by (Szegö,
1939),

fn(x) =
n

∑
i=0

Li(x) f (xi), (4)

where,

Li(x) =
n

∏
j=0
j 6=i

x− x j

xi− x j
. (5)

Here, Li(x) is a weighting function, which is considered
as the basis function for the Lagrange function. Now, the
approximated states can be defined as Aa and Qa, where,

Aa(x, t) =
n

∑
i=0

Li(x)Ai(t), and (6)

Qa(x, t) =
n

∑
i=0

Li(x)Qi(t). (7)

Using these approximations in the SVEs, the Equations 1
and 2 can be re–written as follows,

∂Aa

∂ t
+

∂Qa

∂x
= R1, (8)

∂Qa

∂ t
+

∂ (Q2
a/Aa)

∂x
+Aag

(
∂ z
∂x

+S f −Sb

)
= R2, (9)

where R1(x, Ā, Q̄) and R2(x, Ā, Q̄) are the residuals and Ā
and Q̄ are the vectors of the coordinates of Aa and Qa,
respectively.

The spatial length x is divided into n− 1 inequidistant
spaces for n nodes, which are named as the collocation
points. Two of these collocation points will be placed at
the boundaries. When the residuals are closer to zero, the
unknowns (Ā and Q̄) can be computed for each collocation
point xc

i .

R1(xc
i , Ā, Q̄)≈0, i = 1,2, ...,n (10)

R2(xc
i , Ā, Q̄)≈0, i = 1,2, ...,n (11)

The corresponding collocation points xc
i , can be found by

choosing the points carefully. When the points are at the
roots of any orthogonal polynomial such as the Legen-
dre or Chebyshev polynomial, the approximation error can
be minimized (Isaacson and Keller, 1966; Quarteroni and
Valli, 2008). The Legendre polynomials are selected in
this study. As the number of points are increased, these
collocation points cluster towards the two endpoints of
the selected total length. This prevents the formation of
Runge’s phenomenon, which occurs when the nodes are
equispaced.

When the residuals are closer to zero, the Equations 8
and 9 can be re–written as follows,

∂Aa

∂ t
+

∂Qa

∂x
≈0, (12)

∂Qa

∂ t
+

∂ (Q2
a/Aa)

∂x
+Aag

(
∂ z
∂x

+S f −Sb

)
≈0. (13)

Further, the Equation 13 can be simplified as,

∂Qa

∂ t
+

2Qa

Aa

∂Qa

∂x
− Q2

a

A2
a

∂Aa

∂x

+Aag
(

∂ z
∂x

+S f −Sb

)
≈ 0. (14)
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From the Equations 6 and 7, the derivatives are expressed
as,

∂Aa

∂x
=

n

∑
i=0

L
′
i jAi, and (15)

∂Qa

∂x
=

n

∑
i=0

L
′
i jQi, (16)

where

L
′
i j(xi) =

∂Li(x)
∂x

. (17)

The substitution of this expression in the Equations 12 and
14 will give two ODEs.

dAa

dt
+

n

∑
i=0

L
′
i jQi ≈ 0, (18)

dQa

dt
+

2Qa

Aa

n

∑
i=0

L
′
i jQi−

Q2
a

A2
a

n

∑
i=0

L
′
i jAi+

Aag
(

dz
dx

+S f −Sb

)
≈ 0. (19)

At the selected collocation points, the approximated value
is the same as the functional value,

Aa(x = xi, t) =
n

∑
i=0

LiAi(t) = Ai(x = xi, t) and (20)

Qa(x = xi, t) =
n

∑
j=0

LiQ j(t) = Qi(x = xi, t). (21)

Therefore, the approximated Equations 18 and 19 become
as follows,

dAi

dt
+

n

∑
i=0

L
′
i jQi = 0 and (22)

dQi

dt
+

2Qi

Ai

n

∑
i=0

L
′
i jQi−

Q2
i

A2
i

n

∑
i=0

L
′
i jAi

+Aig
(

dz
dx

+S f −Sb

)
= 0. (23)

which produces a set of ODEs as shown in Equations 24
and 25.

Ȧi = −
n

∑
i=0

L
′
i jQi (24)

Q̇i = −2Qi

Ai

n

∑
i=0

L
′
i jQi +

Q2
i

A2
i

n

∑
i=0

L
′
i jAi

−Aig
(

dz
dx

+S f −Sb

)
, i = 0,1, ...,n (25)

Two more equations can be build up using the boundary
conditions, which we can choose according to the condi-
tion of the flow. For sub–critical flows, one boundary can
be chosen from the upstream and the other from the down-
stream. For super–critical flows, both the boundaries have
to be on the upstream (Georges et al., 2000).

To obtain a stable solution, the discretized time ∆t,
should satisfy the ‘current number condition’ Cr (Dul-
hoste et al., 2004),

Cr =
∆t
∆x
≤ 1
|v|+ c

, (26)

where v is the velocity and c is the celerity. The celerity

for a trapezoidal channel is defined as
√

g A
T , where T is

the top width of the free surface of the channel.

2.1.1 Selection of Collocation Points for Different
Number of Points (n)

The points are selected using the Legendre polynomials.
The Legendre functions of the first kind is selected over
the Chebyshev polynomials of the first kind, due to the less
numerical oscillations given by the Legendre functions.

The Legendre polynomials are a set of orthogonal poly-
nomials, which are the solutions to the Legendre differen-
tial equations (Whittaker and Watson, 1920). The Leg-
endre polynomials are in the range of x ∈ [−1,1] and
the shifted Legendre polynomials are analogous to the
Legendre polynomials, but are in the range of x ∈ [0,1].
Therefore, the shifted Legendre polynomials are selected
in this study, due to the easiness in converting the col-
location points over the selected channel. The shifted
Legendre polynomials of the first kind can be generated
from the Rodrgues’ formulae (Equation 27) (Whittaker
and Watson, 1920; Isaacson and Keller, 1966; Quarteroni
and Valli, 2008),

Pn(x) =
1
n!

dn

dxn

{
(x2− x)n} . (27)

2.1.2 Development of the ODEs for a Sample Set of
Collocation Points

The polynomials Pn(x) for n from 3 to 5 can be derived
from the Equation 27 as follows,

P1(x) = 2x−1, n = 3,

P2(x) = 6x2−6x+1, n = 4,

P3(x) = 20x3−30x2 +12x−1, n = 5.

(28)

Each collocation point xi, lies at the roots of these poly-
nomials along the normalized length of the channel. For a
channel with a length of l, the positions of the collocation
points can be expressed as follows,

xi ∈ [0,0.5l, l] , i = 1,2,3
xi ∈ [0,0.2113l,0.7887l, l] , i = 1,2,3,4
xi ∈ [0,0.1127l,0.5l,0.8873l, l] . i = 1,2,3,4,5

(29)

For a case of three collocation points (n = 3), the corre-
sponding Lagrange interpolating polynomial coefficients,
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L
′
, can be calculated by differentiating L(x) with respect

to x from the Equation 5,

L
′
1(x) =

d
dx

(
x− x2

x1− x2
× x− x3

x1− x3

)
=

(x− x3)+(x− x2)

(x1− x2)(x1− x3)
,

L
′
2(x) =

d
dx

(
x− x1

x2− x1
× x− x3

x2− x3

)
=

(x− x3)+(x− x1)

(x2− x1)(x2− x3)
,

L
′
3(x) =

d
dx

(
x− x1

x3− x1
× x− x2

x3− x2

)
=

(x− x2)+(x− x1)

(x3− x1)(x3− x2)
.

The coefficient matrix L
′

at each collocation point xi, can
be calculated by solving L

′
i at each point (L

′
i(x = xi)), us-

ing the position values from Equation 29. The coefficient
matrix for the case of the three collocation points is as fol-
lows,

L
′
=

L1
L2
L3

T

=
1
l

−3 4 −1
−1 0 1
1 −4 3

 .
Similarly, for n = 4,

L
′
=

1
l

−7.0005 8.1964 −2.1959 1
−2.7326 1.7328 1.73190 −0.7321
0.7321 −1.7319 −1.7328 2.7326
−1 2.1959 −8.1964 7.0005

 ,
and for n = 5,

L
′
=

1
l


−13.0001 14.7884 −2.6666 1.8783 −1
−5.3239 3.8731 2.0656 −1.2910 −0.6762

1.5 −3.2275 0 3.2275 −1.5
−0.6762 1.291 −2.0656 −3.8731 5.3239

1 −1.8783 2.6666 −14.7884 13.0001

 .

The substitution of the L
′

in Equations 24 and 25, will
give the corresponding set of ODEs. The ODEs for the
case of the three collocation points are as follows,

Ȧ1 =
1
l
(−3Q1 +4Q2−Q3), (30)

Ȧ2 =
1
l
(−Q1 +Q3), (31)

Ȧ3 =
1
l
(Q1−4Q2 +3Q3), (32)

Q̇1 = −2Q1

A1l
(−3Q1 +4Q2−Q3)+

Q2
1

A2
1l
(−3A1 +4A2−A3)

−A1g
(

dz
dx

+S f1 −Sb

)
, (33)

Q̇2 = −2Q2

A2l
(−Q1 +Q3)+

Q2
2

A2
2l
(−A1 +A3)

−A2g
(

dz
dx

+S f2 −Sb

)
, (34)

Q̇3 = −2Q3

A3l
(Q1−4Q2 +3Q3)+

Q2
3

A2
3l
(A1−4A2 +3A3)

−A3g
(

dz
dx

+S f3 −Sb

)
. (35)

One or two equations from the above set of equations, can
be replaced by the chosen boundary conditions.

2.2 The Kurganov and Petrova (KP) Scheme
The KP scheme (Kurganov and Petrova, 2007) is a well
balanced scheme which utilizes a central upwind scheme.
Further, it does not have the Reimann problem. To illus-
trate this scheme, the SVEs stated in Equations 1 and 2 are
re–written as follows,

∂U
∂ t

+
∂F
∂x

= S, (36)

where,

U =

[
A
Q

]
, (37)

F =

[
Q
Q2

A

]
, and (38)

S =

[
0

−Ag
(

∂ z
∂x +S f −Sb

)]
. (39)

The space is discretized in to a grid for a finite volume cell
of a cell size of ∆x and x j− 1

2
≤ x j ≤ x j+ 1

2
in a uniform grid.

The KP scheme for the given Equation 36, can be written
as the following set of ODEs,

dŪ j(t)
dt

=−
H j+ 1

2
(t)−H j− 1

2
(t)

∆x
+ S̄ j(t), (40)

where H j± 1
2
(t) are the central upwind numerical fluxes at

the cell interfaces (Kurganov and Petrova, 2007; Sharma,
2015; Vytvytskyi et al., 2015). More details in this scheme
is included in (Kurganov and Petrova, 2007). The time
step ∆t is restricted by the standard Courant–Friederich–
Levy (CFL) condition as follows (Kurganov and Petrova,
2007; Bollermann et al., 2013),

CFL =
∆t
∆x

max
j

∣∣∣∣a±j+ 1
2

∣∣∣∣≤ 1
2
, (41)

where a±
j± 1

2
is a one sided local speed of propagation.

2.3 The Parameters of the Open Channel
The selected open channel is a prismatic channel with a
trapezoidal cross section. The total length l of the chan-
nel is 2.95 m. The bottom width of the channel is 0.2 m,
with a zero channel bed slope Sb. The Strickler friction
coefficient, kS is taken as 42 m1/3

s .

Figure 1. Plan View and the Side Elevation of the Prismatic
Channel
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Figure 2. Comparison of the Flow Rates between the KP
method and OC Method, at the Three Collocation Points. ‘KP ’:
Results from KP, ‘C ’: Results from OC

3 Simulation, Results and Discussion
A prismatic channel is selected for the dynamic simu-
lations in MATLAB(9.0.1), with three cases of different
number of collocation points. For the collocation method,
the selected boundary conditions are the flow rate into
the channel and the wetted cross sectional area out of the
channel. For the simulations with KP, the two boundaries
are the flow rates into and out of the channel. For both
the methods, the sets of ODEs are solved by the use of
Runge Kutta fourth order numerical scheme with a fixed
step length.

3.1 Simulation Setup
The simulations for the KP method were started from a
steady state, and after 60 seconds, the volumetric flow rate
at the inlet was changed from 0.0022 to 0.0024 m3

s within
20 seconds. This increased flow rate was maintained for
about 120 seconds, and then it was reduced back to the
previous value within 20 seconds. The flow rate at the end
of the channel was kept at the same value of 0.0022 m3

s ,
throughout the simulations.

The inlet flow rate conditions of the KP method and the
outlet wetted cross section area resulted from the simula-
tions, were used as the boundary conditions for the simu-
lations of the collocation method.

3.2 Results and Discussion
Three case studies were simulated using the orthogonal
collocation (OC) method. Those results are compared
with the results from the KP method and are described in
the sections 3.2.1, 3.2.2 and 3.2.3.

3.2.1 Case 1: Three Collocation Points (n=3)

The results from the simulations of the KP scheme are
compared with the results from the method with three col-
location points. The volumetric flow rates and the heights
of the fluid level at the three points are shown in Figures 2
and 3, respectively.

Figure 3. Comparison of the Fluid Levels between the KP
method and the OC Method, at the Three Collocation Points.
‘KP ’: Results from KP, ‘C ’: Results from OC

The flow rates obtained from the collocation method
are similar to the results from the KP method, but with a
few numerical oscillations. At the start of the simulation,
the numerical oscillations can be observed due to the
unsteady state conditions in the collocation method.
These deviations can also be clearly seen in the deviations
of the heights in Figure 3 at the beginning. During the
transient conditions, the flow rate at the middle of the
channel, which is obtained by the collocation method,
i.e. Q2 C in Figure 3 after 60 seconds, has less numerical

Figure 4. Comparison of the Flow Rates between the KP
method and the OC Method, at the Four Collocation Points. ‘KP
’: Results from KP, ‘C ’: Results from OC

Figure 5. Comparison of the Fluid Levels between the KP
method and the OC Method, at the Four Collocation Points. ‘KP
’: Results from KP, ‘C ’: Results from OC
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oscillations than the same from the KP method, but the
flow rate at the end of the channel i.e. Q3 C has more
oscillations than from the KP method.

3.2.2 Case 2: Four Collocation Points (n=4)

The volumetric flow rates and the heights of the fluid level
at the selected four points, are shown in Figures 4 and 5,
respectively.

The results of the simulation from the OC method
with four collocation points are more comparable with
the results from the KP method, than the same with
the three collocation points. Although the amplitude
of the oscillations are reduced, the frequency of the
oscillations are increased than in the previous case (in
section 3.2.1). The reason could be the dual effect of the
better approximation due to the increase of the number
of collocation points, and the oscillatory behavior of
the polynomial approximation due to the increase of the
order of the polynomial. This could be observed fur-
ther by increasing the number of collocation points to five.

3.2.3 Case 3: Five Collocation Points (n=5)

The results for the five collocation points are shown in
Figures 6 and 7, respectively. The better approximation
due to the increase of the number of collocation points
has dominated over the oscillatory behavior caused by
the increase of the order of the polynomial, as shown in
Figure 6. The oscillations in OC method are the same
as from KP, except for Q5 C, which is at the end of the
channel.

3.2.4 Selection of an Orthogonal Polynomial for the
Collocation Points

A comparison between the Legendre and Chebyshev poly-
nomials of the first kind was done to justify the selection
of the Legendre polynomial. The simulations were done
for the case of five collocation points. As shown in the
zoomed areas of the Figure 8, it can be justified that the
Legendre polynomials tend to produce less oscillations
compared to the Chebyshev polynomials.

The OC method is accurate enough with four or more
collocation points, as oppose to the numerous discretiza-
tion points (100) in the KP method. Therefore, to satisfy
the CFL condition, the time step ∆t of the KP scheme has
to be small due to the small ∆x. On the contrary, to satisfy
the different Current number condition, the OC method
allows a larger time step due to the comparatively bigger
∆x. Altogether, the computational time taken for the OC
method was about 5-20 times less than the computational
time taken by the KP method. Handling the ODEs that are

Figure 6. Comparison of the Flow Rates between the KP
method and the OC Method, at the Five Collocation Points. ‘KP
’: Results from KP, ‘C ’: Results from OC

Figure 7. Comparison of the Fluid Levels between the KP
method and the OC Method, at the Five Collocation Points. ‘KP
’: Results from KP, ‘C ’: Results from OC

Figure 8. Comparison of the Legendre and Chebyshev poly-
nomials of the first kind. (dashed lines: Results from KP at
different collocation points, dotted lines: Results from the OC
using Chebyshev polynomials, solid lines: Results from OC us-
ing Legendre polynomials.

generated by the OC method is computationally simpler
than the KP method. Further, it has a considerably similar
accuracy, specially takes much less computational time,
which makes the use of OC method in the application of
online state and parameter estimation, to be promising.

4 Conclusion
The possibility of efficiently reducing the PDEs into ordi-
nary differential equations (ODEs) using orthogonal col-
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location method, is studied with the goal of application
in state and parameter estimations in real–time. The col-
location method showed the flexibility of choosing the
boundary conditions with respect to the flow behavior.
The results were comparable enough to the selected finite
volume method, which is a widely used, central–upwind
scheme. Further, a significant reduction in the computa-
tional time in the collocation method is observed. There-
fore, the collocation method shows a promising potential
of using it in the estimation of state and parameters of open
channel flows.
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