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Abstract
Homeostasis refers to the ability of organisms and cells to
maintain a stable internal environment even in the pres-
ence of a changing external environment. On the cel-
lular level many compounds such as ions, pH, proteins,
and transcription factors have been shown to be tightly
regulated, and mathematical models of biochemical net-
works play a major role in elucidating the mechanisms
behind this behaviour. Of particular interest is the con-
trol theoretic properties of these models, e.g. stability and
robustness. The simplest models consist of two com-
ponents, a controlled compound and a controller com-
pound. We have previously explored how signalling be-
tween these two compounds can be arranged in order for
the network to display homeostasis, and have constructed
a class of eight two-component reaction kinetic networks
with negative feedback that shows set-point tracking and
disturbance rejection properties. Here, we take a closer
look at the stability and robust control inherent to this
class of systems. We show how these systems can be
described as negative feedback connections of two non-
linear sub-systems, and show that both sub-systems are
output strictly passive and zero-state detectable. Using a
passivity-based approach, we show that all eight systems
in this class of two-component networks are asymptoti-
cally stable.
Keywords: Passivity, homeostasis, adaptation, stability,
robust control, integral control, negative feedback

1 Introduction
Control theoretic methods are useful when uncovering the
mechanism behind cellular control processes. Especially
properties such as stability and robust control are of in-
terest. One structure with these properties is the negative
feedback connection, which is employed in several bio-
chemical processes, such as the regulation of enzyme syn-
thesis and activity (Keener and Sneyd, 2009; Tyson and
Othmer, 1978). Other more complicated control systems,
such as the control of calcium in yeast cells, have also been
analysed in this manner (Liu, 2012). We have previously
investigated a class of simple two-component biochemical
networks displaying homeostasis. These networks have
been used in modelling ionic homeostasis in enterocytes
(Thorsen et al., 2014), the development of biochemical

controllers with robust control to perturbations changing
rapidly in time (Fjeld et al., 2017), and developing yeast
cells with an increased tolerance to high copper concen-
trations (Thorsen et al., 2016a). The networks consist of
a controlled compound x1 and a controller compound x2,
and through certain signalling reactions between these two
compounds, the systems form negative feedback connec-
tions with integral action, giving robust control of x1. We
have identified eight such two-component systems, termed
controller motifs (Drengstig et al., 2012). Figure 1 shows
the structure of these controller motifs. For the class of
two-component systems considered here, x1 acts on either
the synthesis or the degradation of x2, and x2 acts on ei-
ther the synthesis or the degradation of x1. This gives eight
controller motifs with two components, each acting on the
other through a single signalling reaction.

Figure 1. The controller motifs are formed by two compounds,
x1 and x2, with signalling reactions α , β , γ , δ between them.
For each controller motif, there is one signalling reaction from
x1 acting on x2, and one signalling reaction from x2 acting on x1.
These signalling reactions form a negative feedback connection
with the two compounds. There are in total eight such controller
motifs.

In general, the controller motifs take the form

ẋ1 = ks,1 ·α(x2)− fd,1(x1) ·β (x2) (1)
ẋ2 = ks,2 · γ(x1)− fd,2(x2) ·δ (x1) (2)

where ks,i are positive rate constants determining the basal
synthesis of xi, the functions fd,i determine the degra-
dation rate of xi following Michaelis–Menten kinetics
(Cornish-Bowden, 2012), and α , β , γ , δ are signalling
functions between the two chemical compounds. Only
one of the signalling functions α and β , and one of γ and
δ , will be non-constant for a given controller motif.
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The Michaelis–Menten equation models the reaction
rate of a compound xi by an enzyme reaction

fd,i(xi) =
kd,i · xi

KM,i + xi
(3)

where fd,i is the reaction rate, kd,i is a positive constant de-
termining the maximal reaction rate, and KM,i is a positive
constant called the Michaelis constant (Cornish-Bowden,
2012).

The signalling functions α , β , γ , δ can either be acti-
vating or inhibiting. Activating signalling follow the ex-
pression for mixed activation (Cornish-Bowden, 2012)

fact(xi) =
xi

KA,i + xi
(4)

where the activation of some reaction is determined by the
level of xi, and KA,i is a positive constant for the activation
reaction. Inhibiting signalling follow the expression for
mixed inhibition (Cornish-Bowden, 2012)

finh(xi) =
KI,i

KI,i + xi
(5)

where the amount of inhibition is determined by the level
of xi, and KI,i is a positive constant for the inhibition reac-
tion.

2 Stability
To show asymptotic stability of the controller motifs, we
first perform a change of variables, z1 = x1 − x∗1 and
z2 = x2 − x∗2, where (x∗1,x

∗
2) is the equilibrium point of

the system. The states x1 and x2 represent physical con-
centrations of compounds. Therefore, a global result cor-
responds to positive values of the states and the equilib-
rium point. The change of variables moves the equilib-
rium point to the origin. Using the fact that ks,1 ·α(x∗2) =
fd,1(x∗1) ·β (x∗2) and ks,2 · γ(x∗1) = fd,2(x∗2) · δ (x∗1), the sys-
tem is rewritten to the form

ż1 =− f1(z1)+h2,α(z2)−g1(z1) ·h2,β (z2) (6)

ż2 =− f2(z2)+h1,γ(z1)−g2(z2) ·h1,δ (z1) (7)

where these new functions are defined as follows

f1(z1) = fd,1(z1 + x∗1) ·β (x∗2)− fd,1(x∗1) ·β (x∗2) (8)
f2(z2) = fd,2(z2 + x∗2) ·δ (x∗1)− fd,2(x∗2) ·δ (x∗1) (9)
g1(z1) = fd,1(z1 + x∗1) (10)
g2(z2) = fd,2(z2 + x∗2) (11)

h1,γ(z1) = ks,2 · γ(z1 + x∗1)− ks,2 · γ(x∗1) (12)
h1,δ (z1) = δ (z1 + x∗1)−δ (x∗1) (13)
h2,α(z2) = ks,1 ·α(z2 + x∗2)− ks,1 ·α(x∗2) (14)
h2,β (z2) = β (z2 + x∗2)−β (x∗2) (15)

The functions fi and hi are strictly increasing and satisfy
fi(0) = hi(0) = 0 for the interval (−x∗i ,∞). The functions

gi > 0 for the same interval. As noted earlier, only one of
the signalling functions α and β , and one of γ and δ will
be non-constant for a given controller motif. This means
that only one of the output functions h2,α and h2,β , and
one of h1,γ and h1,δ will be non-zero. In addition, if the
signalling functions α,β ,γ,δ are inhibiting instead of ac-
tivating, the corresponding output functions hi are defined
to be negative. For example, the controller motif shown
in Figure 2 has non-constant signalling functions β and
δ , while α = γ = 1. Therefore, the corresponding output
functions h2,β and h1,δ are non-zero, while h2,α = h1,γ = 0.
In addition, the signalling function δ is inhibiting, and the
corresponding output function h1,δ is defined to be nega-
tive.

Figure 2. One of eight controller motifs that form a negative
feedback connection. In this case, x1 is acting on x2 by inhibit-
ing its degradation, and x2 is acting on x1 by activating its degra-
dation.

The system equations for this controller motif are given by

ẋ1 = ks,1− fd,1(x1) ·β (x2) = ks,1−
kd,1 · x1

KM,1 + x1
· x2

KA,2 + x2
(16)

ẋ2 = ks,2− fd,2(x2) ·δ (x1) = ks,2−
kd,2 · x2

KM,2 + x2
·

KI,1

KI,1 + x1
(17)

and the transformed system equations are then

ż1 =− f1(z1)−g1(z1) ·h2(z2) (18)
ż2 =− f2(z2)+g2(z2) ·h1(z1) (19)

where h1 = h1,δ and h2 = h2,β .
To show that the controller motifs are asymptotically

stable, we think of them as negative feedback connections
of two sub-systems. In general, these sub-systems take the
form

H1 :

{
ż1 =− f1(z1)+g1(z1) ·u1

y1 = h1(z1)
(20)

H2 :

{
ż2 =− f2(z2)+g2(z2) ·u2

y2 = h2(z2)
(21)
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where the negative feedback connection can be formed ei-
ther by having

u1 =−y2, u2 = y1 (22)

or by

u1 = y2, u2 =−y1 (23)

This corresponds to which of H1 and H2 is in the negative
feedback.

2.1 Passivity
The next step is to determine if the two sub-systems are
output strictly passive. This is done by using the storage
function Si for sub-system Hi

Si =
∫ zi

0

hi(σ)

gi(σ)
dσ (24)

where hi and gi are the functions in (20) and (21). The
derivative of S along trajectories is then

Ṡi =
hi(zi)

gi(zi)
· żi =− fi(zi) ·

hi(zi)

gi(zi)
+ui · yi (25)

The sub-systems are output strictly passive if the follow-
ing inequality is satisfied (Khalil, 2002; Sepulchre et al.,
1997)

Ṡi ≤−yi ·ρi(yi)+ui · yi (26)

where yi ·ρi(yi) > 0 ∀ yi 6= 0. Systems whose stored en-
ergy can only increase through the supply of an external
source, are passive (Khalil, 2002). For inequality (26), the
“energy” absorbed by the system, ui ·yi, is greater than the
increase in stored “energy”, Ṡi. In addition, the system has
an “excess” of passivity from the term yi ·ρ(yi). For the
controller motifs, we choose yi ·ρi(yi) = pi · y2

i , where pi
is a positive constant. Inequality (26) is then satisfied by
choosing pi such that

0 < pi ≤
fi(zi)

hi(zi) ·gi(zi)
(27)

for the interval (−x∗i ,∞). For the same interval, the right-
hand side expression can be shown to be greater than zero,
and either strictly increasing, or strictly decreasing. In-
equality (27) is then satisfied by finding pi as the lower
bound of the right-hand side expression. The lower bound
is given by the minimum value of the right-hand side ex-
pression at the limits zi→−x∗i and zi→∞. Therefore, the
value of pi is determined by

pi = min

{
lim

zi→−x∗+i

fi(zi)

hi(zi) ·gi(zi)
, lim

zi→∞

fi(zi)

hi(zi) ·gi(zi)

}
(28)

Thus, the sub-systems (20) and (21) are output strictly pas-
sive.

It has been shown that the negative feedback connec-
tion of two output strictly passive systems is asymptot-
ically stable if the sub-systems are zero-state detectable
(Sepulchre et al., 1997). To show that H1 and H2 are zero-
state detectable, we consider the system

H :

{
ż = f (z,u)
y = h(z,u)

(29)

with u = 0. H is said to be zero-state detectable
if the origin is asymptotically stable conditionally to
Z, where Z is the largest positively invariant set in
{z ∈ Rn | y = h(z,0) = 0}. For the special case when Z =
{0}, we say that H is zero-state observable (Khalil, 2002;
Sepulchre et al., 1997). We now consider the sub-systems
H1and H2, with inputs u1 = u2 = 0. From the the output
functions (12)–(15), it can be seen that

y1 = y2 = 0 =⇒ z1 = z2 = 0 (30)

Therefore, the sub-systems H1 and H2 are zero-state ob-
servable if the origin is locally asymptotically stable. We
verify this by linearisation of the sub-systems at the ori-
gin. With ui = yi = 0, the system equations of (20) and
(21) are reduced to żi =− fi(zi), and linearisation gives

H1 :
∂ (− f1)

∂ z1

∣∣∣∣
z1=0

=−
kd,1 ·KM,1

(KM,1 + x∗1)
2 ·β (x

∗
2)< 0 (31)

H2 :
∂ (− f2)

∂ z2

∣∣∣∣
z2=0

=−
kd,2 ·KM,2

(KM,2 + x∗2)
2 ·δ (x

∗
1)< 0 (32)

where fi are the functions given by (8) and (9).
Finally, to show that the entire system is asymptotically

stable, we use the combined storage function

S = S1 +S2 (33)

Because S1 and S2 are positive definite, so is S. Since
the two sub-systems form a negative feedback connection
given by (22) or (23), the derivative of S along trajectories
is reduced to

Ṡ = Ṡ1 + Ṡ2 ≤−p1 · y2
1− p2 · y2

2 (34)

which is negative definite. This shows that all bounded so-
lutions converge to the set {(z1,z2) | y1 = y2 = 0}. From
(30), we know that this corresponds to the origin. Since
the origin has been shown to be locally asymptotically sta-
ble by linearisation, we conclude that the controller motifs
are asymptotically stable. If the storage functions S1 and
S2 are radially unbounded, so is S, and the controller mo-
tifs are globally asymptotically stable.

3 Integral Control
The system given by equations (1) and (2) can be shown
to include integral control. This is done by rewriting equa-
tion (2). For example, the controller motif given by equa-
tions (16) and (17), shown in Figure 2, can have equation
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(17) rewritten to

ẋ2 =−
ks,2

KI,1 + x1
·
(

x2

KM,2 + x2
·

kd,2 ·KI,1

ks,2
−KI,1− x1

)
(35)

For KM,2 = 0, this is reduced to

ẋ2 =−
ks,2

KI,1 + x1
·
(

kd,2 ·KI,1

ks,2
−KI,1− x1

)
(36)

= Gi · (x1,set − x1) (37)

which has the form of the integral control law. This means
that for KM,2 = 0, or KM,2� x2, the system behaves as an
integral controller for x1 with a set-point given by

x1,set =
kd,2 ·KI,1

ks,2
−KI,1 (38)

For the case when KM,2 > 0, the set-point in (35) is defined
as

x1,set =
x2

KM,2 + x2
·

kd,2 ·KI,1

ks,2
−KI,1 (39)

Thus, there is still integral action, however, the set-point
changes with perturbations. The effect of this is shown in
Figure 3, where the case with KM,2 = 0 results in perfect
adaptation to perturbations in the synthesis of x1, and the
case with KM,2 > 0 results in only partial adaptation.

Figure 3. The response to a step-wise perturbation in the synthe-
sis of x1. Dashed line shows no adaptation, grey line shows par-
tial adaptation, and black line shows perfect adaptation. These
three cases correspond to the controller motifs having no inte-
gral control (no signalling between x1 and x2), integral control
with KM,2 > 0, and integral control with KM,2 = 0, respectively.

It has previously been shown that the all the controller
motifs include integral control (Drengstig et al., 2012;

Thorsen et al., 2016b). The system equation of the con-
troller compound x2 is written to the form of the integral
control law

ẋ2 = Gi · (x1,set − x1,meas) (40)

Where Gi is the controller gain, x1,set is the set point of
the controlled compound x1, and x1,meas is a measurement
function of x1. Just like the system in Figure 2, the other
controller motifs show partial or perfect adaptation de-
pending on the value of KM,2 (Drengstig et al., 2012).

Because we are able to show that the controller motifs
are asymptotically stable, as well as incorporating integral
control, they must be robust to all parameter perturbations
that do not destroy the stability of the closed-loop system
(Khalil, 2002). An implication of asymptotic stability, is
that the error x1,set − x1,meas must be zero at the equilib-
rium point. With any parameter perturbation that does not
destroy the stability of the closed-loop system, the equilib-
rium point may change, however, the error must return to
zero. Thus, regulation will be achieved for as long as the
perturbed equilibrium point remains asymptotically sta-
ble.

4 Example
We demonstrate our approach by considering the con-
troller motif shown in Figure 2, given by the system equa-
tions (16) and (17). This system is transformed to the sys-
tem equations given by (18) and (19). The transformed
system can be represented as a negative feedback connec-
tion of two sub-systems H1 and H2, given by (20) and (21),
with

u1 =−y2 =−h2(z2), u2 = y1 = h1(z1) (41)

We use some arbitrary values for the constants ks,1 =
1, ks,2 = 1, kd,1 = 3, kd,2 = 4, KM,1 = 1.5, KM,2 = 0.75,
KI,1 = 1.5, and KA,2 = 2, such that x∗1,x

∗
2 > 0. Thereby, the

storage function for H1 is given by

S1 =
∫ z1

0

(
0.114− 0.329

σ +2.893

)
dσ (42)

and the derivative of S1 along trajectories satisfy the in-
equality

Ṡ1 ≤−p1 · y2
1 +u1 · y1 (43)

with the constant p1 determined by

0 < p1 ≤
f1(z1)

h1(z1) ·g1(z1)
= 0.506+

0.759
z1 +2.893

(44)

For the interval (−x∗1,∞), the right-hand side is always
greater than or equal to 0.506, and so we choose this value
for p1. This is illustrated in Figure 4. Similarly, for sub-
system H2, the inequality

0 < p2 ≤
f2(z2)

h2(z2) ·g2(z2)
= 0.185+

0.370
z2 +2.050

(45)
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Figure 4. To determine the value of p1 in inequality (44), we
find the lower bound of the right-hand side expression. The fig-
ure shows that the lower bound is given by the limit of the right-
hand side expression as z1→ ∞. In this case p1 = 0.506.

is satisfied by choosing p2 = 0.185, such that

Ṡ2 ≤−p2 · y2
2 +u2 · y2 (46)

where the storage function S2 is given by

S2 =
∫ z2

0

(
0.123− 0.095

σ +2.050
− 0.312

σ +4.050

)
dσ (47)

Thus, the combined storage function S = S1 + S2 is posi-
tive definite and radially unbounded, because S1 and S2 are
both positive definite and radially unbounded. In addition,
the derivative of S along trajectories satisfies

Ṡ≤−0.506 · y2
1−0.185 · y2

2 (48)

which implies that Ṡ is negative definite. S and Ṡ are shown
in Figure 5.

Figure 5. The storage function S = S1 +S2 is shown to the left,
and its derivative along trajectories is shown to the right. The
red surfaces are at zero. We see that S is positive definite, and
Ṡ is negative definite. Therefore, all bounded solutions must
converge to the set where y1 = y2 = 0. A trajectory converging
to the origin is shown as a red curve within the bowl formed by
S in the left figure.

Similarly to Lyapunov functions, we use the combined
storage function S, and its derivative along trajectories Ṡ
to draw conclusions about the stability of the system. The
difference being that although the combined storage func-
tion is positive definite, and its derivative along trajectories
negative definite, asymptotic stability is not implied. In-
stead it merely implies that all bounded solutions converge
to the set where the outputs y1 = y2 = 0. In general, this
set could correspond to a number of values (z1,z2), how-
ever, because the output functions (12)–(15) are strictly
increasing and satisfy hi(0) = 0, this set corresponds to
the origin. This implies that the sub-systems H1 and H2
are zero-state observable if the origin is locally asymptot-
ically stable. This is shown by linearisation at the origin,
using equations (31) and (32)

H1 :
∂ (− f1)

∂ z1

∣∣∣∣
z1=0

=−0.118 < 0 (49)

H2 :
∂ (− f2)

∂ z2

∣∣∣∣
z2=0

=−0.131 < 0 (50)

Thus, the sub-systems are zero-state observable, and the
entire system must be asymptotically stable. In addition,
as noted earlier, the combined storage function S is ra-
dially unbounded, and therefore the system is globally
asymptotically stable.

5 Conclusion
In this paper we have shown that a class of eight two-
component biochemical networks displaying homeostasis,
called controller motifs, are asymptotically stable. We
have shown that the general system equations for these
networks can be represented as negative feedback con-
nections of two individual sub-systems. Then, these sub-
systems are shown to be output strictly passive, and the
feedback connection in its entirety is shown to be asymp-
totically stable. In addition, it is shown that the controller
motifs are robust to perturbations because they incorporate
integral control.

When modelling cellular processes, it is beneficial to
know that uncertainties in parameters do not fundamen-
tally change the behaviour of the model. Because the con-
troller motifs are asymptotically stable with integral ac-
tion, processes which can be modelled within the frame-
work of the controller motifs will have a qualitative be-
haviour which aligns well with experimental measure-
ments, even with large uncertainties in parameter values.
On the other hand, processes which do not conform well to
the controller motifs can have wildly different qualitative
responses in the face of parameter uncertainties, and the
controller motifs can be excluded as models for such pro-
cesses. Thus, it is not a matter of parameter tuning. This
is a helpful property of the controller motifs, especially in
system identification.

Here we have chosen to focus on controller motifs
with zero-order synthesis, degradation by an enzyme reac-
tion, and signalling following mixed activation/inhibition.
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However, other functions could be used. For example, we
could use Hill kinetics for the degradation of the two com-
pounds, or we could use linear activation for the signalling
functions. In that case we would have to make sure that the
properties assumed still hold.
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