
Smart Integration of Energy Production

Esko K. Juuso

Control Engineering, Faculty of Technology, University of Oulu, Finland, esko.juuso@oulu.fi

Abstract
Heat is primarily important in the world’s total energy
consumption and especially, peak loads and seasonal vari-
ations result in problems which are difficult to efficiently
come up with electricity networks. Renewable energy
sources bring important new possibilities, especially for
the heat energy. This paper focuses on heat energy: com-
pact parametric models are essential in the smart integra-
tion of production in the district heating and efficient col-
lection of the solar thermal energy. Thermal masses of
the buildings are used in the peak load cutting as energy
storages. The physical parameters calculated from the
building information facilitate the use of different types of
buildings simultaneously in the calculations. Smart adap-
tive control solutions extend feasible operating periods in
collecting solar thermal energy. A combination of mul-
tiple control actions is essential in keeping the system in
control during strong fluctuations in cloudiness and energy
demand. Heat storages increase the collecting power and
extend the utilisation of the solar energy utilisation over
daily and seasonal periods.
Keywords: energy production, sustainable energy, district
heating, solar thermal power, smart adaptive systems

1 Introduction
Heat represents more than half of the world’s total energy
consumption and three-quarters of the fuels used to meet
this heat demand consist of fossil fuels (Eisentraut and
Brown, 2014). Peak load cutting is highly important in re-
ducing both production costs and environmental impacts
(Hietaharju and Ruusunen, 2016). Prediction of the future
energy demand and modelling the thermal behaviour of
the building, i.e. the indoor temperature, have been used
in (Hietaharju and Ruusunen, 2016) to cut peak loads and
optimise the heat consumption.

Future trends in global energy consumption and associ-
ated environmental issues are pushing for an increased use
of renewable energy sources, smaller-size power plants
and distributed generation. Consumers are increasingly
willing to take an active role. Storage capacities are es-
sential in optimisation, especially solar energy which has
daily and seasonal variation. Solar collector fields are
combined with storage tanks []. In district heating, build-
ing thermal mass can be utilised as short term heat storage
(Hietaharju and Ruusunen, 2015).

Building thermal mass and its use in peak load cutting
has also been discussed in (Braun, 2003; Henze et al.,

2007; Sun et al., 2013; Kensby et al., 2015; Hagentoft and
Kalagidis, 2015; Ståhl, 2009). High peak load reductions
and energy savings can be achieved (Sun et al., 2013) and
relatively large variations in district heating energy are tol-
erated in maintaining desired indoor temperature. How-
ever, the results depend highly on the thermal characteris-
tics of the buildings. (Hagentoft and Kalagidis, 2015) The
storage capacity of a building can be estimated by using
thermal effusivity, which is a function of thermal conduc-
tivity and heat capacity and represents the materials ability
to exchange thermal energy with its surroundings. Heavy
buildings have higher thermal effusivity and offer higher
energy storage capacity and more stable indoor tempera-
tures compared with light buildings. Models are typically
based either on physical principles or they are data driven
or a combination of both. (Zhao and Magoulès, 2012;
Kramer et al., 2012; Foucquier et al., 2013). A new para-
metric physical modelling approach to predict and control
the indoor temperature was proposed in (Hietaharju et al.,
2017).

Integration of smart grid ideas has mostly focused on
electricity where the integration requires fast adaption
since the storage problem is not solved for real practice.
The wind power is increasing fast but the production hours
are limited. The solar electricity has the same problems
and as whole this leads to very volatile production situ-
ations: there are periods of over production and periods
when the demand is high but hardly any electricity can
be produced with wind or solar power stations. This has
experienced in Finland on a winter day when it was very
calm. In Germany, there have been periods of negative
electricity prices when the wind and solar power produc-
tion has been on a very high level. This has made the
production windows of the condensing power plants diffi-
cult. Hydropower together with gas and multi-fuel power
plants help in balancing.

Solar power plants should be efficient in collecting any
available thermal energy in a usable form at the desired
temperature range. Seasonal and daily cyclic variations
as well as atmospheric conditions, such as cloud cover,
humidity, and air transparency, need to be taken into ac-
count to get a fast start-up and efficient operation in vary-
ing cloudy conditions. A solar collector field is a good
test platform for control methodologies (Camacho et al.,
1997; Juuso, 1999; Johansen and Storaa, 2002; Cirre et al.,
2007; Limon et al., 2008; Roca et al., 2011; Ayala et al.,
2011). The control strategies include basic feedforward
and PID schemes, adaptive control, model-based predic-
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tive control, frequency domain and robust optimal control
and fuzzy logic control.

Feedforward approaches based on the energy balance
use the measurements of solar irradiation and inlet temper-
ature (Camacho et al., 1992). Lumped parameter models
taking into account the sun position, the field geometry,
the mirror reflectivity, the solar irradiation and the inlet oil
temperature have been developed for a solar collector field
(Camacho et al., 1997). A feedforward controller has been
combined with different feedback controllers, even PID
controllers operate for this purpose (Valenzuela and Balsa,
1998). The classical internal model control (IMC) can op-
erate efficiently in varying time delay conditions (Farkas
and Vajk, 2002). Genetic algorithms have also been used
for multiobjective tuning (Bonilla et al., 2012).

Linguistic equations (LE) have been used in various in-
dustrial applications (Juuso, 1999, 2004). Modelling and
control activities with the LE methodology started by the
first controllers implemented in 1996 (Juuso et al., 1997)
and the first dynamic models developed in 1999 (Juuso
et al., 2000). The LE based dynamic simulator is an essen-
tial tool in fine–tuning of these controllers (Juuso, 2005).
The LE controllers use model-based adaptation and feed-
forward features, which are aimed for preventing over-
heating, and the controller presented in (Juuso and Valen-
zuela, 2003) already took care of the actual setpoints of
the temperature. The manual adjustment of the working
point limit has improved the operation considerably. Lin-
guistic equation (LE) control includes solutions also for
cloudy conditions and varying load situations (Juuso and
Yebra, 2013b). Model-based predictive control (MPC) has
been used for tuning the control of large setpoint changes
(Juuso, 2006). The main challenge is to handle harmful
situations efficiently to reach an unattended operation as a
part of a smart grid.

Heat should be strongly taken into account since it is the
primary way of using energy. This paper focuses on inte-
grating heat demands and variating operating conditions.
Approaches are compared at two levels: predictive model-
based approaches for optimization in the district heating
and fast intelligent control solutions in solar thermal en-
ergy collection.

2 Smart energy network
Smart adaptive systems provide solutions to this need: a
smart energy network indicates energy production, trans-
mission and distribution network based on a two-way
communication between suppliers and consumers. A real
time monitoring of the network condition, i.e. energy pro-
duction, consumption and distribution, is expected to al-
low for a more prominent position on the market of those
renewable energy resources characterised by a discontin-
uous and irregular generation.

The expected benefit of a decentralised energy system
can be described in terms of redistribution of peak loads
and the flattening of the overall power demand curve.

The negative aspects of the integrated decentralised en-
ergy production can be formulated in terms of control: the
decentralised energy production can be characterised by a
strong seasonal variation; each plant depends on the needs
and preferences of single users; some of the production
units can be subjected to weather and climate conditions.
Low carbon requirements have an effect on the trend of
the thermal power production. Industry requires a basic
high power source which is covered by the nuclear power
production.

In this paper, the energy system includes district heat-
ing, solar thermal collectors and storages (Figure 1).

2.1 District heating
Combined heat and power (CHP) production together with
district heating is a balancing solution. Peak loads and
variations in heat demand are caused by the fluctuation of
outdoor temperature. Cutting peak loads in district heating
network is one of such measures.

In district heating systems, the heating demand may ex-
ceeds the capacity of power plants, which means that re-
serve power plants needs to be started. This raises produc-
tion costs (and also environmental impact) for the energy
producer as more expensive oil is used for fuel instead
of wood, peat or coal. The peak loads are come up by
scheduling energy use. At the same time, more accurate
and stable indoor temperature control could be achieved
by implementing the optimization routines for energy con-
sumption.

2.2 Solar thermal energy
The usage of renewable energy sources is growing as a
consequence of global climate effect and enacted legisla-
tion (EED). Solar thermal energy offers considerable op-
portunities in this connection. The aim of solar thermal
power plants is to provide thermal energy for use in an in-
dustrial process electricity generation. With fast and well
damped controllers, unnecessary shutdowns and start-ups
can be avoided and the plant can be operated close to the
design limits (Juuso et al., 1998).

2.3 Storage
Heat storage is needed to cut peak loads and even the heat
demand out. The storage capacity of buildings together
with adaptive automation solutions offer practical solution
for this. Model-based optimization solutions developed
for district heating can also be applied to electric heating.
This reduces the need for electricity storage.

Geothermal energy is more flexible and can be used to-
gether with solar thermal energy to utilise solar energy
more efficiently.

3 Methods
Model-based control and optimization solutions with de-
mand predictions are efficient in the district heating. In
solar thermal applications, seasonal and daily variations
could be handled with theoretical models based on energy
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Figure 1. Optimisation of a energy system including district heating, solar thermal collectors and storages.

balances but these approaches do not provide sufficient
number of operating hours. Fast variations of the oper-
ating conditions require smart adaptive control.

3.1 Modelling
District heating Predicting the indoor temperature evo-
lution over time in the buildings is the key to optimizing
the use of district heating. The model structure is based
on Newton’s cooling law: the rate of heat loss of an object
is proportional to the temperature difference between the
object and its surroundings. The peak load concept was
introduced in (Hietaharju and Ruusunen, 2015), tested in
(Hietaharju and Ruusunen, 2016) and further developed
in (Hietaharju et al., 2017) to improve the efficiency of the
calculations:

∆Tin(t) =
∆t
C
[P(t− k)−U [Tin(t−1)−Tout(t−1)] (1)

Tin(t) = Tin(t−1)+∆Tin (2)

where the physical parameters are obtained for buildings:
C (JK−1) is the heat capacity and U the heat loss coeffi-
cient (WK−1): U = hA, where h is the heat transfer co-
efficient (Wm−2K−1) and A is the surface area through
which the heat is being transferred (m2). Inputs for the
model are the indoor temperature (Tin), outdoor tempera-
ture (Tout) and heating power P (W ) which can include a
lag of k hours. Time step ∆t for the model is one hour.
Model output is the hourly indoor temperature along the
defined prediction horizon.

The physical parameters C and U are calculated by us-
ing ground plans and elevation drawings. Some assump-
tions were made about the construction materials due to
insufficient information. This model was tested for two
building in (Hietaharju and Ruusunen, 2016) and for a
large number of buildings in (Hietaharju et al., 2017). The
characteristics of these buildings are presented in (Hieta-
harju et al., 2017). The modelling approach can be ef-
ficiently generalised: the measured data acquired from
five different types of buildings has been utilised in the
model performance analysis. Use of easily available mea-

surements and rough estimates for physical parameters are
other important features of the model.

Solar collector field The energy balance of the collec-
tor field can be represented by expression (Valenzuela and
Balsa, 1998):

Ie f f Ae f f = (1−ηp)FρcTdi f f , (3)

where Ie f f is effective irradiation (Wm−2), Ae f f effective
collector area (m2), ηp a general loss factor, F flow rate of
the oil (m3s−1), ρ oil density kgm−3, c specific heat of oil
(Jkg−1K−1) and Tdi f f temperature difference between the
inlet and the outlet (oC). The effective irradiation is the
direct irradiation modified by taking into account the solar
time, declination and azimuth. The density decreases and
the specific heat increases resulting a nonlinear increase
of the term ρc (Figure 2). In the start-up, the flow is lim-
ited by the high viscosity. The volumetric heat capacity
increases very fast in the start-up stage but later remains
almost constant because the normal operating temperature
range is fairly narrow.
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Figure 2. Oil properties (Santotherm 55) (Juuso et al., 1998).

Conventional mechanistic models do not work since
there are problems with oscillations and irradiation dis-
turbances. In dynamic LE models, the new temperature
difference T̃di f f (t +∆t) between the inlet and outlet de-
pends on the irradiation, oil flow and previous temperature
difference:

T̃di f f (t +∆t) = a1T̃di f f (t)+a2Ĩe f f (t)+a3F̃(t), (4)
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where coefficients a1, a2 and a3 depend on operating con-
ditions, i.e. each submodel has different coefficients. The
membership definition of the outlet temperature does not
depend on time. Model coefficients and the scaling func-
tions for Tdi f f , Ie f f and F are all model specific.

A fuzzy LE system with four operating areas is clearly
the best overall model (Juuso, 2003, 2009): the simula-
tor moves smoothly from the start-up mode via low mode
to normal mode and later visits shortly in the high mode
and low mode before returning to the low mode in the
afternoon. Even oscillatory conditions, including irradi-
ation disturbances, are handled correctly. The dynamic
LE simulator predicts the average behaviour well but re-
quires improvements for predicting the maximum temper-
ature since the process changes considerably during the
first hour. For handling special situations, additional fuzzy
models have been developed on the basis of the Fuzzy–
ROSA method (Juuso et al., 2000).

3.2 Smart adaptive control
The smart control system consists of a nonlinear LE con-
troller with predefined adaptation models, some smart fea-
tures for avoiding difficult operating conditions and a cas-
cade controller for obtaining smooth operation (Figure 3).

Data analysis The data analysis is based on the gener-
alised norms

||τ Mp
j ||p = (τ Mp

j )
1/p = [

1
N

N

∑
i=1

(x j)
p
i ]

1/p, (5)

where p 6= 0, is calculated from N values of a sample. Sev-
eral samples with length τ are used at each control step.

Figure 3. Smart adaptive LE control system.

Nonlinear LE control Feedback PI type controllers use
errors e j(k) and derivatives of the errors ∆e j(k) calculated
for the controlled variables j at each time step k. These
real values are mapped to the linguistic range [−2,2] by
nonlinear scaling with variable specific membership def-
initions ( fe) and f∆e), respectively. All these functions
consist of two second order polynomials and the corre-
sponding inverse functions consist of square root func-
tions. The scaled inputs, ẽ j(k) and ˜∆e j(k), are limited to

the range [−2,2] by using the functions only in the oper-
ating range: outside the scaled values are -2 and 2 for low
and high values, respectively. The operation is enhanced
with braking and asymmetry corrections.

Intelligent analysers Intelligent analyzers are used for
detecting changes in operating conditions to activate adap-
tation and model-based control and to provide indirect
measurements for the high-level control. Nonlinearities
between different operating points are handled with work-
ing point models which use scaled values.

Fluctuations are detected by calculating the difference
of the high and the low values of the variables as a differ-
ence of two moving generalised norms:

∆xF
j (k) = ||Ksτ Mph

j ||ph −||
Ksτ Mpl

j ||pl , (6)

where the orders ph ∈ℜ and pl ∈ℜ are large positive and
negative, respectively. The moments are calculated from
the latest Ks + 1 values, and an average of several latest
values of ∆xF

j (k) is used as an indicator of fluctuations.
(Juuso, 2012)

Additional indicators have been developed for high lev-
els and fast changes to detect anomalies and avoid over-
shoot (Juuso and Yebra, 2014).

Adaptive control Adaptive LE control uses correction
factors which are obtained from the working point value.
In the solar collector field, the working point model is

wp = Ĩe f f − T̃di f f , (7)

where Ĩe f f and T̃di f f are obtained by the nonlinear scal-
ing of variables: efficient irradiation Ie f f and temperature
difference between the inlet and outlet, Tdi f f = Tout −Tin.
The outlet temperature Tout is the maximum outlet tem-
perature of the loops. This model handles the nonlinear
effects: the volumetric heat capacity increases very fast in
the start-up stage and remains almost constant in the nor-
mal operating temperatures. The predictive braking and
asymmetrical actions are activated when needed. Intelli-
gent indicators introduce additional changes of control if
needed in special situations.

Model-based control Model-based control provide lim-
its for the acceptable range of the temperature setpoint by
setting a lower limit of the working point (7). The fluc-
tuation indicators are now used for modifying the lower
working point limit to react better to cloudiness and other
disturbances. This overrides the manual limits if the op-
eration conditions require that (Juuso and Yebra, 2013a,
2014). The model-based extension is an essential part in
moving towards reliable operation in cloudy conditions:
the control system should operate without manual inter-
ventions. The high-level control moves towards control
strategies for modifying intelligent analyzers and adapta-
tion procedures (Figure 3).
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4 Applications
Applications are active at two levels: predictive model-
based approaches for optimization in the district heating
and fast intelligent control solutions in solar thermal en-
ergy collection.

4.1 District heating network
A concept for peak load cutting has been presented in (Hi-
etaharju and Ruusunen, 2015) and tested with simulation:
first for two buildings in (Hietaharju and Ruusunen, 2016)
and later (Hietaharju et al., 2017) for a large number of
buildings categorised in five types.

The indoor temperature models (1) and (2) have been
utilised to optimise heating power in pilot buildings.
First tests considered different peak load cutting scenar-
ios based on 30%, 50%, and 70% reduction in the heat-
ing power in the morning hours between 7 and 10 am.
Load cuts were calculated from the actual measured dis-
trict heating power. During the simulations, maximum al-
lowed power was restricted accordingly during the peak
load hours. Cost function for peak load cutting minimised
the power consumption while keeping the indoor temper-
ature between the control limits. This was achieved by
penalizing the cost function value when the indoor tem-
perature exceeded the limits according to the model pre-
diction. Also the increase and decrease in the amount of
heating power was restricted to prevent too large hourly
power changes.

Recently, the parametric physical model has been used
together with a residual model to forecast heat demand of
individual buildings and the city-wide demand, aiming to
provide predictive information on the heat consumption.
District heating data from over 4000 different buildings
at a city level has been utilised in the validation of the
modelling procedure. (Hietaharju and Ruusunen, 2017)

4.2 Solar thermal energy
The LE control system has been tested in the solar power
plant where the error variable is the deviation of the outlet
temperature from the set point. The control is achieved by
means of varying the flow pumped through the pipes to
avoid hazardous situations, e.g. oil temperatures greater
than 300 oC. The goal is to reach the nominal operating
temperature 180−295 oC and keep it in changing operat-
ing conditions. The temperature increase in the field may
rise up to 110oC. (Juuso, 2011, 2012).

The intelligent indicators of the levels and fast changes
of the temperatures (inlet, outlet and difference) based on
intelligent indices which detect anomalies: the fast change
of the inlet temperature provides feedforward information.

Fast start-up, smooth operation and efficient energy col-
lection is achieved even in variable operating condition.
The state indicators react well to the changing operating
conditions and can be used in smart working point control
to further improve the operation. The working point can
be chosen in a way which improves the efficiency of the

energy collection. A trade-off of the temperature and the
flow is needed to achieve a good level for the collected
power. (Juuso, 2016)

5 Discussion
The peak load cutting in district heating can be done ef-
ficiently with the model-based optimisation. The collec-
tion of the solar thermal energy requires smart controllers
with nonlinear scaling, intelligent indicators together with
adaptive and model-based extensions. Parametric systems
are needed for the models and control: parameters mod-
ify the systems to different buildings and operating condi-
tions, respectively. The models used in the district heating
could be used in the solar power plant to optimise the col-
lection demand. The smart control used in the solar appli-
cation could control the heating of the buildings in varying
operating conditions.

Geothermal energy is an additional energy source for
district heating and individual houses. It can also enhance
the use of solar thermal energy by providing efficient stor-
ages for excess solar energy. New business models based
on decentralised energy production systems are arising
where the end-users can simultaneously be also energy
producers. This has various effects on the operation of
the energy systems.

In the future, smart-grid entities formed by energy pro-
duction and consumption are controlled by smart energy
systems. Energy storages and coordination between elec-
tricity and heat sources are essential. A feasible produc-
tion level depends on seasonal and weather condition and
the dynamics of different systems need to be taken into
account.

6 Conclusions
Parametric models are essential in the smart integration
of energy production. Large networks including various
types of buildings can controlled and optimised by using
same compact model structures where the physical param-
eters are calculated from the building information. This is
highly beneficial in the peak load cutting which can effi-
ciently utilise the thermal masses of the buildings as en-
ergy storages.

Varying operating conditions are unavoidable in col-
lecting solar thermal energy. Smart adaptive control so-
lutions extend feasible operating periods by nonlinear
scaling, intelligent analysers, predefined adaptation and
model-based cascade control. The combination of mul-
tiple control actions is essential in keeping the system in
control during strong fluctuations in cloudiness and energy
demand. Heat storages are needed to increase the collect-
ing power and extending the utilisation of the solar energy
utilisation over daily and seasonal periods.

The efficient control and optimisation of the heat pro-
duction and consumption can improve considerably the
overall energy systems by reducing the peak loads and
storage requirements of electricity.
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