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Abstract
This paper presents a flexible system structure to analyze
and model for the potential use of huge ship sensor data to
generate efficient ship motion prediction model. The noisy
raw data is cleaned using noise reduction, resampling
and data continuity techniques. For modeling, a flexible
Support Vector Regression (SVR) is proposed to solve
regression problem. In the data set, sensitivity analysis
is performed to find the strength of input attributes for
prediction target. The highly significant attributes are
considered for input feature which are mapped into higher
dimensional feature using non-linear function, thus SVR
model for ship motion prediction is achieved. The
prediction results for trajectory and pitch show that the
proposed system structure is efficient for the prediction of
different ship motion attributes.
Keywords: Ship Motion time series Prediction, Support
Vector Regression

1 Introduction
The maritime industry is one of the key business
backbones in Norway and has experienced significant
increase in recent years. Ships are - driving force for
maritime business and - important in aspect of companies
and safety, (Baldauf et al., 2013). The dynamics of ships
is complex due to control system forces and external
forces, (Fossen, 2002; Sørensen, 2011). Hydrodynamic
perturbations are also induced from ship motions. The
external forces are a combination of wind, waves and
sea currents. The control system perturbation is defined
by propulsion and steering system of the ship, (Fossen,
2002). The ship motion is non-linear due to resultant
forces obtained from the combination of external forces
and control system. The priority of health, safety,
environment and economic loss are in high priority for
ship maneuvering. Therefore, a prediction model will be
useful to take consideration of different factors in ship
motion planning which is important for human safety, loss
of economy and eventually to increase the efficiency of the
ship.

There are different types of sensors installed in the ship.
The information collected from sensors are used directly
or indirectly. The real-time purpose is to maneuverer
the ship and for control signals. The indirect use can
be very useful for diagnose purpose in future to measure
performance of different components of ships such as
propeller blade, motor etc. The information produced
from sensors are normally huge size which is in the form
of big data, (Kaisler et al., 2013) for the several years’
tenure. Big data are the huge source of information if
we can dig into effectively. The information hidden are
valuable for ship owners and companies for the prediction,
identifying the patterns.

The accurate prediction of ship motion can be
challenging due to high non-linearity of ship dynamics,
the variable operational parameters of the vessel and the
stochastic external excitations exerted by waves of the
wind, (Pena et al., 2011). Many works are carried out for
ship motion prediction. The use of traditional potential
theory such as Kalman filter used in the frequency domain
is not suitable due to the nonlinearity of ship dynamics
and ocean for the estimation of actual ship behavior,
(Blischke et al., 2011). Even though traditional algorithm
may provide reasonable solutions, it gets complicated and
requires more time to solve the problem mathematically,
(Min-Seok, 2013). Classical model based approach lacks
the generalization capabilities. Even though Extended
Kalman filter can work in non-linearity to some extent but
if failed when the non-linearity and complexity increases.
SVR is one type of non-linear models which is good for
solving a complex problem. Due to approximation ability,
it solves models which are hard to solve using ordinary
mathematical expression. Due to non-linearity behavior,
there occurs some degree of uncertainty. Therefore, some
intelligent techniques are required with the ability of
generalization to solve the uncertainty in ship motion.

The successful manoeuvring operation of the ship is
essential. Most important and key technique, such as
information fusion, danger prediction technology traffic
flow estimation, etc., cannot work without it. Therefore,
the prediction of future time step for manoeuvring
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of the ship is useful to implement the control forces
accurately. The research based on the application of
artificial intelligence such as neural network, genetic
algorithm, and Fuzzy Logic have shown the great potential
for the prediction of ship behavior. A lot of interesting
work has been carried out such as ship roll motion
time series forecasting (Pena et al., 2011), online ship
roll motion prediction (Yin et al., 2014), ship motion
prediction (Zhao et al., 2004), ship trajectory based on
backpropagation neural network (Xu et al., 2011) and ship
path following (Xia et al., 2013). From (Luo and Cai,
2014; Ristic et al., 2008; Ma et al., 2003; Yin et al., 2013)
it shows great potential to implement the SVR for the ship
motion prediction.

Figure 1. System structure of ship motion prediction. (Li et al.,
2016)

2 Methods
The system structure for the prediction of ship motion
will be based on the framework proposed as shown in
Fig 1. The proposed framework consists three blocks.
The first block of system structure is data cleaning. It
is important to clean sensory noises and resampling the
data if required to improve the model results. The second
block i.e. Data analysis and modeling. Data analysis is
carried out with the help of correlation analysis, which
helps to identify the relation between different sensors
attributes. The result obtained from correlation statistics
is a guideline for the modeling of SVR. The third block is
verification. The unique data which is not involved during
learning is used for verification of our model. The user can
import data from any ship model and make modification
in the model to make the prediction better making our
framework flexible.

2.1 Data Collection
The data is collected for three years from different
sensors by our partner. The data module is divided
into two category high frequency and low frequency.
Each category has two subsets of data with frequencies
from 1Hz to 4000Hz.The high frequencies information
is useful for the analysis of propulsion system using
information obtained from vibration and torque sensors.

The information related ship environment is provided by
low frequencies as shown in Table I. The intrinsic control
parameters like rotational speed, thruster forces (from M2)
induces the ship’s extrinsic representation (M1). Our
prediction model is based on low frequencies data (i.e. M1
and M2) only.

Table 1. Specification of Low Sampling Frequency Data.

Module Frequency [Hz] Parameter Unit

M1 1

Speed [m/s]
Position [m, m]
Heading [deg]

Roll [deg]
Pitch [deg]

Yaw Rate [deg/s]
Roll Rate [deg/s]
Pitch Rate [deg/s]

M2 1.65
Rotational Speed [RPM]
Drive of motor [W]
Propeller pitch [deg]

2.2 Data Cleaning

The raw data may contain noise, incomplete information
and redundant information. So, it is necessary to perform
data cleaning. In our case noise sources are internal
or external. The internal noises can be corrected from
statistical estimation. The external noises coming from
sensor is unavoidable in most case. In our case, the major
external noises are generated from cables and the coupling
of electric and magnetic fields, the measured temperature
is full of spikes. The natural way of eliminating the noise
is to apply low pass filter and apply median filtering, (Liu,
2013). The raw data is not continuous due to several
reasons such sensors are not actively running all the time,
sensor is broken for some time. Due to this there are
some gaps in recording data. In addition, there might be
jumping of data for some parameter such as heading. The
standard value is always within [0◦, 360◦]. The heading
degree changes from 360 to 0 after making one complete
cycle. To remove this kind of discontinuity an algorithm
is used to correct the such parameter in order to make the
data consistent, (Li et al., 2016).

2.3 Sensitivity Analysis

Sensitivity analysis is carried to find out the importance
of input attribute for the contribution of output. It
is not necessary that all the attributes have significant
contribution for the prediction. To measure the strength of
the attribute how much it is important for the contribution
of output is calculated using correlation between the input
attribute and the target attribute. (Hamby, 1994)
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2.4 SVR Modeling
Support Vector Machine (SVM) was developed by Vapnik
(Vapnik, 2013) and is used in many applications due to
significant results. SVM are a set of related supervised
learning methods applied in different machine learning
applications like classification and regressions (Scholkopf
and Smola, 2005). The basic process is to map the
original data input space into the higher dimensional
feature through non-linear mapping functions (Scholkopf
and Smola, 2005). We have implemented SVM to solve
regression problem as Support Vector Regression in our
work (Chhantyal et al., 2016).

Figure 2. General architecture of SVR model. Input/output
spaces consist of the variables shown in Table 1. (Chhantyal
et al., 2016)

The linear regression model in feature space for SVR is
represented as,

y =
Nsv

∑
i=1

wiΦi(x)+b (1)

where, Φi(x) is mapping function from input space to
feature space and Nsv is number of support vectors.

The performance of SVR model is measured by
ε-insensitive loss function and defined as,

L(d,y) =
{
|d− y|− ε f or |d− y| ≥ ε

0 otherwise

}
(2)

The SVR approach is defined in (3) based on minimization
of ε-insensitive loss and minimization of the norm of
linear parameters ||w||2.

J =
1
2
||w||2 +C

N

∑
i=1
|yi−di|ε (3)

subjected to


di− yi ≤ ε +ξi
yi−di ≤ ε +ξ ∗i
ξi ≥ 0
ξ ∗i ≥ 0


where, C- regularization parameter, ξ and ξ ∗ are

non-negative slack variables, which describe the loss
function J.

This primal optimization problem is then transformed
into a dual problem (Chhantyal et al., 2016). The solution

is defined in (4)

y =
Nsv

∑
i=1

(αi−α
∗
i )k(xi,x)+b (4)

where, α and α∗ are Lagrange multipliers and k(xi,x) is
the kernel function used in mapping the input space to a
higher dimensional feature space.

Radial Basis Function (RBF) kernel used in our work is
defined as (5)

k(xi,x) = exp
(
−||xi− x||2

2σ2

)
(5)

where, σ is the width parameter of RBF kernel.
Support Vectors are those data within the training set,

which are very close to the ε-insensitive tube. The number
of support vectors is equal to the number of non-zero (αi−
α∗i ), which will determine the number of mapping vectors,
determining the complexity of the model (Chhantyal et al.,
2016). Therefore, the architecture of SVR depends on the
number of support vectors as described in Fig. 2.

In this paper, the selection method for the parameters
for the RBF and SVM is based on selecting C given by,

C = max(|ȳ+3σy|, |ȳ−3σy|) (6)

and the parameter ε dependent on the level of noise in the
training data is computed as,

ε = τσn

√
ln(n)

n
(7)

σn =

(
k

k−1
1
n

n

∑
i=1

(yi− ŷi)
2

)1/2

(8)

For higher P-dimensional problems, RBF width parameter
σ can be set in the range σ ≈ (0.2 to 0.5)1/P, which
can be optimized further using train and error (Haykin,
2009).

3 Experiment and Results
The experiment is performed based on the raw data stored
for three years to verify the system structure proposed
in Section II. The case study aims to extract information
from raw data and verify the SVR model for prediction of
ship motions. This section describes the steps to develop
our system to predict ship motion.

First, we import raw data in our database storage. For
our case study, we are going to use a small subset for
simplicity. Data cleaning is carried as the second step.
We performed three data cleaning methods i) removing
noise using low pass filter ii) resampling is performed to
make both module (M1 and M2 shown in Table I) in same
frequency iii) phase correction is performed to make the
continuity of raw data. The detail process is discussed
in our previous article (Li et al., 2016). The third step is
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to perform sensitivity analysis to find out the contribution
of each attribute for the outputs as discussed in (Li et al.,
2016). For our case study, we found that surge velocity,
sway velocity, yaw velocity, roll velocity, yaw velocity,
position x, position y, heading, and roll has a significant
relation for the prediction of the pitch.

The next step is to model SVR. Fig 2 shows how
SVR model is constructed for our case. The selected
variables are considered in the input feature space that
are further transformed into high-dimensional space using
radial basis function. Finally, the output is computed
based on the local induced outputs from each hidden unit
also.

The models are evaluated using Root Mean Square
Error (RMSE) and Square Correlation Coefficient (R2).
RMSE is a tool to measure a difference between the actual
value and the value predicted by model defined in (9). The
prediction results of the model are efficient, when RMSE
value is near to 1 and the prediction results is treated bad
when near to 0.

RMSE(θ̂) =
√

E((θ̂ −θ)2) (9)

where, θ̂ is estimated value and θ is the actual value.
R2 is used to measure the goodness of fit of a model and

defined in (10). The estimate of the model is better if the
value is closer to 1.

R2 = 1− ∑
n
i=1(Ti− pi)

2

∑
n
i=1(Ti− T̄ )2 (10)

In this paper, we have only presented a case study for
trajectory and pitch velocity. For both of our case studies,
the size of the small subset of 2000 samples data was
taken. The training size was 1750 and testing was 250
samples. The result obtained for trajectory is shown in
Fig 3. The red line the actual trajectory while the blue one
is trajectory predicted by SVR model.

Figure 3. Prediction results of ship trajectory.

Fig 4 shows the prediction of the pitch. The red line
is the desired pitch, and the blue line is the prediction
obtained from SVR model.

In both of the case, it is clear from the Fig (3) and Fig
(4) that the prediction from our model is good enough to
predict trajectory and pitch. In addition, in both cases, R2

is near to 1 and RMSE is around 0.1. This verifies that our
model is good enough for the implementation.

Figure 4. Prediction results of ship pitch.

4 Conclusion
In this paper, system structure for the prediction of
ship motion is proposed from importing raw data to the
verification of SVR model. First, the raw sensor data
is cleaned before modeling. Then sensitivity analysis is
performed to find the better relation between inputs to
targets. Then flexible SVR model is constructed from
which user can define the desired data set and user define
model parameters. By applying training data set, SVR
prediction model is obtained. As a final step, testing
data is used for model verification. Two case studies for
trajectory and pitch are carried out, and the results indicate
that the proposed system outperformed for the ship motion
prediction. In both case studies, RMSE is very small, and
R2 is close to 1.

Future work will focus on the online prediction of ship
motion which will be helpful for real-time prediction. In
addition, the multi-step prediction will be studied for the
longer time steps prediction that is essential for real world
ship motion.
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