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Abstract
Calculating the mechanical stresses in cable elements is
essential for analyzing the cable’s mechanical properties
and fatigue properties. This paper derives numerical cal-
culations of the stresses in helical cable elements for ca-
bles subject to bending- and twisting loads. The numerical
calculations are compared to analytical approximations
from the scientific literature. The former gives higher ac-
curacy, and discloses behaviors and coupling effects that
are not captured by the latter. These favorable properties
combined with easy implementation, no risk of conver-
gence issues, and very short CPU time, make the numeri-
cal calculations a very attractive alternative to the analyti-
cal approximations.
Keywords: Applied Numerical Analysis; Cross Section
Analysis; Differential Geometry; Power Umbilical; Sub-
sea Power Cable; Umbilical.

1 Introduction
Mechanical analyses of subsea power cables, umbilicals,
and power umbilicals establish the relationships between
the cables’ physical loads and the corresponding mechan-
ical stresses in the cable elements. The physical loads are
typically axial cable tension, cable bending curvature, ca-
ble twist, and hydrostatic pressure from the surrounding
seawater. Physical loads also include the internal pressure
inside umbilical tubes. Figure 1 shows an example of an
umbilical.

Figure 1. Umbilical with helical tubes, helical electric and fiber
optic signal cables, and helical armor wires.

The mechanical cable analyses give essential informa-

tion on how the cables will behave during manufacturing,
transportation, installation, and operation. Further, the
analyses conclude how large physical loads the cable can
withstand without the risk of being compromised. Also,
the results of these analyses are the basis for subsequent
analyses that study the interactions between the cables and
their surroundings, including the cables’ expected fatigue
lives.

Mechanical cable analyses date back to at least half a
century ago, with publications written in the 1960s and
1970s still being highly relevant today, such as Lutchan-
sky (1969) and Knapp (1979). Over the later decades the
field has matured through improved modeling and by in-
cluding new considerations in the analyses. Also, some
validations against physical testing have been performed,
but scientific publications on this topic are unfortunately
very sparse. Among the published papers on physical
testing are Maioli (2015), Tarnowski (2015), Ekeberg and
Dhaigude (2016), Dhaigude and Ekeberg (2016), Jordal
et al. (2017), and Komperød et al. (2017).

Like for most other fields of science and engineering,
the increased performance and reduced cost of computers
over the last decades have strongly influenced mechani-
cal cable analyses. Today, there are several software tools
specialized for mechanical analyses of cables and sim-
ilar structures, such as CableCAD, Helica, UFLEX2D,
and UFLEX3D. The author presented a comparison be-
tween UFLEX2D simulations and analytical calculations
in Komperød (2014).

Also general purpose finite element software tools, such
as Abaqus, ANSYS, and COMSOL, are used for an-
alyzing cables’ mechanical properties. Several papers
have been published on this topic, for example Tjahjanto
et al. (2017), which present interesting results on fatigue
stresses of helical power phases in a three-phases power
cable based on finite element simulations.

Although the field of mechanical cable analyses have
matured by the efforts of engineers and scientists over sev-
eral decades, it is constantly being challenged by the de-
sire of installing and operating cables in ever deeper wa-
ters, in lower temperatures, and in harsher weather con-
ditions. This calls for more accurate analyses, for more
thorough validation against physical testing, and for in-
clusion of new considerations in the analyses work, such
as cables’ sensitivity to the ambient temperature.

The present paper aims to give a contribution to the
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work of improving and extending mechanical cable analy-
ses. The paper derives numerical calculations of the cable
elements’ stresses and strains subject to cable bending and
twisting. Similar results have been presented in the scien-
tific literature using analytical calculations, see for exam-
ple Kebadze (2000), Sødahl et al. (2010), and Skeie et al.
(2012). As such analyses result in difficult mathemat-
ical problems, the analytical calculations are simplified,
typically through linearizations, until the simplified prob-
lem can be solved within reasonable efforts. However, as
shown by the author in Komperød (2017), these simplifi-
cations give less accurate results and abandon some inter-
esting information.

The work presented in this paper is a continuation of
the work presented by the author in Komperød (2017).
From the author’s point of view, mechanical cable analy-
ses based on numerical solutions of first principle models
is an attractive compromise between simplified analytical
solutions and complex finite element analyses using ad-
vanced software tools. The numerical solution is easy to
implement, gives high accuracy, and is efficient in terms
of CPU time. The author’s preliminary results also in-
dicate that the nature of the numerical calculations make
them suitable for parallel processing, which is necessary
for taking full advantage of modern computers.

The calculated element stresses will in future works be
used to establish the cable’s capacity (allowed combina-
tions of axial cable tension and cable bending curvature)
and its expected fatigue life. Also, the element stresses
and strains give the cable’s strain energy, from which the
cable’s axial stiffness, torsion stiffness, and bending stiff-
ness can be derived.

2 Nomenclature
Table 1 presents the nomenclature used in this paper. Sub-
script is a shorthand notation for discretization steps. For
example f−2 means f (x−2h), where the nominal value x
is understood from the context. The notation ‖ · ‖ means
the 2-norm, i.e. the length of a vector.

3 Assumptions and Simplifications
The mathematical derivation of this paper is subject to the
following assumptions and simplifications:

1. The cable is assumed to have constant bending cur-
vature and constant twist angle along its length.

2. Helical cable elements are assumed to follow a loxo-
dromic curve during cable bending. This means that
if the cable element initially follows a thin, helical
curve painted on the beneath cable sheath, the cable
element will cover the painted curve also after ca-
ble bending. Dhaigude and Ekeberg (2016), Ekeberg
and Dhaigude (2016), and Tjahjanto et al. (2017)
present results from physical tests and finite ele-
ment simulations which conclude that this assump-
tion holds.

Table 1. Nomenclature.

~b Binormal vector [-].
E E-modulus [Pa].
G Shear modulus [Pa].
h Discretization step [m].
L Pitch length [m].
l Cable length parameter [m].
~n Normal vector [-].
~p Vector from center of the element to the

point to calculate stresses [m].
pr Radial component of ~p [m].
ps Surface component of ~p [m].
R Pitch radius [m].
~r Parameterization vector of helical cable

element [m].
s Cable element length parameter [m].
~T Tangent vector [-].
~t Unit-length tangent vector [-].
~u Unit-length radial vector [-].
~v Unit-length surface vector [-].
α Pitch angle [rad].
β Helical cable element’s angular position

at l = 0 [rad].
γut , γvt , γψt Shear strain in helical cable element [-].
εtt Axial strain in helical cable element [-].
κ Cable bending curvature [m−1].
κh Helical cable element’s local curvature

[m−1].
~κh Helical cable element’s local curvature

vector [m−1].
κ r Radial component of ~κh [m−1].
∆κ r Difference in κ r relative to zero-load

[m−1].
κs Surface component of ~κh [m−1].
σtt Axial stress in helical cable element [Pa].
σvm von Mises stress in helical cable element

[Pa].
τut , τvt , τψt Shear stress in helical cable element

[Pa].
ϕ Cable twist [rad/m].
ϕh Helical cable element’s local torsion

[m−1].
∆ϕh Difference in ϕh relative to zero-load

[m−1].

3. The stress calculations assume the helical cable ele-
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ments to follow a linear stress vs. strain relationship.

4. Axial tension and compression in the cable elements
are not included in the calculations.

5. Friction / shear forces between cable elements is ne-
glected.

4 Parameterization of Helical Cable
Elements

The purpose of the present paper is to calculate the stresses
and strains of helical cable elements subject to cable bend-
ing and cable twisting. These calculations depend on the
elements’ local curvature and local torsion, which in turn
depend on a parameterization of the cable elements’ paths
in the three-dimensional space.

A parameterization is a function R → R3 which de-
scribes a curve in a three dimensional space in terms of a
scalar variable. Lutchansky (1969) presents a parameteri-
zation of a helical cable element in a bent cable under the
assumption that the element follows a loxodromic curve.
The author of the present paper provides a similar, but not
identical, parameterization in Komperød (2017). The lat-
ter parameterization has later been improved by including
cable twist. Also, the location of origin of the coordinate
system has been improved to give the parameterization
better numerical properties. The result is the following
parameterization, which will be used in the present paper:

~r(l) =[ x(l) , y(l) , z(l) ] , (1)

x(l) =
1
κ
(cos(κl)−1)

+R cos
((

2π

L
+ϕ

)
l +β

)
cos(κl),

y(l) =R sin
((

2π

L
+ϕ

)
l +β

)
,

z(l) =
[

1
κ
+R cos

((
2π

L
+ϕ

)
l +β

)]
sin(κl).

In Eq. 1, the scalar cable length parameter l expresses
the progress of the helical cable element in the three-
dimensional space. The angle β is the element’s orienta-
tion in the cable cross section at l = 0. The cable curvature
κ and the cable twist ϕ are the cable’s deformations due
to external loads. The pitch length L and the pitch radius
R express the helical cable element’s geometry relative to
the cable’s cross section center. The parameterization fol-
lows the common convention in the industry: Positive L
means right lay-angle of the helical cable element, while
negative L means left lay-angle. Usually, successive cable
layers have alternating left vs. right lay-angles. The pitch
radius R is always positive.

The angles of Eq. 1 have important practical interpreta-
tions: The angle ((2π/L+ϕ)l +β ) expresses the helical
element’s revolution around the cross section center. The
angle κl expresses the cable’s progress along a virtual cir-
cle with radius 1/κ . The center of the virtual circle is in
the point (−1/κ , 0 , 0 ).

The parameterization presented in Eq. 1 is not defined
for κ = 0, because κ occurs in the denominator. The prac-
tical interpretation of κ = 0 is that the cable is straight (not
bent). Taking the limit κ → 0 gives

lim
κ→0

~r(l) =
[

lim
κ→0

x(l) , lim
κ→0

y(l) , lim
κ→0

z(l)
]
, (2)

lim
κ→0

x(l) = lim
κ→0

1
κ
(cos(κl)−1)

+ lim
κ→0

R cos
((

2π

L
+ϕ

)
l +β

)
cos(κl)

=R cos
((

2π

L
+ϕ

)
l +β

)
,

lim
κ→0

y(l) =R sin
((

2π

L
+ϕ

)
l +β

)
,

lim
κ→0

z(l) = lim
κ→0

[
1
κ
+R cos

((
2π

L
+ϕ

)
l +β

)]
sin(κl)

= l.

Evaluating the limits in Eq. 2 results in two zero-over-
zero expressions, which can easily be evaluated through
MacLaurin series expansions of cos(κl) and sin(κl), or
by using L’Hopital’s rule.

The parameterization in Eq. 2 is the parameterization of
a helix. This result was expected, because a helical cable
element follows a helix curve when the cable is straight.
When doing analytical calculations based on the param-
eterization, the limit κ → 0 can be used. For numerical
calculations, however, κ = 0 must be considered a spe-
cial case, resulting in a parameterization with a piecewise
function, i.e.~r is defined by Eq. 2 for κ = 0, and by Eq. 1
otherwise. Whether very small, but non-zero, absolute
values of κ may result in numerical difficulties has not
been studied by the author and is beyond the scope of this
paper.

5 Calculating Curvature of Helical
Cable Element

This section establishes the relationship between the ex-
ternal cable loads in terms of cable bending curvature, κ ,
and cable twist, ϕ , and the helical cable element’s local
curvature vector, ~κh, where the superscript h means "heli-
cal element". This vector is essential for subsequent calcu-
lation of the element’s stress, which is the final goal of this
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paper. The derivation in this section is a brief modification
of the author’s derivation in Komperød (2017).

The tangent vector ~T of the parameterized curve ~r is
defined as

~T def
=

d~r
dl
, (3)

and the unit-length tangent vector~t is defined as

~t def
=

~T
‖~T‖

. (4)

The definition of curvature from the field of differential
geometry is

κ
h def
=

∥∥∥∥d~t
ds

∥∥∥∥ , (5)

where

ds def
= ‖d~r‖. (6)

However, for the subsequent calculations of the cable ele-
ment stresses, it is insufficient to know the curvature as a
scalar like it is defined in Eq. 5; also its direction must be
known. Hence, for the purpose of mechanical analyses, it
is more useful to define the curvature vector as

~κh def
=

d~t
ds

. (7)

Because~r is parameterized in terms of l, not s, it is conve-
nient to write the curvature vector as

~κh =
dl
ds

d~t
dl

(8)

=
1
‖~T‖

d~t
dl
,

where Eqs. 3 and 6 have been used.
A parameterization of the cable’s cross section center

can be obtained by setting R = 0 in Eqs. 1 and 2. In other
words; the cross section center is considered as a helical
cable element with zero pitch radius. Hence, a unit vector
~u pointing from the physical cable element towards the
cable’s cross section center can be expressed as

~u def
=

(
~r(l)|R=0

)
−~r(l)∥∥∥(~r(l)|R=0

)
−~r(l)

∥∥∥ . (9)

Taking the dot product between ~T and ~u shows that
these vectors are orthogonal. Because~t and ~T are parallel,
~t and~u are then orthonormal vectors. Hence, defining~v as

~v def
=~t×~u, (10)

gives that~t, ~u, and~v are an orthonormal set of local basis
vectors for R3.

As~t is a unit length vector, its derivative d~t/dl is nor-
mal to~t (please refer to Pressley (2012) p. 11 for proof).
Hence, the curvature vector can be expressed as a linear
combination of the two other basis vectors. That is

~κh = κ
r~u+κ

s~v, (11)

for some real scalars κ r and κs. Because ~u and ~v are or-
thonormal, κ r and κs are easily found by

κ
r =~κh •~u, (12)

κ
s =~κh •~v. (13)

Hence, the vector [0 , κ r , κs ] expresses the curvature vec-
tor ~κh in the local Cartesian coordinate system defined by
the basis vectors~t,~u, and~v.

6 Calculating Torsion of Helical Cable
Element

The curvature derived in the previous section expresses the
change in the direction of the tangent vector,~t, of the he-
lical cable element. The physical interpretation is that the
element bends locally. The present section considers tor-
sion, which expresses how the two other local basis vec-
tors, ~u and ~v, rotate in the plane normal to the tangent
vector ~t. This interprets into local twisting of the cable
element.

The terms "curvature" and "torsion" are used both in
the mathematical field of differential geometry and in me-
chanical cable analyses as in the present paper. Curvature
and torsion are defined almost similarly in these two fields,
but there is one important difference: Both fields define
curvature and torsion based on a local Cartesian coordi-
nate system in which the tangent vector~t is the first of the
three basis vectors. However, differential geometry de-
fines the two other basis vectors as

~n def
=

d~t
ds∥∥∥ d~t
ds

∥∥∥ , (14)

~b def
=~t×~n. (15)

Hence, the difference is that differential geometry defines
the second basis vector to be in the direction of the deriva-
tive of the tangent vector, while in cable analyses the sec-
ond basis vector is defined to point in the direction from
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the cable element towards the cable’s cross section center.
In both fields the third vector is the cross product of the
two other vectors.

When the cable is straight (not bent), the helical ca-
ble element has the parameterization of a helix. It can
be shown that in this case~n points from the cable element
towards the cable’s cross section center. Hence, ~n and ~u
coincide, which imply that also~b and~v coincide.

Differential geometry defines the torsion as

ϕ
h def
=−~n• d~b

ds
. (16)

In cable analyses the torsion is defined similarly as

ϕ
h def
=−~u• d~v

ds
. (17)

Again, Eqs. 16 and 17 give the same results if the cable is
straight, while the results may be very different when the
cable is bent. The definition of Eq. 17 will be used in this
paper.

Because~u and~v are orthogonal, i.e.~u •~v = 0, it follows
that

d
ds

(~u •~v) = d~u
ds
•~v+~u • d~v

ds
= 0, (18)

d~u
ds
•~v =−~u • d~v

ds
. (19)

Hence, the torsion of the helical cable element can alter-
natively be written as

ϕ
h =

d~u
ds
•~v. (20)

Similar as for the curvature, because~r is parameterized
in term of l, not s, it is convenient to write the torsion as

ϕ
h =

dl
ds

d~u
dl
•~v (21)

=
1
‖~T‖

d~u
dl
•~v.

7 Numerical Calculations
The two previous sections derive expressions for the cur-
vature and the torsion of a helical cable element. The
present section provides numerical calculations to evalu-
ate these expressions. The numerical results will be used
in the subsequent calculations of the element’s mechanical
stresses.

To numerically evaluate the derivatives, the finite differ-
ence method is used with a centered, second-order stencil.
That is, the derivatives are approximated by

d f
dx

=
f1− f−1

2h
+O(h2). (22)

In Komperød (2017), the author argued that forth order
accuracy is necessary to achieve sufficient accuracy. How-
ever, the present paper provides an improved parameteri-
zation of the helical cable element’s path, ~r. This allows
smaller discretization steps, h, which makes second order
accuracy sufficient.

For each value of l to evaluate the curvature and torsion,
the follow calculations are performed:

1. The parameterization vector~r is evaluated for l−2h,
l−h, l, l+h, and l+2h. That is,~r−2,~r−1,~r0,~r1, and
~r2 are calculated based on Eq. 1 and Eq. 2.

2. The tangent vector ~T is calculated for l− h, l, and
l +h using the definition of Eq. 3 and the numerical
differentiation of Eq. 22. I.e.

~Ti =
~ri+1−~ri−1

2h
, i ∈ {−1,0,1}. (23)

3. The length of the tangent vector,
∥∥∥~T∥∥∥, is calculated

for l−h, l, and l +h.

4. The unit length tangent vector is calculated for l−h,
l, and l +h using Eq. 4. That is,

~ti =
~Ti∥∥∥~Ti

∥∥∥ , i ∈ {−1,0,1}. (24)

5. The curvature vector is calculated at l using Eq. 8
in combination with the numerical differentiation of
Eq. 22, i.e.

~κh
0 =

~t1−~t−1

2h
1∥∥∥~T0

∥∥∥ . (25)

6. The vector~u is calculated for l−h, l, and l +h.

7. The vector~v is calculated for l using Eq. 10. That is,

~v0 =~t0×~u0. (26)

8. The curvature components κ r and κs are calculated
using Eqs. 12 and 13, i.e.

κ
r
0 =~κh

0 •~u0, (27)

κ
h
0 =~κh

0 •~v0. (28)
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9. The torsion are calculated using Eq. 21 and the nu-
merical differentiation of Eq. 22, which gives

ϕ
h
0 =

(~u1−~u−1)•~v0

2h
1∥∥∥~T0

∥∥∥ . (29)

8 The Zero-Load-Zero-Stress As-
sumption

A common assumption in mechanical cable analyses is to
assume that all cable elements have zero stress when the
cable is subject to no external loads. This means that resid-
ual stresses from the production process and other opera-
tions are neglected. Hence, the helical cable elements’
curvature and torsion when the cable is at rest are used as
zero-references for calculating the elements’ strains and
stresses.

When the cable is at rest, the radial component of the
helical cable elements’ curvature is

κ
r =

4π2R
4π2R2 +L2 . (30)

The surface component of the curvature, κs, is zero when
the cable is at rest. The torsion of the helical element is

ϕ
h =

2πL
4π2R2 +L2 . (31)

It simplifies the subsequent calculations to define
changes in curvature and torsion relative to the relaxed
values as

∆κ
r = κ

r− 4π2R
4π2R2 +L2 , (32)

∆ϕ
h = ϕ

h− 2πL
4π2R2 +L2 , (33)

where κ r and ϕh are the numerical values calculated in the
previous section. Because κs is zero when the cable is at
rest, there would be to no avail to introduce a correspond-
ing notation for this variable.

9 Analytical Approximations from the
Scientific Literature

The author is not familiar with other scientific publications
that calculate helical cable elements’ curvature and torsion
numerically, except for the author’s own paper Komperød
(2017). However, there are several publications on analyt-
ical approximations of these values. It is then of interest
to compare the analytical and numerical approaches. The
analytical approximations of Skeie et al. (2012) and Ke-
badze (2000) will be used for comparison in this paper.

Skeie et al. (2012) and Kebadze (2000) use the pitch
angle, α , instead of the pitch length, L. The pitch angle is
defined as

α = arctan
(

2πR
L

)
. (34)

The derivation of Skeie et al. (2012) results in these for-
mulas

∆κ
r =cos4(α)cos

(
2π

L
l +β

)
κ (35)

+2cos3(α)sin(α)ϕ,

κ
s =− cos(α)(1+ sin2(α))sin

(
2π

L
l +β

)
κ, (36)

∆ϕ
h =− cos3(α)sin(α)cos

(
2π

L
l +β

)
κ (37)

+ cos2(α)cos(2α)ϕ.

Kebadze (2000) provides these formulas

∆κ
r =cos(α)cos

(
2π

L
l +β

)
κ (38)

+2cos3(α)sin(α)ϕ,

κ
s =− sin

(
2π

L
l +β

)
κ, (39)

∆ϕ
h =− sin(α)cos

(
2π

L
l +β

)
κ (40)

+ cos2(α)sin4(α)ϕ.

Eqs. 35-40 are adapted to fit the notation and the orienta-
tion of the helical element used in this paper.

10 Example 1
This section compares the numerical calculations derived
in this paper with the formulas of Skeie et al. (2012) and
Kebadze (2000). The geometry of the helical cable ele-
ment used in the example is given in Table 2.

Table 2. Geometry of helical cable element used in Examples 1
and 2.

Property Value

Pitch length, L [m] 5.0
Pitch radius, R [m] 0.20
Initial angle, β [rad] 0.00

The analytical and numerical approaches will be com-
pared for the three load scenarios given in Table 3. Hence,
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the first scenario is twist only, the second scenario is cur-
vature only, while the third scenario is both curvature and
twist. Figures 2, 3, and 4 show the curvatures ∆κ r and κs,
and the twist ∆ϕh, plotted against the cable length param-
eter l for load scenarios #1, #2, and #3, respectively.

Table 3. Load scenarios used in Examples 1 and 2.

Scenario κ [m−1] ϕ [rad/m]

#1 0.00 3.49×10−2

#2 0.20 0.00×10−2

#3 0.20 3.49×10−2

0 1 2 3 4 5

l  [m]

0.002

0.000
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0.008

0.010
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0.014

0.016

C
u
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a
tu

re
 [

m
−

1
]

  R = 0.200 m, L = 5.000 m,  = 0.00e+00 m−1 , ϕ = 3.49e-02 rad/m

∆ r  Numerical
s  Numerical

∆ r  Skeie et al.
s  Skeie et al.

∆ r  Kebadze
s  Kebadze

0 1 2 3 4 5

l  [m]

0.000

0.005

0.010

0.015

0.020

0.025

0.030

T
o
rs

io
n
 [

m
−

1
]

  R = 0.200 m, L = 5.000 m,  = 0.00e+00 m−1 , ϕ = 3.49e-02 rad/m

∆ϕh  Numerical

∆ϕh  Skeie et al.

∆ϕh  Kebadze

Figure 2. Curvatures ∆κ r (upper), κs (upper), and torsion ∆ϕh

(lower) for load scenario #1 given by Tables 2 and 3.

Figure 2 represents load scenario 1, which is the twist-
only case. The figure shows that twisting the cable adds
offsets to ∆κ r and ∆ϕh, while the graphs remains horizon-
tal, straight lines. The curvature κs does not change at all,
i.e. it remains at zero. These results are expected, because
after twisting the cable, the helical elements still have the

0 1 2 3 4 5

l  [m]

0.6
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a
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m
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  R = 0.200 m, L = 5.000 m,  = 5.00e-01 m−1 , ϕ = 0.00e+00 rad/m

∆ r  Numerical
s  Numerical

∆ r  Skeie et al.
s  Skeie et al.

∆ r  Kebadze
s  Kebadze
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0.3

T
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n
 [

m
−

1
]

  R = 0.200 m, L = 5.000 m,  = 5.00e-01 m−1 , ϕ = 0.00e+00 rad/m

∆ϕh  Numerical

∆ϕh  Skeie et al.

∆ϕh  Kebadze

Figure 3. Curvatures ∆κ r (upper), κs (upper), and torsion ∆ϕh

(lower) for load scenario #2 given by Tables 2 and 3.

shapes of helices, which are known to have constant κ r

and ϕh over the length l, and zero κs.
For load scenario #1 the numerical calculation derived

in this paper and the approximation of Skeie et al. (2012)
are similar to the extent that they can hardly be distin-
guished to the resolution of Figure 2. Kebadze (2000)
give the same result for κs as the two other approaches,
and also very similar result for ∆κ r. For ∆ϕh, Kebadze
(2000) gives very different results. This can also be seen
by comparing the second row of Eq. 37 and the second
row of Eq. 40. The latter has the factor sin4(α) which is
very small for realistic pitch angles. It is not known to the
author whether this is Kebadze’s actual result or whether
it is a typo in an otherwise excellent PhD thesis.

Load scenario #2, i.e. the curvature-only case, is shown
in Figure 3. While twist adds offsets to the graphs, cur-
vature induces sinusoidal-like oscillations around zero for
∆κ r, κs, and ∆ϕh. As seen from Eqs. 35-40, the formu-
las of Skeie et al. (2012) and Kebadze (2000) are perfect
sinusoidals, while Figure 3 shows that the numerical ap-
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Figure 4. Curvatures ∆κ r (upper), κs (upper), and torsion ∆ϕh

(lower) for load scenario #3 given by Tables 2 and 3.

proach produces graphs that differ somewhat from true si-
nusoidals.

The most distinct observation in Figure 3 is the differ-
ence in amplitude for ∆ϕh between the numerical calcu-
lation and the two analytical approximations. The former
gives an amplitude that is roughly twice as large as the lat-
ter two. To the author’s understanding, the difference is
caused by an oversimplification in the analytical approxi-
mations: Skeie et al. (2012) parameterize the helical cable
element in s, which is defined by Eq. 6, but simplify by
introducing an approximation equivalent to

s =
l

cos(α)
, (41)

which is exact only for κ = 0. In words this means that the
analytical approximation neglects that the element is elon-
gated in the cable’s outer arc of bending and compressed
in the inner arc. In the notation of the present paper this
corresponds to simplifying Eq. 4 to

~t = ~T cos(α). (42)

After doing the same simplification in the numerical cal-
culation, the result of load scenario #2 becomes as shown
in Figure 5. As seen from the figure, there is then quite
good agreement between the numerical calculation and
the analytical approximations. Hence, this comparison
supports that the difference in the lower subplot of Fig-
ure 3 is caused by the oversimplification in the analytical
approximations.
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Figure 5. Torsion ∆ϕh for load scenario #2 given after simpli-
fying Eq. 4 to Eq. 42.

Load scenario #3, which is shown in Figure 4, demon-
strates a coupling effect between the cable bending cur-
vature, κ , and the cable twist, ϕ , which is only captured
by the numerical calculation: When the cable is twisted,
the curvatures and the torsion are still periodic, but with
a period that is somewhat different from L, i.e. somewhat
different from 5.0 m in the figure. In other words; twisting
the cable increases or decreases the spatial frequency of
the curvature oscillations and the torsion oscillation. The
analytical approximations inherently fail to include this ef-
fect, because they are linearized in both κ and ϕ .

11 Calculating Mechanical Stresses
The previous sections derive numerical calculations of lo-
cal curvature and local torsion of helical cable elements,
and show that there are some differences between the
numerical calculations and the analytical approximations
presented by Skeie et al. (2012) and by Kebadze (2000).
The present section shows how to calculate the elements’
strains and stresses from the local curvature and the local
torsion. There is full agreement between the numerical
approach and the analytical approaches for how to calcu-
late the strains and the stresses, once the curvature and the
torsion have been established.
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The problem of interest is to calculate the axial strain,
εtt , the axial stress, σtt , the shear strains, γut and γvt , the
shear stresses, τut and τvt , and the von Mises stress, σvm,
at a specified point in the helical cable element’s cross sec-
tion. Let ~p be a vector from the helical cable element’s
cross section center to the specified point defined in the
local orthonormal basis~t, ~u, and ~v. Because~t is normal
to the element’s cross section plane, while ~p lies in this
plane, ~p has at most two nonzero components. Hence, ~p
is on the form

~p = [0 , pr , ps ] . (43)

The axial strain, εtt , is the negative dot product between
the curvature vector and the ~p vector where both are in
reference to the orthonormal basis~t,~u, and~v, i.e.

εtt =− [0 , ∆κ
r , κ

s ]• [0 , pr , ps ] (44)

=−∆κ
r pr−κ

s ps.

The axial stress, σtt , is the axial strain multiplied by the
E-modulus, which gives

σtt = Eεtt (45)

=−E (∆κ
r pr +κ

s ps) .

The shear strains are calculated as

γut =−∆ϕ
h ps, (46)

γvt = ∆ϕ
h pr. (47)

The corresponding shear stresses are then

τut = Gγut (48)

=−G∆ϕ
h ps,

τvt = Gγvt (49)

= G∆ϕ
h pr.

In mechanical cable analyses, it is often not necessary
to know γut and γvt as individual components. This leads
to an alternative approach: Replace the local Cartesian co-
ordinate system~t, ~u, and ~v with a cylindrical coordinate
system, where~t is the cylinder’s length direction, and ~u,
and ~v are replaced by polar coordinates. The shear stress
necessary for the analyses can then be expressed by

γψt = ∆ϕ
h
√

pr2 + ps2, (50)

where ψ is the argument of the polar coordinate system
and the square root expression is its magnitude. The stress
is then

τψt = Gγψt (51)

= G∆ϕ
h
√

pr2 + ps2.

The format of Eqs. 50 and 51 is suitable for calculating
the von Mises stress and the strain energy.

The axial stress and the shear stresses discussed in this
section gives the follwing expression for the von Mises
stress

σvm =
√

σtt 2 +3τψt 2, (52)

where σtt and τψt are given by Eqs. 45 and 51, respec-
tively.

12 Example 2
This example continues Example 1 by calculating stresses
as derived in the previous section for the geometry given in
Table 2 and the load scenarios given in Table 3. In addition
to these data, the helical element’s cross section geometry
and material properties must be given. Assume a 10 × 3
mm rectangular steel armor wire, where the stresses at the
corner in the first quadrant, i.e. along the positive ~u and
the positive ~v, are to be calculated. The ~p vector and the
material properties are as given in Table 4.

Table 4. The ~p vector and the material properties used in Exam-
ple 2.

Property Value

pr [m] 1.5×10−3

ps [m] 5.0×10−3

E-modulus, E [Pa] 2.0×1011

Shear modulus, G [Pa] 7.5×1010

Figure 6 shows the calculated stress for load scenarios
#1 (upper), #2 (middle), and #3 (lower). As expected from
Example 1, the axial stress and the shear stress are quite
similar to sinusoidals when the cable is bent, and straight
lines otherwise.

13 Further Work
The results presented in this paper are part of a larger work
to develop a framework for numerical analyses of cables’
and umbilicals’ mechanical properties and fatigue proper-
ties. The next step is to develop numerical calculations for
cables’ axial stiffness, torsion stiffness, and bending stiff-
ness. Developing the numerical analyses is part of Nexans
Norway’s continuous work on improving the accuracy of
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Figure 6. Numerical calculations of axial stress, σtt , shear
stress, τψt , and von Mises stress, σvm for load scenarios #1 (up-
per), #2 (middle), and #3 (lower).

the company’s analyses and physical testing, which is es-
sential for installing and operating cables and umbilicals
in ever deeper waters, lower temperatures, and harsher

weather conditions.

14 Conclusion
This paper derives numerical calculations of local curva-
ture, local torsion, axial stress, shear stress, and von Mises
stress for helical elements in cables and umbilicals subject
to bending loads and twisting loads.

The numerical calculations disclose behaviors that ana-
lytical approximations from the scientific literature fail to
identify. The numerical calculations also identified an er-
roneous approximation done by the analytical approaches,
which probably is caused by an oversimplification.

The numerical calculations are simple to implement and
do not depend on any iteration process that could cause
convergence issues. The calculations are also very fast
in terms of CPU time. From the author’s point of view,
the numerical approach is a very attractive alternative to
the analytical approximations, because it gives increased
accuracy and deeper insight without any significant disad-
vantages.
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