
22 MAY 2017
GOTHENBURG SWEDEN

CONFERENCE CENTRE WALLENBERG

Edited by Eckhard Bick & Trond Trosterud

NEALT
Northern European Association for

Language Technology

NEALT Proceedings Series Vol. 33

Proceedings of the NoDaLiDa 2017
Workshop on Constraint Grammar - Methods, Tools, and

Applications

Proceedings of the NoDaLiDa 2017 Workshop on
Constraint Grammar - Methods, Tools and

Applications

edited by
Eckhard Bick and Trond Trosterud

22 May 2017
Gothenburg

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods,
Tools and Applications
Edited by Eckhard Bick and Trond Trosterud
NEALT Proceedings Series 33
ISBN: 978-91-7685-465-5

Linköping Electronic Conference Proceedings No. 140
ISSN: 1650-3686, eISSN: 1650-3740

© 2017 The Authors (individual papers)
© 2017 The Editors (collection)

Photo front cover: Kjell Holmner, Göteborg & Co

ii

Preface

This workshop on practical and theoretical aspects of CG was co-located with
NoDaLiDa 2017 in Gothenburg, and held on the 22nd of May, 2017. The latest edition
of the workshop has been number 7 in a row of CG workshops at NoDaLiDa, unbroken
since 2005, and emphasizing the Nordic roots of Constraint Grammar.

Apart from the traditional CG field of corpus-oriented tagging and parsing, there is a
growing body of applicational work, where CG provides the backbone of end user-
oriented systems in various areas of language technology, such as spell and grammar
checking, comma correction, ICALL, machine translation, lexicography and others.
We therefore invited workshop contributions both regarding basic grammatical
research and corpus linguistics on the one hand, and CG-based applications on the other
hand. CG has always elicited a strong interest from researchers working on less-
resourced languages, and we therefore expected papers targeting minor languages, such
as the Sami languages, Greenlandic, Faroese, Tibetan and the Celtic languages.

However, contrary to expectations and in stark contrast to the 2015 workshop, neither
minority languages nor applications, but another target area - methodological research
- turned out to completely dominate this year's submissions. Thus, papers explored
topics like automatic rule creation and rule optimization as well as what one might call
CG typology - the expressivity and power of the formalism as such. Another
methodological issue was cross-platform compatibility for CG dependency corpora.
Where these papers did touch on language, examples were drawn - with the notable
exception of Basque - from only a few major languages, English, Spanish and
Portuguese. Given the de-facto wide language-spread of ongoing CG work, this under-
representation of languages represents a challenge to future CFP's. In the same vein, it
is also an interesting question, whether theoretical issues are more paper-motivating
simply because they involve 100% research, while researchers with application-
oriented work like machine translation will have to choose between either presenting
in a CG forum or (as evidently happened this year) in a workshop or conference section
for the relevant application itself.

On behalf of the workshop organizers
Eckhard Bick & Trond Trosterud

iii

Workshop organizers

• Eckhard Bick, Research lector, Institute of Language and Communication,
University of Southern Denmark

• Tino Didriksen, Developer, GrammarSoft ApS
• Kristin Hagen, Senior engineer, Tekstlaboratoriet, University of Oslo
• Inari Listenmaa, Ph.D. student, University of Gothenburg and Chalmers

University of Technology
• Kaili Müürisep, Senior research fellow, Institute of Computer Science,

University of Tartu
• Trond Trosterud, Assistant professor in Sámi computational linguistics,

University of Tromsø

Program Committee

• Eckhard Bick (Chair)
• Kristin Hagen
• Inari Listenmaa
• Kaili Müürisep
• Anders Nøklestad
• Trond Trosterud

Workshop website

https://visl.sdu.dk/nodalida2017.html

iv

Contents

Automatic Synthesis of Constraint Grammar Rules using a Greedy Approach and a SAT-solver,

Koen Claessen ……………………………………………………………………………. 1

Using Constraint Grammar for Treebank Retokenization
Eckhard Bick …………………………………………………………………………………. 6

Cleaning up the Basque grammar: a work in progress
Inari Listenmaa, Jose Maria Arriola, Itziar Aduriz and Eckhard Bick ……………………… 10

Exploring the Expressivity of Constraint Grammar
Pepijn Kokke & Inari Listenmaa …………………………………………………………… 15

The Power of Constraint Grammars Revisited
Anssi Yli-Jyrä ………………………………………………………………………………. 23

Automatic Synthesis of Constraint Grammar Rules
using a Greedy Approach and a SAT-solver

-- a work in progress report

Koen Claessen
Chalmers University of Technology,

Sweden
koen@chalmers.se

Abstract

We present a method for automatic
synthesis of Constraint Grammar rules
from a corpus. The method is designed to
aid grammar writers interactively in
coming up with new rules or improving
existing ones, but also to synthesize a
whole set of rules autonomously from
scratch. A SAT-solver is used to compute
the “best” rule at each stage, according to
some measure. Initial experimental
results on two corpora look promising:
suggesting one rule to improve an
existing set of rules typically takes
seconds; synthesizing a whole set of
rules takes minutes to hours.

1 Introduction

Imagine a CG grammar writer who finds herself
in the following situation: There exists a gold
standard development corpus, and already a set
of rules. Now, the CG writer would like to add a
new rule, or improve an existing one. Where to
start?

This work describes a tool that can automatically
find the next “best” rule to add to an existing set
of rules. It deploys a SAT-solver that computes
the (1) simplest, most general rule that (2) does
not remove any correct reading from the corpus,
and (3) maximizes the number of removed

incorrect readings from the corpus.

For example, given a spanish corpus and an
empty set of rules, the tool may compute the
following (rather reasonable) rule:

 SELECT (det) IF (1 (n));

The reason is because this is the rule that
removes most ambiguities without removing any
correct readings from the corpus. A human
grammar writer may also have included this rule
high up in the grammar, which is why we call
this rule reasonable.

Asking the tool to generate one more rule and
then yet another, the following two rules are
generated:

 REMOVE (vblex) IF (-1 (det));
 REMOVE (sg) IF (0 (pr));

The first one looks again reasonable. The second
rule does not. Obviously, there are sentences in
which the second rule would remove the correct
reading, but none of those sentences appears in
our corpus.

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 1

2 Three use cases

We envision the use of our tool for grammar
development in three different use cases.

A. Interactive mode - in this mode, the grammar
writer can ask questions such as: “What is the
most general rule I can add to my existing set of
rules?” and “Is there a rule that looks like <this>
that does not remove any correct readings from
the corpus?” and get answers. The grammar
writer is in complete control over the grammar
and can add any versions of these generated rules
anywhere in the grammar.

B. Meta-mode - The tool suggests rules to add to
an existing grammar, but the grammar writer
inspects the rules, and when the rules do not look
good, adds new sentences to the corpus. For
example, in the case of the third rule from the
previous section, the corpus could be augmented
with a sentence where that rule would remove
the correct reading. Running the tool again
would then suggest a different rule.

C. Autonomous mode - The tool starts from an
empty set of rules, and greedily computes a set of
rules from scratch. Typically, the resulting set of
rules is perfect (or almost perfect) on the given
corpus, meaning a precision and recall of 100%
(or close to). The hope is then that these rules can
be generalized to other corpora. Our very
preliminary experiments suggest this may be the
case.

3 Implementation

Our method only generates rules that satisfy the
following:

● Either a SELECT or REMOVE rule
● The head is a set of tags
● The condition is a conjunction of zero or

more conditions of the form (i tag1 ..
tagn) or (iC tag1 .. tagn), for i chosen from
a window (typically {-2,-1,0,1,2} or
{-1,0,1}) and the tagj can be any tag.

Some of these constraints can be relaxed a bit
(for example adding more kinds of rules, or
adding BARRIER conditions, but we have not
done this yet).

We use a SAT-solver [4] to compute the “best”

rule in the following way. First, we run any
existing rules on the given corpus. Then, we
create a SAT-problem with the following
variables:

● A SAT-variable sel, indicating which
kind of rule we have,

● For each possible tag t, a SAT-variable
ht, representing the head of the rule,

● For each position i in the window and
tag t, a SAT-variable ci,t, representing
whether or not that tag appears in the
condition with that position,

● For each position i in the window, a
variable Ci, representing whether the
condition for position i is careful or not,

● For each ambiguous cohort w from the
corpus, a SAT-variable aw, representing
if the rule removes any reading from that
cohort.

Then, we add the following constraints:

● There must be at least one head,
● The rule should never remove a correct

reading,
● There must be at least one cohort for

which we remove a reading.

Finally, we look for solutions to these
constraints, applying an optimization strategy
that optimizes, in this order:

● Maximize the number of cohorts where
the rule removes a reading,

● Minimize the number of tags appearing
as conditions,

● Minimize the number of C-conditions,
● Minimize the number of tags in the head,
● Prefer SELECT over REMOVE.

The solution to the SAT-problem is a model that
assigns true or false to all of the variables. The
actual rule can easily be constructed from that
model.

4 Preliminary Results

Our preliminary results contain experiments on 3
corpora: One Spanish corpus with ~21.000
words, taken from the Apertium repositories. It
contains news texts that have been hand-tagged
by students. One Basque corpus with ~61.000

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 2

words, called EPEC. And one English corpus
with ~29.000 words, taken from the minutes of
the EU parliament meetings.

 #tags avg.
#readings

Spanish 116 1.39

Basque 203 2.84

English 78 1.48

The number of tags and average number of
readings per cohort are given in the table above.

We ran the interactive mode on both corpora, and
most questions could be answered within
seconds to sometimes minutes.

We also ran the autonomous mode on the first
3000 words of the Spanish corpus, which took
~10 minutes (the resulting 88 rules are shown in
the appendix). Although this is only 1/7th of the
total corpus, the evaluation of this grammar on
the rest (6/7th) of the corpus, yielded 96%
correct readings after full disambiguation ! This 1

fraction of correctness is on par or better than
existing hand-written grammars we had for this
corpus. Increasing the size of the training data to
16.800 words (80% of the corpus) yielded a
grammar with 97% correct readings for the other
20%.

We also ran the autonomous mode on the first
2500 words of the Basque corpus (4%), which
took a bit over 1 hour. The evaluation of the
resulting grammar on the rest of the corpus
yielded 79% correct readings after full
disambiguation. A result that may be
disappointing, but it is better than the CG we had
at hand, written by humans. Basque turns out to

1 This precentage is both the precision and the recall
after making a random choice for all ambiguities that
are still left after running the rules.

be more computationally expensive than
Spanish, mostly because it has more tags and
more ambiguity in its readings. Also, word order
in Basque is less strict than Spanish.

We were able to increase the size of the training
corpus for Basque to 30.000 words (almost 50%
of the corpus) by using non-exact optimization
methods for picking the best rule. This yielded a
grammar with 84% correct readings on the other
half of the corpus.

For English, we reached close to 97% with 3000
words. Adding more words did not significantly
improve the quality of the generated grammar.

In all our experiments, we used a window of
{-1,0,1}, and no limit on the size of the
conditions. For Spanish and English, we also
tried a window {-2,-1,0,1,2}, which took ~3
times longer time, but did not produce a
significantly better grammar. Only a handful of
rules actually made use of distance -2 or 2. For
Basque, it took too long time to run with a larger
window.

5 Discussion and Conclusion

Our experiments are promising but far too few to
draw any significant conclusion. We believe that
we have enough evidence to suggest that our
work may be a useful tool. One important factor
that is limiting our experiments is the lack of
good quality corpora to use for our experiments!

We have not studied the usefulness of the
“interactive mode” or “meta mode” that would
help a CG writer who is looking for suggestions
on what to do next. This is left as future work.

This work is not the first to propose automatic
generation of disambiguation rules from a
corpus; in fact there has been work on this since
the 1990s [1,2,3]. Our work differs from the ones
that generate CG rules in two significant ways:
(1) our greedy approach computes rules that
remove as much ambiguity without also
removing correct readings, as opposed to earlier
work that is based on statistics, and (2) we use a
SAT-solver to compute rules which avoids
enumeration of rules and allows for a

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 3

constraint-based specification of what kind of
rules we are looking for, which is more flexible.

We argue that an approach that avoids rules that
remove correct readings is the reasonable choice
in a setting where rules are generated greedily
one-by-one. Allowing such rules to remove
correct readings would be non-compositional; a
later rule can never correct such a mistake made
by an earlier rule.

6 References

[1] Samuelsson, Tapanainen, Voutilainen.
Inducing Constraint Grammars. International
Colloquium on Grammatical Inference. 1996.

[2] Lindberg, Eineborg. Learning
Constraint-grammar style disambiguation rules
using Inductive Logic Programming. COLING.
1998.

[3] Sfrent. Machine Learning of Rules for Part of
Speech Tagging. MSc. thesis. Imperial College
London. 2014.

[4] Een, Sörensson. An Extensible SAT-solver.
SAT conference. 2003.

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 4

Appendix - Generated CG for Spanish

SELECT (det) IF (1 (n));
REMOVE (vblex) IF (-1 (det));
REMOVE (sg) IF (0 (pr));
REMOVE (n) IF (-1 (n)) (0 (adj));
REMOVE (imp) IF (-1 (sg));
REMOVE (p3) IF (-1 (pr));
SELECT (n) IF (-1 (det)) (-1 (m));
REMOVE (p1 prs) ;
REMOVE (p3) IF (0 (p1));
REMOVE (p2) IF (0 (n));
REMOVE (vblex) IF (1 (vblex));
REMOVE (cnjsub) IF (-1C (n));
SELECT (al) IF (0 (ant));
REMOVE (p1) IF (0 (m));
REMOVE (rel) IF (-1 (vblex));
REMOVE (sg) IF (0 (vbser));
SELECT (pri) IF (-1 (mf));
SELECT (np) IF (-1 (np));
REMOVE (adj) IF (-1 (pr)) (0 (n));
SELECT (det) IF (1 (adj));
SELECT (mf) IF (1 (p3));
REMOVE (mf) IF (0 (n));
SELECT (mf) IF (0 (vblex));
REMOVE (sp) IF (1C (adj));
SELECT (f) IF (1 (pr));
SELECT (vblex) IF (-1C (n));
SELECT (pr) IF (1 (m));
SELECT (np) IF (-1 (pr));
REMOVE (n sg) IF (1 (cm));
REMOVE (p3 sg) IF (0 (m));
SELECT (n sg) IF (-1 (f));
SELECT (np) ;
REMOVE (imp p3) ;
REMOVE (adj pl) IF (-1 (mf));
REMOVE (pl prn) IF (-1C (pr));
SELECT (ind sp) ;
SELECT (ind) IF (0C (f));
SELECT (pri) IF (1C (m));
REMOVE (sp) IF (0 (sg));
SELECT (n) IF (-1 (cnjcoo));
SELECT (adj) IF (1 (sent));
REMOVE (adj m sg) IF (0 (n));
REMOVE (m n) IF (-1C (sg));
SELECT (m) ;
REMOVE (p3) IF (-1C (sent));
SELECT (pri) IF (0C (vblex));
SELECT (pp) IF (-1C (vbser));
REMOVE (pp) IF (1 (pr));
REMOVE (mf n) ;

REMOVE (adj m) ;
REMOVE (det ind sg) ;
REMOVE (mf) IF (-1 (adv));
REMOVE (prn) IF (1 (m));
SELECT (adv) IF (1 (pr));
REMOVE (vblex) IF (-1 (pr));
SELECT (pp) ;
REMOVE (adv) IF (1C (sg));
REMOVE (vblex) IF (1C (sg));
SELECT (pri) ;
SELECT (adv) IF (1C (vblex));
SELECT (mf) IF (0 (adj));
SELECT (mf) IF (-1 (cm));
REMOVE (detnt) ;
REMOVE (al) ;
SELECT (cnjsub) IF (1 (f));
SELECT (pr) IF (1 (det));
SELECT (rel) IF (1 (pii));
SELECT (adv) IF (1 (pl));
SELECT (sp) IF (-1C (mf));
REMOVE (n) IF (-1 (sg));
REMOVE (adj) ;
REMOVE (cnjadv) IF (1 (np));
REMOVE (cnjcoo) ;
REMOVE (sent) ;
REMOVE (pr) ;
SELECT (vblex) ;
REMOVE (n) ;
SELECT (ind sg) ;
REMOVE (det) IF (1C (pri));
REMOVE (prn) IF (1 (sg));
SELECT (cnjsub) IF (1 (dem));
SELECT (an) IF (1 (det));
REMOVE (rel) IF (-1 (sg));
SELECT (an) ;
REMOVE (loc) IF (1 (rpar));
REMOVE (ant) ;
SELECT (prn) IF (-1 (p3));
SELECT (ind) ;

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 5

Using Constraint Grammar for Treebank Retokenization

Eckhard Bick
University of Southern Denmark
eckhard.bick@mail.dk

Abstract

This paper presents a Constraint
Grammar-based method for changing the
tokenization of existing annotated data,
establishing standard space-based
("atomic") tokenization for corpora
otherwise using MWE fusion and
contraction splitting for the sake of
syntactic transparency or for semantic
reasons. Our method preserves ingoing
and outgoing dependency arcs and allows
the addition of internal tags and structure
for MWEs. We discuss rule examples and
evaluate the method against both a
Portuguese treebank and live news text
annotation.

1 Introduction

In an NLP framework, tokenization can be
defined as the identification of the smallest
meaningful lexical units in running text. Tokens
can be both words, symbols or numerical
expressions, but there is no general consensus on
what constitutes a token boundary. For instance,
are "instead of" or "Peter Madsen" 1 or 2 tokens?
Should German "z. B." (for example) be 2 tokens
and English "e.g." 1 token, just because the
former contains a space? What about a word that
allows optional space (insofar as vs. in so far
as)? Far from being a merely theoretical issue,
tokenization conventions strongly influence
parsing schemes and results (e.g. Grefenstette &
Tapanainen 1994). Thus, contextual rules
become simple (and therefore safer) when faced
with single-token names, conjunctions and
prepostions rather than complex ones.
Conversely, contractions such as Portuguese "na"
(= em [in] a [the]) can only be assigned a
meaningful syntactic analysis when split into

multiple tokens, in this case allowing the second
part (the article) to become part of a separate np.

Tokenization is often regarded as a necessary
evil best treated by a preprocessor with an
abbreviation list, but has also been subject to
methodological research, e.g. related to finite-
state transducers (Kaplan 2005). However, there
is little research into changing the tokenization of
a corpus once it has been annotated, limiting the
comparability and alignment of corpora, or the
evaluation of parsers. The simplest solution to
this problem is making conflicting systems
compatible by changing them into "atomic
tokenization", where all spaces are treated as
token boundaries, independently of syntactic or
semantic concerns. This approach is widely used
in the machine-learning (ML) community, e.g.
for the Universal Dependencies initiative
(McDonald et al. 2013). The method described in
this paper can achieve such atomic tokenization
of annotated treebank data without information
loss, but it can also be used for grammar-based
tokenization changes in ordinary annotation
tasks, such as NER.

2 Retokenization challenges

What exactly atomic (space-based)
retokenization implies, is language-dependent,
and may involve both splitting and fusion of
tokens, for fused multi-word expressions
(MWEs) and split contractions, respectively.
While the former, not least for NER, is a
universal issue, the latter is rare in Germanic
languages (e.g. aren't, won't), but common in
Romance languages. In both cases, the
retokenization method should conserve existing
information, i.e. MWE boundaries in one case,
and morphosyntactic tags of contraction parts in
the other. Linguistically, token-splitting is the
bigger problem, because it needs added

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 6

information: (a) partial POS tags, (b) additional
internal dependency links and (c) new internal
hook-up points for existing outgoing and
incoming dependency links. Unlike simple tag
conversion for, say, morphological features, this
cannot be achieved with a conversion table.

3 CG retokenization

Our solution is based on two unique features of
the CG3 compiler (Bick & Didriksen 2015). The
first allows context-based insertion, deletion and
substitution of cohorts (token + 1 or more
readings), and was originally intended for spell-
and grammar-checking. Thus, we implemented
token fusion by either inserting a (new) fused
token and then removing all original tokens, or
by substituting a token with a larger, fused one
containing the subsequent token (rules 1), then
removing the latter (rule 2). The other feature
introduces cohort splitting rules and was added
specifically for retokenization. Such a rule can
specify how to split a target token and
manipulate its parts using regular expression
matching (rule 3). In a separate rule field, a
dependency chain is stipulated across the split
token.

3.1 Multi-word expressions

How an MWE is to be split, obviously depends
on its POS and composition. A simple case are
name chains entirely made up of proper nouns.
Here, (part) lemmas equal (part) tokens, and
internal structure is simply a left- (or right-)
leaning dependency chain. With other word
classes, however, there may be inflection and
complex internal structure. The Portuguese
proper noun-splitting rule (1a), for instance,
breaks up TARGET named entities (NE) of the
type PROP+PRP+PROP (e.g. "(Presidente do)
Conselho de Administração" [Administrative
Council President]) - if necessary, iteratively.
The asterisk for part 1 means that the first part
inherits all tags (pos, edge label, features) from
the NE as a whole, while c->p means that it also
inherits incoming child (c) and outgoing parent
(p) dependencies. For parts 2 and 3, independent
new POS tags (PRP, PROP) and syntactic
function labels (@N<, @P<) are provided. All
parts receive a numbered MWE id (<MWE1>,
<MWE2> etc.), and the original MWE token is
retained in a separate tag (<MWE:...>. Note that
the new parts may themselves be MWEs,
needing further splits. Contractions contained in
a NE (do [of the_sg_m], pelas .. [by the_pl_f])

need to be split (1c), in order to be treated like
other, "free" contractions in the corpus. (1c)
starts with a default male singular reading which
is "corrected" by (1d) into female and/or plural
where necessary.

Rule (1b) targets a complex adverb, dali para
diante [from here onward, from now on],
performing not only a 3-way split on space, but
also splitting the contraction dali (de+ali
PRP+ADV). The '*' on the first part means that it
will inherit form and function tags from the
MWE as a whole, and "c->p" means it will also
inherit both incoming (child) and outgoing
(parent) dependencies.

(1a) SPLITCOHORT:multipart-prop (
"<$1>"v "$1"v <MWE1><MWE:$1=$2=$3>v * c->p
"<$2>"v "$2"v <MWE2> PRP @N< 2->3
"<$3>"v "$3"v <MWE3> PROP @P< 3->1)
TARGET ("<(.+?)=(aos?|às?|com|contra|d[eao]s?|em|
n[ao]s?|para)=(.*)>"r PROP /\(@.*\)/r) ;

(1b) SPLITCOHORT:three->fourpart-adv(
"<$1e>"v "de"v <sam-> <MWE1> <MWE:
$1$2=$3=$4>v PRP VSTR:$5 1->p
"<$2>"v "$2"v <-sam> <MWE2> ADV @P< 2->1
"<$3>"v "$3"v <MWE3> PRP VSTR:$5 @P< 3->1
"<$4>"v "$4"v <MWE4> ADV @P< c->3)
TARGET ("<([dD])(ali)=(para)=([^=]+?)>"r ADV \
(@.*\)/r) ;

(1c) SPLITCOHORT (
"<por>" "por" <sam-> <MWEprp> PRP @N< c->p
"<$1>"v "o" <-sam> <artd> <MWEdet> DET M S
@>N 2->p)

TARGET ("pel([ao]s?)"r)
(0 PRP OR N/PROP) ;

(1d) SUBSTITUTE (M) (F)
TARGET ("<.*[aà]s?>"r <MWEdet>) ;

3.2 Contractions

Fusion of tokens does not add linguistic
information, and a function tag can simply be
inherited from the head token of the to-be-fused
words. Still, CG rules like (2-3) are an effective
option for this purpose, too, because the
formalism will automatically handle the resulting
dependency number adjustments for the rest of
the tree, and morphophonetic changes can be
addressed where necessary. Here, we use fusion
rules to reassemble Portuguese contractions that
were split into lemma parts in the original

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 7

treebank (marked <sam-> for first part and <-
sam> for second part). Thus, (2a) creates a
compound POS for the contraction, substituting
it for the preposition POS of the contraction's
first part. (2b-c) then fuse the tokens "por" and
"as" into "pelas", and (2d) creates a compound
lemma for the contraction. (3), finally, removes
the now-superfluous second part token.

(2a) SUBSTITUTE (PRP) (PRP_DET)
TARGET (<sam->)
(1 (<-sam> DET)) ;

(2b) SUBSTITUTE
("<$1>"v) (VSTR:"<$1$2>")
TARGET ("<(.*)>"r PRP_DET)
(1 ("<(.*)>"r <-sam>)) ;

(2c) SUBSTITUTE
("<por$1>"v) (VSTR:"<pel$1>")
TARGET ("<por(.*)>"r PRP_DET) ;

(2d) SUBSTITUTE ("$1"v) (VSTR:"$1+$2")
TARGET ("([^<]+)"r PRP_DET)
(1 ("([^<]+)"r <-sam>)) ;

(3) REMCOHORT REPEAT (<-sam>)
(-1 (/^PRP_.*$/r) OR (PERS_PERS)) ;

4 Evaluation and statistics

We evaluated the CG-based retokenization
method on the Portuguese Floresta Sintá(c)tica
treebank (Afonso et al. 2002), a 239,899 token
treebank covering the European as well as the
Brazilian varieties of Portuguese. The treebank is
available in both constituent and dependency
formats, both adhering to the cross-language
VISL annotation standard1. Since the treebank's
native format does not adhere to atomic
tokenization, as advocated by the Universal
Dependency initiative, retokenization has
become an issue for ML-users of the Floresta
Sintá(c)tica. Our retokenizer proved capable of
addressing this problem, resolving all 8779
MWEs in the treebank into their 21,954 parts
(2.50 per MWE), and reestablishing all 15,912
contractions. The process took 33.6 seconds on a
2-core laptop, amounting to a processing speed
of 7,140 words/sec.

In combination with a live parser run, on a
Portuguese newstext corpus with ~ 1.1 million

1 http://visl.sdu.dk

tokens, the method handled 44,826 MWEs of
similar complexity (109,320 parts, 2.44 per
MWE), missing out on only 273 (0.6%) MWEs.
The failure rate for contractions was a negligible
0.01% (with 76,610 successful fusions).

5 Conclusions and outlook

We have shown that (cg3-level) Constraint
Grammar can be used for retokenization, and that
our method can establish space-based
tokenization for treebanks or parser output that
for syntactic or semantic reasons use different
tokenization strategies. Thus, both splitting of
fused multi-word-expressions and fusion of split
contractions can be handled with a high degree
of accuracy. In addition to retokenization itself,
the method specifically supports tree strucctures
in dependency treebanks, preserving ingoing and
outgoing dependency arcs and allowing the
addition of internal tags and dependency
structure for MWEs.

Apart from the treebank conversion discussed
here, we hope that the technique will prove
useful at various stages of NLP pipelines,
supporting grammar- and context-driven
tokenization afterthe preprocessing stage, or as
post-processing for named entities, numerical
expressions or compound-related spelling errors.
As a specialized application, we are currently
experimenting with target-language
retokenization in machine translation.

References

Afonso, Susana & Eckhard Bick & Renato Haber &
Diana Santos. 2002. Floresta sintá(c)tica: A
treebank for Portuguese. In Proceedings of
LREC'2002, Las Palmas. pp. 1698-1703, Paris:
ELRA

Bick, Eckhard & Tino Didriksen. 2015. CG-3 -
Beyond Classical Constraint Grammar. In: Beáta
Megyesi: Proceedings of NODALIDA 2015, May
11-13, 2015, Vilnius, Lithuania. pp. 31-39.
Linköping: LiU Electronic Press. ISBN 978-91-
7519-098-3

Grefenstette, Gregory & Pasi Tapanainen. 1994. What
is a word, what is a sentence? Problems of
tokenization. Proceedings of the 3rd Conference on
Computational Lexicography and Text Research
(COMPLEX'94), Budapest. pp. 79-87

Kaplan, Ronald M. 2005. A method for tokenizing
text. In: Festschrift in Honor of Kimmo

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 8

Koskenniemi’s 60th anniversary. CSLI Publications,
Stanford, CA. pp. 55-64

McDonald, Ryan et al. 2013. Universal dependency
annotation for multilingual parsing. In:

Proceedings of ACL 2013, Sofia. pp. 92-98

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 9

Cleaning up the Basque grammar: a work in progress

Inari Listenmaa
University of Gothenburg

inari@chalmers.se

Jose Maria Arriola
University of the Basque Country

josemaria.arriola@ehu.eus

Itziar Aduriz
University of Barcelona

itziar.aduriz@ub.edu

Eckhard Bick
University of Southern Denmark

eckhard.bick@mail.dk

1 Introduction

The first version of the Basque Constraint Gram-
mar (BCG) was developed in 1995–1997 by two
linguists (Aduriz et al., 1997) based on the Con-
straint Grammar theory of Karlsson (1990; Karls-
son et al. (1995). Since then, it has undergone
many changes, by many grammarians. During
the two decades of development, the Basque mor-
phological analyser has also been updated several
times, and not always synchronised with the CG.
As a result, the Basque grammar needs serious at-
tention.

In the present paper, we describe the ongoing
process of cleaning up the Basque grammar. We
use a variety of tools and methods, ranging from
simple string replacements to SAT-based symbolic
evaluation, introduced in Listenmaa and Claessen
(2016), and grammar tuning by Bick (2013). We
present our experiences in combining all these
tools, along with a few modest additions to the
simpler end of the scale.

2 Previous work

Bick (2013) presents a method for automatically
tuning a grammar, and reports an error reduction
between 7–15 % when tested on the Danish tag-
ging grammar. Listenmaa and Claessen (2016)
present a method for detecting contradictions in
a grammar, using SAT-based symbolic evaluation.
They report detecting rule conflicts in a few small
grammars, but provide no further evaluation on the
grammars after fixing the rule conflicts. In our ex-
periments, we use both of these tools for different
purposes, complementing each other.

3 Pipeline

As a first step, we run a series of simple, mostly
off-the-shelf tools. The next step is to group the
rules and order them by their contextual tests.
These sets are checked both by the SAT-based tool,

and grammarians. After these steps, we give the
grammar as an input for ML-tuning.

3.1 Simple tools

String operations Fix typos: O for 0, and
various mismatched "<>" in word forms: e.g.
"<zuen">, <argi>". Transform word forms
into case-insensitive, remove duplicates. There
were many occurrences of identical rules, of the
form REMOVE ("<x>") and REMOVE ("<X>").
We changed those rules into the form REMOVE

("<x>"i), and removed duplicate rules after that.

Tagset operations The VISL CG-3
compiler offers useful features, such as
--show-unused-sets and --show-tags.
With the former, we could eliminate 255 unused
tagsets, and with the latter, we detected 15
obsolete or misspelled tags in the remaining
used tagsets, by comparing against an up-to-date
lexical database (Aldezabal et al., 2001).

Human readability For improving the readabil-
ity of the grammar, we wrote a tool that finds
repetitive set definitions, and suggests ways to
compact them. An example is shown below:

Original
("ageri" ADJ ABS MG)

("bizi" ADJ ABS MG) ...

("haizu" ADJ ABS MG) ;

Compact
("ageri"|"bizi"|"haizu") +

(ADJ ABS MG) ;

In addition, the grammar contains many rules
that specify an inline set, when there is already
the same or a very similar set definition. For
instance, the rule REMOVE (ADL) IF (0 ADT)

(1 ("<.>") OR ("<;>") OR ("<,>") OR

("<:>") OR ("<?>") OR ("<!>")) lists dif-
ferent punctuation marks as word forms, instead

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 10

SELECT ADOIN IF (1 ARAZI) ; # line 7412

REMOVE ADOIN IF (0 IZE) (1C ADJ) ; # line 6423

REMOVE ADOIN IF (0 IZE) (1 DET | ADJ | IZE) ; # line 6433

REMOVE ADOIN IF (0 EZEZAG + ADJ + GEN) (-2C IZE) ; # line 6319

REMOVE ADOIN IF (0 IZE) (-1C IZE) (1C ADJ) ; # line 6422

Figure 1: Rules grouped by target, and ordered by their contextual tests.

of using the list PUNTUAZIOA, which contains
all these tokens.

The standard tools did not provide this type of
suggestions, so we wrote these tools ourselves.
Neither of these transformations is applied auto-
matically, they are just suggestions for the gram-
mar writers.

3.2 Group by target, sort by conditions
After the simple checks and transformations, we
group the rules by their targets, and sort them by
the complexity of their contextual texts. For in-
stance, the 5 rules that target ADOIN will be in
the order shown in Figure 1: from fewest to most
contextual tests, and in the case of same number
of tests, preferring those with fewer tagsets.

3.3 Check for conflicts and redundancies
When the rules are grouped and sorted as de-
scribed, we run SAT-based symbolic evaluation
(Listenmaa and Claessen, 2016) on each group. If
it says that some rule with a more complex con-
dition is superfluous because of another rule ear-
lier in the list1, then that is a hint for the grammar
writer: why are there two similar rules in the gram-
mar, if the simpler one would do? At the moment
of writing, we are still looking for better ways to
adapt the conflict check to the Basque grammar;
due to the large number of tags, we cannot use the
system straight out of the box. We describe the
adaptations we have done so far in Section 4.2, as
well as some preliminary results.

3.4 Manual cleanup
Even if the program wouldn’t find any conflicts,
we give the rules to a grammarian in any case. The
grammarian works with this list, having the orig-
inal grammar on the side to see the comments, or
other original context of any given rule. On the
one hand, seeing all the rules grouped helps with
the situation where different grammarians have

1For example, the latter rule of the following is super-
fluous: REMOVE Verb IF (-1 Det) and REMOVE Verb IF
(-1 Det) (1 Verb)

written rules independent of each other. On the
other hand, working with the ordered grammar
makes it difficult to compare the precision, recall
and F-score to the original grammar in the inter-
mediate stages of the cleanup.

In any case, the sorting and grouping is not
meant to be the final order, it is only to help a hu-
man grammarian to make decisions regarding all
the rules that target the same tagsets. An easy al-
ternative would be to work on the original gram-
mar instead, only keeping the sorted list as a help
and generating new ones as the cleanup proceeds.
However, we found it easier to work directly on
the sorted list. To solve the problem of intermedi-
ate evaluation, we decided to compare the results
by ML-tuning both the original and the ordered
grammar.

3.5 ML-tuning

Once the grammar has gone through the previ-
ous steps, we give it to the ML-tuning tool (Bick,
2013), with the purpose of finding an optimal or-
der. Then we can run the newly ordered grammar
through the conflict check, to detect if the ML-
tuning has introduced new conflicts or superfluous
rules.

Our initial hypothesis is that the human-cleaned
version will benefit more from tuning than the
original grammar. Some bad rules may have only
a minor problem, such as a single tag name having
changed meaning, and they would be better fixed
by updating the obsolete tag, instead of the whole
rule being demoted or killed. To test our assump-
tions, we tune both the original grammar and the
human-cleaned versions, continuously comparing
the new versions to the original.

3.6 Final order

After checking the conflicts and redundancies of
the grammar, we will proceed to reorder the gram-
mar by defining the sections of the grammar corre-
sponding to each level of granularity of the Basque
tag set.

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 11

4 Evaluation

We evaluate the grammars with a manually disam-
biguated corpus of 65,153 tokens/53,429 words,
compiled from different sources (Aduriz et al.,
2006). We report the original score, and the result
from ML-tuning the original grammar, as well as
the result of preliminary cleanup. The scores are
given using two metrics, differing on the granular-
ity of the tagset.

4.1 Evaluation criteria

The Basque tag set is structured in four levels of
granularity. As explained in Ezeiza et al. (1998),
the first level contains only the main POS, 20 dis-
tinct tags, and the fourth level contains several
hundreds of tags with fine-grained distinctions, in-
cluding semantic tags such as animacy. Table 1
shows a simplified example of the levels for nouns.
On the 4th level, the initial ambiguity is very high:
the test corpus has, on average, 3.96 readings per
cohort. On the 2nd level, when readings that differ
only in higher-level tags are collapsed into one, the
initial ambiguity is 2.41 readings per cohort. We
follow the scheme for evaluation: assume that we
are left with two readings, “Common noun, singu-
lar” and “Common noun, plural”, and one of them
is correct. Evaluation on levels 3 and 4 reports 100
% recall and 50 % precision. Evaluation on levels
1 and 2 ignores the tags from the higher levels,
and regards any common noun or noun as correct,
hence 100 % for both measures.

It should be noted that the linguistic revision has
been targeted towards improving the 2nd level.

4.2 Analysis of the results

The results of the preliminary evaluation are in Ta-
ble 2. The drop in performance after the prelim-
inary cleanup is most certainly due to ordering—
we found it easier to work on the grammar directly
after grouping and sorting the rules, as shown in
Figure 1. ML-tuning the cleaned grammar brings
the precision up, indicating that more rules get to
fire in the tuned order. The difference is most dra-
matic in the sorted and grouped grammar on the
4th level: the original precision drops from 62 %
to 56 %, and goes up to 68 % with the ML-tuning.

As explained in Section 3.4, the fairest test at
this stage is to compare the ML-tuned results of
the original and the cleaned grammar. We see the
cleaned and tuned grammar slightly outperform-
ing the tuned original; the difference is not large,

but we see it as a promising start.

Conflict check Our main problem is the size of
the tag set: all possible combinations of tags on
level 4 amount to millions of readings, and that
would make the SAT-problems too big. We cannot
just ignore all tags beyond level 2 or 3, because
many of the rules rely on them as contexts.

As a first approximation, we have created a re-
duced set of 21000 readings, which allows the pro-
gram to check up to 200 rules at a time before run-
ning out of memory. We are still developing bet-
ter solutions, and have not run the whole grammar
with this setup. Among the first rules we tested, it
has found a few redundancies, such as the follow-
ing:

SELECT ADB IF

(0 POSTPOSIZIOAK-9)

(-1 IZE-DET-IOR-ADJ-ELI-SIG + INE) ;

SELECT ADB IF

(0 ("<barrena>")) (-1 INE) ;

The problem is that the set POSTPOSIZIOAK-9

contains the word form “barrena”, and the other
set contains the tag INE; in other words, the latter
rule is fully contained in the first rule and hence
redundant.

Our second strategy is to reduce the rules them-
selves: from a rule such as SELECT Verb +

Sg IF (1 Noun + Sg), we just remove all tags
higher than level 2, resulting in SELECT Verb IF

(1 Noun). We also keep all lexical tags intact, but
unlike in Listenmaa and Claessen (2016), we al-
low them to attach to any morphological tags; this
may lead to further false negatives, but reduces
the size of the SAT-problem. This setup analyses
the whole grammar, in the given order, in approx-
imately 1 hour. With the reduced rules, the pro-
gram would not find the redundancy described ear-
lier, because the problem lies in the 3rd-level tag
INE. But this approximation found successfully 11
duplicates or near-duplicates in the whole gram-
mar, such as the following:

SELECT IZE IF # line 817

(0 POSTPOSIZIOAK-10IZE LINK 0 IZE_ABS_MG)

(-1 IZE-DET-IOR-ADJ-ELI-SIG + GEN) ;

SELECT IZE IF # line 829

(0 POSTPOSIZIOAK-10IZE + IZE_ABS_MG)

(-1 IZE-DET-IOR-ADJ-ELI-SIG + GEN) ;

Both of the contextual tests contain 3rd-level tags
(ABS, MG, GEN), but removing them keeps the

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 12

Level 1 Level 2 Level 3 Level 4

Noun
Common noun
Proper noun

Common noun, plural absolutive
Common noun, singular ergative
Proper noun, plural absolutive
Proper noun, singular ergative

Common noun, plural absolutive, animate
Common noun, plural absolutive, inanimate
...
Proper noun, singular ergative, animate
Proper noun, singular ergative, inanimate

Table 1: Levels of granularity

All tags (Level 4) 48 main categories (Level 2)
Rec. Prec. F-score Rec. Prec. F-score

Original grammar 95.61 62.99 75.94 97.48 84.37 90.45
ML-tuned original 93.87 68.06 78.91 96.66 86.82 91.48
Preliminary cleanup 94.81 56.56 70.85 96.82 84.13 90.03
ML-tuned prel.cl. 93.41 68.61 79.11 96.41 87.19 91.57

Table 2: Preliminary evaluation on words, excluding punctuation, for levels 4 and 2 of granularity.

sets identical, hence it is not a problem for the con-
flict check.

Finally, all setups have found some internal con-
flicts. In order to get a more reliable account,
we would need more accurate tagset, beyond the
21000. To be fair, many internal conflicts can be
detected by simpler means: using STRICT-TAGS
would reveal illegal tags, which are the reason for
a large number of internal conflicts. But some
cases are due to a mistake in logic, rather than a
typo; examples such as the following were easily
found by the tool.

REMOVE ADI IF (NOT 0 ADI) (1 BAT) ;

SELECT ADI IF (0C ADI LINK 0 IZE) ;

The first rule is clearly an error; it is impossible to
remove an ADI from a reading that does not have
one. The conflict likely stems from a confusion
between NOT X and (*) - X. The second rule is
not obvious to the eye; the interplay of 0C and
LINK 0 requires ADI and IZE in the same reading,
which is not possible2.

ML-tuning So far, the most important use of the
ML-tuning has been to overcome the differences
in ordering. Given the preliminary nature of the
work, we have not tried multiple variations. We
used a development corpus of 61,524 tokens and a
test corpus of 65,153 tokens; the same which we
used to obtain the scores in Table 2. We stopped
the tuning after 5 iterations, and used an error
threshold of 25 % to consider a rule as “good” or
“bad”.

2ADI is a verb, IZE is a noun.

In the future, as the grammar cleanup ad-
vances, we are interested in trying out different
settings. Already in our current stage, ML-tuning
has clearly improved the precision, for both orig-
inal and preliminarily cleaned grammars, and for
both levels of granularity; it is likely that experi-
menting with different parameters, we would find
a combination that would also improve the recall,
like Bick (2013) and Bick et al. (2015) report.
However, while ML-tuning improves the gram-
mar’s performance, it makes it less readable for
human eyes, and continuing the development is
harder. Thus we might settle to two versions of
the grammar: one for maintenance, and other for
running.

5 Future work

After checking the soundness of the grammar by
means of some simple tools, we are aware that in
the near future we will need more complex utilities
for helping the grammar writing. The following
items are on our wish list:

Flexible rule ordering We would like the op-
tion to view the grammar in a variety of or-
ders, possibly implemented as a feature in the CG
IDE. The base order would be one that is easily
maintainable and linguistically motivated, and any
other orders can be generated from the base order.

Deeper connections between the rules So far
we have used the SAT-based conflict check to run
the grammar in order, but we would like to develop
this further: take any given rule, and give a list of

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 13

all the rules, anywhere in the grammar, that poten-
tially feed to it or block it. The biggest problem in
developing such a method is the size of the tagset;
this leads us to the next item on our wishlist.

Tagset minimisation This feature may be spe-
cific to the Basque grammar; for a language with
a smaller tagset, there is no reason to restrict the
number of tags used in the rules. We propose this
idea, because we think it would help to make the
SAT-encoding of the Basque grammar more man-
ageable.

The grammar is written to optimize the recall
and precision on level 2 tags. It is possible that
some of the level 4 or 3 tags used in the rules could
be removed without it affecting the functionality
of the grammar. Using a development corpus, we
could find the minimal set of tags that discrimi-
nate between correct and incorrect readings. The
following example illustrates the idea:

"<lurtarraren>"

"lurtar" ADJ ARR IZAUR+ GEN

NUMS MUGM ZERO <Correct!>

"lurtar" IZE ARR GEN NUMS MUGM ZERO

"lurtar" ADJ ARR IZAUR+ ABS MG

For the given cohort, tags that are only in the cor-
rect are GEN and only in incorrect are IZE, ABS,

MG. In other words, we learn that a rule that would
target e.g. ZERO or IZAUR+ would not remove all
ambiguity. We can compute these tags for all co-
horts/ambiguity classes, and see if some tags don’t
contribute to the disambiguation as much as the
others. In such a case, we could simplify the rules
in the grammar.

6 Conclusions

We have set out to improve the readability and
performance of the Basque CG. The work is in
progress, and the improvements on the perfor-
mance are so far quite minor, but we feel this as a
promising start, and a useful case study, for trying
out the resources developed within the CG com-
munity.

Acknowledgments

This work has been supported by the project
UPV/EHU taldea. UPV/EHU (GIU16/16)

References
Itziar Aduriz, José Marı́a Arriola, Xabier Artola,

Arantza Diaz de Ilarraza, Koldo Gojenola, and
Montse Maritxalar. 1997. Morphosyntactic disam-
biguation for basque based on the constraint gram-
mar formalism. In Proceedings of Recent Advances
in NLP (RANLP97).

Itziar Aduriz, Maria Jess Aranzabe, Jose Maria Arriola,
Aitziber Atutxa, Arantza Diaz de Ilarraza, Nerea
Ezeiza, Koldo Gojenola, Maite Oronoz, Aitor Soroa,
and Ruben Urizar. 2006. Methodology and steps to-
wards the construction of EPEC, a corpus of written
Basque tagged at morphological and syntactic lev-
els for the automatic processing. In Corpus Linguis-
tics Around the World, volume 56 of Language and
Computers, pages 1–15. Rodopi, Netherlands.

Izaskun Aldezabal, Olatz Ansa, Bertol Arrieta, Xa-
bier Artola, Aitzol Ezeiza, Gregorio Hernndez, and
Mikel Lersundi. 2001. Edbl: a general lexical
basis for the automatic processing of basque. In
IRCS Workshop on linguistic databases. Philadel-
phia (USA).

Eckhard Bick, Kristin Hagen, and Anders Nklestad,
2015. Optimizing the Oslo-Bergen Tagger, pages
11–19. Linkping University Electronic Press.

Eckhard Bick. 2013. ML-Tuned Constraint Gram-
mars. In Proceedings of the 27th Pacific Asia Con-
ference on Language, Information and Computation
(PACLIC 2013), pages 440–449.

Nerea Ezeiza, Itziar Aduriz, Iñaki Alegria, Jose Mari
Arriola, and Ruben Urizar. 1998. Combin-
ing stochastic and rule-based methods for disam-
biguation in agglutinative languages. In COLING-
ACL’98. Pgs. 380 - 384. Vol 1. Montreal (Canada).
August 10-14, 1998.

Fred Karlsson, Atro Voutilainen, Juha Heikkilä, and
Arto Anttila. 1995. Constraint Grammar:
a language-independent system for parsing unre-
stricted text, volume 4. Walter de Gruyter.

Fred Karlsson. 1990. Constraint grammar as a frame-
work for parsing running text. In Proceedings
of 13th International Conference on Computational
Linguistics (COLING 1990), volume 3, pages 168–
173, Stroudsburg, PA, USA. Association for Com-
putational Linguistics.

Inari Listenmaa and Koen Claessen. 2016. Analysing
Constraint Grammars with a SAT-solver. In Pro-
ceedings of the 10th edition of the Language Re-
sources and Evaluation Conference (LREC 2016).

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 14

Exploring the Expressivity of Constraint Grammar

Wen Kokke
University of Edinburgh
wen.kokke@ed.ac.uk

Inari Listenmaa
University of Gothenburg

inari.listenmaa@cse.gu.se

Abstract

We believe that for any formalism which
has its roots in linguistics, it is a natu-
ral question to ask “how expressive is it?”
Therefore, in this paper, we begin to ad-
dress the question of the expressivity of
CG. Aside from the obvious theoretical
interest, we envision also practical bene-
fits. Understanding what CG can and can-
not express makes it possible to transform
other formalisms to corresponding or ap-
proximate CGs, thus making way for new
ways of grammar writing, and better reuse
of existing language resources.

1 Introduction

For any formalism with its root in linguistics, it is
natural to ask questions such as “How expressive
is it?” or “Where does it sit in the Chomsky hier-
archy?” (Chomsky, 1956) In this paper, we begin
addressing some of these questions for constraint
grammar (Karlsson et al., 1995, CG).

Before we can even consider such a question,
there is a problem we must solve. CG was never
meant to be a grammar in the generative sense. In-
stead, it is a tool for analysing and disambiguating
strings. This, we believe, explains why the ques-
tion of the expressivity of CG went unasked and
unanswered for a long time. It also gives us our
first problem: How do we view CGs generatively?
We address this in section 2.

2 Generative Constraint Grammar

We view a constraint grammar CG as generating
a formal language L over an alphabet Σ as fol-
lows. We encode words w ∈ Σ? as a sequence of
cohorts, each of which has one of the symbols of
w as a reading. A constraint grammar CG rejects
a word if, when we pass its encoding through the

CG, we get back the cohort "<REJECT>". A con-
straint grammar CG accepts a word if it does not
reject it. We generate the language L by passing
every w ∈ Σ? through the CG, and keeping those
which are accepted.

As an example, consider the language a? over
Σ = {a,b}. This language is encoded by the fol-
lowing constraint grammar:

LIST A = "a";

LIST B = "b";

SET LETTER = A OR B;

SELECT A;

ADDCOHORT ("<REJECT>")

BEFORE LETTER

IF (-1 (>>>) LINK 1* B);

REMCOHORT LETTER

We then encode the input words as a series
of letter cohorts with readings (e.g. "<l>" "a",
"<l>" "b"), and run the grammar. For instance,
if we wished to know whether either word in
{aaa,aab} is part of the language a?, we would
run the following queries:

Input Output
"<l>" "a" "<l>" "a"

"<l>" "a" "<l>" "a"

"<l>" "a" "<l>" "a"

"<l>" "a" "<REJECT>"

"<l>" "a"

"<l>" "b"

As CG is a tool meant for disambiguation, we can
leverage its power to run both queries at once:

Input Output
"<l>" "a" "<l>" "a"

"<l>" "a" "<l>" "a"

"<l>" "a" "b" "<l>" "a"

This is a powerful feature, because it allows us dis-
ambiguate based on some formal language L if
we can find the CG which generates it. However,
the limitations of this style become apparent when
we look at a run of a CG for the language {ab,ba}:

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 15

Input Output
"<l>" "a" "b" "<l>" "a" "b"

"<l>" "a" "b" "<l>" "a" "b"

While the output contains the interpretations ab
and ba, it also includes aa and bb. Therefore,
while this style is useful for disambiguating using
CGs based on formal languages, it is too limited
to be used in defining the language which a CG
generates.

In light of the idea of using CGs based on
formal languages for disambiguating, it seems at
odds with the philosophy of CG to reject by re-
placing the entire input with a single "<REJECT>"
cohort. CG generally refuses to remove the last
possible reading of a cohort, under the philoso-
phy that some information is certainly better than
none. However, for the definition of CG as a for-
mal language, we need some sort of distinctive
output for rejections. Hence, we arrive at two dis-
tinct ways to run generative CGs: the method in
which we input unambiguous strings, and output
"<REJECT>", which is used in the definition of
CG as a formal language; and the method in which
we input ambiguous strings, and simply disam-
biguate as far as possible.

It should be noted that VISL CG-3 (Bick and
Didriksen, 2015; Didriksen, 2014) supports com-
mands such as EXTERNAL, which runs an exter-
nal executable. It should therefore be obvious
that the complete set of VISL CG-3 commands,
at least theoretically, can generate any recursively
enumerable language. For this reason, we will in-
vestigate particular subsets of the commands per-
mitted by CG. In sections 3 and 4, we will restrict
ourselves to the subset of CG which only uses the
REMOVE command with sections, and show this
to at least cover all regular languages and some
context-free and context-sensitive languages. In
section 5, we will restrict ourselves to the sub-
set of CG which only uses the ADDCOHORT and
REMCOHORT commands with sections, and show
this to be Turing complete.

3 A lower bound for CG

In this section, we will only use the REMOVE com-
mand with sections, in addition to a single use of
the ADDCOHORT command to add the special cohort
"<REJECT>", and a single use of the REMCOHORT

command to clean up afterwards. We show that,
using only these commands, CG is capable of gen-
erating some context-free and context-sensitive

languages, which establishes a lower bound on the
expressivity of CG (see Figure 1).

Figure 1: Lower bound on the expressivity of the
subset of CG using only REMOVE.

3.1 Example grammar: anbn

Below, we briefly describe the CG which gener-
ates the language anbn. This CG is defined over
the alphabet Σ, in addition to a hidden alphabet Σ′.
These hidden symbols are meant to serve as a sim-
ple form of memory. When we encode our input
words, we tag each cohort with every symbol in
the hidden alphabet1, e.g. for some symbol ` ∈ Σ

and Σ′ = {h1, . . . ,hn} we would create the cohort
"<`>" "h1" . . . "hn".

The CG for anbn uses the hidden alphabet {odd,
even, opt a, opt b}. These symbols mean that
the cohort they are attached to is in an even or odd
position, and that a or b is a legal option for this
cohort, respectively. The CG operates as follows:

1. Is the number of characters even? We know
the first cohort is odd, and the rest is han-
dled with rules of the form REMOVE even IF

(NOT -1 odd). If the last cohort is odd, then
discard the sentence. Otherwise continue. . .

2. The first cohort is certainly a and last is
certainly b, so we can disambiguate the
edges: REMOVE opt b IF (NOT -1 (*)),
and REMOVE opt a IF (NOT 1 (*)).

3. Disambiguate the second cohort as a and
second-to-last as b, the third as a and third-
to-last as b, etc, until the two ends meet in
the middle. If every "<a>" is marked with
opt a, and every "" with opt b, we ac-
cept. Otherwise, we reject.

1We can automatically add these hidden symbols to our
cohorts using a single application of the ADD command.

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 16

The language anbn is context-free, and therefore
CG must at least partly overlap with the context-
free languages.

3.2 Example grammar: anbncn

We can extend the approach used in the previ-
ous grammar to write a grammar which accepts
anbncn. Essentially, we can adapt the above gram-
mar to find the middle of any input string. Once
we have the middle, we can “grow” as from the
top and bs up from the middle, and bs down from
the middle and cs up from the bottom, until we di-
vide the input into three even chunks. If this ends
with all "<a>"s marked with opt a, all ""s
marked with opt b, and all "<c>"s marked with
opt c, we accept. Otherwise, we reject.

The language anbncn is context-sensitive, and
therefore CG must at least partly overlap with the
context-sensitive languages.

4 Are all regular languages in CG?

In the present section, we propose a method to
transform any finite-state automata into CG. The
translation is implemented in Haskell, and can be
found on GitHub2.

4.1 Finite-state automata
Formally, a finite-state automaton is a 5-tuple

〈Σ,S,s0,δ ,F〉.

Σ is the alphabet of the automaton, S is a set of
states, including a starting state s0 and a set F of
final states. δ is a transition function, which takes
one state and one symbol from the alphabet, and
returns the state(s) where we can get from the orig-
inal state with that symbol. The automaton in Fig-
ure 2 is presented as follows:

S = {s1,s2} Σ = {det, adj, n}

s0 = s1 δ = {s1 det−→ {s2},

F = {s1} s2
adj−→ {s2},

s2
noun−−→ {s1}}

Informally, the automaton describes a simple set
of possible noun phrases: there must be one deter-
miner, one noun, and 0 or more adjectives in be-
tween. We implement a corresponding CG in the
following sections.

2See https://github.com/inariksit/cgexp

Figure 2: A finite-state automaton describing the
regular language det (adj)* noun.

4.2 Cohorts and sentences
We encode our input as a sequence of state co-
horts and transition cohorts. Initially, a state co-
hort contains the full set S = {s1,s2} as its read-
ings, and a transition cohort contains the alpha-
bet Σ = {det, adj, noun}, or some subset of it. As
an example, we generate all 2-letter words recog-
nised by the automaton in Figure 2. The initial
maximally ambiguous input for length 2 looks as
follows:

"<s>" "<w>" "<s>" "<w>" "<s>"

s1 det s1 det s1

s2 adj s2 adj s2

noun noun

The grammar disambiguates both transition co-
horts and state cohorts. Thus the desired result
shows both the accepted sequence(s)—det noun in
this case—and their path(s) in the automaton.

"<s>" "<w>" "<s>" "<w>" "<s>"

s1 det s2 noun s1

We can easily adapt the disambiguation scheme
for real-world ambiguities, such as “the present”.
The state cohorts are identical, but the transition
cohorts contain now some actual word form, and
the initial ambiguity is not over the whole Σ, but
some subset of it.
"<s>" "<the>" "<s>" "<present>" "<s>"

s1 det s1 adj s1

s2 s2 noun s2

The disambiguation process goes exactly like in
the first version, with full Σ in the transition co-
horts. Depending on how much the initial input
contains ambiguity, the result may be the same, or
more disambiguated. For our example, the output
is identical.
"<s>" "<the>" "<s>" "<present>" "<s>"

s1 det s2 noun s1

4.3 Rules
Given that every transition happens between two
states, and every state has an incoming and out-

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 17

going transition, every rule needs only positions
-1 and 1 in its contextual tests. The semantics of
the rules are “remove a transition, if it is not sur-
rounded by allowed states”, and “remove a state,
if it is not surrounded by allowed transitions”. For
the example automaton, the rules are as follows:

REMOVE Det # Transition rules

IF (NEGATE -1 S1 LINK 2 S2) ;

REMOVE Adj

IF (NEGATE -1 S2 LINK 2 S2) ;

REMOVE Noun

IF (NEGATE -1 S2 LINK 2 S1) ;

REMOVE S1 # State rules

IF (NEGATE -1 >>> OR Noun

LINK 2 Det) ;

REMOVE S2

IF (NEGATE -1 Det OR Adj

LINK 2 Adj OR Noun) ;

The start and end states naturally correspond to
the first and last state cohort, and can be trivially
disambiguated, in this case both into s1. Once
we remove a reading from either side of a cohort,
some more rules can take action—the context “s2
on the left side and s1 on the right side” may be
broken by removing either s2 or s1. One by one,
these rules disambiguate the input, removing im-
possible states and transitions from the cohorts.

4.4 Result
For the final result of the disambiguation, we con-
sider three options: the cohorts may contain the
whole alphabet, a well-formed subset or a mal-
formed subset.

Full Σ If there is only one allowed word of
length n in the language, then the result will con-
tain only fully disambiguated transition cohorts.
Furthermore, if there is only path in the automaton
that leads to this word, then also the state cohorts
are fully disambiguated.

If there are multiple words of the same length
in the language, then we have to relax our criteria:
every transition cohort and state cohort in the re-
sult may contain multiple readings, but all of them
must contribute to some valid word of length n,
and its path in the automaton.

Well-formed subset of Σ With well-formed
subset, we mean that each cohort contains at least
one of the correct readings: {det} for “the”, and
{adj,noun} for “present”. If the initial input is

well-formed, then the result will be correct, and
may even be disambiguated further than with the
full Σ in the transition cohorts.

Malformed subset of Σ Malformed subset has
at least one cohort without any correct readings,
for example, “the” is missing a det reading. This
will lead to arbitrary disambiguations, which do
not correspond to the automaton. Without a det

reading in “the”, the rule which removes s2 would
trigger in the middle state, leaving us with three
s1 states. s1-s1-s1 is an impossible path in the
automaton, so it would trigger all of the transition
rules, and stop only when there is one, arbitrary,
reading left in the transition cohorts.

5 Turing Machines in CG?

In the previous sections, we have assumed that CG
refers to the subset of VISL CG-3 which uses only
the REMOVE command. In this section, we will take
CG to refer to the subset of VISL CG-3 which uses
only the ADDCOHORT and REMCOHORT commands,
and show that this subset is Turing complete. We
will do this by implementing a procedure which
translates arbitrary Turing machines to CG, tak-
ing VISL CG-3 itself as sufficient evidence of the
fact that Turing machines can simulate constraint
grammars.

The translation we present in this section has
been implemented in Haskell, and can be found
on GitHub3

5.1 A sample Turing machine
We will discuss our translation by means of an ex-
ample Turing machine. Before we delve into this,
however, we will briefly remind the reader of the
definition of a Turing machine. A Turing machine
is a 7-tuple

M = 〈Q,Γ,b,Σ,δ ,q0,F〉.

Q is a finite, non-empty set of states, with a desig-
nated starting state q0 ∈ Q, and a subset F ⊆ Q
of accepting states. Γ is a set of tape symbols,
with a designated blank symbol b and a subset
Σ⊆ Γ\{b} of input symbols. Lastly, δ is a transi-
tion function of the type

(Q\F)×Γ→ Q×Γ×{Left,Right}.

For the remainder of this section, we will use the
Turing machine which computes the successors of

3See https://github.com/wenkokke/cgtm.

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 18

binary numbers as an example. This machine is
given as follows:

Q = {S0,S1,S2,Halt} Σ = {0,1}
Γ = { ,0,1} q0 = S0

b = F = {Halt}

The transition function δ is described in table 1.
What do these various states do? S0 and S2 both
move the head of the Turing machine to the start of
the number. This leaves S1 for the actual computa-
tion. While in state S1, the head will move right-
wards, overwriting any 1 it encounters with a 0,
until it reaches either a 0 or the end of the number.
It then overwrites this final symbol with a 1. Ta-
ble 2 shows the execution trace of our sample Tur-
ing machine for the input 1101, writing the current
state before the current position of the head.

5.2 Representing the tape and state
We will represent the tape of the Turing machine
using the sequence of cell cohorts (written "<c>"):

"<c>" "<c>" "<c>" "<c>"

"1" "1" "0" "1"

We will store the current state in a special cohort
(written "<s>") which we insert right before the
cell the Turing machine is currently reading. This
means that, e.g. the middle row in table 2 is repre-
sented by the following cohorts:
"<c>" "<c>" "<c>" "<c>" "<s>" "<c>" "<c>"

" " " " "0" "0" "S1" "0" "1"

5.3 Simulating the Turing machine
We start the Turing machine by inserting a cohort
with the starting state at the beginning of our input.
The starting state for our sample machine is S0, so
we add the following code to our CG:

BEFORE-SECTIONS

ADDCOHORT ("<s>" "S0")

BEFORE ("<c>") IF (-1 (>>>));

Now for the main portion of the Turing machine—
simulating the transition function. Since this func-
tion is applied iteratively, we will wrap our code
in a SECTION. We need some way to simulate an
infinite tape. Therefore, the first thing we do in
each section is check if the current head is near
the edge of the tape. If it is, we simply add a new,
blank cell:

ADDCOHORT ("<c>" "_")

BEFORE ("<s>")

IF (-1 (>>>));

ADDCOHORT ("<c>" "_")

AFTER ("<c>")

IF (0 (<<<) LINK -1 ("<s>"));

We also need some way to distinguish input from
output, so before we apply our transition rules, we
mark the old state and the old input symbol with
the tag "OLD":

ADD ("<s>" "OLD") ("<s>");

ADD ("<c>" "OLD") ("<c>")

IF (-1 ("<s>" "OLD"));

We are using an ADD command here for clarity,
though it is possible to encode this usage of ADD
using ADDCOHORT by simply inserting a special-
ized cohort (e.g. "<old>") after the cohort we
wish to mark, and adjusting all indices and ranges
accordingly.

Next, we encode our transition rules. We will
translate every entry in our transition function to
a pair of rules. The first of these inserts the new
state, and the second of these inserts a new cell,
with whatever we wish to write, after the old cell.
For instance, the sixth rule in table 1, which says
that “if we are in state 1, and we read a 1, then we
write a 0, move the tape to the right, and continue
in state 1,” is compiled to the following two rules:

ADDCOHORT ("<s>" "S1")

BEFORE ("<c>")

IF (-2 ("<s>" "S1" "OLD") LINK

1 ("<c>" "1" "OLD"));

ADDCOHORT ("<c>" "0")

AFTER ("<c>" "1" "OLD")

IF (-1 ("<s>" "S1" "OLD"));

Note that the first of these rules is in effect respon-
sible for moving the head over the tape. Because
of this, a rule for left movement will look slightly
different. For instance, the rule which says that “if
we are in state 1, and we read a blank, then we
write a 1, move the tape to the left, and change to
state 2” is compiled to the following two rules:

ADDCOHORT ("<s>" "S2")

BEFORE ("<c>")

IF (1 ("<s>" "S1" "OLD") LINK

1 ("<c>" "_" "OLD"));

ADDCOHORT ("<c>" "1")

AFTER ("<c>" "_" "OLD")

IF (-1 ("<s>" "S1" "OLD"));

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 19

We run such a pair of rules for each element
in the transition function, and then we finish the
SECTION by removing the old state and input cell:

REMCOHORT ("<s>" "OLD");

REMCOHORT ("<c>" "OLD");

If we wish to know where the head of the machine
was located when the program terminated, we can
alter these lines to remove any state except for the
halting states. However, in this instance, we will
opt instead to truncate the tape after the execution
finishes, by removing any leading or trailing blank
cells:

AFTER-SECTIONS

REMCOHORT ("<c>" "_") IF (NOT -1* SYM);

REMCOHORT ("<c>" "_") IF (NOT 1* SYM);

6 Linear-Bounded Automata in CG?

Linear-bounded automata (LBA) are important,
because they accept exactly the class of context-
sensitive languages. They are defined as Turing
machines whose tape is restricted to the portion
containing the input. It therefore seems obvious
that we can simulate an LBA by removing the two
rules which expand the tape from the transforma-
tion outlined in section 5. However, this is not in-
credibly interesting, as we already know the subset
of CG using only ADDCOHORT and REMCOHORT is
Turing complete. In this section, we will discuss a
different subset of CG which we believe to be suf-
ficiently expressive to cover all context-sensitive
grammars. This is the subsets using only ADD and
REPLACE.

6.1 LBAs using ADD and REPLACE

In the encoding for Turing machines in section 5
we use ADDCOHORT, as it is the most obvious way
to simulate an infinite tape. However, for LBAs,
we no longer need an infinite tape. We can re-
quire the machine to do all its work with the lim-
ited number of cohorts it has been given as its in-
put. This means we can do all the computation by
adding and removing tags. We can retain much of
the structure we set up for simulating Turing ma-
chines:

1. we start by marking the cohort we are cur-
rently reading—i.e. the only cohort with a
state tag—with "OLD"; then

2. we ADD the next state tag to the cohort to
which we are moving; then

3. we REPLACE all tags on the cohort which we
left with the output symbol.

And we repeat the above steps until we reach a
halting state. This way, we can implement any
linear-bounded automaton as a constraint gram-
mar using only ADD and REPLACE.

We can take this idea one step further by replac-
ing any usage of ADD with a usage of REPLACE.
We can do this, because LBAs use a finite set of
states and a finite alphabet. For instance, we can
mark the cohort we are currently reading as "OLD"
using a series of REPLACE rules,

∀q ∈ Q,∀a ∈ Γ,

REPLACE ("<c>" "q" "a" "OLD")

("<c>" "q" "a");

Similarly for tagging the next state. However, this
does result in a huge blowup in the number of
rules, as instead of writing a single rule for each
of these uses of ADD, we now write |Q| · |Γ| rules,
to test every single combination of state and sym-
bol.

Note that we can set up a similar construction
using only the commands APPEND and REMOVE, by
using readings instead of tags.

7 Discussion

We have shown several different constructions, us-
ing different subsets of CG. The resulting gram-
mars are not very readable: they include extra co-
horts and symbols, and the logic is spread across
rules in a rather obscure way—in contrast to a
human-written grammar, where each rule is a self-
contained piece of truth about a language. There-
fore we do not envision the generated grammars
being used as is, but rather as compilation tar-
gets. Such CGs could be used as a part of a
larger constraint grammar: some sections can be
written manually, and others derived from exist-
ing grammars. This could serve as an alternative
to learning grammars from a corpus. So far we
only have a working conversion tool for finite-state
automata, but we are hoping to develop this fur-
ther, to also include context-free or even mildly
context-sensitive grammars.

Another question is, even if we had a working
conversion system for CFGs, would the result be
correct? As Lager and Nivre (2001) point out,
CG has no way of expressing disjunction. Unlike
its close cousin FSIG (Koskenniemi, 1990), which

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 20

would represent a language such as {ab,ba} faith-
fully, CG substitutes uncertainty on the sentence
level (“either ab or ba”) with uncertainty in the
cohorts: “the first character may be either a or b,
and the second character may be either a or b”. If
we use such a CG to generate, by feeding it maxi-
mally ambiguous cohorts, the result will be overly
permissive. We acknowledge that this is a limita-
tion in the expressive power: many languages can
only be approximated by CG, not reproduced ex-
actly. Nevertheless, this limitation may not mat-
ter so much when disambiguating real-world text,
because the cohorts are initially less ambiguous,
and leaving genuine ambiguity intact is desired be-
haviour for CG.

8 Related Work

Tapanainen (1999) gives an account of the ex-
pressivity of the contextual tests for 4 different
constraint formalisms, including CG. In addition,
parsing complexity can be easily defined for a
given variant and implementation of CG; see for
instance Nemeskey et al. (2014). Yli-Jyrä (2017)
relates CG to early formal language theory, and
provides an independent proof of non-monotonic4

CG being Turing-complete.

4A monotonic variant of CG may only remove readings
from cohorts, whereas a non-monotonic variant may add
readings or cohorts.

References
Eckhard Bick and Tino Didriksen. 2015. CG-3 – Be-

yond Classical Constraint Grammar. In Proceed-
ings of the 20th Nordic Conference of Computa-
tional Linguistics (NODALIDA 2015).

Noam Chomsky. 1956. Three models for the descrip-
tion of language. IRE Transactions on Information
Theory, 2(3):113–124, September.

Tino Didriksen, 2014. Constraint Grammar Manual.
Institute of Language and Communication, Univer-
sity of Southern Denmark.

Fred Karlsson, Atro Voutilainen, Juha Heikkilä, and
Arto Anttila. 1995. Constraint Grammar:
a language-independent system for parsing unre-
stricted text, volume 4. Walter de Gruyter.

Kimmo Koskenniemi. 1990. Finite-state parsing
and disambiguation. In Proceedings of 13th In-
ternational Conference on Computational Linguis-
tics (COLING 1990), volume 2, pages 229–232,
Stroudsburg, PA, USA. Association for Computa-
tional Linguistics.

Torbjörn Lager and Joakim Nivre. 2001. Part of
speech tagging from a logical point of view. In Log-
ical Aspects of Computational Linguistics, 4th Inter-
national Conference (LACL 2001), pages 212–227.

Dávid Márk Nemeskey, Francis Tyers, and Mans
Hulden. 2014. Why implementation matters: Eval-
uation of an open-source constraint grammar parser.
In Proceedings of the 25th International Confer-
ence on Computational Linguistics (COLING 2014),
pages 772–780, Dublin, Ireland, August.

Pasi Tapanainen. 1999. Parsing in two frameworks:
Finite-state and Functional dependency grammar.
Ph.D. thesis, University of Helsinki.

Anssi Yli-Jyrä. 2017. The Power of Constraint Gram-
mars Revisited. In Proceedings of the Constraint
Grammar workshop at the 21th Nordic Conference
of Computational Linguistics (NODALIDA 2017).

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 21

State In Symbol In Symbol Out State Out Move
Read " " Write " " "S1" Right

"S0" Read "0" Write "0" "S0" Left
Read "1" Write "1" "S0" Left
Read " " Write "1" "S2" Left

"S1" Read "0" Write "1" "S2" Left
Read "1" Write "0" "S1" Right
Read " " Write " " Halt Right

"S2" Read "0" Write "0" "S2" Left
Read "1" Write "1" "S2" Left

Table 1: Sample Turing machine (binary successor function)

"<c>" "<s>" "<c>" "<s>" "<c>" "<s>" "<c>" "<s>" "<c>" "<s>" "<c>"

" " " " "S0" "1" "1" "0" "1"

" " "S0" " " "1" "1" "0" "1"

" " " " "S1" "1" "1" "0" "1"

" " " " "0" "S1" "1" "0" "1"

" " " " "0" "0" "S1" "0" "1"

" " " " "0" "S2" "0" "1" "1"

" " " " "S2" "0" "0" "1" "1"

" " "S2" " " "0" "0" "1" "1"

" " " " "S2" "0" "0" "1" "1"

Table 2: Execution trace of a Turing machine (see table 1) for input 1101

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 22

The Power of Constraint Grammars Revisited

Anssi Yli-Jyrä
University of Helsinki, Finland
anssi.yli-jyra@helsinki.fi

Abstract

Sequential Constraint Grammar (SCG)
(Karlsson, 1990) and its extensions have
lacked clear connections to formal lan-
guage theory. The purpose of this article is
to lay a foundation for these connections
by simplifying the definition of strings
processed by the grammar and by showing
that Nonmonotonic SCG is undecidable
and that derivations similar to the Gen-
erative Phonology exist. The current in-
vestigations propose resource bounds that
restrict the generative power of SCG to
a subset of context sensitive languages
and present a strong finite-state condition
for grammars as wholes. We show that
a grammar is equivalent to a finite-state
transducer if it is implemented with a Tur-
ing machine that runs in o(n logn) time.
This condition opens new finite-state hy-
potheses and avenues for deeper analysis
of SCG instances in the way inspired by
Finite-State Phonology.

1 Introduction

Lindberg and Eineborg (1998), Lager and Nivre
(2001) and Listenmaa (2016) have analyzed the
Sequential Constraint Grammar (SCG) (Karlsson,
1990) from the logical point of view, propos-
ing that the rules can be expressed in first-order
Horn clauses, first-order predicate logic or propo-
sitional logic. However, many first-order logi-
cal formalisms are themselves quite expressive as
Horn-clauses are only semi-decidable and first-
order logic is undecidable, thus at least as pow-
erful as SCG itself. Propositional logic is more
restricted but does not help us to analyse the ex-
pressive power of SCGs and to prove the finite-
stateness of grammars.

Instead of just reducing SCG to undecidable

or otherwise powerful formalisms, we are inter-
ested in the ultimate challenge that tries to prove
that a practical grammar is actually reducible to
a strictly weaker formalism. This goal is interest-
ing because this kind of narrowing reductions have
been proven extremely valuable. For example,
the proof that practical grammars in Generative
Phonology are actually equivalent to finite-state
transducers has turned out to be a game-changing
result. In fact, the reduction gave birth to the in-
fluential field of Finite-State Phonology.

It is noteworthy that prior efforts to analyse
SCG in finite-state terms have focused on the
finite-state nature of individual and parallel rules
(Peltonen, 2011; Hulden, 2011; Yli-Jyrä, 2011).
The efforts have mostly ignored the generative
power of the grammar system as a whole and that
of practical grammar instances.

In this paper, we are aiming to Finite-State Syn-
tax through reductions of practical SCGs. To set
the formal framework, we have to start, however,
from the total opposite: we show first that the
simplified formalism for Nonmonotonic SCGs is
Turing equivalent and thus similar to Generative
Phonology (Chomsky and Halle, 1968; Ristad,
1990) and Transformational Grammar (Chomsky,
1965; Peters and Ritchie, 1973). This founda-
tional result gives access to the large body of liter-
ature of bounded Turing machines and especially
to Hennie machines that run in O(n) time and are
equivalent o finite-state machines. Then the Gap
Theorem (Trakhtenbrot, 1964) gives us access to a
looser bound o(n logn) whose reasonable approxi-
mations are sufficient and decidable conditions for
finite-state equivalence. We present some ways in
which these bounds can be related to SCG parsing.

The article is structured as follows. Section 2
describes the alphabets, the strings and the deriva-
tion steps in SCG parsing. In Section 3, these are
used to show Turing equivalence of SCGs. In next
two sections, simple bounds are introduced and

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 23

elaborated further to obtain specific conditions for
finite-state equivalence of grammars. Further links
to formal language theory and two important open
problems are presented in Section 6. Then the pa-
per is concluded.

2 SCG as a ”Phonological” Grammar

In the SCG literature, morphosyntactic readings
of tokens are usually represented as tag strings
like "<went>" "go" V PAST. The tag strings are
now viewed as a compressed representation for a
huge binary vector (f0, f1, f2, ..., fk, ...). The se-
mantics of the grammar ignores some tags and
considers only k tags declared in advance in the
grammar. These k tags or features distinguish
readings from each other and define the reading
alphabet Σ = 2k.

An ambiguous token has more than one reading
associated to it. The elements of the cohort al-
phabet P(Σ) are called cohorts. This alphabet is
the powerset of the reading alphabet. Only a small
subset of all possible cohorts occur in practice.

The input of an SCG is produced by a de-
terministic finite-state function, Lexicon∗ : T ∗ →
(P(Σ))∗, that maps token strings to lexical co-
hort strings of the same length. This function is
the concatenation closure of the function Lexicon :
T → (P(Σ)) that maps every token to a cohort.

Since the image of each token is a set of
strings, Lexicon is internally a nondeterministic
lexical transducer (Karttunen, 1994; Chanod and
Tapanainen, 1995), but the image of each token is
viewed externally as a symbol in P(Σ), making
Lexicon a one-valued function.

An SCG processes the lexical cohort string
by iterated application of a derivation step ⇒:
(P(Σ))∗ → (P(Σ))∗ that affects one cohort at a
time. The contexts conditions of each derivation
step are normally defined using an existing SCG
formalism for contextual tests. Monadic Second
Order Logic (Büchi, 1960; Elgot, 1961; Trakhten-
brot, 1961) provides an alternative formalism that
can express all finite state languages over P(Σ).

The parser defines the parsing strategy that re-
solves the conflicts between rules that could be ap-
plied simultaneously. A typical strategy chooses
always the most reliable rule and the leftmost tar-
get position. When the plain contextual tests are
combined with the application strategy, we obtain
a total functional transducer (Skut et al., 2004; Yli-
Jyrä, 2008; Hulden, 2009). E.g., the transducer in

�

�����

�
���

����������

Figure 1: A simple⇒ relation as an FST

Fig. 1 is total and replaces A by B in the first pos-
sible occurrence position.

The semantics of an SCG grammar G is defined
as the relation

[[G]] = {(i,o) | i ∈P(Σ)∗,o ∈ I, i⇒∗ o}

where I ⊆P(Σ)∗ as {x | (x,x) ∈⇒}. This seman-
tics makes SCG grammars similar to grammars in
Generative Phonology (Chomsky and Halle, 1968)
as both grammars relate the lexical string into
some kind of output string by applying a sequence
of alternation rules.

3 Nonmonotonic SCG

Two recent SCG implementations (Tapanainen,
1996; Didriksen, 2017) are nonmonotonic: they
do not always reduce the input but they can insert
tags, readings and even cohorts. In this section, we
study the expressive power of such SCGs.

3.1 Minimal Definition

For the sake of minimality, we define the Non-
monotonic SCG (NM-SCG) as a rule system that
supports the following kinds of local transforma-
tion rules:

• REPLACE (old) (new) (cond)+

• INSCOHORT (targ) (cond)+

• REMCOHORT (targ) (cond)+

The first rule template in the above replaces the
leftmost cohort containing the reading old with a
cohort that contains the reading new if the relative
context condition cond is satisfied. The familiar
SELECT and DELETE rules are seen as shorthands
for sets of REPLACE rules. The second and the
third rule templates are used to insert or remove a
target cohort matching the pattern targ when the
condition cond is satisfied. The plus (+) indicates
that more than one condition can be present.

Our simplified context conditions are of the
form (d tags) or (d NOT tags) where the
first tests the presence of the pattern tags in the
relative cohort location d. The second is true when
the location does not contain the pattern.

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 24

3.2 One-Tape Turing Machine

A one-tape deterministic Turing machine (TM)
has a finite control unit and an infinite rewritable
tape with a pointer (Fig. 2). A configuration of the
machine consists of the current state q, the current
pointer value and the contents of the working tape.

LB A B C A B C RB RB · · ·
q ↑

Figure 2: A one-tape Turing machine

The tape is divided into squares that hold a left
boundary LB, a right boundary RB, or a symbol
from the tape alphabet Ω. Given the input string
x ∈ Ω∗, the first square of the tape is pointed and
the tape is initialized with the prefix LBxRB that is
followed by an infinite number of right boundary
symbols.

The control unit is a deterministic finite automa-
ton where each transition s

(A,B,d)→ t specifies the
source state s, the target state t, the input sym-
bol A, the output symbol B, and a head move
d ∈ {−1,0,1}. On each transition, the machine
overwrites the symbol A in the pointed square with
the symbol B, changes its state from s to t and
then moves the pointer d steps to the right. All
but the leftmost square are over-writable (B = A if
A = LB), but the machine never moves beyond the
first right boundary without overwriting it with a
tape symbol and never writes RB between two tape
symbols.

The computation of the machine starts from
state q0. At each step, the machine takes the next
transition based on the current state and the cur-
rently pointed symbol on the memory tape. The
computation continues as long as the next transi-
tion is defined and then halts by reaching a state
from which there is no transition on the current in-
put. If the halting state is among the final states
F , the machine accepts the input contents and re-
lates it with the string x′ ∈Ω stored to the memory
tape. Otherwise, the machine either gets stuck to
an infinite computation or gives up, leaving some
ill-formed string to the memory tape.

3.3 Reduction to Nonmonotonic SCG

Now we show that any one-tape Turing machine
can be simulated with a nonmonotonic SCG.

In our simulation, each square in the initial por-
tion of the memory tape corresponds to a cohort in

the input. Each cohort is a singleton set in P(Σ)
i.e. represents just one reading in Σ. Each reading
is a collection of positive features from Φ. These
features include the tape symbols Ω, the boundary
symbols {LB, RB}, and the markers that that we
need to keep track of the computation steps.

The pointed square corresponds to a cohort that
contains a marker. Since SCG can change only
one cohort at a time, movement of the pointer
involves two temporarily marked positions and
markers: the first indicates the previously pointed
square and the second indicates the new pointed
square. One marker represent the source state and
the other represents the transition in progress.

A transition q
A,B,d→ r, RB /∈ {A,B}, corresponds

to a sequence of three rule applications that change
one cohort at a time. Since the set of transitions,
the sets of states Q and the tape alphabet Ω are
finite, each step is described with a finite set of
non-monotonic SCG rules:

1. Given the state marker Qq ∈ {Qs | s ∈Q} ⊆Φ

in cohort i and no other marked cohorts, add
a transition marker T-q-A∈Φ to cohort i+d
that previously contains a tape symbol C ∈Ω:

REPLACE (C) (T-q-A C) (−d Qq A)

2. Given a transition marker T-q-A in cohort i+
d, overwrite, in cohort i, the reading contain-
ing the tape symbol A and the state marker Qq
with a reading containing the tape symbol B:

REPLACE (Qq A) (B) (d T-q-A)

3. When no state marker is present, replace the
transition marker T-q-A with the marker for
the target state Qr while keeping the remain-
der C ∈ Σ in the changed cohort:

REPLACE (T-q-A C) (Qr C) (−d NOT Qq)

A transition q
RB,A,0→ r, A ∈ Ω, corresponds to the

application of rules:

ADDCOHORT (T-q-RB A) (1 Qq RB)

REPLACE (Qq RB) (RB) (-1 T-q-RB A)
REPLACE (T-q-RB A) (Qr A) (1 NOT Qq RB)

When the previous cohort contains tape symbol

C ∈Ω, a transition q
A,RB,−1→ r, where A ∈Ω, corre-

sponds to the application of rules:

REPLACE (C) (T-q-A C) (1 Qq A) (2 RB)

REMCOHORT (Qq A) (1 T-q-A)
REPLACE (T-q-A C) (Qr C) (1 NOT Qq A)

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 25

Transitions q
RB,A,−1→ r, q

RB,A,1→ r and q
A,RB,0→ r, A ∈

Ω, reduce to a sequence of two transitions.
The SCG parser halts when the tape contents

does not trigger any of these rules that simulate
transitions. The simulation accepts the input if
some cohort contains a marker Qq such that q ∈ F .

Proposition 1. NM-SCGs can simulate TMs.

Since NM-SCG is itself an algorithm, we have:

Proposition 2. There is a one-tape deterministic
TM that implements the NM-SCG parser.

Proposition 3. NM-SCGs are equivalent to TMs.

4 Bounded Nonmonotonic SCGs

The undecidability of Nonmonotonic SCG creates
a need to restrict the formalism in ways that en-
sure decidability. In this section, we propose two
parameters that set important bounds on the re-
sources available to grammars.

4.1 The O(n) Space Bound

The fertility f ∈N∪{∞} of a nonmonotonic SCG
grammar is the maximum number of new cohorts
that each the grammar inserts before any of the
n cohorts in the original sentence (with RB). Note
that fertility f > 0 implies nonmonotonicity.

Proposition 4. In finite-fertility SCGs, the length
` of the output string is linearly bounded.

The bounded length of the cohort string is an
important restriction to Nonmonotonic SCGs be-
cause it ensures that any infinite loop in the com-
putation can be detected after a bounded number
of computation steps because the number of dis-
tinct tape contents is bounded.

Proposition 5. The termination of a finite-fertility
SCG is decidable.

We also know that the preconditions of each
rule can tested with a finite automaton and that the
actual effect on the target cohort is a functional
finite-state computation that can be implemented
in linear space according to the length of the co-
hort string.

Proposition 6. The space requirement of a finite-
fertility SCG is linear to the maximum length of
the cohort string during the derivation.

A deterministic linear-bounded automaton
(DLBA) (Myhill, 1960) is a special case of
Turing machines with the restriction that the right
boundary is fixed and cannot be overwritten. The

LBA computations can be initialized so that the
space available for storing the cohort string is
linearly bounded by the length of the initial cohort
string.

Proposition 7. A nonmonotonic SCG with finite
fertility is simulated by an DLBA.

The power of DLBAs is restricted to a strict sub-
set of context-sensitive languages (Kuroda, 1964).

Proposition 8. The cohort language accepted by
a finite-fertility SCG is context sensitive.

4.2 The O(n2) Time Bound

By studying only monotonic SCGs with the read-
ing count r in cohorts, and the sentence length
n (including RB), Tapanainen (1999) has given a
lower bound for the parsing time:

Proposition 9 (Tapanainen 1999). Any monotonic
SCG performs O(nr) rule applications.

The volume v ∈ {1,2, ...}∪{∞} of cohorts is a
parameter that tells the maximum number of op-
erations that can be applied to any cohort. This
new notion is a nonmonotonic generalization of
the maximum number of readings in one cohort.
Finite volume basically turns every finite fertility
SCG into a monotonic SCG.

Finite fertility helps us to generalize the above
proposition to nonmonotonic SCGs.

Proposition 10. Any NM-SCG performs O((1+
f)nv) rule applications.

Assuming again that any rule of the grammar
can be applied in linear time according to the num-
ber of cohorts, we obtain a time complexity result:

Proposition 11. Any NM-SCG runs in O((1 +
f)2n2v) time.

5 Finite-State Hypotheses

A deterministic linear bounded automaton is a
special case of one-tape deterministic Turing ma-
chines that gives us a context where many inter-
esting conditions for finite-stateness aka regularity
become applicable.

5.1 The o(n logn) Time Bound

Hennie (1965) showed that a deterministic one-
tape TM running in O(n) is equivalent to a finite
automaton. By defining the relation between the
initial and final tape contents, we can extend Hen-
nie’s result to regular relations:

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 26

Proposition 12 (Hennie 1965). A one-tape deter-
ministic TM running in O(n) time is equivalent to
a functional finite-state transducer.

The Borodin-Trakhtenbrot Gap Theorem
(Trakhtenbrot, 1964) states that expanded
resources do not always expand the set of com-
putable functions. In other words, it is possible
that O(n) is unnecessarily tight time bound
for finite-state equivalence. A less tight time
bound is now expressed with the little-o notation:
t(n) ∈ o(f (n)) means that the upper bound f (n)
grows much faster than the running time t(n)
when n tends to infinity: limn→∞ t(n)/ f (n) = 0.

Hartmanis (1968) and Trakhtenbrot (1964)
showed independently that the time resource of a
finite-state equivalent deterministic one-tape TM
can be expanded from O(n) to o(n logn) without
expanding the characterized languages. More re-
cently, Tadaki et al. (2010) showed that the bound
o(n logn) applies also to nondeterministic one-
tape TMs that explore all accepting computations.

Proposition 13 (Tadaki et al. 2010). A one-tape
TM running in o(n logn) time is equivalent to a
finite automaton/transducer.

A sufficient condition for finite-state equiva-
lence of a TM is satisfied if the running time of
the machine is bounded by a function t(n) that is
in o(n logn). For any reasonable function t(n), this
sufficient condition is decidable (Gajser, 2015).
However, to decide finite-state equivalence of any
TM, it would be necessary to consider all func-
tions t(n) ∈ o(n logn).

We will assume a one-tape TM implementation
for finite-fertility SCGs. The tape is initialized in
such a way that f empty squares are reserved for
latent cohorts at every cohort boundary.

We assume the representation of the grammar
rules and the related application strategy by a func-
tional transducer such as in Figure 1. Its opti-
mization via the inward deterministic bimachine
constructions (Yli-Jyrä, 2011; Hulden, 2011) op-
timizes the tape moves between derivation steps.

The parallel testing of all context conditions in-
volves (i) the initialization step and (ii) a number
of maintenance steps. The initialization step com-
putes the validity of all context conditions at ev-
ery tape squares in amortised O(n) time. After
this, the total amortised time needed to maintain
the contexts is then bounded by the total number
of moves needed to perform the subsequent rule
applications.

9

150

25 200

FT

Figure 6: Average running times of CG-2 in the Financial Times

The average running time is then plotted in Figures 4 to 6. In addition to
the running time, there are four function curves: linear (), quadratic (),
cubic () and . I set a coefficient for all of these functions so that
they go through the same point which denotes the sentence length 25. The
time in the y axis is in milliseconds.
The running time curve from parsing the novels seems smooth in Fig-

ure 4, closely following the curve. Figure 5 shows the curves
for the short sentences in more detail. On the other hand, the curve of the
newspaper text in Figure 6 seems somewhat more complex. The newspa-
per obviously has a larger variation in the running time. Nevertheless, the

time seems a reasonable approximation for the average running
time of CG-2 in both cases.

2.7.3 Worst case asymptotic running time of intersection grammars

The theoretical worst case running time of the intersection grammars is
discussed in Tapanainen (1997). There, I showed that this type of engine
runs in linear time , where is the size of the combined compiled
grammar and is the size of the sentence compiled into a finite-state au-
tomaton. The size is linear to the length of the sentence if the amount of
ambiguity that an individual token may get is limited. Paradoxically, Vou-
tilainen (1998) reports that due to the massive computation needed with

16

Figure 3: Average running time of CG-2 in Finan-
cial Times (according to Tapanainen 1999) seems
to follow the curve O(n logn)

Proposition 14. The time used to maintain the
context conditions is dominated by the time used
to move between target cohorts.

NM-SCGs based on a one-tape TM have now a
regularity condition:

Proposition 15. An NM-SCG is equivalent to a
finite automaton/transducer if its one-tape TM im-
plementation runs in o(n logn) time.

This proposition can be compared to an interest-
ing empirical observation by Tapanainen (1999)
who reports experiments with a practical SCG
(CG-2) system. According to the experiments, the
average running time of the system follows closely
the O(n logn) curve (Fig. 3).

On the basis of the experiments by Tapanainen,
we cannot exclude the hypothesis that the asymp-
totic running time is actually in o(n logn).
Whether the used grammar is actually equivalent
to a finite-state transducer is not known.

If the given NM-SCG instance would be equiv-
alent to a finite-state transducer, there would be
a possibility to carry out monotonic SCG parsing
in linear time and thus improve the parser’s effi-
ciency considerably. In case that the transducer is
extremely large, the improvement remains solely
as a theoretical possibility but the discovered reg-
ularity may still give valuable insight.

5.2 The O(n) Time Bound
Hennie’s finite-stateness condition (Hennie, 1965)
for deterministic one-tape TMs and its general-
ization to nondeterministic one-tape TMs (Tadaki
et al., 2010) are insightful and provide a method
to construct the equivalent finite-state transducer
when the finite-stateness condition is met.

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 27

LB W O R D I N G RB · · ·
q0 q1 q2 q3 q4

q7 q6 q5 ←↩
↪→ q8 q9 q10 q11 . . .

Figure 4: A crossing sequence between squares

A Hennie machine refers to a one-tape TM
whose running time is O(n). Hennie analysed
the expressive power of such machines using the
concept of crossing sequence, aka schema (Rabin,
1963; Trakhtenbrot, 1964). This concept is a pow-
erful tool in the analysis of the behaviour of two-
way automata and one-tape TMs.

A crossing sequence is the sequence of target
states s1,s2, ... visited by a TM when its pointer
crosses the boundary between a pair of adjacent
tape squares. States s1,s3, ... are reached when
the pointer moves forward and states s2,s4, ... are
reached when pointer moves backwards. Figure 4
shows how states are visited during a computation.
The crossing sequence between the 3rd and the 4th
squares is (s1,s2,s3) = (q3,q6,q9).

Every Hennie machine satisfies the property
that the length of its crossing sequences is
bounded by an integer k ∈ N. The finiteness of
the crossing sequences of a given TM is undecid-
able (Průša, 2014) but if a finite upper bound k ex-
ists, this constant is computable (Kobayashi, 1985;
Tadaki et al., 2010).

Finiteness of crossing sequences implies that
the TM is equivalent to a finite-state automa-
ton/transducer. Furthermore, the bound lets us
construct this finite-state device. Unfortunately,
the size complexity of the constructed machine is
large in comparison to the original TM:

Proposition 16 (Průša 2014). Each |Q|-state, |Ω|-
symbol deterministic Hennie machine can be sim-
ulated by a nondeterministic finite automaton with
2O(|Ω| log |Q|) states.

Testing the finite-stateness of already con-
structed TMs requires more effort than to de-
sign and construct machines that are immediately
known to be Hennie machines. We will now men-
tion a few immediate constructions.

Průša (2014)’s construction is based on a finite
weight w ∈ N of the tape squares. Every time
when a square is visited or passed, the weight
associated with the square is reduced. Once the

weight is zero, further visits to the square are
blocked.
Proposition 17 (Průša 2014). A weight-reducing
one-tape TM is a Hennie machine.

Analogously, we can define an NM-SCG whose
cohorts has a weight w that is reduced whenever
the pointer of the associated TM implementation
visits the corresponding square. The cohorts of
such an NM-SCG have obviously a finite volume
v≤ w and can be changed at most w times.
Proposition 18. A finite-fertility NM-SCG im-
plemented by a weight-reducing one-tape TM is
equivalent to a finite-state transducer.

The second way to construct a Hennie-machine
based NM-SCG is to set the maximum distance
m ∈ N∪{∞} between adjacent rule applications.1

When combined with the linear bound for rule ap-
plications, we obtain the O(n) bound and finite-
state equivalence:
Proposition 19. A finite-fertility NM-SCG runs in
O(m(f + 1)vn) time and is equivalent to a finite-
state transducer if m, f ,v ∈ N.

The third way is to assume fertility f ∈ N and
w= 1. Since no square can be revisited, this forces
the SCG to move constantly into one direction af-
ter all rule applications. This special case resem-
bles the rewriting rules in finite-state phonology
whose fundamental theorem (Johnson, 1972; Ka-
plan and Kay, 1994) states that if a phonological
rule does not reapply to its own output (but instead
moves on), it is regular.

The fourth way to construct a Hennie machine
from an SCG is based on the number of times the
context conditions for a cohort has to be updated.
A monotonic SCG reduces the ambiguity of the
sentence at every rule application. The reduced
ambiguity causes occasional updates in context
conditions of cohorts. Depending on the context
conditions, such updates at a cohort boundary may
have an infinite or finite bound. Due to functional-
ity and inward determinism of the ⇒-transducer,
the pointer moves from one cohort to another only
if the context conditions of the latter have changed
as a result of a rule application. Thus, the number
of context updates bound the number of moves:
Proposition 20. If the context conditions can be
updated only finitely often at every cohort, then
the SCG is equivalent to a finite-state transducer.

1This approach was pursued and developed further by
the current author in an earlier manuscript (Yli-Jyrä, unpub-
lished) that is available on request.

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 28

6 Open Problems

6.1 Aperiodic Context Conditions

Yli-Jyrä (2003) showed that the context condi-
tions used in a realistic Finite-State Intersection
Grammar (FSIG) are not only regular but star-free.
Since context conditions of SCG rules are strictly
weaker than those of FSIG (Tapanainen, 1999), we
have a strong conjecture that contexts in practical
SCG are also star-free.

Star-free languages are definable in the monadic
first-order logic of order, FO[<], a decidable logic
that is equivalent to LTL (Pnueli, 1977) and loop-
free alternating finite automata (LF-AFA) (Salo-
maa and Yu, 2000). The states in an LF-AFA are
totally ordered in such a way that every state is in-
dependent from all the preceding states in this or-
der. This is a major restriction to the structure and
expressive power of alternating finite automata.

While preserving possible star-freeness has led
improvements in fundamental algorithms (Yli-
Jyrä and Koskenniemi, 2004), we have not been
able to solve the following open problem:

Open Problem 1. Determine whether the con-
struction of Hennie machines could benefit from
star-freeness of the context conditions, possibly in
combination with other conditions.

6.2 Full Parsing

Reductionistic parsing (Koskenniemi, 1990;
Maruyama, 1990; Voutilainen and Tapanainen,
1993; Gross, 1997; Eisner and Smith, 2005)
is closely related to the consistency enforcing
methods used in image recognition (Huffman,
1971; Clowes, 1971) and to the satisfiability in
logic (Listenmaa, 2016). All these methods use
some idea of domains that are then constrained.

Karlsson (1990) introduced the term cohort for
ambiguity domains or lists of readings associated
with tokens. Lauri Karttunen has then proposed
(p.c., see also Voutilainen 1994) that the cohorts
can be treated as strings and processed by finite-
state transducers. This idea has been implemented
later by others (Peltonen, 2011; Hulden, 2011).

Interestingly, the idea of processing ambiguity
domains, i.e. cohorts, as strings is actually older
than the SCG tradition. In the context of formal
language theory, it dates back to Greibach (1973)
and has been appreciated recently, e.g. by Okhotin
(2013). What is interesting in Greibach’s origi-
nal use of cohorts is that these cohorts are used

to represent parse trees instead of just morpholog-
ical ambiguity. The decomposition of trees and
digraphs into local trees in the lexicon is actu-
ally due to the tradition of Categorial Grammar
(Ajdukiewicz, 1935; Bar-Hillel, 1953; Lambek,
1958). This suggests an avenue for future SCG-
related research.
Open Problem 2. Develop an SCG grammar that
performs full parsing on the basis of the structural
ambiguity encoded into lexical categories.

7 Conclusions

In this paper, the author has laid foundations for
the analysis of the generative power of SCGs.

• The parsing is viewed as a derivation that re-
sembles that of Generative Phonology.

• The equivalence between Nonmonotonic
SCG and Turing machines is established,
thus linking Constraint Grammar to Undecid-
ability and the Chomsky hierarchy.

• Finite-fertility SCGs are shown to be context
sensitive and running in quadratic time.

• A loose time bound o(n logn) for finite-state
equivalent SCG instances (running on a TM)
is provided and related to prior experiments.

• Specific conditions for constructing finite-
state equivalent SCGs are given.

• Two open problems related to the potential of
the star-freeness restriction of context condi-
tions and the structural categories in the lexi-
con are presented.

The current work has demonstrated that the SCG
formalism is not just a programming language for
text linguistics but a formal framework that lends
itself to connections to the richness of formal lan-
guage theory and rigorous formal analysis of the
related parsing complexities, culminating to at-
tempts to reduce grammars into finite transducers.

Acknowledgements

The author has received funding as Research Fel-
low from the Academy of Finland (dec. No
270354 - A Usable Finite-State Model for Ade-
quate Syntactic Complexity) and Clare Hall Fel-
low from the University of Helsinki (dec. RP
137/2013). The distance-based restriction of SCG
has been studied by the author (Yli-Jyrä, unpub-
lished) under earlier funding from the first agency
(dec. 128536).

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 29

References
Kazimierz Ajdukiewicz. 1935. Die syntaktische kon-

nexität. In Storrs McCall, editor, Polish Logic 1920-
1939, page 207231. Oxford University Press, Ox-
ford. Translated from Studia Philosophica, 1, 1-27.

Yehoshua Bar-Hillel. 1953. A quasi-arithmetical nota-
tion for syntactic description. Language, 29:4758.

J. R. Büchi. 1960. Weak second-order arithmetic and
finite automata. Zeitschrift für Mathematische Logik
und Grundlagen der Mathematik, 6:66–92.

Jean-Pierre Chanod and Pasi Tapanainen. 1995. A lex-
ical interface for finite-state syntax. MLTT technical
report, Rank Xerox Research Centre, Grenoble Lab-
oratory, Grenoble, France, February 9.

Noam Chomsky and Morris Halle. 1968. The Sound
Pattern of English. Harper & Row, New York.

Noam Chomsky. 1965. Aspects of the Theory of Syn-
tax. MIT Press, Cambridge, Massachusetts.

M. B. Clowes. 1971. On seeing things. Artificiul In-
telligence, 2:79–116.

Tino Didriksen, 2017. Constraint Grammar Manual:
3rd version of the CG formalism variant. Grammar-
Soft ApS, Denmark.

Jason Eisner and Noah A. Smith. 2005. Parsing with
soft and hard constraints on dependency length. In
Proceedings of the Ninth International Workshop
on Parsing Technology, pages 30–41, Vancouver,
British Columbia, October. Association for Compu-
tational Linguistics.

Calvin C. Elgot. 1961. Decision problems of finite au-
tomata design and related arithmetics. Transactions
of the American Mathematical Society, 98(1):21–51.

David Gajser. 2015. Verifying Time Complexity of Tur-
ing Machines. Ph.D. thesis, University of Ljubljana,
Department of Mathematics, Ljubljana, Slovenia.

Sheila Greibach. 1973. The hardest context-free lan-
guage. SIAM Journal on Computing, 2(4):304–310.

Maurice Gross. 1997. The construction of local gram-
mars. In Emmanuel Roche and Yves Schabes, edi-
tors, Finite-State Language Processing, chapter 11,
pages 329–354. A Bradford Book, the MIT Press,
Cambridge, MA, USA.

Juri Hartmanis. 1968. Computational complexity of
one-tape Turing machine computations. J. ACM,
15(2):325–339, April.

Frederick C. Hennie. 1965. One-tape, off-line Tur-
ing machine computations. Information and Con-
trol, 8(6):553–578.

D. A. Huffman. 1971. Impossible objects as nonsense
sentences. In B. Meltzer and D. Michie, editors, Ma-
chine Intelligence, volume 6, pages 295–323. Edin-
burgh University Press, Edinburgh, Scotland.

Måns Hulden. 2009. Finite-State Machine Construc-
tion Methods and Algorithms for Phonology and
Morphology. Ph.D. thesis, Department of Linguis-
tics, The University of Arizona.

Mans Hulden. 2011. Constraint Grammar parsing with
left and right sequential finite transducers. In Pro-
ceedings of the 9th International Workshop on Fi-
nite State Methods and Natural Language Process-
ing (FSMNLP 2011), pages 39–47, Blois, France,
July. Association for Computational Linguistics.

C. Douglas Johnson. 1972. Formal Aspects of Phono-
logical Description. Number 3 in Monographs on
linguistic analysis. Mouton, The Hague.

Ronald M. Kaplan and Martin Kay. 1994. Regu-
lar models of phonological rule systems. Compu-
tational Linguistics, 20(3):331–378, September.

Fred Karlsson. 1990. Constraint Grammar as a frame-
work for parsing unrestricted text. In H. Karlgren,
editor, Proceedings of the 13th International Confer-
ence of Computational Linguistics, volume 3, pages
168–173, Helsinki.

Lauri Karttunen. 1994. Constructing lexical transduc-
ers. In 15th COLING 1994, Proceedings of the Con-
ference, volume 1, pages 406–411, Kyoto, Japan.

K. Kobayashi. 1985. On the structure of one-tape non-
deterministic Turing machine time hierarchy. Theo-
retical Computer Science, 40(2–3):175–193.

Kimmo Koskenniemi. 1990. Finite-state parsing and
disambiguation. In Hans Karlgren, editor, 13th
COLING 1990, Proceedings of the Conference, vol-
ume 2, pages 229–232, Helsinki, Finland, August.

Sige-Yuki Kuroda. 1964. Classes of languages and
linear-bounded automata. Information and Control,
7(2):207–223.

Torbjörn Lager and Joakim Nivre. 2001. Part of
speech tagging from a logical point of view. In
P. de Groote, G. Morrill, and C. Retoré, editors,
Logical Aspects of Computational Linguistics, vol-
ume 2099 of Lecture Notes in Artificial Intelligence,
pages 212–227. Springer-Verlag.

Joachim Lambek. 1958. The mathematics of sen-
tence structure. American Mathematical Monthly,
65:154–170.

Nikolaj Lindberg and Martin Eineborg. 1998. Learn-
ing Constraint Grammar-style disambiguation rules
using Inductive Logic Programming. In 36th ACL
1998, 17th COLING 1998, Proceedings of the Con-
ference, Montréal, Quebec, Canada, August 10-14.

Inari Listenmaa. 2016. Analysing Constraint Gram-
mar with SAT. Licentiate thesis, Chalmers Univer-
sity of Technology and University of Gothenburg,
Gothenburg, Sweden.

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 30

Hiroshi Maruyama. 1990. Structural disambigua-
tion with contraint propagation. In 28th ACL 1989,
Proceedings of the Conference, pages 31–38, Pitts-
burgh, Pennsylvania, June 6-9.

John Myhill. 1960. Linear bounded automata. Wadd
technical note, Wright Patterson AFB, Wright Air
Development Division, Ohio, June.

Alexander Okhotin. 2013. Inverse homomorphic
characterizations of Conjunctive and Boolean Gram-
mars. Technical Report 1080, Turku Centre for
Computer Science, Turku.

Janne Peltonen. 2011. Finite state Constraint Gram-
mar parser. In Proceedings of the NODALIDA 2011
workshop Constraint Grammar Applications, May
11, 2011, volume 14 of NEALT Proceedings Series,
Riga, Latvia.

P. S. Peters and R. W. Ritchie. 1973. On the generative
power of transformational grammars. Information
Sciences, 6:49–83.

Amir Pnueli. 1977. The temporal logic of programs.
In Proceedings of the IEEE 18th Annual Sympo-
sium on Foundations Computer Science, pages 46–
57, New York.

Daniel Průša. 2014. Weight-reducing Hennie ma-
chines and their descriptional complexity. In Lan-
guage and Automata Theory and Applications:
8th International Conference, LATA 2014, Madrid,
Spain, March 10-14, 2014. Proceedings, pages 553–
564, Cham. Springer International Publishing.

Michael O. Rabin. 1963. Real time computation. Is-
rael Journal of Mathematics, 1(4):203–211.

Eric Sven Ristad. 1990. Computational structure of
generative phonology and its relation to language
comprehension. In Proceedings of the 28th Annual
Meeting on Association for Computational Linguis-
tics, ACL ’90, pages 235–242, Pittsburgh, Pennsyl-
vania.

Kai Salomaa and Sheng Yu. 2000. Alternating finite
automata and star-free languages. Theoretical Com-
puter Science, 234:167–176.

Wojciech Skut, Stefan Ulrich, and Kathrine Hammer-
vold. 2004. A bimachine compiler for ranked tag-
ging rules. In Proc. 20th Int’l Conf. on Computa-
tional Linguistics, COLING ’04, Stroudsburg, PA,
USA.

Kohtaro Tadaki, Tomoyuki Yamakami, and Jack C. H.
Lin. 2010. Theory of one-tape linear-time Tur-
ing machines. Theoretical Computer Science,
411(1):22–43.

Pasi Tapanainen. 1996. The Constraint Grammar
Parser CG-2, volume 27 of Publications. Depart-
ment of General Linguistics, University of Helsinki.

Pasi Tapanainen. 1999. Parsing in two frame-
works: finite-state and functional dependency gram-
mar. Ph.D. thesis, University of Helsinki, Finland,
1 December.

B. A. Trakhtenbrot. 1961. Finite automata and logic of
monadic predicates. Doklady Akademii Nauk SSSR,
140:326–329. In Russian.

Boris A. Trakhtenbrot. 1964. Turing computations
with logarithmic delay (in Russian). Albegra i Log-
ica, pages 33–34. English translation in U. of
California Computing Center, Tech. Report. No. 5,
Berkeley, CA, 1966.

Atro Voutilainen and Pasi Tapanainen. 1993. Ambi-
guity resolution in a reductionistic parser. In 6th
EACL 1993, Proceedings of the Conference, pages
394–403, Utrecht, The Netherlands.

Atro Voutilainen. 1994. Designing a Parsing Gram-
mar. Number 22 in Publications of the Depart-
ment of General Linguistics, University of Helsinki.
Yliopistopaino, Helsinki.

Anssi Mikael Yli-Jyrä and Kimmo Koskenniemi.
2004. Compiling contextual restrictions on strings
into finite-state automata. In Loek Cleophas and
Bruce W. Watson, editors, The Eindhoven FASTAR
Days, Proceedings, number 04/40 in Computer Sci-
ence Reports, Eindhoven, The Netherlands, Decem-
ber. Technische Universiteit Eindhoven.

Anssi Mikael Yli-Jyrä. 2003. Describing syntax
with star-free regular expressions. In 11th EACL
2003, Proceedings of the Conference, pages 379–
386, Agro Hotel, Budapest, Hungary, April 12–17.

Anssi Yli-Jyrä. 2008. Transducers from parallel
replace rules and modes with generalized lenient
composition. In Finite-State Methods and Natural
Language Processing, 6th International Workshop,
FSMNL-2007, pages 197–212, Potsdam. Potsdam
University Press.

Anssi Yli-Jyrä. 2011. An efficient constraint gram-
mar parser based on inward deterministic automata.
In Proceedings of the NODALIDA 2011 workshop
Constraint Grammar Applications, May 11, 2011,
volume 14 of NEALT Proceedings Series, Riga,
Latvia.

Anssi Yli-Jyrä. unpublished. Efficient context-
sensitive rewriting with inward deterministic trans-
ducers. Manuscript, 11 pages. Archived to Easy-
Chair as a submission to PSC 2010 (Prague Stringol-
ogy Conference 2010).

Proceedings of the NoDaLiDa 2017 Workshop on Constraint Grammar - Methods, Tools and Applications 31

	Title Pages
	ecp17140001
	ecp17140002
	ecp17140003
	ecp17140004
	ecp17140005

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

