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Abstract 
Market demands on steel quality, price and production 

times dictate an introduction of technological 

innovations regarding the electric arc furnace (EAF) 

steelmaking. A developing field with significant 

potential is related to the advanced software support of 

the EAF operation, combining monitoring and proper 

control of the EAF. Such systems include process 

models, capable of continuous estimation of the 

unmeasured process values, such as chemical 

compositions and temperatures of the steel, slag and gas. 

The paper briefly presents the features of all developed 

EAF models, which are used together with the measured 

EAF data to estimate the unmeasured process values. 

The models are mainly implemented using non-linear, 

time-variant ordinary differential equations. The 

parameterization of the models was performed using the 

available EAF data, such as temperatures, steel and slag 

compositions, melting programs etc. The validation 

results that were performed using measured EAF data 

indicate high levels of estimation accuracy of all crucial 

steel-recycling values and processes. The accuracy of 

the presented models is in the range of +/- 15 K for steel 

temperature and +/-10 % for steel composition. Thus, 

accuracy of the models allows them to be used in 

broader software environments, such as soft sensors for 

process monitoring, optimization and operator decision 

support.  

Keywords: electric arc furnace, EAF, modelling, 
simulation, validation 

1 Introduction 

Current market demands on steel quality, price and 

production times dictate an introduction of several 

technological innovations regarding the electric arc 

furnace (EAF) steelmaking. An emerging field with 

huge potential, but yet rather unexplored, is also 

advanced software support of the EAF operation. 

Running in parallel to the EAF process such systems 

allow online monitoring, fault detection and even 

model-based control of the process. Using such systems 

in parallel to the actual EAF process can have several 

advantages in comparison to the manual EAF operation, 

arising from the nature of the steel-melting process. As 

known, several crucial process values are hard to 

measure continuously, such as temperatures and 

chemical compositions of the steel, slag and gas etc. 

Using EAF process models, which integrate all 

significant EAF phenomena and use available EAF data 

to calculate the missing process values, results in a 

system, which is able to estimate the process values with 

sufficient accuracy. In this manner, better insight to the 

melting process can be established and consequently a 

more optimal operation of the EAF can be performed. 

The paper presents an overview of the proposed 

EAF model, including electrical, hydraulic, mass-

transfer, heat-transfer and chemical submodules in 

terms of modelling approach, modelling detail and 

schematic representations of the model structure. Since 

the mathematical models of the EAF have already been 

developed, validated and extensively described (Logar 

et al 2011, 2012) the paper presents only the key 

characteristics of each separate submodule and its 

importance for the overall accuracy of the calculations. 

Furthermore, the paper discusses possible and necessary 

upgrades of the models to implement them in process-

optimization and decision-support frameworks. The aim 

of those is to present an EAF operation-support tool, 

which will be running in parallel to the EAF process and 

will be used for enhancement of the operation, such as: 

a) EAF operation monitoring based on soft-sensing 

technology, allowing a better insight to the melting 

process and consequently more optimal control of the 

EAF; b) process-optimization based on process models, 

optimizing the melting programs, according to the 

current state in the EAF; c) operator decision support, 

combining the advantages of model-based soft sensors 

and process optimization in one solution, representing 

the highest level of EAF software support. 

2 Modelling of the EAF processes in 

general 

Section The literature review in the field of modelling, 

optimization and control of the electric arc furnaces 

shows that many different models and engineering 

approaches studying the EAF processes have been 

developed. Most of these are focused on particular 

processes of the EAF and were developed for the 

purpose of the field research or simulation of the EAF 

operation. A few models were designed especially for 

their implementation into industrial applications as an 

operator-support tool for monitoring of the recycling 

process and thus easier decision making and control of 
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the processes. First models associated with the EAF 

processes were introduced back in 1980s and were 

functionally extremely limited. Modern models have 

progressed in their complexity, usability and accuracy 

and are also used in industrial applications for 

monitoring of the EAF during the steel-melting process. 

Below, some of the most relevant research and practical 

applications in the field of modelling, optimization and 

control of the EAF processes are described. 

Woodside (1970) introduces a concept for optimal 

EAF control, based on Pontryagin approach and uses it 

for optimization of the energy input during coke 

injection. The simplified model was introduced in 1970 

and was able to estimate bath temperature and carbon 

concentration. Montanari et al (1994), Tseng et al 

(1997), Collantes-Bellido and Gomez (1997) introduce 

mathematical models describing the electrical part of the 

EAF and the impact of the EAF operation on electrical 

grids in terms of disturbances (flickers) and their 

elimination. 

In 1999, Bekker et al (1999) develops a 

mathematical model implementing thermodynamic 

relations for the purposes of EAF-process simulation. 

The model is simplified and assumes that all available 

heat is transferred directly to the steel bath and further 

from the bath to the solid steel. Although it addresses 

some important chemical reactions and the released 

energy, the presented simulation results are not 

validated and thus applicable only with limitations. 

Nonetheless, the Bekker model represents one of the 

first attempts to model all crucial processes of the EAF. 

Additionally, Bekker et al (2000) introduces a concept 

of model-predictive EAF control (MPC). 

Oosthuizen et al (2001, 2004) designs a 

mathematical model of the EAF processes derived from 

the Bekker model. Using a more complex modelling 

approach, the proposed model gains on estimated offgas 

temperature accuracy and allows a calculation of the 

slag foaming. Furthermore, optimal controller is 

introduced, which should control the furnace in a 

manner to reduce its operational costs. Similarly to 

Bekker, a simulation study involving a model-based 

control (MPC) is performed on the model for the 

purposes of cost reduction. 

One of the most sophisticated EAF models up to 

2005 was introduced by MacRosty and Swartz (2005, 

2007) and used for optimization of the EAF process. The 

model considers the complete EAF and includes 

chemical, mass- and heat-transfer processes. Due to 

modelling simplifications, the EAF layout is divided 

into four zones with similar physical characteristics. 

Chemical reactions in each zone are based on molar-

mass equilibria, while the overall model is based on 

energy and mass equilibrium. The model was validated 

using the measured operational data and can be used to 

estimate bath temperature, bath composition and slag 

composition. Further on, the model is implemented in a 

simulation study to optimize the operational costs of the 

EAF. The authors report of several issues regarding the 

optimization procedure and its unreliability. 

Logar et al (2011, 2012) introduce complex EAF 

models, including electrical, hydraulic, chemical, heat- 

and mass- transfer processes. The models are based on 

fundamental physical laws and are validated on 

measured operational data of the EAF. The results show 

high levels of similarity between the measured and the 

simulated data. The combination of all developed 

models in one functional model represents the most 

complex approach to EAF modelling found in literature. 

Many studies have been performed in the field of 

numerical modelling of the EAF. The field has been 

established as a new, fast emerging science and 

engineering discipline that encompasses computational 

solid mechanics (Fung et al, 2001) and fluid mechanics 

(Schiestel, 2008), connected with solidification 

phenomena (Dantzig et al, 2009, Glicksman, 2010), 

allotropic transformations phenomena (Hazotte, 2003), 

and put into the context of computational microstructure 

evolution (Janssens et al, 2007) in processes like casting 

(Fredriksson and Åkerlind, 2006), heat treatment (Gür 

and Pan, 2009) etc. The use of numerical modelling 

proved to be an efficient approach for modelling the 

relations between bath stirring, fluid flow and 

electromagnetic (EM) forces. Due to the complex 

coupling between flow and EM forces, numerical 

modelling is the most economical way of analyzing, 

optimizing and developing new applications. Many 

modern industrial processes, such as electrical arc 

furnaces, rely on findings of EM, heat-, mass-transfer 

and metallurgical science. Their interconnections are 

currently not sufficiently understood and 

computationally modelled.  

Furthermore, modelling approaches to gas-phase 

phenomena (Meier et al, 2015, Kolagar et al, 2015) and 

EAF off-gas heat recovery have been proposed (Gandt 

et al, 2016). 

The implementation of the mathematical models in 

industrial applications can be found at renowned EAF 

manufacturers and users, such as Tenova, Siemens VAI, 

SMS Siemag, Centre de Recherche Métallurgiques 

(CRM), ArcelorMittal and BFI (Clerici et al, 2008, 

Dorndorf et al, 2007, Khan et al, 2013, Natschläger et 

al, 2008 and Nyssen et al, 2007). The developed models 

vary in modelling approach, modelling detail, usability, 

accuracy and types of input data used for estimating the 

process values. Reviewing the available literature, most 

of these models are based on static calculations using 

statistical or regression methods, i.e. SMS Siemag, BFI 

and Tenova. The model, based on dynamic modelling 

approach was introduced by CRM. It relies on 

fundamental laws of thermodynamics and is used to 

estimate the end-point bath temperature. It is claimed 

that the accuracy of the model is +/- 50 K, which 
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indicates that further improvements of the model are 

possible. 

The literature review reveals that all models used in 

industrial applications are designed solely for estimation 

of the process values, while no support to the operators 

in the sense of optimal control is given. Thus, the main 

challenge in EAF operation, i.e. determination of 

optimal melting programs, times and amounts of 

charged materials, is therefore still left to the operator 

and his experience. 

Regarding the literature review, a design of the 

overall EAF process model was initiated, incorporating 

all crucial EAF processes and focusing on accuracy and 

usability of the obtained solution for further 

development and its inclusion to several other software 

environments. 

3 Modelling approach 

3.1 General 

The models as presented in this paper have been 

developed according to the fundamental physical laws 

by means of non-linear, time-variant, first order 

differential equations; although, several other 

approaches could be implemented as well. The selected 

approach has its advantages and drawbacks when 

compared to other possibilities; however, the possibility 

to use the developed models with as many EAF designs 

as possible was the main aim of the study and for this 

reason the models are based on fundamental 

mathematical/physical approaches. The model can be 

presented schematically as in Fig. 1. 

 

 
Figure 1: Schematic presentation of the developed EAF 

models 

 

The presented model as shown in Fig. 1 comprises 

mathematical descriptions of all main physical 

processes appearing during the steel-recycling process, 

i.e. electrical, hydraulic, thermal (including radiation), 

chemical and mass transfer. As shown in Fig. 1, the 

model for estimation of the EAF process values is 

composed of several modules, which contain 

mathematical relations describing the physical 

properties of the EAF steel melting process and the 

corresponding model parameters. The calculations are 

grouped in submodules in order to simplify the model 

structure and assure low computational loads. 

Due to complexity of the modelled processes and in 

order to simplify the obtained models, the EAF layout 

has been divided into several zones, assuming that each 

zone is homogenous and possesses equal physical 

characteristics, such as temperatures, densities, heat 

transfer coefficients etc. The zones used in the model are 

solid steel, liquid steel, solid slag, liquid slag, gas, roof 

and walls, as shown in Fig. 2. 

According to the above, calculations of a separate 

submodule are limited only to certain zones, i.e. 

electrical and hydraulic models appear in no zone 

directly, heat-transfer model appears in all zones, mass 

transfer model appears in solid steel, liquid steel, solid 

slag, liquid slag and gas zones, and the chemical model 

appears in liquid steel, liquid slag and gas zones. 

 

3.2 Model characteristics 

Each of the above models utilizes different physical 

laws and mathematical equations in order to obtain the 

values needed by other models or as an end 

result/estimation. The electrical and hydraulic models 

can be characterized by the following: 

  
Figure 2: Division of the EAF layout to different zones 

 

• all electrical values are calculated using harmonic 

analysis, i.e. in complex space, 

• Cassie-Mayr arc model (1st order ODEs) is used with 

additional variable Lorentz noise, 

• the models utilize transformer and reactor taps, 

resistances/reactances of lines, transformer, arcs and 

steel, all electrical values (voltages, currents, powers, 

energies, power factors, impedances etc.), 

• electrode control is carried out using a hydraulic model 

and three independent PI controllers, 

• the model parameters are variable for different stages 

of the melting process, i.e. electrode bore-down, 

melting, flat bath. 
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The heat-transfer model can be characterized by the 

following: 

• the melting process is divided to different phases of the 

melt-down (electrode bore-down, exposing panels, flat 

bath etc.) 

• 1st order ODEs are used to calculate the temperatures 

based on energy input/output balances 

• heat-transfers are utilized to each zone from: arcs, 

burners, chemical reactions, volatile oxidation, 

electrode oxidation and other zones, 

• heat losses are utilized due to cooling of the furnace, 

offgas extraction, steel and slag enthalpy, 

• implementation of geometry supported (view-factor 

based) radiative heat exchange, 

• taking into the account temperature-dependent burner 

efficiency and continuous transitions between the zones 

(geometry supported). 

 

The mass-transfer model can be characterized by the 

following: 

• the melting process is divided to different phases of 

melt-down (electrode bore-down, exposing panels, flat 

bath etc.) 

• 1st order ODEs are used to calculate mass transfers 

based on temperature levels (melting) and energy 

input/output balances, 

• elements and compounds which are taken into the 

account in calculations are: 

   - steel zone: Fe, C, Si, Cr, Mn, P 

   - slag zone: FeO, SiO2, MnO, Cr2O3, CaO, MgO, 

Al2O3, P2O5 

   - gas zone: N2, O2, CO, CO2, CH4 (gas burners), 

• implementation of reversible dynamics (cooling and 

solidification of the steel), 

•calculation of mass transfers due to: melting, charging 

and slag addition, oxygen-fuel burners, oxygen lancing, 

carbon injection and chemical reactions. 

 

The chemical model can be characterized by the 

following: 

• implementation of all main chemical reactions 

appearing in the steel-melting process 

(oxidation/reduction of Fe, FeO, Si, SiO2, C, CO, Mn, 

MnO, Cr, Cr2O3, P and P2O5), 

• 1st order ODEs are used to calculate rates of change of 

elements/compounds based on molar equilibria with 

reaction equilibria constants dependent on molar 

composition of the zone, 

• utilization of chemical energy exchange due to 

exothermic and endothermic reactions, 

• calculation of foaming slag height based on slag 

density/viscosity/surface tension and superficial gas 

velocity (CO) including slag decay, 

• calculation of online and endpoint steel/slag/gas 

compositions and relative pressure. 

 

The parameters of the model (approximately 100) 

were obtained using known data or conclusions of 

different studies (transformer taps, 

resistances/reactances, furnace dimensions, heat 

capacity coefficients, densities, emissivities, enthalpies 

of formation, reaction rates, molar masses etc.) or were 

determined experimentally using the available initial, 

online or endpoint operational EAF measurements 

(cathode voltage drops, arc temperatures, arc 

conductances, arc cooling constants, slag-reactance 

coefficients, heat-transfer coefficients, specific area 

coefficients, arc-energy distributions etc.). The 

validation of the models was carried out using 

operational EAF measurements, which were obtained 

during different melting scenarios. In this manner, an 

accurate model of the actual EAF recycling process was 

obtained. 

4 Results 

The displayed results show the most important 

estimations of the process values while operating the 

EAF, i.e. bath temperatures, steel compositions and slag 

compositions. Fig. 3 shows the comparison between 

measured and model simulated values for initial steel 

mass, endpoint steel mass, power on time and bath 

temperatures. The results were obtained from several 

heats and are represented in a form of a mean value with 

standard deviation. 

 

 
Figure 3: comparison between measured and simulated values 

for initial (1st) and enpoint (2nd) steel mass, power on time (3rd) 

and bath temperatures (4th). Black squares and grey circles 

represent measured and simulated mean values, while black and 

grey triangles represent measured and simulated standard 

deviations, respectively. 

 

As can be seen in Fig. 3, all measured and simulated 

values are similar, both in mean values and in standard 

deviations. The most important validation values from 

Fig. 3 are steel yield (difference between the initial and 

endpoint steel masses) and steel bath temperature. Bath 

temperature is usually measured one to three times 

before tapping, while steel yield is determined at 
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tapping. Neither of these values is measured 

continuously during the EAF operation. 

Fig. 4 shows the comparison between measured and 

model simulated endpoint steel composition in a form of 

a mean value with standard deviation. 

 

 
Figure 4: comparison between measured and simulated 

endpoint chemical compositions of the steel 

 

As can be seen in Fig. 4, all measured and simulated 

values are similar, both in mean values and in standard 

deviations. The most important validation value from 

Fig. 4 is the carbon content in the steel, since carbon 

percentage is (among others) directly linked to different 

steel grades produced and has to be determined and 

contained in proper amount. Complete steel 

composition is determined at tapping and is otherwise 

not measured continuously. 

Fig. 5 shows the comparison between measured and 

model simulated endpoint slag composition in a form of 

a mean value with standard deviation. 

  
Figure 5: comparison between measured and simulated 

endpoint chemical compositions of the slag 

 

As can be seen in Fig. 5, all measured and simulated 

values are similar, both in mean values and in standard 

deviations. The most important validation value from 

Fig. 5 are FeO, SiO2, MnO, CaO and MgO contents in 

the slag, since these compounds define the properties of 

the slag, which are linked to its foaminess and protective 

characteristics. 

Fig. 6 shows the energy balance as calculated by the 

proposed model. 

 

 
Figure 6: energy balance of the EAF as obtained by the 

proposed model 

As can be seen in Fig. 6, total energy input required 

to produce 1 ton of steel is approximately 760 kWh. 

More than a half of this energy is represented by 

electrical energy, while other important sources of 

energy are oxygen burners and chemical reactions. 

Regarding the losses of energy, approximately 390 kWh 

of energy is held by steel enthalpy due to its high 

temperature. This energy is later lost to the environment 

as the steel cools down. Furthermore, off-gas extraction 

and cooling of the furnace vessel also represent an 

important sinks of energy. 

5 Practical applications of the model 

Due to the nature of the EAF steel-recycling process 

(high temperatures and electric currents), performance 

of the crucial process measurements is difficult. 

Consequently, monitoring and control of the melting 

process is performed using the operator's experience and 

is based on indirect measurements (e.g. power-on time, 

consumed energy, arc stability etc.) and not on the actual 

conditions in the EAF (e.g. stage of melting, bath 

composition, bath temperature), which leads to 

suboptimal operation, i.e. lower energy and raw material 

efficiency, increased off gas and CO2 emissions, 

decreased quality of the steel; and consequently higher 

operational costs.  

Furthermore, operational efficiency is influenced 

also by variable composition of the input materials (steel 

scrap, non-metallic additives). The fluctuations in EAF 

operation can be resolved using a combination of EAF 
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process models, optimization techniques and decision

support methods. The combination of these methods

together with available process measurements forms a

supporting system for operation of the EAF. Such a

system uses process measurements as inputs, in order to

provide a better insight into the current EAF conditions

and to suggest the most appropriate action, leading to

more efficient operation of the EAF. Using

mathematical models, which are designed in compliance

with the physical laws and using available

measurements as inputs, crucial process values, which

are not measured, can be estimated in parallel to the

EAF process with high accuracy.

In this manner, an optimal operation of the EAF can

be established, leading to higher steel yield, lower

energy, raw material and additive consumption, shorter

production times, higher steel quality etc. The

introduction of such operation indirectly leads to

improved economic, ecological and technological

aspects of the mills, with such system installed.

6 Conclusions

In this paper a brief explanation of the modelling

approach to crucial EAF processes as well as its

potential use in higher-level applications is presented.

Furthermore, some key comparisons between the

measured and the simulated values are presented,

showing the overall accuracy of the calculations.

    The objective of developing a complete EAF model

is to use it in application frameworks for different

purposes, such as online monitoring, process

optimization or operator decision support. Since the

description and modelling details are far too great and

extend the frame of this paper, all interested readers can

refer to the reference list (Logar et al.) for further

information.
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