
Artificial Neural Networks Application in Intraocular Lens Power
Calculation

Martin Sramka1 Alzbeta Vlachynska2

1Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic,
sramkma2@fel.cvut.cz

2Faculty of Applied Informatics, Tomas Bata University in Zlin, Zlin, Czech Repubic, vlachynska@fai.utb.cz

Abstract
This article deals with intra-ocular lens (IOL) power cal-
culations during the cataract surgery. At present, IOL
power calculated by formulas is usually able to provide
acceptable results for the majority of the patients. The
problem appears when any of input parameters have the
value which is not normal in population distribution. Then
the patient post-operative refraction result can inconsider-
able deviate from intended target. This work describes
approach how to preoperatively indicate which samples
of a patient could be problematic in accurate IOL cal-
culations by classification of Artificial Neural Networks
(ANN). Small and long eyes are used to test the ability
of ANN to classify input samples which are taken from
pre-operative measurements to several groups which rep-
resent probable post-operative result. In our experiment,
ANN classifies samples into two groups. The first group is
for data samples with a probable result in positive ranges
of diopter and second group is for negative ranges. The
accuracy of ANN, in this case, is 94.1 %.
Keywords: intra-ocular lens (IOL) power calculation, ar-
tificial neural networks (ANN), cataract surgery, refrac-
tion result

1 Introduction
A cataract is present when the transparency of the eye
lens is reduced to the point that the patient’s vision is
impaired. According to the latest assessment of World
Health Organization, cataract is responsible for 51 % of
world blindness which represents about 20 million people
(2010). Fortunately, it can be surgically removed. Natu-
ral lens of the eye that has developed an opacification is
replaced with an artificial IOL. Choosing the appropriate
IOL power is a major determinant of patient satisfaction
with cataract surgery. There are 3 main factors: accurate
measurements (biometry), selecting appropriate calcula-
tions (formulas), and assessing the patient’s needs and ex-
pectations to determine the postoperative refractive target
(clinical considerations) (Henderson et al., 2014).

When the human lens is replaced with an intra-ocular
lens, the optical status becomes a two-lens system (cornea
and intra-ocular lens) projecting an image onto the fovea.
The distance (X) between the two lenses affects the refrac-

tion as does the distance (Y) between the two-lens system
and the fovea. X is defined as the distance from the ante-
rior surface (vertex) of the cornea, which curvature is de-
scribed by keratometry (K), to the effective principle plane
of the intra-ocular lens in the visual axis. Y is defined as
the distance from the principal plane of the intra-ocular
lens to the photoreceptors of the fovea in the visual axis.
It is easy to see in Figure 1 that X + Y is equal to the
visual axis, the axial length of the eye (AL). Therefore,
knowing X and A will allow the calculation of Y (Y =
AL - X). Also to calculate the intra-ocular lens power (P),
we must know the vergence of the light rays entering the
cornea (refractive error (R)). For emmetropia, R is zero.
The relationship of these factors (X, Y (AL-X), P, K, R) is
such that a formula can be written to describe it. Knowing
the values of any four of these variables will allow for the
calculation of the fifth (Roger and David, 2010).

1.1 Calculation formulas
For appropriate intra-ocular lens power selection, the
mathematical computing formulas are used. These formu-
las have been developed approximately from the sixties of
the last century (Kuchynka, 2007). Over time, some trends
have emerged regarding which formulas to use in general
categories of patients:

• <22 mm: Hoffer Q

• 22-23 mm: Hoffer Q or Holladay 1

• 24-26 mm: Holladay 1

• >26 mm: SRK/T or Holladay 2

Figure 1. Ocular dimesions.
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It is essential to use the appropriate power calculation
constant (A constant, ACD-constant, surgeon factor) spec-
ified by the intra-ocular lens manufacturer for the spe-
cific formula, chosen intra-ocular lens style, and personal-
ized as warranted by the surgeon (Henderson et al., 2014).
These formulas usually work very well for the majority of
the patients, but the problem may appear if any of input
parameter has a value which is not normal in population
distribution.

1.2 Calculation of Intra-Ocular Lens for Non-
Normal Eyes

Many results and ways how to solve the problem of intra-
ocular lens power calculation can be found in the present
literature. The problem of accurate calculation is quite
complex and depending on many pre and post-operative
factors. Therefore needs to be divided into many parts.

One of many ways how to calculate intra-ocular lens
power can be seen in (Abulafia et al., 2015). The accu-
racy of Holladay 1, SRK/T, Hoffer Q, Haigis, Barrett Uni-
versal II, Holladay 2, and Olsen formulas for eyes axial
length longer than 26.0 mm is provided. SRK/T, Hoffer Q,
Haigis, Barrett Universal II, Holladay 2, and Olsen meth-
ods are having a prediction error of ±0.5 D in at least 71
% of eyes and ±1.0 D in 93 % of eyes.

A calculation for 53 eyes of 36 patients with axial
length more than 27.0 mm by the IOL Master is evalu-
ated in (Bang et al., 2011) for the Holladay 1, Holladay
2, SRK/T, Hoffer Q and Haigis formulas. For eyes longer
than 27.0 mm the Haigis formula is found to be most accu-
rate followed by SRK/T, Holladay 2, Holladay 1 and in the
last place Hoffer Q. All formulas predicted more myopic
outcome than was the real result of the surgery.

Refractive outcomes for small eyes and calculation with
Hoffer Q, Holladay 1, Holladay 2, Haigis, SRK-T, and
SRK-II are observed in (Carifi et al., 2015). The Hoffer Q
formula provides best refractive outcomes of which 39 %,
61 %, and 89 % of the eyes had a final refraction within
±0.5 D, ±1.0 D, and ±2.0 D of the target, respectively.

The accuracy of Hoffer Q and Haigis formula accord-
ing to anterior chamber depth in small eyes is evaluated in
(Eom et al., 2014). 75 eyes of 75 patients with axial length
less than 22.0 mm is included in the study. The difference
between the predicted refractive errors of the Hoffer Q and
Haigis formula increased as ACD decreased in short eyes.
No significant difference is found when anterior chamber
depth is longer than 2.4 mm.

Predictability of intra-ocular lens power calculation us-
ing Carl-Zeiss IOL Master and applanation ultrasound us-
ing SRK/T, SRK II, Holladay 1 and Haigis with an axial
length longer than 25.0 mm is evaluated in (Wang et al.,
2008). The mean axial length was significantly longer
than in case of applanation ultrasound. The mean aver-
age errors calculated by the SRK/T, SRK II, and Holla-
day 1 formulas were comparable between both methods
of measurement. The best results were provided by the
IOL Master data in combination with the Haigis formula.

Refractive prediction of Holladay 1, Hoffer Q, Haigis
and SRK/T intraocular lens power calculation formulas
for eyes longer than 25.0 mm is evaluated and method
for axial length optimization is proposed in (Wang et al.,
2011). Refractive prediction errors with the Holladay 1,
Haigis, SRK/T, and Hoffer Q formulas were evaluated
in consecutive cases. Eyes were randomized to a group
used to develop the method of optimizing AL by back-
calculation or a group used for validation. Further valida-
tion was performed in two additional datasets. The pro-
posed method of optimizing AL significantly reduced the
percentage of long eyes with a hyperopic outcome. Up-
dated optimizing AL formulas by combining all eyes from
the two study centers are proposed.

Refractive outcomes of Haigis–L formula for calcu-
lation intraocular lens power in Asian eyes with axial
lengths longer than 25.0 mm that had a previous myopic
laser in situ keratomileusis or photorefractive keratectomy
are evaluated in (Wong et al., 2015). The predictability of
being within ±0.5 D and ±1.0 D of the target was 35.7
% and 63.1 %, respectively. 31.6 % and 60.5 %, respec-
tively, in eyes with an AL less than 27.0 mm; and 39.1 %
and 65.2 %, respectively, in eyes with an AL of 27.0 mm
or longer.

Next interesting way how to calculate an intra-ocular
lens power is provided by (Clarke and Burmeister, 1997).
The accuracy of trained artificial neural network and Hol-
laday 1 formula is compared. In 72.5 % of cases for artifi-
cial neural network and in 50.0 % of cases for Holladay 1
formula an error of less than ±0.75 D is achieved.

2 Back ground of studies
As was described; many ways how to calculate intra-
ocular lens power is being used at present. Many algo-
rithms and calculation formulas have its own accuracy
limits for example in the calculation for the unusual cases
of eyes - eyes with long or short axial length or keratome-
try.

In the field of cataract surgery as well as in all health-
care related fields patients demands and expectations to
provided care are continuously increasing. Together with
increasing prevalence of cataract surgery, this could be
one of the main motivating factors to provide best possible
postoperative refraction results to if possible the greatest
amount of patients. Another factor which is no less im-
portant could be the economic side of re-operation or fol-
lowing refractive correction of the patient which has im-
planted bad calculated intra-ocular lens.

As was written in the previous section of this article.
Our algorithm for intra-ocular lens power estimation is
based on Artificial Neural Networks which are used as a
classifier.

3 Artificial Neural Network
Artificial Neural Networks dominate by ability in imme-
diate pattern recognition of input/output relations. This
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differs ANN from expert systems which achieve excel-
lent results in the sequence of logical operations and fuzzy
logic methods and are characterized by the ability repre-
sent knowledge (Tuckova, 2009).

Artificial Neural Networks are inspired by biological
neural networks. This property in some way determines
that the Artificial Neural Network should be capable to be-
have well or at least like their biological patterns. Knowl-
edge of Artificial Neural Network is stored in relations be-
tween neurons. These relations are strengthened during
the learning process or penalized when the learning does
not lead to better results. More about Artifical Neural Net-
works can be found in (Tuckova, 2009).

Our algorithm for intraocular lens power estimation is
based on Artificial Neural Network which is used as a
classifier. The base principal of our access is following:

1. Multi-layer Artificial Neural Network classifies input
matrix compound from pre-operatively measured K,
ACD and AL into several groups.

2. Each group has its own estimated post-operative re-
fraction outcome.

3. Intra-ocular lens power is calculated using standard
SRK/T formula.

4. Intra-ocular lens power calculated by SRK/T formula
can be corrected by surgeonâĂŹs decision based on
refractive outcome estimated by classification of Ar-
tificial Neural Network.

3.1 Real data
For the research purposes, specific patientâĂŹs data had
to be collected from clinic database, then cleaned up and
preprocessed.

3.1.1 Collected Data

• Implanted IOL manufacturer and type

• Pre operative ïňĆat meridian of the cornea - K1 [D]

• Pre operative steep meridian of the cornea - K2 [D]

• Pre operative anterior chamber depth - ACD [mm]

• Pre operative axial length of the eye - AL [mm]

• Implanted IOL power - P [D]

• Implanted IOL A constant - A

• Subjective post operative sphere - SfS [D]

• Subjective post operative cylinder - CyS [D]

• Subjective post operative spherical equivalent - SfES
[D]

• Objective post operative sphere - SfO [D]

• Objective post operative cylinder - CyO [D]

• Objective post operative spherical equivalent - SfEO
[D]

• Eye

3.1.2 Specification of Patients Data Selected for Col-
lection

• Patient undergoing cataract surgery

• Indicated for monofocal intra-ocular lens

• Data from beginning of January 2012 till end of July
2015

• Both eyes

• Calculated for emetropia

• Pre operative ïňĆat meridian of the cornea between
30 and 55 diopters

• Pre operative steep meridian of the cornea between
30 and 55 diopters

• Pre operative anterior chamber depth between 1 and
5 millimeters

• Axial length of the eye between 15 and 21 or between
25 to 35 millimeters

• Post operative sphere between -10 and 10 diopters

• Post operative cylinder between -10 and 10 diopters

• No cases with previous corneal refractive surgery

3.1.3 Specification of Preprocessing Parameters
• SfCalc: post operative sphere calculated by SRK/T

from K1, K2, AL, P and A constant.

• RDS: difference between SfCalc and SfS.

RDS = S fCalc−S f S (1)

• RDO: difference between SfCalc and SfO.

RDO = S fCalc−S f O (2)

• K: mean keratometry calculated from K1 and K2.

K =
K1+K2

2
(3)

• InputVector: matrix which is used as input for Ar-
tificial Neural Networks and is composed from AL,
ACD and K vectors, which are normalized between
0 and 1.

ALn =
AL−min(AL)

max(AL)−min(AL)
(4)
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ACDn =
ACD−min(ACD)

max(ACD)−min(ACD)
(5)

Kn =
K −min(K)

max(K)−min(K)
(6)

• TargetVector: this variable separates InputVector
into several groups and is used for Artificial Neural
Network training and testing. Ranges of these groups
are described in results section.

On the Figures 2, 3, 4 there can be seen dependence of
RDS between AL, Kmean and ACD of tested data. Most
significant dependency can be seen on Figure 2 where
RDS grows with decreasing AL and conversely. Some
other trends can be also find in Figure 3 or Figure 4.

These multifactorial dependencies are the main reason
why we chose the Artificial Neural Networks as our main
decision algorithm for intra-ocular lens power estimation
improvement.

4 Results
We use the Feedforward-Pattern net with one hidden layer.
Input vector ( a compound from ACDn, ALn, Kn) con-
tains 114 data samples from biometry measurements. Pa-
tients with three different monofocal intra-ocular lenses
- BAUSCH & LOMB MI 60 (43 samples), CROMA
ACR6D SE (55 samples), EYEOL UK LW 5752R (16
samples) were chosen.

4.1 Objective
To estimate whether the post-operative refraction based on
ACD, AL and K values from preoperative biometry mea-
surements will be larger or smaller than 0 diopters.

4.2 ANN training
Data were randomly divided into the three subsets (train-
ing set, validation set, testing set). ANN was trained on 80
samples, validated on 17 samples and tested on 17 samples
causally chosen from InputVector with 114 samples.

ANN performance was calculated by cross-entropy
which lot penalizes extremely inaccurate outputs and leads
to good classifiers (Møller, 1993). Cross-entropy chart can
be seen on Figure 5.

As a learning algorithm scaled conjugate gradient back-
propagation was chosen. The data vector is fed to the input
of ANN. After passing through the network the output of
each neuron is calculated and the result is compared with
the desired value. Mean squared error is calculated and
previous layers and synaptic weights representing mem-
ory are corrected. This process repeats till minimum error
between the real value and the desired value is reached.
Scaled conjugate gradient backpropagation algorithm en-
sures rapid convergence of learning and using standard
numerical optimization methods. More about this ANN
learning algorithm can be found in (Tuckova, 2009; Pelusi,
2012).

Figure 2. Relation of AL between RDS (Sramka, 2015).

Figure 3. Relation of K between RDS (Sramka, 2015).

Figure 4. Relation of ACD between RDS (Sramka, 2015).

Algorithm for the best count of the hidden layer neu-
rons was constructed and the ANN was tested for 1 to 50
neurons in the hidden layer. As can be seen in Figure 6
best performance was reached with 37 hidden layer neu-
rons.

4.3 ANN settings
Following ANN settings which can also be seen in Figure
7 were used:

• Input neurons: 3

• Hidden layer neurons: 37

• Hidden layer transfer function: Hyperbolic tangent
sigmoid

• Output layer neurons: 2

• Output layer transfer function: Soft max

• Number of training epochs: 16
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Figure 5. Relation between ANN performance and number of
hidden layer neurons

Figure 6. Relation between ANN performance and number of
hidden layer neurons

Figure 7. Scheme of Artificial Neural Network used in experi-
ment

4.4 Results
On the Figure 8 there can be found that the overall accu-
racy of the testing is 94.1 %. Ten samples which repre-
sent 58.8 % of the testing set were correctly classified into
Group 1 (Table 1). Six samples which represent 35.3 % of
the testing set were correctly classified into Group 2 (Ta-
ble 1). One sample which represents 5.9 % from Group 2
was incorrectly classified into Group 1.

5 Conclusions
This work deals with IOL power calculations during the
cataract surgery. At present, intra-ocular lenses power is
mostly being calculated by calculation formulas SRK/T,
Holladay 1, Holladay 2, Haigis, Hoffer Q and others. All
of these formulas using data measured by ultrasound or
more often optical biometry and are able to provide ac-
ceptable results for the majority of the patients. This is
based on fact that these formulas using constants which

Table 1. Group 1: Samples with Subjective Post-operative Re-
fraction Larger than 0; Group 2: Samples with Subjective Post-
operative Refraction Smaller than 0

Group 1 Group 2
SfS > 0 SfS < 0

Figure 8. Test Confusion matrix. Green squares - samples cor-
rectly classified. Red squares - samples misclassified. Grey
squares - Accuracy of each group. Blue square - overall accu-
racy (Sramka, 2015).

was derived by regression analysis. In the moment when
any of input parameters has a value which is significantly
unusual a problem can appear. In such a cases patient
post-operative refraction can significantly deviate from in-
tended target.

This work describes approach how to preoperatively
compensate or indicate which samples of patients could
be problematic in accurate intraocular lens calculations by
classification of Artificial Neural Networks. Small and
long eyes are used to test the ability of Artificial Neural
Networks to classify input samples which are taken from
pre-operative measurements to several groups which rep-
resent the probable post-operative result. In our exper-
iment, Artificial Neural Network classifies samples into
two groups. The first group is for data samples with a
probable result in positive ranges of diopters and second
group is for negative ranges. The accuracy of Artificial
Neural Network, in this case, is 94.1 % and Artificial Neu-
ral Network seems like the instrument which has potential
to improve an intra-ocular lens power calculation accu-
racy.

Based on the experiment Artificial Neural Networks
seems to be the good solution for intra-ocular lens power
compensation for non-standard eyes.

6 Future work
We will focus how to reach better accuracy in compen-
sation inaccurate calculations by classification to more
groups. Target is that each classification group would have
an increment by 0.5 diopters, what is also a dioptric incre-
ment of IOL power usually given by manufacturers. Then
could be inaccurate calculation compensate very exactly.
Artificial Neural Network training could be tested for each
IOL type and surgeon. Artificial Neural Network formula
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selection could also be tested for the special cases. The
special algorithm for compensation calculations for the
patient with previous corneal refractive surgery could be
designed.
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