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Abstract

Genetic manipulation is increasingly used to fine tune or-

ganisms like bacteria and yeast for production of chemi-

cal compounds such as biofuels and pharmaceuticals. The

process of creating the optimal organism is difficult as

manipulation may destroy adaptation and compensation

mechanisms that have been tuned by evolution to keep

the organisms fit. The continued progress in synthetic bi-

ology depends on our ability to understand, manipulate,

and tune these mechanisms. Concepts from control the-

ory and control engineering are very applicable to these

challenges. From a control theoretic viewpoint, distur-

bances rejection and set point tracking describe how adap-

tation mechanisms relate to perturbations and to signaling

events. In this paper we investigate a set regulatory mech-

anisms in the form of biochemical reaction schemes, so-

called controller motifs. We show how parameters related

to the molecular and kinetic mechanisms influence on the

dynamical behavior of disturbance rejection and set point

tracking of each controller motif. This gives insight into

how a molecular controller motif can be tuned to a speci-

fied regulatory response.

Keywords: bioengineering, biological systems, adapta-

tion

1 Introduction

1.1 Homeostasis, Disturbance Rejection and

Set Point Tracking

Homeostasis is described as the mechanism behind the ob-

served adaptation of an organism in a changing environ-

ment (Cannon, 1929; Langley, 1973). From a control the-

oretic point of view homeostasis can be described by the

properties of disturbance rejection and set point tracking.

A physiological example of disturbance rejection is the

intravenous/oral glucose tolerance test (IVGTT/OGTT),

where the blood glucose concentration is measured at

regular intervals after injecting/eating large amounts of

glucose (Ackerman et al., 1964). If the blood glucose

level is above a predefined level after a certain amount

of time, the patient is often diagnosed as diabetic (Ame,

2014). Over the last half century, such disturbance re-

jection studies are reported in a vast number of publica-

tions, see e.g. (Larsen et al., 2003; Steele, 1959), and also

a large number of mathematical models are made with the

aim to capture the glucose and insulin dynamics, see e.g.

the comprehensive review of (Ajmera et al., 2013). Both

OGTT and IVGTT represent an impulse (or short time

pulse) disturbance perturbation, whereas the chronic in-

fusion of glucose (Topp et al., 2004) represent a stepwise

disturbance. Another physiological example of adaptation

to a stepwise perturbation change is the adaptation of light

sensitivity of the eye, which includes both a compensatory

change in pupillary size and an adaptation of the photo-

chemical system in the rods and cones (Guyton and Hall,

2006).

Physiological examples where set point tracking is

investigated are relatively rare, although set point de-

termining mechanisms with respect to body tempera-

ture and metabolism have beed discussed (Briese, 1998;

St Clair Gibson et al., 2005).

Regulatory mechanisms can today be synthetically

modified or added to make organism better suitable

for a specific job. Still, engineering of biochemical

networks has not yet achieved the status and robust-

ness as engineering of electrical and mechanical sys-

tems (Ang et al., 2010). From a synthetic biology per-

spective (Ang and McMillen, 2013; Ang et al., 2013), it is

thus of vital importance to have insight into the biochemi-

cal mechanisms behind physiological regulatory systems.

One possible way to gain such insight is to analyze both

the disturbance rejection and set point tracking dynamics

of such systems in vivo, as well as doing in silico stud-

ies based on different model candidates. The latter ap-

proach is a well known technique used in control engineer-

ing. We will in this paper start with the simplest form of

biochemical networks with regulatory function and iden-

tify by model analysis and simulation how the dynamic

response of such networks can be tuned.

1.2 Controller Motifs

A biochemical network with regulatory properties must

in its simplest form include at least two components,

i.e., state variables, one controlled component and a con-

troller component. The controller component acts on

the controlled component in a way that compensates

for external disturbances. We have earlier presented

a collection of simple two-component regulatory net-

works (Drengstig et al., 2012; Thorsen et al., 2013), and

we have used the name controller motifs to describe them.

These motifs consist of two chemical species, A and E,
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both of them being formed and turned over. A may repre-

sent an intracellular compound which is subject to distur-

bances in the form of e.g. uncontrolled diffusive transport

of A in and out of the cell, and E may represent a mem-

brane bound compound such as a transporter protein as

shown in Figure 1. Like many cellular compounds which

is subject to strict regulation (due to e.g. toxicity if present

in large amount), the concentration of A should not exceed

or be less than some limits. By connecting the compounds

A and E through cellular signaling events such as activa-

tion and inhibition, species A becomes the controlled vari-

able, while species E becomes the manipulated variable.

Based on the direction of the E-mediated flow, the

motifs fall into two categories termed inflow and out-

flow controllers. The complete set of possible inflow

and outflow controller motifs are shown in Figure 2, and

the steady state properties of these controllers were pre-

sented in (Drengstig et al., 2012). Based on the type of

E-mediated inflow or outflow, the controllers are further

divided into activating (inflow 1/3 and outflow 5/7) or in-

hibiting (inflow 2/4 and outflow 6/8) controller type, indi-

cated by grey and white background in Figure 2, respec-

tively.

In the following we will show how the parameters of the

controller motifs, i.e. rate constants, Michaelis-Menten

constants, activation constants and inhibition constants,

influence on the dynamic performance, and show how it

is possible to adjust the system’s response similar to the

tuning of industrial control systems.

2 Results

2.1 Dynamic Properties of Controller Motifs

The dynamic properties of a two component biochemical

system (second order system) can be described in terms

of the undamped natural frequency ωn and the damping

ratio ζ . To illustrate how these two parameters relate to

the regulatory mechanisms in Figure 2, we use outflow

controller 5 as an example. For unique identification, we
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Figure 1. Illustration of a cell with a compound A being un-

der homeostatic control by an inflow controller (panel a) or an

outflow controller (panel b). Panel a: An inflow controller com-

pensate for outflow perturbations, kout
pert (thick green line), in A by

adding more A through an E-mediated inflow (red line). Panel

b: An outflow controller compensate for inflow perturbations,

kin
pert (thick green line), in A by removing excess of A through an

E-mediated outflow (blue line).
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Figure 2. Set of two-component homeostatic controller mo-

tifs (Drengstig et al., 2012) classified as inflow and outflow con-

trollers, where grey or white background indicate activating or

inhibiting controller types, respectively.

apply subscript 5 on the appropriate parameters and vari-

ables, and hence, the nonlinear rate equations for an out-

flow controller 5 are given as (Drengstig et al., 2012):

Ȧ = kin
pert − kout

pert ·A−V
Etr,5
max ·A·

E5
(
K

E5
a +E5

) (1)

Ė5 = kE5
s ·A−

V
Eset,5
max ·E5

(

K
Eset,5

M +E5

) (2)

As discussed in (Drengstig et al., 2012), the set point

A
out,5
set is found by assuming ideal (theoretical) conditions,

i.e. K
Eset,5

M =0 in (2), to give A
out,5
set =V

Eset,5
max

k
E5
s

. Once the theo-

retical set point is established, we re-assume realistic con-

ditions and reorganize (2) into the integral control law
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equation Ė5=Gi,5·(A
out,5
set −Ameas). This allows us to iden-

tify the integral controller gain Gi,5 and the measurement

signal Ameas as:

Ė5 =−kE5
s ·

E5

K
Eset,5

M +E5

·

︸ ︷︷ ︸

(

V
Eset,5
max

k
E5
s

︸ ︷︷ ︸

−A·
K

Eset,5

M +E5

E5
︸ ︷︷ ︸

)

Gi,5 A
out,5
set Ameas

Note that the measurement signal Ameas actually includes

information about the control signal E5 which is not com-

mon in industrial control engineering. Note also that as

long as K
Eset,5

M >0, the actual value of A will be less than

the theoretical set point A
out,5
set . Nevertheless, the set point

tracking properties are good since the control error e, cal-

culated as:

e=(Aout,5
set −Ameas) (3)

is zero. The difference between the actual level of

A and the theoretical set point Aset is termed inaccu-

racy (Thorsen, 2015). A general result valid for all con-

troller motifs is that both rate constants for synthesis and

degradation of E, i.e. kE
s and V Eset

max , are a part of the set

point Aset (Drengstig et al., 2012). At the same time, one

of these rate constants is also a part of the integral con-

troller gain Gi.

In order to identify the parameters ωn,5 and ζ5, we once

again assume ideal conditions, i.e. K
Eset,5

M =0, and continue

by linearizing the model in (1) and (2) around an arbi-

trary working point Ass and E5,ss. Since the set point

consist of two individual parameters, i.e. kE
s and V Eset

max ,

we select V Eset
max to be our input. We then find the closed

looped transfer function from the Laplace transformed in-

put ∆V
Eset,5
max (s) to the Laplace transformed output ∆A(s)

as:

M(s)=

((
kout

pert+V
Etr,5
max

)
·V

Eset,5
max −kin

pert ·k
E5
s

)2

V
Eset,5
max ·K

E5
a ·V

Etr,5
max ·k

E5
s

s2+
kin

pert ·k
E5
s

V
Eset,5
max

·s+

((
kout

pert+V
Etr,5
max

)
·V

Eset,5
max −kin

pert ·k
E5
s

)2

V
Eset,5
max ·K

E5
a ·V

Etr,5
max

Using that V
Eset,5
max =k

E5
s ·Aout,5

set , we find ωn,5 and ζ5 as:

ωn,5 =

√

k
E5
s ·
((

kout
pert +V

Etr,5
max

)
·Aout,5

set − kin
pert

)

√

K
E5
a ·V

Etr,5
max ·A

out,5
set

(4)

ζ5 =
kin

pert

√

K
E5
a ·V

Etr,5
max

2·

√

V
Eset,5
max ·

((
kout

pert+V
Etr,5
max

)
·Aout,5

set − kin
pert

) (5)

From (4) and (5) we see that, depending on the per-

turbation levels (inflow versus outflow perturbations), it

is possible to obtain negative values for ωn,5 and ζ5.

These negative values correspond to circumstances where

the perturbation levels are such that the controller breaks

down (Drengstig et al., 2012). Breakdown occurs when

the net inflow perturbation is larger than the capacity of the

outflow controller, i.e., greater than the maximum of the

compensatory flow. In this case there is no stable equilib-

rium in the system and A integrates towards infinity. Such

a state is unwanted and may very likely be toxic for the

cell. In this case the values of ωn,5 and ζ5 are invalid and

have no physical meaning. Table 1 gives a summary of

ωn and ζ for the four inflow and four outflow controllers,

together with the expression for each set point Aset .

Note that there is a close relationship between the ex-

pressions for ζ and ωn for each controller, and thus, it is

not possible to specify both ζ and ωn independently.

Since controller 5 is an outflow controller, the inflow

perturbation ∆kin
pert(s) is considered the main disturbance,

and the transfer function characterizing the disturbance re-

jection properties is:

N(s)=
s

s2+
kin

pert ·k
E5
s

V
Eset,5
max

·s+

((
kout

pert+V
Etr,5
max

)
·V

Eset,5
max −kin

pert ·k
E5
s

)2

V
Eset,5
max ·K

E5
a ·V

Etr,5
max

As expected, this transfer function has a zero in the ori-

gin, implicating homeostatic behavior and perfect adapta-

tion (Drengstig et al., 2008).

2.2 Tuning of Individual Controllers

As shown in (Drengstig et al., 2012), the steady state per-

formance of the individual controllers were found to be

identical, given a certain set of parameter values. A re-

lated issue is to determine whether it is possible to tune

the controllers to obtain identical dynamical performance

using the theoretical design parameters in Table 1. Such

tuning will be useful in synthetic biology. Also on a more

fundamental level, if such tuning is possible it implies that

it is impossible to infer the underlining network structure,

i.e., the particular controller motif, responsible for an ob-

served adaptive process by measuring the dynamical prop-

erties of the controlled variable alone.

We have selected to use the rate constants of the synthe-

sis and degradation of the controller species, kE
s and V Eset

max ,

together with the rate constant of the E-mediated com-

pensatory flow V Etr
max, as our tunable parameters. These

parameters are relatively easy to tune from the perspec-

tive of synthetic biology and offer a greater tunable range

than the parameters associated with the nonlinearities in

the model (KE
a , KA

I , and KE
I ). To discuss one of the tun-

able parameters, the rate constant for synthesis of E, kE
s ,

can in practice be modified by altering the promoter of the

gene coding for E. One way to do this is a fixed tuning of

the promoter itself, e.g. the Cu-dependent promoter of the

CUP1-gene of Saccharomyces Cerevisiae can be modified

by mutations to show wide range of different induction ra-

tios (Thiele and Hamer, 1986). Another option is to use a

dual mode promoter, a type of promoter who’s regulation
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Table 1. The set point Aset , natural undamped frequency ωn and damping ratio ζ for controller motifs 1-8 in Figure 2 under

theoretical conditions, i.e. K
Eset
M =0. For each controller we have added a subscript to the parameters for unique identification.

A
in,1
set =

k
E1
s

V
Eset,1
max

ωn,1=

√

V
Eset,1
max

(
kin

pert−kout
pert A

in,1
set +V

Etr,1
max Aext

)

√

K
E1
a V

Etr,1
max Aext

ζ1=
kout

pert

√

K
E1
a V

Etr,1
max Aext

2

√

V
Eset,1
max

(
kin

pert−kout
pert A

in,1
set +V

Etr,1
max Aext

)

A
in,2
set =

V
Eset,2
max

k
E2
s

ωn,2=

√

k
E2
s

(
kout

pert A
in,2
set −kin
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)

√

K
E2
I V

Etr,2
max Aext

ζ2=
kout

pert

√

K
E2
I V

Etr,2
max Aext

2

√

k
E2
s

(
kout

pert A
in,2
set −kin

pert

)

A
in,3
set =

k
E3
s KA

I

V
Eset,3
max

−KA
I ωn,3=

√

V
Eset,3
max

(
kin

pert−kout
pert A

in,3
set +V

Etr,3
max Aext

)

√
(

KA
I +A

in,3
set

)
V

Etr,3
max K

E3
a Aext

ζ4=
kout

pert

√
(

KA
I +A

in,4
set

)
V

Etr,4
max K

E4
I Aext

2

√

k
E4
s

(
kout

pert A
in,4
set −kin

pert

)

A
in,4
set =

V
Eset,4
max KA

I

k
E4
s

−KA
I ωn,4=

√

k
E4
s

(
kout

pert A
in,4
set −kin

pert

)

√
(
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I +A

in,4
set

)
V

Etr,4
max K

E4
I Aext

ζ3=
kout

pert

√
(

KA
I +A

in,3
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)
V

Etr,3
max K

E3
a Aext

2

√

V
Eset,3
max

(
kin

pert−kout
pert A

in,3
set +V

Etr,3
max Aext

)

A
out,5
set =V

Eset,5
max

k
E5
s

ωn,5=

√

k
E5
s

((
kout

pert+V
Etr,5
max

)
A

out,5
set −kin

pert

)

√

K
E5
a V

Etr,5
max A

out,5
set

ζ5=
kin

pert

√

K
E5
a V

Etr,5
max

2

√

V
Eset,5
max

((
kout

pert+V
Etr,5
max

)
A

out,5
set −kin

pert

)

A
out,6
set = k

E6
s

V
Eset,6
max

ωn,6=

√

V
Eset,6
max

(
kin

pert−kout
pert A

out,6
set

)

√

K
E6
I V

Etr,6
max A

out,6
set

ζ6=
kin

pert

√

K
E6
I V

Etr,6
max

2

√

k
E6
s

(
kin

pert−kout
pert A

out,6
set

)

A
out,7
set =

V
Eset,7
max KA

I

k
E7
s

−KA
I ωn,7=

√

k
E7
s

((
kout

pert+V
Etr,7
max

)
A

out,7
set −kin

pert

)

√
(

A
out,7
set +KA

I

)
V

Etr,7
max K

E7
a A

out,7
set

ζ7=
kin

pert

√
(

A
out,7
set +KA

I

)
V

Etr,7
max K

E7
a

2

√

k
E7
s A

out,7
set

((
kout

pert+V
Etr,7
max

)
A

out,7
set −kin

pert

)

A
out,8
set =

k
E8
s KA

I

V
Eset,8
max

−KA
I ωn,8=

√

V
Eset,8
max

(
kin

pert−kout
pert A

out,8
set

)

√
(

A
out,8
set +KA

I

)
V

Etr,8
max K

E8
I A

out,8
set

ζ8=
kin

pert

√
(

A
out,8
set +KA

I

)
V

Etr,8
max K

E8
I

2

√

V
Eset,8
max A

out,8
set

(
kin

pert−kout
pert A

out,8
set

)

of protein production depends on two activators. One ac-

tivator would be the control variable A and another would

be a chemical compound that can be meticulously added to

the growth medium to achieve a certain level of gene tran-

scription and production of E, represented in the model as

the value of kE
s . One such promoter controlled by Testos-

terone and IPTG (isopropyl β -D-1-thiogalactopyranoside)

has recently been developed (Mazumder and McMillen,

2014).

In order to best tune the parameters we have to know

about the operational limits of the system. For this pur-

pose, we define as in (Drengstig et al., 2012) an upper

limit for the maximum compensatory flux, jA,max=10, cor-

responding to a maximum level of Emax=15 for the ac-

tivating controllers 1, 3, 5 and 7, and corresponding to

Emin=0 for the inhibiting controllers 2, 4, 6 and 8. We

assume further that the set point of A is Aset=1.0, the ex-

ternal concentration is Aext=2. The kinetic constants for

activation and inhibition are chosen to avoid saturation ef-

fects: KE
a =2, KA

I =0.1 and KE
I =1.0. Moreover, the work-

ing point of perturbations is specified as kin
pert=2/kout

pert=5

for inflow controllers and kin
pert=5/kout

pert=2 for outflow

controllers. Given these overall system parameters, the

tuning procedure of each individual controller motif is

based on specifying ζ (or ωn, but not both) in a similar

way as the pole placement method, and determine the last

three parameter values of each motif, i.e. V Etr
max, V Eset

max and

kE
s .

To illustrate, we specify two different dynamical re-

sponses in the concentration of A for a step in Aset , i.e. one

critically damped (ζ=1) and one underdamped (ζ=0.2

corresponding to 50% overshoot) response. A strongly

underdamped system overshoots when adapting a change

in set point, but shows considerably better disturbance re-

jection than a critically damped system. Thus, tuning for

the latter may be of interest in many biological systems.

We illustrate the procedure in detail by continuing on

the outflow controller 5 example, and start by considering

the rate expression for the compensatory flux, jA, from (1):

jA=V
Etr,5
max ·A·

E5
(
K

E5
a +E5

) (6)

By setting jA= jA,max=10 and inserting E5=E5,max=15,

A=A
out,5
set =1 and K

E5
a =2 into (6), gives V

Etr,5
max =11.33. Us-

ing the mathematical expressions for A
out,5
set and ζ5 tabu-

lated in Table 1, we find V
Eset,5
max =2.04 and k

E5
s =2.04 for
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ζ5=1 and V
Eset,5
max =51.0 and k

E5
s =51.0 for ζ5=0.2, see Ta-

ble 2.

Table 2. The parameters V Etr
max, V Eset

max , kE
s and the integral con-

troller gain Gi (in grey) for each controller motif specified

for critical damped response ζ=1 and underdamped response

ζ=0.2. The other parameters are defined in the main text.

V Etr
max V Eset

max kE
s Gi

C
ri

ti
ca

ll
y

d
am

p
ed

,
ζ
=

1

Inflow 1 5.67 2.04 2.04 2.04

Inflow 2 5.00 6.94 6.94 -6.94

Inflow 3 5.67 2.24 24.68 2.04

Inflow 4 5.00 84.03 7.64 -6.94

U
n
d
er

-
d
am

p
ed

,
ζ
=

0
.2

Inflow 1 5.67 51.0 51.0 51.0

Inflow 2 5.00 173.6 173.6 -173.6

Inflow 3 5.67 56.1 617.1 51.0

Inflow 4 5.00 2100.7 191.0 -173.6

C
ri

ti
ca

ll
y

d
am

p
ed

,
ζ
=

1

Outflow 5 11.33 2.04 2.04 -2.04

Outflow 6 10.00 6.94 6.94 6.94

Outflow 7 11.33 24.68 2.24 -2.04

Outflow 8 10.00 7.64 84.03 6.94

U
n
d
er

-
d
am

p
ed

,
ζ
=

0
.2

Outflow 5 11.33 51.0 51.0 -51.0

Outflow 6 10.00 173.6 173.6 173.6

Outflow 7 11.33 617.1 56.1 -51.0

Outflow 8 10.00 191.0 2100.7 173.6

This corresponds to an integral controller gain of

Gi,5=−2.04 and Gi,5=−51.0, respectively, and a response

time of Tr≈0.8 seconds (ωn,5=2.5) and Tr≈0.1 seconds

(ωn,5=12.5). The simulation results shown as black

curves in panels c, and d in Figure 3, verify the tuning

specifications, both with respect to overshoot and response

time.

In order to compare the individual performance of each

controller, the above described tuning specifications are

applied for all controllers, and the results are shown in

Table 2 and verified by simulation in Figure 3.

Note the identical values for Gi (greyed out in Table 2)

for all the activating (inflow 1/3 and outflow 5/7) and all

the inhibiting (inflow 2/4 and outflow 6/8) controllers, re-

spectively. Note also the opposite signs for activating

and inhibiting inflow and outflow controllers, respectively,

which is due to the combination of controller type (acti-

vating/inhibiting) and controller configuration (inflow/out-

flow).

The responses in Figure 3 clusters into two groups,

where the first group is the E-activating inflow controllers

1/3 (black and red curves in Figures 3a and 3b) and the E-

inhibiting outflow controllers 6/8 (blue and green curves in

Figures 3c and 3d). The second group is the E-inhibiting

inflow controllers 2/4 (blue and green curves in Figures 3a

and 3b) and the E-activating outflow controllers 5/7 (black

and red curves in Figures 3c and 3d). The reason why

equally tuned controllers behaves slightly different is due

to the nonlinearity of each individual controller combined

with a relative large set point step change.
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Figure 3. Dynamic properties of inflow and outflow controllers

showing the response in concentration of species A. The color

codes for the different inflow controller are: 1=black, 2=blue,

3=red and 4=green, and the color codes for the different outflow

controllers are: 5=black, 6=blue, 7=red and 8=green. For the

set point tracking curves, the set point changes from Aset=1.0

to Aset=1.1 at t=0. For the disturbance rejection curves, the

disturbance is a unit step change from 5 to 6 at t=0 in kout
pert

for inflow controllers and in kin
pert for outflow controllers. Pan-

els a and b: Set point tracking (upper) and disturbance rejec-

tion (lower) responses for inflow controllers tuned for critically

damped (ζ=1) and underdamped (ζ=0.2) responses, using the

parameters shown in Table 2. Panels c and d: Set point tracking

(upper) and disturbance rejection (lower) responses for outflow

controllers tuned for critically damped (ζ=1) and underdamped

(ζ=0.2) responses, using the parameters shown in Table 2.

From Table 1 we see that the inflow and outflow pertur-

bations come into the expressions of ωn and ζ in different

ways. To visualize the effect of varying level of pertur-

bation, Figure 4 shows dynamic responses of inflow con-

troller 3 for kout
pert={3,5,7} (Figure 4a) and outflow con-

troller 6 for kin
pert={5,7,9} (Figure 4b). The effect of in-

creased kout
pert for inflow controller 3 is slower dynamics

with less damped response. On the other hand, outflow

controller 6 shows faster dynamics together with more un-

derdamped response at increased kin
pert levels.
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Figure 4. Set point tracking (upper) and disturbance rejection

dynamics (lower) of species A using inflow controller 3 (panel a)

and outflow controller 6 (panel b) at different level of outflow

and inflow perturbations, respectively. The set point change is

a step from Aset=1.0 to Aset=1.1 at t=0 and the disturbance is

a step increase of 1 from original value at t=0. In panel a the

labeling on the curves corresponds to outflow perturbations of

kout
pert∈{3,5,7}. In panel b the labeling on the curves corresponds

to inflow perturbation of kin
pert∈{5,7,9}.

3 Conclusions

We have shown how a set of homeostatic controller motifs

can be tuned, in a similar way as in industrial control sys-

tems, to exhibit a specified dynamic response with respect

to overshoot δ and response time Tr. We have also shown

analytically and through simulations how i) the level of

inflow/outflow disturbances and ii) the values of different

rate constants influence on the set point tracking proper-

ties. The corresponding disturbance rejection properties

is also studied through simulations using a unit step input

signal in the disturbance.

An important implication of the fact that all controller

motifs can show identical dynamic responses is that one

cannot postulate a specific controller motif based on mea-

surement of disturbance rejection and/or set point tracking

alone. The motif type, i.e. inflow or outflow, activating or

inhibiting, rest on how the molecular mechanisms behind

the controller interact and not on the system’s ability to

show a specific response. The specific response of physio-

logical regulatory system is a result of tuning the system’s

kinetic parameters and the strength of the perturbation.

There is a great effort going on in both academia and

industry to genetically manipulate organisms to produce

useful bioproducts. One of the landmark studies published

in Science last year was the implementation of the com-

plete biosynthesis of opioids in yeast (Galanie et al., 2015;

Service, 2015). Opioids like morphine are the primary

drugs used for treatment of severe pain and pain manage-

ment, and production depends on the cultivation of opium

poppies. While the implementation of opioid biosynthe-

sis in yeast is a tremendous achievement, it still requires

an improvement in overall yield by a factor of 7 · 106 to

compete with poppies (Galanie et al., 2015). Great im-

provements are expected (Galanie et al., 2015), but this

will require an intricate tuning of the different parts of the

biosynthesis pathway.

From a synthetic biology point of view, the work in

this paper creates a basis one can use to identify which

and how properties of a reaction and participating protein-

s/enzymes contributes to the dynamical response. For in-

stance, the natural undamped frequency ωn, which is im-

portant for the swiftness of a controller motif, will for out-

flow controller 5 increase if we by some means manage to

increase the production of E (increase kE
s ) by e.g. increas-

ing the expression of mRNA coding for E (as shown in

Table 1, a change in kE
s will also change the set point). A

related example of such is reported in (Ang et al., 2010),

where a two promotor network system is constructed

in silico from realizable parts within the bacterium Es-

cherichia coli. The network includes both basal rates and

activated/repressed regulatory inputs, and hence, the net-

work share similarities with inflow controller 2 in Fig-

ure 2. Two requirements were used as tuning criteria for

the network, i.e. ζ=1 (critically damped) and large ωn in-

dicating a response time Tr as short as possible. In order

to obtain the necessary approximate zero order degrada-

tion of the repressor R (corresponding to our species E),

two effectors I1 and I2 are included in order to force the re-

pressor to work at saturated conditions, i.e. corresponding

to the theoretical conditions, K
Eset
M =0, used in this paper.

An alternative approach to tuning is given in (Ang et al.,

2013), where the tuning is related to the so-called response

curves. These are steady state relationships between an

input and an output variable, e.g. the molecular concentra-

tion of a transcription factor protein and the expressed pro-

tein, respectively, and not time dependent tuning as dis-

cussed in this paper. However, variations in kinetic param-

eter values results in different steady state relationships.
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