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Abstract
Total intravenous anaesthesia (TIVA) is an anaesthesi-
ologic technique, where substances are injected intra-
venously. The anaesthesiologist adjusts the injection of in-
travenous anaesthetic agents regarding the depth of anaes-
thesia. In the paper, we present a model of an anaesthetic
agent, namely propofol, influencing the depth of anaesthe-
sia. The influence of propofol is linked to the concentra-
tion of the drug in the appropriate compartment. First, the
modelling of pharmacokinetics of propofol is introduced.
The 3-compartmental model and the effect-site model are
presented, the relevant model parameters are given. Next,
the model is verified by comparing the simulation results
to the data file that was recorded by the Orchestra Base
Primea infusion workstation during a medical procedure,
which lasted about 40 minutes. The simulation results are
presented and the predictive quality of the model is evalu-
ated.

The presented model for Matlab-Simulink provides a
basic tool for further researching the dynamics of anaes-
thetic depth. Despite the fact that more data must be ob-
tained in order to properly validate the model, the pre-
sented model provides a basis for running simulations and
testing various scenarios of propofol administration and is
usable for developing and testing closed-loop control ap-
proaches for automatic control of depth of anaesthesia.
Keywords: target-controlled infusion, Propofol, depth-
of-anaesthesia, Matlab-Simulink

1 Introduction
To perform a general anaesthesia, it is necessary to use
substances, which enable deep unconsciousness, analge-
sia, amnesia and muscle relaxation, all required for per-
forming a surgery or a diagnostic procedure. General
anaesthesia and related dynamic activities in the human
body is a complicated process, which includes pharma-
cokinetic and pharmacodynamic mechanisms, which have
not been fully studied yet.

During the general anaesthesia, the anaesthesiologist
needs to monitor the patient’s vital functions and main-
tain the functions of vital organs. To achieve anaesthesia,
substances are introduced in different manners into the pa-
tient’s body. In clinical practice, the most commonly used
methods are the intravenous induction of an anaesthetic
agent, i.e., injection of the anaesthetic into a vein, and in-

halation induction of anaesthesia, whereby the patient in-
hales the substance from the breathing mixture. Total in-
travenous anaesthesia (TIVA) is an anaesthesiologic tech-
nique, where substances are injected intravenously.

The anaesthesiologist needs to adjust the dosage of
anaesthetic to maintain the appropriate depth of general
anaesthesia according to pharmacokinetics and pharma-
codynamics of the anaesthetic agent and considering the
type of procedure. Inadequate depth of anaesthesia is
manifested with the activation of sympathetic nerves or in
the most unlikely event with the patient awakening. Too
deep anaesthesia is manifested with a drop in blood pres-
sure level and heart rate frequency as well as slow post-
operative awakening of the patient from general anaes-
thesia. In modern clinical practice, the depth of anaes-
thesia is determined by assessing the relevant clinical
signs (iris, sweating, movements), by interpreting hemo-
dynamic measurements (Potočnik et al., 2011) and by es-
timating the depth of anaesthesia from EEG signals, for
which several established measurement systems already
exist, e.g. BIS index, Narcotrend, Scale Entropy and Re-
sponse Entropy. BIS index measurement is a non-invasive
method, where a BIS monitor is connected to electrodes
on the patient’s head. By measuring the EEG signals
the bispectral index is defined, representing the depth of
anaesthesia. The BIS monitor provides a single dimen-
sionless number, which ranges from 0 (equivalent to EEG
silence) to 100. A BIS value between 40 and 60 indicates
an appropriate level for general anaesthesia, whereas for
long-term sedation due to head injuries a value below 40
is appropriate. The reference can thus be set to the ap-
plicable value; the manner and speed of approaching the
reference value depend on the specific characteristics of
the procedure and the pharmacokinetics and pharmacody-
namics of the substance in the patient’s body.

The problem of modelling the effect of propofol is de-
scribed in literature in various ways. For such purposes,
pharmacokinetic and pharmacodynamic models have been
developed, such as in (Marsh et al., 1991; Schnider et al.,
1998, 1999; Kataria et al., 1994; Schüttler and Ihmsen,
2000; Kenny and White, 1990). The models typically de-
fine the basic structure of the dynamic operating system
of propofol and the parameters depend on individual pa-
tients. The values of model’s parameters are affected by
the patient and his characteristics (weight, height, age, sex
etc.) as well as individual sensitivity to propofol and the
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ability to excrete propofol.
Several developed pharmacokinetic models are used

in certain infusion pumps for target controlled infusion
(TCI), where the pump sets the proper flow of the med-
ication with regard to the model. The problem with these
models is that they often do not reflect the real dynamics,
which also depends on individual sensitivity of the pa-
tients to the substance, therefore such approaches, based
on open-loop induction, often do not yield the best perfor-
mance.

In the paper, we present a dynamical model of propofol
influencing the depth of anaesthesia, which is connected
to the concentration of the drug in the appropriate com-
partments. The paper is organized as follows. First, mod-
elling of pharmacokinetics of propofol is introduced. The
3-compartmental model and the effect-site model are pre-
sented, the relevant model parameters are given. Next, the
model is verified by comparing the simulation results to
the data file of an actual anaesthetic application of target-
controlled infusion of intravenously administered propo-
fol, which was recorded by the Orchestra Base Primea in-
fusion workstation during a medical procedure that lasted
about 40 minutes. The simulation results are presented
and the predictive quality of the model is evaluated. Fi-
nally, we give some concluding remarks.

2 Modelling the pharmacokinetics of
propofol

2.1 The 3-compartmental model
The pharmacokinetics of the derived model is based on the
Marsh model (Marsh et al., 1991). The dynamic relations
are based on a well-established 3-compartmental model
structure, as shown in Figure 1.

Infusion

k21

k12
k13

k31

k10

V2 V1 V3

Figure 1. The pharmacokinetics of the 3-compartmental model.

The 3-compartmental model can be described as fol-
lows:

• The drug (namely propofol) is injected intravenously
into the central compartment (V1), representing the
blood (or plasma) in the body - contained primarily
in the arteries and veins and the directly influenced
tissues and organs, such as brain, heart, liver, kidney
etc.

• The second compartment (V2) represents the group
of tissues that are indirectly affected by the amount
of drug in the central compartment, i.e., mainly the
muscles. The exchange of the drug with the central
compartment is denoted by k12 and k21.

• The third compartment (V3) represents the group of
tissues that can store a certain amount of drug, but
the exchange with the central compartment is rather
slow, i.e., mainly the fat. However, the amount of
drug in these tissues influences the amount of the
drug in the central compartment in the long run. The
exchange of the drug with the central compartment
is denoted by k13 and k31.

• The drug is eliminated from the body with a rate de-
noted by k10.

The internal dynamics of the model can be formulated
by using

dx1

dt
= φ − k12x1− k13x1− k10x1 + k21x2 + k31x3 (1)

dx2

dt
=−k21x2 + k12x1 (2)

dx3

dt
=−k31x3 + k13x1 (3)

where the variables x1, x2, and x3 represent the amount of
the drug in compartment V1, V2, and V3. respectively. The
infusion flow rate is denoted as φ . As noted above, the pa-
rameters k12, k21, k13, and k31, represent the partition co-
efficients that determine the speed at which the drug goes
from one particular compartment to another. Finally, k10
is the rate of elimination of the drug from the body.

Note that the concentration in the central compartment
is often referred to as plasmatic concentration.

2.2 Effect-site concentration model
The effect site for the drug propofol is basically the central
nervous system. The effect site is thus part of the central
compartment, but the effect of the drug is subject to some
dynamics with regard to the (theoretical) concentration in
the central compartment. This is mainly due to transporta-
tion delay as the drug concentration in the central com-
partment is not homogenous, which is evident especially
during the transient response, i.e., when the amount of
the drug in the central compartment is changing rapidly.
The effect-site concentration is therefore a representation
of a volumeless 4th compartment, where the drug is ac-
tive. This compartment is virtually linked to the central
compartment.

Therefore, a 1st order model has been used to describe
the effect-site concentration dynamics, as given in

dxe

dt
=−ke0xe + ke0x1 (4)
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where the virtual link between the central and the effect-
site compartment is characterised by the coefficient ke0,
which is actually the inverse time constant of the dynamic
system describing the connection between the plasmatic
concentration and the effect-site concentration xe0.

The schematics explaining the effect-site concentration
dynamics are presented in in Figure 2.
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Figure 2. The effect-site concentration dynamics.

2.3 Model parameters
The parameters of the model are taken from (Marsh et al.,
1991) and (Orc). The values are given in Table 1.

Table 1. Parameter values.

Parameter Value

Vc 0.228 l/kg

k10 0.119/min

k12 0.112/min

k13 0.0419/min

k21 0.055/min

k31 0.0033/min

ke0 1.21/min

When developing the model in Matlab-Simulink we
have to consider the units and the dilution factors of the
drug. For example, the parameters expressed in min−1

have to be converted to s−1. Furthermore, the input flow
of propofol is typically expressed in ml/h, and the dilution
is 10mg/ml, i.e., 1%. The output concentration (plasmatic
and effect-site) are expressed in µg/ml.

3 Model verification
The Marsh model is also used in the infusion worksta-
tion Orchestra Base Primea (produced by Fresenius Kabi)
(Orc). We obtained a textual output data file of an actual
anaesthetic application of target-controlled infusion of in-
travenously administered propofol, which was recorded

by the Orchestra Base Primea infusion workstation dur-
ing a medical procedure that lasted about 40 minutes. The
data recorded in the output file are as follows:

• The infusion flow of propofol.

• The predicted plasmatic concentration of propofol
cp.

• The predicted effect-site concentration of propofol
ce.

• Important events (alarms, occlusions, syringe
changes, target-value changes).

• Patient data:

– age (43 years),

– weight (78 kg),

– height (177 cm), and

– gender (male).

A Matlab-based parser was developed, which is able to
processes the textual output data files recorded by the Or-
chestra Base Primea infusion workstation so as to obtain
suitably formatted time-stamped data arrays. In such a
manner, the obtained data arrays can easily be used in the
Matlab-Simulink environment.

4 Simulation results
4.1 Propofol inflow
We used the presented model for simulating the system be-
haviour with regard to the response to the inflow of propo-
fol influencing the depth of anaesthesia through plasmatic
concentration and effect-site concentration of propofol.
The simulated inflow of propofol was adjusted according
to the data recorded by the Orchestra Base Primea infusion
workstation.

The inflow-signal of propofol φpropo f ol was parsed from
the recorded data and is shown in Figure 3.

Note that first a bolus-dose is administered so as to
rapidly increase the concentration of propofol in the body.
This phase is called the induction of anaesthesia and re-
sults in the patient losing consciousness. Later, a suitable
dose of propofol is continuously administered in order to
keep the proper anaesthetic depth. A close-up of the sec-
ond transient phase is shown in Figure 4.

The presented Matlab-Simulink model was fed the
propofol-inflow signal φpropo f ol and the resulting trajec-
tories of propofol concentration in the central compart-
ment and in the effect-site compartment (cp and ce, re-
spectively) were compared to the data recorded by the Or-
chestra Base Primea infusion workstation.
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Figure 3. The inflow of propofol φpropo f ol .
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Figure 4. The inflow of propofol φpropo f ol (close-up).

4.2 Plasmatic concentration
The simulated plasmatic concentration of propofol cp,sim
trajectory is shown in Figure 5. The simulated results
are compared to the parsed data from the Orchestra Base
Primea infusion workstation data file cp,data. A close-up
of the second transient phase is shown in Figure 6.

4.3 Effect-site concentration
Similarly, the simulated effect-site concentration of propo-
fol ce,sim trajectory is shown in Figure 7. The simulated
results are compared to the parsed data from the Orches-
tra Base Primea infusion workstation data file ce,data. A
close-up of the second transient phase is shown in Figure
8.

4.4 Evaluation of the predictive quality of the
model

In order to evaluate the predictive quality of the model,
the simulated results are compared to the parsed data
from the Orchestra Base Primea infusion workstation data
file. Some established quantitative measures for predictive
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Figure 5. The simulated plasmatic concentration of propofol
cp,sim compared to the parsed data cp,data.
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Figure 6. The simulated plasmatic concentration of propofol
cp,sim compared to the parsed data cp,data (close-up).
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Figure 7. The simulated effect-site concentration of propofol
ce,sim compared to the parsed data ce,data.
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Figure 8. The simulated effect-site concentration of propofol
ce,sim compared to the parsed data ce,data (close-up).

quality are prediction mean square error (PMSE), median
performance error (MDPE), and median absolute perfor-
mance error (MDAPE) (Mertens et al., 2003). The afore-
mentioned measures are calculated as defined in

PMSEx =
1
N

N

∑
i=1

(xi,sim− xi,data)
2 (5)

MDPEx = median{
xi,data− xi,sim

xi,sim
·100%}i=1,...,N (6)

MDAPEx = median{|
xi,data− xi,sim

xi,sim
| ·100%}i=1,...,N (7)

where xsim and xdata stand for the simulated and the "mea-
sured" data, respectively, and N is the number of data
points in the data set.

In our case, the values of the aforementioned measures
are presented in Table 2.

Table 2. Predictive quality measures.

Signal x PMSEx MDPEx MDAPEx

Cp 2.21 ·10−3 −1.67% 2.00%

Ce 1.62 ·10−3 −2.35% 2.78%

As the Orchestra Base Primea infusion workstation suf-
fers from some error when logging the propofol-flow data
φpropo f ol , it is sensible to take into account the final cumu-
lative amount of the administered drug. In this case, the
total amount of propofol used was 25.5 ml, whereas the
simulated consumption was 26.2 ml. It is clear that the
simulated propofol concentration signals, both plasmatic
and effect-site, are influenced considerably by the afore-
mentioned error.

In general, the propofol-flow φpropo f ol error is generally
not uniformly distributed. Nevertheless, the simulation re-
sults can be improved by simply pondering the simulated
propofol inflow by a factor of 25.5ml

26.2ml . The newly simulated

results are again compared to the parsed data from the Or-
chestra Base Primea infusion workstation data file in Fig-
ures 9 and 10 for plasmatic and effect-site concentration
trajectories, respectively.
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Figure 9. The newly simulated plasmatic concentration of
propofol cp,sim compared to the parsed data cp,data.
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Figure 10. The newly simulated effect-site concentration of
propofol ce,sim compared to the parsed data ce,data.

In this manner, the predictive quality measures are im-
proved by a considerable amount, as shown in Table 3.

Table 3. Predictive quality measures (modified).

Signal x PMSEx MDPEx MDAPEx

Cp 0.65 ·10−3 1.16% 1.38%

Ce 0.32 ·10−3 0.324% 1.14%

5 Conclusions
The developed model for Matlab-Simulink provides a ba-
sic tool for further researching the dynamics of depth of
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anaesthesia. The model enables improvement and refine-
ment of model quality for propofol for assessment of the
dynamic properties of anaesthetic depth. However, more
data must be obtained in order to properly validate the
model. We will work with the anaesthesiologic team of
the University clinical centre in Ljubljana in order to reach
this goal. In addition, the measured data from real medi-
cal procedures will enable further refinement of the model
parameters and possibly a structural improvement of the
considered dynamical relations.

That said, the presented model provides a basis for run-
ning simulations and testing various scenarios of propofol
administration that could lead to better administration pro-
tocols due to a deeper insight of the mechanisms of depth
of anaesthesia.

Finally, the model is usable for developing and testing
closed-loop control approaches for automatic control of
anaesthetic depth, which will be the main direction of our
joint future research in collaboration with the anaesthesi-
ologic team of the University clinical centre in Ljubljana.

References
Operator’s Guide: Infusion Workstation: Orchestra Base

Primea.

B. K. Kataria, S. A. Ved, H. F. Nicodemus, G. R. Hoy, D. Lea,
M. Y. Dubois, J. W. Mandema, and S. L. Shafer. The phar-
macokinetics of propofol in children using three different data
analysis approaches. Anesthesiology, 80:104–122, 1994.

G. N. Kenny and M. White. Intravenous propofol anaesthesia
using a computerised infusion system. Anaesthesia, 46:204–
209, 1990.

B. Marsh, M. White, N. Morton, and G. N. Kenny. Pharma-
cokinetic model driven infusion of propofol in children. Br J
Anaesth, 67:41–48, 1991.

M. J. Mertens, F. H. M. Engbers, A. G. L. Burm, and J. Vuyk.
Predictive performance of computer-controlled infusion of
remifentanil during propofol/remifentanil anaesthesia. Br J
Anaesth, 90(2):132–141, 2003.
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