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Abstract
Personalized easy to follow nutritional guidance is
getting more important, since lifestyle related health
problems are increasing.  To gain a healthy balanced diet
usually requires knowledge of a licensed nutritionist.
There is a Fuzzy Expert System (FES) which applies
knowledge of nutritionists, health data of an individual,
personalized nutritional recommendation, and a meal
diary with food composition data to balance a diet.  FES
generates a set of foods and beverages which should be
altered in the diet with information on the direction and
importance of the change. This paper presents a
selection and a development of an optimization
algorithm to be integrated with FES to provide easy to
follow nutritional guidance. The selection process is
carried out as a literature review. The development of
selected Genetic Algorithms (GA) is carried out as an
integrated part of Nutritional Guidance application,
Nutri-Flow®, since FES generates the search space, and
is an important part of a Fitness Function of the
optimization algorithm. The selection of the design
parameters, are described and the test results are
presented. Validation of the overall model is carried out
with an expert analysis and comparison of the nutrient
intake from the initial diet and recommended diet.

Keywords: genetic algorithms, optimization, nutritional
guidance

1 Introduction
Personal dietary guidance is an important tool for
achieving global and national targets of the battle on
non-communicable diseases caused by lifestyle habits
on diet and physical exercise (Heinonen, 2009).
Micronutrient malnutrition due to eating habits is
getting common while non-nutrient dense energy rich
foods are getting common in diets (IFPRI, 2016).

The Internet is filled with calorie calculators and
other similar applications which calculates energy and
nutrient intake levels according to a meal diary. Average
consumers cannot balance their diets by knowing which
micronutrients should be added to balance the diet.
Traditionally, a licensed nutritionist is needed to convert
the nutrient level information into foodstuff level
information as a meal plan. (Heinonen, 2009)

Nutri-Flow® Software gives personalized dietary 
guidance on the foodstuff level as foods and beverages 
by applying a national food composition database, 
national nutritional recommendations with personal 
health data and eating habits. Fuzzy logic handles the 
uncertainty and imprecise values, and the mapping from 
the nutrient level to foodstuff level is carried out with 
Fuzzy Expert System (FES), which contains licensed 
nutritionists’ knowledge in a rule base. (Heinonen et al., 
2009) 

Optimization in Nutri-Flow® Software is needed to 
find a level of change for a set of foodstuffs to reach a 
more balanced diet. A type of an optimization problem 
usually defines which optimization methods are 
applicable within the problem domain. (Heinonen, 
2009) 

Direct search is one approach to solve optimization 
problems which have non-differentiable or 
discontinuous objective functions. Most traditional 
optimization methods require gradient or higher 
derivatives from the objective function to work 
properly. (Kolda et al., 2003) 

Heuristic search is a set of optimization methods with 
rules to guide the optimization process towards to the 
global optimum. Genetic Algorithms (GAs) belongs to 
the heuristic search group. The theory was invented in 
1975 and GA implements the concept from Darwinian 
principle of natural selection (Darwin, 1859). The 
terminology in GA is closely adapted from natural 
genetics (Holland, 1975). A solution is called a 
chromosome, which has locus bind variables. The 
solution can be coded in a binary form, but with many 
real world problems high precision makes chromosomes 
very long, and it gets inefficient. (Davis, 1991) 

A set of solutions or a population is put in a 
competitive environment where each chromosome has a 
fitness value evaluated by an objective function 
(Holland, 1975), (DeJong, 1993). In every iteration 
round, GA operators are applied to the population. A 
crossover operator combines genetic materials of 
selected chromosomes creating a new population. 
Mutation operation makes random variation in the 
population to prevent the optimization process from 
stopping at local minimums. (Holland, 1975) Since the 
theory was published, several GA operators have been 
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developed with variations according to the current 
optimization problem (Goldberg, 1989a) 

This paper presents the GA optimization model 
developed for the Nutri-Flow® Software. 

2 Selecting an Optimization Method  
The type of optimization problem is the key to selecting 
an optimization method. In this study, the optimization 
problem has a large amount of variables and there are 
several solutions which are almost equally good. 

To form a mathematical function in this problem 
domain is challenging and time consuming. It is possible 
to calculate gradients at certain points, however the 
system is not continuous due to its nature. Based on this, 
traditional optimization methods are not selected for 
testing. 

Direct search can be used with an optimization 
problem domain where is no gradient or higher 
derivative available. It works also with non-continuous 
problem space. (Kolda et al., 2003)   In the optimization 
problem of this study, it might be possible to use direct 
search to find a single solution. This needs further 
testing. 

A real-coded GA has solutions available as a set of 
comparable solutions. After evolving a population - the 
set of solutions - the set of the best options is available 
in the solution domain already without a mapping 
function. (Man et al., 1999) 

The stochastic nature of GA with crossover, 
mutation, and elitism operators the optimization process 
is not easily stopped at local minimums. It is argued that 
real-coded GA does not always reach the best result. 
However, the real-coded GA is widely used with real 
word optimization problems. One example of this is 
represented in (Le and Kim, 2011). 

There are also other Evolutionary Programming 
algorithms, e.g. differential evolution, which could be 
used in the optimization problem domain of this study. 

3 Genetic Algorithms 
Genetic algorithms are based on processing of a 
population of coded solution alternatives. 

3.1 Chromosome Coding 
A chromosome in GA represents a possible solution for 
the optimization problem. The size of search domain 
and accuracy level of result are used when evaluating if 
the coding should be done in the binary or real-value 
domain. (Goldberg, 1989a) 

 Real-value coding is used widely with practical real 
world optimization where the search domain is usually 
large and required high accuracy, where the binary 
coding would be inefficient with extremely long 
chromosomes. The solution domain is applied in real-
value coding thus no result mapping is needed. It has 

been argued that the real-value coding does not always 
yield good results. (Man et al., 1999) 

3.2 Population 
A population is a term for a set of chromosomes. The 
best solution should be found by evolving the 
population by applying GA operators. In this process, 
the size of the population has an effect on convergence 
speed and reaching the global optimum. The population 
size can be fixed or it can vary throughout the 
optimization process. (Goldberg, 1989b) 

Too small a population does not have enough 
diversity to evolve towards the global optimum. Longer 
the chromosome, bigger the population should be. 
(Goldberg, 1989b) When the population size is too big, 
the evolving needs more iteration rounds to reach the 
best solution. This affects the computing time with a 
slow convergence rate. (Affenzeller et al., 2007) There 
are statistical methods for generating the initial 
population, however it is usually generated randomly 
(Reeves and Rowe, 2002). 

3.3 Crossover 
Crossover operators evolve population towards better 
solutions by distributing good genetic matter between 
generations. Crossover starts with selecting parents by 
using a selection method, usually by the roulette wheel 
selection method (Sorsa et al., 2008) or by the 
tournament selection method (Goldberg, 1990). 

Good genetic material is found into mating pool by 
selection methods since probability for selecting the 
fittest parents from the population is higher than for the 
worse ones. This is the basis how better solutions are 
found on every iteration round. (Sorsa et al., 2008) 

The tournament selection method is based on 
randomly selected chromosomes from the population, 
and the chromosome with the best fitness value is 
selected. The tournament size k defines how many 
chromosomes will be selected from the population. 
Typically, value for it is 2. (Goldberg, 1990)  

After a mating population is formed by a selection 
method, a crossover operator is applied. A design 
parameter for the crossover operator is crossover 
probability pc, which determines if the current parent 
chromosomes are combined with the crossover operator 
or if they are moved directly to the offspring population. 
(Man et al., 1999) 

With real-value coded chromosomes, uniform and 
non-uniform crossover operators can be applied. Where 
uniform operators act in the similar way in every 
generation, and non-uniform operators work depending 
on the age of the population. Two offspring from two 
parents are formed by an arithmetic operator as follows: 

 

,)xα(1xαy 2
ii

1
ii

1
i   (1) 

EUROSIM 2016 & SIMS 2016

56DOI: 10.3384/ecp1714255         Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



,)xα(1xαy 1
ii

2
ii

1
i   

where αi are uniform random numbers. α can vary in 
non-uniform crossovers, and is constant in uniform 
crossovers. (Sorsa et al., 2008). New crossover 
operators are developed actively (Gegúndez et al., 
2007). 

3.4 Mutation 
Mutation is a GA operator which creates a random 
variation in the population. It maintains the population 
diversity by generating new genetic material. With 
correct design parameters, mutation prevents GA from 
stopping at local minimums. (Sorsa et al., 2008) 

Uniform and non-uniform mutation operators can be 
used with real-coded chromosomes. The uniform 
mutation operator can be applied for each gene in a 
chromosome using the same mutation probability where 
initial population is 𝑥௜

௧ = 〈𝑣ଵ, … , 𝑣௡〉, after a mutation 
operation with 1≤n it becomes 𝑥௠

௧ = 〈𝑣ଵ, … , 𝑣௞
ᇱ , … , 𝑣௡〉. 

The random value for v’k is in a feasible range for the 
locus k. (Michalewicz, 1996) 

One of the most commonly used non-uniform 
mutation operator is the Michalewicz’s non-uniform 
mutation (Michalewicz, 1996), where the mutated 
element v’k is calculated by 
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Mutation probability pm controls the mutation 
operations. When using too big values for pm, good 
genetic material can be lost and the convergence rate 
slows down. With very low values, there is little or no 
effect on the population.  

3.5 Elitism 
When altering the genetic pool of a population with GA 
operators, there is a possibility to lose the best solution 
of an iteration round. The elitism operator is designed to 
save the best chromosome and transfer it to the next 
generation. This is done usually by replacing the worst 
chromosome from the new population with the best 
chromosome from previous population. (Man et al., 
1999) 

4 Genetic Algorithms in Domain of 
Dietary Optimization 

In this study, the GA optimization is an interconnected 
module in Nutri-Flow® Software as represented in 
Figure 1. Nutri-Flow® Software has a database where 

personal dietary habits and personal health data are 
stored when filled in. A nutritional state of a diet is 
assessed and the guidance is mapped to foodstuff level, 
e.g. as foods and beverages. (Heinonen et al., 2009) 

FES has two hierarchical levels representing main 
and sub-groups in the classification of foodstuffs in 
Nutri-Flow® Software database. The input consists of 30 
nutrient variables and the output of FES has 129 
variables, including 87 sub-groups of foodstuff 
classification and 42 foodstuff variables. The rule base 
in FES has 590 rules on the first hierarchical level, and 
400 rules on the second level. (Heinonen, 2009) The 
expertise is introduced with the rules. Development of 
FES is presented more detailed in (Heinonen, 2009; 
Heinonen et al., 2009). 

               

Figure 1. Schematic model of Nutri-Flow® software 
(Heinonen, 2009). 

The output of FES is used to form a search space for 
GA. An initial population is generated randomly using 
the search space. A gene in a chromosome represents a 
foodstuff with recommended daily intake level. A 
chromosome represents a dietary recommendation in 
foods and beverages with their recommended daily 
intake levels. 

An objective function is formed to analyze the fitness 
of the chromosomes. The recommendation takes into 
account also personal taste and allergies with the 
nutritional status. 

A diagram of the GA optimization process is 
presented in Figure 2. Because the initial population is a 
random set, it is recommended to run GA optimization 
several times with a new initial population. GA in the 
Nutri-Flow® software is set to run 10 re-runs with a new 
initial population each time. All the best solutions of the 
last population of each GA re-run are stored, and the 
best of the best is used to form the dietary guidance. The 
selection of GA re-runs and other GA design parameters 
are described later on this paper. 
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Figure 2. The GA Optimization process.    

5 Developed Model 

5.1 Search Space 
The search space is formed according to the output of 
FES. The output stores the information about the foods 
to be added or reduced with the importance of the 
change. There are three different sets of foodstuffs in the 
output: “reduce”, ”no change” and “add”. 

There is a need to assess feasible ranges of daily 
intake levels for the foods, because the initial population 
is generated randomly within the given intake range for 
each food. The intake range for foods to be reduced is 
formed as [0, i], where i is the initial intake level. The 
foods, which have no need to be changed, will be kept 
at the original intake level, i. Foods to be added have a 
range with [i, m], where m represents a recommended 
maximum intake level, defined by licensed nutritionists. 
If no preset for maximum intake is present, the 
maximum value is evaluated from the initial intake 
level.  

The search space has an effect on performance and 
calculation time of Nutri-Flow® software. If the initial 
population is biased due to infeasible range of intake 
levels of foods, is the convergence of the fitness value 
slow, and the global optimum might never be reached. 

5.2 Objective Function 
In this study, the objective is to minimize the fitness 
value. The objective function uses FES to determine the 
nutritional status of a solution. FES fuzzifies the nutrient 
and gives membership grades for each fuzzy 
membership function. The goal is to minimize “too 
little” and “too much” membership grades µ. The FES 
membership functions are represented in Figure 3. 

Personal nutritional recommendations for 30 
nutrients are used to tune the membership functions, 
data points A, B and C presented in Figure 3. The data 
points A, B and C represent Lower Intake level (LI), 
Recommended Intake level (RI), and Upper Intake level 
(UL), respectively (Heinonen, 2009). 

There is no need to use normalizing function for each 
nutrient input levels since membership grades are 
already normalized to [0,1]. 

 

Figure 3. FES Input Membership Functions (Heinonen, 
2009). 

There are also other objectives to be minimized 
which are represented in the objective function as 
follows: 

  
n m p

pmnunnln kcdbulaMIN
1 1 1

,, ),||)((   (4) 

where a is weighting coefficient for nutrition status 
ln is weighting coefficient for importance of 
nutrient n at “too little” condition, 
µl,n  is membership grade for “too little” 
membership function for nutrient n, 
un is weighting coefficient for importance of 
nutrient n at “too much” condition, 
µu,n is membership grade for “too much” 
membership function for nutrient n, 
b is weighting coefficient for level of change 

 dm is distance from current diet for foodstuff m 
c is weighting coefficient for importance level 
of other variables 

 kp is other diet related variables. 
 
The first term represents the difference between the 

recommended nutrient intake level and the current 
intake level in the fuzzy domain. According to licensed 
nutritionists, some nutrients are more important in 
keeping close to the recommendation level than others. 
The weighting factors ln and un are used to emphasize 
the importance of the nutrient according to intake level. 
The weighting factors are tuned by licensed 
nutritionists. In this study, 30 nutrients are taken into 
account when assessing the individual nutritional state. 

Smaller steps are usually easier to follow when 
changing eating habits. The second term is a measure 
how much a chromosome would change the initial diet. 
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It measures an amount of foodstuffs to be changed and 
the magnitude of the change. The weighting factor b is 
used to tune the level of change, and can be altered by a 
user through the user interface. If the value is set to 0, 
the magnitude of change is not taken into account. 

The third term contains other measurable variables 
needed in dietary guidance, such as vegetable intake 
level and energy intake level. Other non-nutritional 
variables can be used too when these are used to fine-
tune the recommendation. These should not have an 
advert effect on the nutritional status of the diet. 

5.3 Coding 
It was found out already in (Heinonen, 2009) that binary 
coding is not a good option to perform GA in this 
problem and solution domain, therefore the real-valued 
coding was selected. With real-valued coding, a gene 
stores a name of a foodstuff with a daily intake level: “a 
slice of rye bread”, “20 g”. The length of a chromosome 
depends on the variation of food beverage items in the 
meal diary during the period to be evaluated, therefore 
the length of the chromosomes is not fixed. 

According to licensed nutritionists, with a 
recommended three to seven day period of meal 
tracking, there are average 20 different food items. 
Similar foods are combined when assessing daily intake 
levels. To confirm this, there is a need to do statistical 
evaluation on the meal diary database. 

5.4 Population Size 
While the chromosome size is not constant, the 
population size can vary throughout the different 
optimization run. In this study, the population size is 
kept constant at 100. 

Population size has a strong effect on computing time 
when the size is too big as shown in (Heinonen, 2009). 
The effect on varying population size can be monitored 
through computing time, convergence rate, and the final 
result. 

5.5 Crossover 
Arithmetic crossover and tournament selection are used 
in this study. The design parameters for tournament 
selection are crossover probability pc and tournament 
population size ps. The selected arithmetic crossover is 
uniform. 

Different values for pc and ps are tested while other 
GA design parameters kept fixed. The performance of 
the overall system is monitored via test parameters such 
as the convergence rate of the best and average solution, 
and fitness of the best solution. 

5.6 Mutation and Elitism 
The mutation and elitism operators are applied in this 
study to prevent the optimization process from stopping 
any local minimum. Elitism is used to prevent of loss 
the best solution during evolving the population. 

Mutation probability mp is evaluated with different 
value ranges while other parameters kept fixed. The 
overall system is monitored with the same parameters as 
crossover, the convergence rate of the best and average 
solution, and the fitness of the best solution. 

Elitism is set to keep the best solution of the current 
population and replace the worst solution from the 
offspring population. In this study, the elitism operator 
replaces only one chromosome in the offspring 
population. 

5.7 Additional Parameters 
Each diet and goal are different when assessing personal 
dietary guidance. There is no way to set a global fitness 
value when the optimization process should be exited. 
The guidance should be able to follow without too 
drastic changes in the diet. Therefore, there are 
additional parameters in the objective function to make 
the guidance easier to follow. 

There should be a certain exit point for the 
optimization process, which is executed using a counter 
for iterations. Too small a value for the counter would 
stop the optimization process too early with a poor 
result, and a too large number would just waste 
computing time. The optimum value for iterations can 
be found when the main design parameters are tuned 
first. The optimization process can be stopped when the 
best possible solution is not changing with a certain 
amount of iterations, but the average fitness value still 
evolves. In this study, the exit point for iterations is a 
fixed number, but in the future, the algorithm could 
analyze the convergence speed of the best solution vs. 
average solution and stop it when evolving for the best 
solution is not detected. 

The initial population of GA is random. There is a 
possibility that the solution set has very bad fitness 
values or has too low a variation between the solutions. 
This could prevent GA to find the global optimum and 
cause a stop at a local minimum. This can be prevented 
to re-run GA with new initial population as presented in 
Figure 2. The rate of GA re-run should be set high 
enough. This multiplies the amount of iterations, thus 
has a direct effect on the computing time. A fixed value 
for the re-run rate is used in Nutri-Flow® software. The 
testing of the effect of rate on the re-runs requires a big 
set of meal diaries, hence it will be done later. 

5.8 Java Genetic Algorithm Package 
Nutri-Flow® software is currently written in Java and it 
applies JGAP – Java Genetic Algorithm Package library 
which provides the GA operators with all necessary 
design parameters. 

Validating Nutri-Flow® software is done with data 
sets run in Nutri-Flow®, and in Matlab® model. The 
Nutri-Flow® software is working correctly if the same 
input generates the same output. GA needs a special 
focus, since optimization results with one input could 
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create several different outputs. Generally, there are 
several different ways to alter initial diet to achieve a 
certain balanced diet. Validation of GA module requires 
a large set of test runs with the statistical and nutritional 
analysis of the result set. 

5.9 Data Acquisition 
To keep the results comparable throughout the 
development work of Nutri-Flow® software, there is a 
set of individuals and data of their dietary habits. The 
test data represents different average dietary habits from 
fast food diet to vegan diet. The set of individuals 
contains male and female persons with different health 
profiles from athlete to pregnant women, and slim to fat 
inactive persons. 

The used test data is suitable for testing GA 
optimization performance on the current problem 
domain. Data acquisition is done using Nutri-Flow® 
software. All the test variables of GA optimization 
process are saved to a text file and all the numerical data 
is analyzed with Excel or Matlab® which also provides 
a good platform for testing new calculation ideas. 

6 Results and Discussion 

6.1 Overall Performance of Nutri-Flow® 
software 

Nutri-Flow® software provides the output as dietary 
guidance. Also the performance of GA is recorded 
separately to provide numerical data for analysis. The 
overall performance of the system is analyzed by 
licensed nutritionists. 

When a person applies the recommended actions to 
the initial diet, the result must lead to a better state of 
nutrition. This can be analyzed numerically by 
comparing personal recommendations with the 
nutritional state of the recommended diet. The 
comparison should be done also in the fuzzy domain, 
since the values include uncertainty and imprecision. 
The formed dietary recommendation should be also 
feasible with recommended foods and their portion sizes 
and with level of change. For example, nobody would 
like to eat three tablespoons of cinnamon. 

Results of the overall performance are promising. All 
the requirements are met numerically evaluated. 
However some of the recommended changes in diet 
were controversial, since there are expectations that 
some foods are healthier than others. Some healthy 
considered foods were recommended to reduce while 
some other foods were recommended to increase. After 
a review of licensed nutritionists, also the controversial 
guidance has been accepted, since the healthiness of a 
single foodstuff depends on the individual overall diet, 
not on the health claims on single food. 

The tests revealed that, there are cases when GA is 
not working. Optimization with very limited diets with 
strong dietary limitations did not lead to any result. The 

reason is that, there was not enough variation in the 
population to find a feasible result. Other case was with 
very balanced diets. The initial diet was already so close 
to the recommendations that GA did not always find any 
better solution. 

A statistical approach with a large set of individuals 
and meal diaries is needed to get more comprehensive 
data to analyze the performance of the overall system 
generally. 

6.2 Population Size 
According to previous contextual testing, the population 
size was set a fixed value, 100 individuals. There is a 
need to carry out more tests to show that selected 
population size is adequate for varying chromosome 
size. This could be done with the planned statistical 
testing for the overall system. 

However, a population size more than 1000 will lead 
to longer computational time, which might affect the 
usability of the service. With current test data, global 
optimum is reached with current design parameters with 
all test cases. 

6.3 Crossover 
In this study, only uniform arithmetic crossover with the 
tournament selection method was analyzed. Parameters 
crossover probability pc and tournament population size 
ps are tested with population size 100. The best working 
values for the parameters are 0.8 and 2 for pc and ps, 
respectively. The test was run with the same data set as 
with the population test. 

6.4 Mutation and Elitism 
The same initial test data was applied also with testing 
mutation and elitism. The population size with this test 
was kept fixed at 100, and pc and ps to 0.8 and 2, 
respectively. Too big a value for mutation probability mp 
slows the convergence rate as it affects the better genetic 
material more probably. The value 0.02 was selected. 
According to the data, the best value for mp was 0.02. 

Test runs show that running GA operators without 
elitism will lead us to lose some of the best solutions 
during the evolving of the population. This can be seen 
in Figure 4 where the trend line has peaks for both, the 
average fitness value and for the best fitness value. 

 

Figure 4. GA optimization without elitism operator. 
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6.5 Additional Parameters 
According to the overall assessment with the numerical 
data of iterations, the best solution was reached with 
most of the test data within 100 iteration rounds. It is 
possible to create a self-monitoring feature to stop 
iterations when no better solutions are not found after a 
certain amount of iterations. 

The initial population is created with random values 
within the given range. Sometimes it leads to a bad 
population which does not lead to the global optimum. 
GA should be run several times to find the global 
optimum. In Nutri-Flow® Software GA is run 10 times 
at the moment. This needs also further testing with a 
larger test set. 

7 Conclusions 
The nutritional guidance tool combines expertise with 
extensive food composition data through optimization. 
According to the overall assessment, the results are 
promising. All the requirements were met except two 
cases where no result was found at all. The real-coded 
chromosomes with GA operators such as crossover, 
mutation, and elitism can be used in the domain of 
dietary guidance when the search space is formed by 
FES. The objective function is crucial in comparing the 
results. When nutrient intake levels are handled in the 
Fuzzy domain, the imprecision and uncertainty can be 
taken into account, too. 

The feasible result and a short computation time are 
essentials to make the Nutri-Flow® software usable. The 
validation of the system was carried out with expert 
knowledge, comparisons of nutritional status, and 
monitoring the key features of GA performance. There 
is a need to carry out more intensive testing with a large 
test data set. Also other optimization methods suitable 
for this problem domain will be tested. 
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