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Abstract information as well as technical constraints into the pre-
diction. Moreover, the controller’s optimisation targanc

The management of modern large buildings’ energy syRclude conflicting objectives expressed in thermal com-

ply systems (ESS) demands the maximal usage of rengyyt and economic trade off. However, modelling of build-

able energy sources at minimum energy costs while magly systems is a crucial part for predictive building cohtro
ing the energy demand of the consumption zone. Bulilgbrivara et al.2013.

ing ESS for heating and cooling usually consist of various

supp_ly circuits With geveral energy sources.and djffereF% systems (ESS) aims at a maximal usage of renewable
physical characteristics, po§S|ny mcorporatln_g swifigh energy sources at minimum energy costs. Energy supply
aggregates (heat pump, chiller) with latency times ands%stems (ESS) of large buildings usually consist of var-

tratified storage which change their operating state MNatis supply circuits of different physical characteristic

discontinuous fashion. Hence, these circuits can be Stifdluding heat exchangers and continuous pumps or ad-

as hybrid systems whose modelling as well as Opt"%l’tionally switching aggregates such as chillers or heat

The efficient operation of large buildings’ energy sup-

;eglon are defr;]ar;_dlng. MOd?' p:ﬁd'cn\f (;on;roller]cs (M mps with successive active energy storage, e.g. strat-
) are an effective means for the optimisation of su d storage tanks. Obtaining accurate models of latter

problem formulations with divergent goals. The ProposSeBsiems is difficult,l(iu and Henze2004), since stratified

modular predictive control concept (MPCC) is deSigf?% orage is operated in either charging or discharging mode

for a erX|bIe_ usage in ESS building automation add.”Wnich is directly influenced by the state of the aggregate
one appropriate MPC for each supply circuit includin d its limitation of minimal up and down times. Due

mixed-integer MPCs to the individual building’s controo the mixture of continuous and discrete variables hybrid

structure. The resulting MPCC is capable of MaxIMISING, jels are suitable to approximate those systems. The ef-

the usﬁage o;_rgnet\l/vable energy S(.),[ULC.GS at mmmlum $8Ent control of hybrid systems is challenging. For the
as well as efficiently managing switching aggregates Wil ication within a predicitve controller with quadati

active storage. Suitable modelling of the linear and hyb Qget this leads to a constrained mixed-integer quadrat-

systems is demonstrated and validated on the examplc?c roblem (MIQP) at each time step. This can either be

?:_argetofdflcehbundltr;]g N A]:ustrla. Furftr:r?rmore,lt_a S'&] olved by a dual stage procedure where the storage tank
aton study shows the performance ot the resuiing Mrgperation mode profile is firstly fixed and the remaining

concept com.pa.red to a rule-based controller. ' QP solved in a second stepM4 et al, 2009, or in a s-
Keywords: building energy supply system, model predic-  ingle step e.g. by using a branch and bound algorithm,

tive control (Mayer et al, 2016.

: The classic approach to controlling buildings, especial-
1 Introduction ly ESS, is rule based control (RBC) due to its simplici-
Building control has become an important field sind¥ However, RBC does not allow advanced management
the building sector is responsible for about 40% &f €.9. active storage. Advanced control approaches of
the total energy consumption in developed countriég€ recent years propose one single MPC controlling the
(Pérez_Lombard et a|2008 Therefore1 an increasinﬁntire bUIldIng ComprISIng the bu”dlngS' zone Contl‘0| as
effort has been put both on the development of eneNy§!l as the energy supply optimisatio@Ifewurtel et al.
saving building physical structure such as passive heat#}j-2 Privara et al.2013. While the operation with one
and cooling systems and on energy efficient building oglobal MPC would guarantee optimality, it is too rigid for
eration techniques. Model predictive control (MPC) happlication in industrial building automation.
been proven as a promising technology for such buildingThis work introduces a modular predictive control con-
systems in recent yearsSitoky et al, 2011), with the a- cept (MPCC) for the energy supply level using ded-
bility of incorporating most influential quantities such aisated predictive controllers for the respective circuit-
weather forecastsQldewurtel et al.2012), or occupancy s’ physical characteristics. Basic circuits with heat
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exchangers and continuous pumps can be approxinzatt Building Setup

ed by linear state space systems, whereas the hybrid = L o .

models are represented by piecewise affine (PWA) sy&€ building whichis presented in this work is a 27.660
tems. Al models are analytically derived based niversity building in the center of Sa!zburg, Austria.
thermodynamic principles and energy balance equatidnas five floors above ground containing several large
s, Berkenkamp and Gwerde2014 Mayer et al, 2015. and numerous smaller meetlng_ rooms, offices and lec-
The overall structure is capable of optimising heating affff€ rooms. For this work focus is put on the second and
cooling supply at minimum cost and maximal usage H}wd floor, which comprise of a_bout 500 rooms of some
renewable energy sources. Furthermore, an efficient mi:000"> almost all used as offices. Both floors are sup-
agement of the active storage connected with the swit@j€d by Fan Coils (FC) and a Thermal Activated Build-
ing aggregate is guaranteed due to the application of a 9§S System (TABS). The ESS of this building consists of
icated mixed-integer MPC (MI-MPC). The MPCC is del€ating and cooling supply circuits for FC and TABS, see
signed to be embedded into a hierarchical building contfdpuré1- The FC supply is splitinto cooling supply based

structure, decoupling the energy consuming office level Storage
(OL) from the energy supply system level. In the OL a Chiller ~ FCcooling
predictive controller is assumed to maximise user com- . mSTCmFC ©
fort while minimising the supply energy respecting distur- Cooling: | g % S
bances, e.gKillian et al., 2015. It thus provides the ref- < et T
erence trajectory for heating and cooling power for the M- - ™)

/58

PCC. The modularity of the MPCC enables a flexible ap- =< _*——Tm; ©
plication in industrial building automation using dediect Mo Heat Exchanger §

/A
models and MPCs allowing separate implementation and / é () T
District heat

tuning. The main contributions of the paper therefore are:

— FC heating
Heat Exchanger

e A modular predictive control concept (MPCC) for (@) FC circuits including free cooling, the chiller, andtdist heat.
building energy supply systems (ESS) maxir_ni_sing _ Storage ¢ et
the usage of renewable energy sources at minimum Heat Pump 'THP §
il

cost. = ] TABS

e Supply circuits with switching aggregates and strati- peoma < J q
fied storage are modelled as hybrid systems and con: / 3
trolled by MI-MPCs aiming at an efficient manage-
ment of aggregates and storage. md __J

Heat Exchanger Heat Exchanger

. . L. . - (b) TABS circuits including geothermal source and the heatp.
e Flexible application in industrial building automa-

tion leading to an application specific control arCh,figure 1. Energy supply circuits for cooling and heating of the
tecture. University building in Salzburg, Austria.

e A simulation study showing the performance of thg, free cooling and chiller circuit and heating supply from
proposed MPCC compared to a rule-based controlige gistrict heat. TABS has only one piping system sup-
applied to a demonstration building in Austria.  pjied by the geothermal source and is routed via the heat

pump circuit in case of heating.
The remainder of this paper is structured as follows: In Lo
Section2 the demonstration building setup as well as te2 Modular Predictive Control Concept

overall control structure is given. The building models fofhe modular predictive control concept (MPCC) general-
the ESS dedicated for the different MPCs are explaingdconsists of independently acting MPCs with the same
in Section3, whereas the predictive controllers are intrqarget - one MPC for each supply circuit comprising the
duced in Sectiod. The simulation results for the demongorresponding energy source as well as the supply sys-
stration building are shown in Sectigrand finally, & con- tem of the building. Basic circuits consisting of heat ex-
clusion is drawn in Sectio6. changers and continuous pumps can be approximated by
. linear models. Consequently, linear MPCs (LMPC) are
2 Modular Model Predictive Control applicable in this case. However, if switching aggregates
Concept have to be considered, the predicitve controller not only
has to optimise the continuous manipulated variables but
Within this Section the building setup and the overall Malso the discrete aggregate’s switching state. Moreover,
PCC for the demonstration building is given. the coupled active storage changes its operating mode in
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a discontinuous fashion depending on the switching in- Table 1. Nomenclature.

stance. Therefore, a dedicated mixed-integer MPC (MI-

MPC) is applied optimising latter circuits considered as— — -

hybrid systems. The control structure for the proposeyarlable Descf:lrlptflon - kU;“t

ESS, see Figurg, is designed according to the available T mass flow from cooling tower [ka/s]
fan speed of cooling tower [m/s]

energy sources and aggregates shown in Fig(agand cr

Figure 1(b) which distinguishes between FC and TAB- _2mP ambient temperature , [ZC]
S heating and cooling supply. For the FC cooling sys-FCr return temperature for FC cooling [*Cl
TeH supply temperature of chiller [°C]
Tam [Tecr [Toe, mMcH mass flow from chiller to storage [ka/s]
e s MsTc mass flow from storage of cooling circuit [Kg/S]
Cooling] | ! Toy supply temperature of district heat [°C]
Tower || | MpH mass flow from district heat [kg/s]
5 Chiller || | | Cor return temperature for FC heating [°C]
S Storagg i Thp supply temperature of heat pump [°C]
i § | _ District | | ] Myp mass flow from heat pump to storage [kg/s]
—O 2 % Heat LR o d MsTh mass flow from storage of heating circuit [Kg/s]
B e i g é MG mass flow from geothermal source [kg/s]
f= PS;p i ot ®0 9c difference geothermal supply, return temp[°C]
~9 Geothernﬂ;# = Qgef& reference heat flow for suppliyheating [kW]
System | Qgef" reference heat flow for supplycooling [kW]
smodoooo Q?Ct’Jr actual heat flow for supply heating [kW]
Y6 Q‘?Ct" actual heat flow for supply cooling [kW]
Figure 2. Control structure for cooling and heating circuits for | supply: TABS or FC
FC and TABS embedded into a hierarchical building control
structure.

tem an LMPC controls the free cooling circuit, whereahangers and continuous pumps preferably work around a

an MI-MPC manages the cooling supply from the chillerertain operating point. For the geothermal and the dis-

including a stratified storage tank. The FC heating supiet heat supply two linearised static models based on

ply is sourced by the district heat and controlled by thleose thermodynamic principles are analytically derived.

second LMPC. The TABS is supplied by the geothermahe geothermal model contains one manipulated variable,

source either used directly in the case of cooling or routéd, one disturbancedg, and the outpuQags. TheA-

via the heat pump and subsequent stratified storage tankaiiables denote the deviation of the variables to the op-

heating is required. Hence, an LMPC is active for coarating point and COPthe coefficient of the geothermal

ing and an MI-MPC for heating. Furthermore, the ES&rformance:

control structure is embedded into an overall hierarchic

building control structure with a predicitve controllerfo AQtags = CORs - cp:[Mg|,-Adc + Fcly-AMg]. (1)

the OL, e.g. Killian et al., 2015, which is responsible for T

providing a prediction of the required heating and cooling

power, Q'r:ecf:,+ respectivelyQLeé', for each energy supply The district heat model is derived in the same way and

system. All variables and parameters used are listed in Tantains two manipulated variablegy and mpy, one

ble 1 and the two types of MPCs are formally described fisturbanceT,, and the outpu@/:

Section4. ]

AQfc = COPbH - CP[MoH, - (ATon — ATee,)
N——

const.

3 Energy Supply Level - ESS - Models

In this Section the modelling strategy and structure for the +(ToH|,— TF*Cr]o) - Afpy]. 2
circuits of the ESS shown in Figulds given. Each circuit
is modelled individually. As depicted in Figurel(a) free cooling is based on

. the cooling tower. Free cooling is exclusively used if
3.1 Linear Models the chiller is inactive. The ambient temperatufigmp,

For building control aspects the achievable heating asnstrains the cooling tower’s operation for free cooling
cooling powerQ, of each supply circuit is relevant, whichwhich is also a main disturbance next to the return water
can be approximated by simplified energy balance eqtemperaturel ;.. Modelling cooling towers analytically
tions: Q = m-AT - cp, whereni denotes the mass flowaims at detailed complex models with non-linear dynam-
AT the difference of supply and return water temperas of high order which are not suitable for the usage with-
ture, andcp the specific heat capacity of water. Heat exa MPCs. Hence, black-box identification is expedient if
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historic data of the cooling tower in operation is availabld Model Predictive Controllers

Since the cooling tower can be operated at two fan speeds . _
g P P P]e formal description of the two MPC types used within
e

the MPCC and their common objective are given in this
) Section.

c(i)=¢i1- T, Ci2 Teer+Cis-n Ci 3 L .
Qec(l) = Ca-Tamb+ Gz~ Ter +Gia-Mer+Gia, - () 4 4 Objective Function

where the corresponding coefficiertig have to be es- The predictive controller for the OL, e.gKilian et al.,

timated within the black-box identification routine usin . .
historic data of the free cooling system. Note that tk%ms’ is responsible to guarantee user comfort by keep-

. - . i he in r temperature within rtain toleran
model in Eq. ) is linear in the parametesj, thus least g the indoor temperature within a certain tolerance at

squares methods can be emoloved for optimal param mir}imum energy demand. The objective for the ESS on
quares . ploy Pl P ?ﬁ other hand is to minimise the deviation to the required
estimation, (jung, 1999.

power and the energy costs.

3.2 Hybrid Models For all MPC implementations a quadratic optimisation
[get is used, where the deviation to the reference trajec-
ry of the cooling respective heating power is penalised
th factorQy. Furthermore, the energy costs represent-

i € {1,2}, the system can be approximated by two line
static models:

The chiller and the heat pump are switching aggregaig
with latency times, such that minimum up and down timé%

have to be respected, e.g. after switching on the agd’ty X ;
gate it must operate for a minimum up time until it can he by Qu caused by the manipulated variables are taken

shut off again and vice versa. Furthermore, the stratifi@(ﬁo aticount. B?k':h a(:]dlltlve te(;!“ts. ar(; cqn;;der?ﬂ foAr each
storage tanks can operate in two basic modes: char stept over the whole prediction horizdRp. TheA-

and discharging. Each mode is represented by a dedic éables agan o_Ienote the deviation ff.om the correspond-
model with continuous variables. The discrete switchifgg OPerating point. The formal description of the objec-

state of the aggregate (on/off},, specifies which mode Ve IS given by:

is exclusively active at each time. These operation modes Np-1

further depend on the difference of the mass flowsrio, ~  3* — min Z) HAQGeLAQ?ctHZ + ||Au(t)||é . (5)
and from,misTy, the storage tank whete= {CH,HP} de- = i !

notes the aggregate akd= {c,h} the cooling or heating

circuit, (Mayer et al, 2015. The hybrid dynamic models4.2 LMPC

contain three continuous statet), namely the thermo- the three LMPCs for this work have a quadratic optimi-
cline of the storagex(t), the temperature of the cold reygtion target as presented in EB).(They only differ in
spective hot watefi(t), and the cooling respective heatinghe model they rely on. The FC model for free cooling us-
powerQj(t). The three continuous manipulated variablegg 4 linear model with absolute inputs, whereas the TAB-
u(t), are the supply temperature of the aggregalts, the 5 geothermal model and the FC district heat model are a
mass flow from the aggregate to the storagét), and |ingarised model with- variables which denote the de-
the mass flow from the storage to the TABS or FC supRlyation from the corresponding operating point. All three
MsTk(t). lon(t) is the discrete manipulated variable rep-\pcs are implemented according to the receding hori-

resenting the switching state of the corresponding aggyg, strategy,Camacho and Alh2013.
gatel for each time. The continuous outpyit) = Qj(t)

denotes the cooling respective heating power for the sép3 MI-MPC

ply j to the building. For each operating mode a modg| Section3 the hybrid models for the chiller and the heat
is firstly analytically derived through first order differenpump circuits are motivated. The objective is given in Sec-

tial equations and secondly linearised at a fixed operatigh 4.1 The corresponding constraints are:
point. The non-linear dynamics can then be approximated

by a hybrid system state-space formulation with discrete PWA model as given in Eq4,

as well as continuous inputs represented by a piecewisq%(t) € {0,1} (63)
affine (PWA) system: T
_ Z an(t) =1, (6b)
X(t4 1) = Apx(t) + Bhu(t), if dn(t) =1, (4a)
y(t+1) =Cx(t), (4b) Umin < U(t) < Umax, (6¢)
where the binary variable®(t) € {0,1}, vh=1,..,3,are  Xmin < X(t) < Xmax, (6d)
introduced to denote the status of the operation mode lon(t) —lon(t — 1) <lon(@up), (Off/On switch) (6e)
and the system matrices atg € R332 and By, € R34 lon(t — 1) — lon(t) < 1— lon(yown), (ON/Off switch) ~ (6f)

C=[0 0 1] forall three modes since the third state is

equal to the output. The explicit matrices for the chillefj € {TABS,FC} andl € {CH,HP}, whereumn andumax,
circuit model are given inNlayer et al, 2016, whereas respectivelyxmin and xmax, denote the the capacity lim-
for the modelling of the heat pump circuit the reader is of the manipulated variables and the physical bounds
referred to Mayer et al, 2015. of the stratified storage. The constraints on latency times
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with minimum up and down times are given in EGe 1200 by about 7TC. The green line depicts the technical
and Eq. 6f) with wyp=t,t+1,...,min(t+Np,t + T,"° — 1) ambient temperaure

if we consider the minimum up time ardyown = t,t + e —
1,...,min(t+Np,t+T,9%"— 1) in the other case. Eg6k) = ]
denotes that at each time only one hybrid mode can 5
active. Since the objective given in Ed)(is quadrat- =
ic the resulting optimisation problem is a mixed-integt .| "
guadratic problem (MIQP) to be solved each time sti, © = @ @ w5 e o e we w0 2w
t=0,---,Np—1. For this work a branch and bound al-. ) ) ) )
gorithm is applied, Mayer et al, 2016, which relaxes the gbgludfre 3. Ambient temperature profile starting with 1st Sept.
original problem by replacing integrality constraini8a) '

i.e. integer and particularly binary variables are allow®d ; it for the usage of the free cooling circuit.

span over the whole continuous interval, aiming at solving Figure4 shows the simulation results for the TABS cir-

many QPs and searching for the best solution. cuits, where according to the ambient temperature profile
in the first half of the simulation pferiod cooling is request-
(S

5 Simulation Results ed by the OL, represented iyfa5s. The temperature
In this Section the simulation setup is given. Furthermof@®read ofjg is sufficient to provide the required cooling
simulation results showing the performance of the MP€nergy only from the geothermal source, the manipulated
C are discussed and the comparison results to a simud@i¢ablem for the supply oQrags is given in the second

101

rule-based controller (RBC) are given. subplot. The heat pump is inactive over large parts of this
_ _ first simulation period which can be seen at the red line in
5.1 Simulation Setup the last subplot. From hour 1200 onwards heating is re-

~ref,+ .
The simulation for the demonstration building describ@d‘eSted by the OLQr,5s, and supplied by the heat pump

in Section2.1is based on a snapshot of historic data G cUit with perfect fit. The temperature of the water sup-

the implemented automation system for the disturban® f“’”? th? heat pump as yvell as the pumps of the heat

ambient temperature anf;. The simulation is shown PUMP circuit are presented in the second subplot.

from the beginning of September until the end of Novem- Figure5 shows the simulation rfesults forthe FC cfircuit-
sn@ef,- : ~ref,+

ber 2014. The comparison between MPCC and RBCSis The references for coolin@r", and heatmgQFeC ’

given for all seasons 2014. The prediction horingnfor &€ computed by the OL controller. The first subplot

all predictive controllers is 12 hours and the sampling tin?gowéth.e pgrformarr:ce of thg MIAME.% andb LIMPES for

is one hour. The return water temperature for the cooliHE FC circuits. In the second and third subplot the ma-

FC circuit, T, is 20°C, whereas for the heating circuif Pulated variables are presented. The red lines denote
the return water temperatufB., is 24°C. The two strat- the contributions to FC heating supply of the district heat
r '

ified storage tanks have a volume of almost#@ach circuit, whereas the blue and grey lines show the temper-
"~ ature and mass flows for the chiller circuit. The green

5.2 Demonstration of MPCC Performance line in subplot three depicts the mass flow of the pump

The simulation studv shows the performance of the rfrom the cooling tower of the free cooling circuit. The last
imutatl udy W P P Ibplot indicates which cooling circuit is active. Note,

posed modular MPC concept for the demonsiration bui at free cooling is always active if the technical conditio

ing. For this work, the power demand trajectorieﬁ . : :
) o ) “Tamb < 18°C is fulfilled. Since the energy demand for the
are given by the OL predictive controlier introduced IQooling FC circuitis low, the chiller is not regularly aatiy

.(K'"'aﬂ et a_I., 20|13 for b.Ot.h TABS an? FC suSppIK. S'even if free cooling cannot be activated. Due to the specif-
:;‘.Cf (tj ere 1s only olqe_ |c;|p|ng systﬁm or TAB re’f,_t e_pr?é hydraulic architecture of the demonstration building th
"_: & pf)ower IS split-in 9_ a negg Ve cgo mg.BTQfo ~  pump supplying the cold water from the stratified storage
min(Qfags. 0), and a positive heating trajecto@yags =  tank has to be activated if free cooling is not active. Thus,
max QfiAzs, 0). For the FC system the reference traject@-minimal deviation toQ(S™ has systematically be taken

ries are already split by the OL controller. The simulatiqAto account in these periods (see blue line in first subplot
for all MPCs, the LMPCs as well as the MI-MPCs, is rum Figures5).

simultaneously. However, for the FC cooling supply tw .

circuits are implemented but only one can be active aga3 Comparison between MPCC and RBC

time (either chiller or free cooling). Therefore, an addESS are conventionally controlled by rule-based con-

tional rule is applied which prefers the usage of the rgellers (RBC). The RBC of the demonstration building

newable energy source respectively of the correspondigglso simulated for comparison: Free cooling is also pre-

LMPC if the ambient temperature does not exceetC18 ferred but it may only be active if ambient temperature has
Figure3 shows the ambient temperature profile for tHeeen below 18 for the past three hours. The chiller has

simulation period from September to November 201t be switched on if the low storage temperature is higher

One can see a drop of the mean temperature after hitian 12C and switched off if it is lower thanCC.
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Figure 4. Simulation results for the TABS circuits starting with 1&g6 2014.
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Figure 5. Simulation results for the FC circuits starting with 1st 5&014.
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Compared to this RBC the proposed MPCC achiev8s Conclusions
an increase of free cooling hours of almost 5% in winter . . -
(January-March and December 2014) up to over 30%Tiﬁns paper introduces a modular predictive control con-
summer (June-August 2014). About 30% to 40% mofgPt (MPCC) for modern energy supply systems (ESS)
cooling powerQ is supplied via free cooling using the” 'afge .bUIIdlngS W'th several_energy sources and_sup-
MPCC. The number of transitions of the chiller from stafd¥ Circuits. Due to its modularity the concept is flexibly
off to on can be reduced by around 15% in summer ] plicable for industrial building’s ESS control, which is
to 60% in transition period (April-May and Septembeﬁ own ona.demonst_ration building in Austria.. The_result-
November 2014), which is equivalent to a significant rdl9 ('\:/IPCC mchd((ejs gf‘eaf g/lfPCsFlas \]:f\{e!l as m|xed|-|nft<la)ger
duction for maintenance cost for the aggregate. Tﬁblév.lp S (MI'MP ) edicated for the eflicient control of ba-
shows the precise figures of the MPCC in percentagest'ﬁ C|rCU|ts'respegt|ver .those with SWItChI'I"Ig aggregates
the RBC. Simulation results show the best results for tAC" @s chillers with active storage. The simulation study
shows that the proposed MPCC is able to accurately deliv-
Table 2. Performance of the MPCC compared to the RBC @I @ prescribed cooling respective heating power trajectory
percentage according to the seasons. at minimum cost and a maximal usage of renewable ener-
gy sources. The MPCC is capable to maximise the usage
of free cooling and - due to the MI-MPC - to efficient-

season | fc hours| Q viafc | chiller state trans. Iy manage the switching aggregates: compared to a RBC
winter 104.7 130.5 0.0 simulation results show an increase of free cooling hours
transition| 108.4 134.9 39.1 of up to 30% and a reduction of the chiller's transitions
summer | 132.6 141.2 84.8 from state off to on by up to 60% aiming at a consequent

decrease of maintenance cost depending on the respective
season of the year. Simulation results of the MPCC are
MPCC cooling supply during summer, where the predig]erefore very promis_ing for the future implementation in
tive character of the control concept is most effective coffi€ deémonstration building.

pared to the conventional controller. Acknowl ment
Relaxing the upper limit oT;mp < 18°C for the extend- cKno edg €

ed usage of free cooling leads to an average increasd dis work was supported by the project “SMART MSR”
mass flow of the cooling towencT at lower variance. Ta- (FFG, No. 832103) in cooperation with evon GmbH.
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