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Abstract
The management of modern large buildings’ energy sup-
ply systems (ESS) demands the maximal usage of renew-
able energy sources at minimum energy costs while meet-
ing the energy demand of the consumption zone. Build-
ing ESS for heating and cooling usually consist of various
supply circuits with several energy sources and different
physical characteristics, possibly incorporating switching
aggregates (heat pump, chiller) with latency times and s-
tratified storage which change their operating state in a
discontinuous fashion. Hence, these circuits can be seen
as hybrid systems whose modelling as well as optimi-
sation are demanding. Model predictive controllers (M-
PC) are an effective means for the optimisation of such
problem formulations with divergent goals. The proposed
modular predictive control concept (MPCC) is designed
for a flexible usage in ESS building automation adding
one appropriate MPC for each supply circuit including
mixed-integer MPCs to the individual building’s control
structure. The resulting MPCC is capable of maximising
the usage of renewable energy sources at minimum cost
as well as efficiently managing switching aggregates with
active storage. Suitable modelling of the linear and hybrid
systems is demonstrated and validated on the example of
a large office building in Austria. Furthermore, a simu-
lation study shows the performance of the resulting MPC
concept compared to a rule-based controller.
Keywords: building energy supply system, model predic-
tive control

1 Introduction
Building control has become an important field since
the building sector is responsible for about 40% of
the total energy consumption in developed countries,
(Pérez-Lombard et al., 2008). Therefore, an increasing
effort has been put both on the development of energy
saving building physical structure such as passive heating
and cooling systems and on energy efficient building op-
eration techniques. Model predictive control (MPC) has
been proven as a promising technology for such building
systems in recent years, (Širokỳ et al., 2011), with the a-
bility of incorporating most influential quantities such as
weather forecasts, (Oldewurtel et al., 2012), or occupancy

information as well as technical constraints into the pre-
diction. Moreover, the controller’s optimisation target can
include conflicting objectives expressed in thermal com-
fort and economic trade off. However, modelling of build-
ing systems is a crucial part for predictive building control,
(Privara et al., 2013).

The efficient operation of large buildings’ energy sup-
ply systems (ESS) aims at a maximal usage of renewable
energy sources at minimum energy costs. Energy supply
systems (ESS) of large buildings usually consist of var-
ious supply circuits of different physical characteristics,
including heat exchangers and continuous pumps or ad-
ditionally switching aggregates such as chillers or heat
pumps with successive active energy storage, e.g. strat-
ified storage tanks. Obtaining accurate models of latter
systems is difficult, (Liu and Henze, 2004), since stratified
storage is operated in either charging or discharging mode
which is directly influenced by the state of the aggregate
and its limitation of minimal up and down times. Due
to the mixture of continuous and discrete variables hybrid
models are suitable to approximate those systems. The ef-
ficient control of hybrid systems is challenging. For the
optimisation within a predicitve controller with quadratic
target this leads to a constrained mixed-integer quadrat-
ic problem (MIQP) at each time step. This can either be
solved by a dual stage procedure where the storage tank
operation mode profile is firstly fixed and the remaining
QP solved in a second step, (Ma et al., 2009), or in a s-
ingle step e.g. by using a branch and bound algorithm,
(Mayer et al., 2016).

The classic approach to controlling buildings, especial-
ly ESS, is rule based control (RBC) due to its simplici-
ty. However, RBC does not allow advanced management
of e.g. active storage. Advanced control approaches of
the recent years propose one single MPC controlling the
entire building comprising the buildings’ zone control as
well as the energy supply optimisation, (Oldewurtel et al.,
2012; Privara et al., 2013). While the operation with one
global MPC would guarantee optimality, it is too rigid for
application in industrial building automation.

This work introduces a modular predictive control con-
cept (MPCC) for the energy supply level using ded-
icated predictive controllers for the respective circuit-
s’ physical characteristics. Basic circuits with heat

EUROSIM 2016 & SIMS 2016

62DOI: 10.3384/ecp1714262         Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



exchangers and continuous pumps can be approximat-
ed by linear state space systems, whereas the hybrid
models are represented by piecewise affine (PWA) sys-
tems. All models are analytically derived based on
thermodynamic principles and energy balance equation-
s, (Berkenkamp and Gwerder, 2014; Mayer et al., 2015).
The overall structure is capable of optimising heating and
cooling supply at minimum cost and maximal usage of
renewable energy sources. Furthermore, an efficient man-
agement of the active storage connected with the switch-
ing aggregate is guaranteed due to the application of a ded-
icated mixed-integer MPC (MI-MPC). The MPCC is de-
signed to be embedded into a hierarchical building control
structure, decoupling the energy consuming office level
(OL) from the energy supply system level. In the OL a
predictive controller is assumed to maximise user com-
fort while minimising the supply energy respecting distur-
bances, e.g. (Killian et al., 2015). It thus provides the ref-
erence trajectory for heating and cooling power for the M-
PCC. The modularity of the MPCC enables a flexible ap-
plication in industrial building automation using dedicated
models and MPCs allowing separate implementation and
tuning. The main contributions of the paper therefore are:

• A modular predictive control concept (MPCC) for
building energy supply systems (ESS) maximising
the usage of renewable energy sources at minimum
cost.

• Supply circuits with switching aggregates and strati-
fied storage are modelled as hybrid systems and con-
trolled by MI-MPCs aiming at an efficient manage-
ment of aggregates and storage.

• Flexible application in industrial building automa-
tion leading to an application specific control archi-
tecture.

• A simulation study showing the performance of the
proposed MPCC compared to a rule-based controller
applied to a demonstration building in Austria.

The remainder of this paper is structured as follows: In
Section2 the demonstration building setup as well as the
overall control structure is given. The building models for
the ESS dedicated for the different MPCs are explained
in Section3, whereas the predictive controllers are intro-
duced in Section4. The simulation results for the demon-
stration building are shown in Section5 and finally, a con-
clusion is drawn in Section6.

2 Modular Model Predictive Control
Concept

Within this Section the building setup and the overall M-
PCC for the demonstration building is given.

2.1 Building Setup

The building which is presented in this work is a 27.000m2

University building in the center of Salzburg, Austria.
It has five floors above ground containing several large
and numerous smaller meeting rooms, offices and lec-
ture rooms. For this work focus is put on the second and
third floor, which comprise of about 500 rooms of some
13.000m2, almost all used as offices. Both floors are sup-
plied by Fan Coils (FC) and a Thermal Activated Build-
ings System (TABS). The ESS of this building consists of
heating and cooling supply circuits for FC and TABS, see
Figure1. The FC supply is split into cooling supply based
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(a) FC circuits including free cooling, the chiller, and district heat.
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(b) TABS circuits including geothermal source and the heat pump.

Figure 1. Energy supply circuits for cooling and heating of the
University building in Salzburg, Austria.

on free cooling and chiller circuit and heating supply from
the district heat. TABS has only one piping system sup-
plied by the geothermal source and is routed via the heat
pump circuit in case of heating.

2.2 Modular Predictive Control Concept

The modular predictive control concept (MPCC) general-
ly consists of independently acting MPCs with the same
target - one MPC for each supply circuit comprising the
corresponding energy source as well as the supply sys-
tem of the building. Basic circuits consisting of heat ex-
changers and continuous pumps can be approximated by
linear models. Consequently, linear MPCs (LMPC) are
applicable in this case. However, if switching aggregates
have to be considered, the predicitve controller not only
has to optimise the continuous manipulated variables but
also the discrete aggregate’s switching state. Moreover,
the coupled active storage changes its operating mode in
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a discontinuous fashion depending on the switching in-
stance. Therefore, a dedicated mixed-integer MPC (MI-
MPC) is applied optimising latter circuits considered as
hybrid systems. The control structure for the proposed
ESS, see Figure2, is designed according to the available
energy sources and aggregates shown in Figure1(a) and
Figure 1(b) which distinguishes between FC and TAB-
S heating and cooling supply. For the FC cooling sys-
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Figure 2. Control structure for cooling and heating circuits for
FC and TABS embedded into a hierarchical building control
structure.

tem an LMPC controls the free cooling circuit, whereas
an MI-MPC manages the cooling supply from the chiller
including a stratified storage tank. The FC heating sup-
ply is sourced by the district heat and controlled by the
second LMPC. The TABS is supplied by the geothermal
source either used directly in the case of cooling or routed
via the heat pump and subsequent stratified storage tank if
heating is required. Hence, an LMPC is active for cool-
ing and an MI-MPC for heating. Furthermore, the ESS
control structure is embedded into an overall hierarchic
building control structure with a predicitve controller for
the OL, e.g. (Killian et al., 2015), which is responsible for
providing a prediction of the required heating and cooling
power, Q̇ref,+

FC respectivelyQ̇ref,-
FC , for each energy supply

system. All variables and parameters used are listed in Ta-
ble1 and the two types of MPCs are formally described in
Section4.

3 Energy Supply Level - ESS - Models
In this Section the modelling strategy and structure for the
circuits of the ESS shown in Figure1 is given. Each circuit
is modelled individually.

3.1 Linear Models
For building control aspects the achievable heating or
cooling power,Q̇, of each supply circuit is relevant, which
can be approximated by simplified energy balance equa-
tions: Q̇ = ṁ ·∆T · cp, whereṁ denotes the mass flow,
∆T the difference of supply and return water tempera-
ture, andcp the specific heat capacity of water. Heat ex-

Table 1. Nomenclature.

Variable Description Unit
ṁCT mass flow from cooling tower [kg/s]
fCT fan speed of cooling tower [m/s]
Tamb ambient temperature [◦C]
T -

FCr return temperature for FC cooling [◦C]
TCH supply temperature of chiller [◦C]
ṁCH mass flow from chiller to storage [kg/s]
ṁSTc mass flow from storage of cooling circuit [kg/s]
TDH supply temperature of district heat [◦C]
ṁDH mass flow from district heat [kg/s]
T +

FCr return temperature for FC heating [◦C]
THP supply temperature of heat pump [◦C]
ṁHP mass flow from heat pump to storage [kg/s]
ṁSTh mass flow from storage of heating circuit [kg/s]
ṁG mass flow from geothermal source [kg/s]
ϑG difference geothermal supply, return temp.[◦C]
Q̇ref,+

j reference heat flow for supplyj heating [kW]

Q̇ref,-
j reference heat flow for supplyj cooling [kW]

Q̇act,+
j actual heat flow for supplyj heating [kW]

Q̇act,-
j actual heat flow for supplyj cooling [kW]

j supply: TABS or FC

changers and continuous pumps preferably work around a
certain operating point. For the geothermal and the dis-
trict heat supply two linearised static models based on
those thermodynamic principles are analytically derived.
The geothermal model contains one manipulated variable,
ṁG, one disturbance,ϑG, and the outputQ̇-

TABS. The∆-
variables denote the deviation of the variables to the op-
erating point and COPG the coefficient of the geothermal
performance:

∆Q̇-
TABS = COPG ·cp

︸ ︷︷ ︸

const.

·[ ṁG|o ·∆ϑG+ ϑG|o ·∆ṁG]. (1)

The district heat model is derived in the same way and
contains two manipulated variables,TDH and ṁDH, one
disturbance,T +

FCr, and the outpuṫQ+
FC:

∆Q̇+
FC = COPDH ·cp

︸ ︷︷ ︸

const.

·[ ṁDH|o · (∆TDH −∆T +
FCr)

+(TDH|o − T +
FCr

∣
∣
o) ·∆ṁDH]. (2)

As depicted in Figure1(a) free cooling is based on
the cooling tower. Free cooling is exclusively used if
the chiller is inactive. The ambient temperature,Tamb,
constrains the cooling tower’s operation for free cooling
which is also a main disturbance next to the return water
temperatureT -

FCr. Modelling cooling towers analytically
aims at detailed complex models with non-linear dynam-
ics of high order which are not suitable for the usage with-
in MPCs. Hence, black-box identification is expedient if
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historic data of the cooling tower in operation is available.
Since the cooling tower can be operated at two fan speeds
i ∈ {1,2}, the system can be approximated by two linear
static models:

Q̇-
FC(i) = ci,1 ·Tamb+ ci,2 ·T

-
FCr+ ci,3 · ṁCT+ ci,4, (3)

where the corresponding coefficientsci,k have to be es-
timated within the black-box identification routine using
historic data of the free cooling system. Note that the
model in Eq. (3) is linear in the parametersci, j, thus least
squares methods can be employed for optimal parameter
estimation, (Ljung, 1999).

3.2 Hybrid Models
The chiller and the heat pump are switching aggregates
with latency times, such that minimum up and down times
have to be respected, e.g. after switching on the aggre-
gate it must operate for a minimum up time until it can be
shut off again and vice versa. Furthermore, the stratified
storage tanks can operate in two basic modes: charging
and discharging. Each mode is represented by a dedicated
model with continuous variables. The discrete switching
state of the aggregate (on/off),lon, specifies which mode
is exclusively active at each time. These operation modes
further depend on the difference of the mass flows to, ˙ml,
and from,ṁSTk, the storage tank wherel = {CH,HP} de-
notes the aggregate andk = {c,h} the cooling or heating
circuit, (Mayer et al., 2015). The hybrid dynamic models
contain three continuous states,x(t), namely the thermo-
cline of the storagezk(t), the temperature of the cold re-
spective hot waterTk(t), and the cooling respective heating
powerQ̇ j(t). The three continuous manipulated variables,
u(t), are the supply temperature of the aggregateTl(t), the
mass flow from the aggregate to the storage ˙ml(t), and
the mass flow from the storage to the TABS or FC supply
ṁSTk(t). lon(t) is the discrete manipulated variable rep-
resenting the switching state of the corresponding aggre-
gatel for each timet. The continuous outputy(t) = Q̇ j(t)
denotes the cooling respective heating power for the sup-
ply j to the building. For each operating mode a model
is firstly analytically derived through first order differen-
tial equations and secondly linearised at a fixed operating
point. The non-linear dynamics can then be approximated
by a hybrid system state-space formulation with discrete
as well as continuous inputs represented by a piecewise
affine (PWA) system:

x(t +1) = Ahx(t)+Bhu(t), if δh(t) = 1, (4a)

y(t +1) =Cx(t), (4b)

where the binary variablesδh(t) ∈ {0,1}, ∀h = 1, ..,3, are
introduced to denote the status of the operation modeh
and the system matrices areAh ∈ R

3×3 and Bh ∈ R
3×4.

C =
[
0 0 1

]
for all three modes since the third state is

equal to the output. The explicit matrices for the chiller
circuit model are given in (Mayer et al., 2016), whereas
for the modelling of the heat pump circuit the reader is
referred to (Mayer et al., 2015).

4 Model Predictive Controllers
The formal description of the two MPC types used within
the MPCC and their common objective are given in this
Section.

4.1 Objective Function
The predictive controller for the OL, e.g. (Killian et al.,
2015), is responsible to guarantee user comfort by keep-
ing the indoor temperature within a certain tolerance at
minimum energy demand. The objective for the ESS on
the other hand is to minimise the deviation to the required
power and the energy costs.

For all MPC implementations a quadratic optimisation
target is used, where the deviation to the reference trajec-
tory of the cooling respective heating power is penalised
with factor Qy. Furthermore, the energy costs represent-
ed byQu caused by the manipulated variables are taken
into account. Both additive terms are considered for each
time stept over the whole prediction horizonN p. The∆-
variables again denote the deviation from the correspond-
ing operating point. The formal description of the objec-
tive is given by:

J⋆ = min
∆u∈U

Np−1

∑
t=0

∥
∥∆Q̇ref

j −∆Q̇act
j

∥
∥

2

Qy
+‖∆u(t)‖2

Qu
, (5)

4.2 LMPC
The three LMPCs for this work have a quadratic optimi-
sation target as presented in Eq. (5). They only differ in
the model they rely on. The FC model for free cooling us-
es a linear model with absolute inputs, whereas the TAB-
S geothermal model and the FC district heat model are a
linearised model with∆- variables which denote the de-
viation from the corresponding operating point. All three
LMPCs are implemented according to the receding hori-
zon strategy, (Camacho and Alba, 2013).

4.3 MI-MPC
In Section3 the hybrid models for the chiller and the heat
pump circuits are motivated. The objective is given in Sec-
tion 4.1. The corresponding constraints are:

PWA model as given in Eq. (4),

δh(t) ∈ {0,1} , (6a)

∑
h

δh(t) = 1, (6b)

umin ≤ u(t)≤ umax, (6c)

xmin ≤ x(t)≤ xmax, (6d)

lon(t)− lon(t −1)≤ lon(ωup), (Off/On switch) (6e)

lon(t −1)− lon(t)≤ 1− lon(ωdown), (On/Off switch) (6f)

∀ j ∈ {TABS,FC} andl ∈ {CH,HP}, whereumin andumax,
respectivelyxmin and xmax, denote the the capacity lim-
its of the manipulated variables and the physical bounds
of the stratified storage. The constraints on latency times
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with minimum up and down times are given in Eq. (6e)
and Eq. (6f) with ωup= t, t+1, ...,min(t+N p, t+Tup

l −1)
if we consider the minimum up time andωdown = t, t +
1, ...,min(t+N p, t+T down

l −1) in the other case. Eq. (6b)
denotes that at each time only one hybrid mode can be
active. Since the objective given in Eq. (5) is quadrat-
ic the resulting optimisation problem is a mixed-integer
quadratic problem (MIQP) to be solved each time step
t = 0, · · · ,N p−1. For this work a branch and bound al-
gorithm is applied, (Mayer et al., 2016), which relaxes the
original problem by replacing integrality constraints, (6a),
i.e. integer and particularly binary variables are allowedto
span over the whole continuous interval, aiming at solving
many QPs and searching for the best solution.

5 Simulation Results
In this Section the simulation setup is given. Furthermore,
simulation results showing the performance of the MPC-
C are discussed and the comparison results to a simuated
rule-based controller (RBC) are given.

5.1 Simulation Setup

The simulation for the demonstration building described
in Section2.1 is based on a snapshot of historic data of
the implemented automation system for the disturbances
ambient temperature andϑG. The simulation is shown
from the beginning of September until the end of Novem-
ber 2014. The comparison between MPCC and RBC is
given for all seasons 2014. The prediction horizonN p for
all predictive controllers is 12 hours and the sampling time
is one hour. The return water temperature for the cooling
FC circuit, T -

FCr, is 20◦C, whereas for the heating circuit
the return water temperature,T +

FCr, is 24◦C. The two strat-
ified storage tanks have a volume of almost 16m3 each.

5.2 Demonstration of MPCC Performance

The simulation study shows the performance of the pro-
posed modular MPC concept for the demonstration build-
ing. For this work, the power demand trajectories
are given by the OL predictive controller introduced in
(Killian et al., 2015) for both TABS and FC supply. S-
ince there is only one piping system for TABS, the pre-
dicted power is split into a negative cooling,̇Qref,-

TABS =

min(Q̇ref
TABS,0), and a positive heating trajectory,Q̇ref,+

TABS =

max(Q̇ref
TABS,0). For the FC system the reference trajecto-

ries are already split by the OL controller. The simulation
for all MPCs, the LMPCs as well as the MI-MPCs, is run
simultaneously. However, for the FC cooling supply two
circuits are implemented but only one can be active at a
time (either chiller or free cooling). Therefore, an addi-
tional rule is applied which prefers the usage of the re-
newable energy source respectively of the corresponding
LMPC if the ambient temperature does not exceed 18◦C.

Figure3 shows the ambient temperature profile for the
simulation period from September to November 2014.
One can see a drop of the mean temperature after hour

1200 by about 7◦C. The green line depicts the technical
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Figure 3. Ambient temperature profile starting with 1st Sept.
2014.

limit for the usage of the free cooling circuit.
Figure4 shows the simulation results for the TABS cir-

cuits, where according to the ambient temperature profile
in the first half of the simulation period cooling is request-
ed by the OL, represented bẏQref,-

TABS. The temperature
spread ofϑG is sufficient to provide the required cooling
energy only from the geothermal source, the manipulated
variableṁG for the supply ofQ̇TABS is given in the second
subplot. The heat pump is inactive over large parts of this
first simulation period which can be seen at the red line in
the last subplot. From hour 1200 onwards heating is re-
quested by the OL,̇Qref,+

TABS, and supplied by the heat pump
circuit with perfect fit. The temperature of the water sup-
ply from the heat pump as well as the pumps of the heat
pump circuit are presented in the second subplot.

Figure5 shows the simulation results for the FC circuit-
s. The references for cooling,̇Qref,-

FC , and heating,Q̇ref,+
FC ,

are computed by the OL controller. The first subplot
shows the performance of the MI-MPC and LMPCs for
the FC circuits. In the second and third subplot the ma-
nipulated variables are presented. The red lines denote
the contributions to FC heating supply of the district heat
circuit, whereas the blue and grey lines show the temper-
ature and mass flows for the chiller circuit. The green
line in subplot three depicts the mass flow of the pump
from the cooling tower of the free cooling circuit. The last
subplot indicates which cooling circuit is active. Note,
that free cooling is always active if the technical condition
Tamb≤ 18◦C is fulfilled. Since the energy demand for the
cooling FC circuit is low, the chiller is not regularly active,
even if free cooling cannot be activated. Due to the specif-
ic hydraulic architecture of the demonstration building the
pump supplying the cold water from the stratified storage
tank has to be activated if free cooling is not active. Thus,
a minimal deviation toQ̇ref,-

FC has systematically be taken
into account in these periods (see blue line in first subplot
in Figure5).

5.3 Comparison between MPCC and RBC
ESS are conventionally controlled by rule-based con-
trollers (RBC). The RBC of the demonstration building
is also simulated for comparison: Free cooling is also pre-
ferred but it may only be active if ambient temperature has
been below 18◦C for the past three hours. The chiller has
to be switched on if the low storage temperature is higher
than 12◦C and switched off if it is lower than 7◦C.
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Figure 4. Simulation results for the TABS circuits starting with 1st Sept. 2014.
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Figure 5. Simulation results for the FC circuits starting with 1st Sept. 2014.
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Compared to this RBC the proposed MPCC achieves
an increase of free cooling hours of almost 5% in winter
(January-March and December 2014) up to over 30% in
summer (June-August 2014). About 30% to 40% more
cooling powerQ̇- is supplied via free cooling using the
MPCC. The number of transitions of the chiller from state
off to on can be reduced by around 15% in summer up
to 60% in transition period (April-May and September-
November 2014), which is equivalent to a significant re-
duction for maintenance cost for the aggregate. Table2
shows the precise figures of the MPCC in percentage of
the RBC. Simulation results show the best results for the

Table 2. Performance of the MPCC compared to the RBC in
percentage according to the seasons.

season fc hours Q̇- via fc chiller state trans.
winter 104.7 130.5 0.0
transition 108.4 134.9 39.1
summer 132.6 141.2 84.8

MPCC cooling supply during summer, where the predic-
tive character of the control concept is most effective com-
pared to the conventional controller.

Relaxing the upper limit ofTamb≤ 18◦C for the extend-
ed usage of free cooling leads to an average increase of
mass flow of the cooling tower ˙mCT at lower variance. Ta-
ble 3 lists the simulation results for the upper limit vary-
ing from 18◦C to 22◦C for autumn 2014. The number of
free cooling hours is given in percentage of the simulation
hours.

Table 3. Effect of a relaxation of the upper limitTamb on ṁCT.

upper limit fc hours [%] meanṁCT std. dev. ˙mCT

18◦C 89.1 21.8 8.2
20◦C 96.2 23.4 5.6
22◦C 99.5 24.0 3.6

The proposed MPCC allows to pursue different strate-
gies for heating and cooling control, depending on the
parametrisation of the weighting factors of the optimisa-
tion targets. For this work emphasis was put on the max-
imal usage of renewable energy sources with minimum
cost while assuring minimal deviation of the delivered
cooling and heating power for the supply systems in or-
der to maximise the user comfort in the OL. The simula-
tion results show, that the proposed MPCC is able to meet
the requirements of the OL predictive controller almost
perfectly and to maximise the usage of renewable energy
sources such as free cooling. Furthermore, maintenance
cost can be reduced due to a reduction of state transitions
of the switching aggregates.

6 Conclusions
This paper introduces a modular predictive control con-
cept (MPCC) for modern energy supply systems (ESS)
of large buildings with several energy sources and sup-
ply circuits. Due to its modularity the concept is flexibly
applicable for industrial building’s ESS control, which is
shown on a demonstration building in Austria. The result-
ing MPCC includes linear MPCs as well as mixed-integer
MPCs (MI-MPC) dedicated for the efficient control of ba-
sic circuits respectively those with switching aggregates
such as chillers with active storage. The simulation study
shows that the proposed MPCC is able to accurately deliv-
er a prescribed cooling respective heating power trajectory
at minimum cost and a maximal usage of renewable ener-
gy sources. The MPCC is capable to maximise the usage
of free cooling and - due to the MI-MPC - to efficient-
ly manage the switching aggregates: compared to a RBC
simulation results show an increase of free cooling hours
of up to 30% and a reduction of the chiller’s transitions
from state off to on by up to 60% aiming at a consequent
decrease of maintenance cost depending on the respective
season of the year. Simulation results of the MPCC are
therefore very promising for the future implementation in
the demonstration building.
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