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Abstract
Modeling is a useful tool for decision making in the
project phases. In the case of reinforced concrete
structures, we must be able to locate representative
parameters in order to optimize costs. This paper
assesses the impact of the column arrangement and
building height. The variation of the costs for the
foundation and two floor interaxis are discussed. The
results are assessed by the ratio of cost per square meter
executed. The optimization of the geometry of the
building is determined by the interaxis distances and the
selected structural thickness. In the case studied the
arrangement of the pillars in a 6x6 meters grid using 4
heights offers the best economic results.
Keywords: reinforced concrete, costs, columns
arrangement, structures, modeling

1 Introduction
The decisions made in the early stages of a project have
a significant impact on its future development. The
economic costs can and should be dimensioned so that
the investor has the smallest possible uncertainties.
Despite this construction projects have a long
deployment time that introduces those unwanted
uncertainties. This work focuses on structural solutions
through the use of reinforced concrete (Amir, 2013;
CTE, 2006; CYPECAD, 2015).

The intensive application of reinforced concrete has
been produced largely by the advancement and study of
the behavior of new materials and the development of
new technologies. This is the origin of structural
engineering that deals with the conception, design and
construction of structures emerged. We want to
emphasize that in the same way that society evolves,
technology, materials and available tools do (De
Albuquerque et al, 2012; Delijani et al, 2015; EHE-08
2008).

The structural solution costs represent a significant
percentage within any project. With an eye to the future
by implementing algorithms it is necessary to know the
impact of different variables that affect the final cost of

a given solution (Fernández-Ceniceros et al, 2010; 
Kaveh et al, 2011; Koksal et al, 2013). 

As representative geometric variables in the 
definition of one building they have been considered the 
number of pillars or columns and the height of the 
building. For the structural solution of the floors a 
bidirectional forged or slab structure recoverable coffer 
with a constant structural depth has implemented, but 
modifying the interaxis (Moretti, 2014; Poluraju et al, 
2012; Porwal and Hewage, 2012). 

This range of solutions is made by using three 
elements mainly: Concrete, steel and formwork 
elements. 

2 Proposed Methodology 
The proposed methodology focuses on assessing the 
economic impact incurred in the process of building a 
reinforced concrete structure assuming that the reticular 
forged recoverable coffer is selected for the horizontal 
structure. This choice is not accidental because, it 
presents some remarkable features: 

- Materials incorporated to the structure are permane-
ntly only two, in this case steel and concrete. In all cases 
it is used concrete HA-25/P/20/IIa and steel B-500S. 

- In this case the difference in the performance of 
each alternative is faithfully reflected in the variation of 
the quantities consumed of steel and concrete. 

- The use of recoverable coffer. 
 

 
Figure 1. Final result after removal of the provisional 
formwork. 
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To execute these structures, once consolidated the 
pillars, a framework is used (Figure 1). Once the 
structure consolidates these elements are retrieved and 
used in subsequent structures. For the assessment of 
costs it is important to establish the number of uses. In 
this paper this variable is 50. 

Obviously the cost of a structure will be lower when 
the material consumption are optimized (reducing the 
amounts of concrete and steel) and the use of formwork 
materials and labor. 

The proposal is to make the modeling of a square 
building of dimensions 24x24 meters using different 
arrangements of columns and number of plants (Figure 
2). For the arrangement of pillars three values of the grid 
have been selected: a situation of short lights of 4x4 
meters, another common situation in building 
alternative of 6x6 meters, and 8x8 meters with overhead 
lights. The modeled cases include 4 floors, 6 floors, 8 
floors and 10 floors. The buildings have a height on the 
ground floor of 4 meters and the rest of floor slabs with 
heights of 3 meters, devoting the last forged to a flat 
roof. 

Figure 2. Modelling buildings. 
 
All the floors have been solved using a structural depth 
of 30 centimeters (25 of box more 5 cm of compression 
layer). The distances of the models are varied using two 
discrete solutions of 60 and 80 centimeters (Figure 3), 
the width of nerve and the coating remained constant. 
Thus the own weights of the two alternatives of the 
implemented floor slab are 4.70 kN/m2 and 4.03 kN/m2 
respectively. 
 

 
Figure 3. Alternative sections of implemented floors. 

 
Regarding the considered loads, facade loads have been 
introduced as uniform loads on the perimeters of the 
floors with a value of 7 kN/m, and on deck this value is 
reduced to 3 kN/m. For surface loads on the floors 
2kN/m2 has been considered for permanent loads and 
2kN/m2 for overhead use. In the cover these values have 
changed, 3 kN/m2 for permanent loads and 1kN/m2 for 
overload use. Wind loads were implemented 

considering the Spanish legislation and snow loads are 
included in overload considered indoor use. For 
dimensioning the foundation, it has been considered an 
average benefit in the soil bearing capacity, on the 
maximum permissible stress, 0.2 N/mm2. 
Table 1. Unit Cost Items Considered. 

Description  Cost 
(€)  

m² System formwork foundation plinth.  19.94  
m² lean concrete layer (thickness 0.1 m).  10.22  
m3 foundation of reinforced concrete, concrete made with 
HA-25/P/20/IIa manufactured in plant, and discharge from 
truck.  

104. 
70  

Reinforcing steel kg UNE-EN 10080 B 500 S, developed 
in industrial workshop. Including transportation and 
placement work.  

1.00  

m3 of concrete for pillars made of concrete HA-25/P/20/IIa 
manufactured in central and poured with cupolas, 
assembly and disassembly of reusable formwork system 
metal sheets.  

349.65  

Reticular m², total depth 30=25+5 cm, made with concrete 
HA-25/P/20/IIa manufactured in central; discharge with 
pump on continuous formwork system; nerves "in situ" 12 
cm, welded wire in compression layer. No impact of 
pillars.  

37.60  

Unites of recoverable formwork PVC, 76x80x25 cm for 
50 uses, including special pieces.  

2.29  

Unites of recoverable formwork PVC, 56x60x25 cm for 
50 uses, including special pieces.  

1.75  

m3 of concrete for slabs manufactured in Central HA-
25/P/20/IIa.  

76.88  

 
The definition of the structure will be made following 
the Spanish legislation and using a structural calculation 
software tool named CYPECAD. Performing 
calculations provides data on the consumption of 
materials, which in the selected type represent 
significant values used in the comparison. By using a 
database of construction, the prices of each of the 
studied alternatives are obtained. 
Table 2. Items Considered for Each Block Of The 
Structure. 

 items units 

foundation 

Cleaning concrete HL-15 / P / 20 m 3 
Reinforcing steel B 500 S kg 

Concrete HA-25 / P / 20 / IIa m 3 
Shuttering fundation m 2 

columns 
Column formwork m 2 

Reinforcing steel B 500 S kg 
Concrete HA-25 / P / 20 / IIa m 3 

floor 

Formwork wrought m 2 
Reinforcing steel B 500 S kg 

Concrete HA-25 / P / 20 / IIa m 3 
boxes units 
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The cost of the structure is divided into three sections: 
foundation, pillars or columns and floor. This scheme 
follows the construction process, and the prices for the 
various items are presented in Table 1.  

These prices combined with the results of 
consumption of each alternative allow us to obtain the 
costs of the proposed solutions. Table 2 lists the items 
that are incorporated in each block with the units used. 

Table 3. Consumption Obtained for Each Solution 

   consumption Foundation consumption pillars Forged consumption 

I (cm) R (mxm) H (nº) HL 
(m3) 

Fe 
(kg) 

HA 
(m3) E (m2) E (m2) Fe (kg) HA (m3) Fe (kg) HA (m3) C (Ud) 

60 

4X4 

4 15 2196 55 125 694 4238 51 16213 537 4224 
6 23 3761 116 210 1011 7040 75 24841 805 6336 
8 32 6347 238 368 1341 11573 100 34570 1073 8448 

10 41 1068 366 499 1674 22563 126 46543 1341 10560 

6x6 

4 14 2660 96 151 360 3507 27 23555 497 5184 
6 22 5307 201 260 539 8792 42 37219 746 7776 
8 30 9095 307 344 736 16570 60 53793 994 10368 

10 38 11921 397 396 965 24209 85 75531 1242 12960 

8x8 

4 14 3659 143 182 250 5538 21 40697 492 5272 
6 22 6752 232 236 383 13554 34 63716 738 7908 
8 31 11011 356 307 541 20154 52 91923 984 10544 

10 38 14444 463 356 720 27793 76 125531 1230 13180 

80 

4X4 

4 16 2279 62 137 694 4238 51 16544 576 1512 
6 24 4149 127 226 1011 7350 75 25603 864 2268 
8 33 6389 264 402 1347 12259 101 36131 1151 3024 

10 42 11294 372 503 1678 23405 127 49036 1439 3780 

6x6 

4 14 2385 89 145 360 3284 27 21524 451 2820 
6 21 5007 186 249 539 8409 42 34075 677 4230 
8 29 8314 293 335 733 15580 60 50216 902 5640 

10 37 11400 376 385 957 26114 83 70901 1128 7050 

8x8 

4 14 3329 137 176 250 5322 21 39751 446 2880 
6 21 6618 217 228 385 12518 34 63391 669 4320 
8 29 10405 333 297 534 19485 51 91053 892 5760 

10 37 13885 446 347 713 26657 74 124024 1115 7200 

 

Table 4. Costs of Different Structural Proposals 

I (cm) R (mxm) H (nº) € Foundation € Pillars € Slabs € Structure €/m2 

60 

4x4 

4 12.006 22.227 153.676 187.910 79,6 
6 22.359 33.253 231.036 286.648 80,9 
8 41.832 46.681 309.484 397.997 84,2 
10 53.482 66.776 390.169 510.427 86,4 

6x6 

4 17.238 13.021 159.665 189.924 80,4 
6 33.829 23.554 241.381 298.765 84,3 
8 51.199 37.703 325.983 414.885 87,8 
10 65.340 53.866 415.772 534.979 90,6 

8x8 

4 23.751 12.783 176.604 213.138 90,2 
6 38.042 25.428 267.555 331.025 93,4 
8 57.571 38.350 363.709 459.630 97,3 
10 73.916 54.227 465.260 593.403 100,5 

80 

4x4 

4 13.142 22.227 153.081 188.450 79,8 
6 24.388 33.563 230.408 288.360 81,4 
8 45.407 47.703 309.187 402.296 85,2 
10 64.508 67.870 390.341 522.720 88,5 

6x6 

4 16.051 12.798 151.484 180.333 76,3 
6 31.572 23.140 229.006 283.717 80,1 
8 48.681 36.521 310.108 395.310 83,7 
10 62.185 55.289 395.787 513.261 86,9 

8x8 

4 22.591 12.567 169.490 204.647 86,6 
6 36.097 24.518 257.979 318.594 89,9 
8 54.148 37.247 350.499 441.894 93,5 
10 71.244 52.629 448.337 572.209 96,9 
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3 Objective 
The main objective is to have a vision of the cost of the 
entire structure. The inclusion of three variables will 
allow to compare different alternatives and select the 
one that is most viable from the economic point of view. 

The novelty lies on the inclusion of variations in the 
geometry of the building (arrangement of the pillars and 
building height) combined with the definition of the 
structural solution used (forged 60x60 and 80x80 
centimeters interaxis). 

To facilitate the monitoring of the cost of the structure 
it has been divided into three blocks with a different 
treatment. The foundation with four blocks for the lean 
concrete, steel foundation, structural concrete and 
formwork needed. The pillars are elements with a 
production process in which the cleaning concrete 
disappears, repeating the previous three blocks and 
presenting totally different yields. 

4 Case study 
Performing calculations by regulations currently in use 
in Spain determines the technically viable alternatives. 
From those viable solutions, material consumption are 
found: steel, concrete and auxiliary elements (formwork 
and caissons) at different values for each block of the 
structure; the data are reflected in Table 3. The modeling 
analysis allows controlling deformations and adapting 
the optimal arrangement of the structure, all rigorously 
complying with current regulations. 

Known data set consumption and prices of each item 
can determine the cost of each alternative as reflected in 
Table 4. 

The production cost is done add the amount of each 
item. In this case we have taken into account the 
variations in consumption of both materials and 
auxiliary means necessary. 

The total cost of the structure has been obtained and 
the graphical representation of the results is divided into 
two blocks. Figure 4 represents the impact of each block 
in each studied alternative. 

For this configuration of the floor inside buildings of 
four floors, solution employing fewer supports (8x8) has 
a total cost that is 13.43% higher than the alternative 
with the highest number of supports (4x4). In the case 
of solutions for buildings of 10 floors this difference 
becomes greater resulting in a 16.26%. If we analize the 
results in regard to the foundations these values are 
completely different in low buildings since the cost of 
the foundation is increased by 97.83% whereas in tall 
buildings the decreased number of pillars an increase of 
38.21%. Reducing the number of supports makes the 
starting pillars decrease. 

With 60x60 interaxis configuration total costs 
increase as the number of carriers it is reduced for all 
modeled buildings. 

Figure 4. Total cost alternatives interaxis 60x60. 
 

The results for structural solutions that employ larger 
interaxis (80x80) are shown in Figure 5. 

 

Figure 5. Total cost alternative interaxis 80x80. 
 

For this configuration of the floor inside buildings of 
four floor employing fewer supports (8x8) has a total 
cost which is 8.59% higher than the alternative with the 
highest number of supports (4x4). In the case of 
buildings of 10 floors this difference becomes greater 
resulting in a 9.47%. If we analyze the results in regard 
to the foundations these values are completely different 
in low buildings since the cost of the foundation is 
increased by 71.90% whereas in tall buildings the 
decreased number of pillars drives to an increase of 
10.44%. Reducing the number of supports makes the 
starting pillars decrease and the cost of the slabs being 
greater increases in recent increases. 

This configuration of the floor, increasing the 
interaxis, allows better solutions in total cost when the 
6x6 grid for the same height of the building is 
implemented. In the four heights minimum cost values 
are obtained. 

Solutions with more supports (4x4) have similar costs 
for both interaxis being lower in 60. The differences are 
below 2.40%. Solutions with fewer brackets (8x8) costs 
are similar, being lower in 80. The resulting differences 
are extended below 4.01%. 

While these results are interesting, we consider much 
more relevant to compare the ratios of the structural 
solution. In this case the cost per executed square meter 
is analyzed, and the numerical results are reflected in the 
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last column of Table 4, while graphical results are 
presented jointly for both interaxis in Figure 6. 

The extreme values have a variation of 31.72% and 
are:  

- The minimum cost 76.3 € / m2 for a building of 4 
heights with me interaxis 6x6 grid 80 cm. 

- The maximum cost 100.5 € / m2 for a building of 
10 heights with me interaxis 8x8 grid 60 cm. 

Figure 6. Ratio of cost € / m2 different alternatives. 
 

Interaxis solutions by 60 cm range from 79.6 € / m2 for 
buildings of 4 heights and 4x4 grid to 100.5 € / m2 in 
the case of 10 heights and 8x8 grid. This is a variation 
of 26.26%. For proposals by interaxis 80 cm range from 
76.3 € / m2 for buildings of 4 heights and 6x6 grid to 
96.9 € / m2 in the case of 10 heights and 8x8 grid. This 
is a variation of 27.00%. 

5 Conclusions 
As a preliminary conclusion, it is noteworthy that 
variations make that the results present significant 
oscillations. The own reinforced concrete structural 
definition incorporates decisions affecting the cost 
produced in the design phase and implementation. 

The tool implemented here is very useful when 
combined and incorporated the cost or impact of the 
land on which it is intended to build. The combination 
of both values allows the designer to locate a lower cost 
alternative. 

Disregarding the impact of the land, and for a 
structural thickness of 30 centimeters, the most 
economical solutions are located in low buildings of 6x6 
meters grid and interaxis distances of 80 centimeters. 
The worst alternative is located when employed 60 
centimeters interaxis and reticles of 8x8 meters. 

Structurally, the 30 centimeter thickness is oversized 
for reticles of 4x4 meters and it presents very high 
amounts of steel for reinforcement grids of 8x8 meters. 
This is the reason why the best solutions appear in the 
grid of 6x6 meters. This phenomenon is more 
pronounced when increasing the interaxis distances. 
This is one of the reasons why this is the most used 
structural thickness in structures in buildings in Spain. 

This novelty presents a clear practical application to 
real cases, since the casestudy has been selected only as 

a way to present the proposed methodology based on the 
ratio of cost per square meter executed, but the 
methodology is widely applied to real cases. In fact, this 
piece of research is based on the information obtained 
from thousands of real cases, from a building interprise, 
which have also been used to validate the proposal.  

Furthermore, the use of the results of this work by the 
designer permits the optimization of the decisions based 
on the conclusions obtained in the general case. 
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