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Abstract
The riser of a dual fluidized bed gasification reactor heats
bed materials by burning residual char particles coming
from gasification part of the reactor. A validated Compu-
tational Particle Fluid Dynamic (CPFD) model is applied
to simulate combustion of char particles in a riser of dual
fluidized bed gasification reactor in a demonstration plant
with 8 MW fuel capacity. The plant is located in Güssing,
Austria. The three-dimensional model is used investigate
combustion reaction as a function of the bottom, primary
and secondary air feed rates. The results show there is a
still possibility to improve combustion reaction by opti-
mizing air feed rates, which can maximize the bed mate-
rial temperature without increasing additional char parti-
cles feed.
Keywords: dual fluidized bed, gasification, biomass, com-
bustion, riser

1 Introduction
Biomass gasification is one of the promising technolo-
gies for combined heat and power production and synthe-
sis processes leading to the production of liquid biofuels.
Biomass has two major advantages: it is carbon dioxide
neutral and homogeneously and locally available all over
the world (Asadullah, 2014). There are various types of
gasification technologies such as fix bed, moving the bed
and fluidized bed (Basu, 2013). Dual fluidized bed steam
gasification is one of the latest technologies among them
(Göransson et al., 2011; Hofbauer et al., 2001).

Steam gasification in a dual fluidized bed reactor is
a complex thermochemical process by which biomass
is converted to a mixture of combustible and non-
combustible gasses and other minor components. The
combustible gasses are called producer gas. The major
components of the producer gas are carbon monoxide, hy-
drogen, and methane. The non-combustible gasses are
carbon dioxide and water vapor (Hofbauer et al., 1997,
2002a,b). The principle of the dual fluidized bed gasi-
fication reactor is shown in Figure 1. The reactor con-
sists of two parts where one is a bubbling fluidized bed
gasification reactor, and the other is a circulating fluidized
bed combustion reactor. The gasification reactions are en-
dothermic, and heat required for the reactions is supplied

by circulating hot bed materials from the combustion re-
actor (Kern et al., 2013). The bed material can be sand
or olivine particles. The primary purpose of the bed ma-
terial is to transfer heat from the combustion reactor to
the gasification reactor. The bed material is heated in the
combustion reactor by burning char particles. The char
particles, are residual char after the gasification process,
which is transported from the gasification reactor to the
combustion reactor along with the bed materials.

Figure 1. Principle of dual fluidized bed gasification system.

To optimize the performance of the reactor, gas-particle
flow and combustion reaction should be optimized. It
means that the reactor should have a minimum fluctua-
tion of bed material temperature, steady transport of hot
bed material to the gasification reactor and optimum gas
flow rates (Snider and Banerjee, 2010). The temperature
of bed material depends on the combustion reaction. The
combustion reactions are dependent on the amount of oxy-
gen supply. In the combustion reactor, the oxygen for the
combustion reaction is provided from the air which is fed
to the reactor from three position as the bottom, primary
and secondary air.

The temperature of the bed material is self-controlled
by the reactor as a whole. If the temperature of circu-
lated bed material is low, the gasification reaction rates
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become slower leaving more unreacted residual char par-
ticles to circulate to the combustion reactor. The more char
particles circulated to the combustion reactor, the more
the temperature of the bed materials is increased and vice
versa (Pfeifer et al., 2011; Wang and Chen, 2013). The
self-stabilization process requires two essential conditions
to be fulfilled. Firstly, the initial temperature of the bed
materials should be maintained near to the reaction tem-
perature (about 850◦C) which is achieved by burning a
part of the producer gas to start up the reactor. Secondly,
it is important to maintain constant bed material circula-
tion rate which depends on the air feed rates and air feed
positions in the reactor. Previous studies performed by the
authors showed that the optimum ratio of bed materials to
biomass feed rate was 25-30 for Güssing plant (Thapa and
Halvorsen, 2014).

Preheated air is fed to the combustion reactor from the
bottom and two positions along the height of the reactor
as primary and secondary air. The air supplies neces-
sary oxygen for combustion reaction and simultaneously
serves as fluidizing gas to transport heated bed materials
to the gasification reactor. The feed air is preheated to
achieve better combustion of char in the reactor.

It is not well understood, whether all residual char parti-
cles coming from the gasification reactors are totally com-
busted during the flow along the riser of the combustion
reactor. It is because the gas velocity in the combustion
reactor is high and the residence time may not be long
enough for all char particles to undergo complete com-
bustion. Moreover, the air feed should ensure sufficient
oxygen to burn all char particles.

The fluid dynamics of the combustion reactor requires
the lower part of the reactor to be in bubbling fluidiza-
tion regime, which means that the bottom air feed velocity
should be lower. If the velocity is very high, a part of flue
gas can pass to the gasification reactor making the prod-
uct gas diluted by nitrogen and carbon dioxide contained
in the flue gas, which is undesirable. The middle and up-
per parts are in the fast fluidization regime (Kaushal et al.,
2008a). Moreover, the flow properties in the reactor vary
with height because of the three different feed position of
the bottom, primary and secondary air. The flow param-
eters are different at different temperature due to density
and viscosity variation of the fluidizing gas.

A three-dimensional CPFD model is developed to study
and optimize fluid dynamic properties and reaction kinet-
ics in the combustion reactor. The gas-particle flow is in-
vestigated in high-temperature fluid flow with char com-
bustion. The model is simulated using the commercial
Computational Particle Fluid Dynamic (CPFD) software
Barracuda VR. 15. The effect of char combustion is stud-
ied with varying flow rates of the bottom, primary and
secondary airflow rates. The aim of the series of simu-
lation is to investigate char combustion in the reactor and
flow rates of the bottom, primary and secondary airflow
rates. All parameters used in the simulations are based on
the combustion riser in the biomass gasification plant in

Güssing, Austria.

2 Mathematical Model
In this work, a Computational Particle Fluid Dynamic
(CPFD) model is applied to simulate the gas-solid flow
with heat transfer and chemical reactions. The CPFD nu-
merical methodology incorporates multi-phase-particle-
in-cell (MP-PIC) method (Andrews and O’Rourke, 1996;
Snider, 2001). The gas phase is solved using Eulerian
grid and the particles are modeled as Lagrangian computa-
tional particles. Gas and particle momentum equations are
solved in three dimensions. The fluid is described by the
Navier-Stokes equation with strong coupling to the dis-
crete particles. The particle momentum follows the MP-
PIC description which is a Lagrangian description of par-
ticle motions described by ordinary differential equations
coupling with the fluid (Snider and Banerjee, 2010).

In the CPFD numerical method, actual particles are
grouped into computational particles, each containing a
number of particles with identical densities, volume and
velocities located at a specific position. The computa-
tional particle is a numerical approximation similar to the
numerical control volume where a spatial region has a sin-
gle property for the fluid. With these computational parti-
cles, large commercial systems containing billions of par-
ticles can be simulated using millions of computational
particles. This possibility of the CPFD numerical method
is used in this work to simulate the riser part of the large
scale dual fluidized bed steam gasification plant.

Governing equations
The volume averaged fluid mass and momentum equa-
tions are:

∂ (εgρgug)

∂ t
+∇(εgρgugug) = εg∇p−F+ εgρgg+ εgτg (1)

where εg, ρg, and ug are gas volume fraction, density and
velocity respectively, p is gas pressure, g is the accelera-
tion due to gravity, F is the rate of momentum exchange
per unit volume between the gas and solid phase and τg is
stress tensor which can be expressed in index notation as:

τg,i j = µ
(

∂ui

∂x j
+

∂u j

∂xi

)
− 2

3
µδi j

∂uk

∂xk
(2)

where µ is shear viscosity. The shear viscosity is the sum
of laminar shear viscosity and turbulence viscosity based
on the Smagorinsky turbulence model. In the model, large
eddies are directly calculated. The unresolved sub-grid
turbulence is modeled by using eddy viscosity. The turbu-
lence viscosity is given as:

µt =Cρg∆2

√(
∂ui

∂x j
+

∂u j

∂xi

)2

(3)

where C is sub-grid eddy coefficient and known as
Smagorinsky coefficient.
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MP-PIC method calculates the particle phase dynamics
using the particle distribution function (PDF), fp. A trans-
port equation is solved for the PDF. The transport equation
for fp is given by [14] and is expressed as:

d fp

dt
+

∂ ( fpup)

dx
+

∂ ( fpAp)

du
=

fD − fp

τD
(4)

where up is particle velocity, fD is the particle distribu-
tion function for the local mass averaged particle velocity
and τD is the collision damping time. Ap is the particle
acceleration which is given by:

Ap =
∂up

dt
=Dp (ug −up)−

1
ρp

∇pg+g− 1
εpρp

∇τg+g+Fp

(5)
In the equation above, εp is particle volume fraction, ρp
is particle density, pg is gas pressure, τp is contact nor-
mal stress. More details about the τp can be found in
(O’Rourke and Snider, 2010). Fp is the particle fric-
tion per unit mass, related to the relative particle motion
and becomes important at very low particle flow at near
closed packed bed (Snider, 2007) and Dp is the drag func-
tion. The Wen-Yu drag model is implemented in this work
(Wen, 1966).

Dp =CD
3
8

ρg

ρp

|ug −up|ε−2.65
g

rp
(6)

where

Dp =CD

{
24
Re

(
1+0.15 Re0.678

)
, Re < 1000

0.44, Re ≥ 1000
(7)

Re = ρg
|ug −up|rp

µg
and rp =

(
m

4
3 πρp

)( 1
3 )

(8)

3 Model Parameters and Geometry
The dimensions of the reactor are the same as the combus-
tion reactor in the biomass gasification plant in Güssing,
Austria. The basic dimensions of the combustion part of
the reactor are shown in Table 1.

Table 1. Reactor Dimensions.

Dimensions Units Value

Diameter m 0.66
Height m 12
Primary air inlet m 1.5
Secondary air inlet m 3.5

In the plant, the gasification and combustion occur si-
multaneously in the bubbling fluidized bed gasification re-
actor and in circulating fluidized bed combustion reactor.
The whole reactor is a combination of these two. How-
ever, the aim of current study is only the combustion part

of the reactor. Therefore, the combustion part of the reac-
tor is separated in the model replacing circulation of the
bed materials by the inlet and outlet boundaries. Dotted
lines in Figure 2 show the control volume of model geom-
etry.

Figure 2. Control volume of model geometry.

In the CPFD computational model, grid generating and
solving flow and reactions in a rectangular geometry is
better than in a circular geometry. For this reason, the cir-
cular diameter of the geometry is converted into rectangu-
lar with the equivalent cross-sectional area. The geometry
used in the CPFD model with all boundary conditions and
grids are shown in Figure 3.

Figure 3. Grid and boundary conditions of the riser.

The combustion reactor uses air as a fluidizing agent
as well as an oxidizing agent. The gas-particle flow in-
volves a complex mixture of air, flue gas, olivine particles
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and char. The properties of gas and particles used in the
simulation are given in Table 2.

Table 2. Properties of Solids and Gases.

Properties Units Value

Olivine particle size µm 200-800
Olivine density kg/m3 2960
Char particles size mm 1-5
Char density kg/m3 200
Air density kg/m3 0.27-1.06
Air temperature inlet K 333-1300
Air viscosity Pa · s [1.98-4.9]·10−5

In the combustion reactor, olivine particles and char
have a wide range of size distribution. The size distribu-
tion of char and bed materials are presented in Figure 4(a)
and 4(b) respectively.

The particle sizes expressed in the figure are the radius
of particles. It is because Barracuda uses radius to rep-
resent particle size. The combustion reactions and their
reaction kinetics involved in the CPFD model is given in
Table 3 (Kaushal et al., 2008a).

Chemical reactions can affect gas flow rates, gas com-
positions, particle sizes and particle densities. The reac-
tions, on the other hand, can be affected by temperature,
gas-particle mixing and gas feed positions and feed rates
in the reactor. There is strong interdependence between re-
action chemistry and particle-fluid dynamics. Therefore,
it is important to take into account the change in flow be-
havior due to the combustion reaction in the riser.

The volume average chemistry is used in the current
model. The gas volume of each cell in the grid acts as
control volume for the reaction calculations. In volume
average chemistry, each control volume is the gas volume
in a cell. The reactions are written in stoichiometric form.
Temperature, pressure and solid dependence are entered
as rate coefficients.

The particle dependency term is the radius of the par-
ticle. The temperature is the average temperature of the
particle and the bulk fluid.

It is assumed that the particle temperature is constant
within the particle.

4 Results and Discussions
To simulate the riser of the Güssing plant and to investi-
gate the combustion reaction, the first series of simulations
were run with the gas and fuel feed parameters as reported
from the biomass gasification plant in Güssing (Kaushal
et al., 2008a). The parameters are presented in Table 4.

The table shows the flow rate of the bottom, primary
and secondary air with different temperatures. The reason
for feeding the air at various position and temperatures is
to control the combustion process and bed material circu-
lation rate. The mixture of bed materials and residual char
is fed to the combustion reactor at a temperature of 1073

K. The char is combusted in the reactor and it gradually
heats the bed materials while moving up along the height
of the riser. Therefore, the particle temperature is gradu-
ally increased as they move towards the top of the reac-
tor. The temperature of the gas and particles are measured
from the bottom and every one-meter height of the reac-
tor. The simulated fluid and particle temperature along the
height of the reactor is shown in Figure 5.

The figure indicates that the fluid and particle tempera-
ture are changing with height in the riser. At every position
in the reactor, the fluid temperature is higher than particle
temperature. It indicates that the heat transfer between
particles and fluid is not sufficient due to high velocity
and low residence time. The fluid temperature deviates
sharply from particle temperature above the height of 2 m.
This point is just above the primary air feed point. Pre-
heated primary air significantly improves the char com-
bustion process in the reactor and increases the tempera-
ture. However, after about 8 m height, the fluid and parti-
cle temperature do not increase indicating that char com-
bustion does not occur above this height of the bed.

The char particle volume fraction and the mole fraction
of the major components of the flue gas is presented in
Figure 6. The figure shows that the residual char particles
fed to the combustion reactor are not completely burned.
The existence of the small amount of char particles at the
top of the reactor suggests that the char particles are recir-
culated back to the gasification reactor. As expected, the
mole fraction of CO2 increasing from the bottom to the top
while the oxygen mole fraction is decreasing. The oxygen
mole fraction is almost zero at a height about 7 m implying
that there is an insufficient amount of oxygen to obtain to-
tal combustion of char particles. The small amount of H2
at the top of reactor makes that fact clearer.

The CO concentration is a strong function of the avail-
able oxygen. Hence, the primary air flow which is the
biggest among the all air flow rates influences the CO con-
centration most (Kaushal et al., 2008b).

A series of simulation were run by gradually increasing
the bottom airflow rate. The results are presented in Figure
7.

An increasing amount of bottom air increases the gas
and particle temperature. The maximum particle tempera-
ture is increased from about 1150K to about 1220K in the
first series of simulations (Figure 5). The increase in tem-
perature without increasing the mass flow rate of the char
particles indicates that not all the char particles are burned.
In other words, there is still some uncombusted char par-
ticles passing through the combustion reactor to the gasi-
fication reactor. However, increasing the bottom air in-
creases the fluid temperature much more than the particle
temperature. It may be due to decreased residence time
for the particles in the combustion reactor. Increased bot-
tom air flow rate increases the fluidization velocity making
particles be transported faster. In addition, the high feed
rate of bottom air is not desirable due to the risk of flue
gas leakage to the gasification reactor.
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(a) (b)

Figure 4. Particle size distribution (a) Olivine (b) Char.

Table 3. Reactions and Reaction Kinetics.

Reactions Reaction Rate K1

C+O2 =CO+CO2 R1 = K1[O2]
0.5 8.56 ·10−2exp(−2237

T )
C+H2O =CO+H2 R2 = K1[H2O]0.57 2.62 ·108exp(−237000

T )

H2 +
1
2 O2 = H2O R3 = K1[H2]

1.5[O2] 1.63 ·109T 3/2exp(−3420
T )

CO+ 1
2 O2 =CO2 R4 = K1[H2]

1.5[O2]
0.5[H2O]0.5 3.25 ·107exp(−15098

T )
CO+H2O = H2 +CO2 R5 = K1[CO][H2O] 0.03 exp(−7249

T )

Table 4. Flow Parameters - Gussing Plant.

Parameters Feed Rate
[Nm3/h]

Temperature [K]

Bottom air 720 333
Primary air 2880 673
Secondary air 869 860
Bed materials 37 [kg/s] -

Figure 5. Fluid and particle temperature along the height of the
reactor.

Figure 6. Particles and gas fractions.

A series of simulations were run to investigate the
change in fluid-particle temperature with increasing pri-
mary air flow rate. The results presented in Figure 8 shows
that the particle temperature is again increasing with the
increasing primary air flow rate. Moreover, the differ-
ence between the fluid and particle temperature is also de-
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Figure 7. Fluid and particle temperature at a height of 10 m with
increasing bottom air flow rate.

creased in this case.

Figure 8. Fluid-particle temperature with increasing primary air
flow rate.

The results of the simulation series with increasing sec-
ondary air flow rate also show that there is a significant
change in fluid-particle temperature as shown in Figure 9.

Figure 9. Fluid particle temperature with increasing secondary
air flow rate.

The overall particle temperature distribution along the
combustion reactor is presented in Figure 10.

The particle temperature distribution at increasing air
flow rates of the bottom, primary and secondary air are
compared with the particle temperature at the air flow rate
used at the Güssing plant. The results show that increas-
ing primary and secondary air flow rates result in higher
and more uniform particle temperature distribution in the

Figure 10. Snapshot of particle temperature distribution along
the combustion reactor at 400s of simulation time.

reactor.

5 Conclusions
A 3D CPFD model is developed to investigate the effect
of bottom, primary and secondary air flow rates in the
combustion process and bed material temperature in the
riser of a dual fluidized bed biomass gasification reactor.
The simulated reactor is located at 8 MW fuel, biomass
gasification plant in Güssing, Austria. Series of simu-
lations were run using commercial CPFD software Bar-
racuda V15. The first series of simulation were performed
with all parameters as in the Güssing plant. The results
show that some un-combusted char particles are passing
through the reactor. Three series of simulations carried out
with increasing bottom, primary and secondary air feed
rate. All the cases show increasing temperature with in-
creasing air feed rates at a constant feed rate of char par-
ticles. The results of the simulations also indicate that in-
crease in primary air flow rate results in the highest parti-
cle temperature with more uniform temperature distribu-
tion along the reactor than the cases with increasing bot-
tom and secondary air feed rate. The results show that
there is still a possibility for optimization of air flow rates
for combustion reaction in the riser.
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