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Abstract 

Simulations of different peak load cutting scenarios in 

district heating of buildings were performed. Decrease 

in percentages of 30%, 50%, and 70% in peak loads was 

analyzed for the two modelled apartment buildings. 

Simulation results show that even 70% peak load cuts 

are possible in individual buildings. However, results 

also reveal that for some buildings 30% peak load cuts 

would require compromising with the indoor 

temperature. Therefore, it is important to take into 

account the different heat storing capacities available in 

each of the buildings. In future, systems with multiple 

buildings will be studied to effectively utilize individual 

heat storing capacities to cut city level peak loads. 

Simulations presented in this article show that better 

energy efficiency in district heating can be achieved by 

predicting the energy consumption and utilizing the 

thermal mass of a building. 

Keywords: district heating, peak load cutting, 
optimization, indoor temperature prediction, modelling 

1 Introduction 

Heat represents more than half of the world’s total 

energy consumption and three-quarters of the fuels used 

to meet this heat demand consist of fossil fuels 

(Eisentraut and Brown, 2014). Despite these facts, heat 

is largely ignored in the climate change debate. 

Nevertheless, it is important to implement new energy 

efficiency measures in the heat sector. Cutting peak 

loads in district heating network is one of such measures 

and in this work peak load cutting is studied with 

simulations. 

Peak loads in district heating network occur when the 

heat demand exceeds the production capacity of 

available heating power. This means that reserve power 

plants need to be started to satisfy the heating demand. 

This raises production costs (and also environmental 

impact) for the energy producer as more expensive oil is 

used for fuel instead of wood, peat or coal. Therefore, it 

is in the interest of energy companies to cut peak loads 

and reduce the use of oil. Additionally, CO2 emissions 

are also reduced. At the same time, more accurate and 

stable indoor temperature control could be achieved by 

implementing the optimization routines for energy 

consumption. 

A concept for peak load cutting has been presented in 

(Hietaharju and Ruusunen, 2015). The concept aims to 

cut peak loads by utilizing building thermal mass as a 

short term heat storage. Building thermal mass and its 

use in peak load cutting has also been discussed in 

(Braun, 2013; Henze et al., 2007; Sun et al., 2013; 

Kensby et al., 2015; Hagentoft and Kalagasidis, 2015; 

Ståhl, 2009). Braun (2013) presented a review on load 

control utilizing building thermal mass including 

simulation, laboratory and field studies. It showed that 

there is significant saving potential for using building 

thermal mass, but it is affected by many factors, 

including utility rates, type of equipment, occupancy 

schedule, building construction, climate conditions, and 

control strategy. These factors were further studied by 

Henze et al. (2007) using a sensitivity analysis. Sun et 

al. (2013) presented a more recent look into peak load 

cutting. They found that in existing studies more than 

30% daily peak load reduction and also significant 

overall cost savings from 8.5% to 29% had been 

achieved utilizing building thermal mass. They also 

found that there exists model based as well as model free 

solutions. The amount of energy stored in the building 

thermal mass is difficult to identify and model based 

solutions are needed, but they mention the difficulties 

related to complex physical models and their 

identification. 

Kensby et al. (2015) demonstrated that heavy 

buildings can tolerate relatively large variations in 

district heating energy while still maintaining desired 

indoor temperature. The effect of heating power 

reduction on indoor temperature was also studied by 

Hagentoft and Kalagasidis (2015). In case of 1 °C 

change in the control signal, the indoor temperature drop 

was below 0.2 °C after 24 hours, which shows that the 

building thermal mass can be potentially utilized for 

peak load cutting. However, they mention that the 

results are highly dependent on the thermal 

characteristics of the building. In that regard, Ståhl 

(2009) found that thermal effusivity, which is a function 

of thermal conductivity and heat capacity and represents 

the materials ability to exchange thermal energy with its 

surroundings, is the most important parameter when 

considering the heat storage capacity of a building. 

Heavy buildings have higher thermal effusivity and 

therefore offer higher energy storage capacity compared 

with light buildings with lower thermal effusivity. Also, 
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the indoor temperature is typically more stable in heavy 

buildings. 

To utilize thermal mass effectively to cut peak loads 

and optimize heat consumption, one has to be able to 

predict the future heat demand. This can be achieved by 

modelling the thermal behavior of a building, namely 

the indoor temperature. This way also the quality of 

living for the residents can be ensured by maintaining 

the indoor temperature at acceptable level despite the 

cuts in heating power. In this work, an indoor 

temperature model (Hietaharju et al., unpublished) was 

applied to simulate peak load cutting in two apartment 

buildings. Finally, simulation results for different peak 

load cutting scenarios are presented and discussed. 

2 Data 

Two apartment buildings located in the city of Jyväskylä 

in Finland were studied. Building 1 was constructed in 

2011 whereas Building 2 was constructed in 1972 and 

renovated in 1993. Basic information about the 

buildings is presented in Table 1. Ground plans and 

elevation drawings were also available for the studied 

buildings. 

Measurement data for both of the buildings was 

acquired in early January 2015. Data included hourly 

values for heating power. In addition, outdoor 

temperature measurements were recorded for the same 

time period. Hourly indoor temperature measurements 

for both buildings were also available. Both buildings 

contained several indoor temperature measurements 

which were located in living rooms and hallways. 

Table 1. Building Information. 

 Building 1 Building 2 

Year of construction  2011 1972 

Year of renovation - 1993 

Floors 4 7 

Apartments  75 53 

Living space (m2) 3563 3024 

Floor space (m2) 4200 3703 

Volume (m3)  15617 12400 

 

3 Methods 

Previously identified and validated (Hietaharju et al., 

unpublished) indoor temperature model was used for 

predicting the indoor temperature evolution over time in 

the buildings. The model structure (Equation 1) is based 

on Newton’s cooling law and includes heat capacity (C) 

and heat loss coefficient (U) as physical parameters. 

Inputs for the model are indoor temperature (Ti), outdoor 

temperature (To), and heating power (P) which can 

include a lag of k hours. Time step (t) for the model is 

one hour. Model output is the hourly indoor temperature 

along the defined prediction horizon. 

𝑇𝑖,𝑡 = 𝑎 (𝑇𝑖,𝑡−1 +
∆𝑡

𝐶
(𝑃𝑡−1,          

              −𝑈(𝑇𝑖,𝑡−1 − 𝑇𝑜,𝑡−1))) + 𝑏 
(1) 

Initial data described in Section 2, including ground 

plans and elevation drawings, was used to calculate 

physical model parameters. Some assumptions were 

made about the construction materials due to 

insufficient information. After the calculation of the 

physical model parameters, input data mentioned before 

was used to estimate additional model parameters a and 

b. The indoor temperature model was then utilized to 

optimize heating power in pilot buildings considering 

different peak load cutting scenarios. 

The scenarios for cutting the peak loads considered 

simulations for 30%, 50%, and 70% reduction in the 

heating power. These cuts were made at the morning 

hours between 7 and 10 am. Load cuts were calculated 

from the actual measured district heating power. During 

the simulations, maximum allowed power was restricted 

accordingly during the peak load hours. Cost function 

for peak load cutting minimized the power consumption 

while keeping the indoor temperature between the 

control limits. This was achieved with a constraint by 

increasing the cost function value if the indoor 

temperature would have exceeded the limits according 

to the model prediction. Also the increase and decrease 

in the amount of heating power was restricted to prevent 

too large hourly power changes. 

All modelling and optimization work was 

programmed and evaluated in MATLAB® software with 

simulations. MATLAB®’s simulated annealing 

algorithm was utilized in peak load cutting simulations 

to optimize the usage of heat energy per building with 

respect to the constraint. In all the succeeding 

simulations, the prediction horizon of 100 hours was 

applied with acquired data from the buildings. 

4 Results and Discussion 

Firstly, both apartment buildings were modelled 

applying the indoor temperature model (Hietaharju et 

al., unpublished). Modelling results are presented in 

Table 2. The model performance was evaluated by 

calculating mean absolute error (MAE), mean absolute 

percentage error (MAPE), and root mean squared error 

(RMSE). 

Table 2. Performance of the Indoor Temperature Model. 

 Building 1 Building 2 

MAE (°C) 0.24 0.38 

MAPE (%) 1.07 1.69 

RMSE (°C) 0.33 0.44 
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Figure 1. Measured (solid line) and predicted (dotted line) 

indoor temperature: (a) Building 1 and (b) Building 2. 

 

Figure 1 shows the measured and the modelled indoor 

temperatures with data from Building 1 and Building 2. 

The time period for simulations was from January 3rd 

2015 to January 7th 2015. For the Building 1, indoor 

temperature measured from the living room was used as 

a reference. Respectively, for the Building 2 the 

temperature measured at the hallway was the model 

reference. It is important to notice the dynamic behavior 

that the model manages to capture. Although the 

modelled indoor temperature somewhat deviates from 

the measured temperature, the changes and trends are 

still captured by the model. This model property is 

further emphasized if the model is to be used for control 

purposes. Also, MAE, MAPE, and RMSE seem to be 

reasonably low in case of the two building data sets. 

Next, different peak load cutting scenarios were 

simulated utilizing the identified indoor temperature 

models. For both of the buildings 30%, 50%, and 70% 

peak load cuts during morning hours between 7 and 10 

am were applied in the simulation. Value of 22 °C was 

assumed to be the minimum desired indoor temperature 

for both of the buildings during the simulation. The 

upper limit for the indoor temperature was set to 23 °C 

for the Building 2 and to 24 °C for the Building 1. These 

upper limits were determined from the historical indoor 

temperature data. Figure 2 and Figure 3 show the 

simulation results for the peak load cutting. For the 

indoor temperature, measured and optimized indoor 

temperatures are presented. The grey bar in the district 

heating graph represents the peak load period during 

which the maximum allowed heating power was 

restricted. Restricted power values were calculated from 

the measured district heating power by taking the 

average of the measured district heating power during 

the peak load period and multiplying this by the desired 

cut percentage. 

 

Figure 2. Simulation results for Building 2 in the case of 30%, 50%, and 70% peak load cut during 7-10 am (grey bars). 

Upper: measured (solid line) and simulated (30%: circle; 50%: square; 70%: triangle) indoor temperature. Middle: 

measured (solid line) and simulated (30%: circle; 50%: square; 70%: triangle) district heating power. Lower: measured 

outdoor temperature. 
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In Figure 2 for the Building 2, a clear change in indoor 

temperature can be seen as a result of peak load cutting. 

Delay in the indoor temperature response is due to the 

lag in the applied model. For the 30% peak load cut it 

can be seen that at first, the temperature rises to the set 

upper limit as heat is stored into the building before the 

peak load period. Then, the temperature drops as the 

heating power is limited to lower level during the peak 

loads. In the case of Building 2, the indoor temperature 

drops below the minimum of 22 °C in all of the 

simulated peak load cutting scenarios. For 50% and 70% 

peak load cuts the storage capacity of the building is not 

enough and the indoor temperature decreases 

significantly due to the peak load cutting. For the 

simulation period, the total energy savings are 2.2%, 

7.5%, and 15.8% for the 30%, 50%, and 70% peak load 

cuts respectively. 

As can be seen in Figure 3, the simulated change in 

indoor temperature in the Building 1 is small when 

compared with simulation results in case of the Building 

2 staying between 22 and 23 °C. Nevertheless, the 

increase in temperature can be observed before the peak 

load period. Also, it can be clearly seen that the indoor 

temperature is higher in general on larger peak cuts to 

be able to perform the peak cut without compromising 

with the indoor temperature. Unlike in Building 2, the 

indoor temperature remains above 22 °C in Building 1. 

Total energy savings for the 50% and 30% peak load 

cuts for the simulation period were 1.0% and 2.9% 

respectively. With 70% peak cut energy is not saved 

during the simulation period but 2.3% more is needed. 

These results are much lower in comparison with the 

savings achieved for Building 2. This is partly caused by 

the high peak in the first four hours in the heating power, 

which can be seen in Figure 3. This is due to the fact that 

the initial measured indoor temperature in Building 1 is 

below the desired level and it has to be raised. If the 

heating power for these first four hours is excluded from 

the total energy saving calculations, total energy savings 

are 6.2%, 4.1%, and 0.7% for the 30%, 50%, and 70% 

peak load cuts respectively. This shows that energy is 

saved with every peak load cut percentage, but the 

savings are still lower, except for 30% cut, when 

compared with Building 2. This results from the fact that 

in Building 2 heat is not significantly stored with 50% 

and 70% peak load cuts as the storage capacity is not 

enough to compensate for such large cuts and therefore 

the total energy savings are significantly higher in 

comparison with Building 1 but the indoor temperature 

has to be compromised. Higher savings for the 30% 

peak load cut in Building 1 compared with Building 2 

can be explained with larger heat storage capacity in 

Building 1. In Building 2, 30% peak load cut requires 

all heat storage capacity to be utilized as can be seen in 

Figure 2 where the indoor temperature rises to the 

maximum limit of 23 °C before the peak load cut 

periods. In Building 1, heating power can be kept on a 

 

Figure 3. Simulation results for Building 1 in the case of 30%, 50%, and 70% peak load cut during 7-10 am (grey bars). 

Upper: measured (solid line) and simulated (30%: circle; 50%: square; 70%: triangle) indoor temperature. Middle: 

measured (solid line) and simulated (30%: circle; 50%: square; 70%: triangle) district heating power. Lower: measured 

outdoor temperature. 
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lower level as the heat storage capacity of the building 

is more than enough to manage 30% cut in peak loads. 

It can be seen from the results that the two buildings 

have different heat storing capacities. In this view, the 

Building 2 lacks the heat storing capacity to maintain the 

desired indoor temperature during the peak load cut of 

30% or more, which can be clearly seen in Figure 2. 

However, the indoor temperature could be allowed to 

drop below the desired level for the duration of the peak 

loads. In the case of 30% peak load cut, the indoor 

temperature in Building 2 decreases at most about 0.5 

°C below the desired temperature, which could be very 

well allowed. With 50% peak load cut the indoor 

temperature drops 1 °C below the desired temperature, 

which could still be allowed. If temperature drops of the 

same kind were also allowed for Building 1, the total 

energy savings would be more significant. On the other 

hand, also the maximum indoor temperature could be 

allowed to rise higher to get more heat storage capacity 

and ensure that indoor temperature does not drop below 

the desired level, but this could raise the total energy 

consumption. This shows how important it is to properly 

define the constraints for the optimization. Also, it is 

worth noticing that the studied buildings are apartment 

buildings where the indoor temperature must be more 

strictly maintained at acceptable level than for example 

in a school or an office building where the indoor 

temperature can be allowed to fluctuate more freely 

during the off-hours. In these kind of buildings, the use 

of building thermal mass could be even more effective. 

This is further supported by the preliminary results from 

an online test performed by the authors in a school 

building (Hietaharju and Ruusunen, 2015). There the 

district heating power was optimized for a 24-hour 

period and it resulted in 14% energy savings for the 

period and an average of 25% peak load cut during the 

morning hours. Nevertheless, buildings exist with 

different heat storing capacities and therefore it is 

important to investigate multiple buildings as the city 

level peak loads are desired to be cut. In that case, the 

peak cutting would be distributed between the buildings 

and their storage capacities could be effectively used 

without extensively variating the indoor temperature of 

individual buildings. Systems with groups of buildings 

have already been investigated but will be further 

studied in the future. 

5 Conclusions 

An indoor temperature model was applied to simulate 

different peak load cutting scenarios of district heating. 

According to the simulations, peak cutting potential in 

the tested two buildings varied because of different heat 

storing capacities. Nevertheless, in both of the buildings 

peak loads could be cut 30%, 50%, and even 70%. In the 

Building 1, performing the peak cutting did not have a 

significant effect on the indoor temperature and it stayed 

between the desired levels. In the Building 2, the heat 

storing capacity was not enough to cut the peak loads by 

30% or more without the indoor temperature fluctuating 

out of the defined limits. This shows the importance of 

properly defined constraints for the indoor temperature. 

Furthermore, these simulations demonstrate that the 

buildings have different heat storing capacities and 

therefore it is important to investigate systems with 

multiple buildings. In that case, the load cutting will be 

distributed between the buildings and their specific heat 

storing capacities can be effectively used to take into 

account variation in the temperature dynamics. 

All the results presented in this article are simulations 

based on actual measured data. The next phase would be 

to conduct field-tests to evaluate the method’s 

performance in a real building environment. In this 

article, peak load cutting and optimization is considered 

in a single building, but the overall goal is to develop 

optimization and peak load cutting methods for a system 

of multiple buildings. Having multiple buildings 

changes the picture completely and one can make 

conclusions about the energy savings also on city level. 

Systems with multiple buildings have already been 

investigated by the authors, but will be further studied 

in the future. Simulations presented in this article show 

that better energy efficiency in district heating can be 

achieved by predicting the energy consumption and 

utilizing the thermal mass of a building. 
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