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Abstract 
The energy from biomass can be utilized through the 

thermochemical conversion process of pyrolysis and 

gasification. The process involves solid phase and fluid 

phase interactions. Computational Particle Fluid 

Dynamics (CPFD) tools are most commonly used for 

simulations. The chemical processes involved is 

described by reaction rate expressions and equilibrium 

constants. These expressions are often not well studied, 

but rather adapted from previous studies in lack of better 

knowledge. Methodology and tools are presented to aim 

in the selection and optimization of rate expressions for 

a particular process. Simulation tools for reactions in 

batch or plug-flow conditions are shown applicable to 

study selected chemical reactions in detail. Results from 

one such study is compared to CPFD as well as CSTR 

results of a gasification process. The reaction scheme for 

the simulation model could be simplified. 

Keywords:     gasification, reaction kinetics, KINSIM, 

Barracuda, Aspen Plus, fluidized bed 

1 Introduction 

Biomass is the oldest source of energy known to men 

and contributes to 14% of world’s energy consumption 

(Bain et al., 1998; Saxena et al., 2009). Energy recovery 

from biomass is possible through the thermochemical 

conversion processes pyrolysis and gasification. In the 

gasification process, the biomass undergoes 

endothermic reactions to produce a mixture of 

combustible gases that is called producer gas, which can 

be used in gas engines, gas turbines or fuel cells to 

produce combined heat and electricity or it can be used 

as raw material in production of liquid bio fuel. 

Different types of reactors can be used in the 

gasification process. The most efficient types are the 

fluidized bed reactors, and the efficiency of these 

reactors mainly depends on the thermo-chemical and 

fluid dynamic behavior in the reactor. (Olofsson et al., 

2005; Pfeifer et al., 2011). The fluid dynamics depends 

on the gas-solid flow inside the reactor while the 

thermochemical behavior or reactions and their kinetics 

depend on the heat supply, the residence time and the 

gas-particle mixing in the reactor. The efficiency of the 

biomass-based energy technology has to be further 

increased to make the technology more sustainable in 

the world energy market, which is still dominated by 

fossil fuels. Study of chemical reactions and their 

kinetics in an operating plant or a reactor model, is 

difficult due to high operating temperature. 

Computational models are therefore used to optimize 

the reactors. In order to have a simulation model that 

predicts chemical composition, it is crucial to 

implement reaction schemes with reaction rates and the 

targeting equilibrium composition that correspond to 

real life conditions. 

Different computational models have been used to 

simulate the biomass gasification process. Thapa et al. 

(Thapa and Halvorsen, 2014; Thapa et al., 2014) have 

simulated the gasification process using the 

Computational Particle Fluid Dynamics (CPFD) tool, by 

Barracuda VR15 software. Thapa implemented the set 

of kinetic equations developed by Snider et al (Snider et 

al., 2011), Kauhsal et al. (Kaushal et al., 2007), Gomez-

Barea et al. (Gómez-Barea and Leckner, 2010) and 

Umeki et al. (Umeki et al., 2010) together with the 

stoichiometric equations in Barracuda. The results of the 

simulations were compared to the measured values from 

an existing biomass gasification plant. The CPFD 

methodology solves the fluid and particle equations in 

three dimensions. The fluid dynamics is described by 

averaged Navier-Stokes equations with strong coupling 

to the particle phase. To apply CPFD methodology for 

heat transfer and chemistry, an enthalpy equation is 

solved to calculate flows with large chemistry-induced 

temperature variations. The CPFD method is a hybrid 

numerical method, where the fluid phase is solved using 

Eulerian computational grid and the solids are modeled 

using Lagrangian computational particles (Andrews and 

O'Rourke, 1996; Snider, 2001). 

Eikeland et al. (Eikeland et al., 2015) used the 

process simulation tool Aspen Plus to simulate the 

biomass gasification process. The reactions are 

simulated by using Gibbs reactor or continuous stirred 

tank reactor (CSTR). The Gibbs reactor only includes 

the stoichiometric equations, whereas the CSTR model 

includes both the stoichiometric equations and the 

related reaction rates for analysis of the producer gas 

composition and its heating value. Eikeland used the the 

set of kinetic equations developed by Umeki et al. 
(Umeki et al., 2010). Aspen Plus is a one-dimensional 

steady state simulation model. 
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The aim of the current work is to investigate the sets 

of reaction scheme kinetics published in literature by 

simulating them using the ReactLab™ KINSIM 

software from Jplus Consulting (Norman et al., 2016), 

and compare to the results of the previous works 

performed with CPFD and Aspen Plus (Eikeland et al., 

2015; Thapa and Halvorsen, 2014).  

2 Reaction Kinetics 

For a reaction of species A and B to C and D, the rate r 
of the forward reaction is in general given by the 

equation 

𝑟 = 𝑘[𝐴]𝑎[𝐵]𝑏 (1) 

where a and b equals the stoichiometric coefficients for 

an elementary reaction, while this need not be the case 

for a global reaction consisting of several elemental 

steps. For a global reaction, the rate-limiting step may 

include species not present in the global rate 

formulation. The brackets denotes the concentration (or 

activities, to be precise) of species A and B in specified 

units. The rate constant k is a function of temperature as 

well as specific conditions like the presence of a 

catalyst. The temperature dependence of k can be 

described by the modified Arrhenius equation 

𝑘 = 𝐵𝑇𝑛𝑒𝑥𝑝
−𝐸𝑎
𝑅𝑇  (2) 

where B is a temperature-independent constant 

(McNaught and Wilkinson, 1997) and n is a number 

between –1 and +1. The constant n=0 gives the original 

Arrhenius equation and then usually the letter A denotes 

the pre-exponential factor. The constant Eₐ is the 

activation energy and R is the universal gas constant. 

The reverse reaction rate is given by a similar rate 

equation. The thermodynamic equilibrium of a chemical 

reaction corresponds to forward and reverse rates being 

equal. Thus, denoting the reverse reaction constants 

with an apostrophe, the equilibrium constant K is given 

by 

𝐾 =
𝑘(forward)

𝑘′(reverse)
=

𝐴

𝐴′
𝑒𝑥𝑝

−𝐸𝑎+𝐸𝑎
′

𝑅𝑇 =
[𝐶]𝑐[𝐷]𝑑

[𝐴]𝑎[𝐵]𝑏
 (3) 

Some reactions, like proton transfer in aqueous 

solutions, achieve equilibrium close to instantaneous 

such that product concentrations can be calculated from 

the equilibrium constants and mass balance. For most 

reactions, an equilibrium condition is not reached within 

available time frame, thus product concentrations must 

be deduced from differential equations. The solution of 

these may be by algebraic or stochastic methods. 

3 Previous Work 

Many of the published reaction rate expressions were 

developed for simulation of coal gasification processes. 

They have later been applied to biomass sources. In 
addition, the study of combustion processes involve 

many relevant species and expressions, and are thus 

applied for gasification. 

3.1 The Gasification Process 

The process for gasification of biomass can be divided 

in three consecutive steps; namely evaporation, 

pyrolysis, and gasification of resulting char product and 

volatiles. Both evaporation and pyrolysis proceeds close 

to instantaneous at the typical process temperatures of 

above 700 °C. The products after pyrolysis can be 

characterized as ash, tar, char and gases. The ash 

fraction is mostly minerals. The tar fraction is higher 

molecular weight hydrocarbons including small 

fractions of other elements. Both the ash and tar 

fractions are of minor importance for the total 

simulation, and therefore often skipped in the simulation 

model. The char fraction is mostly solid carbon (C), and 

is usually treated as pure carbon in following reactions 

with the pyrolysis gases. The main gases produced from 

pyrolysis are water (H₂O), carbon monoxide (CO), 

carbon dioxide (CO₂), hydrogen (H₂) and methane 

(CH₄). In addition comes the water produced from 

evaporation. For a fluidized process to work, a 

fluidization gas is needed. Steam (H₂O) is used in the 

process studied in this work, while carbon dioxide or air 

(oxygen, nitrogen) are commonly used in other 

processes. 

3.2 Kinetic Models 

The overall chemical reactions to be included in a 

simulation model then involve reactions between C, CO, 

CO₂, H₂, CH₄ and H₂O. Some possible chemical 

reactions are listed in Table 1 and Table 2. Since oxygen 

is not added to the system, combustion reactions with 

oxygen has been omitted. 

The table field Referring source points to multiple 

references. It has become common practice to refer to 

an author who in turn refers to another author and so on, 

and it is therefore often difficult to evaluate the 

relevance of the original source, see discussion below. 

3.3 Complexity of Sources for Kinetic Rate 

Equations 

For the rates involving solid phase, reference to the 

Japanese text of Watanabe (Watanabe et al., 2002) is 

made by Umeki et al. (Umeki et al., 2010). Snider 

(Snider et al., 2011) is referenced in recent work by Xie 

(Xie et al., 2012) and Eikeland (Eikeland et al., 2015). 

Snider in turn refers to Syamlal and Bissett (Syamlal and 

Bissett, 1992) who refers to a user’s manual of a 

computer program by Wen et al. (Wen et al., 1982). 

Wen et al. are listing 4 sets of parameters for 4 types 

of coal – the parameters are determined from 

experimental data by Elgin (Elgin, 1974). Any reference 

to which type of coal that is relevant has been lost in 
later references. 
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Table 1. Chemical Reactions Involving Solid Phase (Carbon). 
Reactions  

Heat of reaction at 850 °C, ΔHR (kJ/mol) (Zanzi 

et al., 2002) 

Reaction rate forward (top) and reverse (bottom)a  

(mol/(m³•s), J, K) 

Referring source 

Steam gasification (water-gas reaction): 

C(s) + H₂O ⇄ CO + H₂ 
+118,5 

  

  

Snider – Syamlal – Wen 
(Snider et al., 2011; Syamlal 
and Bissett, 1992; Wen et 
al., 1982) 

= 2,07 • 107𝑒𝑥𝑝
−220000

𝑅𝑇 𝑝𝐻2𝑂
0,73  units not given in source  Umeki – Watanabe (Umeki 

et al., 2010; Watanabe et 
al., 2002) 

CO₂ gasification (Boudouard reaction): 

C(s) + CO₂ ⇄ 2 CO 

+159,5 

  

  

Snider – Syamlal – Wen  

= 1,12 • 108𝑒𝑥𝑝
−245000

𝑅𝑇 𝑝𝐶𝑂2
0,31  units not given in source  Umeki – Watanabe 

Methanation reaction: 

0,5 C(s) + H₂ ⇄ 0,5 CH₄ 
-87,5 

= 1,368 • 10−3𝑚𝑠𝑇𝑒𝑥𝑝
(
−8078

𝑇
−7,087)[𝐻2]   

 

Snider – Syamlal – Wen  

a 𝑚𝑠 = 𝑀𝑤𝐶 × [𝐶(𝑠)] equals mass of carbon, the approximate char component 

𝑀𝑤𝐶 = molecular weight for carbon and [𝐶(𝑠)] = molar concentration of solid carbon 

 

Table 2. Chemical Reactions in Fluid Phase. 
Reactions 

Heat of reaction at 850 °C, ΔHR (kJ/mol) (Zanzi 

et al., 2002) 

Reaction rate forward (top) and reverse (bottom)  

(mol/(m³•s) , J, K) 

Referring source 

Water-gas shift reaction: 

CO + H₂O ⇄ CO₂ + H₂ 
-33,6 

 = 2,78 • 106𝑒𝑥𝑝
−1516

𝑇 [𝐶𝑂][𝐻2𝑂]  
Gómez – Biba (Biba et al., 
1978; Franks, 1967; Gómez-
Barea and Leckner, 2010; 
Yoon et al., 1978) 

  

 

Snider – Bustamante (GRI) – 
Moe (Bradford, 1933; 
Bustamante et al., 2004; 
Bustamante et al., 2005; 
Smith et al.; Snider et al., 
2011) 

  

  

Wang – Lindstedt – Kuo 
(Jones and Lindstedt, 1988; 
Kuo, 1986; Wang et al., 
2012) 

  

= 2,38 • 103𝑇𝑒𝑥𝑝
−16600

𝑇 [𝐶𝑂2][𝐻2]   

Umeki – (Corella/Maki) 
(Bustamante et al., 2005; 
Corella and Sanz, 2005; 
Snider et al., 2011; Umeki et 
al., 2010) 

= 106𝑒𝑥𝑝
−6370

𝑇 [𝐶𝑂][𝐻2𝑂]  

= 1,92 • 103𝑒𝑥𝑝
860

𝑇 [𝐶𝑂2][𝐻2]  

Corella and more (Corella 
and Sanz, 2005; González-
Saiz, 1988; Simell et al., 
1999; Xu and Froment, 1989) 

= 2,50 • 105𝑒𝑥𝑝
−16600

𝑇 [𝐶𝑂][𝐻2𝑂]  

= 9,43 • 106𝑒𝑥𝑝
−49500

𝑇 [𝐶𝑂2][𝐻2]  

Maki – Modell (Maki and 
Miura, 1997; Modell and 
Reid, 1974) 

= 2,78 • 106𝑒𝑥𝑝
−1510

𝑇 [𝐶𝑂][𝐻2𝑂]  

= 1,05 • 108𝑒𝑥𝑝
−5468

𝑇 [𝐶𝑂2][𝐻2]  

de Souza-Santos – Gibson – 
Parent (de Souza-Santos, 
2004; Gibson and Euker, 
1975; Parent and Katz, 1948)  

Methane steam reforming reaction: 

CH₄ + H₂O ⇄ CO + 3 H₂ 
+225,5 

  
Gómez – Lindstedt (Gómez-
Barea and Leckner, 2010; 
Jones and Lindstedt, 1988; 
Yoon et al., 1978) 

= 1,044 • 10−4𝑚𝑠𝑇
2𝑒𝑥𝑝

(
−6319

𝑇
−17,29)[𝐻2][𝐶𝑂] 

= 1,272𝑚𝑠𝑇𝑒𝑥𝑝
−22645

𝑇 [𝐻2𝑂] 

= 1,044 • 10−4𝑚𝑠𝑇
2𝑒𝑥𝑝

(
−2363

𝑇
−20,92)[𝐶𝑂]2 

= 1,272𝑚𝑠𝑇𝑒𝑥𝑝
−22645

𝑇 [𝐶𝑂2] 

= 0,151𝑚𝑠𝑇
0,5𝑒𝑥𝑝

(
−13578

𝑇 −0,372)[𝐶𝐻4]
0,5 

= 6,4 • 109𝑒𝑥𝑝
−39260

𝑇 [𝐻2]
0,5[𝐶𝑂2] 

= 7,68 • 1010𝑒𝑥𝑝
−36640

𝑇 [𝐶𝑂]0,5[𝐻2𝑂] 

= 6,71 • 107𝑒𝑥𝑝
−13688

𝑇 [𝐶𝑂2][𝐻2] 

= 2,75 • 106𝑒𝑥𝑝
−10065

𝑇 [𝐶𝑂][𝐻2𝑂] 

= 2,50 • 105𝑒𝑥𝑝
−16600

𝑇 [𝐶𝑂][𝐻2𝑂] 

= 3,0 • 105𝑒𝑥𝑝
−15042

𝑇 [𝐶𝐻4][𝐻2𝑂] 
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Reactions 

Heat of reaction at 850 °C, ΔHR (kJ/mol) (Zanzi 

et al., 2002) 

Reaction rate forward (top) and reverse (bottom)  

(mol/(m³•s) , J, K) 

Referring source 

     

= 3,556 • 10−3𝑇𝑒𝑥𝑝
−15000

𝑇 [𝐶𝑂][𝐻2]
2  

Umeki – (Corella) (Corella 
and Sanz, 2005; Fletcher et 
al., 2000; Gómez-Barea and 
Leckner, 2010; Jones and 
Lindstedt, 1988; Liu and 
Gibbs, 2003; Thérien et al., 
1987; Umeki et al., 2010) 

= 3,10 • 10−5𝑒𝑥𝑝
−15000

𝑇 [𝐶𝐻4][𝐻2𝑂]  

= 1,17 • 10−3𝑒𝑥𝑝
−47900

𝑇 [𝐶𝑂][𝐻2]
3  

revised Umeki – (Lindstedt) 

= 9,1 • 107𝑒𝑥𝑝
−15800

𝑇 [𝐶𝐻4][𝐻2𝑂]  

= 5,52 • 10−6𝑒𝑥𝑝
211200

𝑇 [𝐶𝑂][𝐻2]
3  

Maki (Maki and Miura, 1997; 
Modell and Reid, 1974) 

 

For the water-gas shift reaction, the several sources for 

the reaction rate expression shows a wide variety of 

reaction rates. Eikeland et al. (Eikeland et al., 2015) 

refer to Umeki et al. (Umeki et al., 2010). Umeki at al. 

refers to Corella and Sans (Corella and Sanz, 2005), but 

are using the GRI expressions referred by Snider et al. 

(Snider et al., 2011) from Bustamante (Bustamante et 

al., 2004; Bustamante et al., 2005). Xie et al. (Xie et al., 
2012) refers to Gómez-Barea and Leckner (Gómez-

Barea and Leckner, 2010), who refers to Biba et al. 

(Biba et al., 1978) referring to a book by Franks (Franks, 

1967). 

Biba et al. (Biba et al., 1978) points out that values 

determined by experiments for the frequency factor 

cited in the literature are strictly dependent on the form 

of the carbonaceous material being examined, on the 

specific surface area, and on the corresponding value of 

activation energy. They have chosen mean values of 

literature data, and then made a sensitivity analysis for 

their mathematical model. Any reference to which type 

of coal that is relevant has been lost in later references. 

The history for kinetic parameters used for the 

methane steam reforming reaction is similar to 

preceding text. In addition, it seems that a typing error 

is introduced by Corella and Sans (Corella and Sanz, 

2005) and later referenced by Umeki et al. and Eikeland 

et al. Corella and Sans refers to work by Thérien et al. 

(Thérien et al., 1987) and Liu and Gibbs (Liu and Gibbs, 

2003) from Fletcher et al. (Fletcher et al., 2000) which 

includes a reference to Jones and Lindstedt (Jones and 

Lindstedt, 1988). The typing errors have been corrected 

in the “revised Umeki-(Lindstedt) source” in Table 2. 

3.4 Chemical Equilibria 

For reactions that are kinetically restricted and far from 

equilibrium conditions, only the forward reaction rate is 

significant. This should, of course, be verified by 

comparing calculated forward and reverse rates at the 

simulation conditions. 

The water-gas shift reaction is relatively fast 

(although slower than oxygen combustion) and both 

forward and reverse rates as well as the equilibrium 

constant is relevant for most simulation conditions. 

Bustamante et al. (Bustamante et al., 2005) points out 

that the wide range of kinetic parameters found in 

literature is due to varying catalytic effect from surfaces 

present at experimental conditions. Typically, carbon 

surfaces or deposits and nickel-containing steel (like 

Hastelloy®) as well as minerals in ash are shown to have 

catalytic effect on the reaction, resulting in high reaction 

rates. The expression for the equilibrium constant of the 

water-gas shift reaction from several sources are shown 

in Table 3. The last line source, Callaghan (Callaghan, 

2006), is a recent thesis covering the details about the 

water-gas shift reaction, and presumably represents 

reliable knowledge about the equilibrium constant for 

the reaction. 

4 Example Screening of Kinetic Rate 

Equations 

In order to have a simulation model that predicts 

chemical composition, both the reaction rate kinetics 

and the targeting equilibrium composition should 

correspond to real life conditions. Taken the vast 

difference among literature data, the choice of kinetic 

rate expressions is not straight forward. 

Figure 1 compares the equilibrium constant value, 

𝐾𝑒𝑞, for the water-gas shift reaction based on selected 

literature data from Table 3. A positive value of log𝐾𝑒𝑞 

corresponds to the forward reaction being favored. The 

reaction is a moderately exothermic reversible reaction, 

therefore with increasing temperature the reaction rate 

increases but the conversion of reactants to products 

becomes less favorable. It is evident from Figure 1 that 

some sources are using an equilibrium constant not 

consistent with reliable data. On the other hand, if 

equilibrium conditions are not reached, the simulation 

model may still perform sufficiently well. That is, if the 

reaction rate expressions can reproduce the chemical 

reactions at present conditions. 

 

= 3,1005𝑒𝑥𝑝
−15000

𝑇 [𝐶𝐻4][𝐻2𝑂] 
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Table 3. Expressions for Equilibrium Constant 

Water-gas shift reaction:  CO + H₂O ⇌ CO₂ + H₂ 

Equilibrium constant, calculated as 
𝒌𝒇𝒐𝒓𝒘𝒂𝒓𝒅

𝒌𝒓𝒆𝒗𝒆𝒓𝒔𝒆
 (top)  

and as referred from source (bottom) 

(mol/(m³•s), KJ) 

Referring source 

Used: 𝐾 = 2,65 • 10−2𝑒𝑥𝑝
(
3958

𝑇
)
 (ref Biba) 

Source (ref to Yoon): 𝐾 = 0,029𝑒𝑥𝑝
4094

𝑇    

Gómez – Biba 
(Biba et al., 1978; 
Franks, 1967; 
Gómez-Barea and 
Leckner, 2010; 
Yoon et al., 1978) 

Used: 𝐾 = 12,0𝑒𝑥𝑝
(
2620

𝑇
)
  

Source: 𝐾𝑒𝑞 = exp−4,33+
4577,8

𝑇   

Snider – Busta-
mante (GRI) – Moe 
(Bradford, 1933; 
Bustamante et al., 
2004; Bustamante 
et al., 2005; Smith 
et al.; Snider et al., 
2011) 

𝐾 = 4,10 • 10−2𝑒𝑥𝑝
(
2620

𝑇
)
  (Fitted data, Ref: 

Kuo) 

Wang – Lindstedt – 
Kuo (Jones and 
Lindstedt, 1988; 
Kuo, 1986; Wang 
et al., 2012) 

Used: 𝐾 = 4,10 • 10−2
1

𝑇
  

Shown in forward rate: 𝐾 = 2,65 • 10−2 (
3958

𝑇
) 

Umeki – 
(Corella/Maki) 
(Bustamante et al., 
2005; Corella and 
Sanz, 2005; Snider 
et al., 2011; Umeki 
et al., 2010) 

Source: 𝐾 = 520𝑒𝑥𝑝
−7230

𝑇  below 1123 °C 

Source: 𝐾 = 0,0027𝑒𝑥𝑝
−3960

𝑇   above 1123 °C 

Corella and more 
(Corella and Sanz, 
2005; González-
Saiz, 1988; Simell 
et al., 1999; Xu and 
Froment, 1989) 

𝐾 = 2,65 • 10−2𝑒𝑥𝑝
(
32900

𝑇
)
    Maki – Modell 

(Maki and Miura, 
1997; Modell and 
Reid, 1974) 

𝐾 = 2,65 • 10−2𝑒𝑥𝑝
(
3958

𝑇
)
  de Souza-Santos – 

Gibson – Parent 
(de Souza-Santos, 
2004; Gibson and 
Euker, 1975; 
Parent and Katz, 
1948) 

 
Callaghan 
(Callaghan, 2006) 

 

The following discussion on reaction rates takes as an 

example the feed inlet conditions for a fluidized reactor 

as described by Eikeland (Eikeland et al., 2015) and is 

comparable by work of Thapa (Thapa et al., 2014). 

Figure 2 compares the initial reaction rates based on 

composition at inlet to the reactor and selected reaction 

scheme. Again, the vast variation in source data is 

evident. The rate expressions used by Snider from 

Bustamante is close to the non-catalyzed reaction rates 

found experimentally by Bustamante (Bustamante et al., 
2005). Higher reaction rates presumably are deduced 

from catalytic conditions. Therefore, a simulation model 

should include rate expressions from sources that 

resembles the conditions of the target reactor and 

biomass feed. 

 
Figure 1. Equilibrium constant for water-gas shift 

reaction 

 
Figure 2. Initial rate of water-gas shift reaction at feed 

inlet conditions as described by Eikeland (Eikeland et al., 

2015). 

4.1 KINSIM simulation software 

The ReactLab™ KINSIM software from Jplus 

Consulting (Norman et al., 2016) is one of several 

software packages available. The software uses 

MS-Office Excel as frontend to a compiled application 

of MatLab®. Any defined equilibria is treated as 

instantaneous, while differential equations for the 

forward and reverse reaction rates are solved. 

4.2 Kinetics 

The set of rate expressions used by Thapa (Thapa et al., 

2014) together with calculated molar concentrations at 

inlet feed conditions have been used for time profile 

simulation of rate expressions. The KINSIM software 

has been used. The results resemble a batch or plug flow 

reactor. The residence time 12 s has been chosen to have 

a conversion comparable to results from Aspen Plus 
CSTR and Barracuda simulations by Eikeland and 

Thapa. In addition, simulations with residence time 

lo𝑔(𝐾) = −2,418 + 0,0003855 × 𝑇 +
2180,6

𝑇
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300 s is shown to get an impression of semi-equilibrium 

conditions. See Figure 3 to Figure 6. 

The Figure 3 to Figure 4 show the water-gas shift 

reaction to be dominating in consuming CO and water 

while producing H₂ and CO₂. Still, the semi-equilibrium 

conditions may not be reached until about 100 s. The 

total conversion of carbon is strongly limited using this 

set of rate expressions, and other reactions do not 

contribute significantly as seen by the very small change 

in CH₄ concentration. Actually, this imply that a similar 

simulation result can be obtained by simulating only the 

water-gas shift reaction. Results including only water-

gas shift reaction and water-gas reaction are shown in 

Figure 5 to Figure 6. At 12 s residence time, the results 

are identical to the full set of rate expressions. Of course, 

at 300 s residence time the lacking effect of other 

reactions are evident, the included carbon conversion 

reaction is very low. 

Figure 7 shows the composition change during the 

gasification process as simulated at 850 °C by Aspen 

Plus CSTR, Barracuda CFD and KINSIM plug-flow 

reactor conditions. 

The pyrolysis step corresponds to presumptions for 

this step made by Thapa and Eikeland (Eikeland et al., 

2015; Thapa et al., 2014). In addition, the steam to feed 

ratio is kept at 1 to 1 weight dry basis. A residence time 

of 17 s was used for the CSTR conditions, while fluid 

residence time by Barracuda simulation is estimated to 

minimum 20 s. The particle residence time is much 

higher. The last set of results are from using KINSIM 

with only two rate expressions as shown above. The 

Barracuda simulation give results that is in between 

Aspen CSTR and KINSIM plug-flow results while 

applying the same rate expressions. This is consistent 

with fluid flow in a fluidized bed reactor be described 

partly as plug-flow and partly as stirred tank reactor. 

 
Figure 3. Concentration time profile for the full 5 sets of 

rate expressions (short time). 

 
Figure 4. Concentration time profile for the full 5 sets of 

rate expressions (semi-equilibrium time). 

 
Figure 5. Concentration time profile for only 2 sets of 

rate expressions (short time). 

 
Figure 6. Concentration time profile for only 2 sets of 

rate expressions (semi-equilibrium time). 
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Figure 7. Composition change during a gasification

process, feed and steam to outlet stream.

5 Conclusions

The evaluation and screening of candidate rate

expressions to be used in a reactor simulation is made

difficult by the obscure definition of experimental

conditions as background to defined rate expressions. A

lightweight tool like KINSIM and others are useful for

comparison of several rate expressions and by that

evaluate how significant they will contribute to the total

simulation. In addition, knowledge about

concentrations, residence times and real life results

should be used to choose suitable set of rate expressions.

The 5 set reaction scheme studied here could be

simplified to 2 sets of reactions by removing those

reactions of minimal contribution to overall reaction.
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