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Abstract
This paper describes a Model Predictive Control (MPC)
system for voltage control through field excitation of
hydroelectric generating units. An attractive feature of
MPC is its capability to handle Multiple Input, Multiple
Output (MIMO) systems and nonlinear systems taking
constraints into account. The system under study is a
power system based on detailed models from Matlab’s
SimPowerSystemsTM and parametrized according to the
Nordic model from the Norwegian Transmission System
Operator (TSO), Statnett. The primary role of the field
excitation control system is to quickly respond to voltage
disturbances occurring in the power system. The control
system is tested for both first-swing transient stability and
long term voltage stability.

Power system modeling and control, model predictive
control, SimPowerSystems, first-swing rotor enhance-
ment, long term voltage stability, fmincon

1 Introduction
In this paper a Model Predictive Controller (MPC) for
field excitation of synchronous generators is tested, and
compared to a classical controller typically used for this
purpose. MPC is an advanced control methodology that
has proved to be successful in real-life applications. An
attractive feature of MPC is its capability to handle Mul-
tiple Input, Multiple Output (MIMO) systems and nonlin-
ear systems taking constraints into account (Maciejowski,
2002).

There are mainly two requirements for successful oper-
ation of a power system (Hegglid, 1983). The first require-
ment of reliable service is to keep the generators running
in parallel (synchronous) and with necessary capacity to
meet load demand. If at any time the generator loses syn-
chronism with the rest of the system, significant voltage
and current fluctuations may occur and transmission lines
may be automatically tripped by their relays at undesired
locations (Kundur, 1994).

A second requirement of reliable service is to maintain
the integrity of the power network. Interruptions in this
network may hinder flow of power to the load, leading to
severe blackouts of the power system. This usually re-
quires a study of large geographical areas since almost all

power stations and load centres are connected in one sys-
tem.

A controller should maintain both of these require-
ments: keeping the generators running in parallel and
to maintain the integrity of the power system. This is
achieved mainly by reducing the first swing of the rotors
of the synchronous generators after large disturbances,
and the damping of power oscillations (also small distur-
bances). Another important requirement for a controller is
to provide necessary reactive power supply Q for enhance-
ment of voltage stability. Reactive power can be used to
compensate for voltage drops, but must be provided closer
to the demands than active power P needs due to trans-
portation limitations of reactive power through the grid.

A flexible power factor control on large synchronous
generators located close to points of high demand could
enhance the voltage stability of a power system. The
Norwegian Network Code FIKS 1 states that synchronous
generators≥ 1 MVA must connect to the grid with a cosφ

≥ 0.86 overexcited and ≤ 0.95 underexcited at maximum
load (independent of the location from the point of de-
mand). However, necessary enhancement of voltage sta-
bility could be secured through use of more advanced
control where more reactive power is temporary available
from large generators generated locally.

The paper is organized as follows. Section 2 provides
a brief overview of field excitation control of synchronous
generators. Section 3 describes MPC for the excitation
system and the modeling workflow used in this paper. Sec-
tion 4 describes MPC tuning. Section 5 introduces, de-
scribes and discuss the different tests and results from sim-
ulations. In Section 6, conclusions and future perspectives
are presented.

2 Field Excitation Control
2.1 Capability Curve
Synchronous machines are capable of producing and con-
suming reactive power. When the machine is overexcited,
it generates Q and deliver it to the power system. Neg-
ative Q then, flows from the system into the machine to
maintain its magnetization when its own field is underex-
cited. Generally, reactive power support is divided into

1Funksjonskrav I Kraft-Systemet 2012 from the Norwegian Trans-
mission System Operator (TSO) (Statnett, 2012)
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two categories: static and dynamic (Kundur, 1994). Dy-
namic reactive power is produced from equipment that can
quickly change the Q independent of the voltage level such
as a synchronous generator or condenser (generator with-
out active power exchange P with the grid). Thus, the
equipment can increase its reactive power production level
when the voltage drops, and prevent a voltage collapse.

A generators operating constraints can be visualized
through a capability diagram (Farnham and Swarthout,
1953). In Figure 1, the capability curve is shown for the
synchronous generator used for simulations in this paper.
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Figure 1. Capability curve for synchronous generator used in
simulations. Point A represents the name-plate rated conditions
with power factor cosφ = 0.86 for the generator. Rated (nom-

inal) MVA of the machine SN =
√

P2
N +Q2

N is taken as 1.0 per
unit on its own rated MVA base. Hence, the rated conditions
for machine operation are 0.86 per unit MW and 0.51 per unit
MVAr (cosφ = 0.86, sinφ = 0.51).

Point A is just one point in a rather extensive area of
Figure 1. Few machines are operated at any length of time
exactly in the condition of A. The operating conditions
in overexcited mode is bounded by the armature current
limit AB (circle having its centre at O, and radius equal
to rated armature current, ItN or OA ) and the field current
limit AD (circle having its centre at C, and radius equal
to rated full load field current, I fN or CA). The controller
can control the field current represented by CP in Figure 1.
CP/CA is simply the proportion of rated field current, and
this is just the amount necessary to permit the machine to
handle the P and Q represented by point P. If the load in-
creases without any change in the field current, this causes
a movement of operating point P along the arc PK. This
path runs almost directly into the instability region (Farn-
ham and Swarthout, 1953) of the generator, e.g minimum
field current for stable operation. The final operating point
would lie on the XY line, representing limits set by the tur-
bine power. The figure also shows the effect of increased
synchronous reactance xd of the machine. This increase in
xd makes the machine reach the stability limits even faster.
The maximum reactive power that can be delivered from
this generator is defined by OD=CA-CO (e.g. as an syn-
chronous condenser). With a synchronous reactanse xd of
1.24 in per-unit, terminal voltage Vt = 1.0 in per-unit, and
the given operating conditions in Figure 1, the rated field

current 2 can be calculated to be 1.6 from

I fN =

√(
V 2

t

xd
+

Qt

SN

)2

+ cosφN
2. (1)

2.2 Classical Control
The excitation (or field) current required to produce the
magnetic field inside the generator, is provided by the ex-
citer and is controlled by an Automatic Voltage Regula-
tor (AVR) (Kundur, 1994). The AVR regulates the gen-
erator terminal voltage by controlling the amount of cur-
rent supplied to the generator field winding by the exciter.
Power System Stabilizers (PSS) are feed-forward supple-
mentary control devices which are installed in generator
excitation systems to increase damping of (power) oscil-
lations. The specification of excitation systems is guided
by IEEE standards 421 (IEEE, 2007). In this paper, a
synchronous machine voltage regulator and exciter based
on the IEEE type ST1A excitation and Kundur’s (Kundur,
1994) generic PSS is used. This type represents a classical
exciter model of static potential-source controlled-rectifier
systems. This classical control structure is shown in Fig-
ure 2

There are two key factors that define an excitation sys-
tem: the transient gain and the ceiling force ratio (IEEE,
2007). Because of a very high field forcing capability of
the system, a field current limiter is employed to protect
the generator rotor and exciter. The transient gain has a
direct impact on small signal and dynamic stability. Too
small a value may fail to give the desired performance,
while too high a value (faster response) may result in in-
stability during faults.

3 Concept and Formulation of MPC
MPC is an algorithm where an optimal control problem is
solved at the current time, then a receding/sliding horizon
technique is applied as time progresses. The predictive
controller considers both past situations (given by state)
and the changing of the system in a finite future time hori-
zon. To solve the optimal control problem, an optimiza-
tion routine is needed. In the optimization problem, an
objective/criterion to be maximized/minimized is formu-
lated together with constraints (Maciejowski, 2002).

Optimal control is an open loop optimization problem.
If input disturbances and references change in the future,
the controller has no knowledge about this change since
no feedback is presented in the solution. Under such con-
ditions optimal control problems may give good perfor-
mance. To come around this challenge, feedback is in-
troduced to the optimal controller. A way to do this is
called Model Predictive Control (MPC) (Sharma, 2014).

2The rated field current is the direct current in the field winding of
a machine, when operating at rated voltage, current and speed and at
rated power factor for synchronous machines (Farnham and Swarthout,
1953).
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Figure 2. The classical static excitation control ST1A with PSS used in simulations. The PSS representation consist of a phase
compensation block, a signal washout block and a gain block. The models are tuned according to Kundur (Kundur, 1994).

As mentioned above, MPC is optimal control with a slid-
ing horizon strategy, e.g. a new optimal control problem
is solved at every time step ∆t.

Assume the initial state of the plant x j is known, to-
gether with current/future references r j+1,r j+2,..,r j+N and
disturbances w j, w j+1,..,w j+N−1. By solving the opti-
mal control problem, this leads to an optimal open loop
control input sequence u∗j| j, u∗j+1| j ,.., u∗j+N−1| j. Sub-
script k| j implies the control input at time k, when
current state x j is known. It is clear that u∗k| j =

u∗k(x j,r j+1, ..,r j+N ,w j, ..,w j+N−1). The dependence of
u∗k| j on r j+1,..,r j+N ,w j, ..,w j+N−1 gives feed forward from
r j+1, ..,r j+N ,w j, ..,w j+N−1. However, optimal control
where uk = u∗k| j does not give feedback since uk only de-
pends on x j. To have feedback, we require that uk de-
pends on xk. To achieve feedback, introduce receding
horizon: set u j = u∗j| j. Then find or estimate x j+1 af-
ter u j has been injected, shift/recede the optimal control
horizon one step. The process is then repeated to com-
pute u∗j+1| j+1,u

∗
j+2| j+1, ..,u

∗
j+N+1| j+1 by setting u j+1 =

u∗j+1| j+1 and we introduce feedback.
Because of feedforward the controller can react before

known disturbances (or set point changes) affect the pro-
cess. A model of the disturbance should then be included
along with the model of the process while solving the op-
timal control problems at each time step.

3.1 MPC as Excitation Control

For the power system generator excitation control, the se-
lected system outputs are the generator voltage and angu-
lar velocity. The manipulating input, u, is the generator
field excitation voltage E f d when it is used as a primary
controller. Alternatively MPC is also used as a secondary
controller to change set-point of the classical (primary)

controller u =Vre f . In Figure 3, the control structure used
in the simulations is shown. For transient stability, MPC
works as primary control while during long-term stability
analysis MPC was tested both for primary and secondary
control. The control system can also change between clas-
sical and MPC control during simulation.

Conventional
excitation
control

Powersystem
Plant

MPC

w1[k]
x[k]

u[k] y[k]

Figure 3. Structure of plant and controller. Here, MPC is a
Multiple Input, Single Output (MISO) controller.

The performance index J is scalar and is computed
as a summation of the square of the deviations between
outputs and references, ∆e, and the variations of the con-
trolling inputs to the controlled system, ∆uc. Weighting
factors Q, P and R are included in J as tuning parameters.

J =
Np

∑
j=1

∆eV , j
T Q∆eV , j +∆eω, j

T P∆eω, j +
Nc

∑
j=1

∆uc, j−1
T R∆uc, j−1 (2)

where
∆uc, j = uc, j −uc, j−1 (3)

∆eω, j = ωre f −ω, j (4)

∆eV , j =Vre f −Vt, j (5)

The control input is the field excitation voltage

uc j = [E f dc j
] (6)
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Np and Nc are prediction and control horizon lengths.
The inequality constraint on the controlled variable are
E f dc ∈

[
E f dmin ,E f dmax

]
where E f dmin = −3.2 per-unit and

E f dmax = +3.2 per-unit (Two times the rated field current
according to FIKS (Statnett, 2012)).

The control output

y j = [Vt, j,ωg, j]
T (7)

3.2 Modeling and Control Workflow
The modeling part in this paper is done with the
powerlib library of SimPowerSystemsTM built on the
SimscapeTM language, running within the Simulink R© en-
vironment. SimPowerSystems provides component li-
braries and analysis tools for modeling and simulating
electrical power systems. Since Simulink uses MAT-
LAB as its computational engine, MATLAB toolboxes are
available. In this paper, MPC is implemented using the
MATLAB Optimization Toolbox and the fmincon solver
with the Active-Set method.

For simulations, the phasor domain solution method
with Simulink R©variable-step solvers (ode23t and
ode23tb) are used. The phasor solution method is mainly
used to study electromechanical oscillations of power
systems, which is the case study in this paper.

To further increase the speed of optimization, all simu-
lations were done in Accelerator mode and with the Fast
Restart command. The Accelerator mode generates and
links code into a C-MEX S-function. The idea of Fast
Restart is to perform the model compilation once and
reuse the compiled information for subsequent simula-
tions. Also the SimState function was used for easily in-
tegration within the optimization algorithm. A SimState
is the snapshot of the state of a model at a specific time
during simulation.

4 Tuning the MPC Controller
4.1 Time Response
The voltage controller needs to operate freely and with-
out unnecessary restriction within performance limits of
the generator and excitation system. A standard proce-
dure for evaluating the response of the closed-loop excita-
tion control system is to document its dynamic character-
istics. A small-signal performance measure is expressed
in terms of indices associated with time response. A step-
response test is done on the regulator in open circuit condi-
tions according to TSO. The mathematical model design
to be used for the MPC tuning and also first-swing tests
is a classical SMIB (Singel Machine Infinite Bus). This
model consist of a three-phase salient-pole synchronous
machine modelled in the dq rotor reference frame, three-
phase transformer, transmission line and a voltage source
as an inifinite bus as shown in Figure 4.

The model is a power plant in Norway: the 175
MVA hydro power plant Kobbelv aggregate 2 owned by
Statkraft AS (G2 in Area 2 in Figure 11). The main data
for this generator is given in Table 1

G2
T2

Line

Swing bus

Switch Switch

Figure 4. Singel Machine Infinite Bus (SMIB) for transient sta-
bility simulations.

Table 1. Main data for G2 in area 2.

Description Parameter Value Unit

Rated power SN 175 MVA
Rated Power factor cosφN 0.86
Rated voltage VtN 16.5 kV
Frequency f 50 Hz
Number of polepairs p 8
Inertia constant H 2.9 s

4.2 Open Circuit Conditions

The voltage regulator should be verified by the impulse
response in open circuit conditions. For the voltage regu-
lator, a 5% up and down step-response test on the voltage
regulator should be carried out. The voltage should be
measured over the generator terminals and the response
should be non-oscillatory with a overshoot less than 15%
of the impulse response itself. The results are shown in
Figure 5.

0 0.5 1 1.5 2 2.5 3
Time [s]

0.94

0.96

0.98

1

V
t 
[p

u
]

Step response ST1A

Step response MPC
TSO < 15 % overshoot

TSO < 0.5 [s]

Figure 5. The figure is showing a open circuit small-signal time
response test with respect to TSO requirement for both MPC and
classical control ST1A. The settling time must be < 0.5 seconds
for a 0.95 to 1 step-up and a 1 to 0.95 step-down from steady
state value according to FIKS (Statnett, 2012). The overshoot
shall be less than 15 % of the change. The MPC tuning pa-
rameters were Np = 5, Nc = 1, Q = 300, P = 5, R = 0.01 and
∆t = 0.05.
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5 First-swing Angle Stability En-
hancement

First-swing angle stability (or transient stability) enhance-
ment is necessary to avoid loss of synchronism. Two fac-
tors which indicate the stability are the angular swing (dur-
ing and after a fault) and the critical clearing time tcrit

3

(or clearing angle δcrit) of a fault (Grainger and Steven-
son, 1994). The generator rotor angle swing normally
peaks between 0.4 and 0.75 seconds. This short time de-
mands a fast acting voltage regulator to boost the inter-
nal voltage through the field excitation. The steady-state
power-angle characteristic presented in Figure 6 shows the
highly non-linear relationship between interchange elec-
trical power Pe and angular position δ of the rotors of the
synchronous generators (The effect of AVR and damping
windings (Kundur, 1994) are neglected).
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Figure 6. Plot of power-angle curves (Pre-fault Pmax, during
fault r1Pmax and post-fault r2Pmax) for synchronous generator G2
Area 2 showing, initial mechanical power and electrical power
Pm0 = Pe = 1pu, inital angular position of the rotor δ0 = 39 de-
grees and the critical clearing angle calculated to δcrit = 122 de-
grees and corresponding critical clearing time tcrit = 0.28 sec-
onds.

Position δ0 < 90 in Figure 6 is the initial operating point
of a stable operation. The swing equation for the machine
with constant flux linkage may be written in acceleration
form as

H
180 f

d2δ

dt2 = Pm−Pe = 1.0−Pmaxsinδ (8)

Pmax =
Eg ·Vbus

xs
(9)

Eg is the synchronous machine transient voltage, xs is
the series transfer reactance between Eg and swing bus
Vbus, and f is the electric frequency. In all the simulations,

3The critical clearing time is the maximum elapsed time from the
initiation of the fault until its isolation such that the power system is
stable.
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Figure 7. Plot of rotor angle δ affected by a three-phase fault
under constant field voltage control for synchronous generator
G2 in Area 2. The plot shows two different fault clearing times.
The fault cleared after 0.28 seconds lead to loss of synchronism
as calculated from tcrit .

Pm is kept constant. When Pm equals Pe, the machine op-
erate at steady state synchronous speed. Both the inertia
constant H and transient reactance of the machine x′d has
a direct impact on the first swing (transient) studies. A
smaller H gives a larger angular swing. Pmax decreases as
the transient reactance increases since it forms a part of the
overall series reactance. A decreased Pmax constrains the
machine to swing through a smaller angle from its original
position before it reaches the critical clearing angle.

The MPC controller was tested and compared to classi-
cal control as shown in Figure 8 and Figure 9.

0.5 1 1.5 2 2.5 3

Time [s]

-6

-4

-2

0

2

4

6

u
c
 [
p
u
]

ST1B+PSS

MPC
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Figure 8. Change in field voltage E f d as a function of time
under disturbance of a three-phase arc fault for three different
types of control actions. Clearing time was 0.1 second. Future
disturbance is not known for the controller.

6 Long-term Voltage Stability En-
hancement

6.1 Steady-state Voltage Stability
The steady-state voltage-power characteristics (also called
onion surface) shown in Figure 10 for the SMIB, gives
insight into the voltage stability problem (Larsson, 2000).
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Figure 9. Change in terminal voltage Vt as a function of time
under disturbance of a three-phase arc fault for three different
types of control actions. Clearing time was 0.1 second. Future
disturbance is not known to the controller.

Figure 10. Normalized power(p)-voltage(v) curves (onion sur-
face) for steady-state voltage stability analysis. The practical
and theoretical transfer limits and the critical voltage is given
for tan(φ) = 0.

The critical voltage Vc (voltage collapse) points out the
theoretically stability limit of the SMIB. The most im-
portant factor to provoke a voltage collapse (blackout) is
the load model as presented in (yvang et al., 2014) . A
widely used dynamic load characteristic is an exponential
load model with fractional load exponents combined with
time constants for both active and reactive power (Cut-
sem and Vournas, 1998). If the voltage is lower than a
specified value, the load impedance is kept constant. An
impedance load model adapts to the voltage. However, a
dynamic load that recovers over time combined with auto-
matic tap-changers would stress the power system. When
load recovers in a highly loaded system, the need for reac-
tive power increases with I. This will automatically bring
the system to the edge. In addition one needs to make sure
that generator exciters are limited (Kundur, 1994).

6.2 Power System Simulator
Large-disturbance (e.g. loss of load or loss of generation)
long term voltage stability simulations requires the exam-
ination of the dynamic performance of the system over a

period of time sufficient to capture the interactions of such
as tap-changers and field current limiters (Kundur, 1994).
This means that it is not only sufficient to simulate a three
phase fault with clearing of fault after some milliseconds
as done with first swing simulations. After an arc fault
the system will either be transiently unstable, partly or
as a whole (collapse), or it will return to a stable point.
Thus, additionally outage of a line or any reactive power
source is of interest (Cutsem and Vournas, 1998). For
Long Term Voltage Stability (LTVS) simulations, a more
complex simulator was needed to test the MPC controller
in contrast to the SMIB simulator in transient studies. A
Dynamic Study Model has been developed based on the
Nordic Model 2010 High Load Case (Norgesmodellen)
from Statnett. The geographical area is in the North re-
gion of Norway containing four synchronous generators
and one synchronous compensator. It also contains an
tap-changer connected to a dynamic load for stressing the
system. The model was tuned to operate near its capac-
ity limit and could exhibit cascading failures which could
lead to blackouts. The power system model is shown in
Figure 11.

INFINITE BUS 300 kV

124 km

77 km

39 km

132 kV

38 km

106 km

50 km

132 kV

International

132 kV

70 km 32 km

G1 410 MVA 20 kV

G2 320 MVA 18 kV

400 kV

Dynamic load
OLTC 400kV/22 kV

G1 175 MVA 16.5 kV

G2 175 MVA 16.5 kV

G1 160 MVA 11kV

Sync. condenser

AREA 1 AREA 2

AREA 3

Figure 11. Power system simulator for long term voltage sta-
bility simulations based on the Nordic Model from Statnett.
The system consists of three different Areas including four syn-
chronous generators and one synchronous condenser. Power is
also fed through the international transmission link.

6.3 LTVS Simulations
For LTVS simulations in this paper the international trans-
mission link is disconnected demanding necessary reac-
tive power to be delivered locally. The tap-changer is then
trying to restore the voltage at load forcing the system to
collapse. As expected from the steady state calculations,
the power system have a blackout when part of the system
is reaching the critical voltage limit around 0.7 per-unit as
seen in Figure 12.

Results from simulations with MPC as primary control
are shown in Figure 13 for different tuning parameters.
Optimization is done at every ∆t = 1s. A smaller ∆t and a
longer prediction horizon Np gives better control but has a
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Figure 12. Voltage as a function of time for some selected buses
in the power system with and without OLTC control on dynamic
load. Area 1 Generator 1 and Generator 2 has constant field
voltage. Area 2 Generator 1 and Area 3 Generator 1 has imple-
mented classical control.

higher computational cost. The weighting factors are the
same as earlier.
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Figure 13. Voltage as a function of time where MPC control
action are implemented at Area 2 G2 as primary control.

According to the TSO, the set-point voltage of the con-
troller has to be between 0.9 and 1.05 per-unit value and
can be set both locally and from a control center. For simu-
lating such a scenario, MPC is used to change the set-point
value u =Vre f . In this case, the set-point was changed for
both generators in Area 2 for bringing the voltage at the
On-Load-Tap Controller (OLTC) bus closer to 1 pu after
the disturbance. In this simulation, saturation is also in-
cluded in the dynamic model. Future disturbance is also
known. Results are shown in Figure 14 and Figure 15 with
different ∆t, horizon Np and tuning parameters.

7 Discussion
This investigation on transient and long term voltage sta-
bility considers the ideal (though unrealistic) situation
where the internal MPC model exactly matches the real
system (perfect MPC model). It is unrealistic to expect
that the MPC controller could maintain a complete, ac-
curate system representation. The degree to which MPC
can tolerate model inaccuracy is core to practical power
system implementation (Gong, 2008). A more realistic
implementation could be an SMIB model representing the
whole grid. Thus, state estimation should be done on the
synchronous generator. In addition, the transfer reactance
xs in (9) needs to be estimated and the infinite bus voltage
Vbus in (9) needs to adapt the actual voltage level in the
system for a good predictive control action. The size of
the inductor could be identified from the electromechani-
cal first swing oscillations after a fault.

In these simulations, the full nonlinear model was used
with MPC e.g. NMPC. NMPC requires extensive com-
puting power to solve nonlinear constrained optimization
problems in real time. In the case of transient stability,
NMPC is too slow to avoid loss of synchronism. One
other problem that occurs in simulating electrical circuits
is that their equations often exhibit stiffness. In SimPow-
erSystems snubber resistors and capacitors are used across
the switches to improve numerical stability. Ode 23tb was
the fastest integrator in these simulations. However, with
long term voltage stability when the MPC is acting only as
set-point changing controller with a sampling time e.g ev-
ery 5-10 second, NMPC could be feasible. In that case, a
linear prediction model combined with C-code implemen-
tation should be used.

The MPC should also be tested for low frequency elec-
tromechanical oscillations in large interconnected power
systems (e.g. both inter-area and local oscillations) (Kun-
dur, 1994). This would determine more precise MPC tun-
ing parameters applicable for both small- and large-signal
stability.

The Simscape language is an object-oriented language
based on MATLAB and is very attractive to use for power
system modeling. One alternative is to integrate the open
source object oriented Modelica modeling language with
MATLAB through the FMI toolbox from Modelon. In that
case the MATLAB optimization toolbox can be used to
run MPC on a Modelica model through C code generation.

8 Conclusion
This paper investigates the use of Model Predictive
Controll (MPC) for voltage (excitation) control of syn-
chronous generators to enhance the stability of the power
system. Simulation results show that a well tuned pre-
dictive controller combined with an internal model that
exactly matches the real system, gives improved control
action in all the simulations compared to classical control.
Due to computational limitations, real time simulation for
transient stability would not be possible with the strategy
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Figure 14. Voltage as a function of time where MPC is changing the set-point on classical control at G1 and G2 in Area 2 to
bring voltage at primary side of OLTC bus closer to 1 pu. Optimization is done at every ∆t = 10s and the horizon is Np = 1. The
international transmission line in Figure 11 are disconnected at 10 seconds and reconnected at 40 seconds in this simulations. The
MPC tuning parameters were Q = 300, P = 5, R = 0.01.

Figure 15. Voltage as a function of time where MPC is changing the set-point on classical control at G1 and G2 in Area2 to
bring voltage at primary side of OLTC bus closer to 1 pu. Optimization is done at every ∆t = 2s and the horizon is Np = 10. The
international transmission line in Figure 11 are disconnected at 30 seconds in this simulations. The MPC tuning parameters were
Q = 30, P = 1, R = 1.
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presented in this paper. However, a reduced power sys-
tem model combined with C-code generation could be a
feasible solution for faster NMPC action.
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