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Abstract

The amount of grid-connected power electronic convert-

ers is increasing as the world’s energy production shifts

toward sustainable sources. Poor power quality and har-

monic resonances have been reported which have been

shown to be caused by grid-connected converters. Accu-

rate modeling tools are required to characterize the condi-

tions for instability and to design stable power-electronics-

based power systems.

Unstable behavior can be identified by using mod-

els implemented in circuit simulators or using power-

hardware-in-the-loop setups. The unstable resonance oc-

curs when inverter control system interacts with the grid

impedance. However, a very wide impedance-bank is

required in the laboratory to test inverter stability when

grid impedance is expected to vary significantly. More-

over, stability tests are often limited to cases where grid

impedance is approximated as an inductance. This paper

proposes a method for emulating the grid impedance in

a hardware-in-the-loop setup which eliminates the need

for bulky passive components and allows arbitrary grid

impedance to be emulated. As a result, the inverter can

be tested with a varying grid impedance to determine the

exact conditions for unstable behavior. Moreover, the grid

impedance can be changed online to emulate the behavior

of a time-varying power grid in real time.

Keywords: hardware-in-the-loop, grid impedance, emula-

tion

1 Introduction

The amount of grid-connected power electronic convert-

ers, such as wind and solar inverters is rapidly increasing

as the amount of renewable power generation is ramped

up (Bose, 2013). Stability of conventional power systems

has been mainly determined by power balance, i.e., the

produced power has to match the load power to keep grid

frequency and amplitude within acceptable limits. How-

ever, the stability of modern power systems is challenged

by the dynamic behavior of grid-connected power elec-

tronic converters, and especially, their small-signal char-

acteristics (Wang et al., 2014; Messo et al., 2013).

Grid-connected converters have been shown to intro-

duce stability issues when the penetration of renewables

is significant (Enslin and Heskes, 2004). This has been

Figure 1. Three-phase grid impedance.

shown to be mainly caused by poorly damped resonance

formed together by inverter output impedance and the

grid impedance (Sun, 2011; Wen et al., 2016; Suntio et al.,

2017). Wind power inverters were found out to cause

instability when connected to a series-compensated line

(Belkin, 2010) and photovoltaic inverters have been re-

ported to become unstable in a grid that has high induc-

tance (Yang et al., 2014). Instability and resonance issues

can be prevented if the inverter impedance is designed to

have larger impedance than the grid or if both impedances

resemble passive circuits (Harnefors et al., 2016).

Immunity of a grid-connected inverter to impedance-

based instability can be evaluated by connecting the in-

verter to the power system through an inductance which

has sufficiently large value. A weak grid is usually ap-

proximated by a large inductance or combination of re-

sistive and inductive elements (Gavrilovic, 1991). How-

ever, in reality the grid impedance can be hardly de-

scribed as a lossy inductor since it may exhibit reso-

nances (Jessen et al., 2015). In practice this means that

one should have sufficient physical impedance-bank in

the laboratory to test converters in different grid condi-

tions. An interesting alternative is to use a real-time sim-

ulator paired with a linear amplifier to emulate the grid

impedance which gives more freedom to define the na-

ture of grid impedance, e.g., a series or parallel reso-

nance. Promising results have been presented in the lit-

erature, such as in (Kotsampopoulos et al., 2015) where a

real-time simulator was used to emulate part of the grid

impedance in a hardware-in-the-loop simulation. How-

ever, the performance of the impedance emulation method

was not validated by measuring the emulated impedance.

This paper proposes a method to emulate the grid
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Figure 2. Simulink model to realize the grid impedance in Fig-

ure 1.

impedance behavior using power-hardware-in-the-loop

(PHIL) setup, which can be used in characterizing

impedance-based stability of grid-connected inverters.

The method enables modifying the grid impedance online

allowing stability studies of grid-connected converters in

time-varying grid conditions. The limitations of PHIL-

implementation due to sampling delay are also discussed.

The delay is shown to introduce a considerable error in the

phase of the emulated grid impedance.

The paper is organized as follows: Section II explains

how a three-phase grid impedance is modeled in the MAT-

LAB Simulink environment. Such model can be directly

build into C-code and ran on a real-time simulator. Sec-

tion III shows a simulation case where grid inductance is

stepped up to destabilize a grid-connected inverter. The

practical implementation of the grid impedance emula-

tor and its limitations are discussed in Section IV where

a dSPACE real-time simulator and a linear amplifier are

used to emulate an inductive grid impedance. Final con-

clusions are summarized in Section V.

2 Grid impedance model

Circuit diagram of a three-phase grid impedance is as de-

picted in Figure 1 where van, vbn and vcn represent the

ideal grid voltages. The grid is formed by three identi-

cal branches which have resistance and inductance. Grid

voltages seen by a grid-connected inverter, i.e., vga, vgb

and vgc at the PCC, can be solved by utilizing basic circuit

theory and given according to (1).

vga(t) = L
d

dt
iga(t)+ rLiga(t)+ van

vgb(t) = L
d

dt
igb(t)+ rLigb(t)+ vbn

vgc(t) = L
d

dt
igc(t)+ rLigc(t)+ vcn

(1)

A three-phase grid impedance can be emulated using

a linear amplifier where the reference voltages are calcu-

Figure 3. Overview of the grid-connected inverter.

lated based on the measured grid currents according to

(1). This is an interesting idea since practically the am-

plifier could be configured to resemble an arbitrary grid

impedance which is very attractive for stability studies of

grid-connected inverters and for quality control of power

converters.

A Simulink model according to to (1) was built to emu-

late the dynamics of grid impedance, as depicted in Figure

2. Moreover, a low-pass filter with a cut-off frequency of

10 kHz was used to filter out switching ripple from the

output of the derivative block. The value of grid induc-

tance can be changed online which emulates the behavior

of a real power grid. Moreover, the model could be eas-

ily modified to enable online variation of frequency, phase

angle and resistance. However, the scope of this paper is

limited to changing the value of inductance.

3 Impedance-based instability studies

The grid model was connected to a switching model of a

three-phase inverter as illustrated in Figure 3. The model

is built using the SimScape component library. The in-

verter is fed from a DC current source and connected

to three-phase voltage sources. The reference values of

grid voltages at the PCC were calculated according to

(1). The grid currents become unstable when the ra-

tio of inverter output impedance and the simulated grid

impedance fail to satisfy the Nyquist stability criterion,

i.e., when impedance q-components Z
q
inv and Z

q
grid form to-

gether an undamped resonance. Derivation of the inverter

impedance model and discussing the stability criterion are

out of the scope of this paper but the reader is urged to see

(Messo et al., 2015) that shows how the Nyquist stability

criterion can be applied to three-phase impedances.

Figure 4 shows the impedance ratio Z
q
grid/Z

q
inv on the

complex-plane when grid inductance is selected as 2 mH

and increased to 5 mH. The Nyquist stability criterion

states that the system is unstable when the impedance ratio

encircles the point (-1,0).Thus, the system is stable when

grid inductance is 2 mH but becomes unstable when the

inductance is increased to 5 mH.

The "Inverter" block in Figure 3 includes the actual

power stage, AC filter and the control system. The inverter

utilizes normal cascaded control scheme where DC volt-

age and AC currents are controlled to keep the DC voltage

at a certain level and to feed power to the grid at unity

power factor. The inverter utilizes a phase-locked-loop
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Figure 4. Ratio of inverter impedance and grid impedance on

the complex-plane.

(PLL) to synchronize its output currents to grid voltages.

The power stage and necessary measurements are built us-

ing the components found in the SimScape-toolbox as il-

lustrated in Figure 6.

Phase-locked-loop makes the q-component of inverter

output impedance resemble a negative resistance which

can destabilize the inverter in a weak grid (Messo et al.,

2013). The PLL was tuned to have a crossover frequency

of 200 Hz which causes instability when grid inductance

increases to 5 mH. Figure 5 shows simulated grid currents

when the grid inductance is suddenly increased from 2 to

5 mH at 0.5 s and the inverter becomes unstable due to

high-bandwidth PLL. The simulator could be constructed

by adding grid impedance in the model as inductive com-

ponents and connecting an extra 3 mH inductance at 0.5 s

by using an ideal switch. However, in this case the simu-

lation time is considerably longer. Therefore, using the

proposed impedance model as in Figure 2 also enables

smaller simulation time.

4 Practical implementation

The feasibility of grid impedance emulation method in

a power-hardware-in-the-loop environment was tested by

implementing the impedance model using a dSPACE

real-time simulator and a three-phase linear amplifier

PAS15000 manufactured by Spitzenberger. Photograph of

the laboratory setup is as shown in Figure 7. The setup

consists of a three-phase IGBT inverter supplied by a PV

simulator feeding the three-phase linear amplifier through

an isolation transformer.

The Simulink model for emulating inductive grid

impedance is as shown in Figure 8. Ideal grid voltages

were generated by three sine-wave sources phase shifted

by 120 degrees. Voltage drop over the emulated phase

inductance was obtained by multiplying the inductor cur-

rent derivative by the desired inductance value. The out-

put signal of the product block had to be low-pass filtered

to avoid destabilizing the linear amplifier which is due to

Figure 5. Grid currents become unstable due to increase in grid

inductance from 2 to 5 mH at 0.5 s.

sampling delay of dSPACE. The impedance model was

running on the same dSPACE-platform as the inverter con-

trol system. Therefore, the sampling frequency has to be

set the same as inverter switching frequency (8-12 kHz).

Input impedance of the linear amplifier, i.e., the emu-

lated grid impedance was measured in the dq-domain us-

ing the inverter as a perturbation source and by measur-

ing the frequency response from grid current q-component

to grid voltage q-component. The grid impedance q-

component is the ratio of these components as given in (2).

The measurement setup is as depicted in Figure 9. PRBS-

injection was added in the reference value of inverter out-

put current q-component. The grid current and voltage q-

components were measured and the grid impedance was

computed using the methods discussed in (Roinila et al.,

2015). The currents and voltage were measured in the dq-

reference frame tied to the inverter control system, i.e., by

utilizing the grid voltage angle estimated by the PLL. The

PLL crossover frequency was set to 2 Hz to avoid PLL

from affecting the measured impedance at low frequen-

cies.

Zq
g =

v̂oq

îoq

. (2)

The isolation transformer has some resistive losses and

stray inductance which have to be measured first to eval-

uate which part of the grid impedance is caused by the

transformer and which is realized by the impedance em-

ulator. The grid impedance q-component was measured

while the value of emulated inductance value was set to

zero. The measured and fitted impedances are shown in

Figure 10. The isolation transformer has resistance of

400 mΩ and inductance of approximately 600 µH. I.e.,

the phase is around 0 degrees at low frequencies with a

constant magnitude and increases to 90 degrees at higher

frequencies with magnitude increasing 20 dB per decade.

It can be concluded that the impedance measurement is

EUROSIM 2016 & SIMS 2016

131DOI: 10.3384/ecp17142129       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



Figure 6. Inverter power stage with control system in Simulink.

Figure 7. Three-phase inverter connected to a three-phase grid

emulator.

Figure 8. Impedance model implemented using the dSPACE

real-time simulator.

Figure 9. Setup for measuring the emulated grid impedance.

accurate up to few kilohertz after which the phase curve

starts to drop due to sampling delay.

Figure 11 shows the measured grid impedance in green

when the impedance emulator is activated. The induc-

tance value was set to 1.1 mH and the low-pass filter was

tuned to have a crossover frequency of 500 Hz allowing

stable operation of the linear amplifier. The red dots il-

lustrate the impedance of a series RL-circuit with resis-

tance equal to 400 mΩ and inductance of 1.7 mH, i.e., the

reference grid impedance includes the effect of isolation

transformer. The magnitude of the emulated impedance

follows the reference curve up to 400 Hz after which

the impedance experiences an additional series resonance.

Moreover, the phase starts to deviate from the reference

value already around 50 Hz. The inaccuracy of emulated

impedance is caused by the low-pass filter which was re-

quired for stable operation. A low-pass filter with a single

pole starts decreasing the phase of the impedance already

one decade below cut-off frequency, i.e., at 50 Hz. How-

ever, the low-pass filter is required for stability and can-

not be set to higher frequency while sampling frequency

is tied to inverter switching frequency. Reference of the

grid impedance which includes the effect of transformer
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Figure 10. Measured transformer impedance q-component.

10
1

10
2

10
3

−20

0

20

40

M
ag

n
it

u
d

e(
d

B
)

 

 

10
1

10
2

10
3

−45

0

45

90

135

Frequency (Hz)

P
h

as
e(

d
eg

)

Transfomer imp.

Emulated

Reference

Figure 11. Measured grid impedance when impedance emulator

is activated.

impedance is given as a function of frequency in (3).

Zq
g( jω) = 0.4+ jω1.7 ·10-3 (3)

Switching frequency of the inverter was increased to

12 kHz and, therefore, the sampling frequency of the grid

impedance emulator was increased as well. The sampling

delay was effectively reduced by a factor of 1.5. The

higher sampling frequency allows stable operation of the

linear amplifier with emulated inductance value of 900

µH when the low-pass filter was tuned to have cut-off

frequency of 1 kHz. Using higher value of emulated in-

ductance value or increasing the cut-off frequency would

destabilize the linear amplifier. This should be avoided

since very large high frequency currents would flow in the

circuit. (Enough to trip current sensor with 50 A current

limit!)

Measured grid impedance and its reference value are

shown in Figure 12. The magnitude curve follows the ref-

erence curve up to almost 1 kHz. However, the phase

curve begins to deviate from reference curve approxi-

mately after 100 Hz. This is expected since the low-pass
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Figure 12. Measured grid impedance when impedance emulator

is activated with higher sampling frequency.

filter has cut-off frequency of 1 kHz. It is not reasonable

to increase the inverter switching frequency much higher

since the IGBT switches require as much as 4 µs of blank-

ing time to avoid shorting the DC capacitor. The reference

curve for the emulated impedance is calculated according

to (4).

Zg
q( jω) = 0.4+ jω1.5 ·10-3 (4)

Based on the measured impedances it can be concluded

that the present impedance emulator is suitable for char-

acterizing impedance-based instabilities occuring at low-

frequencies in cases when grid inductance has a maxi-

mum value around 1 mH. The limitation arises from the

low sampling frequency which causes the phase of em-

ulated impedance to deviate from the reference value at

frequencies higher than 100 Hz. Impedance-based inter-

actions occurring at higher frequencies cannot be, there-

fore, reproduced. As a future research the sampling fre-

quency of impedance emulator should be decoupled from

the inverter control system which requires another real-

time simulator for implementation.

5 Conclusions

The amount of grid-connected power electronic convert-

ers is increasing due to reduced price of renewable en-

ergy, such as wind and solar. At the same time stability

of power grids is challenged by the inverter control func-

tions, such as grid-synchronization algorithms. Evalua-

tion methods to characterize stability issues introduced by

grid-connected converters need to be developed to enable

large-scale utilization of renewable energy.

The converter becomes unstable when its control sys-

tem starts interacting with grid impedance which usually

varies over time. In determining impedance-based sta-

bility, a large set of physical components is required in

the laboratory to realize the variation in grid impedance.

Moreover, contactors are required to change the grid
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impedance to emulate load changes in the grid which com-

plicates the test setup and increases cost.

This paper studies a grid impedance emulation method

using a dSPACE real-time simulator and three-phase lin-

ear amplifier which eliminates the need for bulky and

expensive passive components. In the proposed method

grid impedance is modeled inside the real-time simulator

which allows changing the value of grid impedance on-

line. Performance of the impedance emulation method

is studied by measuring the input impedance of the

impedance-emulator by using a three-phase IGBT inverter

to generate the small-signal excitation in its output cur-

rents. The impedance emulator is shown to be very sensi-

tive to sampling delay which degrades the phase behavior

of the emulated grid impedance. Moreover, the delay eas-

ily destabilizes the linear amplifier when large grid induc-

tance is to be emulated. This issue should be treated with

caution since very large high-frequency currents can flow

in the circuit. Future work will include implementing the

grid impedance emulation method by an additional real-

time simulator in order to achieve higher sampling fre-

quency and smaller delay.
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