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Abstract
PSE S.A. is the sole Transmission System Operator in
Poland and, as such, responsible for the provision of
reactive power resources for maintaining the voltage
within predefined limits. This paper describes the
problems associated with the investigation of voltage
stability of transmission power grid. Voltage problems
are the result of heavy loading of transmission lines and
transformers. Voltage instability has been responsible
for voltage damage in some parts of Polish Power
Transmission System (PPTS) on 26 June 2006. The
voltage criteria used for voltage security assessment
should require, that the worst bus voltage at post-
contingency N-1 and sometimes N-2, must be
approximately greater than 0.95 p.u. for generator buses
and 0.9 p.u. for others. At the stage of planning, the
active power transfer margin may be used as a proximity
measure of voltage collapse.

Keywords: power system control, reactive power
control, load flow control, voltage stability

1 Introduction
The idea of P-V and Q-V curve is used to determine the
maximal reactive margin at load buses to avoid voltage
instability. Sometimes the voltage stability study may be
limited to identify the violation of the bus voltage
constraints. In this paper the p-q curve for the critical
bus voltage magnitude is created. Using this p-q curve
the probability of the critical voltage violation is
estimated for uniformly distributed active and reactive
power at a given load bus. The p-q curve is created on
the basis of bus impedance, which can be measured or
calculated. To illustrate the usefulness of p-q idea the
simple numerical example is presented. The paper
describes also the importance of reactive power control
basing on the failures and control problems in the PPTS
during a dry summer period.

Assessing and mitigating problems associated with
voltage security remains a critical concern for many
power system planners and operators. Since it is well
understood that voltage security is driven by the balance
of reactive power in a system, it is of particular interest

to find out what areas in a system may suffer reactive 
power deficiencies under some conditions and to 
obtaining information regarding how system voltage 
stability can be improved most effectively. Operation 
near the voltage stability limits is impractical and a 
sufficient power or voltage margin is needed. 
Practically, the idea of P-V and Q-V curve is used to 
determine the minimal margin to avoid voltage collapse 
(Chayapathi et al., 2013; Khoi et al., 1999; Lis, 2013). 

Voltage stability is concerned with the ability of a 
power system to maintain acceptable voltages at all 
buses in the system under normal conditions and after 
being subjected to a disturbance (Taylor, 1994). As an 
example, Table 1 shows the voltage limits, which should 
be fulfilled in PPTS  (Lis, 2013). According to their 
idea, the Thevenin’s impedance is equal to the bus load 
impedance at the point of voltage collapse. In this paper 
the idea of using Thevenin’s impedance to bus voltage 
study is extended by taking into account the bus load.  

Table 1. Voltage Criteria in PPTS. 

No. Bus 
Normal 
Conditions 

N-1 and N-2 
Contingencies 

1 
Generation 
buses 110 kV 

1.0000p.u. - 
1.1100 p.u. 

0.9545 p.u. - 
1.1100 p.u. 

2 
Generation 
buses 220 kV 

1.0000 p.u. - 
1.1136 p.u. 

0.9545 p.u. - 
1.1136 p.u 

3 
Generation 
buses 400 kV 

1.0000 p.u. - 
1.0500 p.u. 

0.9500 p.u. - 
1.0500 p.u. 

4 
Load buses 
110 kV 

0.9545 p.u. - 
1.1100 p.u. 

0.9000 p.u. - 
1.1100 p.u. 

5 
Load buses 
220 kV 

0.9545 p.u. - 
1.1136 p.u. 

0.9091 p.u. - 
1.1136 p.u. 

6 
Load buses 
400 kV 

0.9500 p.u. - 
1.0500 p.u. 

0.9000 p.u. - 
1.0500 p.u. 

 
From the point of view of monitoring and control the 

following transmission constraints are the most 
important: thermal limit of lines of transmission 
subsystem, voltage stability limit of transmission 
subsystem and angle stability limit of transmission 
subsystem. Voltage problems occur in heavily stressed 
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power systems. Then, the voltage stability limit may be 
sometimes more drastically important than thermal 
limits. This is the case of the voltage collapse in PPTS 
on June 26, 2006. 

This paper is devoted to the analysis of voltage limits. 
The main question is how far we are from the voltage 
instability and how to consider the randomness of loads. 
The original p-q curve is applied here to solve such a 
task. The idea of using p-q curve for voltage collapse 
analysis was presented in this paper. The p-q curve for 
the critical bus voltage magnitude is created. Using this 
p-q curve the critical voltage violation is estimated for 
uniformly distributed active and reactive power at a 
given load bus.  

The p-q curve is created on the basis of bus 
impedance. The mathematical background of the 
proposed idea is presented. To illustrate the usefulness 
of p-q idea the simple numerical example is presented. 

1.1 Country-Wide Absence of Electrical 
Supply– a Blackout 

The quality of the electrical energy supply can be 
evaluated basing on a number of parameters (Abril et al., 
2003; Yorino et al., 2003; Shubhanga et al., 2002). 
However, the most important will be always the 
presence of electrical energy and the number and 
duration of interrupts. If there is no voltage in the socket 
nobody will care about harmonics, sags or surges.  A 
long term, wide-spread interrupt - a blackout leads 
usually to catastrophic losses. It is difficult to imagine 
that in all the country there is no electrical supply. In 
reality such things have already happened a number of 
times.  

One of the reason leading to a blackout is reactive 
power, that went out of the control. When consumption 
of electrical energy is high, the demand on inductive 
reactive power increases usually at the same proportion. 
In this moment, the transmission lines (that are well 
loaded) introduce an extra inductive reactive power. The 
local sources of capacitive reactive power become 
insufficient. It is necessary to deliver more of the 
reactive power from generators in power plants. It might 
happen that they are already fully loaded and the 
reactive power will have to be delivered from more 
distant places or from abroad.  Transmission of reactive 
power will load more the lines, which in turn will 
introduce more reactive power. The voltage on customer 
side will decrease further. Local control of voltage by 
means of autotransformers will lead to increase of 
current (to get the same power) and this in turn will 
increase voltage drops in lines. In one moment this 
process can go like avalanche reducing voltage to zero. 
In mean time most of the generators in power plants will 
switch off due to unacceptably low voltage what of 
course will deteriorate the situation.  

In continental Europe, most of the power plant are 
based on heat and steam turbines. If a generation unit in 

such power plant is stopped and cool down it requires 
time and electrical energy to start operation again. If the 
other power plants are also off - the blackout is 
permanent (Bhattacharya et al., 2001, 2002; Chicco et 
al., 2013).  

The difficulties showed up on summer 2006. The 
prediction for power consumption on this day was 
18200 MW (in the morning peak) what was much higher 
compared with June in last year or previous years. This 
power was planned to be supplied from 75 generation 
units. Above these, there were a hot power reserve of 
1350 MW (in this 237 MW second-reserve, 656 MW 
minute-reserve) and a cold reserve of about 2600 MW. 
In the north-east Poland there is not any grid-generation. 
The closest to this region is Ostroleka Power Plant (P. 
P.), which in that time from three 200 MW units has two 
in operation and one set off for maintenance. In early 
morning of the Jun 26th one unit in Power Plant Patnow 
had to be switched off and before noon four other units 
(two in Kozienice P. P. and two in Laziska P. P.) were 
switched off as well. All these unites were the main 
supplier to the north-east region of Poland. At 7 o’clock 
570 MW of power was lost. At the same time the 
consumption prediction appeared to be wrong - the 
consumption was 600 MW higher and there was also 
much higher demand on reactive power. At 13 o’clock 
there was an unbalance of 1100 MW. In mean time one 
unit (in Dolna Odra P. P.) had been activated. However 
further activation from cold-reserve required more time 
(about 6 hours) because of technological reasons.  

Unusual heat wave spreading throughout the country 
caused deterioration of the operational conditions in 
power plants. Due to lack of sufficient amount of 
cooling water and exceeded water temperature levels, 
the generating capacities of some power plants 
systematically decreased. That situation concerned 
mainly the power plants located in the central and 
northern part of Poland, the loadings of some 
transmission lines reached the acceptable limits what in 
turn cause the necessity of generation decrease in power 
plants located outside the mentioned region. The control 
of reactive power became critical (Hatziadoniu et al., 
2003; Lu et al., 2002). 

2 Prepare Bus Load Flow Equations 
Using Thevenin’s Circuit 

Thevenin’s theorem states that in the linear electric circuit 
the effect of the load change at a given bus can be 
represented by a simple circuit with emf ET and the bus 
impedance ZT. The basic circuit resulting from 
Thevenin’s theorem is shown in Figure 1. Knowing the 
Thevenin’s bus impedance ZT = RT + jXT , load bus 
voltage V, active P and reactive bus power Q one can 
calculate the magnitude of Thevenin’s emf using the 
following formula: 
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Figure 1. The scheme of 2-bus Thevenin’s network, a) 

simple Thevenin’s circuit, b) scheme for load flow study. 

The complex admittance of branch connecting load 
bus with Thevenin’s emf bus equals: 

)jXR/(1jBG TTTT  

The load flow equations for load bus have the 
following form: 

12abba12bbaa11
2 B)EVEV(G)EVEV(GVP  

12abba12bbaa11
2 G)EVEV(B)EVEV(BVQ  

where              T12T11 GGandGG      (7) 

T12T11 BBandBB  

Let the bus 2 with Thenenin’s emf be the slack bus. 
Then I have 

0EandEE bTa  

and                 12b12a11
2 BVGVGVP                    (10) 

12b12a11
2 GVBVBVQ  

or                    TbTaT
2 BVGVGVP                     (12) 

TbTaT
2 GVBVBVQ  

To simplify all considerations the load bus per unit 
system is introduced as follows 

2
T

2
TTb XRZZ  

Tbase EV  

b
2
Tb ZES  

where symbol b means the base value. Dividing both side 
of load flow equations by Sb I obtain: 

fbeggvp 2  

fgebbvq 2  

where        bb S/QqandS/Pp                         (19) 

TE/Vv  

TbTa E/VfandE/Ve  

TTTT ZBbandZGg  

Note that the following relations exist in the new bus 
load per unit system: 

TTTT Z/jXZ/Rjxr  

1
Z

X

Z

R
xrz

2
T

2
T

2
T

2
T222  

jxrz/)jxr()jxr/(1z/1y 2  

jbgy  

    And finally     xbandrg                 (27) 

     Hence the load flow equations in load bus per unit are 
as follows: 

fxerrvp 2  

frexxvq 2  

 

P+jQ 
  1 

ZT  = RT  +j XT
 

ET =ETa +jETb
 

V=V a+jVb 
  

a)
  

s  = p + jq 
  

g + jb  E T  (pu)= 1
  

v = e + jf   
b) 

 

2  

1  2   
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2.1 The P-Q Curve for the Critical Bus 
Voltage Magnitude 

From the point of view of voltage stability the voltage 
magnitude at a given bus must be in the range of upper 
and lower voltage limit 

upperlower VVV  

Especially the lower value is the critical value Vcr 

from the point of view of avoiding voltage instability in 
the power system. Hence the bus voltage must be greater 
then the critical value 

crVV  

Using the new per unit system I can write 

crvv  

where                      Tcrcr E/Vv                                 (33) 

According to the above assumptions load flow 
equations for load bus critical solutions (e,f) depend on 
the critical voltage magnitude vcr. The load flow 
equations can be analyzed as a critical p-q curve 
composed of (p,q) values, which are related to the 
critical bus voltage magnitude vcr . 

To find the formula of the critical p-q curve I must 
eliminate the rectangular components of e and f from the 
load flow equations (28) and (29). To find e I can make 
the following  multiplications 

rxfervrrp 222  

rxfexvxxq 222  

and the following addition 

ezvzxqrp 222  

For z = 1 I have finally 

)xqrp(ve 2  

To find f I can made the following  multiplications 

fxrxerxvxp 22  

frrxerxvrq 22  

and the following subtraction 

fzrqxp 2 

For z = 1 I have finally 

rqxpf  

Substituting the obtained formula of e and f to the 
formula of vcr I have as follows 

222
cr fev  

222
cr

2
cr )rqxp())xqrp(v(v  

22

2
cr

4
cr

2
cr

)rqxp()xqrp(

)xqrp(v2vv






2222

2222

2
cr

2
cr

4
cr

2
cr

qrrxpq2px

qxrxpq2pr

xqv2rpv2vv









222
cr

2
cr

4
cr

2
cr qpxqv2rpv2vv  

Hence, I obtain the following formula of p-q curve 
for a critical voltage magnitude vcr 

0vvxqv2rpv2qp 2
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4
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2
cr

22  

From the above formula I can obtain the quadratic 
equations for the specific p 
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4
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22
cr

2  

An example of p-q curve is shown in Figure 2. The  
p-q curve can be transformed into P-Q curve after 
multiplication p and q by Sb .  

 
Figure 2. The example p-q curve at a load bus. Symbol 

VN means the nominal voltage. 

Equation (48) is quadratic and has two real solutions 
according to the value of the equation discriminant : 
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and finally I obtain two parts of p-q curve 

  /xv25.0q 2
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The lower part of the p-q curve is associated with the 
consumed power, because a reactive consumed power at 
bus is treated in load flow equations as a negative value 
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The upper part of the p-q curve relates to positive 
values, i.e. to reactive generation at a given bus 

24
cr

2
cr

2
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22
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2.2 The Probability of the Violation of the 
Critical Voltage 

Let’s assume that the load at bus is uniformly distributed 
between their min and max 

maxmin ppp   

maxmin qqq  

The probability of the violation of the critical voltage 
magnitude at load bus can be calculated using the 
outside area and the rectangular area, see Figure 3. To 
find the probability of the violation of the critical 
voltage the lower part of p-q curve should be used, 
Figure 3. Using the geometrical definition of 
probability: 

S/Sp outsidevcr  

where S means the area of rectangular 
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The outside area equals 

ABCDoutside SSS   

 
Figure 3. The p-q curve and the rectangularly distributed 

load. 

 
The area of ABCD figure can be computed using the 

definite integral formula in the following way 
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Finally we can make the following substitution:
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3 Numerical Example 
Thevenin’s complex impedance seen from the 400 kV 
load bus has been obtained by the load flow study in 
400/220 kV transmission grid: 

TTT jXRZ  = (-125.12 + 31.40) . 
The bus voltage magnitude at the analysed load bus 

determined by load flow computation equals: V = 410 
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kV, while the nominal voltage has the following value 

NV = 400 kV. The critical voltage magnitude equals:  

 Ncr V9.0V  = 360 kV. 

The minimal and maximal active and reactive load at 
the analysed bus equal 

minP = 400 MW   and   maxP = 600 MW; 

minQ = 0 MVAR   and   maxP = 300 MVAR. 
Knowing the Thevenin’s bus impedance ZT = RT + 

jXT, load bus voltage V, active P and reactive bus power 
Q I calculate the magnitude of Thevenin’s emf: 

2
TT

2
TT

T V

QRPX

V

QXPR
VE 







 








 
 kV.

To simplify all considerations the load bus per unit 

system is introduced: 2
T

2
TTb XRZZ   = 342.1 ;  

Tbase EV  kV

b
2
Tb ZES  MVA

The value of analyzed variables in load by per unit 
systems are as follows:  

bminmin S/Pp  =  -0.4169;  

bmaxmax S/Pp  -0.6254;

bminmin S/Qq  = 0; bmaxmax S/Qq  = -0.3127; 

Tcrcr E/Vv  = 0.6284; 

TT Z/Rr  = -0.3657; TT Z/Xx  = 0.9307. 
    Now can calculate the probability of the violation of 
the critical voltage magnitude. The rectangular area: 

  minmaxminmax qqppS  0.0652.

The inside area: dp)qq(S
max

min

p

p

minlowerABC   0.0270.

The outside area ABCDoutside SSS   = 0.0382. 
The probability of the violation of the critical voltage 
magnitude: S/Sp outsidevcr   = 0.58                          

4 Conclusions 
The proposed p-q curve method is simple and may be 
based on local measurements of bus impedance. It 
enables calculating the probability of voltage limit 
violation at a given load bus. The greater the probability 
the weaker the bus is from the point of view of voltage 
stability. 

To find the formula of p-q curve a new load bus per 
unit system must be introduced. The transformation 
from p-q curve to P-Q curve can be easily made by 
multiplication p and q value by the base power of the 
analyzed load bus. 

The probability of voltage limit violation is estimated 
as the quotient of relevant area outside and inside the 
specific p-q curve. 

The slower forms of voltage instability can be 
analyzed as steady state problem using power flow 
simulation. Snapshot in time following an outage may 

be simulated and P-U curves computed to assess voltage 
stability margin. 

The main difficulties of the modelling of the power 
system concern load modelling and therefore 
conservative constant load hypothesis are used in 
computation. 
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