
dSPACE Implementation for Real-Time Stability Analysis of

Three-Phase Grid-Connected Systems Applying MLBS Injection

Tomi Roinila1 Roni Luhtala1 Tommi Reinikka1 Tuomas Messo2 Aapo Aapro2 Jussi Sihvo2

1Department of Automation Science and Engineering, Tampere University of Technology, Finland

{tomi.roinila}@tut.fi
2Department of Electrical Engineering, Tampere University of Technology, Finland {tuomas.messo}@tut.fi

Abstract

Renewable resources such as solar and wind are most

commonly connected to a utility grid through inverters.

The stability and system characteristics of such systems

can be defined by the ratio of grid impedance to the

inverter output impedance. Since the impedances vary

over time with numerous operation conditions, real-time

measurements are required to verify the stability. The

impedance measurement technique based on maximum-

length-binary-sequence (MLBS) injection and Fourier

techniques has been proven to be an efficient option for

online analysis of grid-connected systems. This paper

shows how a hardware-in-the-loop simulation based on

dSPACE can be implemented for stability analysis of a

grid-connected inverter using the MLBS injection. The

method makes it possible to modify the inverter control

characteristics and grid conditions online, thereby provid-

ing means for various stability and control design studies

for grid-connected systems. We have presented a mea-

surement example based on a three-phase grid-connected

inverter and used this example to demonstrate the imple-

mentation.

Keywords: frequency response, power system measure-

ments, spectral analysis, signal design, real-time systems

1 Introduction

The most common way to connect renewable resources

such as wind turbines or photovoltaic generators to a

power grid is through inverters. As the penetration of

the inverter-connected systems increases, it has glob-

ally important effect on the grid’s performance. Con-

sequently, interaction issues between the grid-parallel

inverters and power grids have been topics of exten-

sive research in recent years (Cespedes and Sun, 2014b;

Lu et al., 2015; Hu et al., 2015). One of the most im-

portant topics has been the harmonic resonance gener-

ated due to the mismatch between the inverter’s output

impedance and grid impedance. This is commonly known

as the harmonics-related power-quality problem, which

has had a significant effect on overall energy efficiency

and even grid stability (Sun, 2011). Recent studies have

shown that the instability can be avoided by measuring

the impedances of the grid and inverter, and based on the

measurements, adaptively changing the inverter parame-

ters (Cespedes and Sun, 2014a).
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Figure 1. Grid-connected renewable energy inverter.

The impedance measurements of grid-connected

systems using a broadband excitation and Fourier tech-

niques have become a popular method in recent years

(Barkley and Santi, 2009; Cespedes and Sun, 2014a;

Roinila et al., 2013). This method involves injecting

an external current on top of the normal output current

of the inverter or grid, measuring the resulting voltage

responses, and applying Fourier analysis to extract the fre-

quency components in both the voltage and current. The

grid or inverter impedance is then determined by the ratio

between the voltage and current at different frequencies.

The most common excitation types have been impulse

(Cespedes and Sun, 2014a) and maximum-length binary

sequence (MLBS) (Roinila et al., 2014), from which the

MLBS has shown superiority over the impulse. The

MLBS is a deterministic and periodic signal. Hence, the

effect of external noise can be computationally reduced,

and multiple periods can be applied through spectral

averaging to further increase the signal-to-noise ratio

(SNR). As a result, the amplitude of the excitation can be

kept at a much lower level than the amplitude of many

other types of excitations. Due to the binary form of the

MLBS, the injection is extremely easy to implement, even

with a low-cost application, the output of which can only

cope with a small number of signal levels.

This paper considers real-time impedance measure-

ments of a grid-connected system using hardware-in-

the-loop (HIL) simulation based on dSPACE software
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Figure 2. Interconnected source-load subsystem.

and Matlab/Simulink. dSPACE is widely used in real-

time analysis and control of various power-electronics

applications including three-phase grid-connected sys-

tems (Ghani et al., 2009), digitally controlled power con-

verters (Monti et al., 2003), and back-to-back converters

(Deshpande et al., 2012). Matlab/Simulink provides a

functionality that generates a C-code from the Simulink

model. Using dSPACE’s real-time interface (RTI), the C-

code can be automatically implemented into the I/O board

of dSPACE. This method makes it possible to modify the

grid characteristics and the inverter’s controller parame-

ters online, which in turn enables various stability and

control design studies for grid-connected systems in time-

varying conditions.

This paper will show the implementation of a real-time

impedance measurement of a grid-connected system using

dSPACE. No external signal generator or data-acquisition

units are required; the signal generation, injection and

computations are all performed in dSPACE. We show the

implementation steps, starting from generating the MLBS.

As the paper does not consider dSPACE in detail, the

reader should have a basic knowledge of the software.

The remainder of this paper is organized as follows.

Section 2 briefly reviews the theory behind the stability

analysis of grid-connected systems and the synthesis of

the MLBS. Section 3 gives an example of a grid-connected

system operated by dSPACE, and provides guidelines for

generating the MLBS and obtaining the system character-

izing responses. Section 4 draws conclusions.

2 Theory

2.1 Stability of Grid-Connected System

Figure 1 depicts a three-phase inverter for direct inter-

facing of a photovoltaic generator. The inverter is com-

prised of six power electronic switches, a DC capacitor,

and threephase inductors. The inverter controls its

switches between conducting and non-conducting

mode with sinusoidal control voltages in order to trans-

form DC from the renewable energy source into the

three-phase AC required by the power grid.

The stability of a inverter-connected system can be eas-

ily assessed in the frequency domain by constructing a

small-signal state-space representation for the interfacing

inverter and the load subsystem. The stability analysis can
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Figure 3. Circuit diagram of three-phase grid-connected inverter con-

nected to real-time spectrum analyzer based on MLBS.

be conducted by applying the Nyquist stability criterion to

the impedance ratio in an interface (Wang et al., 2014).

Figure 2 shows a simple example of a single-phase

system in which the system consists of one source

powering a single load. The source is modeled by a

Norton equivalent circuit, as a current source IS in par-

allel with the source impedance ZS. The load voltage is

denoted by UL and the load impedance by ZL. This

combination applies for a grid-parallel inverter in which
the grid acts as a voltage-type load and the inverter re-

sembles a controlled current source. Assuming that the

source is stable when unloaded and that the load is sta-

ble when powered by an ideal source, the stability and

other dynamic characteristics of the interconnected sys-

tem can be determined from the transfer function

G(s) =
1

1+ZL(s)/ZS(s)
(1)

The interconnected system is only stable if the impedance

ratio ZL(s)/ZS(s) satisfies the Nyquist stability criterion.

Power systems that are more complex can be represented

in the same form and analyzed similarly by putting to-

gether multiple sources into a source subsystem and loads

into a load subsystem. In general, a grid-connected in-

verter does not suffer from resonance phenomena caused

by impedance-based interactions if the output impedance

of the inverter is shaped so that it has a larger magnitude

than grid impedance at every frequency.

Three-phase inverters can be modeled in the DQ do-

main by using direct (d) and quadrature (q) components

(Yazdani and Iravani, 2010). The output impedance can

be represented in the matrix form shown in (2). The cross-

coupling impedances Zqd and Zdq can usually be neglected

in stability analysis because they are typically very small

in magnitude. Analogous to single-phase systems, the sta-

bility of a three-phase system can be determined from the

transfer functions in (3) and (4) by applying the Nyquist
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Figure 4. Shift register with XOR and feedback.

Figure 5. Power spectrum of 15-bit-length MLBS generated at 10 kHz.

stability criterion. Both impedance ratios have to satisfy

this criterion for stable operation.

ZS =

[

Zd Zqd

Zdq Zq

]

(2)

Gd(s) =
1

1+ZL(s)/Zd(s)

(3)

Gq(s) =
1

1+ZL(s)/Zq(s)

(4)

2.2 Maximum-Length Binary Sequence

Pseudo-random binary sequence (PRBS) is a periodic

broadband signal based on a sequence of length
N. The

most commonly used signals are based on

maximumlength sequences (MLBS). Such sequences

exist for N = 2n − 1, where n is an integer. These are
popular because they can be generated using feedback
shift-register circuits. (Godfrey, 1993)

Figure 4 shows an example of a shift-register circuit

for generating an MLBS of a length 24 − 1 =
15. The

feedback is generated from stages 3 and 4. The register
can be started with any number other than 0,0,0,0. In

practice, the values 0 and 1 are mapped to -1 and +1 to

produce a symmetrical MLBS with an average close to

zero.

Figure 5 shows the form of the power spectrum

of the MLBS generated by the shift register shown in

Figure 4. The sequence is generated at 10 kHz and

has signal levels ±1 V. The power spectrum has an

envelope and drops to zero at the generation frequency
and its harmonics. The MLBS x has the lowest possi-

ble peak factor |x|peak/xrms = 1 regardless of its length,

which means that the sequence is well suited to sensi-

tive systems that require small-amplitude perturbation.

.

Due to the deterministic nature of the sequence, the

signal can be repeated and injected precisely and the

SNR can be increased by synchronous averaging of

the response periods.

3 Implementation in dSPACE

This section provides the main steps and guidelines

for the frequency-response-measurement procedure using

dSPACE. The steps are shown through an example in

which the output impedance is measured from a

threephase grid-connected inverter.

3.1 System Setup

Figure 3 shows the setup of the system under study. The

goal is to measure the d- and q-components of inverter’s

output impedance. A similar approach can be used to

measure the grid impedance or any other system-char-

acterizing frequency response, but the example only

considers the output-impedance measurement. The sys-

tem comprises the power stage and real-time fre-

quency-response analyzer (FRA) based on the MLBS

injection. The powerstage components are the photo-

voltaic generator, the inverter, and the three-phase grid

emulator. The details of the power-stage components

are omitted because they are not within the scope of this

paper.

The MLBS is implemented in dSPACE and runs par-

allel with the inverter control functions. The "Control

Desk"-block in Figure 3 depicts a PC, which is used to

modify the MLBS parameters such as the length of the in-

jected signal and its amplitude. The MLBS is injected to

the d- or q-component of the grid reference voltage. The

perturbed three-phase currents and voltages of the in-

verter are transformed into their corresponding d- and q-

components and collected by the FRA.

The measurements of the d- and q-components of the

impedance require two separate measurement cycles; one

for injecting and collecting d-components and one for q-

components. It should be emphasized that various transfer

functions can be measured without disconnecting the sys-

tem. The possible variables can be defined in dSPACE

and can be switched in the "Control Desk" -block. For ex-

ample, the effect of different control loops on a specific

transfer function can easily be analyzed online.

Figure 6 is a diagram of the real-time spectrum ana-

lyzer including the generation of the MLBS, the sequence

injection, and data collection. All the rectangular boxes

denote the Simulink blocks that are used for dSPACE.

The shift register is implemented by unit-delay blocks.

The output of exclusive-or (XOR) replaces the first bit of

the sequence through feedback. The generation fre-

quency of the injection is set by the delay value of the

unit-delay blocks.
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The MLBS is amplified by an adjustable gain (K),

after which the sequence is converted from logical

numbers to realworld numbers. The zeroorder-hold

block is required by dSPACE. The presented concept

allows continuous and repeating generation and

injection of the MLBS into the system.

The presented implementation also makes it possible

to change the injection amplitude in real time. Hence,

depending on the noise level and nonlinearities, the

amplitude can be experimentally adjusted so that the

produced injection energy is high enough. The

injection amplitude cannot be too high because the grid-

connected systems are typically highly sensitive to ex-

ternal signals and nonlin-earities may easily arise.

The measurements of input and output data are contin-

uously collected and buffered. Once the data is buffered

a DFT matrix is applied to perform the Fourier trans-

form (Sundararajan, 2001). The reason for the use of

the DFT matrix is that the length of the buffered data is

2n − 1 (length of the MLBS). A readily available FFT-

block could be used but the block only accepts a data se-

quence of length 2n. Therefore, the fast Fourier transform

is not applied in the implementation.

The Fourier transformed output data is divided by the

input data resulting in the complex transfer function. The

Bode plot is obtained by computing the magnitude and

phase from the complex data. The refresh rate of the Bode

plot is 2n/ fs, where n is the length of the shift register and

fs is the sampling frequency.

The effect of external noise can be reduced by applying

averaging. Figure 7 shows the diagram for moving

average. Input and output data are delayed by i · fs2
n,

where i = 1,2, . . . ,P where P denotes the number of injec-

tion periods.

3.2 Experiment

The applied MLBS injection is generated through a 7-

bit-length shift register, resulting in an 127-bit-long
sequence. The sampling frequency fs and injection

generation frequency fg are set to 8 kHz and 4 kHz,

respectively. Using the specified values for injection

length and generation frequency, the frequency resolu-

tion is fixed to fg/2n = 4kHz/127 ≈ 31Hz. The mea-
surement system is built in Matlab/Simulink as shown

in Figure 6, after which the model is transferred to

dSPACE as C-code.

Figs. 8 and 9 show a sample measurement of the d-

and q-components of the inverter’s output impedance. The

curves are averaged over 12 injection periods. Hence, the

time for one measurement cycle took approximately 0.38

s. Because a moving average was applied (Figure

7), a new Bode plot was obtained after each injection

period. Therefore, the refresh rate of the Bode plot was

approximately 31 Hz. The reference responses are ob-

tained by sine sweeps. Due to long measurement time

of the sine-sweep technique (approximately 10 min in

the application), the method cannot be applied in prac-

tice. The figure shows that the results obtained by the

MLBS accurately follow the reference, showing only a

few decibels and degrees of error. No external data-ac-

quisition devices were used in the experiment. The sig-

nal generation, injection and computations were all per-

formed in dSPACE.
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Figure 8. d-components of inverter’s output impedance.
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Figure 9. q-components of inverter’s output impedance.

A dSPACE implementation for generating the injection

and data acquisition was shown. The proposed

methods allow continuous monitoring of system

performance and real-time adjustments of the injection

properties. The method also makes it possible to modify

the inverter control characteristics and grid conditions

online, which provides means for analysis under time-

varying conditions. Due to fast injection and

measurement time, the presentedmethod is useful for

various on-line and real-time measurements in, for ex-

ample, adaptive control of three-phase inverters, and sta-

bility analysis of grid-connected systems.
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