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Abstract

The Saint-Venant equation is a mathematical model which
could be used to study water flow in an open channel,
river, etc. The Kurganov-Petrova (KP) method, which is
a second-order scheme, is used to solve the Saint-Venant
equations with good stability. The water flow of a river be-
tween two hydropower stations in Norway has been sim-
ulated in this study using MATLAB and OpenModelica.
The KP scheme has been used to discretize the Saint-
Venant equations in the spatial domain, yielding a collec-
tion of Ordinary Differential Equations (ODEs). These
are then integrated with time using the variable step-
length solvers in MATLAB: ode23t, ode23s, ode45, and
fixed step-length solvers: The Euler method, the second
and fourth order Runge Kutta method (RK2 and RK4).
In OpenModelica built-in, variable step-length DASSL
solver has been used. From the simulation, it was ob-
served that all solvers produce more or less similar results.
Volumetric flowrate calculation indicated numerical oscil-
lation with variable step-length solvers in MATLAB. The
results indicated that it is reasonable to match the order of
space and time discretization.

Keywords:  semi-discrete KP scheme, OpenModelica,
MATLAB

1 Introduction

By the year 2020, the 20-20-20 goal is to be achieved
within the European Union: 20% efficiency in the im-
provement of power utilization, 20% reduction of carbon
dioxide emission and 20% increment of renewable sources
in the total energy mix (Blindheim, 2015). Subsequently,
the utilization of renewable energy sources such as wind,
hydro, and solar have to be optimized. Hydropower is a
source of kinetic energy, which is extracted from flowing
water. It is one of the mature renewable energy technolo-
gies in the current energy sector.

Norway is prominent in the production of hydropower
as one of the renewable energy sources (Blindheim, 2015).
Even though reservoir based power production technolo-
gies are well developed, power generation based on run-
of-river systems are also common. As several hydropower
stations are installed at different locations along the same
river length, water flow between different hydropower sta-
tions influence their operations. When the upstream sta-
tion (first station) increases its power production, volu-
metric flow of water out from the first station increases,
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thus the downstream power station (second station) has to
increase the power production in order to utilize the water
resource efficiently (Vytvytskyi et al., 2015).

Hence, it is vital to have an understanding of the prop-
agation of the water flow from one station to the other, the
change of water level at the second dam, the speed of the
wave that hits the second dam, etc. Water flow modeling is
also useful in other areas, e.g., managing water resources
efficiently in agriculture, manage municipal drinking wa-
ter distribution system and other applications in addition
to power generation.

In this study, the flow of water in river Tinnelva in
Southeast Norway between two hydropower stations are
being considered. One power station is located at Arlifoss,
and the other station is located at Grgnvollfoss (down-
stream). The aim is to study the use of a semi-discrete
scheme for the solution of flow in river Tinnelva. Objec-
tives are to find an accurate and robust scheme for use in
the control algorithm.

The paper is arranged as follows. The basic introduc-
tion to the governing equation and computational fluid dy-
namics (CFD) will be given in Section 2. Introduction
to the KP numerical scheme will be provided in Section
3. Section 4 focuses on computer simulation. The Saint-
Venant equation and the Kurganov-Petrova (KP) scheme
as numerical scheme were used in simulation in order to
compute final water level at Grgnvollfoss dam. MATLAB
and OpenModelica are being used as simulation software,
and both built-in, variable step-length solvers and fixed
step-length solvers are being used for the time integration.
Parameters, assumptions, simplifications of the complex
river system are also introduced in Section 4. Simulation
results will be discussed in Section 5 together with numer-
ical stability analysis.

2 Governing Equation for Flow Mod-
eling

Conservation of properties of fluid flow, such as mass, en-
ergy, and momentum equations are important principles
in fluid dynamics (Versteeg and Malalasekera, 2007). For
the study of wave propagation, water flow, tsunami, etc.
mathematical models have been derived based on the con-
tinuity equation and the momentum balance (Fayssal et
al., 2015).

The Saint-Venant equation or commonly known as the
1-Dimensional (1D) shallow water equation, is used for
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decades for simulation of water flow in open channels,
rivers, etc. (Benkhaldoun et al., 2015). Basic conservation
laws, such as momentum and mass conservation provide
the base for the Saint-Venant equation which has been de-
rived by integrating the momentum equation over the ver-
tical coordinate (Benkhaldoun et al., 2015). This model
provides stable solutions even at hydraulic jumps. The
Saint-Venant equation can be posed as follows (Sharma,
2015).

oU n oF B
or  dx
where U vector is the vector of conserved variables
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Here, z is the water level above a datum, B is the bot-
tom elevation from the datum, g is volumetric flow rate
per unit width, w is the width of the river, n is Mannings
roughness coefficient, and g is acceleration due to gravity.
The S terms reflect source terms: including expressions of
friction which give resistance against flow.

3 KP Numerical Scheme

In computational Fluid Dynamics (CFD), The Finite Vol-
ume Method (FVM) is based on averaging the Control
Volume (CV) (Kurganov and Tadmor, 2000). As FVM
average each CVs, discontinuities may occur at CV inter-
faces. This problem was recognized as the Riemann prob-
lem (Kurganov and Levy, 2002). In order to handle the
Riemann problem, the Riemann solvers were developed
(Kurganov and Tadmor, 2000). However, by the emerging
of computer-based complex calculations, fast convergence
with higher accuracy has to be accomplished. Subse-
quently, several novel techniques that could eliminate Rie-
mann solvers were developed. The KP scheme was one
of the developments which could handle discontinuities
at CV interfaces without the Riemann solvers (Kurganov
and Tadmor, 2000). The KP scheme is semi-discrete in
nature: discretization in space and Ordinary Differential
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Equation (ODE) solvers in MATLAB and OpenModel-
ica can be used to solve the resulting differential algebraic
equations.

Kurganov and Petrova have developed a new scheme
which could be considered as an extension/further devel-
opment of the Nessyahu-Tadmor (NT) scheme (Kurganov
and Tadmor, 2000). The NT scheme was developed to
average the CV value by using the non-smooth Riemann
fans over a fixed length Ax (Nessyahu and Tadmor, 1990).
In the KP scheme development, instead of averaging the
non-smooth parts of the Riemann fans, precise local ve-
locities of wave propagation have been considered along
with small CVs of variable size (Kurganov and Tadmor,
2000). When the CV interface has discontinuities, a stag-
gered CV concept can be introduced to eliminate the prob-
lem (LeVeque, 1999). During the transient, the local ve-
locities are usually different at each side of a CV interface.
Therefore, altered staggering at both sides of the CV is
reasonable. Thus, the size of the virtual CVs are defined
for a small time (Af) by considering the local velocity of
wave propagation. For each non-uniform CVs, a piece-
wise linear reconstruction has been done over the solution
domain. Later the linear reconstructed values have been
projected to the original uniform CVs while assuming the
limits At — 0 (Kurganov and Tadmor, 2000).

In the KP scheme, properties are indexed by a plus (+)
and minus (-) with reference to the direction of the prop-
erty flux. The local speed of discontinuity propagation has
been calculated by considering the Jacobi matrix of the
governing equations. In order to achieve higher resolution
and a well-balanced scheme, the Total Variant Diminish-
ing (TVD) concept together with the flux limiter concept
has been used. The standard minmod limiter has been used
in the original development of the KP scheme; many alter-
native flux limiters can be used just as well (Kurganov and
Tadmor, 2000).

The KP scheme does not use the Riemann solvers.
Hence, computational time can be reduced. Numerical
viscosity with the KP scheme is lower compared to the
NT scheme (Kurganov and Tadmor, 2000).

The KP scheme discretizes the Saint-Venant equation
spatially, yielding a collection of ODEs in time. These
ODEs can be written as follows,

ar ’

where ii; is the cell center average values, H._ 1 (f) are
Jiz

the central upwind numerical fluxes at the cell interfaces,
defined as:
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Figure 1. Bottom topography of the river.
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where aj_[i , are the one-sided local speeds of propagation

JE3
£ | are property fluxes at indexed positions (Sharma
2

2015).

and u

4 Simulation of the River Flow

In river Tinnelva, two hydropower stations, one at Arli-
foss, and the other at Grgnvollfoss are being operated by
Skagerak Energi. The river reach is Skm in length. In the
study, the bottom topography of the river has been divided
into three sections of different slope, and the width of the
river is assumed to be constant (180 m) during the whole
reach of interest. The assumed bottom topography of the
river is illustrated in Figure 1. The section from 2.5 km
to 3 km has a steeper bed compared to the other sections
(Vytvytskyi et al., 2015).

Due to different operational conditions, the volumetric
outflow of water at the Arlifoss station is varying. The
volumetric flow rates and other quantities are displayed in
Table 1.

Other than the spatial discretization done by the KP
scheme, time discretization methods in fixed step-length:
The Euler method, the second order, and the fourth or-
der Runge Kutta (RK2 and RK4) and the built-in variable
step-length solvers: ode solvers in MATLAB (ode23s,
ode23t, ode45) and the DASSL solver in OpenModelica,
have been used. In addition to the water level computa-
tion, the numerical stability of each solver has been ana-
lyzed. Here, only for the numerical stability analysis, the
variable step-length odel5s solver has been used.
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Table 1. Results analysis.

Length 5 km
Number of CV 200

Time steps (/\t) 0.25s
Volumetric flow in 120 m? /s
Volumetric flow out 120 m3 /s
Volumetric flow increased 160 m? /s
Width of the river 180 m
Initial water level at the dam | 17.5 m
Mannings friction factor 0.04 s/m'/3
Gravitational constant 9.81 m/s’

Euler, RK2 and Rk4 results (dt=0.25)
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Figure 2. Fixed step-length solvers the Euler method, RK2,
RK4 (Ar =0.25s).

5 Results and Discussion

Results of the simulation study and numerical stability
analysis will be discussed in the following sub sections.

5.1 Simulation Results

The built-in variable step-length solvers: ode23t and
ode23s have second-order accuracy (Gladwell et al.,
2003). Fixed step-length solvers: The Euler method, the
RK?2 method, and the RK4 method have first order, sec-
ond order, and fourth order accuracy respectively (Gerald
and Wheatley, 2004; LeVeque, 1992). ode45 and odel5s
have higher order; higher than a second order of accuracy
(Gladwell et al., 2003).

The simulation results using fixed step-length solvers
(the Euler method, the RK2 method and the RK4 method)
with fixed step length (/¢ = 0.25 second) show very sim-
ilar behaviors as shown in Figure 2.

An exploded view of Figure 2 in the time range of 35
min to 37 min is shown in Figure 3. In the exploded view,
the Euler method shows some deviation from the other two
solutions. However, this deviation is very small.

Both RK2, RK4 and the Euler method algorithms show
accuracy up to fourth significant digits in their final solu-
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Euler, RI2 and Rk4 results (dt=0.25)
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Figure 3. Exploded view of fixed step-length solvers (Euler
method, RK2, RK4).

Euler, RK2 and R4 results (di=0.6)
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Figure 4. Fixed step-length solvers the Euler method, RK2,
RK4 at At =0.6s.

tions.

The solution obtained using the Euler method is highly
dependent the choice of the step length; /Ar. When At is
set to 0.6 seconds, the Euler method shows some oscilla-
tion in its solution (Figure 4).

With At set to 0.7 seconds, the solution becomes un-
stable. While The Euler method shows higher oscillatoric
behavior and unstable solutions when At increases (A >
0.7s) the RK2 and RK4 methods produce stable solutions.
However, increment of /At has necessarily to be agreed
with the CFL condition (Silvester et al., 2015; LeVeque,
1992) which is commonly written as,

T Ax (10)

Here C is dimensionless number u refers the magnitude
of the velocity, Ax refers the length of CV. For the upwind
scheme, C,,,.,. = 1 (Silvester et al., 2015).
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Figure 5. The RK2, RK4 method and ode45 solver results at /At
=0.25s.

The standard KP scheme is a second order scheme
in spatial discretization (Kurganov and Tadmor, 2000).
Higher order time integrators: the RK4 method and ode45
were used to solve second order ODEs returned by spatial
discretization of the Saint-Venant equation.

The idea was to check whether the higher order time in-
tegrators; higher than the second order, have a significant
influence on solving second order ODEs more accurately.

According to the observations, both RK2 and the RK4
schemes show very similar solutions. Hence, this denotes
that the higher order time integrators have the minor in-
fluence on the accuracy when it uses to solve lower order
ODEs. The selection of an order of the time discretization
that exceeds the order of the spatial discretization does
not necessarily produce a more accurate solution (Liu and
Tadmor, 1998). Consequently, in order to acquire a rea-
sonably accurate solution, the order of the time discretiza-
tion should be of either lower or the same order as the
order of the spatial discretization.

When comparing variable step-length ode45 solvers in
MATLAB with fixed step-length solvers: RK2 and RK4,
all solvers produce very similar results (Figure 5). In ex-
ploded view (Figure 6), the variable step-length solver
ode45 shows some minor oscillatory behavior. Even
though the exploded view shows a small deviation, the re-
sults of the all three solvers (ode45, RK2, and RK4) com-
pute the end-time water height at the Grgnvollfoss dam
accurately up to the fourth significant digit.

Results of all fixed step-length solvers: The Euler
method, RK2, RK4 and all variable step-length solvers:
ode23s, ode23t, ode45 are shown in Figure 7. The com-
puted final water height of each different solver are similar
(Figure 7), however, when it considers closely zooming in,
it is possible to see minor deviations.

OpenModelica simulation by using the built-in DASSL
solver shows a similar pattern compared to the solutions of
the MATLAB solvers as shown in Figure 8. Table 2 sum-
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Exploded view of RK2 RIK4 and odedb salvers
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Figure 6. Exploded view of the RK2, RK4 method and ode45 Figure 8. OpenModelica simulation results with DASSL solver.

solver results at At = 0.25 s.

Results of all solvers (dt=0.25)
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Figure 7. All solvers result at Af =0.25 s.

marizes other observations of the simulation study. Time
consumed by each solver, minimum and maximum time
step of variable step-length solvers and steady water level
for all solvers are tabulated in the Table 2.

5.2 Simulation Results for Numerical Stability
Analysis

In this section, results of numerical stability analysis will
be discussed. For ease of comparison, the six solvers,
which were used, have been divided into two groups based
on their order of the accuracy. Thus, ode23s, ode23t and
the RK2 method were classed into group 01, which are
of second order in accuracy. The RK4, ode45 and odel5s
solvers were classed into the group 02, which are of higher
order in accuracy in time discretization than group O1.
The results of the volumetric flow rate calculation for
the lower order group (group O1) are plotted in Figure
9. From the observations, the ode23s and ode23t solvers
show higher oscillation in volumetric flow rate calcula-
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Mumerical Oscillations
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Figure 9. Numerical oscillation of group 01 solvers At = 0.25
s.

tions than RK2.

For the results of the group 02 solvers, Figure 10, it can
be clearly seen, that the oscillatory nature increases with
increasing order of the time discretization. The solution
using variable step-length ode solvers are more oscillatory
compared to the fixed step-length solvers RK4 for the vol-
umetric flowrate calculations. ode45 shows higher oscilla-
tion while odel5s show relatively smaller oscillations for
the volumetric flow rate calculation.

As a whole, it could be observed that built-in variable
step-length ode solvers show a relatively oscillatory nature
for the volumetric flow rate calculations.

6 Conclusions

Based on the simulated results, it can be concluded that a
higher order in the time discretization than the order in the
spatial discretization does not necessarily produce more
accurate solutions, consequently, matching orders of both
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Table 2. Results analysis.

Description Solver Values
ode23t (variable step-length) 11
ode23s (variable step-length) 325
ode45 (variable step-length) 15
Computational time at At = 0.25 in seconds odel5s (variable step-length) 125
The Euler method (fixed step-length) | 29
RK2(fixed step-length) 52
RKA4(fixed step-length) 105.353
ode23t [1.022,196]
[Min, max] time steps for ode solvers 23242125 {822;2:}3337]]
odel5s [0.6381,150]
Steady water level in front of Grgnvollfoss dam | For all solvers 17.0948 (m)
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121.2 T
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1208 | B B
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1202

120
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196
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Figure 10. Numerical oscillation of group 02 solvers Ar = 0.25
.

spatial and time discretization is a good idea. Choice of
At necessarily has to be agreed with the CFL condition in
order to achieve convergence with satisfactory accuracy in
the final solution. For a selected /At, which is higher than
0.7s, the Euler method produces oscillatory solution apart
from the chosen At satisfies the CFL condition. How-
ever, the RK2 and RK4 methods are quite stable while the
Euler method shows oscillations. The numerical stabil-
ity analysis indicated that the higher order variable step-
length solvers are more oscillatory compared to higher or-
der fixed step-length solvers. Final water height at Grgn-
vollfoss dam is more or less similar with compared to dif-
ferent computations with variable step-length solvers and
fixed step-length solvers. Results of the simulation study
highly depend on the assumption made prior to simula-
tion. The studied KP scheme has been found to be effi-
cient and robust, and in a form suitable for use in control
algorithm.
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