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Abstract

Mixing of two granular phases in a rotary kiln was

investigated through CFD simulations using a two-

dimensional transverse plane based on the Eulerian

approach and the kinetic theory of granular flows.

Simulations were performed transverse with the aim to

investigate mixing of two particulate solids, CaCO3 and

Al2O3, under the rolling mode. Simulation results

indicated particle segregation rather than mixing during

the plane rotation. Volume fractions and velocity

contours of each phase were examined to understand the

mixing and segregation. Particles with lower density

and small particle diameter are collected in the middle

section of the bed, while particles with a higher density

and larger particle diameter get collected at the bottom

of the rotating cylinder. Variations in densities and

particle sizes of solid particles were identified as the

main causes of the particle segregation. Further studies

are required to examine the effect of degree of filling on

mixing performance and how the use of lifters may

improve the mixing efficiency.

Keywords:   rotary kiln,  granular flow,  rolling mode,

active layer,  passive layer

1 Introduction

In industry, materials are needed to be processed in

various ways to gain the desired quality of the product.

Rotary kilns are widely accepted for the pyroprocessing

of many types of materials in different industries owing

to efficient mixing and heat transfer performances (Liu

et al., 2016). Understanding of particles mixing inside

the kiln is vital to enhance heat transfer performance

within the bed that improvise material conversion rates

in pyro processing.

Granular flows of a transverse plane in a rotary kiln

can be categorized into six transport modes; slipping,

slumping, rolling, cascading, cataracting and

centrifuging. Bed motion depends on Froude number,

filling degree, wall friction coefficient, ratio of particle

to cylinder diameter, angle of internal friction and

dynamic angles of repose (Yin et al., 2014). In industrial

rotating drums, the rolling or cascading mode is often

applied, and the rolling mode is considered optimum for

mixing (Demagh et al., 2012; Boateng et al., 2008).

    The approach of numerical analysis in multiphase 

granular flows facilitates understanding of the bed 

behavior in rotary kilns. CFD simulations can be 

performed to investigate motions of particles in the bed 

according to two mathematical models. Both Euler-

Lagrange and Euler-Euler models, along with the 

kinetic theory of granular flow, are used to simulate the 

bed motion.  In the Euler-Lagrange model, the gas phase 

is treated as a continuum while the solid particles are 

considered as a discrete phase (Crowe et al., 1998). 

Trajectories of individual solid particles are calculated 

to understand the behavior of the kiln bed. The Euler-

Euler model considers each phase as a continuum, and 

continuity and momentum equations for each phase are 

applied (Valle, 2012).    

     Both two-dimensional (2D) and three-dimensional 

(3D) CFD simulations to investigate mixing of one 

granular phase in a rotary kiln have been reported in the 

literature. 2D-CFD simulations were done by Liu et al. 

(2016) to study particle motion and heat transfer in a 

rotary kiln. The surface particle motion in rotary 

cylinder was analyzed via a 2D-CFD model to analyze 

the dynamic characteristics and rheology of a granular 

viscous flow in a rotary cylinder to validate real cement 

rotary kiln (Demagh et al., 2012). A three-dimensional 

study was done by Yin et al. (2014) to understand 

granular motion during rolling mode in a rotary kiln. 

The particle residence time and angle of inclination of 

the rotary kiln were considered in the simulation.  

    This study focuses on 2D numerical simulations of 

mixing of two granular phases in a rotating cylinder. 

Particle motion in a rotating cylinder was considered 

similar to the bed behavior of the transverse plane in a 

rotary kiln. The mixing behavior was analyzed 

considering two granular particle types, of calcium 

carbonate (CaCO3) and aluminum oxide (Al2O3), in 

rolling mode. A mathematical model based on the Euler-

Euler approach and the kinetic theory of granular flow 

were used to describe the dynamics of particles in the 

transverse plane. The behavior of CaCO3 and Al2O3 was 

first studied separately, and then mixing of CaCO3 and 

Al2O3 was investigated.  

    CFD simulations were carried out using ANSYS 

FLUENT 16.2 and 2D model was developed using 

ANSYS DesignModeler. The model has the geometrical 
characteristics of a transverse plane of a rotary kiln.  
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2 Model Description  

2.1 Particle Mixing in a Transverse Plane 

The dynamics of the particle bed in a rotating cylinder 

under rolling mode has been observed by different 

techniques (Yin et al., 2014). In rolling mode, particles 

at the top surface of the bed move down continuously 

while the bottom part moves up showing a plug flow 

motion. The maximum particle mixing is achieved 

under rolling mode.  Considering the characteristics of 

the particles movement, the bed motion can be further 

divided into two regions, an active layer and a passive 

layer (Boateng et al., 2008). Figure 1 shows a schematic 

diagram of a kiln operated in rolling mode.  

 

 

Figure 1. Schematic diagram of a kiln operated in a 

rolling mode 

     Here, most of the particle mixing takes place in the 

active region and mixing in the passive region is 

negligible. The active layer particle mixing determines 

the surface renewal rate, which in turn affects the bed-

freeboard heat and mass transfer and chemical reactions 

(Ding et al., 2001). The heat transfer is, however, not 

included in the present work, which focuses on the 

particle motion.  

2.2 Governing Equation of Two-Fluid Model 

2.2.1 Continuity Equations  

The continuity equations for the gas phase and the solid 

phase are as follows: 
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Here,   is density, v  is velocity,   is volume 

fraction and t is time. S and g refer to solid phase and 

gas phase, respectively.   

2.2.2 Momentum Equations 

Momentum equations describe how the viscous, 

pressure and gravity forces govern the motion of the gas 

and the solid particles. The momentum equations for the 

gas phase and the solid phase are written as: 
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Here gP , g , gs and g are the fluid pressure, 

gravity, drag coefficient between the gaseous and solid 

phases and viscous stress tensor of the gas phase, 

respectively.  

The viscous stress tensor for the gas phase, g  in Eq 

(4), and for the solid phase, s  in Eq (5), are given by 

the Newtonian form: 
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Here sP , s , s and I are solid pressure, solid 

viscosity, solid bulk viscosity and unit tensor, 

respectively.   

  Particle-particle collisions create normal forces 

which are represented by the solid pressure sP  for one 

solid phase (Benyahia et al., 2000): 

 

                       ΘegΘP psssss  12 2
0    (8) 

     Here, Θ is the granular temperature (further 

explained below), 0g is the radial distribution function 

and pe is the particle-particle restitution coefficient. 

    The bulk viscosity of the solid, s in Eq (7), is given 

by (Neri and Gidaspow, 2000): 
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Here, dp is the particle diameter. 
     The solid shear viscosity in Eq (7) is given as 

(Arastoopour, 2001): 
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Wen and Ergun (Huilin and Gidaspow, 2003)  

proposed that the exchange coefficient gs between the 

gas and the solid phase given in Eq (4) and (5) could be 

calculated by: 
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The drag coefficient depends on the value of the 

Reynolds number, Re:  
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2.2.3 Kinetic Theory of Granular Flow 

Granular kinetic theory is extensively used in granular 

flow modelling to achieve a high level of accuracy of 

model results to be able to compare with data from the 

actual system. This theory considers the particle-particle 

collisions to predict physical properties of the 

particulate phase. The kinetic theory has been widely 

used in modelling of fluidized beds to model solid 

particles in a gas.  

A new variableΘ , called the granular temperature, 

was introduced in this theory. It is a measure of the 

kinetic energy of the solid. Granular temperature is 

defined as one-third of the mean square velocity of the 

random motion of particles 32
sv'Θ  , and 2'sv  is the 

square of the fluctuating velocity of the particle. A 

transport equation for the granular temperature can be 

written as (Huilin et al., 2001): 
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     Here, s is dissipation of turbulent kinetic energy, 

sΦ is energy exchange between gas and particle and 

gsD is energy dissipation. 

     The turbulent kinetic energy dissipation, s  in Eq 

(15), is given as (Neri and Gidaspow, 2000):  
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     The radial distribution for one solid phase can be 

expressed as (Rahaman et al., 2003): 
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      The energy exchange between the fluid and solid 

phases in Eq (15) is defined as (Huilin and Gidaspow, 

2003): 
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      The rate of energy dissipation per unit volume is in 

the form of the following equation: 
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2.3 Simulation 

The simulations were performed under rolling mode as 

this mode is considered to give good mixing. The 

rotational speed of the cylinder was maintained under a 

Froude number of 41016  to achieve the rolling mode. 

The cylinder and the particles rotate in the 

counterclockwise direction. 

2.3.1 Physical Properties of Materials and Model 

Parameters 

In this study, two granular phases, made of CaCO3 and 

Al2O3 were used in the simulations. Table 1 shows the 

related physical properties of gas and solids with model 

parameters.  

 
Table 1. Physical Properties of Materials and Model 

Parameters 
 

Parameter  Description Value 

3CaCO (kg/m3) Particle density  1760 

32OAl (kg/m3) 3000 

3CaCOd (μm) Particle diameter 175 

32OAld (μm) 1000 

f (%) Degree of particle fill 15 

 (rpm) Rotational speed 2 

 

2.3.2 Geometry and Mesh 

A circle with 0.4m diameter was created in 

DesignModeler to represent the transverse plane of the 

rotating cylinder. A mesh was refined to yield about 

5500 elements. Figure 2 provides the mesh of the 

transverse plane. 
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Figure 2. Mesh of the transverse plane 

2.3.3 Initial and Boundary Conditions  

The main boundary condition of the transverse plane in 

a rotating cylinder is the relative motion of the bed 

material and the rotating wall. There, a no-slip condition 

was assumed, meaning that the relative velocities of the 

gas and the particles at the wall are set to zero. And it 

was assumed that particles were subjected to wall 

friction and gravity.  

2.3.4 Solution Strategy and Convergence Criteria 

In this study, the finite volume approach was used to 

solve all the governing equations of the model. Since the 

flows could be considered incompressible, a pressure-

based solver was used. The pressure-velocity coupling 

was done by a segregated algorithm called “SIMPLE” 

(Patankar and Spalding, 1972). A second order upwind 

scheme was used for discretization of the governing 

equations. The volume fraction was discretized 

according to the QUICK scheme (Versteeg and 

Malalasekera, 2007). The time step of the simulations 

was 10-3 s and residual values for the convergence were 

set to 10-3.  

3 Results and Discussion 

3.1 Motion of a Single Solid Phase in a 

Transverse Plane 

First, two simulations were performed to understand the 

bed behavior of CaCO3 and Al2O3, respectively. Figures 

3(a) and (b) show the volume fraction contours of 

CaCO3 at 0s and pseudo-steady-state. Initially the top 

surface is flat, but with the time particles gradually move 

upwards, following the wall rotation. After a certain 

time period particles reach a maximum height and then 

roll down along the top layer in a continuous cyclic 

motion.  

The results indicate that the bed material can be 

divided into two zones, one active and one passive 

region. In the active layer, particles move down with 

relatively high velocities compared to the passive layer.  

Figure 4 illustrates the magnitude of the velocity 

field of CaCO3.  Two separated layers can be observed 

in that a thin upper layer moves with higher velocities 

than the thick lower layer. Figure 5 shows the velocity 

contours of CaCO3 particles, which also reveal that the 

active layer has much higher velocity magnitudes than 

the passive layer, and the zero velocity region is clearly 

observed. 

 

 
Figure 3(a). Volume fraction contours of CaCO3  

 

 
Figure 3(b). Volume fraction contours of CaCO3  

 

In general, the downwards motion in the left 

direction in the active layer balances the upwards 

motion in the right direction in the bottom layer, 

resulting in cyclic pseudo-steady-state flow process. 

This means that top layer particles exposed to heat 

transfer from above, as is the case in rotary kilns, would 

mix with particles in the bottom layer and transfer heat 

by conduction.  

    Very similar results were found for the Al2O3 motion, 

so no graphics are included for this particle type.   
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Figure 4. Velocity vector of particle at pseudo-steady-state 

 

 

Figure 5. Velocity contours of CaCO3 at pseudo-steady-

state 

 

 
Figure 6. Volume fraction contours of Al2O3 in the 

mixture at pseudo-steady-state 

3.2 Mixing of Two Solid Phases in a 

Transverse Plane 

A mixture of CaCO3 and Al2O3 were simulated to 

investigate the mixing performance when two solids 

with different characteristics are exposed to the 

rotational motion. Volume fractions of both solids were 
examined to understand the mixing behavior. Contour 

plots of volume fractions of solids are shown in Figures 

6 and 7. Figure 6 shows the volume fraction variation of 

Al2O3 in the particle bed, revealing that Al2O3 

accumulates at the bottom of the particle bed. CaCO3, as 

seen in Figure 7, is collected in the middle of the bed. 

This illustrates that a mixture of two particle types will 

undergo segregation instead of mixing during rotation. 

Variation of particle size and density are the key 

factors of segregation in a rotating cylinder. In the active 

layer of the particle mixture, both solids roll down 

relative to the slowly moving passive layer. Due to this 

particle motion, small particles have a higher probability 

to separate within the active layer and move into middle 

of the bed. Larger and denser particles move downwards 

by sustaining the active layer and entering into the 

passive region at the bottom of the particle bed, near to 

the wall. 

 

 
Figure 7. Volume fraction contours of CaCO3 in mixture 

at  pseudo-steady-state 

 

 
Figure 8. Velocity contours of Al2O3 in mixture at 

pseudo-steady-state 
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Figure 9. Velocity contours of CaCO3 in mixture at 

pseudo-steady-state 

 
Velocity contours of both solids are shown in Figure

8 and 9. Both materials are present in the active layer of

the mixing bed. The simulation results depict that the

intensity of the velocity contours decrease in CaCO3

rather than in Al2O3 when materials move towards the

lower (left) end of the active layer. This indicates that a

smaller amount of CaCO3 particles will remain at the

active layer lower end due to segregation.

Generally, particles start to segregate when they are

subjected to motion. The particle motion in the active

layer facilitates segregation of particles of different size

and density.

4 Conclusions

Mathematical modelling of a two-dimensional

transverse plane in rotating cylinder, based on the

Eulerian approach and the kinetic theory of granular

flows, predict the particles mixing behavior in a rotary

kiln. The rolling mode can be recommended to achieve

internal mixing for a single solid phase. However,

particle segregation is observed when two different

granular phases are being exposed to the rotary motion

under the rolling mode. Lighter and smaller particles are

collected in the middle section of the bed while particles

with a higher density and size get collected at the bottom

of the rotating cylinder. More studies need to be done to

understand the mixing mechanism for two granular

particles under the rolling mode. In addition to that,

further studies are required to determine the best mode

for the particles motion in rotating cylinder. Some

industrial applications use internal lifters to acquire a

higher degree of material mixing. 2-D simulation of the

transverse plane with lifters attached to the wall may be

applied to investigate to what extent this will improve

mixing efficiency of two granular phases.
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