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Abstract
Manufacturing creates a lot of data, and this is
increasing due to digitalization of manufacturing,
industrial Internet of Things (IIoT) and needs for
product traceability as well as predictive maintenance.
Typically data from production material flow is not
analyzed and thus the improvement potential is not
found. There is need for interactive analytics tools that
can turn raw data from heterogeneous data sources e.g.
starting from sensor data, manufacturing IT systems,
(e.g. Enterprise Resource Planning, ERP,
Manufacturing Execution System, MES and
Supervisory Control And Data Acquisition, SCADA),
into meaningful information and predictions—and
presented on easy-to-use interfaces. This paper
presents a feasibility study focusing on interactive
visual analytics of manufacturing data set carried out at
VTT Technical Research Centre of Finland Ltd.

Keywords: manufacturing industry, statistical
analysis, machine learning, visual analytics, industrial
internet of things

1 Introduction
The role of data in manufacturing has traditionally
been understated. Manufacturing generates about a
third of all data today (Simafore, 2013), and this is
certainly going to increase significantly in the future.
Data forms the backbone of all Digital Manufacturing
technologies, which will be the centerpiece of the
strategy for advancing Manufacturing in the 21st
century (Simafore, 2013).

Manufacturing companies are facing global
competition – they have to be better, cheaper and
faster. In order to manage they need a productivity
leap. Manufacturing companies collect huge amount of
data of their manufacturing processes. Even though
utilization of the data could potentially enable a big
productivity leap, this data is poorly used. A recent
survey published (MESA, 2016) find out that only 14%
of respondents are using manufacturing data in
analytics. This is largely because manufacturing
companies lack tools and expertise needed to analyze
the data. On the other hand, Industrial Internet of
Things (IIoT), analytics and simulation methods,

collaboration and visualization tools are mature enough 
to be used and worldwide interest for applying them 
exists. 

Many of current analytic tools require data analytics 
expertise and are mainly used as a desktop, “island of 
analysis”. Current analytics tools are also static, pre- 
programmed, focusing mainly on business issues and 
targeted for upper management level. Typically those 
tools are expensive and aimed for large organizations. 
The current tools also have poor synchronous 
collaborative analysis and decision making features. 
There are several useful analytics methods that are not 
included in the current tools.  

Advanced analytics refers to the application of 
statistics, machine learning, data mining and other 
mathematical methods to manufacturing and business 
data in order to assess and improve practices.  

Predictive analytics is about extracting information 
from existing data, in order to determine patterns and 
predicting potential trends and outcomes. Predictive 
analytics forecasts what might happen in the future. 
The goal is to go beyond descriptive statistics and 
reporting on what has happened to providing a best 
assessment on what will happen in the future. The end 
result is to streamline decision making and produce 
new insights that lead to better actions. 

In manufacturing, operations managers can use 
advanced predictive analytics to take a deep dive into 
historical process data, identify patterns and 
relationships among discrete process steps and inputs, 
and then optimize the factors that prove to have the 
greatest effect on yield. 

For networking manufacturers, the IIoT becomes a 
full ecosystem when software, cloud computing (or in-
house servers), and analytics tools are combined to turn 
raw data into meaningful information or predictions—
and when it’s presented on easy-to-use interfaces (such 
as dashboards or mobile Apps) enabling users to 
monitor, and in some cases, automate response actions 
or remotely control equipment or systems (PwC, 
2015). 

The research question is how to convert 
manufacturing big data to business and manufacturing 
advantage? In this article we present a feasibility study 
of applying visual analytics to manufacturing data. For 
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the purpose we use VTT OpenVA visual analytics 
platform for measurement data (Järvinen et al, 2013). 
The objectives are twofold: getting experience and 
guidelines for applying visual analytics in 
manufacturing and analyzing the feasibility of the VTT 
OpenVA platform with manufacturing data. 

1.1 Impact estimations  
Manufacturers taking advantage of advanced analytics 
can reduce process flaws, saving time and money. 
Gains will likely show up in both labor productivity 
and resource productivity: The impact estimations are 
(MGI, 2011). 

• Sensor data-driven operations analytics:  -10-20% 
operation costs, up to +7% revenue  

• “Digital Factory" for lean manufacturing:  -10-50% 
assembly cost, + 2% revenue 

For extended enterprise real-time visibility between 
suppliers and the production line allows key value 
chain participants to optimize material flow and reduce 
process cycle time. Furthermore, the use of predictive 
and prescriptive analytics using real-time data allows 
the enterprise to rectify future bottlenecks and 
eliminate high costs associated with operational 
downtime. 

General Electric estimates that full-scale 
exploitation of the industrial internet potential will 
bring an annual one percentage point increase in global 
production for the next 15–20 years. One percentage 
point might not sound much, but calculating one 
percent growth over fifteen consecutive years as 
compounding growth we end up with a global increase 
of ten to fifteen trillion dollars in national product – 
that is to say, an increase in products and services to 
the tune of 10,000 or 15,000 billion dollars each and 
every year. If even a part of this can be realized, we 
will have gone some way beyond mere hype! (Ailisto 
2014). 

An efficient workforce with strong data analytical 
skills and cross-domain expertise can facilitate 
transition into a smart factory.  

2 Visual Analytics in Manufacturing 
Domain  

One key change in the manufacturing process will 
come in the form of visual analytics (Riley 2015). For 
many industrial companies, the Industrial Internet of 
Things (IIoT) is the main source of Big Data. IIoT 
connects data produced by different objects – such as 
sensors, devices, machines, humans, other assets, and 
products – to different applications. IIoT provides 
access to data generated and manipulated by e.g. 
intelligent equipment with an IP address, machine-to-
machine (M2M) communications, mobility, cloud 
computing, analytics, and visualization tools.  

Inside the factory, having the ability to utilize data 
masses from orders and machine status allows 
production managers to optimize operations, factory 
scheduling, maintenance, and workforce deployment 
(Noor, 2014).  

2.1 Visual Analytics  
Visual analytics (Thomas and Cook, 2009; Järvinen et 
al, 2009; Keim et al, 2010; Järvinen, 2013,) provides 
visual and interactive tools to support analytical 
reasoning and finding insight from data. It combines 
the human capabilities to interpret visualizations with 
automatic data processing. A visual analytics tool 
shows the information in the form of interconnected 
and interactive visualizations, making the analysis easy 
for non-experts in data analysis. Behind the 
visualizations are statistical, data mining and machine 
learning methods. Users can look for patterns, trends, 
anomalies, similarities and other relevant features from 
the visualizations. Visual analytics is an iterative 
process, (see Figure 1), where users launch analysis, 
browse and navigate in visualizations, and highlight 
and select important areas for further study.  

The use of visual analytics is still rare in 
manufacturing operation management. Examples on 
visual analytics at plant monitoring are shown by 
(Aehnelt et al, 2013; Tack et al, 2014). 

 

 

Figure 1. Steps in interactive visual analytics 

2.2 Heterogeneous data sources in 
manufacturing domain  

Heterogeneous data stems from various data sources 
and that comes in a multiplicity of data formats. In the 
domain of manufacturing, for example enterprise 
resource planning systems (ERP) are used to manage 
information about orders and personnel, while 
manufacturing execution systems (MES) are employed 
to collect and evaluate data about the production 
process. For an integrated analysis, different data 
access interfaces to the different data sources must be 
used (Aehnelt et al, 2013). 
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In addition to MES and ERP, there are various other 
systems at factory floor having useful information, 
such as different sensor systems, SCADA (supervisory 
control and data acquisition) and various automated 
systems log files. The most difficult data source is the 
human at the factory floor, how to get real-time 
information from him or her. ERP doesn’t provide a 
real time feedback loop from production floor to the 
planning level. There is latency, delays on submitting 
the progress data to the ERP and potentially many 
human interactions are required, thus manual errors are 
possible. The time stamps from production phases can 
have inaccuracies. Typically the work phases status are 
entered at the end of the working shift; there could be 
the same time for starting and finishing the work phase 
or some of the work phase recordings are missing. 

In case of manual reporting on paper, it requires 
another human action to type data to the information 
systems. Information on work progress status, 
exceptions, missing parts and quality etc. are needed 
for e.g. real-time control of manufacturing (Järvenpää 
et al, 2014a). Methods for analyzing this historic data 
are typically missing (Järvenpää et al, 2014b). 

2.3 VTT OpenVA concept 
VTT OpenVA is a visual analytics platform for 
measurement data by VTT Technical Research Centre 
Of Finland Ltd. It consists of a data base, a library of 
visualization and analysis methods, an interactive user 
interface and a visual analytics engine that delivers 
data and analysis requests between the different 
components.  

The database stores the application data in a domain 
independent form. The data base contains data of 
background variables, measured variables and 
indicators, and it is populated with application specific 
metadata.  

The analysis and visualization library contains a 
selection of analysis and visualization methods, and it 

is extendable. The visual analytics tool adapts itself to 
each application with the help of the metadata stored 
into the database. The data to be analyzed is loaded 
from external sources to the databases through a 
uniform data interface. 

3 Feasibility Test Case – Automated 
Material Handling System Analysis 

The feasibility of OpenVA platform for analyzing 
manufacturing data was tested with a small sample of 
industrially relevant data set. The motivation for the 
feasibility test was to see if the platform would help in 
the following goal: Advance from descriptive and 
diagnostic analytics towards predictive analytics – with 
prescriptive analytics as the next generation 
capabilities. This could be described as a move from 
traditional questions of “what happened?” and “why 
did it happen?” towards a questions “what will 
happen?” and “how can we make it happen?” 

In the feasibility test case, the focus was on visual 
and interactive analytics, from status monitoring to 
predictive analytics. The problems of getting data were 
not studied. The data sets were structured data from a 
simulation study of an automated material handling 
system. The feasibility test data was similar to real 
industrial data that is typically automatically collected 
from automated equipment and robotics e.g. working 
time, disturbances, set-up and process times, utilization 
rate, Overall Equipment Efficiency (OEE) data etc. 

In the feasibility test we were utilizing the following 
parameters from the automated material handling 
system: capacity (pieces/hour), various equipment (3 
machines, 2 robots and lifter) utilization rate, operating 
time, and storage content (Figure 2). The monitoring of 
equipment data shows, that production (pieces/hour), 
utilization rates of robots are low while the utilization 
rates of the machines are high.  

 

Figure 2. Automated material handling system and equipment’s data visualization. 
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Figure 3. Setting up OpenVA test on automated material handling system 

4 Methodology for Setting Up 
Interactive Visual Analytics 

OpenVA is applied by a step-by-step configuration 
process (Error! Reference source not found.). The 
first step is to understand the customer business, the 
analysis needs and find out what data is available. Then 
the next step is to define the phenomena that are 
followed, to identify the variables that might explain 
the system behavior and form indicators from the 
variables. In the third step appropriate analysis and 
visualization methods are specified. A set of methods 
is already provided by OpenVA, but new methods can 
be added. In the final step the analytics application is 
constructed by configuring the OpenVA platform and 
loading the application onto the platform database. 

In our feasibility study the analysis questions were 
to study the efficiency of the automated material 
handling system, to predict the production and find 
bottlenecks. The selected variables were the utilization 
rates of each production line component. The indicator 
chosen for the system production output was finished 
products/hour. The set of analysis and visualization 
methods included time series, histogram, contour plot, 
scatterplot, cross-correlation, correlation matrix, 
Principal component analysis (PCA), clustering and 
logistic regression.  

The analysis with OpenVA is performed as an 
iterative reasoning process. First, the user is shown the 
current status of the performance indicators and the 
most important variables (Figure 2). The user can study 
indicators and the other variables in detail with the help 
of visualizations. 

The user starts the analysis by formulating an 
analysis questions, e.g. “What explains the low 
production?” Next, the user selects the variables and 

indicators that might give answers to the questions. 
The tool suggests suitable analysis and visualization 
methods to the user based on the number and type of 
the selected variables. Then the user launches the 
analysis and gets the results in visual form. 

In the analysis of the automated material handling 
system the most interesting result is shown by the 
correlation matrix (Figure 4). It shows that the lifter 
and the production indicator (pieces/hour) have a 
complete positive correlation, suggesting that the lifter 
might be the bottleneck of the system. The PCA and 
logistic regression formula confirm the result. Thereby 
answers to the analysis questions are: the efficiency of 
the production line is low, the lifter is the bottleneck of 
the system and the capacity of the production line is 
predicted by the lifter alone. 

5 Discussion  
Predictive analytics applies different analysis methods 
to predict the possible outcomes of the events that the 
data describes. It does not give exact measures of what 
will, could or did happen, just the possibilities of what 
may occur.  

In small series production, different requirements 
(e.g. high mix, low volume, multiple jobs with 
different due dates, routing and process time 
requirements) need to be concurrently processed 
through the same production setup competing for 
shared resources of limited capacity. Extreme 
complexity is characteristic in the discrete made-to-
order production, where availability of materials, 
machines and manpower creates dynamic or moving 
bottlenecks.  

Data quality is a well-known problem in data mining 
research (Rahm and Do, 2000). The problem is partly 
caused by missing or erroneous measurements, as well  
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Figure 4. Correlation matrix, cross correlation, PCA and logistic regression 

as disparate data formats when combing data from 
several sources In practical implementations, for 
example when comparing and estimating 
measurements from different data collecting 
applications, the data quality problem is faced 
immediately. The applications have their own 
databases, each storing the monitored data in different 
format. In our test case, the data resulted from a 
simulation study, and therefore data was cleaner than 
in a normal industrial case. 

The production managers need easy to use tools for 
finding and eliminating those moving bottlenecks and 
doing manufacturing process improvements. The 
production manager needs to consider two different 
time frames: on the one hand development of 
equipment and control principles with longer planning 
and implementation time and on the other hand daily 
operative decision making. Even if amount of data is 
low (e.g. because of low production volumes), the 
predictions do give valuable insight to potential near 
future events.  

As discussed in this paper, the visual and interactive 
tools can be used to support analytical reasoning and 
for finding insight from data. However, the 
visualizations should be chosen case by case so that 
they are focused on the task at hand, and support 
exactly those decisions that must be made. 

6 Conclusions 
In this study our focus was on interactive visual 
analytics. The key findings regarding the future use of 
analytics are:   

• Instead of looking manually multiple time history 
plots, numerical tables and reports, one can use the 
power of interactive visual analytics. 

• Getting information from heterogeneous sources, 
collected from factory floor, manufacturing ICT 

systems or production engineering design systems 
for decision making and improvement planning. 

• Comparing high and low productivity days, finding 
correlations, patterns, exceptions, digging deeply 
to the facts behind events, learning, reasoning and 
pin pointing improvement areas. 

• Visual analytics can diminish the need of multiple 
customer interviews or simulation studies in a 
development project by getting findings from 
existing data. 

• Visual analytics can be used with simulation 
studies, to enhance analysis of the simulation run 
results in order to get deeper understanding, as 
done in the feasibility study.  

OpenVA platform concept proved out feasible for 
manufacturing data analysis. 

6.1 Future Research 
This was a small test with promising results and gives 
ideas for future research. One of them is synchronous 
collaborative visual analytics in manufacturing. 
Analysis and visualization of data are traditionally 
made asynchronously by individual users with their 
local tools. Research on synchronous collaborative 
visual analytics is still in its infancy. Supporting 
synchronous, multi-party collaboration over networks 
is becoming increasingly important in order to increase 
the efficiency of data analysis. An important objective 
is to combine the best ideas of collaborative work with 
those of Visual Analytics, i.e. to support interactive 
collaborative visualizations in multi-party settings. 
This enables the decision makers to get best possible 
support from e.g. data scientist without geographical 
limitations. 

For collaborative visualization, integration of data 
access, communication and messaging functionalities 
in the Visual Analytics tools are needed. This will 
support the exchange of opinions and information over 
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the problem at hand. In addition it requires support 
solutions for viewing and processing the design 
collaboratively, linking comments to the specific parts 
of the object (documents, drawings, 3D designs, 
visualizations, data sets, etc.), as well as accessing, 
classifying and filtering those comments at any desired 
way. 

The other development need is reliable and real-time 
access to data from heterogeneous data sources, from 
factory floor, sensors, devices, human operators and 
manufacturing information systems.  

For building an IIoT system, all following topics are 
needed: connectivity, data management, analytics, and 
interoperability. Reference architectures as well 
standardization in this domain are evolving e.g. 
Reference Architecture Model for Industrie 4.0 
(RAMI4.0) and the Industrial Internet Reference 
Architecture (IIRA).  

The ability to analyze large amounts of complicated, 
heterogeneous data with custom-written visual 
analytics will be key component in the future business 
and industrial intelligence – analytics. Data-driven 
decision-making in manufacturing enables productivity 
leap.  

Predictive manufacturing analytics enables users to: 

• Progress from monitoring to predictive analytics, 
optimization and to “how can we make it happen?” 

• Near real-time warnings of potential problems, 
embedded dashboard to factory floor, etc. 

• Analyze production characteristics and business 
performance. 
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