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Abstract 
 

In this work, a CO2 absorption process using aqueous 

monoethanol amine (MEA) as solvent for a post 

combustion capture plant was simulated using Aspen 

HYSYS.  An Aspen HYSYS spreadsheet was used for 

equipment dimensioning, cost estimation and cost 

optimization.  A standard process and a vapor 

recompression process for 85 % CO2 removal were 

simulated using the Li-Mather thermodynamic model. 

The energy consumptions and the total cost were 

calculated and compared. Cost optimum process 

parameters were calculated from sensitivity analysis. 

The vapor recompression process was shown to be both 

energy and cost optimum.  With 20 years calculation 

period, the cost optimum absorber packing height was 

16 meter, optimum temperature approach was 14 K and 

optimum recompression pressure was 130 kPa.  With 10 

years calculation period, the optimum values for the 

same parameters were 16 meter, 17 K and 140 kPa.  

Calculations of optimum process parameters dependent 

on factors like the calculation period have not been 

found in literature.  Except from the temperature 

approach, the optimum values varied only slightly when 

the calculation period was changed.   

 

Keywords: CO2, amine, absorption, cost estimation,
Aspen HYSYS

1 Introduction

CO2 absorption with aqueous monoethanol amine

(MEA) as solvent is well-known and mature for large

scale post combustion CO2 capture. This process has a

high energy consumption. There have been suggested

many modifications to reduce the heat demand for the

reboiler in the desorption column. Vapor recompression

is one of the simplest way to reduce the energy need (Øi

et al., 2014). In this paper, the standard and vapor

recompression configuration were simulated, cost

estimated and optimized using the process simulation

program Aspen HYSYS. The results in this work are

mainly from a Master Thesis work (Sahin, 2016).

The economic performance of a CO2 removal

process plant has been evaluated in earlier work (Abu-

Zahra et al., 2007). The amine concentration, lean amine
loading and desorber column pressure was determined

to be the main factors influencing on the cost. The

capital cost and energy consumption of different

configurations have been evaluated using the Unisim 

and ProTreat simulation programs (Karimi et al., 2011).  

One reference (Fernandez et al., 2012) has performed 

cost estimation and found optimum cost parameters 

using rate based Aspen Plus simulation.  Another 

reference (Cousins et al., 2011) simulated different 

configurations using Aspen Plus and compared the 

energy consumption.  

There is very limited published work on cost 

optimum parameters, cost evaluation and optimization 

of alternative configurations.  At University College of 

Southeast Norway, different modification alternatives 

were simulated and cost estimated using Aspen HYSYS 

(Øi et al., 2014). The cost optimum absorber packing 

height, the minimum temperature approach in the main 

heat exchanger and the gas inlet temperature were 

calculated for the standard process using Aspen HYSYS 

(Øi, 2012; Kallevik, 2010). 

The aim of this work is to simulate and cost estimate 

the standard CO2 absorption process and the vapor 

recompression process.  Then different parameters are 

varied to energy optimize and cost optimize different 

process parameters and the total process.  A special aim 

in this work is to vary cost factors, and especially the 

calculation period between 10 and 20 years to evaluate 

the effect on the optimum parameters.  

2 Process description 

2.1 Principles of Standard Process 

The standard amine based CO2 capture process contains 

an absorber, a stripper with reboiler and condenser, a 

lean/rich heat exchanger, pumps and a lean amine cooler 

as shown in Figure 1.   

 

 

Figure 1.    Principle for standard amine based CO2 

capture process (Aromada and Øi, 2015).  
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When the flue gas rises from the bottom to the top of the 

absorption column, CO2 is absorbed by the solvent. The 

rich amine is pumped from the absorption column to the 

desorber column passing through the lean/rich heat 

exchanger. In the stripper, the absorbed CO2 is removed 

from the solvent using thermal energy supplied to the 

reboiler. The lean amine from the bottom of desorber is 

pumped to the absorption column via the lean/rich heat 

exchanger and the lean amine cooler. 

 

2.1 Principles of Vapor Recompression 

The principles of vapor recompression are shown in 

Figure 2.  The difference from the standard process is 

that the regenerated amine solution from the desorber is 

flashed using a valve and led to a two-phase separator. 

The liquid from the separator is returned back to the 

absorber. The vapor from the separator is compressed 

and sent back to the bottom of the desorber. 

 

 

  
Figure 2. Principle for vapor recompression process 

(Aromada and Øi, 2015). 

  

 

3 Models 

3.1 Equilibrium Models 

The Kent-Eisenberg (Kent and Eisenberg, 1976) and the 

Li-Mather (Li and Mather, 1996) vapor/liquid 

equilibrium models are available models in the Amine 

Property Package in Aspen HYSYS. Both models are 

quite complex involving several adjusted parameters. 

The Kent-Eisenberg model is claimed to give faster 

convergence while the Li-Mather model is claimed to be 

more robust (Øi et al., 2014). The non-ideal vapor phase 

model is used in the simulations in this work. 

3.2 Column Models and Iteration 

Algorithms 

Equilibrium stages are used to model the columns. A 

certain packing height can be modelled as an 

equilibrium stage. One equilibrium stage can be 

calculated with the assumption that there is equilibrium 

between the CO2 concentration in the gas and liquid 

leaving the stage. A Murphree efficiency can be used to 

model deviation from equilibrium. It can be specified 

explicitly for each stage in a column in Aspen HYSYS 

(Øi, 2007).  The Modified HYSIM Inside-Out algorithm 

with adaptive damping is specified for the columns.  

This is also done in earlier simulations (Øi, 2007). 

 

4 Process Simulations 

4.1 Specifications for Standard CO2 

Capture Process 

The standard CO2 removal process has been simulated 

in Aspen HYSYS with the specifications in Table 1. The 

Aspen HYSYS process flow diagram is shown Figure 3. 

The specifications are based on earlier works with amine 

absorption from a natural gas based power plant by Øi 

(2007). The amine package with the Li-Mather model 

was used in all the simulations in this work. 

 

Figure 3. Aspen HYSYS flow-sheet for standard CO2 capture process. 
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Table 1. Specifications for standard process.  

Parameter Unit Value 

CO2 removal grade mass % 85 

Inlet gas temperature ℃ 40 

Inlet gas pressure kPa 110 

Inlet gas flow rate kmol/h 85000 

CO2 in inlet gas mole % 3.73 

Water in inlet gas mole % 6.71 

Nitrogen in inlet gas mole % 89.56 

Lean amine temperature ℃ 40 

Lean amine pressure kPa 101 

Lean amine rate kmol/h 128000 

MEA content in lean amine mass % 29 

CO2 content in lean amine mass % 5.5 

Number of stages in absorber - 16 

Murphree efficiency in absorber - 0.15 

Rich amine pump pressure kPa 200 

Rich amine temperature to desorber ℃ 104.5 

Number of stages in desorber - 8 (2+6) 

Murphree efficiency in desorber - 1 

Reflux ratio in stripper - 0.3 

Reboiler temperature ℃ 120 

Minimum ΔT in Rich/Lean HX ℃ 10 

 

The heat consumption in the reboiler was calculated to 

3.72 MJ/kg CO2 which is slightly higher than in some 

references (Karimi et al., 2011; Fernandez et al., 2012; 

Øi, 2007) but lower than in some other references 

(Cousins et al., 2011; Øi and Vozniuk, 2010). The range 

in these references are from 3.56 to 3.80 MJ/kg. 

 

4.2 Simulation of Vapor Recompression  

A simulation of the vapor recompression process was 

performed. The Aspen HYSYS flow diagram is in 

Figure 4. The flash pressure was specified to 120 kPa 

and the efficiency of the compressor was defined to 75 

%. To achieve 85 % CO2 removal efficiency, the lean 

amine flow rate was adjusted to 111000 kmol/h and the 

resulting lean amine CO2 concentration was 5.12 mass 

%. The rich amine temperature to the desorber was 

adjusted to 95.8℃ to achieve the minimum temperature 

approach as 10℃ in the heat exchangers.  

With the vapor recompression modification the 

reboiler heat consumption was reduced from 3.72 MJ/kg 

to 3.02 MJ/kg. In literature the calculated reboiler heat 

consumption was 3.03 and 3.04 MJ/kg (Fernandez et al., 

2012; Cousins et al., 2011).  

The equivalent heat consumption was calculated to 

3.28 MJ/kg using a conversion efficiency from reboiler 

heat (low pressure steam) to electricity as 25 %. The 

equivalent heat consumption was calculated in literature 

to 3.30 MJ/kg (Fernandez et al., 2012). 

  

4.3 Dimensioning and Cost Estimation  

The absorption and desorption column diameters were 

calculated based on gas velocities of 2 m/s and 1 m/s 

respectively. The packing height was determined with 

the assumption of 1 meter structured packing for each 

stage. The column height in addition to packing was 24 

m for the absorber and 20 m for the desorber. The 

pressure drop for each stage in the absorber was 900 Pa. 

 

  

 

Figure 4. Aspen HYSYS flow-sheet for vapor recompression process. 
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The heat exchangers were specified as plate heat 

exchanger. The overall heat transfer coefficients were 

calculated for the lean/rich heat exchanger and lean 

amine cooler and estimated to 2500 W/m2K for the 

reboiler and the condenser. Pumps and compressors 

were specified with 75 % adiabatic efficiency. 

The operating cost was mainly estimated from the 

energy cost. The maintenance cost was specified as 5 % 

of the capital cost. The rate of currency was 1 USD to 

8.6 NOK. The electricity cost and the steam cost was 

specified to 0.62 and 0.155 NOK/kWh based on a 

conversion efficiency from low pressure steam to 

electricity of 25 %. Operating time per year was defined 

to 8000 hours. The calculation period was 20 years and 

the rate of interest was 7 %. 

Open source internet cost estimation calculators, one 

is based on data from Peters and Timmerhaus, were used 

to calculate the equipment cost (Milligan and Milligan, 

2014; Peters et al., 2002). Outside the range of 

equipment size, power law exponents of 0.57, 1.0, 0.55, 

0.28 and 0.95 were used for column vessels, packing, 

heat exchangers, pumps and compressors. The 

Chemical Engineering Plant Cost Index was used to 

convert to USD (2015). After finding the equipment 

cost, the installed equipment cost was calculated using 

the detailed factor method using factors for engineering 

cost, administration cost and contingency.  

The net present value using the operating and total 

installed cost was calculated to 3810 MNOK for the 

standard process and 3540 MNOK for the vapor 

recompression process. 

 

5 Cost Optimization 

 

After concluding that the vapor recompression process 

was more cost optimum than the standard process, the 

net present value was calculated with varying conditions 

to find the optimum parameters for the vapor 

recompression process. 

5.1 Cost Optimization of Minimum 

Temperature Approach 

 

The trade-off was performed with varying minimum 

approach temperature in the lean/rich heat exchanger. 

The heat exchanger area and the steam consumption in 

the reboiler were the main affected variables. The 

energy consumption and cost optimum as a function of 

minimum approach temperature is shown in Figure 5. 

The calculated optimum value was 14°C with the net 

present value of 3490 MNOK. As the minimum 

approach temperature increased, the operational cost 

increased and the investment cost decreased 

continuously. Similar calculations were performed for a 

reduced calculation period of 10 years.  The cost 

optimum temperature approach is shown in Figure 6. 

The optimum value was 17°C with a net present value 

of 2710 MNOK. The reason for the higher value is that 

the investment cost dominates more than the operational 

cost as the calculation period decrease. 

 

 

 

Figure 5.  Net present value and energy consumption as a 

function of minimum temperature approach in heat 

exchanger for 20 years calculation period. 

 

 

Figure 6.  Net present value and energy consumption as a 

function of minimum temperature approach in heat 

exchanger for 10 years calculation period.   

 

 

The cost optimum temperature approach is comparable 

to values found in literature. Comparisons of optimum 

temperature approach for different calculation periods 

have however not been found in literature. The optimum 

was calculated to 12°C for the calculation period of 15 

years and the discount rate of 10.5 % (Øi et al., 2014) 

and to 19°C for the calculation period of 10 years and 

an interest rate of 7 % (Øi, 2012). 
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Figure 7.  Net present value and energy consumption as a 

function of absorber packing height for 20 years. 

   

5.2 Cost Optimisation of Absorber Packing 

Height 

The number of absorber stages equivalent to 1 meter 

was varied between 13 and 20. The cost optimum value 

of 3540 MNOK was achieved with 16 stages as shown 

in Figure 7. As the number of stages increased, the 

necessary amine flow rate to keep the 85 % CO2 removal 

efficiency decreased. The equivalent heat consumption 

decreased from 4.9 MJ/kg CO2 at 13 stages to 3.16 

MJ/kg CO2 at 20 stages. The investment of the absorber 

column, the amine heat exchanger, the compressor, the 

electric consumption due to fan and compressor and 

steam consumption in the reboiler were the major 

changes. For 10 years calculation period, the cost 

optimum value was also achieved with 16 stages as 

shown in Figure 8. 

 
  

 

Figure 8.  Net present value and energy consumption as a 

function of absorber packing height for 20 years. 

Similar values are found in literature. For the 

calculation period of 15 years, 16 stages in the 

absorption column was calculated as the cost optimum 

value (Øi et al, 2014). In another optimization 

calculation, the optimum value was also 16 stages for a 

calculation period of 10 years (Øi, 2012).  Evaluations 

of the influence of the calculation period on the 

optimum packing height have not been found in 

literature.  

 

5.3 Cost Optimization of Flash Pressure  

The flash pressure (pressure before recompression) can 

be varied. The cost of the lean/rich heat exchanger, the 

compressor, the reboiler and the energy consumption in 

the compressor and the reboiler changed when the flash 

pressure was varied. The equivalent heat consumption 

was reduced to 3.27 MJ/kg CO2 at 1.1 bar. The cost 

optimum pressure was calculated to be 1.3 bar with a net 

present value of 3530 MNOK.  The result of the cost 

optimum flash pressure is given in Figure 9.  The cost 

optimum flash pressure is slightly different from the 

energy optimum value. The reason is that the energy 

saving is dominated by the investment cost of the 

compressor until 1.3 bar. 

 

  

 

Figure 9.  Net present value and energy consumption as a 

function of flash pressure for 20 years. 

 

For a calculation period of 10 years, the cost 

optimum flash pressure was calculated to be 1.4 bar as 

shown in Figure 10. The dependency of the optimum 

flash pressure on the calculation period is not obvious.  

It is however reasonable that as the calculation period 

increases, the optimum value will intend to decrease 

because the operational cost becomes more dominant. 

In literature, energy optimum flash pressures have 

been calculated to 1.12 and 1.17 bar (Karimi et al., 

2011). In Fernandez et al. (2012), the cost optimum flash 

pressure was calculated to 1.2 bar.  The cost optimum 
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pressure is slightly higher than the energy optimum 

because the change in compressor cost is significant.  

Calculations of optimum flash pressure dependent on 

factors like the calculation period have not been found 

in literature. 

 

 

5.4  Evaluation of Uncertainty  

The calculations of the equilibriums, the material 

balances and the energy consumptions in the process 

simulations are regarded to be reasonable accurate.  As 

a result of this, the deviation in calculated energy 

consumptions compared to values found in literature is 

quite low.   

The uncertainties in cost estimation of the equipment 

are much larger. First, there are uncertainties in the 

dimensioning of the process equipment. Then there is a 

high uncertainty in the cost of especially heat 

exchangers and the absorption columns.  And the 

installation cost of all types of equipment also have high 

uncertainty. The chosen calculation period and chosen 

discount rate will also influence on the total cost 

estimate. 

The main aim in this paper was to find cost optimum 

process parameters.  It is of interest to find out whether 

these optimums are dependent on the choice of different 

cost factors.  When comparing optimum parameters 

calculated in this work compared to values found in 

literature, the deviation is rather low. 

In this paper, optimum parameters have been 

calculated for a calculation period of 10 and 20 years.  

The differences in calculated optimums are very small.  

The only deviation was in the optimum temperature 

difference approach in the main heat exchanger that 

changed slightly from 14 to 17 °C. 

 
 

 

Figure 10. Net present value as a function of flash pressure 

for 10 years.  

 

6 Conclusions

 

Simulations and optimizations of an amine-based CO2 

removal process were performed in the search for a cost 

optimum process. The process configurations examined 

were a standard process and a vapor recompression 

process.  The energy consumptions and the total cost 

were calculated and compared. 

The vapor recompression modification gave lower 

total cost compared to a standard process. Optimizations 

of parameters like minimum temperature approach, 

height of absorber packing and flash pressure were 

performed. Cost optimum process parameters were 

calculated from sensitivity analysis. 

Calculations of optimum process parameters 

dependent on factors like the calculation period have not 

been found in literature. With 20 years calculation 

period, the cost optimum absorber height was 16 meter, 

optimum temperature approach was 14 K and optimum 

recompression pressure was 130 kPa. With 10 years 

calculation period, the optimum values for the same 

parameters were 16 meter, 17 K and 140 kPa.  Except 

for the minimum temperature approach, it seems like 

when varying different cost factors like the calculation 

period, the cost optimum values vary only slightly. 
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