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Abstract
The paper is focused on practical aspects of advanced
nonlinear identification method applied to a real indus-
trial process. Fuzzy identification is used to model the
air preparation stage within a system for reducing nitrogen
oxides (NOx) emissions in exhaust air from the dryers and
ovens in a factory of automotive catalytic converters. The
system for NOx emissions reduction operates efficiently
in predetermined temperature and air flow ranges of the
exhaust air only. Due to those conditions, exhaust air
from the dryers and ovens must be prepared in advance by
controlling the ventilator speed and fresh air and exhaust
air dampers positions. At the same time operating con-
ditions of dryers and ovens have to be maintained within
defined ranges. Currently used control system of the ex-
haust air preparation shows some deficiencies, so a fea-
sibility study of possible improvements has been carried
out. Modelling presented in this paper has been used to
evaluate and compare control solutions. The results show
such an improvement is feasible. The proposed control
system can be ready for implementation in the real pro-
cess with minor changes of the controller parameters and
supervisory logic settings.
Keywords: fuzzy logic, Takagi-Sugeno model, catalytic
converter, emission reduction, process control

1 Introduction
Emissions of pollutants are a challenging problem in many
contemporary industrial processes. In particular, emis-
sions of atmospheric pollutants in exhaust air have direct
influence on quality of the living conditions in the neig-
bouring areas of industrial plants, as well as other impor-
tant environmental impacts, e.g. climate change.

The nitrogen oxides (NOx) emissions in the exhaust air
can be effectively reduced by catalytic converters, which
are based on the same operation principles as used in in-
ternal combustion engine exhaust system in traffic vehi-
cles. Industrial catalytic converters typically work on se-
lective catalytic reduction (SCR) principle, although also
selective non-catalytic reduction (SNCR) based systems
have been used, e.g. in waste incineration plants. With
SCR, a gaseous reductant is added to the stream of ex-
haust air, typically anhydrous ammonia, aqueous ammo-
nia or urea, which reacts with gas mixture in the exhaust

air and the catalyst to form molecular nitrogen, water and
carbon dioxide.

To achieve the (near) optimal operation of the catalytic
converter unit, the incoming production process exhaust
air must be properly conditioned. This involves control of
flow, pressure and the temperature.

The currently used control system of the exhaust air
preparation stage in the process under investigation shows
some deficiencies, so a feasibility study of possible im-
provements has been carried out. A substantial part of
the feasibility study was development of a mathematical
model, which is presented in this paper. The model was
necessary in order to be able to experiment with control
system. The presentation focuses on practical aspects of
deriving a model by fuzzy identification based on actual
production data.

2 Air preparation process
The system considered in the paper is a part of the cat-
alytic converters production plant. The produced catalytic
converters are used to reduce NOx emissions from internal
combustion engine driven vehicles.

Due to the used production technology, the NOx emis-
sions are present in the production process itself so an
emissions reduction unit is installed. The operating con-
ditions are varying substantially with the changing pro-
duction. Therefore an air preparation stage is installed in
between the production process and the catalytic converter
(Fig. 1). This way a stable operating regime of the NOx
emissions reduction unit is achieved.

The process contains a pipe system delivering exhaust
air from ovens and dryers, equipped with controllable
dampers and ventilators; a set of pressure/differential pres-
sure and temperature sensors, and damper position sensors
is installed. Low pressure is maintained to transport the air
out of the process and the air flow is calculated from differ-
ential pressure reading within the catalyst converter unit,
taking into account air pressure and air temperature. Ac-
cording to specifications the control relevant signals are:
air flow, pressure before ventilator, differential pressure
over the ventilator, ovens exhaust pressure and dryers ex-
haust pressure.

The currently operating system involves automatic con-
trol of the exhaust air preparation system, but the control
system is not operating in a closed-loop manner. The con-
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Figure 1. Air preparation process.

trol logic is programmed in accordance with a set of prede-
fined rules based on operator expertise. The manipulated
signals of dampers and ventilators are changed stepwise,
with large intermediate intervals to allow the process to
settle in the changed operating point. This induces sub-
stantial delays before the process adapts to any changes in
the exhaust air conditions. Therefore a feasibility study
was carried out to show potential improvements in reduc-
tion of emissions employing closed-loop control in the air
preparation stage.

The study is based on simulation so a mathematical
process model was needed. Experimentation on the ac-
tual system was not possible due to potential environmen-
tal hazard. In fact, the system involves several safety
measures to prevent this and experimentation with the air
preparations stage potentially induces the production shut-
down, which is not acceptable.

3 Fuzzy identification
Due to nonlinear nature of the process dynamics, fuzzy
logic (Zadeh, 1965) was chosen as a modelling frame-
work and Takagi-Sugeno (TS) type model was developed.
The model parameters were identified by actual produc-
tion data, a separate dataset was used for model validation.
The intended use of the model is to simulate a closed loop
control system with some typical operation scenarios.

3.1 Takagi-Sugeno fuzzy model
With TS fuzzy model an arbitrary nonlinear system can
be approximated by smooth interpolation of affine local
models (Takagi and Sugeno, 1985). Every local model
contributes to global model in the frame of fuzzy clusters
in the space described by membership functions.

If the input data is denoted as X = [x1,x2, . . . ,xn]
T and

the output data as Y = [y1,y2, . . . ,yn]
T , then the model in

TS form (Takagi and Sugeno, 1985) is written as a set of
rules:

Ri : if xk is Ai then ŷk = φi(xk) i = 1, . . . ,c (1)

Vector xk represents the input data in premise while ŷk
is the output of the fuzzy model at time instant k. Premise
vector xk relates to fuzzy sets (A1, . . . ,Ac), where every
fuzzy set Ai (i = 1, . . . ,c) is characterized by a real valued
membership function µAi(xk) or µik : R→ [0,1] represent-
ing the membership degree of xk with respect to fuzzy set
Ai. Functions φi(.) are in general arbitrary smooth func-
tions, while mostly linear or affine functions are used.

The model output in (1) can be expressed as:

ŷk =
∑

c
i=1 µikφi(xk)

∑
c
i=1 µik

(2)

Equation (2) can be simplified by introducing βi(xk) de-
fined as:

βi(xk) =
µik

∑
c
i=1 µik

, i = 1, . . . ,c (3)

In this way the degree of fulfillment of a fuzzy rule is
given in a normalized form. ∑

c
i=1 βi(xk)= 1 independently

of xk, as long as βi(xk) is not zero (which can be easily as-
sured by extending membership functions over the whole
range of xk).

Joining (2) and (3) results in:

ŷk =
c

∑
i=1

βi(xk)φi(xk), k = 1, . . . ,n (4)

The output is often defined as a linear combination of
the consequence states:

φi(xk) = xkθi, i = 1, . . . ,c, θ
T
i =

[
θi1, . . . ,θi(p)

]
(5)
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The vector of fuzzified input variables at time instant k
is written as:

ψk = [β1(xk)xk, . . . ,βc(xk)xk] , k = 1, . . . ,n

which implies fuzzified data matrix:

Ψ
T =

[
ψ

T
1 ,ψ

T
2 , . . . ,ψ

T
n
]

(6)

If the coefficient matrix for the overall set of rules is
written as ΘT =

[
θ T

1 , ...,θ
T
c
]
, (4) can be modified to:

ŷk = ψkΘ (7)

and in compact form, which describes the overall data set
relations:

Ŷ = ΨΘ (8)

where Ŷ is a vector of model outputs ŷk and k = 1, . . . ,n
(Ŷ = [ŷ1, ŷ2, . . . , ŷn]

T ).
The fuzzy model (7) is often denoted as affine Takagi-

Sugeno model and can be used to approximate any
real valued continuous function with arbitrary precision
(Kosko, 1994; Wang and Mendel, 1992; Ying and Chen,
1997). This can be proved by Stone-Weierstrass theorem.
Any real valued continuous function can be approximated
with a fuzzy model (Lin, 1997).

3.2 Fuzzy clustering
The TS model can be derived from available process data
by identifying the structure and the parameters of the lo-
cal models (Takagi and Sugeno, 1985). Structure identi-
fication includes an estimation of the cluster centers (an-
tecedent parameters), which is usually done by fuzzy clus-
tering. Then for each cluster the sub-model’s parameters
are estimated, which is usually done with a least-squares
method (Chiu, 1994). Clustering can be performed in the
input space only or in the product space of the input and
output. The later is more general and is commonly termed
shortly as clustering in the product space

The basic principle of fuzzy clustering is depicted in
Fig. 2(a). Here the data is clustered into two groups with
prototypes v1 and v2, using the Euclidean distance mea-
sure (Babuška, 1998).

If-then rules of the fuzzy model are extracted by clus-
ters projection onto the axes. The clusters can be ellipsoids
with adaptively determined shape (Gustafson and Kessel,
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Figure 2. Identification by fuzzy clustering (Babuška, 1998).
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Figure 3. Identification approach based on fuzzy clustering
(Babuška, 1998).

1979), see Fig. 2(b). From such clusters, the antecedent
membership functions and the consequent parameters of
the TS model can be identified (Babuška, 1998). Each ob-
tained cluster is represented by a rule in the TS model. The
principle of system identification employing fuzzy cluster-
ing consists of a series of steps depicted in Fig. 3.

The procedure is supported by dedicated software tools,
such as Fuzzy Modelling and Identification Toolbox for
Matlab (FMID), which was used in the presented work.
Implementation of some of the steps of Fig. 3 will be dis-
cussed in the following sections.

4 Data collection
Data collection is a key step that largely determines the
quality of the modelling result. Proper identification ex-
periments have to be designed and this is a very prob-
lematic step in several industrial processes, in particular
when a process is already in operation. In some cases
the process shutdown is impossible for the reason of cost
or safety; in others the standalone experimentation is not
possible. Because of process interconnections, it is often
required that several process stages operate in line with the
process under observation.

When experimentation is performed during operation,
typically a number of operating restrictions have to be ob-
served, which severely limits the experimentation possi-
bilities.

In the presented case the air preparation process can-
not run independently of main production process which
delivers the polluted exhaust air. At the same time nomi-
nal operating regime has to be maintained within the main
process to avoid product scrap or even automatic pro-
cess shutdown, and furthermore, the emissions should stay
within allowed ranges.

The first identification attempt was done with signals
acquired during the control commissioning. Signals ac-
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quired while the operation of control logic was tested were
used as input-output data. The modelling results were not
useful, because it turned out that the testing has not cov-
ered adequately large portion of the input-output space.
Only manipulated values could be directly changed during
testing while several other signals depend on process op-
erating conditions that were not directly controlled. Large
number of situations was simply not covered by the testing
procedures, which is quite common in complex processes.

The second attempt was based on data acquired during
a longer process operation testing period. The problem in
this case was the built-in data compression within the data
acquisition system, which writes the data only on suffi-
cient changes. The problem was solved by interpolating
available sensor measurements and by stepwise holding
the manipulated values. The results were resampled by
1 s interval.

5 Structure selection
According to (Babuška, 1998) the structure selection in
fuzzy modelling involves a set of tasks, such as: a choice
of input and output variables, representation of the sys-
tems’ dynamics, and a choice of the fuzzy models granu-
larity.

5.1 Input and output variables
The control relevant output signals were specified by the
customer, the same were chosen as model outputs. The
inputs were chosen in accordance with the known phys-
ical background of the process. Also an expertise of the
process operators was considered.

Additionally, the possibilities of data analysis with re-
gard to determination of influential variables were tested
(Glavan et al., 2013). The analysis has not brought any
new insights into the input output dependencies. This in-
dicates that for well-known processes data analysis meth-
ods are not superior to human expertise. Inputs of some
of the submodels depend on the outputs of other submod-
els. Fig. 4 shows the initial structure of the overall process
model.

dP 02965/1

PT 02961/B

PT 02961/1

models

PT 02961/4

model

FCV 02961/1

PT 02961/1

M 02961

FCV 02961/2

FCV 02961/4

dP 02961/2

model

Figure 4. Initial model structure.

While individual models show good matching with the
process data, the overall model of Fig. 4 exhibits large
modelling error. The reason is in the error accumula-
tion in PT 02961/1, PT 02961/4 and dP 02961/2 models
(signals are labelled in accordance with process scheme
in Fig. 1). Therefore, another model structure was cho-
sen, which consists of separate models for all quantities

of interest, which directly build on measured data. E.g.,
the model for air pressure in the ovens outlet is shown in
Fig. 5.

PT 02961/1

model

FCV 02961/1

M 02961

FCV 02961/2

TT 02961/1

Figure 5. Fuzzy model of air pressure in the ovens outlet.

5.2 Representation of the systems’ dynamics
The main design issue here was to choose the number of
delayed input and output samples used as model regres-
sors. The choice was determined by an iterative proce-
dure, during which we started the identification with one
sample delay on input and output, and then repeated the
identification with increasing number of delayed outputs
up to four. The effect of adding additional delayed input
was also tested as well as changes of sampling interval to
2 and 3 s.

The quality of derived models was compared by vari-
ance accounted for (VAF) performance index (Babuška,
1998)

VAF = 100%
[

1− var(y1− y2)

var(y1)

]
(9)

Among others, the above procedure led us to adjust the
sampling period of the acquired data; for the further ex-
perimentation a 3 s sampling interval was chosen. This
allowed us to use a low number of delayed signals as
model regressors (2 to 3), which prevents overfitting and
improves model generalization capability.

5.3 Fuzzy models granularity
When fuzzy clustering is applied to generate fuzzy models
from data, the main parameter that must be chosen with re-
gard to granularity is the number of clusters. The applied
strategy here was to start with a moderate number of clus-
ters (e.g. 5) and then experiment in a similar manner as
above, gradually increasing the number of clusters up to
8, and taking VAF index as performance measure.

6 Fuzzy clustering and model valida-
tion

All models for the control relevant variables defined in
Sect. II were built in a similar manner by using FMID
tool and experimenting with main parameters.

Fig. 6 shows the performance of the best model for air
pressure in the ovens outlet with respect to the identifica-
tion signal and the validation signal.

The VAF value is 67.4 % for the identification signal
and 28.9 % for the validation signal. The result of vali-
dation is rather low but the reason is in the nature of the
process operation. The observed pressure largely depends
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Figure 6. Performance of the fuzzy model of air pressure in the
ovens outlet.

on the number of the operating ovens. This parameter was
not available in the process database so it could not be
included as an input. It is assumed that occasional large
deviations from the measured validation signals are due to
change of this condition.

Fig. 7 shows a similar graph for the model of differen-
tial pressure, which is the basis for the air-flow calculation.

The VAF value is 97.8 % for the identification signal
and 95.0 % for the validation signal, which is much better
than in the previous case. This indicates that chosen mod-
elling method can be very effective when proper input-
output data is provided.

6.1 Comments on resulting model perfor-
mance

We estimate that derived fuzzy models are of sufficient
quality to test and compare various control solutions.
There are noticeable deviations in responses of the PT
02961/1 model and the real system, but these are presum-
ably mainly caused by varying conditions in the quantity
of supplied exhaust air due to variable number of operat-
ing stages in the main manufacturing process.

The most relevant control variable is the air flow FIA
02965/2 (Φair) through the NOx emission reduction de-
vice, which is calculated based on dP 02965/1 (∆p [Pa])
and TT 02965/4 (T [oC]) readings as follows:

Φair = 3600 ·A · vair
[
m3/h

]
(10)

vair =

√
2∆p
R ·ρ

[m/s] (11)

ρ = 1.293
273

T +273
[
kg/m3] (12)

where R = 4.6285 and A = 2.1316 m2.
As presented above, the VAF index obtained during val-

idation shows good quality of dP 02965/1 model, which
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Figure 7. Performance of the fuzzy model of differential pres-
sure in the catalyst converter unit.

indicates the obtained model is of sufficient quality for
testing air flow control strategies.

By stepwise changes of the manipulated variables the
model behavior was also qualitatively evaluated, and all
the signals change in accordance with experience on the
real process.

Additional temperature measurements were considered
as model inputs during the identification. When testing
control strategy these signals are not available, therefore
a set of disturbance generating models were additionally
identified. Major disturbances were generated, in particu-
lar the air temperatures in different parts of the system.

These models are not very precise but enable generation
of disturbances during simulated experiments with control
system. Control robustness is tested this way.

7 Control experiments
As the signals observed in the real process are noisy
and disturbed by additional influential variables, these as-
pects are added to the model used for control experiments.
Noise amplitude and frequency bandwidth of the noise fil-
ter were chosen in accordance to observed process signals
in the manual mode.

7.1 PID control
After model was validated and brought close to the actual
process behavior by addition of noise, it was used to test
various control strategies. As the focus here in this paper
is not on control design, only a sample simulated scenario
of the air flow is shown in Fig. 8. Note that simple PI
controller was used that was tuned in a chosen operating
point without noise in the model. After tuning, the con-
trol robustness was checked in the presence of noise and
disturbances. Among others, additional noise cancelling
measures were implemented, such as deadband on manip-
ulated value and error filtering.
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7.2 Supervisory logic
The advantage of the conventional (currently used) open-
loop control system is the simple accommodation for the
process exceptions. These are treated by addition of re-
lated rules in the control logic.

The main process exceptions are related to:

• start-up of the air preparation system

• exceptional process values

• invalid pressure set points.

In the following we briefly illustrate how exceptional
process values are treated. The observed values are:

• high temperature in the ovens output airflow

• high temperature before the main ventilator

• high emissions concentration on the input

• high differential pressure on the main ventilator.

The desired action in all these exception is to increase
the air flow through the system. In the conventional
logic this is achieved by simply opening the corresponding
damper for a predefined proportion.

In the proposed new control system this is accommo-
dated by additional supervisory logic, which increases set-
point value for airflow at the predefined warning levels.
With the low warning level the setpoint is increased for
2000 m3/h, at the high warning level the setpoint is in-
creased for 5000 m3/h.

When lower alarm level is reached the system switches
to manual mode with fully open dampers and predefined
ventilator speed. At higher alarm level the system is shut
down with dampers fully open.

The sample simulated operation scenario is shown in
Fig. 9, where setpoint changes and related changes in the

2000 4000 6000 8000 10000 12000 14000 16000 18000

4

4.5

5

x 10
4

Time / s

F
lo

w
 /
 m

3
/h

Control FIA 02965/2

PV

SP

2000 4000 6000 8000 10000 12000 14000 16000 18000

40

60

80

100

Time / sD
a
m

p
e
r 

F
C

V
 0

2
9
6
1
/2

 p
o
s
it
io

n
 /
 %

MV

Figure 9. Illustration of the control system performance in the
presence of process exceptions.

damper position can be observed, and normal system op-
eration reestablishment can be seen when operation con-
ditions are brought back to normal.

The results show that treatment of the exceptional con-
ditions can be accomodated by adjustments of the setpoint
values by supervisory logic.

8 Conclusions
The feasibility study shows the control of the air prepara-
tion stage could be improved with a moderate investment
in the control equipment and related application software.
The currently used control system is implemented in the
ControlLogix 5570 family of Programmable Logic Con-
trollers (PLCs) with PID control support within the cor-
responding PLC programming software. The application
software could be adjusted by replacing open-loop control
logic with PID controllers. Minor parameter adjustments
are foreseen mainly due to different scaling of the control
signals compared to simulation study.

The chosen modelling approach showed its value in rel-
atively simple identification of the submodels when the
proper model structure was determined. Nevertheless, the
determination of the structure was a challenging task that
was solved by using a-priori knowledge of the system be-
haviour in combination with experimental adjustments of
the main structural parameters. Inferring this automati-
cally from a given data set remains a difficult task, in par-
ticular in real industrial processes where possibilities of
the experimentation with the input signals are limited, due
to technological and safety restrictions.

The focus of the presented model development was in
obtaining a model that is representative enough to enable
simulated control experiments. We estimate the goal was
achieved and results of the simulation experiments are sat-
isfactory. Addition of data related to operating parameters
in the main process, in particular the number of operat-
ing ovens, would open a way to improve the model and
perform a feasibility study involving more advanced con-
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trol strategies. Nevertheless, the potential implementation
of such strategies in the industrial process under study is
limited with existing control equipment.
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