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Abstract 
Optimal utilization of complex processes involves real-

time operational optimization and scheduling, 

especially in cases where the production line consists of 

both continuous and batch operated unit processes. This 

kind of real-time optimization requires process models 

which can be computed significantly faster than real-

time. Iterative balance calculation is typically far too 

slow for these cases. This paper presents a method for 

converting an iterative balance model to a directly 

calculating model suitable for on-line process 

optimization. The approach is demonstrated with the 

first unit process in the copper smelting line, the flash 

smelting furnace (FSF). The method consisted of 

formulating an equation group based on the constrained 

FSF HSC-Sim model and solving the unknown 

parameters and static states with use of a symbolic 

calculation software. The solution was implemented as 

a function whose calculation time fulfilled the 

requirements for scheduling use. 

Keywords:     real-time model, static, mass balance, 

equation group, symbolic computation, metallurgy, 

copper smelting, scheduling 

1 Introduction 

The general digitalization of society has brought on a 

pronounced digitalization wave in process industry. The 

benefits of digitalization are not fully utilized in some 

conventional industrial processes and there new 

advantages are available which can improve their 

efficiency and ability to stay competitive in increasing 

global competition. Often the design of these industrial 

processes is based on long term empirical and 

theoretical knowledge which has been incorporated into 

thoroughly built mathematical models. These models 

often include iterative balance calculations to fulfill 

empirical and physical process constrains. These models 

are well suited for steady state process design and often 

used when offering, planning and constructing new 

process lines. 
Optimal utilization of processes typically involves 

real-time operational optimization and scheduling, 

especially in cases where the production line consists of 

both continuous and batch operated unit processes. This 

kind of real-time optimization requires process models 

which can be computed significantly faster than real-

time. Iterative balance calculation is often far too slow 

for these cases. The high demand on execution time can 

often be compensated by lowering demands on model 

precision for the real-time operation optimization. 

Examples of demanding real-time optimization utilized 

in process design can be found in (Harjunkoski et al., 

2016; Touretzky et al., 2016; Pelusi 2012a; Pelusi 

2012b). 

Good examples of thoroughly built steady state 

models can be found in metallurgy. Most metallurgical 

processes are old and have large societal impact which 

has allowed extensive development work to model 

process behavior over many decades. These processes 

comprise complex physical and chemical reactions and 

modelling has been both theoretical and empirical. To 

fulfill the basic requirement of mass and energy 

conservation and empirical observations iterative 

calculation is often employed. 

The incentive for this study is the need for operational 

optimization of a copper smelting line. Optimal 

operation of a copper smelting line is challenging for the 

operators as the operation is divided into many complex 

individual sub processes. Plant wide operation is 

required to maximize production and resource 

efficiency. Additionally, more challenging ores have to 

be used to retain economic competitiveness worldwide 

which increases the need for process optimization. 

Improved operation of copper smelting can provide 

improved utilization of different input materials and 

recyclants. Copper smelters present a challenging 

optimization problem where the harsh environment can 

prevent obtaining mineral and operational information, 

data is highly uncertain or measurements may be 

severely delayed. A full scale optimization of the 

complete process line will include a considerable 

amount of variables and require the consideration of 

large time horizons. Further, many of the underlying 

models are nonlinear. Thus, sub processes and the 

related models should be relatively lightweight in terms 
of their computational requirements. In principle, the 

development of optimization for a copper smelting line 
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operation consists of modelling of unit processes and 

designing of optimization / scheduling for the combined 

unit process models. 

Static input output process models can be derived 

with use of mass and energy balances supplemented 

with sometimes uncertain process reaction knowledge 

completed with empirical knowledge. In principle this 

empirical knowledge can be written as constraints in 

equation form. These equations can be completed with 

mass and energy balances to form a complete equation 

group determining process reactions. By solving the 

equation group, the unknown parameters and thereby 

the static process state can be solved under the given 

constraints. In practice this approach is challenging as 

the equations are often complex and manual solutions 

may be error prone and exceptionally time consuming. 

Development of aids for this challenge started in the 

beginning of the 1970s under the scientific area of 

symbolic computation. Software programs for manual 

computation are called computer algebra systems (CAS) 

and are at present highly developed and even 

implemented in hand held calculators. These systems 

include Mathematica (Wolfram) and Maple 

(Maplesoft), the latter has been implemented in Matlab 

(Mathworks) as the Symbolic Math Toolbox. In later 

Matlab versions, the toolbox is based on the MuPAD 

symbolic engine originally developed at the University 

of Paderborn. Matlab offers a convenient way of shifting 

from symbolic calculus to numeric powerful 

computation. 

Utilization of symbolic computation for solving 

unknown variables of restricted mass balance equations 

seems to be a rare approach or rarely reported. A similar 

method was used in (Korpela et al., 2014) in the same 

research group but the authors have not found similar 

work by others. Symbolic computation is, however, 

commonly utilized when forming first principle models 

(Belkhir et al., 2015; Lin et al., 2009; Yakhno et al., 

2016). Its use is especially convenient for model design 

with e.g. Lagrangian mechanics (Moosavian et al., 

2004). 

For optimization of the operation of the copper 

smelting line computationally lightweight models of all 

unit processes are required. This paper presents a 

method for converting an iterative balance model to a 

directly calculated model suitable for process operation 

optimization. The method is demonstrated with the first 

unit process in the copper smelting line, the flash 

smelting furnace (FSF). 

2 Copper Production Line 

Copper smelting begins from the mixing of a suitable 

concentrate mix with a copper content of 20-30 % 

which, after drying, is fed to the FSF. The mix reacts 

with the oxygen-enriched air feed and separates to matte 

(~62-70 % Cu) and slag. These are removed 

intermittently from the FSF, matte is moved to the 

converters, and slag is processed further in the slag 

treatment plant. After treatment, both FSF and converter 

slag can be recycled back to the FSF. The matte copper 

content can be viewed as one of the main decision 

variables in smelting as the higher copper content in 

matte is, the higher the copper content in the slag. 

Additionally, it is often used as a variable in separation 

of other valuable metals to both matte and slag. Silica 

flux is added to the FSF feed and to converters during 

operation to achieve suitable conditions for separation 

of matte and slag. One of the main bottlenecks for 

operation is the capacity of the gas treatment plant 

which produces sulphuric acid from the off gasses of 

both the FSF and converters. 

Pierce-Smith converters use a submerged feed of 

oxygen enriched air. Converters are operated in batches 

where first, in multiple slag-making stages, FSF matte 

is added between air blows. Here, most of the iron 

compounds will react and move to slag. Second, in one 

longer copper-making stage the remaining sulphur is 

removed from copper compounds. Temperature is 

controlled with the addition of recycled material, e.g. 

scrap metal. Finally, the ensuing blister copper (~99 % 

Cu) is moved to anode furnaces where oxygen is 

removed from the matte and copper is cast to anodes for 

transportation to electrolysis. Figure 1 shows a full 

copper production line including both smelting and 

refining. A detailed description of the smelting process 

can be found for example in (Schlesinger et al., 2011). 

3 Model Conversion 

The method for converting an iterative balance model to 

a directly calculating model is here demonstrated with a 

model of the flash smelting furnace, modelled in HSC-

Sim (Outotec). HSC-Sim is a calculation module of 

HSC Chemistry software developed by Outotec. The 

name refers to the automatically utilized 

thermochemical database which contains enthalpy (H), 

entropy (S) and heat capacity (Cp) data for an extensive 

amount of chemical compounds. The HSC-Sim module 

enables application of HSC Chemistry to a whole 

process made up of process units and streams. The HSC-

Sim module consists of a graphical flowsheet and 

spreadsheet type process unit models. The custom-made 

variable list enables creation of different types of 

process models in chemistry, metallurgy, mineralogy, 

economics, etc. Each process unit is actually one Excel 

file. In the Distribution units the compounds are divided 

into elements and calculation is done with element 

distribution coefficients. Based on process knowledge 

some coefficients are defined as fixed. Coefficients for 

assisting elements in compound formation are 

calculated based on molar need and supply and called 

float. Surplus elements are divided with coefficients 

called rest. Units can be used together or separately and 

the calculations can be Excel- or DLL-based. 
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HSC Sim pyro models are mathematical process 

models based on mass- and energy balances and 

empirical knowledge controlling the equilibrium state. 

These models are successfully used in strategic planning 

of metal processing. The drawback of these models is 

the iterative calculation needed for reaching the 

equilibrium state. This iterative calculation is too slow 

for use in on-line process optimization. 

3.1 Legacy model 

The flash smelting furnace process has been modelled 

in HSC-Sim as a static division process with empirical 

knowledge controlling parts of the division coefficients. 

The implementation is a spreadsheet-like division 

calculation with iterative calculation to fulfill 

constraints derived from empirical and physical 

knowledge. 

The model consists of three main spreadsheets; Input, 

Distributions and Output, each containing 146-424 rows 

and 68 columns. The Input sheet is sparsely filled with 

element mass flows and describes how input compounds 

in different streams are broken up to elements according 

to chemical molar consistency. The Distributions sheet 

is sparsely filled with distribution coefficients dividing 

element mass flow into compounds for different output 

streams partly according to chemical reactions. The 

Output sheet is filled with corresponding element mass 

flows that build up the output compounds in different 

output streams. Additionally, to the three main spread 

sheets, a Controls sheet includes 27 empirical process 

observations that must be fulfilled in the stationary state. 

In principle, the distribution from input compounds 

to output compound is built up around how the main 

elements copper (Cu) and iron (Fe) is distributed 

between compounds in the output streams. The 

chemical reactions requre assisting element as oxygen 

(O) and silicon (Si) which are brought in as floating 

elements. Sulphur (S) is partly handled as a main 

element and partly as an assisting element. As a result 

the model consists of some fixed distribution 

coefficients, many coefficients which are iteratively 

adjusted to fulfill the empirical observations and 

numerous coefficients calculated as float according to 

corresponding chemical reactions or as rest for surplus 

elements. The model is thus a system of four spread-

sheets with a large number of interconnected cells. An 

iterative routine is used to solve the distribution 

coefficients and thereby the element and compound 

streams in the stationary state. 

The calculation is very useful for off-line strategic 

planning of metal processing. The calculation is, 

however, too slow for real-time process optimization. 

 
 

 
Figure 1. Flow sheet of copper process at Boliden Harjavalta (Boliden). 
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3.2 Method for derivation of fast calculating 

model 

In general, the objective for the study was to find a 

method for converting iterative output controlled 

balance models to directly calculating models suitable 

for process scheduling. The basic idea was to form a 

symbolic equation group based on the flash smelting 

furnace HSC-Sim model and to solve this group 

analytically with symbolic computation to achieve 

causal outputs as direct functions of inputs. The solution 

is possible due to empirical knowledge included in the 

Controls sheet of the FSF HSC-Sim model. 

Thus, the task was to write a fully parametrized 

equation group based on the FSF HSC-Sim model where 

the equations are based on the equations of empirical 

knowledge in the Controls sheet. The model is in this 

analytic approach simplified. The input elements 

include only the main elements; copper (Cu), iron (Fe), 

nitrogen (N), oxygen (O), sulphur (S), silicon (Si) and 

other content (Ot). The distribution of the elements 

between the output streams, which are settler gas, settler 

fume, settler dust, slag and matte, is fully in line with the 

FSF HSC-Sim model. The eight equations determining 

empirical knowledge regarding the main elements was 

chosen as base for the equations. To enable an analytic 

solution with the symbolic software the equation group 

has to be exactly determined. 

The equation group formulation starts with defining 

all basic variables as symbolic variables. This example 

included 7 element mass flows, 23 distribution 

coefficients for element distribution to output streams 

and 41 distribution coefficients for element distribution 

into compounds in the different output streams. The 

main formulation work is to define the relationship 

between these variables with emphasis on the 

formulation of the float and rest variables. Here, this part 

required about 75 definitions. After these definitions, 

the output compounds can be formulated. Afterwards, 

the final equations based on the empirical knowledge in 

the Controls sheets can be written. To ease the 

derivation of the analytic solution of the software the 

nonlinearities in the empirical knowledge were 

linearized. The same variables as the manipulated 

variables in the iterative solution of HSC-Sim model 

were chosen as variables for the calculation to solve. 

They were; distribution coefficient for Fe to matte, 

distribution coefficient for Fe in slag to FeS, distribution 

coefficient for Cu to slag, distribution coefficient for Fe 

in matte to Fe3O4, Ot to matte, Si input stream, O input 

stream and distribution coefficient for Fe in slag to 

Fe3O4. 

This study utilizes the Symbolic Math Toolbox in the 

Matlab software. With the relationships concerning use 

of oxygen still undefined, the solver managed to achieve 

a fully symbolical solution in around five minutes with 
a laptop. When oxygen is taken into account, the solver 

has been forced to settle for a numeric approximation, 

which still includes all the variables in an appropriate 

manner. The length of the analytic solutions is over 25 

000 characters. The solutions are at this stage provided 

with the values of the fixed variables. The last task of 

the program is to produce usable functions of the long 

analytic solutions. 

4 Model Validation and Discussion 

Model validation is performed to ensure usability of the 

model in real-time process optimization and scheduling. 

As copper content in matte is a good measure of the 

process state, the validation is performed at varying 

matte copper percentage. 

4.1 Similarity to legacy model 

Figure 2 shows a comparison between the analytical 

direct solution results, with the blue line, and iteratively 

calculated HSC-Sim results, red line, as function of 

matte copper percentage. 

The cause for the differences is the fact that the 

analytically solved model is a simplified model of the 

process including only the main elements. E.g. both 

silicon and oxygen is consumed by other minor 

compounds which are not included in the model. The 

difference is mainly a shift of magnitude which can 

easily be compensated by a term proportional to the total 

concentrate flow. With this compensation the 

analytically solved model is adequate for the on-line 

utilization. 

4.2 Calculation time 

As the optimization and scheduling algorithm calls the 

model hundreds of times per second the calculation time 

has to be short. A test function call from Matlab showed 

that the execution time is only some milliseconds for 

calls of two to eight variables, which is sufficient for the 

on-line utilization. The calculation time for the iterative 

solution of the HSC-Sim model is tens of seconds. 

5 Model Utilization 

The directly calculating model of the flash smelting 

furnace process will be utilized in scheduling of a 

copper production line to optimize production and costs. 

When solving the equation group the solvable variables 

can be freely chosen. There are two evident ways of 

model formulation that can be utilized. 

5.1 Direct input output 

A natural solution would be to form a direct input output 

model to mimic the real smelting process. Figure 3 

represents a scheduling structure that utilizes the input 

output model. As scheduling is a high level task whose 

interests are in production rate and oxidation level in 

first stage smelting, a lower level control structure has 

to deal with the unit control of the flash smelting 

furnace. This is shown as feedback control of the open 
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loop model. In practice, this could be a sub optimization 

task for the scheduling routine. 

Real
FSF

Modelled
FSF

Cu Smelting Line 
Scheduling

qSi

Silica

qO

Oxygen

Production setpoint

Concentrate

qCu, qFe, qS, qOt

Cu_m setpoint

Cu_m

qsg, qsf, qsd, qs, qm, qsg_SO2 

Off-line 
Measurements

Down Stream Information

Down Stream Scheduling

Unit Control

Excess oxygen

qSi
qO

               

Figure 3. Direct input output model utilized in 

scheduling. 

5.2 Closed analytic solution 

To enhance the direct scheduling interests, the required 
control variables can directly be chosen as solvable 

variables in the equation group. The static model allows 

us to utilize a closed analytic solution whose scheduling 

structure is clear and shown in Figure 4. This direct 

solution will not need the sub optimization. Feedback 

from the off-line measurements compensates for model 

inaccuracy. 

Real
FSF

Modelled
FSF

Cu Smelting Line 
Scheduling

qSi

Silica

qO

Oxygen

Production setpoint

Concentrate

Concentrate (qCu, qFe, qS, qOt)

Cu_m setpoint

Cu_m

qsg, qsf, qsd, qs, qm, qsg_SO2 

Off-line 
Measurements

Down Stream Information

Down Stream Scheduling

               

Figure 4. Closed analytic solution utilized in scheduling. 

6 Conclusions 

The objective of this study was to develop a method for 

converting iterative output controlled balance models to 

directly calculating models for process optimization and 

 
 

 
Figure 2. A comparison between analytical solution results with blue line and iteratively calculated HSC-Sim results with 

red line. 
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scheduling. This method was used in the case of a flash 

smelting furnace, previously modelled in HSC-Sim. The 

fast calculating model is to be used in optimization of 

the total production line operation. 

The method consisted of formulating an equation 

group based on the constrained FSF HSC-Sim model 

and solving the unknown parameters and static states 

with use of a symbolic calculation software. The study 

was successful even if it requires careful formulation 

work and the solution matched the solution of the 

original model. The equation group should be fully 

determined to enable a solution. The solution was 

implemented as a direct calculation function whose 

calculation time fulfilled the requirements for 

scheduling use. 

The advantage with the approach is that even though 

the length of the generated functions disables model 

maintenance in function form, functions can easily be 

recalculated after updates in the HSC-Sim model are 

done. The modelling method has shown to be a powerful 

general way of converting complex iteratively solvable 

models to fast directly calculating models for utilization 

in process optimization and different operator advisory 

systems. 

The presented demonstration model did not include 

an energy balance and thereby the amount of nitrogen 

(N) feed is kept constant even if the nitrogen feed is in 

practice the means to affect process temperature. The 

legacy model is built on the assumption that temperature 

is on normal level which enables a mass balance without 

temperature dependency. The energy balance will be 

included in future work. 
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