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Abstract
Carbon dioxide absorption by mixtures of propylene

oxide / polypropylene carbonate at 600C was monitored

by Raman spectroscopy at 20, 40 and 60 bar in a 2 L

autoclave reactor. Multivariate preprocessing

techniques were used to process raw Raman spectra and

Principal Component Analysis was performed.

Simulation data from the Peng- Robinson equation of

state were used to model the absorbed CO2 amount and

spectroscopic signals. Results showed that Principal

Component Analysis can be used to explore the

dynamics of the system at different pressure levels and

to track the CO2 absorption. A similar analysis was

carried out to monitor CO2 absorption by four different

amines at room temperature and pressure in a batch

reactors. The CO2 content was determined from titration

and was used to model the spectroscopic data.  Principal

Component Analysis proved to be able to identify CO2

absorption capacity in the amines. This feasibility study

confirms that Raman spectroscopy together with

multivariate analysis can effectively report chemical

information and dynamics in these CO2 absorption

systems and hence can be used for developing

regression models for online monitoring and control.

Keywords: principal component analysis, CO2  ab-
sorption, propylene oxide, amines

1 Introduction

Carbon dioxide (CO2) is known to be the primary

greenhouse gas contributing more than 60% of global

warming.  Capturing CO2 from power plants and

industrial sources and utilization them to produce usable

products is of paramount importance from a standpoint

of “waste to money”. Absorption of CO2 by amines is

one of the most popular technologies for CO2 capture.

Amines are categorized as primary, secondary or tertiary

amine based on their chemical structure. The reaction

between amines and CO2 is complex (McCann et al,

2009). However, when considering the CO2 mass

balance, it can be seen that once absorbed by a primary

amine, CO2 will remain in the form of carbonate,

bicarbonate, carbamate or molecular CO2 as given in 

(1). When it is a tertiary amine, there is no carbamate 

formation (2).  

Synthesis of polypropylene carbonate (PPC) by  

reaction  of CO2 and propylene oxide (PO) in the 

presence of a catalyst has become a fascinating research 

area as a CO2 utilization technique to produce a polymer 

out of a waste greenhouse gas (Jiang et al, 2014). In the 

presence of a catalyst, the chemical reaction of PPC 

synthesis takes place as given in (3).  

 
  CO2 absorption capacity by an amine or by in the 

liquid phase PO is a key performance criteria in 

industrial scale CO2 capture and polymerization 

processes. However, the measurement of CO2 

absorption in these mixtures are challenging and require 

proper understanding of the chemistry behind reaction 

(1), (2) and (3). Several offline analytical instruments 

and chemical methods are available such as titration, 

Nuclear Magnetic Resonance spectroscopy and gas 

chromatography to determine the CO2 absorption in 

both applications above. Most of these methods are time 

consuming. A fast, online method to detect CO2 

absorption is important in process monitoring and 

control. Considering the in-situ performance, Raman 

spectroscopy can be suggested as a competitive 

approach for this purpose. It gives chemical information 

of a sample as a function of Raman wavenumber and 

scattered light intensity. When converting the 

information given by a Raman spectroscopy, 

multivariate calibration is required to transform the 

spectroscopic measurement into informative output. 

Raman spectra contain several wavenumbers or group 

of wavenumbers which are chemically important and 
needed to be included in the multivariate regression 

models. However, it is often misleading to use 

PO +CO2            PPC + cyclic carbonate                           (3) 
 

CO2 + primary amine     

   carbonate + bicarbonate + carbamate + molecular CO2     (1) 

CO2 + tertiary amine  

 carbonate + bicarbonate +molecular CO2                                (2) 
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traditional multilinear methods such as ordinary least 

square for calibration, when a single wavenumber (X 

variable) is not sufficient to predict the useful quantity 

(y variable); when X variables are highly correlated or 

when there is no adequate information to understand 

which X variables are correlated to the y variable. In 

such instances, multivariate analysis gives the 

advantage of overcoming the collinearity problems 

while preserving useful information hidden in collinear 

data. In this study, Principal Component Analysis 

(PCA) which is a fundamental multivariate analysis 

tool, has been used as a data compression and 

exploratory method to investigate the feasibility of 

Raman spectroscopy as a viable analytical technology to 

quantify CO2 absorption by amines and propylene 

oxide. Eight experimental cases have been used in this 

analysis. Four of them are related to CO2 absorption by 

PO and a mixture of PO and PPC. These experiments 

were meant to compare CO2 absorption in the CO2-PO 

system with respect to the CO2-PO-PPC system at some 

selected process conditions. The other 4 experiments 

were used to identify CO2 uptake by four liquid amine 

solvents. These solvents are currently in research 

interest to capture CO2 from flue gas in power plants and 

industries (Leung et al, 2014). 

2 Methods 

Experimental description of 8 test cases are presented in 

Table 1. Six organic chemicals were used in the 

experiments and they are given in Table 2. Case 1-4 

were carried out in a closed 2L steam jacketed autoclave 

reactor equipped with a stirrer while the pressure was 

increased gradually by adding CO2 to the reactor. Case 

1 and 2 were PO-CO2 binary mixtures while Case 3 and 

4 were PO-PPC-CO2 ternary mixtures. A Raman 

immersion probe was connected through the bottom of 

the reactor and signals were acquired continuously with 

time. In case 5-8, CO2 absorption on liquid amines was 

observed under equilibrium condition at room 

temperature and pressure. Raman signals were recorded 

by immersing the Raman probe into sample reactors 

after allowing each sample to reach equilibrium. 
 

 

Table 2. Description of materials. 

Name Abbreviation 
Chemical 

structure 

Chemical 

category 

Propylene oxide PO 

 
epoxide 

Polypropylene 

carbonate 

 

PPC 

 

 

a copolymer of  

CO2 and PO 

 2- Aminoethanol  MEA 

 
Primary amine 

3-Amino-1-

propanol 

3-AP 
 Primary amine 

3-dimethylamino-

1-propanol 

3DMA1P 

 
Tertiary amine 

Methyl 
diethanolamine 

MDEA 

 
tertiary amine 

2.1 CO2 in polymer solutions – from 

thermodynamic models 

In this study, Raman signals (X variables), were 

calibrated with the absorbed CO2 content (y variable). 

Reliable measurement of y variable in Case 1-4 using an 

analytical method is challenging as CO2 quickly desorbs 

if a sample is taken out from the reactor for analysis. 

Therefore, the CO2 content data at required pressure and 

temperature were calculated from the vapour-liquid 

equilibrium (VLE) data of CO2-PO system generated 

using the Peng-Robinson equation of state. The Peng-

Robinson model was fitted using experimental data 

reported in (Chen et al, 1994; Shakhova et al, 1973). 

Figure 1 shows predictions of the CO2 mole fraction in 

PO-CO2 system using Peng-Robinson model simulated 

in Aspen Plus V7.2 software which shows that the 

absorption of CO2 at a constant temperature gives a 

linear behavior with pressure. This linear relationship 

was taken to model the CO2 mole fraction at 600C at 

which the experimental cases of 1-4 were carried out. 

2.2 CO2 in amine solutions – from titrations 

In experiments from case 5-8, each sample contained 30 

% of solvent (solvent weight/total weight of water and 

solvent) but different amounts of CO2 added. They were 

prepared in 10 mL glass reactors and after reaching 

equilibrium a titration method was carried out to 

measure its true CO2 content in units of moles CO2 per 

mole solvent.  

Table 1: Description of test cases. 
Case 

Number 

CO2 loaded solution Description 

1  PO in non-stirred 
condition  Each case has one sample  

in a 2L reactor  at  600C.  
Tested pressure levels :20, 
40 and 60 bar 
Stirrer speed = 400 rpm 

2  PO in stirred condition  

3 PO+PPC in  non-stirred 
condition  

4  PO+ PPC in stirred 
condition   

5 MEA 37 samples  Each sample in 10 mL 
glass reactor. Reaction 
between CO2 and amine 
took place at room 
temperature and pressure 

6 3AP 42 samples 

7 3DMA1P  41 samples 

8 MDEA 41 samples 

 

Figure 1. CO2 mole fraction of PO-CO2 system at 

different pressures and temperatures (Peng-Robinson 

model with binary interaction parameter equal to 0.281). 
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2.3 Raman Spectroscopy 

Raman spectroscopy used in this study was Kaiser 

RXN2 Analyser of 785 nm laser wavelength, 400 mW 

laser power and 100-3425 cm-1 spectral range. An 

immersion optic probe which is connected to the RXN2 

Analyser via a fibre optic cable, carries the laser light to 

the sample and in-elastically scattered Raman light is 

conveyed back to the instrument. The instrument output 

is a plot of intensity of scattered light versus energy 

difference (given by wavenumber in cm-1) which is 

called a Raman spectrum. Peaks and their intensity in a 

Raman spectrum carry information about the chemicals 

and their composition respectively.   

2.4 Data Processing 

For a set of n objects (eg: different samples or signals 

with time), a Raman spectroscopy measurement 

generates a data matrix of n x p where p is 3326 Raman 

wavenumbers. This data matrix contains useful 

information about the chemical fingerprint of objects as 

well as noise. They are also called residuals which can 

be due to the interference of other chemical components, 

laser input variations or instrument noise. Unless any 

data conditioning method is applied to remove this 

unwanted structure from the data matrix, calibration of 

spectroscopic signals will not be reliable and do not 

really generate a model which really represent the 

variation of analyte of interest.  

Three data pre-processing techniques were applied for 

raw Raman data. These were baseline-whittaker filter, 

standard normal variate (SNV) and mean centering. The 

baseline-whittaker filter available in PLS toolbox in 

Matlab is an extended version of (Eilers, 2003) where  a 

weighted least square method is applied to remove 

background noise and baseline variations. A detailed 
description of the algorithm can be found in the original 

work (Eilers, 2003) and (Atzberger et al, 2010). Some 

spectra which should be otherwise identical, become 

different due to baseline and pathlength changes. SNV 

was applied to remove these scatter effects in the spectra 

which were specially observed in case 1-4. The 

algorithm is similar to autoscaling row wise and hence 

corrects each spectrum individually (Barnes et al, 1989). 

By mean centering of data, each column in the data 

matrix is centered by subtracting the mean. It is reported 

that by mean centering, rank of the model is reduced, 

data fitting accuracy is increased and offset is removed 

(Bro et al, 2013). 

2.5 Principal Component Analysis (PCA) 

Principal component analysis is one of the most 

important data analysis methods providing a platform 

for advanced chemometrics methods.  As stated in (S. 

Wold et al, 1987) PCA can have many goals; 

simplification, data reduction, modelling, outlier 

detection, variable selection, classification, prediction 

and unmixing. It can be used to understand general 

characteristics of data set and guide further investigation 

through more refined techniques (Wentzell et al, 2012). 

PCA reduces the dimension of data by calculating 

principal components (PCs) which reflect the structure 

of data corresponding to maximum variance. These PCs 

can then be plotted to visualize the relationship between 

samples and variables through the use of scores and 

loading plots. A tutorial review on PCA can be found in 

(Bro et al, 2014). Decomposing a data matrix X into a 

structure part which consists of a score matrix (T) and a 

 
a) Case 1 

 
(b) Case 3 

Figure 2. Raman signals of CO2 loaded polymer 

samples. 

  
(a) 100-3325 cm-1 (b) 950-1550 cm-1 

Figure 3. Raw spectra of CO2 loaded samples ( Case 

5-8). 

 
Figure 4. Raw spectra of CO2 loaded MEA samples  

( Case 5). 
 

 

EUROSIM 2016 & SIMS 2016

209DOI: 10.3384/ecp17142207       Proceedings of the 9th EUROSIM & the 57th SIMS
September 12th-16th, 2016, Oulu, Finland



loading matrix (P) and noise part or residual matrix (E), 

is shown in (4) and (5).  

  
Case 1 Case 2 

  

Case 3 Case 4 

Figure 5. Loading plots of the first principal 

component for case 1-4 (Region : 1225 – 1450 cm-1). 

 

𝑡𝐴 and 𝑃𝐴 are score vector and loading vector for PCA 

respectively. PC1 is the first principal component which 

relates to the maximum variance of the data, and PC2 is 

the second principal component which corresponds to 

the second largest variance etc. Score values provide 

information about sample variations while loading value 

explains the relationship between variables. Residuals 

provides information as to what spectral variations have 

not been explained. There are different ways to 

decompose a matrix to score and loading vectors. 

NIPALS (Non-linear Iterative Partial Least Squares) 

algorithm (H. Wold, 1966) uses iterative sequence of 

ordinary least square regression to calculate PCs and 

was used in this study. 

2.6 Important variables related to CO2 

absorption 

CO2 absorbed PO, PPC and amine mixtures exhibit 

several sharp overlapping peaks in the region of 300 to 

1500 cm-1 and 2700 to 3250 cm-1. The focal point in 

this study is to investigate CO2 absorption and hence 

only the peaks related to absorbed CO2 are considered 

in the model development. In case 3-4, the monomer PO 

and the polymer PPC were added into the autoclave 

reactor and the CO2 was absorbed into this mixture. 

Therefore, CO2 bands related to dissolved CO2 in the 

PO or PO/PPC mixture were followed in this study. 

Literature reports such Raman wavenumbers of  1264, 

1284, 1369, 1387, 1408 cm-1 (Hanf et al, 2014). In case 

5-8, peaks related to carbonate, bicarbonate, carbamate 

and dissolved CO2 fall in the region of 1000-1500 cm-1 

((Vogt et al, 2011), (Wong et al, 2015)). Therefore, for 

development of PCA models, the region between 1000-
1500 cm-1 and 1225-1450 cm-1 were selected for case 

1-4 and case 5-8 respectively. 

  
Case 1 

 

Case 2 

 
 

Case 3 Case 4 

Figure 6. Development of linear regression model using 

PC1  score values and thermodynamic model data. 

(Y measured = CO2 mole fraction predicted by VLE data; Y predicted 

= CO2 mole fraction predicted by PC1 scores; red line= best fitted line 

based on calibration points; green line=1:1 target line; RMSE (CV/P)= 

root mean square error of (cross validation/prediction) 

 

  
Case 1 Case 2 

  
Case 3 Case 4 

Figure 7.  Score plots – PC1 vs PC2 for case 1-4. 

 

 𝑋 = 𝑇𝑃𝑇 + 𝐸                                                           (4) 

𝑋 = 𝑡1𝑃1
𝑇 + 𝑡2𝑃2

𝑇 + 𝑡3𝑃3
𝑇 +⋯+ 𝑡𝐴𝑃𝐴

𝑇 + 𝐸    (5) 
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Case 5 Case 6 

  
Case 7 Case 8 

Figure 8. Score plots for case 5-8. 

 

3 Results and Discussion 

Figure 2 (a) and (b) show raw spectra for case 1 and 3 

respectively highlighting spectral variation with 

increasing pressure in the region of 1225 to 1450 cm-1. 

CO2 peaks at 1264, 1284, 1369, 1387, 1408 cm-1 can be 
identified in this figure. A similar spectral behavior was 

observed for case 2 and 4 in the same region. Figure 3 

gives raw Raman signals observed for CO2 loaded 4 

different amine solvents. Only two spectra from each 

solvent are shown. Figure 4 shows how the intensity of 

Raman bands varies with the CO2 content for MEA 

samples (Case 5). Both Figure 3and Figure 4 claim that 

spectral evolution in the region between 1000 to 1500 

cm-1, for case 5-8 with respect to case 1-4 is complex 

due to curved baseline, baseline offsets and overlapping 

bands. The reason is that the chemical products when 

CO2 is reacted with the solvent appear with overlapping 

peaks in this region. Therefore, when quantifying the  

total amount of CO2 absorbed in solvent, all these peaks 

are needed. 

 

All the Raman signals under each case were first 

smoothed using baseline-whittaker smoother, then SNV 

and finally mean centered. PCA was performed for 

processed data. First principal component was identified 

as the dimension explaining the  largest variance of data 

in each case. Finally, score values of PC1, were 

compared with the mole fraction of CO2 predicted by 

thermodynamic models for case 1-4 and CO2 amount 

determined from titration for case 5-8. Loading plot, 

score plot and comparison of PC1 score value with CO2 

content under each case were used to explain 

characteristics in each system.   

3.1 Case 1-4 

With reference to Figure 5 loading plots of case 1, 3 and 

4 almost give similar information about important 

variables (Raman shifts) while case 2 is different. This 
is caused by exposing the Raman sensor to both gas and 

liquid phases as a result of high stirrer speed and 

  
Case 5 Case 6 

 
 

Case 7 Case 8 

Figure 9. Loading plots of the first principal 

component for case 5-8. 

  
Case 5 Case 6 

  

Case 7 Case 8 

Figure 10. Development of linear regression model 

using PC1  score values and CO2 content given by 

titration data. 
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development of vortex in case 2. There is also low 

viscosity in the medium at low pressures, which creates 

high turbulence. Score plots of PC1 vs. PC2 as given in  

Figure 7, show clear distinguish of recorded signals 

between the three pressure values of 20, 40 and 60 bar.  

PC2 direction explains only a small variation of data for 

case 1-3. Experiments for 60 bar, were conducted in 

replicates and their overlap in score values could be 

observed in case 1 and 2.  
Figure 6 shows how closely PC1 score values are 

related to VLE data. Plots in this figure were derived by 

linear regression between PC1 score values as X 

variables and predicted CO2 content from VLE data as y 

variables. From VLE data, CO2 mole fractions at 20, 40 

and 40 bar are 0.202, 0.411 and 0.601 respectively. 

These values are represented as ‘Y measured’ in Figure 

6. PC1 score values at 3 pressure conditions follow the 

linear trend given by the mole fraction of CO2 predicted 

by thermodynamic models at case 1 and 2. In the 

presence of PPC (case 3-4), even though pressure and 

temperature were maintained constant, a significant 

time was needed to achieve equilibrium condition of 

CO2 absorption by the solvent especially at higher 

pressure region. For example, at 40 bar and 60 bar, PC1 

score value of the initial spectra is less than the final 

recorded spectra at that condition. Therefore, although 

the reactor is maintained at the required pressure, the 

score plot gives the hint whether the equilibrium 

condition has been achieved or not. The significance of 

the above fact can be clearly understood when 

examining the score plot for case 4 (Figure 7). In this 

trial, we see that only 20 bar condition shows a 

compressed data swarm while at 40 bar, PC1 score 

values increases with time and this variation is more 

significant for 60 bar. This is further assured by Figure 

6 (case 4) where the thermodynamic model satisfies the 

trend of final recorded data for 60 bar condition, but 

highly deviate from the initial recorded data at this 

condition. PC1 score values positively correlate with the 

amount of absorbed CO2 by PO-CO2 and PO-PPC-CO2 

systems. 

3.2 Case 5-8 

Absorption of CO2 by amines (case 5-8), features 

several important variables in the region 1000-1500 cm-

1 as given by loading plots in Figure 9 and this is the 

result of several parallel equilibrium reactions 

happening in each system. Each sample carries different 

information which mean different amount of CO2 

absorption and hence the concentration of chemical 

species produced during these reactions are different. 

Therefore, a data spread in score plot of PC1 vs PC2 can 

be observed in the score plots in each case as presented 

in Figure 8. However, similar to polymer-CO2 system, 

PC1 explains the largest variation of data structure and 
therefore PC1 score values were compared with total 

CO2 absorbed by the system. Results are shown in 

Figure 10. With the increasing amount of CO2, there is

a gradual increase of PC1 score value highlighting that

PC1 score value is an indication of the level of CO2

absorbed by the sample.

4 Conclusions

Monitoring CO2 in liquid phase of PO-CO2 system or

PO-PPC-CO2 system by analytical techniques is

challenging as the CO2 quickly desorbs if the pressure is

lowered in sample taking. Therefore, online analysis

such as spectroscopy is more favorable For CO2-amine

systems, an in situ characterization of CO2 absorption

gives credits to process monitoring and control ability.

Based on this study, combination of Raman

spectroscopy and PCA claims that PC1 score value

explains variation of data structure corresponded to

absorbed CO2 amount. PCA plots give an indication of

CO2 composition, process dynamics and equilibrium

conditions in these two chemical systems and hence can

be used as an efficient tool to analyse collinear process

data. Further investigation of PCA model development

under different process parameters is recommended to

validate the findings from this feasibility study.

Experiments to develop advanced chemometrics tools

such as partial least square regression can now be

recommended for both polymer-CO2 system and amine-

CO2 system.
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