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Abstract
Operation in an open-pit mining is a complex task with
stochastic nature. Usually, this kind of system is ana-
lyzed by means of DES (Discrete Event System) simu-
lation. This work considers optimizing the investment in
new projects in such a way to reach maximum produc-
tion of an open-pit mine. When a DES model is associ-
ated with an optimization problem, the time taken to run
such model is a crucial aspect. In order to analyze the
project impacts in a reasonable time, this work presents
a DES markovian model which represents a load-haulage
cycle. The results obtained were compared with the re-
sults acquired from validated simulation models which
represent the same system. In the optimization context,
the complexity is exponential. Therefore, this work pro-
poses a formulation that considers the inter-relationship
between projects, which aims to help decision makers.
Instead of trying all the possible projects combinations,
the proposed method searches for identifying the set of
projects that produce good feasible solutions based on per-
formance measure from designed DES model.
Keywords: Markov chain, closed queuing network, project
portfolio, open-pit mining.

1 Introduction
Typically, Project Portfolio Optimization decisions are
strategic decisions that are made on a yearly basis. For
open-pit mine, investments in its operations are needed to
reduce the production cost, enhance production, eliminate
bottlenecks and to improve the use of system resources.
Thus, in a Brazilian mining, several projects are proposed
annually in order to improve the company competitive-
ness. The Project Portfolio consists of many actions, in-
cluding road improvements, truck or crane acquisition,
hire operator, etc. Each project impacts in a specific in-
dicator of the open-pit mine. A preliminary goal is to
identify how these projects influence the company com-
petitiveness. A fundamental goal of any mining project
is maximizing the total mine ore production in a specific
time horizon. Nevertheless, to improve some indicator

cannot result in an effective contribution for this goal.
The open-pit-mine is a complex and stochastic system,

in which interactions between several agents impact heav-
ily on the total mine ore production. Usually, this kind
of system is analyzed by means of DES simulation. Ac-
cording to (Banks, 2000), simulation is the imitation of
the operation of a real-word process or system over time,
involving the generation of an artificial history of the sys-
tem. In order to analyze the real impact of each project, a
DES simulation model can be used. Therefore, it is possi-
ble to estimate and make better decisions.

When DES simulation model is associated with a dis-
crete decision problem, we can associate the control vari-
ables to a discrete optimization problem. Discrete opti-
mization with simulation is a methodology known in the
literature as discrete optimization via simulation. Accord-
ing to (Nelson, 2010), this methodology addresses solving
problems with a countable number of feasible solutions,
when the system is complex enough that its expected value
is estimated by running simulation.

Most commercial DES simulation software are asso-
ciated with some optimization software. However, these
softwares use meta-heuristics or heuristics that, although
efficient in many cases and modeled to be generic and
applicable in various contexts, it does not exploit the
problem features and hence tend to be less efficient. Fu
(Fu, 2002) summarizes the optimization packages used by
most popular commercial DES simulation softwares and
the search strategy used as well. According to (Fu, 2002),
algorithms that apply a very general way often have a slow
convergence in practice.

In a portfolio optimization, the goal is to determine a set
of projects that maximizes some indicator, such as total
mine production index. Each portfolio is formed at least
by one project and correct projects combinations can max-
imize the expected return. From the optimization point
of view, the number of combinations has an exponential
growth. Thus, usually it is not possible analyze all the
possibilities, especially when each evaluation is obtained
using DES simulation, since this methodology can be very
burden.
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According to (Bolch et al., 1998), the main drawback of
DES simulation models is the time taken to run such mod-
els for large and realistic systems particularly when results
with high accuracy are desired. Thereby, combining DES
simulation with optimization is a major challenge.

Taken into account the difficulties inherent to discrete
optimization via simulation, two approaches to research
can be explored. The first consist in reducing the com-
putational time used in the function evaluation. When we
consider a DES simulation model as an objective function
of an optimization problem, the time taken to run such
model is a crucial aspect. The second approach consist in
developing a specific optimization method to the problem
that explores peculiarities of the modeled system.

1.1 First step - DES model
The first step aims to create a modeling of stochastic DES
through markovian approximation. This strategy was mo-
tivated by successful application in the field of the per-
formance evaluation of computational system. According
to (Bolch et al., 1998), a cost-effective alternative to DES
simulation consists of analytic models, which can provide
relatively quick answers and more insight to the system
being studied. Before the creation of nowadays compu-
tational technology, problems with stochastic nature were
generally solved analytically. Marie (Marie, 2011) claims
that scientific ambition was limited by computing power,
i.e., it was necessary to use the imagination to look for
approximations in order to reduce a state space to a few
hundred states. Recently, (Marie, 2011) observed that
huge amounts of available computing resources increase
the trend to solve models through simulation and did not
encouraged researchers to look for tractable analytical so-
lutions.

It is important to point out that simulation is enshrined
as a good methodology to treat DES model. However,
in the optimization context, the number of evaluations de-
pends on the time taken by run the designed model. Refer-
ence (Ekren et al., 2013) presents an analytical model for
an autonomous vehicle storage and retrieval system. The
authors model a material-handling system as a semi-open
queuing network to be used instead of DES simulation.
According to (Ekren et al., 2013), the analytical model is
useful in estimating key performance measures of alter-
nate configurations of the system quickly and accurately.

Marie (Marie, 2011) explain that some mathemati-
cal/probabilistic properties can be used to analyze prob-
lems of stochastic nature without simulation. Therefore,
the first step of this study consist to explore and to apply
this properties. A load-haulage cycle of a realistic Brazil-
ian open-pit mine is considered. This cycle is modeled as
a closed queuing network where all queues (also known
as nodes) are connected. The idea is to measure the mean
response time of each node, and consequently, the mean
cycle time and the total mine production index. Therefore,
these performance measures are used in the optimization
context to find a good and fast answer.

In this study we consider the cdf (Cumulative Distri-
bution Function) approximation using exponential distri-
bution. We assume that the service time of each node is
exponentially distributed while this is not true in the real
model. It is important to point out that this kind of ap-
proximation cannot provide a reasonable accuracy. There-
fore, the results obtained by this approach are compared
with the results acquired using validated simulation mod-
els presented in (Ribeiro, 2015). These models consider
pdf (Probability Density Function) approximation using
general distribution. A Petri net model and a SIMAN
model representing the same load-haulage cycle are con-
sidered. The assumption is to verify whether there are sig-
nificant difference among the designed analytical approx-
imation model and the mentioned methodologies of DES
simulation.

1.2 Second Step - Portfolio optimization
The second step of this study consist in determining the
set of projects which maximizes the total mine production
index respecting the established budget. One approach is
to formulate this decision as a knapsack problem which is
a classical combinatorial optimization problem (Pisinger,
1994). Figuratively, we can describe this problem as fill-
ing a backpack without exceeding a certain volume limit.
The decision consists to place in the backpack products
that maximize (maximization problem) a specified value,
respecting its capacity. In this study, the products are the
projects at the portfolio and the capacity is the available
budget.

In order to analyze the real impact of witch project,
the DES model is used. Hence, it is possible to estimate
how much each one increases the total mine production
index. Here, we named this estimative as ‘gain’. A linear
solution can be found maximizing the sum of individual
gain. However, we cannot consider each project individ-
ually. Due to the open-pit mine features, there are inter-
relationships among projects. It means that a combination
of two or more projects must result in different gain com-
pared with the linear solution. Since it may unfeasible
evaluate all projects combinations, the optimization strat-
egy aims to create a formulation where the decision vari-
ables set is formed by all individuals projects in the port-
folio and all ‘relevant combinations’. In this study, a ‘rele-
vant combination’ is a set with at least two projects with a
strong inter-relationship among them. A major challenge
is to find how intense this inter-relationship is.

In the load-haulage cycle, the total mine production in-
dex depends on the mean response time taken in each node
of the cycle. Some projects aims to reduce the service
time in a specific node. A disadvantage of applying these
projects is the possibility of increasing the mean response
time of others nodes. Consequently, neither total cycle
time nor total mine production index will be changed.
The central core of the optimization method is to use the
mean response time of each node to find ‘relevant combi-
nations’. The major idea is that this performance measure
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indicates the plant bottlenecks, which must be fixed by the
new projects. Section 5 describes the philosophy behind
of the strategy.

2 Stochastic DES model through
markovian properties

A general way to represent a stochastic DES model is
through stochastic timed automata. According to (Cassan-
dras, 2008), any timed model for DES requires the speci-
fication of a clock structure. This structure is a set of dis-
tribution functions, one for each event, characterizing the
corresponding lifetimes. Beside that, it determines the dy-
namic of the system. When all clock sequences are iid (In-
dependent and Identically Distributed) and the interevent
times are exponentially distributed, a stochastic DES can
be modeled as a Markov Chain (Cassandras, 2008).

Figure 1a shows a stochastic timed automata where a
and d are events with occurrence times rates of λ and µ ,
respectively. Considering the markovian properties pre-
sented in (Cassandras, 2008), this automata generates a
Markov chain illustrated in Figure 1b.

0 1 2

a(λ ) a(λ )

d(µ)d(µ)

(a) Stoch. timed automata

π0 π1 π2

λ λ

µµ

(b) Markov chain

Figure 1. Stochastic timed automata as Markov Chain

In Figure 1b, π0, π1 and π2 denotes the stationary prob-
ability of the states 0, 1 and 2, respectively. According to
(Cassandras, 2008), a system modeled as a Markov chain
is allowed to operate for a sufficiently long period of time
so that the state probabilities can reach some fixed val-
ues which no longer vary with time. The main objective
of using a Markov chain is to compute these probabili-
ties. According to (Bolch et al., 1998), long run dynamics
of Markov chains can be studied using a system of linear
equations with one equation for each state. Thus, solu-
tion of these equations results in stationary probabilities
of the Markov chain, consequently, desired performance
measures such as mean response time can be easily ob-
tained.

It is known that a DES simulation model can be seen as
a parallel composition of many stochastic timed automata.
The set of clock structures describes how the DES model
evolves as a result of event occurrences over time. Con-
sidering that all clock structure of this DES model con-
forms to the markovian properties, the full DES model
can be simplified to a Markov chain (In a parallel com-
position model, the stationary probabilities are denoted by
the M-tuple π(n0, . . . ,nM) where M represents the number
of individual automata). Accordingly, a system of linear
equations to compute the stationary probabilities must still
be valid. The problem of this representation is the fact that
the cardinality of the state space can grow drastically in a

Markov chain of a complex system. Therefore, comput-
ing the stationary probabilities of the states became a hard
(even impossible) task.

Fortunately, for a class of Markov Chain, which can be
expressed as a of queuing network, very fast numerical
solution methods have been developed to derive important
performance measures without resorting to the underlying
state space (Bolch et al., 1998). One of these methods is
known as convolution algorithm. This method is a suffi-
cient analytical technique to obtain the interest measures
of this study. This algorithm aims to evaluate an important
performance measure without having to compute explic-
itly the stationary probabilities.

2.1 Product-Form Networks - Convolution al-
gorithm

Once we approximate the stochastic automata by a
Markov Chain and then by a queuing network, to compute
the stationary probability it is necessary to consider the
theorem proposed by (Jackson, 1957). The Jackson’s the-
orem (also known as product-form) says the steady-state
probability of the network can be expressed as the product
of the state probabilities of the individual nodes. Based in
the Jackson’s theorem, (Gordon and Newell, 1967) present
a general formulation to compute the stationary probabili-
ties in a closed queuing network. This formulation follows
the Eq. 1:

π(n1, . . . ,nM) =
1

G(N)

M

∏
m=1

βm(nm), (1)

where G(N) denotes the normalization constant. In this
equation, βm(nm) denotes a step function which depends
on the number of customer nm in each node m. Let µm
be the service rate of the node m, and let νm be the rela-
tive arrival rate of the same node, the value of βm(nm) is
obtained using Eq. 2.

βm(nm) =


1, if nm = 0(

νm
µm

)nm

nm
∏

k=1
bm(k)

, else (2)

Usually, in a closed queuing network µm is known,
while νm should be compute. Thus, the balance equations
Eq. 3 can be used to compute νm, where the parameter pim
denotes the transition probability that a customer departs
from node i and arrives at the node m.

νm =
M

∑
i=1

ν j pim ∀ m = 1, . . . ,M. (3)

The step function Eq. 2 depends on the queuing disci-
pline of the node as well. In this study we consider the dis-
ciplines: FIFO (First In First Out) and IS (Infinity Server).
Thus, bm(k) denotes a step function which depends on the
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queuing discipline and the number of service qm, as we
can see in Eq. 4.

bm(k) =


0, if k = 0
min(k,qm), if 0 < k ≤ N & FIFO
k, if 0 < k ≤ N & IS

(4)

According to Buzen algorithm (Buzen, 1973), the nor-
malization constant G(N) can be computed following Eq.
5.

g(n,m) =


1, if n = 0, ∀ m
βm(n), if m = 1, ∀ n

n
∑

k=0
βm(k)g(n− k,m−1), else

(5)
In the Eq. 5, g(n,m) denotes the normalization con-

stant of all possible sub closed queuing network where n
(0≤ n≤ N) and m (1≤m≤M) indicate, respectively, the
amount of clients and nodes. Therefore, g(N,M) repre-
sents G(N).

2.2 Marginal probability
In order to compute the mean response time, it is nec-
essary to evaluate the marginal probability. This perfor-
mance measure πm(n) represents the probability of having
n clients in the node m, accordingly with Eq. 6.

πm(n) = ∑
πn1 ...πnM
& nm=n

π(n1, . . . ,nM) (6)

As mentioned, the number of states in a Markov chain
of a complex system can become very huge. Therefore, it
cannot be possible to compute all π(n1, . . . ,nM). However,
the convolution algorithm described in (Bolch et al., 1998)
is sufficient to obtain the marginal probability directly. In
general terms, this technique consist of to substitute Eq. 1
in Eq. 6, which results in Eq. 7.

πm(n) =
βm(n)
G(N)

G(m)
M (N−n) (7)

The constant G(m)
M (N − n) must be interpreted as nor-

malization constant of a closed queuing network with-
out the node m and with n clients less. The value of
G(m)

M (N − n) can be computed recursively (Bolch et al.,
1998), following Eq. 8.

G(m)
M (k) =

1, if k = 0

G(N)−
N
∑

k=1
βm(n)G

(m)
M (N− k), else

(8)

2.3 Mean response time
As mentioned in section 1, the idea is to measure the mean
response time of each node. Following the Little’s law,
this performance measure is obtained using Eq. 9:

T̄m =
N̄m

ψm
, (9)

where N̄m and ψm are the mean number of clients and the
throughput of the node m, respectively. Moreover, these
performance measures must be computed by Eq. 10 and
Eq. 11, where qm denotes the number of services in the
node m.

N̄m =
∞

∑
n=1

nπm(n) ∀ 1≤ m≤M (10)

ψm =
∞

∑
n=1

πm(n)min(n,qm)µm (11)

In this section, we show an efficient technique to com-
pute the mean response time. This performance measure
can be obtained analytically in a quiet fast. In the follow-
ing section we introduce concepts about the load-haulage
cycle and demonstrates how to use the mean response time
to compute the total mine production index.

3 Load-haulage cycle
In (Torkamani and Askari-Nasab, 2012), a DES simula-
tion model was implemented in SIMAN language (Peg-
den, 1983) in order to simulate the load-haulage system in
an open-pit mine. Each simulation scenario used a distinct
combination of the number of trucks and shovels. The
goal was maximizing the mine production index at low-
est possible operating cost. As the use of simulation re-
quires high computational effort, sometimes it is not pos-
sible to try all feasible scenarios. Thus, the strategy taken
by (Torkamani and Askari-Nasab, 2012) considers proper
indicators to choose the scenarios to be evaluated.

In (Ercelebi and Bascetin, 2009), another strategy for
allocation of trucks in open-pit mine was proposed. The
authors applied closed queuing theory to obtain some
measures of interest such as the total mine production in-
dex. According to (Ercelebi and Bascetin, 2009), in a
load-haulage system, the total mine production index P
over a given time period of interest can be estimated by
Eq. 12:

P = N ·C · Thorizon

T̄cycle
, (12)

where C denotes the truck’s capacity, N the number of
trucks and Thorizon the period of interest. The measure
T̄Cycle represents the mean cycle time.

In a load-haulage system, basically, each truck goes to
load site and waits until the loading process is completed.
Following, the trucks go to the dump site and dump the
ore into a crusher. However, each truck can be diverted to
other process during the transport, such as maintenance,
supply, etc. Known as operational stops, these processes
must be included in the load-haulage cycle with a transient
probability associated pm. The Eq. 13 represents a general
expression to compute the mean cycle time considering the
operational stops:

T̄cycle =
M′

∑
m=1

T̄m +
M

∑
m=M′+1

pmT̄m, (13)
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Figure 2. Closed queuing network representing the Load-haulage system

where the label m, from 1 to M′ denotes the basic process
of the load-haulage system, while m from 1 to M′ indicates
process which are operational stops.

4 DES model: Load-haulage system
In order to compute the total mine production index, the
analytical technique presented in this paper was tested in a
load-haulage system depicting a mining front of a brazil-
ian open-pit mine. As mentioned in section 1, in this study
we consider the cdf approximation using exponential dis-
tribution. The assumption is verifying whether there are
significant difference among the results obtained and the
results presented in (Ribeiro, 2015). Table 1 presents the
process of the load-haulage system. The pdf, the first mo-
ment approximation and discipline are showed as well.

Table 1. First moment approximation

Process Dist. E[x] µm Dis
Maneuver

to load Triangular 2.266 1
2.266 FIFO

Shovel
site

Tria
(comp.) 3.227 1

3.227 FIFO
Loaded

Haulage road
Inv.

Gaussian 8.333 1
8.333 IS

Maneuver
to Dump Triangular. 1.100 1

1.100 FIFO
Dump

site Triangular 2.133 1
2.133 FIFO

Empty
Haulage road

Inv.
Gaussian 6.944 1

6.944 IS
Preventive

maintenance Triangular 150 1
150 FIFO

Corrective
maintenance Triangular 1120 1

1120 FIFO
Supply Gaussian 150 1

150 FIFO
Shift

Change Gaussian 16 1
16 FIFO

The load-haulage system depicting a mining front was
modeled as a queuing network. Thus, each process pre-
sented in Table 1 is seen as a node and each truck is a
client. Figure 2 shows the full model. As we can see,
there are four operational stops in this model. The tran-
sient probabilities to these nodes are: pp, pc, ps and ph.
In addiction, it was added to the model three fictitious
nodes (dashed nodes) to establish transient decisions be-
tween operational stop nodes. Taken to account that these
nodes have infinity rate, they do not change the final result.

The transient probabilities were computed using the
occurrence period of each operational stop of the open-
pit mining front. Therefore, the estimated values are:
pp = 0.0015, pc = 0.0127, ps = 0.0255 and ph = 0.1232.

Considering the transient probabilities values, the ser-
vice rates and the queuing discipline showed in Table 1
the mean response time of each node is obtained using the
technique presented in section 2. Consequently, using Eq.
13 we have the Eq. 14.

Tcycle =
6

∑
m=1

T̄m + ppT̄7 + pcT̄8 + paT̄9 + pt T̄10 (14)

As mentioned before, the aim is to compute the total
mine production index. However, it necessary to estimate
the parameter C (truck’s capacity). In this study, it was
considered a caterpillar 793F truck with nominal payload
capacity of 226.8 tonnes. Finally, specifying a time period
of interest, the mine production index must be evaluated
by Eq. 12.

Figure 3. No of trucks vs Mine production index -tonnes(mil)

For a time period of interest of one month, the closed
queuing network was evaluated changing the number of
trucks N (clients), from 1 to 8. Figure 3 shows the compar-
ison among the results obtained and the results presented
in reference (Ribeiro, 2015).

From Figure 3 it is possible to observe there is no
significant difference among the analytical approximation
model designed and the methodologies of DES simula-
tion, neither SIMAN nor Petri Nets. The maximum differ-
ence between the analytical approximation model and the
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SIMAN model was 4%, while the maximum difference
when compared with the Petri net model was 5.16%.

It is important to emphasize that the analytical approx-
imation model runs hundreds times faster than DES sim-
ulation models. In conclusion, the DES through marko-
vian properties consist of a reasonable way to represent
the load-haulage system in study.

5 Project portfolio formulation
Let P0 be the total mine production index of the load-
haulage system shown in Figure 2, with 8 caterpillar 793F
trucks and without any project application. Using Eq. 12
we have P0 = 1767.29 tonnes. Let Pk be the total mine pro-
duction index of the same system with the application of
the project k, and let E[gk] be the expected gain provided
by the application of this project, that is E[gk] = Pk−P0.

Knapsack problem is a typical formulation for portfolio
optimization. In this study, the goal consists of maximize
the sum of the gains, respecting the established budget.
However, it is necessary to consider the inter-relationship
between two or more projects. Since it may be unfeasible
to evaluated all project combinations, the mean response
time of each node is useful to define those who deserve to
be evaluated. The major idea is that this performance mea-
sure indicates the plant bottlenecks, which must be fixed
by the new projects.

Initially, consider that two or more projects have a small
expected gain. Using conventional optimization methods
they would hardly be included in the final optimal portfo-
lio. However, the combination of them can generate good
expected gain when evaluated jointly. Considering these
circumstances, the analysis of the problem is necessary to
find which combinations are relevant.

For example, a project that produces a time reduction
in the dumping process and increases mean response time
in the shovel site can produce a significant gain whether
combined with another projects that provides an improve-
ment in the second node.

A relevant combination could be composed by more
than two projects. In this methodology each combina-
tion just can be obtained by pairs. However, combina-
tions found and evaluated are converted in new decision
variables (new projects). Then, in the next iteration, the
strategy can combine this new project with another one.

The Eq. 15 presents a formulation where the set of
decision depends of the number of projects combination
S = {X0, . . . ,Xk, . . . ,XK}. Since Xk denotes the k-th com-
bination evaluated, xk is a decision variable that represents
it in the optimization function.

Considering that in equation 15 the optimal solution can
be composed by more than one project combination, it is
necessary to prevent that a isolated project appear redun-
dantly in the same solution. For example, suppose we have
the combinations: X1 = {p1, p2} and X2 = {p2, p3}. In
this circumstances, it is necessary to append at the for-
mulation (Eq. 15) the constraint x1 + x2 ≤ 1. In an-

Table 2. Project portfolio

Proj Description c (pu) Impact Where?

p1

Bilateral
charging 0.5 −15% node 1

p2

Roads
improvement 1.5 −20% nodes 3,6

p3

Dead load
reduction 1 5% par. C

p4 Excavation 2 −18% node 2

p5

1 Truck
acquisition 5 N +1 par. N

p6

2 Truck
acquisition 10 N +2 par. N

p7

Rolling
A-Frame 1 −17% node 8

p8

Forklif
acquisition 0.7 −15% node 8

p9

Preventive
kits 0.65 −14% node 8

p10

Supply
improvement 2 −35% node 9

p11

Dump site
improvement 2 −25% node 4

p12

Shift change
improvement 1.5 −25% node 10

p13

Backlog’s
reduction 5 −30% node 7

p14

DMT
reduction 2.5 −24% node 5

p15

Load site
improvement 3 −25% node 1

other case, assume that we have two other project com-
bination previously evaluated: X3 = {p3, p4} and X4 =
{p1, p2, p3, p4}. Consequently, it is necessary to add the
constraint x1+x3 ≤ 1 because a combination between this
two set is equal to X4. Based in this rules, the formulation
must account the preposition 1:

Preposition 1 If Xu ∩Xv 6= /0 or Xu ∪Xv = Xk | k ∈ S
Then xu + xv ≤ 1.

In this case, Xk, Xu and Xv are the combinations sets
associated with the variables xk, xu and xv, respectively.

Let wk be the cost of the combination project k, the first
constraint limits the sum of cost to the budget available
R. Moreover, the last constraint indicates that the decision
variables must be binary.

Maximize
K
∑

k=1
E[gk]xk

Subject to
q
∑

k=1
wkxk ≤ R

xu + xv ≤ 1( preposition 1)
xk,xu,xv ∈ {0,1}

(15)

For this study, it was available from the mine company
a project portfolio with 15 candidate projects and a budget
R of 15pu (per unit). Table 2 presents the projects to be
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considered with the projects costs (c). Moreover, Table
2 shows the impacts of the projects and the process (or
parameter) affected.

This problem was formulated according to Eq. 15
with a limit of 200 ‘relevant combinations’. The ‘Gurobi
Optimizer’ software was used and the best project port-
folio solution was found. Lastly, the optimal solu-
tion was converted in a set of isolate project (such as
Table 2) and the expected gain of this solution was
obtained using the queuing network model presented
in this paper. As a result, the best portfolio was
{1,0,0,0,0,1,1,1,1,0,1,0,0,0,0}, which provides a pro-
duction increase of 1049.09 tonnes.

6 Conclusions
In the context of projects portfolio, there is no simple way
to select the best portfolio when considering the inter-
relationship between projects. Thus, this paper showed
a strategy based on the characteristics of the load-haulage
cycle of an open-pit mine, that limits cohesively the inter-
relationships to be evaluated, based on an adaptation of
the knapsack problem. Given that the computational time
is a limited resource, an analytical approximation model
was designed. The results showed that there is not signif-
icant difference between this model and DES simulation
models which represents the same load-haulage cycle.
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