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Abstract
This paper presents a method for analyzing the effect of a
class of artillery-launched sensor fuzed munitions on a tar-
get, which is a system consisting of several target elements
and a fault logic. The target elements are armored vehicles
and the munitions are designed specifically to attack sin-
gle vehicles. We consider munitions which may contain
one or two submunitions. We want to address the follow-
ing questions: what is the probability of disabling the sys-
tem given the number of ammunition, and similarly, how
much ammunition is needed for disabling the system with
a given confidence level. The proposed method is based
on Markov chains rather than Monte Carlo simulation.
Keywords: Markov processes, probability, set theory,
operations research, mathematical model, algorithms,
weapons

1 Introduction
The term sensor fuzed munition is here used to denote mu-
nitions with target recognition capability and the ability
to autonomously search for, detect, recognize and attack
single target elements with specific signatures. Sensor
fuzed munitions are generally intended for use against ar-
mored vehicles. Sensor fuzed munitions engage their tar-
gets from above from a distance using explosively formed
projectiles (Dullum, 2008).

In this paper we consider sensor fuzed submunitions
that are delivered by an artillery projectile. The projec-
tile travels on a ballistic trajectory and ejects one or two
sensor fuzed submunitions over a desired release point us-
ing a time fuze. The submunitions operate independently
of each other, and after stabilizing and retarding their de-
scent, scan the area beneath them for suitable target ele-
ments. Figure 1 illustrates the operation of the munitions.

A target consists of a number of target elements in a
formation. Defeat of the target is defined by the damaging
of specific combinations of target elements.

We propose an approach based on Markov chains. This
approach has the benefit that once the effect of a single
projectile has been calculated, the effects of further pro-
jectiles can be calculated by simple matrix operations.

Analytical models for different types of sensor fuzed
munitions have been derived by (Halsør and Kvifte, 2003).
This paper extends that work.

R R

Figure 1. Schematic of the firing of an artillery projectile con-
taining two sensor fuzed anti-tank submunitions.

A corresponding method as in this paper has been pre-
viously applied to fragmenting munitions by (Pettersson
et al., 2011). The main difference is that a single frag-
menting munition can damage all target elements in the
area, whereas a sensor fuzed submunition can only dam-
age a single target element.

An alternative approach that has been used before for
this type of problems is to apply Monte Carlo methods,
as outlined in e.g. (Halsør and Kvifte, 2003) and (NATO
Standardization Office, 2012). Monte Carlo methods are
known to be computationally expensive when we need ac-
curate estimates of the kill probabilities, since their error
is proportionate to 1/

√
n where n is the number of repli-

cations.
The paper is outlined as follows. First, an overview of

the method is given. After this, a method for computing
the probabilities of encountering different target element
subsets is presented. Then the probabilities in the cases
with one and two submunitions are derived. Finally, the
failure probability of a system of target elements is con-
sidered.

2 Overview of the Method
An illustration of the method is provided in Figure 2. The
computations are performed in three steps. First, the prob-
abilities of a submunition encountering each subset of tar-
get elements are computed. After this, a state transition
matrix is constructed and finally, the effect of a given num-
ber of munitions is computed. The state vector can be used
together with fault logics to determine the probability of
the target being broken.

The following assumptions are made:

1. The position of each target element is known
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Figure 2. Illustration of the method.

2. The target elements are identical

3. A single submunition can only kill one target element

4. A target element has two states, functional and bro-
ken

5. Broken target elements are never attacked

6. The sensor is scanning, seeing only part of the search
area at a time, and the munition will attack the first
target it detects that fits given criteria. See Figure 1.

7. The search area, also known as the sensor footprint,
is circular in shape

8. The target elements are stationary

The second assumption can be generalized by having
different probabilities for detection, hit and kill for differ-
ent target element types. The seventh assumption can be
easily relaxed to other footprint shapes.

The carrier projectile is assumed to follow a ballistic
trajectory, which can be computed using, e.g., a modified
point-mass model. In this paper, the release point is for
simplicity assumed to follow a bivariate normal distribu-
tion on the ground plane. The mean and standard devia-
tions are assumed to be known.

A sensor fuzed submunition is characterized by the fol-
lowing parameters:

• Radius R of the search area

• Reliability pf

• Detection probability pd

• Hit probability ph

• Kill probability pk|h, i.e., the probability of the target
element breaking when hit

The probability of detection and the probability of kill
may depend of the target element type together with
weather and terrain conditions. The probability of detec-
tion may also depend on the distance from the center of
the search area. In this paper the scanning method of the
submunition is not specified, and thus all target elements
inside the search area have equal probability of being de-
tected first.

Some parameter values for existing sensor fuzed mu-
nitions can be found in open sources. For example, for
a certain munition, (Dullum, 2008) reports a search area
radius R = 100 m, and (Kosola and Solante, 2013) re-
port a hit probability of ph = 0.8 and a kill probability
of pk|h = 0.95.

3 Computing the Encounter Probabil-
ities

We consider n identical target elements in the target
area. Let us denote the set of target elements by T =
{T1,T2,T3, . . . ,Tn}, and the probability that the set of bro-
ken target elements after k artillery rounds is exactly X by
Pk(X).

Given a position (x,y) on the ground plane, there is a
probability p(x,y) of a sensor fuzed submunition starting
its search in that point. The probability is directly the
probability density function of the bivariate normal dis-
tribution. We look at a circular area with radius R around
(x,y) and select all target elements within it. This corre-
sponds to subset Xi ⊆ T . The integrand function returns
a vector with dim(vvv) = 2n, whose ith element has value
p(x,y).

Let PPP(set in search area) be a vector of length 2n con-
taining the probabilities that a single round encounters a
given subset of the target elements within its search area,

PPP(set in search area)=



P( /0 in search area)
P({T1} in search area)
P({T2} in search area)

P({T1,T2} in search area)
...

P({T1,T2, . . . ,Tn} in search area)

 .
(1)

One approach, proposed in (Halsør and Kvifte, 2003), is
to integrate over an area to obtain the probabilities of en-
countering each target element combination,

PPP(set in search area) =
∞∫
−∞

∞∫
−∞

fff (x,y)dxdy (2)

where the integrand fff (x,y) is a vector-valued function,
such that for i = 1, . . . ,2n

fi(x,y) =


p(x,y), if subset Xi is within distance R

from point (x,y)
0, otherwise

(3)
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Table 1. Encounter probabilities corresponding to the situation
in Figure 3

Set X P(X in search area)

/0 0.0138
{A} 0.0018
{B} 0.0781
{A,B} 0.1427
{C} 0.1834
{A,C} 0.1521
{B,C} 0.0426
{A,B,C} 0.3853

where p(x,y) is the value of the probability density func-
tion at point (x,y).

3.1 Example
The integral in (2) can be performed for an elliptical area
centered on the aimpoint. Figure 3 illustrates the situation.
The dispersion pattern is shown as ellipses. Three exam-
ple functioning points are shown. At functioning point P1
only target element B can be detected, at point P2 A and
C can be detected and at point P3 all three target elements
can be detected. When integrating over the area using (2)
we obtain the encounter probabilities listed in Table 1.

4 State Transition Matrix
Let Pk(X) be the probability that the set of tar-
get elements X is broken at time step k. Let
vvv(k) be a vector that contains the values of Pk(X)
for every subset X ⊆ T in bit order, i.e., vvv(k) =

[Pk( /0),Pk({T1}),Pk({T2}),Pk({T1,T2}), . . .]T , at time step
k.

We can interpret the system as a state machine where a
state is characterized by the set of broken target elements
and during each time step exactly one round of the weapon
system is fired. The vector vvv(k) contains the state proba-
bilities. Initially, all target elements are functional, thus
vvv(0) = [1,0, . . . ,0]T .

We can compute a state transition matrix AAA so that, for
all k,

vvv(k+1) = AAAvvv(k). (4)

After firing k rounds the end state is given by

vvv(k) = AAAkvvv(0). (5)

The state transition matrix AAA is defined as

AAA = [P(X j→ Xi)]1≤i, j≤2n (6)

where P(X j→ Xi) is the probability of moving from state
X j ⊆ T to state Xi ⊆ T .

Matrix AAA is rather large and has dimensions 2n × 2n.
However, AAA is rather sparse, which means that all matrix
operations will be faster when implemented using sparse
matrices.

During an artillery firing an individual target element
can either remain functional or break but broken target el-
ements can never return back to functional. This means
that P(X j → Xi) = 0 if X j 6⊆ Xi, and thus P(X j → Xi) can
only be nonzero if X j ⊆ Xi. In (Pettersson et al., 2011) it
was shown that when a single round is capable of killing
all target elements the number of nonzero elements in AAA is
at most 3n.

If, on the other hand, at most nK target elements can
be killed by a single round, then P(X j → Xi) can only be
nonzero if |Xi \X j| ≤ nK and X j ∩Xi = X j. The number of
nonzero elements matrix AAA is then

N(nonzero elements in AAA) =
2n

∑
j=1

N(nonzero elements in column j of AAA)≤

n

∑
i=0

(
n
i

) nK

∑
m=0

(
n− i

m

)
. (7)

If one target element can be killed we have at most (n+
2)2n−1 nonzero elements and if two target elements can
be killed the number of nonzero elements is at most (n2 +
3n+8)2n−3.

4.1 Projectile with a Single Sensor Fuzed Sub-
munition

If the encountered set of target elements is Xk and the ini-
tial state is X j, the set of killed target elements in the en-
countered set is X j ∩Xk. The set of functional target ele-
ments in the encountered set is Xk \X j.

Since the target elements are assumed identical, for any
target element X ∈ Xk we have that

P(X killed | Xk in search area and X j ∩Xk killed) =
P(1/|Xk \X j| killed). (8)

The probability of killing exactly one target element out
of m is

P(1/m killed) = (1− (1− pd)
m) ph pk|h pf/m. (9)

When only one target element can be killed each time
step, the exact probability of moving from state X j ⊆ T to
state Xi ⊆ T in one time step is

P(X j→ Xi) = P(X j→ (X j ∪{Ti})) =
∑

Xk⊆T,
s.t. Ti∈Xk

P(Xk in search area)P(1/|Xk \X j| killed). (10)

Next we present an algorithm for calculating the state
transition matrix more efficiently than the brute force ap-
proach of applying (10) for each nonzero element in the
matrix.
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Figure 3. The figure on the left shows the positions of three target elements: A, B and C. The ballistic dispersion of the carrier
projectile is marked by ellipses for one, two and three standard deviations. A single submunition is assumed. Three example
functioning points P1, P2 and P3 have been plotted, with the sensor footprints outlined with dashed circles. The figure on the right
shows the subsets found in each integration point.

Let us define Q(X) as the probability that X is a subset
of the set of target elements inside the search area. We can
calculate this probability as

Q(X) = ∑
Y⊆T,

s.t. X⊆Y

P(Y in search area). (11)

The probability that a set of target elements X is inside
the search area, but target element Ti is not, is Q(X)−
Q(X ∪ {Ti}). Applying this recursively we can rewrite
P(X in search area) in terms of Q as

P(X in search area) =
|T\X |
∑
i=0

∑
Y⊆(T\X),
s.t. |Y |=i

{
Q(X ∪Y ), i is even
−Q(X ∪Y ), i is odd

(12)

Unlike P(Xk in search area), which also depends on the to-
tal number of target elements in the search area, the value
of Q(Xk) does not change when the number of target el-
ements in T \ Xk changes. If we write (10) in terms of
Q, we can disregard the broken target elements in X j, re-
ducing the number of subsets to take into account. The
probability that a target element Ti is killed is then

P(X j→ (X j ∪{Ti})) =
∑

Xk⊆T,
s.t. Ti∈Xk

P(Xk in search area)P(1/|Xk \X j| killed) =

∑
Xk⊆(T\X j),

s.t. Ti∈Xk

|T\(Xk∪X j)|

∑
i=0

∑
Y⊆(T\(Xk∪X j)),

s.t. |Y |=i{
Q(Xk∪Y )P(1/|Xk| killed), i is even
−Q(Xk∪Y )P(1/|Xk| killed), i is odd

(13)

Since all possible Xk ∪Y are equivalent to some value of
Xk and the value of P(1/|Xk| killed) does not depend on Y ,
the sum can be factorized as

P(X j→ X j ∪{Ti})) = ∑
Xk⊆(T\X j),

s.t. Ti∈Xk

Q(Xk)
|Xk|−1

∑
i=0{(|Xk|−1

i

)
P(1/(|Xk|− i) killed), i is even

−
(|Xk|−1

i

)
P(1/(|Xk|− i) killed), i is odd

(14)

K(n) =
n−1

∑
i=0

{(n−1
i

)
P(1/(n− i) killed), i is even

−
(n−1

i

)
P(1/(n− i) killed), i is odd

(15)
We can define a recursive function

f (X ,Y ) ={
f (X \{Ti},Y )+ f (X \{Ti},Y ∪{Ti}), Ti ∈ X
Q(Y )K(|Y |), X = /0

(16)

which has the property

f (T \ (X j ∪{Ti}),{Ti}) =
∑

Xk⊆(T\X j),
s.t. Ti∈Xk

Q(Xk)K(|Xk|) = P(X j→ X j ∪{Ti})). (17)

We notice that by selecting X and Y appropriately, f (X ,Y )
gives us the nonzero nondiagonal elements of the state
transition matrix. All the relevant values of K, Q and
f (X ,Y ) can be precalculated in order to create each ele-
ment of the matrix in constant time, as demonstrated in
the algorithm in Fig. 4. The overall complexity of this
algorithm is O(n2 ·2n).
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Input: T,n = |T |,PPP(set in search area),PPP(1/m killed)
for i = 1 to n do {Precalculate K(i) to table Ki}

b j←


1, j = 1
a j−a j−1, j = 2, . . . , i−1
−1, j = i and i is even
1, j = i and i is odd

Ki← ∑
i
j=1 b jP(1/(i− j+1) killed)

aaa← bbb
end for
for k = 0 to n do {Precalculate Q(X) to hash table QX }

for all subsets X such that X ⊆ T and |X |= n−k do
QX ← P(X in search area)
SX ,1← P(X in search area)
for all elements Ti such that Ti ∈ T \X do

QX ← QX +SX∪Ti,i
SX ,i+1← SX ,i +SX∪Ti,i

end for
end for

end for
for k = 1 to n do {Precalculate f (X ,Y ) to hash table
fX ,Y }

for all subsets Y such that Y ⊆ T and |Y |= k do
X ← /0
f /0,Y ← QY ·K|Y |
Move the last element of Y from Y to X
for j = 2 to k do

Move the last element of Y from Y to X
for i = 1 to j do

Xm←
{

X1, i > 1
X2, i = 1

Move element Xi from X to Y
fX ,Y ← fX\{Xm},Y + fX\{Xm},Y∪{Xm}
Move element Xi back from Y to X

end for
end for

end for
end for
{Construct the state transition matrix AAA =
[am j]1≤m, j≤2n}
AAA← 02n,2n

for all subsets X j such that X j ⊆ T do
a j j← 1
for all elements Ti such that Ti ∈ (T \X j) do

Get row number m such that Xm = X j ∪{Ti}
am j← fT\(X j∪{Ti}),{Ti}
a j j← a j j−am j

end for
end for
return AAA

Figure 4. Algorithm for creating state transition matrix for a
single sensor fuzed submunition.

4.2 Example
With two target elements, A and B, we have state vector vvv

vvv =


P( /0 killed)
P(A killed)
P(B killed)

P(AB killed)

 (18)

and state transition matrix AAA

AAA =


p /0→ /0 0 0 0
p /0→A pA→A 0 0
p /0→B 0 pB→B 0

0 pA→AB pB→AB 1

 (19)

where

p /0→A = f (B,A) = f ( /0,A)+ f ( /0,AB)
=Q(A)K(1)+Q(AB)K(2) (20)

p /0→B = f (A,B) = f ( /0,B)+ f ( /0,AB)
=Q(B)K(1)+Q(AB)K(2) (21)

pA→AB = f ( /0,B) = Q(B)K(1) (22)
pB→AB = f ( /0,A) = Q(A)K(1) (23)

p /0→ /0 =1− p /0→A− p /0→B (24)
pA→A =1− pA→AB (25)
pB→B =1− pB→AB (26)

and

Q(A) =P(A in search area)+P(AB in search area)

(27)

Q(B) =P(B in search area)+P(AB in search area)
(28)

Q(AB) =P(AB in search area) (29)

K(1) =
(

0
0

)
P(1/1 killed) (30)

K(2) =
(

1
0

)
P(1/2 killed)−

(
1
1

)
P(1/1 killed) (31)

4.3 Projectile with Two Sensor Fuzed Submu-
nitions

We now consider the case where an artillery projectile
contains two sensor fuzed submunitions, which are re-
leased at some altitude. The release point is still assumed
to follow a bivariate normal distribution. The center of the
search areas of each submunition is assumed to be located
at given distances from the release point in the direction of
fire, since the submunitions will have forward motion be-
fore being sufficiently slowed down, as illustrated in Fig-
ure 5.

For tube artillery projectiles containing two submuni-
tions, the centers of the search areas of the submunitions
are separated by approximately 300 m, according to (Dul-
lum, 2008). If the radius of the search area for each
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submunition is 100 m, the search areas will not overlap.
Therefore, in this paper the search areas are assumed to
be non-overlapping. The submunitions are also assumed
identical.

P0

P1

Search area 1

Search area 2

d2

P2

d1

Figure 5. Sensor fuzed munition containing two indentical
submunitions, whose non-overlapping search areas are outlined
with dashed circles. The release point is at P0, after which sub-
munition 1 travels distance d1 and submunition 2 distance d2.
The direction of fire is represented by the vectors.

The encounter probabilities have to be constructed for
both search areas. We denote the subset in the first search
area by S1 and the subset in the second search area by
S2, with the constraint that S1 ∩ S2 = /0, i.e., the search
areas contain disjoint subsets. The probability vector
PPP(sets in search area) can be calculated in a similar man-
ner as in the single submunition case and will have length
3n. The state transition matrix can be constructed using
an approach similar to the single submunition case. Let us
redefine the variables as

Q(X ,Y ) = ∑
S1⊆T,

s.t. X⊆S1

∑
S2⊆T\S1,
s.t. Y⊆S2

P(S1,S2 in search area) (32)

P(0/n killed) =

{
1−n ·P(1/n killed), n > 0
1, n = 0

(33)

K0(n) =

{
∑

n
i=0
(n

i

)
P(0/(n− i) killed), i is even

−∑
n
i=0
(n

i

)
P(0/(n− i) killed), i is odd

(34)

f1(X ,Y,Z) =
f1(X \{Ti},Y,Z)+ f1(X \{Ti},Y ∪{Ti},Z)
+ f1(X \{Ti},Y,Z∪{Ti}), Ti ∈ X

Q(Y,Z)K(|Y |)K0(|Z|)
+Q(Z,Y )K(|Z|)K0(|Y |), X = /0

(35)

f2(X ,Y,Z) =
f2(X \{Ti},Y,Z)+ f2(X \{Ti},Y ∪{Ti},Z)
+ f2(X \{Ti},Y,Z∪{Ti}), Ti ∈ X

(Q(Y,Z)+Q(Z,Y ))K(|Y |)K(|Z|), X = /0
(36)

P(X j→ X j ∪{T1}) = f1(T \ (X j ∪{T1}),{T1}, /0)
P(X j→ X j ∪{T1,T2}) = f2(T \ (X j ∪{T1,T2}),

{T1},{T2}) (37)

With the above definitions, Q, f1 and f2 can be precal-
culated in the same way as Q and f in Fig. 4. The state
transition matrix for two submunitions can be created in
time O(n · 3n), which is the complexity of precalculating
Q(X ,Y ) recursively for all possible X ,Y ∈ T .

5 Failure Probability of the System
Arbitrary fault logics may be used to determine which bro-
ken subsets correspond to a broken system. The probabil-
ity that the system breaks is the sum of these subset de-
struction probabilities in vvv(k),

P(system breaks) = ∑
Xi⊆T,

s.t. g(Xi)=1

vi(k) (38)

where function g contains the fault logics. The value of
g(X) is 1 if X corresponds to a broken system according
to the fault logic and 0 otherwise.

The smallest number of projectiles needed to guarantee
failure of the system with a given confidence level α can
be obtained simply by starting at k = 1 and calculating
P(system breaks) repeatedly while increasing the value of
k until P(system breaks)≥ α .

6 Conclusions
The placement of the aimpoint has a significant impact
as well as the trajectories of the submunitions, here mod-
eled as offset vectors. The trajectories of the submunitions
from expulsion from the carrier projectile to their activa-
tion need further study.

We also need to address the target location error and
the mean release point error. The mean release point may
not necessarily coincide with the actual aimpoint and the
aimpoint may also have a systematic error. One approach
to handling these errors is to assume that the errors follow
a bivariate normal distribution and discretize the region
into a number of points and iterating over them.

The method can be generalized to having target ele-
ments with different properties, which would translate to
different detection, hit and kill probabilities.
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