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Abstract
Helicopter take-off and landing operations on ship

carrier are very hazardous and training intensive.

Guidance, Navigation and Control algorithms can help

pilots to face these tasks by significantly reducing the

workload and improving safety level. Anyway, the

design and verification of such algorithms require the

availability of suitable simulation environments that

shall be a trade-off between simplicity and accuracy.

This paper presents the simulation models developed to

support the design, pre-flight verification and validation

of helicopter trajectory generation and tracking

algorithms for automated take-off and landing on a

frigate deck. The process for generation and testing of

the code to be integrated into the real-time Software-In-

the-Loop simulator is also described. Such fast time and

real-time simulation environments contributed to reduce

algorithms design time, risks and costs, by limiting the

required flight test activities. Take-off and landing

algorithms developed by using the proposed simulation

environments were successfully demonstrated in flight.
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1 Introduction

Vertical take-off and landing operations of aerial vehicle

on ship’s deck enhance mission capabilities for military

and civilian users. Anyway, these operations are the

most dangerous flight phases for helicopters (Padfield,

1998; Lee, 2005). Indeed, a pilot have to deal with an

invisible ship air wake, poor visible cueing and a landing

spot which is heaving, rolling, pitching and yawing. At

the same time the pilot shall also monitor vehicle’s

structural, aerodynamic and control limits. Moreover,

operations take place in close proximity to the

superstructure of the ship, that means there is little

margin for error and the consequences of a significant

loss of positional accuracy by the pilot can be severe.

The availability of Guidance Navigation and Control

(GNC) algorithms for automatic operations can help

pilots to face these tasks by significantly reducing

operator workload, improving safety level and flight

handling qualities. To develop these algorithms, suitable 

simulation environments are essential in order to reduce 

the flight test time and cost and to establish safe 

operating envelopes. The simulation tools shall be able 

to model all the relevant phenomena, such as helicopter 

flight dynamics (including on board sensors and 

actuators), the motion of the ship for the given sea state, 

the influence on the helicopter of the ship air wake and 

of the environment in general.  

It is worth to note that modelling and simulation of 

each of the above listed phenomena is not a trivial task. 

Indeed, the simulation of the helicopter flight behavior 

includes kinematics, dynamics and aerodynamics of its 

subsystems (main rotor, fuselage, empennage, tail rotor, 

power plant, primary flight control system, on board 

sensors).  

The vehicle’s equations of motion, even if presented 

in several textbooks (Padfield, 1996; Johnson, 1994), 

are differential high order, nonlinear, coupled, and 

contain a large number of parameters, which often 

cannot be directly measured (Tishler et al., 2006). On 

the other hand, simplified models, which are able to 

catch the relevant dynamics, are typically required for 

GNC design purpose (Lee, 2005), to enhance physical 

understanding and lower the computational load. To this 

aim, linear parametrized models have been widely used 

(Tishler et al., 2006), but they are inadequate for 

accurate simulation of the vehicle dynamics when state 

variables significantly deviate from the linearization 

point (Gavrilets, 2006). Therefore, a suitable trade-off 

between model complexity and simulation accuracy 

shall be performed.  

Another relevant topic concerns ship motion, which 

is an important issue for helicopter deck operations. For 

helicopter GNC algorithms design and analysis purpose, 

ship motion is usually represented through linear models 

or simplified nonlinear models with benign 

nonlinearities to capture the essential behavior of the 

vessel (Li, 2009). Ship motion can also be modelled 

using pre-computed or measured time histories (Carico 

et al., 2003). In any case, the ship model shall take into 

account the effect of the environment, and, in particular, 
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of the sea waves (Perez, 2005), which lead an 

undesirable low frequency disturbance into the motion 

of the vessel.  

Finally yet importantly, the ship produces an air 

wake, which affects the helicopter dynamics. Indeed, 

ship air wake contains large velocity gradients and area 

of turbulence, generated by complex mechanisms of 

vortex dynamics near the ship deck, which greatly 

impair controllability of the flying vehicle and require 

additional control efforts to avoid accidents and to 

compensate abrupt changes in thrust level. Several 

accurate and complex CFD models of ship air wake are 

proposed in the literature (Kääriä, 2012), but CFD 

simulations produce a large amount of data and their use 

for GNC design and real time testing is usually 

unfeasible (Lee, 2005).  

Stochastic turbulence models have been also 

proposed to represent the air wake with reasonable 

accuracy (Lee, 2005; Yang et al., 2009). These models 

may provide some insight into the effects of the air wake 

that are typically enough relevant for real-time 

simulations and flight control systems design. 

It is also worth to note that, with reference to all the 

discussed models, a suitable code generation procedure 

and testing methodology shall be defined, in order to 

generate reliable real-time simulation models, 

applicable for GNC algorithms verification and 

performance assessment. 

This paper presents the simulation environment 

developed by the Italian Aerospace Research Centre and 

Finmeccanica in order to support the design and 

verification of algorithms for helicopter trajectory 

generation and tracking, during an automated take-off 

and landing on a frigate deck. Matlab/Simulink was 

used for implementing such simulation environment, 

which constitutes an alternative to the already existing 

Finmeccanica GNC validation environment.  

The proposed models, although simplified, are able 

to take into account the main effects of the sea’s 

disturbance on the ship motion and of the ship air wake 

on the helicopter trajectory. Concerning the helicopter 

vehicle dynamics, its model emulates the relevant 

closed loop performance of the vehicle and includes 

operating envelope limitations through a model for 

aerodynamic forces and thrust computation, whose 

parameters are identified from experimental data.  

The paper also includes some fast time simulation 

results compared to experimental data, demonstrating 

that the proposed simulation environment is accurate 

enough for GNC algorithms design.  

Finally, some models of the above mentioned 

simulation environment were also integrated into the 

detailed Software-in-the-Loop Simulator of 

Finmeccanica, to perform real-time verification and 

validation of the whole Flight Management System 
(FMS). Therefore, a real-time automatic code 

generation process has been defined and implemented, 

in order to keep consistency between the simulation 

environment used for design, and the one used for final 

software verification. The paper briefly describes such 

generation process, which allowed producing reliable 

software code, compliant to DO-178C standard and 

Finmeccanica own implementation rules.  

The proposed fast time simulation environment 

dramatically reduced the algorithms design time, risks 

and costs, by limiting the required flight test activities.  

The take-off and landing algorithms developed by 

using the simulation environment described in this paper 

were successfully demonstrated in flight, by means of a 

full-size optionally piloted helicopter: the Finmeccanica 

SW-4 SOLO. 

2 Simulation Models 

The model based design process of a Guidance 

Navigation and Control system requires the 

development of simulation models with different 

complexity level, to be used in the various development 

phases, as shown in Figure 1.  

The present section describes the mathematical 

models integrated into the simulation environment that 

was employed to design the helicopter trajectory 

generation and tracking algorithms for automated take-

off and landing on a frigate deck. Figure 2 shows the 

functional architecture of such environment. 

 

               

Figure 1. GNC Technology Development Cycle. 

Figure 2. Simulation Environment functional 

architecture. 
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The blue blocks represent the simulation models, scope 

of this paper, whereas the red blocks are the GNC 

algorithms. The following sub-sections describe in 

detail each blue block. 

2.1 Helicopter Model 

Trajectory generation and tracking algorithms typically 

require the knowledge of vehicle’s position and velocity 

only. Therefore, for the design and preliminary 

verification of such algorithms, it is sufficient and cost 

effective to model only the closed loop attitude dynamic 

response of the vehicle coupled with the high-level 

modes of the autopilot system. With this approach, a 

rigid body with three degrees of freedom, subject to 

external forces, and the rotational dynamic response of 

the vehicle to the autopilot commands represent the 

helicopter dynamics.  

While this modelling approach is widely used in 

fixed-wing aircraft for guidance algorithms design, it is 

quite unusual for helicopters, because it does not take 

into account the coupled dynamics of the rotor 

flexibility with the helicopter rigid flight mechanics 

(Tishler et al., 2006). 

Key original contribution of this paper is the 

development of a mixed empirical and physical 

formulation of the equations, so that the resulting 

simulation model includes only the low frequency 

effects of the neglected helicopter dynamics. As 

demonstrated by the comparisons with flight data 

reported in this paper, this allows obtaining enough 

accurate simulation results during the quasi-static 

manoeuvers of take-off and landing, while still taking 

into account the disturbance effects of wind and ship air 

wake.  

The model assumes flat and fixed Earth, with 

constant gravity acceleration, and quasi-stationary 

variation of the vehicle mass (only due to fuel 

consumption).  

The model’s commands are the reference attitude and 

collective, while wind velocity (VW) is the disturbance 

input.  

The actual attitude (φH, ϑ H, ψ H) and collective (δcoll) 

of the vehicle, used in (1) for computation of forces, are 

modelled by unitary gain second order filters applied to 

the commands provided as input to the helicopter model. 

Such filtered Euler angles and collective and their rates 

are also saturated to account for actuator velocity 

limitations and some inner autopilot protection 

functions. Overall, the linear filters and related 

saturations model the closed loop performance of the 

inner autopilot modes. The parameters of both these 

filters and saturations are scheduled with respect to 

airspeed and they were identified by analyzing flight 

data gathered in specific manoeuvers.  

The outputs are the helicopter position, velocity, load 
factors, actual attitude and angular rates.  

The following equations of motion of the vehicle 

centre of mass (CoM), in North-East-Down (NED) 

inertial reference frame (McCormick, 1995), compute 

such outputs: 

 WcollHHH V,δ,ψ, ,FV m  (1) 

HH VP   (2) 

wh   (3) 

where V is the inertial velocity vector, VH and w are its 

horizontal (included into the North-East plane) and 

vertical components (positive down), respectively; PH is 

the horizontal position and h the altitude of the vehicle 

CoM; m is the helicopter mass and F is the resultant 

force vector acting on the vehicle.  

The force vector F is composed by gravitational force 

W (constant, and directed along the down axis of the 

NED reference frame), aerodynamic force FA and 

propulsive force T.  

The computation of aerodynamic and thrust forces is 

first performed in the vehicle body reference frame, and 

then it is rotated in NED reference frame. The 

aerodynamic forces in body axes ( B

AiF ) are as follows: 

 
j

, ,jijdyn

B

Ai cSqF  
(4) 

   WW

2 VVVV 
T

TASV  (5) 

2ρ5.0 TASdyn Vq   (6) 

 TASTAS uwtg 1α   (7) 

 TASTAS Vv1sinβ   (8) 

where qdyn is the dynamic pressure, ρ is the air density, 

VTAS ≡ (
TASTASTAS wvu ,, ) is the helicopter true airspeed, 

Sj is the reference aerodynamic surface of the j-th 

aerodynamic component (that is, fuselage, vertical and 

horizontal stabilizers) and ci,j the corresponding 

aerodynamic non-dimensional coefficient, which 

depends on the angle of attack α and sideslip angle β. 

Tabled functions express the aerodynamic coefficients 

using data extrapolated from flight experiments.  

It is worthy to note that the aerodynamic angles α and 

β are not defined when the helicopter airspeed is null, 

for example in hover condition with null wind speed. In 

this case, the aerodynamic forces are negligible and the 

aerodynamic angles are not computed.  

The propulsive force is evaluated by using the 

following semi-empirical linear model (Gavrilets, 

2003): 

    wVz+Vz=T TASwTAScoll  collδ  (9) 

The parameter zcoll is a gain between the thrust and the 

collective command δcoll in level flight trim conditions. 

It is scheduled as a function of the forward speed of the 

aircraft with respect to air, and its values were identified 

applying a best-fit procedure of the rotor thrust data in 
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different flight conditions provided by the helicopter 

manufacturer.  

The parameter zw relates the thrust to the vertical 

speed. Although an analytical relation exists to express 

these parameters as function of vehicle characteristics 

(Gavrilets, 2003), in the present work, zw was computed 

by fitting experimental data in climb and descent flight, 

and it is expressed as fraction of zcoll.  

The thrust vector is assumed to point in the opposite 

direction of the body Z-axis. This hypothesis allows 

reproducing in simulation the trim values of pitch angle 

experimented in flight by the vehicle in level flight 

conditions. 

2.2 Atmosphere Model 

This model is in charge to reproduce the environmental 

conditions, in which the helicopter flies, that can 

influence the vehicle behaviour.  

The model includes computation of atmospheric 

parameters (air density and temperature, static and 

dynamic pressure), wind velocity (wind shear, wind 

gust, atmospheric turbulence), and ship air wake 

experimented by the helicopter, based on its current 

position and velocity. International Standard 

Atmosphere (McCormick, 1995), von Karman model 

(von Karman, 1948) and standard wind model (MIL-F-

8785C, 1991) are used for atmospheric parameters, 

turbulence and wind shear and gust, respectively.  

Another element of originality included in this paper 

concerns the simplified ship air wake model, which is 

implemented as a stochastic phenomenon through a 

parameter modification of the von Karman turbulence 

model (von Karman, 1948).  

In this model, independent white noise processes are 

suitably filtered to yield the desired forms of output 

power spectral density. The transfer functions (Xug, Xvg, 

Xwg) of these linear filters in the Laplace domain are: 

 

   
  sVL

VL

=sX

TASu

TASuu

ug



1

1
2σ 

 
(10) 

 

   
 

  221

321
2σ

sVL

sVL
VL

=sX

TASv

TASv
TASvv

vg




 

 
(11) 

 

   
 

  221

321
2σ

sVL

sVL
VL

=sX

TASw

TASw
TASww

wg




 

 
(12) 

where σu, σv, σw and Lu, Lv, Lw are gains and scale 

factors, respectively, to be tuned through the analysis of 

CFD or experimental (wind tunnel or flight test) data.  

Anyway, due to the unavailability of these data, such 

model parameters and their dependencies from 

helicopter state variables were determined through 

literature analysis and physical considerations.  

The scale factors are set proportional to the 

characteristic lengths of the ship super-structure, which 

generates the wake. Since the effects of the wake on 

helicopter depend also from ship-helicopter relative 

position, the filters gains varied linearly with the ratio 

between ship speed and the square of the helicopter-ship 

distance.  

Moreover, to take into account the local effect of the 

air ship wake disturbance and its dependence on wind 

direction, the wake’s perturbation is only active within 

a limited size parallelepiped, which is oriented parallel 

to the wind speed and has width equal to the section of 

the super-structure orthogonal to the wind direction, 

length equal to three times the superstructure’s section 

parallel to the wind direction, and height equal to three 

times the superstructure’s height. 

2.3 Ship Model 

The ship translational motion is represented through 

kinematic relations, for the computation of undisturbed 

centre of mass position and velocity, plus an additive 

stochastic model, which simulates the sea wave 

disturbance on the ship. The applied equations for 

nominal position and velocity computation are: 

 TyxNo aa 0V   (13) 

 (14) 

where ax and ay are the commanded horizontal 

acceleration of the ship; VNo ≡ (uNo, vNo, wNo) and PNo ≡ 

(xNo, yNo, hNo) are nominal velocity and position in NED 

reference frame, respectively. The actual position PN ≡ 

(uN, vN, wN) and velocity VN ≡ (xN, yN, hN) are calculated 

by adding the sea disturbance η ≡ (ηx, ηy, ηz) to nominal 

values: 

  η0V 
T

NoNoN vu  (15) 

ηPP  NoN
 (16) 

The attitude equations are defined independently as 

follows: 





















































ψ

θ

0

0

0

N

N

N

η

η

η

ψ

θ

ψ

θ


 

(17) 

It is assumed that the ship does not steer when helicopter 

is close, therefore its Euler angles (φN, θN, ψN) only 

depend on their initial values and on the sea disturbance 

(ηφ, ηθ, ηψ).  

The stochastic variables introduced in (16) and (17) 

for representing the sea disturbance are generated using 

the same equations. A mean velocity VS and 

displacement DS produced by the disturbance is 

associated to each variable. VS and DS depend on ship 

speed and sea state, and are provided by look up tables, 

which collect experimental data.  
The sea disturbance is periodic and it pulsation ω is 

given by (Holthuijsen, 2017) 

 TNoNoNoNo wvu P
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SS DVπ2ω  (18) 

The time evolution of the generic component of the sea 

disturbance ηi is then evaluated as follows 

   tAt i ii ωsinη   (19) 

The gain Ai is a random variable with Rayleigh 

distribution, whose parameters depend on sea state and 

ship speed and are provided by a look up table based on 

experimental observations. During a simulation, the 

gain Ai is updated at the end of each wave period (that 

is, each DS / VS seconds) by performing a new random 

draw. 

2.4 Sensor Model 

Two kinds of sensors are available on-board the 

helicopter and are included into the simulation 

environment: a standard navigation suite (composed of 

an inertial navigation system and an air data system) and 

a differential GPS, with centimetric precision, denoted 

as Precision Positioning System (PPS) and needed for 

accurate relative navigation during take-off and landing 

operations.  

Each measurement (M) is computed starting from its 

simulated true value ( M ) taken from the models of the 

helicopter, the ship or the atmosphere.  

For what concerns the inertial navigation sensor, each 

true variable to be measured is filtered and sampled. 

Then it is corrupted by introducing a scale factor 

deviation (CSF), a bias (ebias), white noise (ewhite) and an 

additive magnetic declination error (edec), which is zero 

for all the measurements but the helicopter heading: 

decwhitebiasSF eeeMCM   (20) 

The air data measurements are generated through the 

relation: 

whitebias eeMM   (21) 

Concerning the GPS sensor, it is simulated corrupting 

the true measurements with bias, white noise and 

diluition of precision error (eDOP): 

DOPwhitebias eeeMM   (22) 

All the additive errors in (20), (21) and (22) are 

stochastic and derived from the specification data sheet 

of the real sensor.  

In the GPS model, these errors depend on the 

configuration of the sensor, which can work in SPS 

(Standard Positioning Service), DGPS (Differential 

GPS) and RTK (Real Time Kinematic) mode. The 

model also allows injecting a failure which degrades the 

precision of the sensor from RTK mode (also denoted as 

Precision Positioning System) to SPS mode. 

3 Code Generation and Verification 

As said, some of the developed models (e.g. ship, ship 

air wake and GPS sensor) were automatically software 

coded after the implementation in Matlab/Simulink, in 

order to allow their integration into the Finmeccanica 

real-time Software-In-the-Loop (SIL) simulator, which 

is used to test on ground the GNC prototype. Figure 3 

shows the applied code generation process and testing 

methodology.  

1 Check & Update Simulink Model

2 Set Simulation Configuration

3 Run Model Advisor DO-178C

[Simulation test fails]

4 Run & Test Simulation

5 Set Coder Configuration

[Validation fails]

6 Code Generation

7 Polyspace Verification

8 Visual Studio Integration

[Verification fails]

[Test fails]

[Test OK]

[Verification OK]

[Simulation test OK]

[Validation OK]

Simulink Model

               

Figure 3. Code generation operational flow. 

The flow starts with the selection of the Simulink model 

from which the code shall be generated. This model 

shall follow Finmeccanica proprietary design rules and 

specifications; to this end, a proprietary Simulink library 

have been developed and used to implement the models.  

In step 1, the Model Update command in Simulink 

environment allows to check for errors and warnings. 

Then, the configuration settings are applied by running 

a Matlab script (step 2), that is customized to make the 

Simulink model compliant to the DO-178C standard. 

This compliance is verified in step 3 by means of the 

Mathworks Model Advisor tool. Next, the unit test for 

each Simulink model is performed, still in Simulink 

environment (step 4). In step 5, a proprietary Matlab 

script defines the Code Configuration settings; then the 

source C Code of the model is automatically generated 

(step 6) using Real Time Workshop. The Mathworks 

Polyspace tool is applied in step 7, to perform a static 

analysis of the generated code in order to check the 

absence of overflow, divide by zero, out of bounds array 

access, and other kind of run-time errors. If the 
generated code passes Polyspace tests, it can be 

integrated into Microsoft Visual Studio Environment 
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(step 8) to be tested with the same test vectors used in 

Step 4. Finally, the test outputs of step 4 and step 8 are 

compared, in order to check the correctness of the 

generated code.  

After that, the model code can be integrated into the 

final detailed simulation model, being sure that it 

performs exactly as the simulation environment used for 

design. 

4 Simulation Results 

The principal phenomena that influenced the design of 

the trajectories and tuning of the tracking algorithm for 

automatic take-off and landing are the wake 

phenomenon near the ship, the PPS availability along 

the trajectory, the disturbance of the sea waves on the 

ship deck motion and the performance and dynamic 

behavior of the helicopter. 

The validity of the proposed helicopter model for 

GNC algorithm design can be demonstrated by Figure 4 

where comparison of flight data versus simulation data 

is reported for attitude.  

The differences that can be noted have negligible 

effects on the algorithm design and preliminary testing, 

as the helicopter low frequency behavior is almost 

accurately predicted. Similar results hold for 

acceleration, not reported here for the sake of brevity.  

Moreover, Figure 5 compares the collective 

deflections in trim condition at 650ft altitude computed 

by using the model with a validation data set provided 

by Finmeccanica: the model reproduces quite well the 

vehicle behavior, confirming the validity of the 

proposed helicopter thrust model. 

               

Figure 4. Comparison between simulated and 

experimental attitudes. 

               

Figure 5. Comparison between simulated collective 

deflections in trim condition and validation data. 

         

Figure 6. Schematic representation of the landing 

trajectory. 

The other main simulated effects on a sample automatic 

landing trajectory are also presented below.  

The designed landing trajectory, schematically 

shown in Figure 6, is structured in three phases. In the 

Proximity phase the helicopter is almost aligned with 

the ship direction at a desired speed in order to follow 

properly the descending path to the first relative 

hovering way point (Approach phase). In the Final 

phase, after the operator acknowledgment, the 

helicopter moves to the second relative hovering 

waypoint (P2
HOVER) and finally lands on the ship deck. 

The modelled action of the air wake on the helicopter 

vertical acceleration, during the automatic landing 

manoeuvers, is shown in Figure 7.  

It is worth to note, in the second graph, how the effect 

of the air wake is null until the helicopter enters in a 

proper area (near P1
HOVER). As said, such area depends 

on the ship super-structure and wind direction (which in 

the test is aligned with the ship speed). When the ground 

operator gives the acknowledge command, the relative 

distance between the ship and the helicopter decreases 

while the wake effect increases. The same happens as 

the relative altitude decreases in the last manoeuver for 

deck landing.       

    

Figure 7. Air wake effect on the helicopter vertical 

acceleration. 

Figure 8 presents the effect of the sea waves on the ship. 

It refers to Type 23 frigate at two different speeds for 

see state level six.  
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As expected, it is highlighted how the frequency and 

the mean amplitude of ship deck motion decrease with 

the increase of the ship speed. Indeed wave disturbances 

are low pass filtered by the ship inertia, and the cut off 

frequency of this filter decreases when ship speed 

increases. Such movements are taken into account in the 

last part of the landing manoeuver when the helicopter 

waits for a quiescent state of the ship deck before 

landing. 

               

Figure 8. Ship deck motion under sea state level six at 30 

knots ship speeds (red) and null ship speed (blue). 

5 Conclusions 

Accurate, yet simple, simulation environments are 

fundamental tools to develop GNC algorithms.  

This paper presented an effective simulation 

environment to be used specifically for design, 

preliminary test and software implementation of 

automatic take-off and landing algorithms on a ship 

deck. 

With reference to rotary-wing applications, an 

original modelling approach based on both empirical 

relations and appropriate mathematical formulation has 

been proposed that still accurately reproduce helicopter 

and ship transactional motion and ship air wake.  

Simulation results demonstrate effectiveness and 

accuracy of such modelling approach.  

The developed simulation environment contributed 

to reduce design time, risks and costs of automatic take-

off and landing algorithms on a ship deck that were 

successfully tested in flight.  

Future work will be focused on the refinement of the 

model’s parameters (especially for what concern the 

ship air wake model) based on the analysis of flight data. 
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